-
Notifications
You must be signed in to change notification settings - Fork 646
/
Copy pathnet.py
65 lines (57 loc) · 2.46 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle.nn.functional as F
class DeepRecLayer(nn.Layer):
def __init__(self, layer_sizes, dp_drop_prob=0.0):
super(DeepRecLayer, self).__init__()
self.layer_sizes = layer_sizes
self.number_of_layers = len(layer_sizes) - 1
self._dp_drop_prob = dp_drop_prob
if dp_drop_prob > 0:
self.drop = nn.Dropout(dp_drop_prob)
encoder_layer_sizes = layer_sizes
self._param_encoder = []
for i in range(self.number_of_layers):
linear = self.add_sublayer(
name='encoder_' + str(i),
sublayer=nn.Linear(
encoder_layer_sizes[i],
encoder_layer_sizes[i + 1],
weight_attr=nn.initializer.XavierUniform(),
bias_attr=nn.initializer.Constant(value=0.0),
name='encoder_' + str(i)))
self._param_encoder.append(linear)
decoder_layer_sizes = list(reversed(layer_sizes))
self._param_decoder = []
for i in range(self.number_of_layers):
linear = self.add_sublayer(
name='decoder_' + str(i),
sublayer=nn.Linear(
decoder_layer_sizes[i],
decoder_layer_sizes[i + 1],
weight_attr=nn.initializer.XavierUniform(),
bias_attr=nn.initializer.Constant(value=0.0),
name='decoder_' + str(i)))
self._param_decoder.append(linear)
def forward(self, x):
for i in range(self.number_of_layers):
x = self._param_encoder[i](x)
x = F.selu(x)
if self._dp_drop_prob > 0: # apply dropout only on code layer
x = self.drop(x)
for i in range(self.number_of_layers):
x = self._param_decoder[i](x)
x = F.selu(x)
return x