This repository has been archived by the owner on Sep 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathsynthesize.py
95 lines (79 loc) · 3.11 KB
/
synthesize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import paddle
import numpy as np
from matplotlib import pyplot as plt
from parakeet.frontend import EnglishCharacter
from parakeet.models.tacotron2 import Tacotron2
from parakeet.utils import display
from config import get_cfg_defaults
def main(config, args):
paddle.set_device(args.device)
# model
frontend = EnglishCharacter()
model = Tacotron2.from_pretrained(config, args.checkpoint_path)
model.eval()
# inputs
input_path = Path(args.input).expanduser()
with open(input_path, "rt") as f:
sentences = f.readlines()
if args.output is None:
output_dir = input_path.parent / "synthesis"
else:
output_dir = Path(args.output).expanduser()
output_dir.mkdir(exist_ok=True)
for i, sentence in enumerate(sentences):
sentence = paddle.to_tensor(frontend(sentence)).unsqueeze(0)
outputs = model.infer(sentence)
mel_output = outputs["mel_outputs_postnet"][0].numpy().T
alignment = outputs["alignments"][0].numpy().T
np.save(str(output_dir / f"sentence_{i}"), mel_output)
display.plot_alignment(alignment)
plt.savefig(str(output_dir / f"sentence_{i}.png"))
if args.verbose:
print("spectrogram saved at {}".format(output_dir /
f"sentence_{i}.npy"))
if __name__ == "__main__":
config = get_cfg_defaults()
parser = argparse.ArgumentParser(
description="generate mel spectrogram with TransformerTTS.")
parser.add_argument(
"--config",
type=str,
metavar="FILE",
help="extra config to overwrite the default config")
parser.add_argument(
"--checkpoint_path", type=str, help="path of the checkpoint to load.")
parser.add_argument("--input", type=str, help="path of the text sentences")
parser.add_argument("--output", type=str, help="path to save outputs")
parser.add_argument(
"--device", type=str, default="cpu", help="device type to use.")
parser.add_argument(
"--opts",
nargs=argparse.REMAINDER,
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print msg")
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)