-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
46 lines (37 loc) · 1.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import numpy as np
import torch
from config import cfg
#------------prepare enviroment------------
seed = cfg.SEED
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpus = cfg.GPU_ID
if len(gpus)==1:
torch.cuda.set_device(gpus[0])
torch.backends.cudnn.benchmark = True
#------------prepare ProcessedData loader------------
data_mode = cfg.DATASET
if data_mode == 'SHHA':
from datasets.SHHA.loading_data import loading_data
from datasets.SHHA.setting import cfg_data
elif data_mode == 'SHHB':
from datasets.SHHB.loading_data import loading_data
from datasets.SHHB.setting import cfg_data
elif data_mode == 'SHHM':
from datasets.SHHM.loading_data import loading_data
from datasets.SHHM.setting import cfg_data
#------------Prepare Trainer------------
net = cfg.NET
if net in ['MCNN', 'AlexNet', 'VGG', 'VGG_DECODER', 'Res50', 'Res101', 'CSRNet','Res101_SFCN']:
from trainer import Trainer
elif net in ['SANet']:
from trainer_for_M2TCC import Trainer # double losses but signle output
elif net in ['CMTL']:
from trainer_for_CMTL import Trainer # double losses and double outputs
#------------Start Training------------
pwd = os.path.split(os.path.realpath(__file__))[0]
cc_trainer = Trainer(loading_data,cfg_data,pwd)
cc_trainer.forward()