-
Notifications
You must be signed in to change notification settings - Fork 10
/
process_img.py
executable file
·273 lines (228 loc) · 10.4 KB
/
process_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import cv2
import argparse
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from utils.normal_utils import norm_normalize, normal2img, camNormal2worldNormal
class BackgroundRemoval():
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = Image.fromarray(image)
image = self.interface([image])[0]
image = np.array(image)
return image
class BLIP2():
def __init__(self, device='cuda'):
self.device = device
from transformers import AutoProcessor, Blip2ForConditionalGeneration
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b",
torch_dtype=torch.float16).to(device)
@torch.no_grad()
def __call__(self, image):
image = Image.fromarray(image)
inputs = self.processor(image, return_tensors="pt").to(self.device, torch.float16)
generated_ids = self.model.generate(**inputs, max_new_tokens=20)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
class DPT():
def __init__(self, task='depth', device='cuda'):
self.task = task
self.device = device
from utils.dpt import DPTDepthModel
if task == 'depth':
path = 'pretrained_models/omnidata_dpt_depth_v2.ckpt'
self.model = DPTDepthModel(backbone='vitb_rn50_384')
self.aug = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize(mean=0.5, std=0.5)
])
else: # normal
path = './pretrained_models/omnidata_dpt_normal_v2.ckpt'
self.model = DPTDepthModel(backbone='vitb_rn50_384', num_channels=3)
self.aug = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor()
])
# load model
checkpoint = torch.load(path, map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = {}
for k, v in checkpoint['state_dict'].items():
state_dict[k[6:]] = v
else:
state_dict = checkpoint
self.model.load_state_dict(state_dict)
self.model.eval().to(device)
@torch.no_grad()
def __call__(self, image):
# image: np.ndarray, uint8, [H, W, 3]
H, W = image.shape[:2]
image = Image.fromarray(image)
image = self.aug(image).unsqueeze(0).to(self.device)
if self.task == 'depth':
depth = self.model(image).clamp(0, 1)
depth = F.interpolate(depth.unsqueeze(1), size=(H, W), mode='bicubic', align_corners=False)
depth = depth.squeeze(1).cpu().numpy()
return depth
else:
normal = self.model(image).clamp(0, 1)
normal = F.interpolate(normal, size=(H, W), mode='bicubic', align_corners=False)
normal = normal.cpu().numpy()
return normal
def preprocess_single_image(img_path, args):
out_dir = os.path.dirname(args.output_path)
out_rgba = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '.png')
out_depth = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '_depth.png')
out_normal = os.path.join(out_dir, 'normal', os.path.basename(img_path).split('.')[0] + '_normal.png')
out_caption = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '_caption.txt')
if not os.path.exists(os.path.join(out_dir, 'normal')):
os.makedirs(os.path.join(out_dir, 'normal'))
# load image
print(f'[INFO] loading image {img_path}...')
# check the exisiting files
if os.path.isfile(out_rgba) and os.path.isfile(out_depth) and os.path.isfile(out_normal):
print(f"{img_path} has already been here!")
return
print(img_path)
image = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
carved_image = None
if image.shape[-1] == 4:
carved_image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if carved_image is None:
# carve background
print(f'[INFO] background removal...')
carved_image = BackgroundRemoval()(image) # [H, W, 4]
mask = carved_image[..., -1] > 0
# predict depth
# print(f'[INFO] depth estimation...')
# dpt_depth_model = DPT(task='depth')
# depth = dpt_depth_model(image)[0]
# depth[mask] = (depth[mask] - depth[mask].min()) / (depth[mask].max() - depth[mask].min() + 1e-9)
# depth[~mask] = 0
# depth = (depth * 255).astype(np.uint8)
# del dpt_depth_model
# predict normal
print(f'[INFO] normal estimation...')
dpt_normal_model = DPT(task='normal')
normal = dpt_normal_model(image)[0].transpose(1, 2, 0)
normal = norm_normalize(normal * 2 - 1) # map to [-1,1]
idx = 0
file_name = f'./camera_poses/{idx}.txt'
with open(file_name, 'r') as file:
cam_pose = np.loadtxt(file_name)
rot_c2w = cam_pose[:3, :3]
axis_transform = np.array([
[0, 0, -1],
[0, 1, 0],
[-1,0, 0],
])
# Apply the transformation
c2w_my = np.dot(axis_transform, rot_c2w)
normal= camNormal2worldNormal(c2w_my, normal)
# def normal_blender2opencv(normal):
# H, W, C = np.shape(normal) # Get the shape of the normal map
# # Create a new array for the converted normals
#
# # R_bcam2cv = np.asarray([[0, 0, -1],
# # [0, 1, 0],
# # [-1,0, 0]], dtype=np.float32)
# R_bcam2cv = np.asarray([[0, 1, 0],
# [0, 0, 1],
# [1, 0, 0]], dtype=np.float32)
# normal_cv = normal @ R_bcam2cv[None, :]
# print(np.shape(normal_cv))
#
# return normal_cv
# normal = normal_blender2opencv(normal)
normal= normal2img(normal)
normal[~mask] = 255
del dpt_normal_model
# recenter
if opt.recenter:
print(f'[INFO] recenter...')
final_rgba = np.zeros((opt.size, opt.size, 4), dtype=np.uint8)
# final_depth = np.zeros((opt.size, opt.size), dtype=np.uint8)
# final_normal = np.zeros((opt.size, opt.size, 3), dtype=np.uint8)
final_normal = np.full((opt.size, opt.size, 3), 255, dtype=np.uint8)
coords = np.nonzero(mask)
x_min, x_max = coords[0].min(), coords[0].max()
y_min, y_max = coords[1].min(), coords[1].max()
h = x_max - x_min
w = y_max - y_min
desired_size = int(opt.size * (1 - opt.border_ratio))
scale = desired_size / max(h, w)
h2 = int(h * scale)
w2 = int(w * scale)
x2_min = (opt.size - h2) // 2
x2_max = x2_min + h2
y2_min = (opt.size - w2) // 2
y2_max = y2_min + w2
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2),
interpolation=cv2.INTER_AREA)
# final_depth[x2_min:x2_max, y2_min:y2_max] = cv2.resize(depth[x_min:x_max, y_min:y_max], (w2, h2),
# interpolation=cv2.INTER_AREA)
final_normal[x2_min:x2_max, y2_min:y2_max] = cv2.resize(normal[x_min:x_max, y_min:y_max], (w2, h2),
interpolation=cv2.INTER_AREA)
else:
final_rgba = carved_image
# final_depth = depth
final_normal = normal
# write output
cv2.imwrite(out_rgba, cv2.cvtColor(final_rgba, cv2.COLOR_RGBA2BGRA))
# cv2.imwrite(out_depth, final_depth)
cv2.imwrite(out_normal, final_normal)
if opt.do_caption:
# predict caption (it's too slow... use your brain instead)
print(f'[INFO] captioning...')
blip2 = BLIP2()
caption = blip2(image)
with open(out_caption, 'w') as f:
f.write(caption)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str, help="path to image (png, jpeg, etc.)")
parser.add_argument('output_path', type=str, help="path to output images")
parser.add_argument('--size', default=256, type=int, help="output resolution")
parser.add_argument('--border_ratio', default=0., type=float, help="output border ratio")
parser.add_argument('--recenter', action='store_true',
help="recenter, potentially not helpful for multiview zero123")
parser.add_argument('--do_caption', action='store_true', help="do text captioning")
opt = parser.parse_args()
if not os.path.exists(opt.output_path):
os.makedirs(opt.output_path)
if os.path.isdir(opt.path):
img_list = sorted(os.path.join(root, fname) for root, _dirs, files in os.walk(opt.path) for fname in files)
img_list = [img for img in img_list if
not img.endswith("rgba.png") and not img.endswith("depth.png") and not img.endswith("normal.png")]
img_list = [img for img in img_list if img.endswith(".png")]
for img in img_list:
# try:
preprocess_single_image(img, opt)
# except:
# with open("preprocess_images_invalid.txt", "a") as f:
# print(img, file=f)
else: # single image file
preprocess_single_image(opt.path, opt)