该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight image Classification)快速构建轻量级、高精度、可落地的文本行方向分类模型。该模型可以广泛应用于如文字矫正、文字识别等场景。
下表列出了文本行方向分类模型的相关指标,前两行展现了使用 Res2Net200_vd 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第七行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 |
---|---|---|---|---|
SwinTranformer_tiny | 93.61 | 89.64 | 111 | 使用 ImageNet 预训练模型 |
MobileNetV3_small_x0_35 | 81.40 | 2.96 | 2.6 | 使用 ImageNet 预训练模型 |
PPLCNet_x1_0 | 89.99 | 2.11 | 7.0 | 使用 ImageNet 预训练模型 |
PPLCNet_x1_0* | 94.06 | 2.68 | 7.0 | 使用 ImageNet 预训练模型 |
PPLCNet_x1_0* | 94.11 | 2.68 | 7.0 | 使用 SSLD 预训练模型 |
PPLCNet_x1_0** | 96.01 | 2.72 | 7.0 | 使用 SSLD 预训练模型+EDA 策略 |
PPLCNet_x1_0** | 95.86 | 2.72 | 7.0 | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略 |
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,精度下降也比较明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 8.6 个百分点,速度快10%左右。在此基础上,更改分辨率和stride, 速度变慢 27%,但是精度可以提升 4.5 个百分点(采用PaddleOCR的方案),使用 SSLD 预训练模型后,精度可以继续提升约 0.05 个百分点 ,进一步地,当融合EDA策略后,精度可以再提升 1.9 个百分点。最后,融合SKL-UGI 知识蒸馏策略后,在该场景无效。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
备注:
- 其中不带*的模型表示分辨率为224x224,带*的模型表示分辨率为48x192(h*w),数据增强从网络中的 stride 改为
[2, [2, 1], [2, 1], [2, 1], [2, 1]]
,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 PaddleOCR 提供的文本行方向分类器方案。带**的模型表示分辨率为80x160(h*w), 网络中的 stride 改为[2, [2, 1], [2, 1], [2, 1], [2, 1]]
,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过超参数搜索策略搜索得到的。 - 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
- 关于PP-LCNet的介绍可以参考PP-LCNet介绍,相关论文可以查阅PP-LCNet paper。
- 您的机器安装的是 CUDA9 或 CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
- 您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
更多的版本需求,请参照飞桨官网安装文档中的说明进行操作。
使用如下命令快速安装 paddleclas
pip3 install paddleclas
点击这里下载 demo 数据并解压,然后在终端中切换到相应目录。
- 使用命令行快速预测
paddleclas --model_name=textline_orientation --infer_imgs=pulc_demo_imgs/textline_orientation/textline_orientation_test_0_0.png
结果如下:
>>> result
class_ids: [0], scores: [1.0], label_names: ['0_degree'], filename: pulc_demo_imgs/textline_orientation/textline_orientation_test_0_0.png
Predict complete!
备注: 更换其他预测的数据时,只需要改变 --infer_imgs=xx
中的字段即可,支持传入整个文件夹。
- 在 Python 代码中预测
import paddleclas
model = paddleclas.PaddleClas(model_name="textline_orientation")
result = model.predict(input_data="pulc_demo_imgs/textline_orientation/textline_orientation_test_0_0.png")
print(next(result))
备注:model.predict()
为可迭代对象(generator
),因此需要使用 next()
函数或 for
循环对其迭代调用。每次调用将以 batch_size
为单位进行一次预测,并返回预测结果, 默认 batch_size
为 1,如果需要更改 batch_size
,实例化模型时,需要指定 batch_size
,如 model = paddleclas.PaddleClas(model_name="textline_orientation", batch_size=2)
, 使用默认的代码返回结果示例如下:
>>> result
[{'class_ids': [0], 'scores': [1.0], 'label_names': ['0_degree'], 'filename': 'pulc_demo_imgs/textline_orientation/textline_orientation_test_0_0.png'}]
- 安装:请先参考文档 环境准备 配置 PaddleClas 运行环境。
本案例中所使用的所有数据集来源于内部数据,如果您希望体验训练过程,可以使用开源数据如ICDAR2019-LSVT 文本行识别数据。
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
本案例处理了 ICDAR2019-LSVT 文本行识别数据,将其中的 id 号为 0-1999 作为本案例的数据集合,经过旋转处理成 0 类 和 1 类,其中 0 类代表文本行为正,即 0 度,1 类代表文本行为反,即 180 度。
-
训练集合,id号为 0-1799 作为训练集合,0 类和 1 类共 3600 张。
-
验证集合,id号为 1800-1999 作为验证集合,0 类和 1 类共 400 张。
处理后的数据集部分数据可视化如下:
此处提供了经过上述方法处理好的数据,可以直接下载得到。
进入 PaddleClas 目录。
cd path_to_PaddleClas
进入 dataset/
目录,下载并解压文本行方向分类场景的数据。
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/textline_orientation.tar
tar -xf textline_orientation.tar
cd ../
执行上述命令后,dataset/
下存在 textline_orientation
目录,该目录中具有以下数据:
├── 0
│ ├── img_0.jpg
│ ├── img_1.jpg
...
├── 1
│ ├── img_0.jpg
│ ├── img_1.jpg
...
├── train_list.txt
└── val_list.txt
其中 0/
和 1/
分别存放 0 类和 1 类的数据。train_list.txt
和 val_list.txt
分别为训练集和验证集的标签文件。
备注:
- 关于
train_list.txt
、val_list.txt
的格式说明,可以参考PaddleClas分类数据集格式说明 。
在 ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml
中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml
备注:
- 由于此时使用的数据集并非内部非开源数据集,此处不能直接复现提供的模型的指标,如果希望得到更高的精度,可以根据需要处理ICDAR2019-LSVT 文本行识别数据。
训练好模型之后,可以通过以下命令实现对模型指标的评估。
python3 tools/eval.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
其中 -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 tools/infer.py
中提供了完整的示例,只需执行下述命令即可完成模型预测:
python3 tools/infer.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
输出结果如下:
[{'class_ids': [0], 'scores': [1.0], 'file_name': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png', 'label_names': ['0_degree']}]
备注:
-
这里
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 -
默认是对
deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png
进行预测,此处也可以通过增加字段-o Infer.infer_imgs=xxx
对其他图片预测。
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考SKL-UGI 知识蒸馏。
复用 ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml
中的超参数,训练教师模型,训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
当前教师模型最好的权重保存在 output/ResNet101_vd/best_model.pdparams
。
配置文件ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml
提供了SKL-UGI知识蒸馏策略
的配置。该配置将ResNet101_vd
当作教师模型,PPLCNet_x1_0
当作学生模型。训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
当前模型最好的权重保存在 output/DistillationModel/best_model_student.pdparams
。
在 3.3 节和 4.1 节所使用的超参数是根据 PaddleClas 提供的 超参数搜索策略
搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考超参数搜索策略来获得更好的训练超参数。
备注: 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择直接下载 inference 模型的方式。
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_textline_orientation_infer
执行完该脚本后会在 deploy/models/
下生成 PPLCNet_x1_0_textline_orientation_infer
文件夹,models
文件夹下应有如下文件结构:
├── PPLCNet_x1_0_textline_orientation_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
备注: 此处的最佳权重可以根据实际情况来选择,如果希望导出知识蒸馏后的权重,则最佳权重保存在output/DistillationModel/best_model_student.pdparams
,在导出命令中更改-o Global.pretrained_model=xx
中的字段为output/DistillationModel/best_model_student
即可。
6.1.1 小节提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/textline_orientation_infer.tar && tar -xf textline_orientation_infer.tar
解压完毕后,models
文件夹下应有如下文件结构:
├── textline_orientation_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
返回 deploy
目录:
cd ../
运行下面的命令,对图像 ./images/PULC/textline_orientation/textline_orientation_test_0_0.png
进行文字方向cd分类。
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.use_gpu=False
输出结果如下。
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
如果希望预测文件夹内的图像,可以直接修改配置文件中的 Global.infer_imgs
字段,也可以通过下面的 -o
参数修改对应的配置。
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.infer_imgs="./images/PULC/textline_orientation/"
终端中会输出该文件夹内所有图像的分类结果,如下所示。
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_0_1.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_1_0.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
其中,0_degree
表示该文本行为 0 度,180_degree
表示该文本行为 180 度。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。