Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

English | 简体中文

ResNet Model Python Deployment Example

Before deployment, two steps require confirmation

This directory provides examples that infer.py fast finishes the deployment of ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

# Download deployment example code 
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd  FastDeploy/examples/vision/classification/resnet/python

# Download the ResNet50_vd model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50.onnx
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg

# CPU inference
python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU inference
python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# Use TensorRT inference on GPU  (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1

The result returned after running is as follows

ClassifyResult(
label_ids: 332,
scores: 0.825349,
)

ResNet Python Interface

fd.vision.classification.ResNet(model_file, params_file, runtime_option=None, model_format=ModelFormat.ONNX)

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • runtime_option(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
  • model_format(ModelFormat): Model format. ONNX format by default

predict Function

ResNet.predict(input_image, topk=1)

Model prediction interface. Input images and output results directly.

parameter

  • input_image(np.ndarray): Input data in HWC or BGR format
  • topk(int): Return the topk classification results with the highest prediction probability. Default 1

Return

Return fastdeploy.vision.ClassifyResult structure. Refer to Vision Model Prediction Results for the description of the structure.

Other Documents