-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
252 lines (222 loc) · 11.1 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import os
import signal
import sys
import cv2
import paddle
from ppdet.core.workspace import load_config
from ppdet.core.workspace import merge_config
from ppdet.engine import Tracker
from ppdet.utils.check import check_config
from ppdet.utils.check import check_gpu
from ppdet.utils.check import check_version
from ppdet.utils.logger import setup_logger
import paddlehub as hub
from .tracker import StreamTracker
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
logger = setup_logger('Predict')
@moduleinfo(name="jde_darknet53",
type="CV/multiple_object_tracking",
author="paddlepaddle",
author_email="",
summary="JDE is a joint detection and appearance embedding model for multiple object tracking.",
version="1.1.0")
class JDETracker_1088x608:
def __init__(self):
self.pretrained_model = os.path.join(self.directory, "jde_darknet53_30e_1088x608")
def tracking(self, video_stream, output_dir='mot_result', visualization=True, draw_threshold=0.5, use_gpu=False):
'''
Track a video, and save the prediction results into output_dir, if visualization is set as True.
video_stream: the video path
output_dir: specify the dir to save the results
visualization: if True, save the results as a video, otherwise not.
draw_threshold: the threshold for the prediction results
use_gpu: if True, use gpu to perform the computation, otherwise cpu.
'''
self.video_stream = video_stream
self.output_dir = output_dir
self.visualization = visualization
self.draw_threshold = draw_threshold
self.use_gpu = use_gpu
cfg = load_config(os.path.join(self.directory, 'config', 'jde_darknet53_30e_1088x608.yml'))
check_config(cfg)
place = 'gpu:0' if use_gpu else 'cpu'
place = paddle.set_device(place)
paddle.disable_static()
tracker = StreamTracker(cfg, mode='test')
# load weights
tracker.load_weights_jde(self.pretrained_model)
signal.signal(signal.SIGINT, self.signalhandler)
# inference
tracker.videostream_predict(video_stream=video_stream,
output_dir=output_dir,
data_type='mot',
model_type='JDE',
visualization=visualization,
draw_threshold=draw_threshold)
def stream_mode(self, output_dir='mot_result', visualization=True, draw_threshold=0.5, use_gpu=False):
'''
Entering the stream mode enables image stream prediction. Users can predict the images like a stream and save the results to a video.
output_dir: specify the dir to save the results
visualization: if True, save the results as a video, otherwise not.
draw_threshold: the threshold for the prediction results
use_gpu: if True, use gpu to perform the computation, otherwise cpu.
'''
self.output_dir = output_dir
self.visualization = visualization
self.draw_threshold = draw_threshold
self.use_gpu = use_gpu
cfg = load_config(os.path.join(self.directory, 'config', 'jde_darknet53_30e_1088x608.yml'))
check_config(cfg)
place = 'gpu:0' if use_gpu else 'cpu'
place = paddle.set_device(place)
paddle.disable_static()
self.tracker = StreamTracker(cfg, mode='test')
# load weights
self.tracker.load_weights_jde(self.pretrained_model)
signal.signal(signal.SIGINT, self.signalhandler)
return self
def __enter__(self):
self.tracker_generator = self.tracker.imagestream_predict(self.output_dir,
data_type='mot',
model_type='JDE',
visualization=self.visualization,
draw_threshold=self.draw_threshold)
next(self.tracker_generator)
def __exit__(self, exc_type, exc_value, traceback):
seq = 'inputimages'
save_dir = os.path.join(self.output_dir, 'mot_outputs', seq) if self.visualization else None
if self.visualization:
#### Save using ffmpeg
#output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq))
#cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format(
# save_dir, output_video_path)
#os.system(cmd_str)
#### Save using opencv
output_video_path = os.path.join(save_dir, '..', '{}_vis.avi'.format(seq))
imgnames = glob.glob(os.path.join(save_dir, '*.jpg'))
if len(imgnames) == 0:
logger.info('No output images to save for video')
return
img = cv2.imread(os.path.join(save_dir, '00000.jpg'))
video_writer = cv2.VideoWriter(output_video_path,
apiPreference=0,
fourcc=cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
fps=30,
frameSize=(img.shape[1], img.shape[0]))
for i in range(len(imgnames)):
imgpath = os.path.join(save_dir, '{:05d}.jpg'.format(i))
img = cv2.imread(imgpath)
video_writer.write(img)
video_writer.release()
logger.info('Save video in {}'.format(output_video_path))
def predict(self, images: list = []):
'''
Predict the images. This method should called in stream_mode.
images: the image list used for prediction.
Example:
tracker = hub.Module('fairmot_dla34')
with tracker.stream_mode(output_dir='image_stream_output', visualization=True, draw_threshold=0.5, use_gpu=True):
tracker.predict([images])
'''
length = len(images)
if length == 0:
print('No images provided.')
return
for image in images:
self.tracker.dataset.add_image(image)
try:
results = next(self.tracker_generator)
except StopIteration as e:
return
return results[-length:]
@runnable
def run_cmd(self, argvs: list):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
self.args = self.parser.parse_args(argvs)
self.tracking(
video_stream=self.args.video_stream,
output_dir=self.args.output_dir,
visualization=self.args.visualization,
draw_threshold=self.args.draw_threshold,
use_gpu=self.args.use_gpu,
)
def signalhandler(self, signum, frame):
seq = os.path.splitext(os.path.basename(self.video_stream))[0]
save_dir = os.path.join(self.output_dir, 'mot_outputs', seq) if self.visualization else None
if self.visualization:
#### Save using ffmpeg
#output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq))
#cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format(
# save_dir, output_video_path)
#os.system(cmd_str)
#### Save using opencv
output_video_path = os.path.join(save_dir, '..', '{}_vis.avi'.format(seq))
imgnames = glob.glob(os.path.join(save_dir, '*.jpg'))
if len(imgnames) == 0:
logger.info('No output images to save for video')
return
img = cv2.imread(os.path.join(save_dir, '00000.jpg'))
video_writer = cv2.VideoWriter(output_video_path,
apiPreference=0,
fourcc=cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
fps=30,
frameSize=(img.shape[1], img.shape[0]))
for i in range(len(imgnames)):
imgpath = os.path.join(save_dir, '{:05d}.jpg'.format(i))
img = cv2.imread(imgpath)
video_writer.write(img)
video_writer.release()
logger.info('Save video in {}'.format(output_video_path))
print('Program Interrupted! Save video in {}'.format(output_video_path))
exit(0)
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='mot_result',
help='Directory name for output tracking results.')
self.arg_config_group.add_argument('--visualization',
action='store_true',
help="whether to save output as images.")
self.arg_config_group.add_argument("--draw_threshold",
type=float,
default=0.5,
help="Threshold to reserve the result for visualization.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--video_stream',
type=str,
help="path to video stream, can be a video file or stream device number.")