-
Notifications
You must be signed in to change notification settings - Fork 645
/
Copy pathstatic_model.py
85 lines (73 loc) · 3.22 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from net import DSSMLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.trigram_d = self.config.get("hyper_parameters.trigram_d")
self.neg_num = self.config.get("hyper_parameters.neg_num")
self.hidden_layers = self.config.get("hyper_parameters.fc_sizes")
self.hidden_acts = self.config.get("hyper_parameters.fc_acts")
self.learning_rate = self.config.get("hyper_parameters.learning_rate")
self.slice_end = self.config.get("hyper_parameters.slice_end")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
query = paddle.static.data(
name="query", shape=[-1, self.trigram_d], dtype='float32')
self.prune_feed_vars = [query]
doc_pos = paddle.static.data(
name="doc_pos", shape=[-1, self.trigram_d], dtype='float32')
if is_infer:
return [query, doc_pos]
doc_negs = [
paddle.static.data(
name="doc_neg_" + str(i),
shape=[-1, self.trigram_d],
dtype="float32") for i in range(self.neg_num)
]
feeds_list = [query, doc_pos] + doc_negs
return feeds_list
def net(self, input, is_infer=False):
dssm_model = DSSMLayer(self.trigram_d, self.neg_num, self.slice_end,
self.hidden_layers, self.hidden_acts)
R_Q_D_p, hit_prob = dssm_model.forward(input, is_infer)
self.inference_target_var = R_Q_D_p
self.prune_target_var = dssm_model.query_fc
self.train_dump_fields = [dssm_model.query_fc, R_Q_D_p]
self.train_dump_params = dssm_model.params
self.infer_dump_fields = [dssm_model.doc_pos_fc]
if is_infer:
fetch_dict = {'query_doc_sim': R_Q_D_p}
return fetch_dict
loss = -paddle.sum(paddle.log(hit_prob), axis=-1)
avg_cost = paddle.mean(x=loss)
# print(avg_cost)
self._cost = avg_cost
fetch_dict = {'Loss': avg_cost}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)