-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPractical 2 @ 20201043.nb
2290 lines (2253 loc) · 110 KB
/
Practical 2 @ 20201043.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 110259, 2282]
NotebookOptionsPosition[ 108633, 2227]
NotebookOutlinePosition[ 109132, 2247]
CellTagsIndexPosition[ 109089, 2244]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Practical 2", "Title",
CellChangeTimes->{{3.859861158477406*^9, 3.8598611808010445`*^9},
3.8598613999346266`*^9},
TextAlignment->Center],
Cell[CellGroupData[{
Cell[TextData[{
StyleBox["Submitted By- ", "Text",
FontSize->16],
StyleBox["Puranjyoti Bera (20201043)", "Text",
FontSize->16,
FontColor->RGBColor[0, 0, 1]]
}], "Subsection",
CellChangeTimes->{{3.8595117981330643`*^9, 3.8595118324375243`*^9}, {
3.890708159929916*^9, 3.890708187718935*^9}}],
Cell[TextData[{
StyleBox["Q1. Find all the solutions of the equation ",
FontFamily->"Cambria"],
Cell[BoxData[
FormBox[
SuperscriptBox["z", "3"], TraditionalForm]],
FontFamily->"Cambria Math"],
StyleBox["=8i",
FontFamily->"Cambria Math",
FontSlant->"Italic"],
StyleBox[" and represent these geometrically.",
FontFamily->"Cambria Math"]
}], "Text",
CellChangeTimes->{{3.8598616829047203`*^9, 3.8598616881931295`*^9}, {
3.8598617225287895`*^9, 3.8598617569892497`*^9}, {3.8598617873469024`*^9,
3.859861804974933*^9}, {3.8598635880960417`*^9, 3.8598635968788576`*^9}},
FontFamily->"Cambria",
FontSize->16,
FontWeight->"Bold"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"u", ":=",
RowBox[{"z", "/.",
RowBox[{"ComplexExpand", "[",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"z", "^", "3"}], "\[Equal]",
RowBox[{"8", "*", "I"}]}], ",", "z"}], "]"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"Print", "[", "\"\<The roots of the given equation are given by\>\"", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Column", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}]}], "]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
"\"\<The roots lie on the circle |z|=2 and graphically represented as\>\"",
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", ":=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}]}], "]"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"PointSize", "[", "0.04", "]"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b", ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Thick", ",", "Magenta", ",",
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}]}], "}"}]}], "}"}],
"]"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c", ":=",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"2", "*",
RowBox[{"Cos", "[", "t", "]"}]}], ",",
RowBox[{"2", "*",
RowBox[{"Sin", "[", "t", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",",
RowBox[{"2", "*", "Pi"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"a", ",", "b", ",", "c", ",",
RowBox[{"PlotRange", "\[Rule]", " ", "2"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.859861811230544*^9, 3.8598621860211973`*^9}, {
3.8598630994183903`*^9, 3.859863147950075*^9}, {3.859863277867101*^9,
3.8598632990831385`*^9}, {3.859863351932831*^9, 3.859863387688093*^9}, {
3.859863432974972*^9, 3.8598634351433754`*^9}, {3.8598637522083282`*^9,
3.8598637533939304`*^9}}],
Cell[BoxData["\<\"The roots of the given equation are given by\"\>"], "Print",
CellChangeTimes->{
3.8598631508360796`*^9, {3.859863285947915*^9, 3.859863301126742*^9}, {
3.859863352978032*^9, 3.859863388795695*^9}, 3.8598634363133774`*^9,
3.8598637546575327`*^9}],
Cell[BoxData[
TagBox[GridBox[{
{
RowBox[{
RowBox[{"-", "2"}], " ", "\[ImaginaryI]"}]},
{
RowBox[{"\[ImaginaryI]", "+",
SqrtBox["3"]}]},
{
RowBox[{"\[ImaginaryI]", "-",
SqrtBox["3"]}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]], "Output",
CellChangeTimes->{
3.8598631511324806`*^9, {3.8598632859635153`*^9, 3.859863301142342*^9}, {
3.8598633529936323`*^9, 3.8598633888112946`*^9}, 3.8598634363133774`*^9,
3.8598637546731324`*^9}],
Cell[BoxData["\<\"The roots lie on the circle |z|=2 and graphically \
represented as\"\>"], "Print",
CellChangeTimes->{
3.8598631508360796`*^9, {3.859863285947915*^9, 3.859863301126742*^9}, {
3.859863352978032*^9, 3.859863388795695*^9}, 3.8598634363133774`*^9,
3.8598637546731324`*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {{},
{RGBColor[1, 0, 0], PointSize[0.04], AbsoluteThickness[1.6],
PointBox[{{0., -2.}, {1.7320508075688772`, 1.}, {-1.7320508075688772`,
1.}}]}, {}}, {}, {}, {{}, {}}},
{RGBColor[1, 0, 1], Thickness[Large], ArrowBox[{{0, 0}, {0, -2}}]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {3^Rational[1, 2], 1}}, {{0, 0}, {
1.7320508075688772`, 1}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {-3^Rational[1, 2], 1}}, {{0,
0}, {-1.7320508075688772`, 1}}]]}, {{}, {},
TagBox[
{RGBColor[0, 0, 1], Thickness[Large], Opacity[1.], FaceForm[Opacity[
0.3]], LineBox[CompressedData["
1:eJw1m3c41f/7x42KyChFpaJFi4rS7q5oGBkRDWWlJJmlYaakUPZIRlK2zITk
tne27GzZ+3Cc9f69P9f1+/qHx/U+zuX1et33/Xo+ruvYamhxxZiDjY3tEScb
23/f///rzP9+MNy3T5RBEPBqRaWCn68FiH9JNZsm+UX3hYdevk7ADn7znSR7
fPMpHkpyA2Z2c1oBya9XnxJw9vWC4z+cYsJJ/nTfpvnNTz/gzvvQYEOyw4qR
5uqkIBg4Ln3oLMl7RbYJ8X76CFZOitUrSHbOORd0zjcCnhUuhRSzCBC5flTu
WGEkDIipfXpOsnLt/RqVn1HwM/hm5y6SNcKUPtzM+ApbhGTVapkElFVNixon
xcC5G2PUhyTfSbTpMImOA9MtoW3LSO5aHNO9G5EADB21M+QCIdlEMkfFJxk4
Y9xLQ+gE1HOtUd9YkgJyEgderSH5WIqCtHtBKpSePhM9ukRAznKPTN2cdJBo
m+VRJrnQuGgwLzMDEr9GxERRCXAMf8azKf07bE/0fHtqkQA+4czTpQk/4AHf
jlrHBQK0Wk0b18RmwcMpo8tZFAI2B9PuXf+SDc91Ps0LzRPQnCfysTH0J2h9
rpp7OE1ABX6wfvwOQSn9+jKrKQJutGfGlCjkw1TuRTWzSQKSDL0/VRfmg7WJ
fIDyOAErzg7I1eQVwJNy8ZHEfwS8MXX7GJpZBDTulU1WQwQ8dup2eXWoGMpK
X9ClBwko6LjrdC+tGI4P6rP79hGwtuHpqS3fSuBnxMAMrZOAxfqdj5S/loGp
y5XKFx0E4GqzBO7t5fBOg9bL1k7Ah+EJjvxP5ZCraFn37w8BKnYKwZtCK4Ch
npBxrY4AcaMZTnffKlBwP75QWkCAn6PoNlHHWpjlCrSJQQLon1GIzlEHTBOZ
TsdfBLgPcHIMXKiDwNhYqzXZ5PlY+TbG1NRB7IWnWJ1MwJDgyb2Urnr4RPdy
fP+RAHMDge8B9EaouP+L6AomgPVOsO0ANMHtVvknOwIJyLN9LVPq0gReN+1V
Ar0JuH/X6Wj3ymbQ2bk6ms+VrCe13zblIn/gV9RovbIZeb52/aV3ZVqhWrdR
lPc+AWIP1OVCH7fC5ZHC+wXGBLA9zY2uzGqFAj77dUJ6BNSMZJ5aA20wfP5y
mZIGAe8i4/coKbeDnKHHo1WHCHgfInlCxbATRJZl2PfMsmDknX/+yvM9sK/g
TkL1JAsCR/6kTxv1QMV1ze2poyzgMv7p3ejSA3Mzy+YM+1jwNTJ02DO/B87s
7pU2rWeBk6nOsd8nekHeYRk39zcWyE/1RDsc7INoAw/xtwYs+PPmj5TJhgHQ
+b0t2FmXBZwjNIdfRwbALMfGwVKHBYdzTYv4tAfgUrt64LHLLKhcPyMQ4TsA
m9dW7LA6yoJb1qc7X/IOgvhm4zZbPhao7VBKUGMMQqTshd1DqUwwu0pk/Gz7
BzF/Zei8iUyYSDXXqF74B7+vWabsiWaCutnD/S1Cw1D32aXySggTZHed8++4
PAynjw4NXHZhwtGazNPhBcNg0XxpcVqdCWfk/65YHjsCt3ZICFKGGXA9vP3A
Lssx0P+1ctfxPgZEacuE23iOgUNrmObTDgZIs3ZaZcWOwdMszfHu3wxgu1W+
T7p3DH63/tDQTWNAquPXUxUa4zAW2K7H+5wBpf4WPT8OTsABYRc71WUMODbi
q31pfBJulG22XcuggxKPNO8KninIpO3ybJijg6HRN1aO5BTkUHuEjvTTYV1g
lzOP0RS8k/jQGFlAh5rDS1zQNgX+7na72RzosC8p34xuMA2S2t0qMxM0yO4c
HpFVnIFv/YpGOEADKX+1JEedGbhjNd7v2kGDurggz2LjGbjfKi/NKKfBGsn0
92ddZsh6+3jgfRQNFhN/HGD7OQPO/b2nlHRoILPO76Hn3lnYEc3x7HD2Ekzx
vdxWwj0HAm2nDxUlL0HJMOOry7o52Lgg9kkpegl42688O7FtDrSGxP0u+C2B
FkWIM+LEHJjNRUnOmS1BUnCaspT5HAyHTYhuFVsCzsvWdKOGOXgT5sHb60iF
hrA8ox1B86BXssou7hEViEKzsfNR83ApPGT4gSkV/tSfMTBMngfrtomyv1ep
YKL3mNezbB4GBOCv/T4qrJBezfV5cR6+GuR9CW1dhNslp7j+aFMg8V5Rnv2+
RYg0qq1VXL0AXKuPsEeIL8KlgMnt2ZsXQErcNShn7SLc7P4gvG3PAph+f/C7
i7EAspcUKnrOLcBe9om8puoFYJVuYlv9aAHGrl8pcnuwADJ7Pn481rwAX57M
cot+oUCrYNUeP99FKDKQ8DEPooAds+vV/vBFEOv/8venOwX0dH34S+IWQb97
T6u8FQWi1jlEdeQvgqyOXuLK0xT49kzdNnNyESoDDUUs/8xD1Z/4LjFFKrwM
s5Av5JgHlaocngQqFXaI9t73p8zBkmQ59RDnEnSpWHMaDM/B7eBjsz/4lmDh
ypfwkd9z4GTygR67bQkyfC07s4LnoP32pPARlSXI2rmQfkWK3PcR/TG28CXI
d88Uen9lFigsM9UjJ2lQ/2R763eFWbhstnln13kaSL8QeNMqNwub7j1NslOj
gfDlhmx+0VngH7cv/2xIg/y9avWn+2egJvRGV/Absu70NhxJtZ6B9nVzh7c1
0uBTktQt2rtp6P+rlBBkSIfmEN5hJ+dpWCztoGeZ0kE/u/ARu800mMoeiG+0
psN4U/Unqs40mMtfXk9xoYO1OjX8x9ZpcGM2cw5/psOFa6t3LZhMwUsh3fue
vXSIvv5x9+1vEyB2497lwusM4Dky6WzrOwFVb2XjeA0YsGWTa4qb7QTIp+yW
VDVhgLnz23T/0xOw8s97lzxbBvS8DFxxo2YcHB/avlbxY8AP9c+NQeNjYP1n
2blNVeTv2/gtCuwYBemlT+2Oh5kQct/Iqn/ZKJhskzS3OcmEBwd2v0oeHIH0
v1opevJMUIjYGHwwZgSSAsqPimmQz4djrf/uHoG9xs7bj5uRc+hkXUGf1DA0
cz1P7/rEhG9ZjQlNB4Ygsepmcw0nC/aezQqvFhwC02zRj99XsiDp10ulvOlB
KM3Y3OwnwAI4qTLzPmUQvmSejJATZUFvo7nd0P5BuGtTcGudDAtinqx4bStF
zmHn3I1yt1mgd9pz/MaOPnLuDFYtJbMg7DsbtXx5H7S3Zas9z2AB+8snHjL/
ekH5vIfcXBYL2h8XmVDjekH/ddaumgIWeFx+XK+2vxfmtsY472pkQeJ4Geeh
Yz3g73Nb0HyeBZTSFrHbG3ug5PpG+UdUFihkudpxL3ZDcwy1zJrBAqWktyfe
2nWDbMiu4mvLCKjjrnor9eov7J1f86BciABXC8Vqfv9OWOw7FXH4IAEHTIYs
Rq92QpCF7Yt88h4LfTK0CkU6gbb2b7T8UQI8nXMsNT92QH9N/g8ZICD8S67X
ns/t4PB2tC1dhcw53rMpEd9awSao4e7ZuwQ88Di6a41lK/wpThZRJ+/V2H0q
3o4HW6EkK52lTd67SjsmLc9ntAC79kGzy9YENCWNSbzL/gPVys9SOh0IMEua
YltT1AQHghTOvPIjIOWJ+pd7rk2wtTNYfCV5zwsathtlXWyCRwnrn78mc0CL
sZy1cnUjNB06FWgaRsD0m+F7x5ob4PXLScPWaPK5tdGb+0ENYCp2jyEeR0DW
hbzjAdcbgN/dkccwgQChFE7vbjJnZHgbu/wmcwfbkaAPZ4fqwMPFrkExiwCD
z42DarF1kLDlPId2DpmrNEaP3TCtA5FOv883cgnI1Te7X9pZC3s2/pG5nE+A
emLDDu/x37AkPfyqpYwAndzLuU08laChwfHOuZncP/97e53fV4DFypteQi0E
/Htq/3Lnmgoo+apHD28lIPCZuPHtDeWw2YbCH0HmMKaQ3j5PyVKQYX+yUaGX
3L8Era08CSXwrOm8fgiZ43Qmn4+7SJdA5R12vpF+AkYrVtkbHy6GjZ7sIRZk
Drw7YI4z5wpBh7/72dYxAgQ28HxVLC2AIrn8yeNkjjykc0M1TLEA1jedK1eZ
IGCT+bThUfV8cDmyO/Y6mUPPDl0UYotBGB8V+KZF5tT5oNpmt6Q8WDEZJnJp
hoDGKt7YFzm54J1SsXb9HAH6XPHS8/k/waWbGjNPct+Zk+v1y3JA/tRsWAWZ
e4fatnLsbMoCievPU3XJnHzp/YNnju0/IJQnrmYjmaN31AScbejJhC/1vZfr
Sbbsd0u7P5EByxxLrCTJHH6X8yi3zd90ENl0WLWJ5JQCrirb2jRg7VeXeUoj
c3EJ/cLj/FQgcHizEJnrqdIby81TUyBAu1HwK8l9fM2HyhSSwZXjH4806QVX
FceEYiWSYECbyfuN5J9nq3o1RmNhV8eXbX6kRwiyFbNtqo6GA2WUI1SS1y16
5XQnfYHlTeWaWqSXMJ4qx4R5fYaRPctsY0i+8nStnrbVJ0h85h0+Q7JY7tr5
tdGhEDN77bcM6T0duR/FH98PhmoVZY4HJFt/ZH9Us88fvhbpnAoh2btN5JRC
jxfcELFyzCf5bhZnZN9dN8j09CzpIvnpteTh+XYH2DURuWaWZLOAD7eP1t2H
0tcJxkySa9n7otj2qqP6vug8gmRa+eLtj8xHuP+wz+YlksXVi68dpbqgrYO5
ywjJ57cWJodZeWCP8bmJOpJDsmfiHCg+2NgodDuZ5FXnVawlZQLx+sHxplck
t52OZ6syD8GtD1s0NEheOVu6415COD6j9TetJVmze78O0yYSleu33a4l118l
FyJ3zjcKN5rHTDiT/LzoZfCLlK9Iq3d7uZvkI1q1Azk1Mejh0ilWQe6vu5nB
y4nxOJx5m1+oR/JHC/HO9byJWGurYTZBnk9n5bz2yd3f8IRu8iZrkq97DyQl
bE/B7HpG4wR5vinHzsdlyKSi9NxtX32Sn0v612edTcMWfaZOJVkfss8r23+o
pyMAx869JAesa9P7av4d4x/PN9eTXlewPUHezyETmxPO5YiQ/FXlWutzzx84
xZ8drUXWo42u0sDh+GzcUEIPTie9TnJA4ojm4C/8lmgzsnyWgBOmeldWzOfh
hInnumVkf1zVu6F3jT0fj72pUF4i++lxibMURaAAVer+tpST/RaebbRnfl8R
mhvKP2EME/CyI7dZIqMI+Z6fYKaRXqd3QIimeaIYx7kpXvpkP3uG8AiHKZZg
Yc2erk9kv/ezlz4eMi5D++uRWzO7CIjS6TvW01+GLkLdh8+QXnfDSn5Xk0E5
Cq7ndSkkPU7Sv5w7/lYFstV+KUom54/bjj47nqtVuIPxZmFfPQE8RlsONzRU
YW1Rc9PTWgJUt6Zs81OvxpXN+ydzf5P9WUcTY1P5jU+NsVGq8j+vD7348lwt
mltE2KYVEpCxcvji6vxaNHkQeiyfnIdSR12KqrbUoehWOFGaR0Ckudv2C6F1
aDdnzMgh52lQ6smclUH12Pn70KuLaeT8DRztyvNoRPbtI2ITEQTYG6jHnKls
RPXzmrxO5HznitX++Iu7CUfNiFMrSS8843OsNNa1CfdRX9utIO+H0yxV+3NO
zSiXH2ryxYMAr6I362ytWtAm6/ZH88dkvbWaRNpodODf2l+KZ+UJiHtZvO6h
fweKmSgd8ifvt2tbFyJut3TgOr/dkn9PkP2guTxu961OLCjasUeHvB8fC9g/
umXShWwOLkVdO8j6j+yR2uvQjbcF/8Fp8r7leWfFGYbd+HuK6zAHG1n/tsp/
Odh7cFlotsIvOulhl9JLb8n3oJZDVtb6ORa8N1ut1FHWg+92Cgkb97Kg8Ux0
1XhtL+Y6ryrVymXB6Eaf263TvRjL2cBw/8GCrLWPqvJW92Ed/7xhVhoLdlfr
8dlr9mHAk7ZCaiwLOhZrd//404eCO95SBQJYcGpW0l2ysx9/Pstz/PCABQyO
U8bJfYPYF2jmv30NCz4flNO+zDGE9LUU6durWHB1vvvA4NYhHJGjPvNewYJh
JU1nDoMh1NDulOykMSFgp53f7N8h1NoQLijYz4Rx6feTn9r+YbL1x7djpDfq
bsqeW6oYwczJDCkHRSbMLR9QLR4ewRcl82Kp55gQ1R3s5MY1inyBtrTOE0zo
WxkCVIVR1LhZZ7FJmgnOVadUXHAUp4WUfY6vYcJGs7oDB9PHUOXCVkNKKwOE
gxpuoP8ENhSknrfRZ8DTqIlvPikTyKXsWS5N5tHguOS/utUT6LEn9lm/BgPO
c5pldnFOophG/MOj8gyweMryeGM9ierx+jXeOxngqspH2KtO4as42WXMYTrc
vGNmcd15Gum/nLfXkXmZ02p+tOLdNIbu0pnPIPP0sfjVD+Q+TuPE9Wxpvxt0
UJneasaZOY37iyj/TijRYf7fA5GHY9M4IPo06vRuOlxTNFGwvzqDneobmDxD
ZN5vP5BjIzGL7174O/++QQO70ttStodmcQ9zgm+bBg08Hv18ZnOO5P01uywu
0oBVu+/97duzqHRWbM2cLA0Sk2yOLATMIivQgO3zKhp0jrzftGvZHDIT9/8K
zyW9cdUybrvOObTqY0uXFCF9xcx6Tf3IHApPNpv6rVqC3ZdVnm9dnMNlHitX
UdmXQHOzjGbq6nlU4/cWThynQtuXxHzPC/MYeiHqExZQoVi658L+5HnkPJIq
G0R6obKu2/GV9hRMe7VXaMuPRdh/UolV7UZBvyk1JcvERXi67ISNhx8Fmwf0
E3IjF6F6cI0xNZ6C4Y9aKPKei2Ab0yXi20bBzeHqC6sMFkHnqsLRwsML+Hz/
ON195SKMqbaFsY8uYMl5bxEl7QXgvyG6XJiygFwbrxQPKS1AX7BD0Q62RVT+
tWvWARbA4Gvu8YPCi5gpqN35cdcCcKzZXbb83CIudZQdC6RRYPKBHSMkeBFr
8nYGuoVR4MTzZkWjs1QUvSzHadU9D7M3ksNCVKhY+d5F3qBhHiSlpoYrdaio
eK/fXrlkHhY1vl0TNqdigBDvKF/CPHTlMs5dC6GilODD9cq25Ot37X7qOkPF
9QuLW+J550HcUMHeImQJw3evoq6TmYPEn6/C8csSzvLGN6jsmINpl3da3MlL
uGymbZuj8Bx8OL/G8mXRErpPTsjW0UgPzBFeIz6+hP2ysm9limbhcW6Q9fQJ
Gv7aX+o2R3rjo1dfQtuaaXjztbjRS/MZUDSo5uHtpiFLPmC/lv4MfD8XunRo
mIY+XoPbxK/MwBkGXdWaRsPQ/fPv4g7PQOHmWB/fLXSUs1o76MKYBh0qx/l7
xnQMVVgnrPl2GoTf/jivPkHHgPGLz3lhCvy+xzI9KXS8fkPj2uutU2DT7Dlc
wKTjGa/811TOKRA34FJdy8/Act8aSmH5JByZOrj+pjQDVf23L5vRmIQ/pybT
zR8yMOr5lZ3ZhhPw5JJiffggAwc5wwQPOY7BwdcuFgbjDKRLHCe+G4zBNbc8
rs1zDDwrn3Lx4PkxuG+UKebExkTti53sa1eNAWWTUv7kRiaOKTt1uX8YBeHM
ktvPVZkofshJUSF9BNbXR5w9msLExe6v7CJ9/yD8gbewSCYTZfSsMuqL/8GF
n28yJn8y8XNOYuTrmH9w3HXw/JsyJhLXhy92m/0DR63lQXf+MjH3zIK7yiLp
hc1qefk8LGRFsu3bzDsEddKGbcxbLMyxp2yvkB6Ay3+E8ZYRC/s99z3U5B+A
Ty6HqRkmLFzxop7RMtEPnRohtxVtWFgt7rC2LrEfrtlN1q98w0IcvbXbYU8/
RH29zDOczMId9u78jaQ3SrFvfZybwcK+sZyNK5b1wZdrOza9yWbhE4YFx6H+
Xlgskd+wvIiFNg19b50je0Hvwf74gGYW6m0Mdura3At/3yuwCy6xcOy70pnk
dT1QManurcNk4X5nudZdI93An9x4IZCdQNdaptBodDcc4bu7c2klgZrjX15q
bOuGPRQLN62NBL6mmF3NXP8XWgbnO/WPEcjTXnNzmLMT+groZ8stCTTpXHHE
pqkFNkwsbf5lQ6Dd2y16GQEtcEnJWiLelsDMwZbYKe0WMF0+mm1mT+DD1Phu
rbY/0OfJ1+LnRmBVo4N3R1cz4C4VjfuhBF5+Vp3yb7ARDmc1RvaEExi8SuVS
Q3QjWL7YsFY9ksDvrlT6j3uN4C39+KZINIEW4rELj0YawPjr9J2LyQQu7tKa
yRyvB734V4P78gl0brvmWD9QC0bRL/gkCglUiH80vf5uLSgL2KqKFBP4PMrC
99q/GvA5eG1DXxmBfOFSA/kjv+GbJKVkfS2BKwRuyRybrIKQI36xDXUE2scv
Bp63qIK6mRefXjWQzwMWJJWnK4HnYVRNXTOBsTaul8/NVsDPNVHreToJvFZJ
iA5QyuAdGIe86iJw35GKa79syyD/rpr04l8C3eqG87wXS2FLyT6P4l4Cc7Ty
XSWWSsBW2lqA7R95PluOPFrNKIKZqur1J4YJXODmt0b7IuijfjloPkJgyuLb
QBNmIfzSCPfOHSNQ3eFAQyKrAAK6mulkzsRJ9+8ebOz5YNZuFzo9TeB1617O
9dwIWYcCPnTPEPi1/vkrSf488JKD2Og5AsfmDhw8uDEXxlYaZTvOE1iwrbtp
r/hPeOorLqFGIfCCQCNdTCIHxA5HrW5bILD+YX4h5WAWrNnI4+27SOCq7zrt
LUd+AIeS6n0FKoHclyzvZJzKhL8nS/f6LBEYQLPAW4oZsOFB/Np9NALZvQiu
vWrpQM+p1kGSl580SJvTSoNrGWfGa+gEmmlSRZ/qp0ChqcYpZQaBfYJ5X02q
v0GR7pZhJHkobP57W0siBEV5jO9jkus5qtQj3x8PDfuclHxJTrO2DY2ZjIUH
OT3s0ySr3pMxXE6Lhl99H9ZcYBFYGX407tbyr+ArGGjvT3LfjMJIimAUbHtZ
CB0kh5itDSFEI2GTKr/uRoLA43cr7/qrhkP0ddN60ntQtnz8+jbjEDA2rIh4
QfLpBQFmnF0gOC6JlcWRPGn6Hfb5+kLwqzsXK0kWacJtWhrvoOeUl3g/yV7v
JYouOboC16GQK/MkN6erO1lq24Gy0osu0uOQnx+6fPTvgeXRcwWkx2FAmsND
3mQ1LHHvZJIehxujXVt4Qm1wx2cNv/H/3j/QuFwk8gVOpn950UJyyfbvEzsf
vUWByvbyHJI78jRZgVHeSC+kmQSSvJlvI6/IO3+M1+AzNCXZam+8lK9tMIYw
N2XIkey68MKWSz8Uq7bJ6dHJ/QjTEaTn7PiEWTN3jbJIngt5edt8w2e8aYH5
D0mu3db5cDP/F9z+WOOJKMknr+qmlnFE41zKAbcCcv/Hf11MNVuMwU1fradJ
r8M/e/opvKTnFQ861LqS5zl7RsH8SHMSdunanecjWboxJK2wIhkf9cqve0fW
A+QYSG/vTsFZt7TCx2S9xC12vwhpTMMZ24+f/pL1lRL+4U3t73T04mtuBZKj
/3Y0EGUZKDnaeG2MrM+I5K/nNHIzMTt89NNhksN5Xk9bZf7A5a3z8k/Jeh76
9mnWMyULkxpCPg6R9c83pbAs9UsOPtjoH3iP7Jd1Zzob4j1Jr9upXKpH9hPU
PJeo/oh41jeRqkr227UxcvJdzceHR77cXTNBIKXzeZn9nQIsYzezlCL7VyNQ
v+GqSxHOxN/P6xoiyPwvlpO3kvS6yrzVroME1nDysrb6FOMWzoWKrD6CfF8G
e0tECea3NXpkkPPE+NeP2oXcMuTh+yGwuYOcJ62nzaUVylHa40yofRuBdZ6X
jupVlSNn5eZ68T8EvvdOzUxoq8AzCtY/mDUEjk6Oyo5TqtDykvroSiRw61zR
4iPhOvSY4Dvcn0ugU/v14/XX63CqZM47PYfcn0uVfbvC6nDga4rjsUxy/v4x
3VC5vR5rp8vk2xMJPPHgAm/DgQbcJGTJaxlM9h9bj/U/xSb8qr08KyeAQF7F
SNkZzyY0VCt3ZvgSeHMgci+ltgmXP5m+b/yOPA+cejx2tRnN5ZenVr8gsPUI
xx0vgz+4aV6tesaErP/MZqkvT1pxC5tD8pAxgfLNu4Sav7fi8NrnPY2GBEqI
zo4Qc63oHDsiHaRL9vPYvLS8ZRt2y0r5FagR+HeTlZmjSTtmC43sjT5Ezucb
/CY5Op3YyR+qJH6QwIYnQfIvAzrxy2f+Yl8pAt8KvNp8vrETZw+mVOpLEGgU
z/BKV+3CrA2/IFKEQP2TbOXHzv9F9obegAwqC79zm0larO/BGj6J3xnzLHxw
iWCKHOlBfcmlh0nTLLyQK9yRe7UH85adnXYbZuFmLHOn+fZg64i1UF8LC48t
F59U4OvFkscaP/d+Z+HEv/tHBNj78My2oN2bTFmY9bA58vxgP154ePJywR3y
9TmuXkPLB7D9V2TKLT0WhgvfyH4hMYALzf0n7bVI1un/GH1vACf9tYPUT7Ow
2W1ZYNzIAD4JzcrVEWTh57uvD3iOD+JagXTfsSQmijA3j7tM/MMSH4ceuxgm
blZKV7vON4xe/15/4YxkomuMdekuqWHcSa0KXPJj4vP2mvI0s2FUfdd3zekZ
mZ96ubdajw2jxUl99vlzTIyFDxKB/0ZwB+e1Jq9aBjKd4qQOtY8hy7yz7HA5
A++6ui33oI5hIX9cXmM+A2+kqW5sFx7HIVG1vMVUBjpNUFr1NcfxUdwP6PFj
oPyTZBSoHsfDL523HtZm4I67Cn1jPyfQW3frG2YTHem3dpgbBUyh5Vtbrthq
Oj559rYwNW0KT0f11SoV05HhIqC8WDuFq94pnX+WTsfmB+zjssunca1+F+dz
Hzqe/6VDmMM0fr+/t3+VCh0fvrmUxZs+jev+Sci8/UlDz74ku6LAGbycGveu
N42GjsHp//qjSHYXfiIbT8PyUYfVbKkzOFRN3tLBNNz2MMtnb9UMMk6FrQx+
TENtgXvjqsQMvvT0EuSXpuHqT7uUi+/O4rqBMJ6zpB9MJIyNaMrM4VfHEPVa
7yW03c7PPnR6DisT35jquC0hv9ZPaxvlOaxY0tt+9dESujQGXXe+M4d7ll0f
WaG6hH+ESnsMAufwka1CzXm2JaR6rD90dmkOUxZM3M7qU1G5XmaH7s953KS8
VljmKhXrG2QVtMvnMW5eIldUiYqvNWMclJrnUT1d9Ga7LBVPaR6U3jo1j88v
9p1czkXFjSJnxNy2UXDiNtxcm7iIJlzqa2TeUNDVd6ZQemYBn1k1bBlTXcBD
5646XBpcwJNb2cy33lzAJqeAHzfbFrD/t/wdjXsLSLc9mm1esIAaUUeOhjst
4DcORfWLPgu44bT+5rHkBbz5J+h3yf4FjI+W7FYVWMRA7a9GgiYUDDyy7LtE
xSJWmvxjHdWloGRRrWdF4yKqZF7S0FWnoFPwM6e7fxcxzFlS0u8oBWXqh+Pf
zy2ijETTSAE3Be+eX1UftJn0uF0bjSRi59E7bWadhyUVeUYrdov3z+F2jtDE
/tVLWLzb1urrnzkMqXg2VCy6hCrzUXU7K+dQMVNwNGLnErbU9/eKpM6hQkq8
gvyxJYyeaY4ucJzDaY14TtBfwu3l9o+lN8yh99/S99xJS8in7nXipdIsDp9g
3mg8S8OzG+SepJ+axcGsEuufSjQ8LRWi232A9PdnCkphmjRsdKs5sEdkFn1K
5varGtPQOsNLy7N/Bn17rn6884aGdkJcx13tZvCZwLy44W8aWmjXHdaLncZ3
BhJJPlfoeOqF41eej9NYK6dbkHSDjvUSj7alvZtGUVqEVpEhHZ1WDqtTrKex
OeTzdLs1Hdnsl7epnJpGCuyo+OlLxzpV66LXn6dws3/61XP1dExR21tUMT6B
0QOCjKuKZB93/qn8UzOBwv5VySc1GPjh5MXnHSkT+GCnmK3odQZSnHlnqx5N
4F2uooMFJgwUVP5xQIkxjtbcbZJJbgxUMyhTLVo5jh0+plLLixl4rubcl/4t
o+h40mZ5jBwTlw0YCS0QI+jS0z7rcYpJznnZE+y9I2g1kZ5iosDEk088W9ij
RtBLjy9w5RXyOftFuSSJESzj2NEwbMbEtLcf9mbsG8aMQ5EPRcm5NczKvZYv
O4Tn9E0/KHCy0CvzWb2o8BCqdDR0/ORm4ZcStWEr6iBOBTtW7+Vn4eBPWT7+
X4N4u0IrnbKehaufBLJWXBhEussV64PSLDRVbmhj1xnAK8clAy/qsNB/UO6l
6uM+vFh/qHUwioWK5cvbeHX60Mzc85FlLAu1iOjM4qN9aF58IngukYXLLgxK
7Gb0Yv/dU1b95JzvMt8f/8ulF9/ue6x8v4z0Mgn9TFGvHiR6ltJXjbCQ1p7e
jopdyLPts1oCeQ+JN3DNr+LqQq1d/gs+e0hPSJT6pVHciRr73VMspMl79bxR
QuHpTtTnFLkuKEfgS3sJAQXZDnx6X+v2kAKBNjKc2c0b21Cst0p1QJ/MuW61
FdEtrfjbOyf6xB0CP11V+GXp34pN0bvZ3e+RuX1G8sMUXyviqsJsXnMCzZlK
Zz6ytSDtJF0s6jmBCc+npX4ONOHV6xw0cfJeV9K8abM9sgkjgMk37E/grwrV
OtdbTRjD8UY4OojA/c8ubDn2pxGdHPZycIUReObDut26ZQ0YxKkurRtDIJuI
tmLQywasNLtV3x5H4KuTRzb9hgZcaqcZqpM548Y5V8ndWfWYvltETTyVwAqJ
i/NfYutw8nf+EU0yp5zmeVbx404dJlpInnxL5hirmuLxEvE6PGRTvDszj8An
vBwtsQdr0eaERN486YHbq8yan67+jfFjOTnLqghsy+2l+daWo/zai64WZI46
IxTUc1K9HI3kVytR2wlk3l+R0VNXhsJmjzY+I3OYoJZylHBDKb686NZp2E2e
z0HFLdBUjEU5bR1/BgiUqggf/6lFstG1OTEy53nmyMfINhdh5US0kAHpdZtT
u/XX/inECz2PHlaRHueaomcQ3pKPFUqeDmcmCfT5KcG/oJOPLaKHGhXJXHnr
yEUVvxTESxyG+5XJ3Jlh+066MvUXhjHUaYdnydz4467+jbRcbHwRZCJGetxe
rpJ7/Wk/UZow72Qjc+xhq9MLPenZWPNtpjGB9LiQ8HnG1Yws9Dono/OYzL2d
3catxRk/0N1HuluOzMWUbQWrfL5/xyuCHxmRpMc9dL8yOPk9A638UnyUyVwt
kTrhczEzHV88rd4zQfJgXPjd0cxUVGY+MVlP5nRzubv8h3+kYEB/7qrPJKd/
Oyy0aJ6My7KtM7aTub700oED9hZJKLP5mV4Yydf0H88tWSTg5W+pfAKkF3jO
YqelZRyKrWTDpyS/Sqt+0GsZg6IVijbtJNv/uy6uYvUVr7+x3XOI9Iy/qpLP
U62iMKbbYsCVZCMWhbraOhLd7m6NrCX58ivBY50D4SiX/lR/Nek1zpRzFZ6D
Ifj9hvE2ZZKRxftZbigQS6Zbh+xJLiIohe1DvjjDVZYUTXKExwad+Zp36H1w
55Nykuu8cjL31rliKXP0XB/JfQnNF39+tsPX9NWr//M4pQNbnhxQuocBWQG9
/3nc6Q3uA3KGGuBZYJPxn8epWXIEy2g/gsbIhLf/eRyXsOnBkd0ukNB/2mCM
ZJnj395l7HKH7YIHTzSTvMy3NSVXyAfEkt1EfpB8lrW3ZaNQAFy5qLTgTXL/
ivM5Nms+ANx2aTEk2Tws+Ebp6jCQfXri5z6SayNVO9+8+QSX1r+MnCT3IyLG
2HTPm8+gm2/iHkvyom+NTpnbFxCYYT6+QbJDbtkOPbdowN3ad5aR7FfsrTHz
OhZch19fjSb3n0s8uIrjdSLsGq0/00Ce389j+7Wf230DVza+iNskezwdvPj4
aArMbRhT6yfP/5KtZlCbVBq4eXPHN5PetjL2o4brrnSQiH6jKU+y0d1M633b
MyB7v5R6HFlP+0yQ+mB9JnhoPpO/TdafhPftQU6hH7DGyPJ4ElmfaXtkLgXy
ZYFA/R7XebJ+FXOGnOI4cuAkJVTYjKxv0y1D21+O/4KpjCJpgvQ2+Upn6eGh
PFi7R7hCkGSPLTo153sR3A8XZm0k+0l6KnFyfjQf6rev+yBC9h9WKGve6y4E
g1mvO9/J/vwZZTXwVLcIkqo9Ut6SHnduYKbWta0ITh+b0NQm+zlsbO6UT2Mx
9GWu/NxK9j+d0i31oKwUEhOl77wg54O0YrqilkIZcETV2qz/S6D64kDtkYIy
OFGt0xVDzpOObw5REznlYGf2ApPJ+ZNX7S6++lslJIbdqDRqJPA4t+qlyj1V
sJpHMf1XPVn/NytG7WOqYFP5uiWBOgK9fx3cVfOpGu5/Gg4Nqyaw5a4EbPar
gfoD+zVulRB4JICxEC5QC5lFefueF5HzvuDS8Q2etaTTfDDxKiDwlFXvY7tz
dcDDycUZ9YtAxw1rOnafqIer1zbXmX8n17e0+l7u3kbojvh74kMU6ZWrln2k
mTeC5/TuQu5IAi1iua7IpjXCwrrO6xbhBBaLaTP9jjbBupX38rd+IL03ceyw
4PlmmOiRdxJ9T/79dhc/9uu2gBsHPjayJefv9L/NBREt8OeRgKWCDYGbHkTP
B/W1QLZp+ptNliRTWVcOmrSCIuvN+rT7pAfzrCsStGkD82FGlTXpfYqHhBat
3DrgqFattvIZAjOftA11VHTAlmvF0eEnSc9zTGSeWtUJVH+7HSNHCTwQ7Hh1
1LsTJMqMkoxIDzwS8Syy90MXXKjmFZraSnrnsk9qx+O74XXyvZ367AQ2CnL+
4e7rhRaZsq/p2SwcjjxMcWbrgxVdXAFnyPtcNr8ken5LH+y/8XKhJIWFBntW
RtXc7IMdPf5rc2JY6LHni7RKcx80vrPsvBjAQsbMep57Zf3gtdeX3EcWat8Z
qfkXMwjtnJEnSzaxcKgpvLqoZBASzrpnG4qwMDHsjEVI/yAUfnpZS13NwrMv
Jl2PiA3B2TOMKn4uFprsLNp7IHAIZM8X7OubZmL71Kn5tS//wf0zlgWSRaTX
WV768OzaCKhd/HvoqCETtz7Z0MD7dAQY2zco37nJxJzbT5IDg0bgo+yNITct
JooG3JcN/DMC4W1/079fYOKz/e8NTmiNgmgqT3/CHibeT5S5L6w6Bsvnk28s
m2HgRICFdN2JCUjIdXv06AkDb+tdtDe+MQHOV+IOBlgwcMWiudrs0wnYajT1
I+keA4/IGhnOfp+A76Z8u0t1GJgZaKDgsX8SqP1r//ofYSBXDFVl/dYp4OqU
ikig0PHsAX+VVMdpuP/9vk7tAzqqnimVkHw3DSY/110VMaJjYOsB4+CP01Dj
EJqmQ+bfSbGPLLOsafiRTQssuERHtz/2sn9npuHY4QzF4zvpqH3wlWSX0Qxc
Vmt9WdBJQ5sFIa+DCrMgXBqz5dgF0uMKtWHVlVl4xx5M9TlJQ8OGH829erNw
Ru/Oq34ZGgbnPfzqYDcLu4Zv5lqK0XBftqTxk7RZ2O2fvyRLXULhbW78lmJz
ECLZKKgfu4QKn4I/3qTMwfujGSqGnEt4JaBYLI59HgSTOZQ9l6josIWzaoZv
HibUj51MmaKiumm9+yOJeZgqnmQb6qBivmmMLujMwxOeHO2VGVT0mivK+Pdj
Hja/879y0IiKk8mmDeaPKfBlaMVvkV+LuGTR7yH6ggICfy4OvkpbxCbGa4Ei
Twrc00iC8ZhFHIZlphxfKJCnsq8kzncRN6Dw5nMNFJAOO3Sz594ixl0oXVkk
tQBChaVLp1YvYqeRc9qPngU4MXzW7rfeAib/eu7ydXwBui9IPfDXXMAqkfRK
T+oCvOKcYWldXMBpC7XMi4KLoMFPFSuSXsAfeTkfzWERRtIk4jWZFBRQjEl1
CF2ExMtLlEsfKDhQKcLmrkGFC1O1TmHV85iu8cH0ky4V+HcU1kbgPEYuuA4k
36NCwfoIudC0eVQ4x03LdqBCvPiUzsvgeRR8R9F8HkeFOv8tGrx35tFu645V
cQQVnLyG7iynzeFpmcOn4qKX4E6ybmTu1jm8LSf7SjplCU4XS8nMrp1D9777
pknZS1BdJ75iO/ccWnms5Q2uXgLfFIlXtpOzmPMcb4rPLoG6NLfMYM4srq+M
l6GfoEFP89ftA1dmUUhU+XdFJQ1S3qnyOznNYMAqzreOjTQ4niAuv916BmPu
R3zc10kDuWrB7UV3ZnCd3HDuowkazDT6z1AUZ/BWWGV6hgAdzi4+kNi1dgYz
2H8Hz1yhg2ZubWdBzDQe84spU2+iw9GsJ6eKg6Zwr/lA67JOOjyjHzjgbT+F
lp8vKaT106E01ylCy2AKr2Ud2rY0S4fyvC6+sj1TmMedUSa3mgEKn4juK78m
8cVHVUlLFQaMXChYs6p3AjeUyTFrfjFgQnukUWb7OPKEZQzGFzPgR8DxNaJc
40gs/zPtVMUArh0PPjFGx/BaqZPJujYGzHqdK0tIG8MHtw6kTMwxQHeOj55z
dgxLNJ+cvLKLCc/fXun7fHsU9wfx2PV4MMH17ONj5X7DmFBR9kHPlwlsIis0
bB4No8ShbaZ/gpkgZrDdXeTqMPJUPVyf8JUJx9LOvFIWHsZXgZueTecxYVfT
Fi/D4H9onPIwf2SK5A6dPK2PQ5gSscfLXZkFY+FJbW6hA5jH8cKdoc6C3ZIP
dUzsB3CPySj7XW0WqMZsWiuvO4DIPnBbzIAFsixT83+iA6ix4lnMXlsWmFjT
osZD+jHoCuyNC2eR8zGNfSaoD2d/m52UHmFB2tVWla3ve3Bt/V6zcxMssDov
8NzTogdbp/x41WZYwNNy7POceg8Gn3wQoLHEgs8R19kzhXrw9vhUNp2bgM73
gh9EZLrR2ETOul+CgN+rCtSWXejCipZfux33EFD9sVjQgLsLj7rPn10tTcDP
Jq6szMpObL456y1+mAA//88UFbVOTIjd49N/jgDpTX8bJa51YOMWN32aLgFZ
Hm46YSZteLp7f95GfQIu+NJ9vPa0odCpBxayRgQYyhR/sRtvRVM5/4rL9wlo
CRPwPmvZipZCMxclHhMgq88t+fpJC6aGrf5t7EGAazAjmnjVjBEPxPl43xPg
PF/uFnihGQ9+cA2I9SZg137nQ7u4mzFpscS+OoAAwcYi6ZMeTahYkuj3I4IA
qcePr+zyaUSB35m3NqYR0Ki/KXtLaD2m7uzPeplBwHLeb3JbtOsxnnnXtD+T
AEXL6AfrBeuRUPL77fqTgNM9uzWYL+twxbEFZ+1iAnLSa/OFW2rwTs1ZO+tS
AuLbxP+WKNVgbPHD0lflBNxq5c5/kPcb2dX7VTyrCVAJz7YP/VqNj6I0Vko2
EXCsie4WaFOJ+deDn1GaCUg9dfkp278KXHd4uVxOCwGJ82kvDW9UYMmdfT4S
HQSsa9odJHC2HPmDNQvdewmQE1IxWMNfilczrrvy9hOgafO9/eyLEvSlvvF2
GSDX66VUajpfjI45oQ6a/wiY/JUQEddehLo3GqOdxwloMAvn64kuwPyDlyLS
Jwjoqkqo7N5QgB/yozs7Jwmw2mOv0e6Zj28+Ze9YM0PAaERUnfNgHk7EFUhv
mSVgVWJk6LUq0vs6btiLzxFwzWmVlmRqLvpWcfdyUQgw+izdFW+fg3zEm8Vx
krn9p27oG2aj+Xkr9fIFAvbrHtjEfykL9UKtyg2oBPzV1SvQFMrE7t5V/8SW
COBaa6oxTs1AtS/CF//7XCX7AykHx7/pqJQRWilGJ+DyRik2n7hU7KemT2SS
nPs6gHONVwp+jrXQUGAQ8JB/84LoyDeUS/xCKSP5zJ07z3gyErFjYE/7WSYB
30WPnpp2jMf7+7pYqSQLjddP/FaMRb2rH4zWs8jzZDc/8mVtNI7tOcP9mGS1
aqVSm+4oXLD8Pl5G8kB57IVT8ZG4b6BbkPQ4SAjwr+AYDcflx+MeqZMs4zf0
4YVTCJaLs0Rek2yo26BNXRuI/lBDSyX5yrHBaybxPmgst2pz03+fU1zQnfnq
5I4i4UmO4/99DlLacbNN/Au8z51ALpcAYvnXmsfxVvi//5fj0l0rKxFdkPt/
4SLUAw==
"]]},
Annotation[#, "Charting`Private`Tag$2799#1"]& ]}},
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->2,
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8598631511324806`*^9, {3.8598632859635153`*^9, 3.859863301142342*^9}, {
3.8598633529936323`*^9, 3.8598633888112946`*^9}, 3.8598634363133774`*^9,
3.859863754782333*^9}]
}, Open ]],
Cell[TextData[{
StyleBox["Q2. Find all the solutions of the equation ",
FontFamily->"Cambria"],
Cell[BoxData[
FormBox[
SuperscriptBox["z", "4"], TraditionalForm]],
FontFamily->"Cambria Math"],
StyleBox["=-16 ",
FontFamily->"Cambria Math",
FontSlant->"Italic"],
StyleBox[" and represent these geometrically.",
FontFamily->"Cambria Math"]
}], "Text",
CellChangeTimes->{{3.8598616829047203`*^9, 3.8598616881931295`*^9}, {
3.8598617225287895`*^9, 3.8598617569892497`*^9}, {3.8598617873469024`*^9,
3.859861804974933*^9}, {3.859863538727556*^9, 3.8598635388055563`*^9}, {
3.8598636112308826`*^9, 3.8598636318073187`*^9}},
FontSize->16,
FontWeight->"Bold"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"u", ":=",
RowBox[{"z", "/.",
RowBox[{"ComplexExpand", "[",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"z", "^", "4"}], "\[Equal]",
RowBox[{"-", "16"}]}], ",", "z"}], "]"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"Print", "[", "\"\<The roots of the given equation are given by\>\"", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Column", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
"\"\<The roots lie on the circle |z|=2 and graphically represented as\>\"",
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", ":=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"PointSize", "[", "0.04", "]"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b", ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Thick", ",", "Magenta", ",",
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{"u", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}]}], "}"}]}], "}"}],
"]"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c", ":=",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"2", "*",
RowBox[{"Cos", "[", "t", "]"}]}], ",",
RowBox[{"2", "*",
RowBox[{"Sin", "[", "t", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",",
RowBox[{"2", "*", "Pi"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"a", ",", "b", ",", "c", ",",
RowBox[{"PlotRange", "\[Rule]", " ", "2"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.859861811230544*^9, 3.8598621860211973`*^9}, {
3.8598630994183903`*^9, 3.859863147950075*^9}, {3.859863277867101*^9,
3.8598632990831385`*^9}, {3.859863351932831*^9, 3.859863387688093*^9}, {
3.859863432974972*^9, 3.8598634351433754`*^9}, {3.859863677374998*^9,
3.8598637041446447`*^9}}],
Cell[BoxData["\<\"The roots of the given equation are given by\"\>"], "Print",
CellChangeTimes->{3.8598637074830503`*^9}],
Cell[BoxData[
TagBox[GridBox[{
{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-", "\[ImaginaryI]"}], ")"}], " ",
SqrtBox["2"]}]},
{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "\[ImaginaryI]"}], ")"}], " ",
SqrtBox["2"]}]},
{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "\[ImaginaryI]"}], ")"}], " ",
SqrtBox["2"]}]},
{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[ImaginaryI]"}], ")"}], " ",
SqrtBox["2"]}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]], "Output",
CellChangeTimes->{3.8598637075298505`*^9}],
Cell[BoxData["\<\"The roots lie on the circle |z|=2 and graphically \
represented as\"\>"], "Print",
CellChangeTimes->{3.8598637075298505`*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {{},
{RGBColor[1, 0, 0], PointSize[0.04], AbsoluteThickness[1.6],
PointBox[{{-1.4142135623730951`, -1.4142135623730951`}, {
1.4142135623730951`, 1.4142135623730951`}, {
1.4142135623730951`, -1.4142135623730951`}, {-1.4142135623730951`,
1.4142135623730951`}}]}, {}}, {}, {}, {{}, {}}},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {-2^Rational[1, 2], -2^Rational[1, 2]}}, {{0,
0}, {-1.4142135623730951`, -1.4142135623730951`}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {2^Rational[1, 2], 2^Rational[1, 2]}}, {{0, 0}, {
1.4142135623730951`, 1.4142135623730951`}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {2^Rational[1, 2], -2^Rational[1, 2]}}, {{0,
0}, {1.4142135623730951`, -1.4142135623730951`}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {-2^Rational[1, 2], 2^Rational[1, 2]}}, {{0,
0}, {-1.4142135623730951`, 1.4142135623730951`}}]]}, {{}, {},
TagBox[
{RGBColor[0, 0, 1], Thickness[Large], Opacity[1.], FaceForm[Opacity[
0.3]], LineBox[CompressedData["
1:eJw1m3c41f/7x42KyChFpaJFi4rS7q5oGBkRDWWlJJmlYaakUPZIRlK2zITk
tne27GzZ+3Cc9f69P9f1+/qHx/U+zuX1et33/Xo+ruvYamhxxZiDjY3tEScb
23/f///rzP9+MNy3T5RBEPBqRaWCn68FiH9JNZsm+UX3hYdevk7ADn7znSR7
fPMpHkpyA2Z2c1oBya9XnxJw9vWC4z+cYsJJ/nTfpvnNTz/gzvvQYEOyw4qR
5uqkIBg4Ln3oLMl7RbYJ8X76CFZOitUrSHbOORd0zjcCnhUuhRSzCBC5flTu
WGEkDIipfXpOsnLt/RqVn1HwM/hm5y6SNcKUPtzM+ApbhGTVapkElFVNixon
xcC5G2PUhyTfSbTpMImOA9MtoW3LSO5aHNO9G5EADB21M+QCIdlEMkfFJxk4
Y9xLQ+gE1HOtUd9YkgJyEgderSH5WIqCtHtBKpSePhM9ukRAznKPTN2cdJBo
m+VRJrnQuGgwLzMDEr9GxERRCXAMf8azKf07bE/0fHtqkQA+4czTpQk/4AHf
jlrHBQK0Wk0b18RmwcMpo8tZFAI2B9PuXf+SDc91Ps0LzRPQnCfysTH0J2h9
rpp7OE1ABX6wfvwOQSn9+jKrKQJutGfGlCjkw1TuRTWzSQKSDL0/VRfmg7WJ
fIDyOAErzg7I1eQVwJNy8ZHEfwS8MXX7GJpZBDTulU1WQwQ8dup2eXWoGMpK
X9ClBwko6LjrdC+tGI4P6rP79hGwtuHpqS3fSuBnxMAMrZOAxfqdj5S/loGp
y5XKFx0E4GqzBO7t5fBOg9bL1k7Ah+EJjvxP5ZCraFn37w8BKnYKwZtCK4Ch
npBxrY4AcaMZTnffKlBwP75QWkCAn6PoNlHHWpjlCrSJQQLon1GIzlEHTBOZ
TsdfBLgPcHIMXKiDwNhYqzXZ5PlY+TbG1NRB7IWnWJ1MwJDgyb2Urnr4RPdy
fP+RAHMDge8B9EaouP+L6AomgPVOsO0ANMHtVvknOwIJyLN9LVPq0gReN+1V
Ar0JuH/X6Wj3ymbQ2bk6ms+VrCe13zblIn/gV9RovbIZeb52/aV3ZVqhWrdR
lPc+AWIP1OVCH7fC5ZHC+wXGBLA9zY2uzGqFAj77dUJ6BNSMZJ5aA20wfP5y
mZIGAe8i4/coKbeDnKHHo1WHCHgfInlCxbATRJZl2PfMsmDknX/+yvM9sK/g
TkL1JAsCR/6kTxv1QMV1ze2poyzgMv7p3ejSA3Mzy+YM+1jwNTJ02DO/B87s
7pU2rWeBk6nOsd8nekHeYRk39zcWyE/1RDsc7INoAw/xtwYs+PPmj5TJhgHQ
+b0t2FmXBZwjNIdfRwbALMfGwVKHBYdzTYv4tAfgUrt64LHLLKhcPyMQ4TsA
m9dW7LA6yoJb1qc7X/IOgvhm4zZbPhao7VBKUGMMQqTshd1DqUwwu0pk/Gz7
BzF/Zei8iUyYSDXXqF74B7+vWabsiWaCutnD/S1Cw1D32aXySggTZHed8++4
PAynjw4NXHZhwtGazNPhBcNg0XxpcVqdCWfk/65YHjsCt3ZICFKGGXA9vP3A
Lssx0P+1ctfxPgZEacuE23iOgUNrmObTDgZIs3ZaZcWOwdMszfHu3wxgu1W+
T7p3DH63/tDQTWNAquPXUxUa4zAW2K7H+5wBpf4WPT8OTsABYRc71WUMODbi
q31pfBJulG22XcuggxKPNO8KninIpO3ybJijg6HRN1aO5BTkUHuEjvTTYV1g
lzOP0RS8k/jQGFlAh5rDS1zQNgX+7na72RzosC8p34xuMA2S2t0qMxM0yO4c
HpFVnIFv/YpGOEADKX+1JEedGbhjNd7v2kGDurggz2LjGbjfKi/NKKfBGsn0
92ddZsh6+3jgfRQNFhN/HGD7OQPO/b2nlHRoILPO76Hn3lnYEc3x7HD2Ekzx
vdxWwj0HAm2nDxUlL0HJMOOry7o52Lgg9kkpegl42688O7FtDrSGxP0u+C2B
FkWIM+LEHJjNRUnOmS1BUnCaspT5HAyHTYhuFVsCzsvWdKOGOXgT5sHb60iF
hrA8ox1B86BXssou7hEViEKzsfNR83ApPGT4gSkV/tSfMTBMngfrtomyv1ep
YKL3mNezbB4GBOCv/T4qrJBezfV5cR6+GuR9CW1dhNslp7j+aFMg8V5Rnv2+
RYg0qq1VXL0AXKuPsEeIL8KlgMnt2ZsXQErcNShn7SLc7P4gvG3PAph+f/C7
i7EAspcUKnrOLcBe9om8puoFYJVuYlv9aAHGrl8pcnuwADJ7Pn481rwAX57M
cot+oUCrYNUeP99FKDKQ8DEPooAds+vV/vBFEOv/8venOwX0dH34S+IWQb97
T6u8FQWi1jlEdeQvgqyOXuLK0xT49kzdNnNyESoDDUUs/8xD1Z/4LjFFKrwM
s5Av5JgHlaocngQqFXaI9t73p8zBkmQ59RDnEnSpWHMaDM/B7eBjsz/4lmDh
ypfwkd9z4GTygR67bQkyfC07s4LnoP32pPARlSXI2rmQfkWK3PcR/TG28CXI
d88Uen9lFigsM9UjJ2lQ/2R763eFWbhstnln13kaSL8QeNMqNwub7j1NslOj
gfDlhmx+0VngH7cv/2xIg/y9avWn+2egJvRGV/Absu70NhxJtZ6B9nVzh7c1
0uBTktQt2rtp6P+rlBBkSIfmEN5hJ+dpWCztoGeZ0kE/u/ARu800mMoeiG+0
psN4U/Unqs40mMtfXk9xoYO1OjX8x9ZpcGM2cw5/psOFa6t3LZhMwUsh3fue
vXSIvv5x9+1vEyB2497lwusM4Dky6WzrOwFVb2XjeA0YsGWTa4qb7QTIp+yW
VDVhgLnz23T/0xOw8s97lzxbBvS8DFxxo2YcHB/avlbxY8AP9c+NQeNjYP1n
2blNVeTv2/gtCuwYBemlT+2Oh5kQct/Iqn/ZKJhskzS3OcmEBwd2v0oeHIH0
v1opevJMUIjYGHwwZgSSAsqPimmQz4djrf/uHoG9xs7bj5uRc+hkXUGf1DA0
cz1P7/rEhG9ZjQlNB4Ygsepmcw0nC/aezQqvFhwC02zRj99XsiDp10ulvOlB
KM3Y3OwnwAI4qTLzPmUQvmSejJATZUFvo7nd0P5BuGtTcGudDAtinqx4bStF
zmHn3I1yt1mgd9pz/MaOPnLuDFYtJbMg7DsbtXx5H7S3Zas9z2AB+8snHjL/
ekH5vIfcXBYL2h8XmVDjekH/ddaumgIWeFx+XK+2vxfmtsY472pkQeJ4Geeh
Yz3g73Nb0HyeBZTSFrHbG3ug5PpG+UdUFihkudpxL3ZDcwy1zJrBAqWktyfe
2nWDbMiu4mvLCKjjrnor9eov7J1f86BciABXC8Vqfv9OWOw7FXH4IAEHTIYs
Rq92QpCF7Yt88h4LfTK0CkU6gbb2b7T8UQI8nXMsNT92QH9N/g8ZICD8S67X
ns/t4PB2tC1dhcw53rMpEd9awSao4e7ZuwQ88Di6a41lK/wpThZRJ+/V2H0q
3o4HW6EkK52lTd67SjsmLc9ntAC79kGzy9YENCWNSbzL/gPVys9SOh0IMEua
YltT1AQHghTOvPIjIOWJ+pd7rk2wtTNYfCV5zwsathtlXWyCRwnrn78mc0CL
sZy1cnUjNB06FWgaRsD0m+F7x5ob4PXLScPWaPK5tdGb+0ENYCp2jyEeR0DW
hbzjAdcbgN/dkccwgQChFE7vbjJnZHgbu/wmcwfbkaAPZ4fqwMPFrkExiwCD
z42DarF1kLDlPId2DpmrNEaP3TCtA5FOv883cgnI1Te7X9pZC3s2/pG5nE+A
emLDDu/x37AkPfyqpYwAndzLuU08laChwfHOuZncP/97e53fV4DFypteQi0E
/Htq/3Lnmgoo+apHD28lIPCZuPHtDeWw2YbCH0HmMKaQ3j5PyVKQYX+yUaGX
3L8Era08CSXwrOm8fgiZ43Qmn4+7SJdA5R12vpF+AkYrVtkbHy6GjZ7sIRZk
Drw7YI4z5wpBh7/72dYxAgQ28HxVLC2AIrn8yeNkjjykc0M1TLEA1jedK1eZ
IGCT+bThUfV8cDmyO/Y6mUPPDl0UYotBGB8V+KZF5tT5oNpmt6Q8WDEZJnJp
hoDGKt7YFzm54J1SsXb9HAH6XPHS8/k/waWbGjNPct+Zk+v1y3JA/tRsWAWZ
e4fatnLsbMoCievPU3XJnHzp/YNnju0/IJQnrmYjmaN31AScbejJhC/1vZfr
Sbbsd0u7P5EByxxLrCTJHH6X8yi3zd90ENl0WLWJ5JQCrirb2jRg7VeXeUoj
c3EJ/cLj/FQgcHizEJnrqdIby81TUyBAu1HwK8l9fM2HyhSSwZXjH4806QVX
FceEYiWSYECbyfuN5J9nq3o1RmNhV8eXbX6kRwiyFbNtqo6GA2WUI1SS1y16
5XQnfYHlTeWaWqSXMJ4qx4R5fYaRPctsY0i+8nStnrbVJ0h85h0+Q7JY7tr5
tdGhEDN77bcM6T0duR/FH98PhmoVZY4HJFt/ZH9Us88fvhbpnAoh2btN5JRC
jxfcELFyzCf5bhZnZN9dN8j09CzpIvnpteTh+XYH2DURuWaWZLOAD7eP1t2H
0tcJxkySa9n7otj2qqP6vug8gmRa+eLtj8xHuP+wz+YlksXVi68dpbqgrYO5
ywjJ57cWJodZeWCP8bmJOpJDsmfiHCg+2NgodDuZ5FXnVawlZQLx+sHxplck
t52OZ6syD8GtD1s0NEheOVu6415COD6j9TetJVmze78O0yYSleu33a4l118l
FyJ3zjcKN5rHTDiT/LzoZfCLlK9Iq3d7uZvkI1q1Azk1Mejh0ilWQe6vu5nB
y4nxOJx5m1+oR/JHC/HO9byJWGurYTZBnk9n5bz2yd3f8IRu8iZrkq97DyQl
bE/B7HpG4wR5vinHzsdlyKSi9NxtX32Sn0v612edTcMWfaZOJVkfss8r23+o
pyMAx869JAesa9P7av4d4x/PN9eTXlewPUHezyETmxPO5YiQ/FXlWutzzx84
xZ8drUXWo42u0sDh+GzcUEIPTie9TnJA4ojm4C/8lmgzsnyWgBOmeldWzOfh
hInnumVkf1zVu6F3jT0fj72pUF4i++lxibMURaAAVer+tpST/RaebbRnfl8R
mhvKP2EME/CyI7dZIqMI+Z6fYKaRXqd3QIimeaIYx7kpXvpkP3uG8AiHKZZg
Yc2erk9kv/ezlz4eMi5D++uRWzO7CIjS6TvW01+GLkLdh8+QXnfDSn5Xk0E5
Cq7ndSkkPU7Sv5w7/lYFstV+KUom54/bjj47nqtVuIPxZmFfPQE8RlsONzRU
YW1Rc9PTWgJUt6Zs81OvxpXN+ydzf5P9WUcTY1P5jU+NsVGq8j+vD7348lwt
mltE2KYVEpCxcvji6vxaNHkQeiyfnIdSR12KqrbUoehWOFGaR0Ckudv2C6F1
aDdnzMgh52lQ6smclUH12Pn70KuLaeT8DRztyvNoRPbtI2ITEQTYG6jHnKls
RPXzmrxO5HznitX++Iu7CUfNiFMrSS8843OsNNa1CfdRX9utIO+H0yxV+3NO
zSiXH2ryxYMAr6I362ytWtAm6/ZH88dkvbWaRNpodODf2l+KZ+UJiHtZvO6h
fweKmSgd8ifvt2tbFyJut3TgOr/dkn9PkP2guTxu961OLCjasUeHvB8fC9g/
umXShWwOLkVdO8j6j+yR2uvQjbcF/8Fp8r7leWfFGYbd+HuK6zAHG1n/tsp/
Odh7cFlotsIvOulhl9JLb8n3oJZDVtb6ORa8N1ut1FHWg+92Cgkb97Kg8Ux0
1XhtL+Y6ryrVymXB6Eaf263TvRjL2cBw/8GCrLWPqvJW92Ed/7xhVhoLdlfr
8dlr9mHAk7ZCaiwLOhZrd//404eCO95SBQJYcGpW0l2ysx9/Pstz/PCABQyO
U8bJfYPYF2jmv30NCz4flNO+zDGE9LUU6durWHB1vvvA4NYhHJGjPvNewYJh
JU1nDoMh1NDulOykMSFgp53f7N8h1NoQLijYz4Rx6feTn9r+YbL1x7djpDfq
bsqeW6oYwczJDCkHRSbMLR9QLR4ewRcl82Kp55gQ1R3s5MY1inyBtrTOE0zo
WxkCVIVR1LhZZ7FJmgnOVadUXHAUp4WUfY6vYcJGs7oDB9PHUOXCVkNKKwOE
gxpuoP8ENhSknrfRZ8DTqIlvPikTyKXsWS5N5tHguOS/utUT6LEn9lm/BgPO
c5pldnFOophG/MOj8gyweMryeGM9ierx+jXeOxngqspH2KtO4as42WXMYTrc
vGNmcd15Gum/nLfXkXmZ02p+tOLdNIbu0pnPIPP0sfjVD+Q+TuPE9Wxpvxt0
UJneasaZOY37iyj/TijRYf7fA5GHY9M4IPo06vRuOlxTNFGwvzqDneobmDxD
ZN5vP5BjIzGL7174O/++QQO70ttStodmcQ9zgm+bBg08Hv18ZnOO5P01uywu
0oBVu+/97duzqHRWbM2cLA0Sk2yOLATMIivQgO3zKhp0jrzftGvZHDIT9/8K
zyW9cdUybrvOObTqY0uXFCF9xcx6Tf3IHApPNpv6rVqC3ZdVnm9dnMNlHitX
UdmXQHOzjGbq6nlU4/cWThynQtuXxHzPC/MYeiHqExZQoVi658L+5HnkPJIq
G0R6obKu2/GV9hRMe7VXaMuPRdh/UolV7UZBvyk1JcvERXi67ISNhx8Fmwf0
E3IjF6F6cI0xNZ6C4Y9aKPKei2Ab0yXi20bBzeHqC6sMFkHnqsLRwsML+Hz/
ON195SKMqbaFsY8uYMl5bxEl7QXgvyG6XJiygFwbrxQPKS1AX7BD0Q62RVT+
tWvWARbA4Gvu8YPCi5gpqN35cdcCcKzZXbb83CIudZQdC6RRYPKBHSMkeBFr
8nYGuoVR4MTzZkWjs1QUvSzHadU9D7M3ksNCVKhY+d5F3qBhHiSlpoYrdaio
eK/fXrlkHhY1vl0TNqdigBDvKF/CPHTlMs5dC6GilODD9cq25Ot37X7qOkPF
9QuLW+J550HcUMHeImQJw3evoq6TmYPEn6/C8csSzvLGN6jsmINpl3da3MlL
uGymbZuj8Bx8OL/G8mXRErpPTsjW0UgPzBFeIz6+hP2ysm9limbhcW6Q9fQJ
Gv7aX+o2R3rjo1dfQtuaaXjztbjRS/MZUDSo5uHtpiFLPmC/lv4MfD8XunRo
mIY+XoPbxK/MwBkGXdWaRsPQ/fPv4g7PQOHmWB/fLXSUs1o76MKYBh0qx/l7
xnQMVVgnrPl2GoTf/jivPkHHgPGLz3lhCvy+xzI9KXS8fkPj2uutU2DT7Dlc
wKTjGa/811TOKRA34FJdy8/Act8aSmH5JByZOrj+pjQDVf23L5vRmIQ/pybT
zR8yMOr5lZ3ZhhPw5JJiffggAwc5wwQPOY7BwdcuFgbjDKRLHCe+G4zBNbc8
rs1zDDwrn3Lx4PkxuG+UKebExkTti53sa1eNAWWTUv7kRiaOKTt1uX8YBeHM
ktvPVZkofshJUSF9BNbXR5w9msLExe6v7CJ9/yD8gbewSCYTZfSsMuqL/8GF
n28yJn8y8XNOYuTrmH9w3HXw/JsyJhLXhy92m/0DR63lQXf+MjH3zIK7yiLp
hc1qefk8LGRFsu3bzDsEddKGbcxbLMyxp2yvkB6Ay3+E8ZYRC/s99z3U5B+A
Ty6HqRkmLFzxop7RMtEPnRohtxVtWFgt7rC2LrEfrtlN1q98w0IcvbXbYU8/
RH29zDOczMId9u78jaQ3SrFvfZybwcK+sZyNK5b1wZdrOza9yWbhE4YFx6H+
Xlgskd+wvIiFNg19b50je0Hvwf74gGYW6m0Mdura3At/3yuwCy6xcOy70pnk
dT1QManurcNk4X5nudZdI93An9x4IZCdQNdaptBodDcc4bu7c2klgZrjX15q
bOuGPRQLN62NBL6mmF3NXP8XWgbnO/WPEcjTXnNzmLMT+groZ8stCTTpXHHE
pqkFNkwsbf5lQ6Dd2y16GQEtcEnJWiLelsDMwZbYKe0WMF0+mm1mT+DD1Phu
rbY/0OfJ1+LnRmBVo4N3R1cz4C4VjfuhBF5+Vp3yb7ARDmc1RvaEExi8SuVS
Q3QjWL7YsFY9ksDvrlT6j3uN4C39+KZINIEW4rELj0YawPjr9J2LyQQu7tKa
yRyvB734V4P78gl0brvmWD9QC0bRL/gkCglUiH80vf5uLSgL2KqKFBP4PMrC
99q/GvA5eG1DXxmBfOFSA/kjv+GbJKVkfS2BKwRuyRybrIKQI36xDXUE2scv
Bp63qIK6mRefXjWQzwMWJJWnK4HnYVRNXTOBsTaul8/NVsDPNVHreToJvFZJ
iA5QyuAdGIe86iJw35GKa79syyD/rpr04l8C3eqG87wXS2FLyT6P4l4Cc7Ty
XSWWSsBW2lqA7R95PluOPFrNKIKZqur1J4YJXODmt0b7IuijfjloPkJgyuLb
QBNmIfzSCPfOHSNQ3eFAQyKrAAK6mulkzsRJ9+8ebOz5YNZuFzo9TeB1617O
9dwIWYcCPnTPEPi1/vkrSf488JKD2Og5AsfmDhw8uDEXxlYaZTvOE1iwrbtp
r/hPeOorLqFGIfCCQCNdTCIHxA5HrW5bILD+YX4h5WAWrNnI4+27SOCq7zrt
LUd+AIeS6n0FKoHclyzvZJzKhL8nS/f6LBEYQLPAW4oZsOFB/Np9NALZvQiu
vWrpQM+p1kGSl580SJvTSoNrGWfGa+gEmmlSRZ/qp0ChqcYpZQaBfYJ5X02q
v0GR7pZhJHkobP57W0siBEV5jO9jkus5qtQj3x8PDfuclHxJTrO2DY2ZjIUH
OT3s0ySr3pMxXE6Lhl99H9ZcYBFYGX407tbyr+ArGGjvT3LfjMJIimAUbHtZ
CB0kh5itDSFEI2GTKr/uRoLA43cr7/qrhkP0ddN60ntQtnz8+jbjEDA2rIh4
QfLpBQFmnF0gOC6JlcWRPGn6Hfb5+kLwqzsXK0kWacJtWhrvoOeUl3g/yV7v
JYouOboC16GQK/MkN6erO1lq24Gy0osu0uOQnx+6fPTvgeXRcwWkx2FAmsND
3mQ1LHHvZJIehxujXVt4Qm1wx2cNv/H/3j/QuFwk8gVOpn950UJyyfbvEzsf
vUWByvbyHJI78jRZgVHeSC+kmQSSvJlvI6/IO3+M1+AzNCXZam+8lK9tMIYw
N2XIkey68MKWSz8Uq7bJ6dHJ/QjTEaTn7PiEWTN3jbJIngt5edt8w2e8aYH5
D0mu3db5cDP/F9z+WOOJKMknr+qmlnFE41zKAbcCcv/Hf11MNVuMwU1fradJ
r8M/e/opvKTnFQ861LqS5zl7RsH8SHMSdunanecjWboxJK2wIhkf9cqve0fW
A+QYSG/vTsFZt7TCx2S9xC12vwhpTMMZ24+f/pL1lRL+4U3t73T04mtuBZKj
/3Y0EGUZKDnaeG2MrM+I5K/nNHIzMTt89NNhksN5Xk9bZf7A5a3z8k/Jeh76
9mnWMyULkxpCPg6R9c83pbAs9UsOPtjoH3iP7Jd1Zzob4j1Jr9upXKpH9hPU
PJeo/oh41jeRqkr227UxcvJdzceHR77cXTNBIKXzeZn9nQIsYzezlCL7VyNQ
v+GqSxHOxN/P6xoiyPwvlpO3kvS6yrzVroME1nDysrb6FOMWzoWKrD6CfF8G
e0tECea3NXpkkPPE+NeP2oXcMuTh+yGwuYOcJ62nzaUVylHa40yofRuBdZ6X
jupVlSNn5eZ68T8EvvdOzUxoq8AzCtY/mDUEjk6Oyo5TqtDykvroSiRw61zR
4iPhOvSY4Dvcn0ugU/v14/XX63CqZM47PYfcn0uVfbvC6nDga4rjsUxy/v4x
3VC5vR5rp8vk2xMJPPHgAm/DgQbcJGTJaxlM9h9bj/U/xSb8qr08KyeAQF7F
SNkZzyY0VCt3ZvgSeHMgci+ltgmXP5m+b/yOPA+cejx2tRnN5ZenVr8gsPUI
xx0vgz+4aV6tesaErP/MZqkvT1pxC5tD8pAxgfLNu4Sav7fi8NrnPY2GBEqI
zo4Qc63oHDsiHaRL9vPYvLS8ZRt2y0r5FagR+HeTlZmjSTtmC43sjT5Ezucb
/CY5Op3YyR+qJH6QwIYnQfIvAzrxy2f+Yl8pAt8KvNp8vrETZw+mVOpLEGgU
z/BKV+3CrA2/IFKEQP2TbOXHzv9F9obegAwqC79zm0larO/BGj6J3xnzLHxw
iWCKHOlBfcmlh0nTLLyQK9yRe7UH85adnXYbZuFmLHOn+fZg64i1UF8LC48t
F59U4OvFkscaP/d+Z+HEv/tHBNj78My2oN2bTFmY9bA58vxgP154ePJywR3y
9TmuXkPLB7D9V2TKLT0WhgvfyH4hMYALzf0n7bVI1un/GH1vACf9tYPUT7Ow
2W1ZYNzIAD4JzcrVEWTh57uvD3iOD+JagXTfsSQmijA3j7tM/MMSH4ceuxgm
blZKV7vON4xe/15/4YxkomuMdekuqWHcSa0KXPJj4vP2mvI0s2FUfdd3zekZ
mZ96ubdajw2jxUl99vlzTIyFDxKB/0ZwB+e1Jq9aBjKd4qQOtY8hy7yz7HA5
A++6ui33oI5hIX9cXmM+A2+kqW5sFx7HIVG1vMVUBjpNUFr1NcfxUdwP6PFj
oPyTZBSoHsfDL523HtZm4I67Cn1jPyfQW3frG2YTHem3dpgbBUyh5Vtbrthq
Oj559rYwNW0KT0f11SoV05HhIqC8WDuFq94pnX+WTsfmB+zjssunca1+F+dz
Hzqe/6VDmMM0fr+/t3+VCh0fvrmUxZs+jev+Sci8/UlDz74ku6LAGbycGveu
N42GjsHp//qjSHYXfiIbT8PyUYfVbKkzOFRN3tLBNNz2MMtnb9UMMk6FrQx+
TENtgXvjqsQMvvT0EuSXpuHqT7uUi+/O4rqBMJ6zpB9MJIyNaMrM4VfHEPVa
7yW03c7PPnR6DisT35jquC0hv9ZPaxvlOaxY0tt+9dESujQGXXe+M4d7ll0f
WaG6hH+ESnsMAufwka1CzXm2JaR6rD90dmkOUxZM3M7qU1G5XmaH7s953KS8
VljmKhXrG2QVtMvnMW5eIldUiYqvNWMclJrnUT1d9Ga7LBVPaR6U3jo1j88v
9p1czkXFjSJnxNy2UXDiNtxcm7iIJlzqa2TeUNDVd6ZQemYBn1k1bBlTXcBD
5646XBpcwJNb2cy33lzAJqeAHzfbFrD/t/wdjXsLSLc9mm1esIAaUUeOhjst
4DcORfWLPgu44bT+5rHkBbz5J+h3yf4FjI+W7FYVWMRA7a9GgiYUDDyy7LtE
xSJWmvxjHdWloGRRrWdF4yKqZF7S0FWnoFPwM6e7fxcxzFlS0u8oBWXqh+Pf
zy2ijETTSAE3Be+eX1UftJn0uF0bjSRi59E7bWadhyUVeUYrdov3z+F2jtDE
/tVLWLzb1urrnzkMqXg2VCy6hCrzUXU7K+dQMVNwNGLnErbU9/eKpM6hQkq8
gvyxJYyeaY4ucJzDaY14TtBfwu3l9o+lN8yh99/S99xJS8in7nXipdIsDp9g
3mg8S8OzG+SepJ+axcGsEuufSjQ8LRWi232A9PdnCkphmjRsdKs5sEdkFn1K
5varGtPQOsNLy7N/Bn17rn6884aGdkJcx13tZvCZwLy44W8aWmjXHdaLncZ3
BhJJPlfoeOqF41eej9NYK6dbkHSDjvUSj7alvZtGUVqEVpEhHZ1WDqtTrKex
OeTzdLs1Hdnsl7epnJpGCuyo+OlLxzpV66LXn6dws3/61XP1dExR21tUMT6B
0QOCjKuKZB93/qn8UzOBwv5VySc1GPjh5MXnHSkT+GCnmK3odQZSnHlnqx5N
4F2uooMFJgwUVP5xQIkxjtbcbZJJbgxUMyhTLVo5jh0+plLLixl4rubcl/4t
o+h40mZ5jBwTlw0YCS0QI+jS0z7rcYpJznnZE+y9I2g1kZ5iosDEk088W9ij
RtBLjy9w5RXyOftFuSSJESzj2NEwbMbEtLcf9mbsG8aMQ5EPRcm5NczKvZYv
O4Tn9E0/KHCy0CvzWb2o8BCqdDR0/ORm4ZcStWEr6iBOBTtW7+Vn4eBPWT7+
X4N4u0IrnbKehaufBLJWXBhEussV64PSLDRVbmhj1xnAK8clAy/qsNB/UO6l
6uM+vFh/qHUwioWK5cvbeHX60Mzc85FlLAu1iOjM4qN9aF58IngukYXLLgxK
7Gb0Yv/dU1b95JzvMt8f/8ulF9/ue6x8v4z0Mgn9TFGvHiR6ltJXjbCQ1p7e
jopdyLPts1oCeQ+JN3DNr+LqQq1d/gs+e0hPSJT6pVHciRr73VMspMl79bxR
QuHpTtTnFLkuKEfgS3sJAQXZDnx6X+v2kAKBNjKc2c0b21Cst0p1QJ/MuW61
FdEtrfjbOyf6xB0CP11V+GXp34pN0bvZ3e+RuX1G8sMUXyviqsJsXnMCzZlK
Zz6ytSDtJF0s6jmBCc+npX4ONOHV6xw0cfJeV9K8abM9sgkjgMk37E/grwrV
OtdbTRjD8UY4OojA/c8ubDn2pxGdHPZycIUReObDut26ZQ0YxKkurRtDIJuI
tmLQywasNLtV3x5H4KuTRzb9hgZcaqcZqpM548Y5V8ndWfWYvltETTyVwAqJ
i/NfYutw8nf+EU0yp5zmeVbx404dJlpInnxL5hirmuLxEvE6PGRTvDszj8An
vBwtsQdr0eaERN486YHbq8yan67+jfFjOTnLqghsy+2l+daWo/zai64WZI46
IxTUc1K9HI3kVytR2wlk3l+R0VNXhsJmjzY+I3OYoJZylHBDKb686NZp2E2e
z0HFLdBUjEU5bR1/BgiUqggf/6lFstG1OTEy53nmyMfINhdh5US0kAHpdZtT
u/XX/inECz2PHlaRHueaomcQ3pKPFUqeDmcmCfT5KcG/oJOPLaKHGhXJXHnr
yEUVvxTESxyG+5XJ3Jlh+066MvUXhjHUaYdnydz4467+jbRcbHwRZCJGetxe
rpJ7/Wk/UZow72Qjc+xhq9MLPenZWPNtpjGB9LiQ8HnG1Yws9Dono/OYzL2d
3catxRk/0N1HuluOzMWUbQWrfL5/xyuCHxmRpMc9dL8yOPk9A638UnyUyVwt
kTrhczEzHV88rd4zQfJgXPjd0cxUVGY+MVlP5nRzubv8h3+kYEB/7qrPJKd/
Oyy0aJ6My7KtM7aTub700oED9hZJKLP5mV4Yydf0H88tWSTg5W+pfAKkF3jO
YqelZRyKrWTDpyS/Sqt+0GsZg6IVijbtJNv/uy6uYvUVr7+x3XOI9Iy/qpLP
U62iMKbbYsCVZCMWhbraOhLd7m6NrCX58ivBY50D4SiX/lR/Nek1zpRzFZ6D
Ifj9hvE2ZZKRxftZbigQS6Zbh+xJLiIohe1DvjjDVZYUTXKExwad+Zp36H1w
55Nykuu8cjL31rliKXP0XB/JfQnNF39+tsPX9NWr//M4pQNbnhxQuocBWQG9
/3nc6Q3uA3KGGuBZYJPxn8epWXIEy2g/gsbIhLf/eRyXsOnBkd0ukNB/2mCM
ZJnj395l7HKH7YIHTzSTvMy3NSVXyAfEkt1EfpB8lrW3ZaNQAFy5qLTgTXL/
ivM5Nms+ANx2aTEk2Tws+Ebp6jCQfXri5z6SayNVO9+8+QSX1r+MnCT3IyLG
2HTPm8+gm2/iHkvyom+NTpnbFxCYYT6+QbJDbtkOPbdowN3ad5aR7FfsrTHz
OhZch19fjSb3n0s8uIrjdSLsGq0/00Ce389j+7Wf230DVza+iNskezwdvPj4
aArMbRhT6yfP/5KtZlCbVBq4eXPHN5PetjL2o4brrnSQiH6jKU+y0d1M633b
MyB7v5R6HFlP+0yQ+mB9JnhoPpO/TdafhPftQU6hH7DGyPJ4ElmfaXtkLgXy
ZYFA/R7XebJ+FXOGnOI4cuAkJVTYjKxv0y1D21+O/4KpjCJpgvQ2+Upn6eGh
PFi7R7hCkGSPLTo153sR3A8XZm0k+0l6KnFyfjQf6rev+yBC9h9WKGve6y4E
g1mvO9/J/vwZZTXwVLcIkqo9Ut6SHnduYKbWta0ITh+b0NQm+zlsbO6UT2Mx
9GWu/NxK9j+d0i31oKwUEhOl77wg54O0YrqilkIZcETV2qz/S6D64kDtkYIy
OFGt0xVDzpOObw5REznlYGf2ApPJ+ZNX7S6++lslJIbdqDRqJPA4t+qlyj1V
sJpHMf1XPVn/NytG7WOqYFP5uiWBOgK9fx3cVfOpGu5/Gg4Nqyaw5a4EbPar
gfoD+zVulRB4JICxEC5QC5lFefueF5HzvuDS8Q2etaTTfDDxKiDwlFXvY7tz
dcDDycUZ9YtAxw1rOnafqIer1zbXmX8n17e0+l7u3kbojvh74kMU6ZWrln2k
mTeC5/TuQu5IAi1iua7IpjXCwrrO6xbhBBaLaTP9jjbBupX38rd+IL03ceyw
4PlmmOiRdxJ9T/79dhc/9uu2gBsHPjayJefv9L/NBREt8OeRgKWCDYGbHkTP
B/W1QLZp+ptNliRTWVcOmrSCIuvN+rT7pAfzrCsStGkD82FGlTXpfYqHhBat
3DrgqFattvIZAjOftA11VHTAlmvF0eEnSc9zTGSeWtUJVH+7HSNHCTwQ7Hh1
1LsTJMqMkoxIDzwS8Syy90MXXKjmFZraSnrnsk9qx+O74XXyvZ367AQ2CnL+
4e7rhRaZsq/p2SwcjjxMcWbrgxVdXAFnyPtcNr8ken5LH+y/8XKhJIWFBntW
RtXc7IMdPf5rc2JY6LHni7RKcx80vrPsvBjAQsbMep57Zf3gtdeX3EcWat8Z
qfkXMwjtnJEnSzaxcKgpvLqoZBASzrpnG4qwMDHsjEVI/yAUfnpZS13NwrMv
Jl2PiA3B2TOMKn4uFprsLNp7IHAIZM8X7OubZmL71Kn5tS//wf0zlgWSRaTX
WV768OzaCKhd/HvoqCETtz7Z0MD7dAQY2zco37nJxJzbT5IDg0bgo+yNITct
JooG3JcN/DMC4W1/079fYOKz/e8NTmiNgmgqT3/CHibeT5S5L6w6Bsvnk28s
m2HgRICFdN2JCUjIdXv06AkDb+tdtDe+MQHOV+IOBlgwcMWiudrs0wnYajT1
I+keA4/IGhnOfp+A76Z8u0t1GJgZaKDgsX8SqP1r//ofYSBXDFVl/dYp4OqU
ikig0PHsAX+VVMdpuP/9vk7tAzqqnimVkHw3DSY/110VMaJjYOsB4+CP01Dj
EJqmQ+bfSbGPLLOsafiRTQssuERHtz/2sn9npuHY4QzF4zvpqH3wlWSX0Qxc
Vmt9WdBJQ5sFIa+DCrMgXBqz5dgF0uMKtWHVlVl4xx5M9TlJQ8OGH829erNw
Ru/Oq34ZGgbnPfzqYDcLu4Zv5lqK0XBftqTxk7RZ2O2fvyRLXULhbW78lmJz
ECLZKKgfu4QKn4I/3qTMwfujGSqGnEt4JaBYLI59HgSTOZQ9l6josIWzaoZv
HibUj51MmaKiumm9+yOJeZgqnmQb6qBivmmMLujMwxOeHO2VGVT0mivK+Pdj
Hja/879y0IiKk8mmDeaPKfBlaMVvkV+LuGTR7yH6ggICfy4OvkpbxCbGa4Ei
Twrc00iC8ZhFHIZlphxfKJCnsq8kzncRN6Dw5nMNFJAOO3Sz594ixl0oXVkk
tQBChaVLp1YvYqeRc9qPngU4MXzW7rfeAib/eu7ydXwBui9IPfDXXMAqkfRK
T+oCvOKcYWldXMBpC7XMi4KLoMFPFSuSXsAfeTkfzWERRtIk4jWZFBRQjEl1
CF2ExMtLlEsfKDhQKcLmrkGFC1O1TmHV85iu8cH0ky4V+HcU1kbgPEYuuA4k
36NCwfoIudC0eVQ4x03LdqBCvPiUzsvgeRR8R9F8HkeFOv8tGrx35tFu645V
cQQVnLyG7iynzeFpmcOn4qKX4E6ybmTu1jm8LSf7SjplCU4XS8nMrp1D9777
pknZS1BdJ75iO/ccWnms5Q2uXgLfFIlXtpOzmPMcb4rPLoG6NLfMYM4srq+M
l6GfoEFP89ftA1dmUUhU+XdFJQ1S3qnyOznNYMAqzreOjTQ4niAuv916BmPu
R3zc10kDuWrB7UV3ZnCd3HDuowkazDT6z1AUZ/BWWGV6hgAdzi4+kNi1dgYz
2H8Hz1yhg2ZubWdBzDQe84spU2+iw9GsJ6eKg6Zwr/lA67JOOjyjHzjgbT+F
lp8vKaT106E01ylCy2AKr2Ud2rY0S4fyvC6+sj1TmMedUSa3mgEKn4juK78m
8cVHVUlLFQaMXChYs6p3AjeUyTFrfjFgQnukUWb7OPKEZQzGFzPgR8DxNaJc
40gs/zPtVMUArh0PPjFGx/BaqZPJujYGzHqdK0tIG8MHtw6kTMwxQHeOj55z
dgxLNJ+cvLKLCc/fXun7fHsU9wfx2PV4MMH17ONj5X7DmFBR9kHPlwlsIis0
bB4No8ShbaZ/gpkgZrDdXeTqMPJUPVyf8JUJx9LOvFIWHsZXgZueTecxYVfT
Fi/D4H9onPIwf2SK5A6dPK2PQ5gSscfLXZkFY+FJbW6hA5jH8cKdoc6C3ZIP
dUzsB3CPySj7XW0WqMZsWiuvO4DIPnBbzIAFsixT83+iA6ix4lnMXlsWmFjT
osZD+jHoCuyNC2eR8zGNfSaoD2d/m52UHmFB2tVWla3ve3Bt/V6zcxMssDov
8NzTogdbp/x41WZYwNNy7POceg8Gn3wQoLHEgs8R19kzhXrw9vhUNp2bgM73
gh9EZLrR2ETOul+CgN+rCtSWXejCipZfux33EFD9sVjQgLsLj7rPn10tTcDP