⚙️ 简体中文 | English
PASSL 是一个基于 PaddlePaddle 的视觉库,用于使用 PaddlePaddle 进行最先进的视觉自监督学习研究。PASSL旨在加速自监督学习的研究周期:从设计一个新的自监督任务到评估所学的表征。
PASSL 主要特性:
-
自监督前沿算法实现
PASSL 实现了多种前沿自监督学习算法,包括不限于 SimCLR、MoCo(v1)、MoCo(v2)、MoCo-BYOL、CLIP、BYOL、BEiT。同时支持有监督分类训练。
-
模块化设计
易于建立新的任务和重用其他任务的现有组件 (Trainer, models and heads, data transforms, etc.)
🛠️ PASSL 的最终目标是利用自监督学习为下游任务提供更合适的预训练权重,同时大幅度降低数据标注成本。
📣 Recent Update:
- (2022-2-9): 重构 README
- 🔥 Now:PASSL 目前正在进行框架重构
- Self-Supervised Learning Models
PASSL 实现了一系列自监督学习算法,更具体的使用文档请参阅 Document
Epochs | Official results | PASSL results | Backbone | Model | Document | |
---|---|---|---|---|---|---|
MoCo | 200 | 60.6 | 60.64 | ResNet-50 | download | Train MoCo |
SimCLR | 100 | 64.5 | 65.3 | ResNet-50 | download | Train SimCLR |
MoCo v2 | 200 | 67.7 | 67.72 | ResNet-50 | download | Train MoCo |
MoCo-BYOL | 300 | 71.56 | 72.10 | ResNet-50 | download | Train MoCo-BYOL |
BYOL | 300 | 72.50 | 71.62 | ResNet-50 | download | Train BYOL |
PixPro | 100 | 55.1(fp16) | 57.2(fp32) | ResNet-50 | download | Train PixPro |
SimSiam | 100 | 68.3 | 68.4 | ResNet-50 | download | Train SimSiam |
DenseCL | 200 | 63.62 | 63.37 | ResNet-50 | download | Train PixPro |
SwAV | 100 | 72.1 | 72.4 | ResNet-50 | download | Train SwAV |
Benchmark Linear Image Classification on ImageNet-1K.
Comming Soon:更多的算法实现已经在我们的计划中 ...
- Classification Models
PASSL 实现了视觉 Transformer 等具有影响力的图像分类算法,并提供了相应的预训练权重。旨在支持自监督、多模态、大模型算法的建设和研究。更多使用细节请参阅 Classification_Models_Guide.md
Detail | Tutorial | |
---|---|---|
ViT | / | PaddleEdu |
Swin Transformer | / | PaddleEdu |
CaiT | config | PaddleFleet |
T2T-ViT | config | PaddleFleet |
CvT | config | PaddleFleet |
BEiT | config | unofficial |
MLP-Mixer | config | PaddleFleet |
ConvNeXt | config | PaddleFleet |
🔥 PASSL 提供了详细的算法剖析,具体请参阅 Tutorial。
请参阅 INSTALL.md 进行安装
请参阅 GETTING_STARTED.md 了解 PASSL 的基本用法
自监督学习 (Self-Supervised Learning, SSL) 是一个发展十分迅速的领域,这里列出一些具有影响力的 Paper 供研究使用。PASSL 会争取实现具有应用潜力的自监督算法
- Masked Feature Prediction for Self-Supervised Visual Pre-Training by Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, Christoph Feichtenhofer.
- Masked Autoencoders Are Scalable Vision Learners by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
- Corrupted Image Modeling for Self-Supervised Visual Pre-Training by Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, Furu Wei.
- Are Large-scale Datasets Necessary for Self-Supervised Pre-training? by Alaaeldin El-Nouby, Gautier Izacard, Hugo Touvron, Ivan Laptev, Hervé Jegou, Edouard Grave.
- PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers by Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, Nenghai Yu.
- SimMIM: A Simple Framework for Masked Image Modeling by Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, Han Hu.
PASSL 还很年轻,它可能存在错误和问题。请在我们的错误跟踪系统中报告它们。我们欢迎您为 PASSL 做出贡献。此外,如果您对 PASSL 有任何想法,请告诉我们。
如果 PASSL 对您的研究有帮助,欢迎引用
@misc{=passl,
title={PASSL: A visual Self-Supervised Learning Library},
author={PASSL Contributors},
howpublished = {\url{https://github.com/PaddlePaddle/PASSL}},
year={2022}
}
如 LICENSE.txt 文件中所示,PASSL 使用 Apache 2.0 版权协议。