Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

使用paddleslim模型动态剪枝后,如何保存模型呢 #1861

Open
MiXianif opened this issue Mar 14, 2024 · 0 comments
Open

使用paddleslim模型动态剪枝后,如何保存模型呢 #1861

MiXianif opened this issue Mar 14, 2024 · 0 comments
Assignees

Comments

@MiXianif
Copy link

我是用paddle.save(net.state_dict(),path)来进行保存,发现剪枝后模型比剪枝前的模型都要大,但是通过paddle.summary(net, (1, 3, 32, 32))查看模型确实变小了

paddlepaddle=2.6.0
paddleslim=2.6.0

以下是我的代码:
from future import print_function
import paddle
from paddle.vision.models import mobilenet_v1
net = mobilenet_v1(pretrained=False)
paddle.summary(net, (1, 3, 32, 32))

import paddle.vision.transforms as T
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.Cifar10(mode="train", backend="cv2",transform=transform)
val_dataset = paddle.vision.datasets.Cifar10(mode="test", backend="cv2",transform=transform)

print(f'train samples count: {len(train_dataset)}')

print(f'val samples count: {len(val_dataset)}')

for data in train_dataset:

print(f'image shape: {data[0].shape}; label: {data[1]}')

break

from paddle.static import InputSpec as Input
optimizer = paddle.optimizer.Momentum(
learning_rate=0.1,
parameters=net.parameters())

inputs = [Input([None, 3, 32, 32], 'float32', name='image')]
labels = [Input([None, 1], 'int64', name='label')]

model = paddle.Model(net, inputs, labels)

model.prepare(
optimizer,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy(topk=(1, 5)))

model.fit(train_dataset, epochs=2, batch_size=128, verbose=1)
result = model.evaluate(val_dataset,batch_size=128, log_freq=10, verbose=0)
paddle.save(net.state_dict(), "./runs/FPGMFilterPruner/model.pdparams")

from paddleslim.dygraph import L1NormFilterPruner, FPGMFilterPruner
pruner = FPGMFilterPruner(net, [1, 3, 32, 32], opt=optimizer)

def eval_fn():
result = model.evaluate(
val_dataset,
batch_size=128, verbose=0)
return result['acc_top1']

pruner.sensitive(eval_func=eval_fn, sen_file="./sen.pickle")

from paddleslim.analysis import dygraph_flops
flops = dygraph_flops(net, [1, 3, 32, 32])
print(f"FLOPs before pruning: {flops}")

plan = pruner.sensitive_prune(0.4, skip_vars=["conv2d_26.w"])
paddle.save(net.state_dict(), "./runs/FPGMFilterPruner/pruning.pdparams")

flops = dygraph_flops(net, [1, 3, 32, 32])
print(f"FLOPs after pruning: {flops}")
print(f"Pruned FLOPs: {round(plan.pruned_flops*100, 2)}%")

result = model.evaluate(val_dataset,batch_size=128, log_freq=10, verbose=0)
print(f"before fine-tuning: {result}")

model.fit(train_dataset, epochs=2, batch_size=128, verbose=1)
result = model.evaluate(val_dataset,batch_size=128, log_freq=10, verbose=0)
print(f"after fine-tuning: {result}")
paddle.save(net.state_dict(), "./runs/FPGMFilterPruner/pruned.pdparams")

paddle.summary(net, (1, 3, 32, 32))

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants