Replies: 1 comment
-
根据你的描述以及日志信息,问题可能出在以下几个方面: 1. 预训练模型权重未完全加载
解决方法:
2. 数据处理问题
解决方法:
3. 版本兼容性问题
解决方法:
4. 训练过程收敛缓慢
解决方法:
5. 其他建议
总结按照以下步骤逐步排查问题:
希望这些建议能帮你解决问题! Response generated by feifei-bot | chatgpt-4o-latest |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
我使用检测模型是ch_PP-OCRv4_det_server_train同样使用官方推荐的配置文件ch_PP-OCRv4_det_teacher.yml。训练的时候提示如下错误
[2024/12/22 16:09:35] ppocr WARNING: The pretrained params backbone.last_conv.weight not in model
[2024/12/22 16:09:35] ppocr WARNING: The pretrained params backbone.fc.weight not in model
[2024/12/22 16:09:35] ppocr WARNING: The pretrained params backbone.fc.bias not in model
paddlepalddle使用的是2.6版本cuda12。paddleocr模块是2.8。未加载预训练模型,目前不知道原有出在哪里。也发现很多有同样问题的人,都没有解决。有没有大佬懂得求指教感激不尽。
以下是我得配置文件
Global:
debug: false
use_gpu: true
epoch_num: &epoch_num 500 #
log_smooth_window: 20 #
print_batch_step: 100
save_model_dir: ./output/ch_PP-OCRv4 #
save_epoch_step: 50 #
eval_batch_step: 25 #
cal_metric_during_train: false
checkpoints:
pretrained_model: ./pretrain_models/ch_PP-OCRv4_det_server_train/best_accuracy.pdparams
save_inference_dir: null
use_visualdl: false
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./checkpoints/det_db/predicts_db.txt
d2s_train_image_shape: [3, 640, 640]
distributed: true
Architecture:
model_type: det
algorithm: DB
Transform: null
Backbone:
name: PPHGNet_small
det: True
Neck:
name: LKPAN
out_channels: 256
intracl: true
Head:
name: PFHeadLocal
k: 50
mode: "large"
fix_nan: True
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001 #(8*8c)
warmup_epoch: 2
regularizer:
name: L2
factor: 1e-6
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ #
label_file_list:
- ./train_data/det/train.txt #
ratio_list: [1.0]
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- CopyPaste: null
- IaaAugment:
augmenter_args:
- type: Fliplr
args:
p: 0.5
- type: Affine
args:
rotate:
- -10
- 10
- type: Resize
args:
size:
- 0.5
- 3
- EastRandomCropData:
size:
- 640
- 640
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
total_epoch: *epoch_num
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
total_epoch: *epoch_num
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- threshold_map
- threshold_mask
- shrink_map
- shrink_mask
loader:
shuffle: true
drop_last: false
batch_size_per_card: 8
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ #
label_file_list:
- ./train_data/det/val.txt #
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- DetResizeForTest:
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- shape
- polys
- ignore_tags
loader:
shuffle: false
drop_last: false
batch_size_per_card: 1
num_workers: 2
profiler_options: null
Beta Was this translation helpful? Give feedback.
All reactions