-
Notifications
You must be signed in to change notification settings - Fork 3k
/
utils.py
252 lines (238 loc) · 7.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import pathlib
import numpy as np
import paddle
from paddlenlp.datasets import load_dataset
LABEL_TO_STANDARD = {
"tnews": {
"news_story": "100",
"news_culture": "101",
"news_entertainment": "102",
"news_sports": "103",
"news_finance": "104",
"news_house": "106",
"news_car": "107",
"news_edu": "108",
"news_tech": "109",
"news_military": "110",
"news_travel": "112",
"news_world": "113",
"news_stock": "114",
"news_agriculture": "115",
"news_game": "116",
},
"iflytek": {
"打车": 0,
"美颜": 100,
"影像剪辑": 101,
"摄影修图": 102,
"相机": 103,
"绘画": 104,
"二手": 105,
"电商": 106,
"团购": 107,
"外卖": 108,
"电影票务": 109,
"社区服务": 10,
"社区超市": 110,
"购物咨询": 111,
"笔记": 112,
"办公": 113,
"日程管理": 114,
"女性": 115,
"经营": 116,
"收款": 117,
"其他": 118,
"薅羊毛": 11,
"魔幻": 12,
"仙侠": 13,
"卡牌": 14,
"飞行空战": 15,
"射击游戏": 16,
"休闲益智": 17,
"动作类": 18,
"体育竞技": 19,
"地图导航": 1,
"棋牌中心": 20,
"经营养成": 21,
"策略": 22,
"MOBA": 23,
"辅助工具": 24,
"约会社交": 25,
"即时通讯": 26,
"工作社交": 27,
"论坛圈子": 28,
"婚恋社交": 29,
"免费WIFI": 2,
"情侣社交": 30,
"社交工具": 31,
"生活社交": 32,
"微博博客": 33,
"新闻": 34,
"漫画": 35,
"小说": 36,
"技术": 37,
"教辅": 38,
"问答交流": 39,
"租车": 3,
"搞笑": 40,
"杂志": 41,
"百科": 42,
"影视娱乐": 43,
"求职": 44,
"兼职": 45,
"视频": 46,
"短视频": 47,
"音乐": 48,
"直播": 49,
"同城服务": 4,
"电台": 50,
"K歌": 51,
"成人": 52,
"中小学": 53,
"职考": 54,
"公务员": 55,
"英语": 56,
"视频教育": 57,
"高等教育": 58,
"成人教育": 59,
"快递物流": 5,
"艺术": 60,
"语言(非英语)": 61,
"旅游资讯": 62,
"综合预定": 63,
"民航": 64,
"铁路": 65,
"酒店": 66,
"行程管理": 67,
"民宿短租": 68,
"出国": 69,
"婚庆": 6,
"工具": 70,
"亲子儿童": 71,
"母婴": 72,
"驾校": 73,
"违章": 74,
"汽车咨询": 75,
"汽车交易": 76,
"日常养车": 77,
"行车辅助": 78,
"租房": 79,
"家政": 7,
"买房": 80,
"装修家居": 81,
"电子产品": 82,
"问诊挂号": 83,
"养生保健": 84,
"医疗服务": 85,
"减肥瘦身": 86,
"美妆美业": 87,
"菜谱": 88,
"餐饮店": 89,
"公共交通": 8,
"体育咨讯": 90,
"运动健身": 91,
"支付": 92,
"保险": 93,
"股票": 94,
"借贷": 95,
"理财": 96,
"彩票": 97,
"记账": 98,
"银行": 99,
"政务": 9,
},
}
def load_prompt_arguments(args):
"""
Load prompt and label words according to prompt index.
"""
with open(args.prompt_path, "r", encoding="utf-8") as fp:
configs = json.load(fp)
assert len(configs["verbalizer"]) == len(configs["template"])
assert configs["verbalizer"][0] is not None
verbalizer = [configs["verbalizer"][0]]
last_verb_index = 0
for index, verb in enumerate(configs["verbalizer"][1:]):
if verb is None or len(verb) == 0:
verbalizer.append(configs["verbalizer"][last_verb_index])
else:
verbalizer.append(verb)
last_verb_index = index + 1
configs["verbalizer"] = verbalizer
args.prompt = configs["template"][args.prompt_index]["text"]
label_words = configs["verbalizer"][args.prompt_index]
if isinstance(label_words, list):
label_words = {k: k for k in label_words}
args.label_words = label_words
return args
def save_pseudo_data(save_path, task_name, label_preds, verbalizer, labels):
"""
Combine unsupervised data and corresponding predicted labels and
save one example per line.
"""
if task_name == "cluewsc":
return None
num_labels = len(labels)
data_ds = load_dataset("fewclue", name=task_name, splits="unlabeled")
preds = paddle.to_tensor(label_preds.predictions)
preds = paddle.nn.functional.softmax(preds, axis=1)[:, 1].numpy()
preds = preds.reshape([-1, num_labels])
label_preds = np.argmax(preds, axis=1)
label_probs = np.max(preds, axis=1)
pseudo_data = []
for index, example in enumerate(data_ds):
example["labels"] = labels[label_preds[index]]
example["prob"] = str(label_probs[index])
pseudo_data.append(example)
save_data(pseudo_data, save_path)
def save_fewclue_prediction(save_path, task_name, label_preds, verbalizer, labels):
"""
Extract predicted labels and save as the format required by FewCLUE.
"""
num_labels = len(labels)
preds = paddle.to_tensor(label_preds.predictions)
preds = paddle.nn.functional.softmax(preds, axis=1)[:, 1]
preds = preds.reshape([-1, num_labels])
if task_name == "chid":
batch_size = preds.shape[0]
preds = paddle.nn.functional.softmax(preds, axis=1)[:, 1]
preds = preds.reshape([batch_size // 7, 7])
preds = paddle.nn.functional.softmax(preds, axis=1).numpy()
preds = np.argmax(preds, axis=1)
test_ds = load_dataset("fewclue", name=task_name, splits="test")
ret_list = []
maps = LABEL_TO_STANDARD.get(task_name, None)
for idx, example in enumerate(test_ds):
uid = example.get("id", idx)
if task_name in ["bustm", "csl"]:
ret_list.append({"id": uid, "label": str(preds[idx])})
elif task_name == "chid":
ret_list.append({"id": uid, "answer": preds[idx]})
elif task_name in ["cluewsc", "eprstmt", "ocnli", "csldcp"]:
ret_list.append({"id": uid, "label": labels[preds[idx]]})
elif task_name in ["iflytek", "tnews"]:
ret_list.append({"id": uid, "label": str(maps[labels[preds[idx]]])})
save_file = task_name if task_name in ["bustm", "csldcp", "eprstmt"] else task_name + "f"
save_data(ret_list, save_path, save_file + "_predict.json")
def save_data(data, save_path, save_file=None):
if save_file is not None:
pathlib.Path(save_path).mkdir(parents=True, exist_ok=True)
save_path = os.path.join(save_path, save_file)
with open(save_path, "w") as fp:
for example in data:
fp.write(json.dumps(example, ensure_ascii=False) + "\n")