This repository has been archived by the owner on Sep 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathtrain.py
218 lines (188 loc) · 8.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from collections import defaultdict
import numpy as np
import paddle
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle import distributed as dist
from parakeet.data import dataset
from parakeet.training.cli import default_argument_parser
from parakeet.training.experiment import ExperimentBase
from parakeet.utils import display, mp_tools
from parakeet.models.tacotron2 import Tacotron2, Tacotron2Loss
from config import get_cfg_defaults
from ljspeech import LJSpeech, LJSpeechCollector
class Experiment(ExperimentBase):
def compute_losses(self, inputs, outputs):
texts, mel_targets, plens, slens = inputs
mel_outputs = outputs["mel_output"]
mel_outputs_postnet = outputs["mel_outputs_postnet"]
attention_weight = outputs["alignments"]
if self.config.model.use_stop_token:
stop_logits = outputs["stop_logits"]
else:
stop_logits = None
losses = self.criterion(mel_outputs, mel_outputs_postnet, mel_targets,
attention_weight, slens, plens, stop_logits)
return losses
def train_batch(self):
start = time.time()
batch = self.read_batch()
data_loader_time = time.time() - start
self.optimizer.clear_grad()
self.model.train()
texts, mels, text_lens, output_lens = batch
outputs = self.model(texts, text_lens, mels, output_lens)
losses = self.compute_losses(batch, outputs)
loss = losses["loss"]
loss.backward()
self.optimizer.step()
iteration_time = time.time() - start
losses_np = {k: float(v) for k, v in losses.items()}
# logging
msg = "Rank: {}, ".format(dist.get_rank())
msg += "step: {}, ".format(self.iteration)
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
iteration_time)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
self.logger.info(msg)
if dist.get_rank() == 0:
for k, v in losses_np.items():
self.visualizer.add_scalar(f"train_loss/{k}", v, self.iteration)
@mp_tools.rank_zero_only
@paddle.no_grad()
def valid(self):
valid_losses = defaultdict(list)
for i, batch in enumerate(self.valid_loader):
texts, mels, text_lens, output_lens = batch
outputs = self.model(texts, text_lens, mels, output_lens)
losses = self.compute_losses(batch, outputs)
for k, v in losses.items():
valid_losses[k].append(float(v))
attention_weights = outputs["alignments"]
self.visualizer.add_figure(
f"valid_sentence_{i}_alignments",
display.plot_alignment(attention_weights[0].numpy().T),
self.iteration)
self.visualizer.add_figure(
f"valid_sentence_{i}_target_spectrogram",
display.plot_spectrogram(mels[0].numpy().T), self.iteration)
self.visualizer.add_figure(
f"valid_sentence_{i}_predicted_spectrogram",
display.plot_spectrogram(outputs['mel_outputs_postnet'][0]
.numpy().T), self.iteration)
# write visual log
valid_losses = {k: np.mean(v) for k, v in valid_losses.items()}
# logging
msg = "Valid: "
msg += "step: {}, ".format(self.iteration)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_losses.items())
self.logger.info(msg)
for k, v in valid_losses.items():
self.visualizer.add_scalar(f"valid/{k}", v, self.iteration)
def setup_model(self):
config = self.config
model = Tacotron2(
vocab_size=config.model.vocab_size,
d_mels=config.data.n_mels,
d_encoder=config.model.d_encoder,
encoder_conv_layers=config.model.encoder_conv_layers,
encoder_kernel_size=config.model.encoder_kernel_size,
d_prenet=config.model.d_prenet,
d_attention_rnn=config.model.d_attention_rnn,
d_decoder_rnn=config.model.d_decoder_rnn,
attention_filters=config.model.attention_filters,
attention_kernel_size=config.model.attention_kernel_size,
d_attention=config.model.d_attention,
d_postnet=config.model.d_postnet,
postnet_kernel_size=config.model.postnet_kernel_size,
postnet_conv_layers=config.model.postnet_conv_layers,
reduction_factor=config.model.reduction_factor,
p_encoder_dropout=config.model.p_encoder_dropout,
p_prenet_dropout=config.model.p_prenet_dropout,
p_attention_dropout=config.model.p_attention_dropout,
p_decoder_dropout=config.model.p_decoder_dropout,
p_postnet_dropout=config.model.p_postnet_dropout,
use_stop_token=config.model.use_stop_token)
if self.parallel:
model = paddle.DataParallel(model)
grad_clip = paddle.nn.ClipGradByGlobalNorm(
config.training.grad_clip_thresh)
optimizer = paddle.optimizer.Adam(
learning_rate=config.training.lr,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
grad_clip=grad_clip)
criterion = Tacotron2Loss(
use_stop_token_loss=config.model.use_stop_token,
use_guided_attention_loss=config.model.use_guided_attention_loss,
sigma=config.model.guided_attention_loss_sigma)
self.model = model
self.optimizer = optimizer
self.criterion = criterion
def setup_dataloader(self):
args = self.args
config = self.config
ljspeech_dataset = LJSpeech(args.data)
valid_set, train_set = dataset.split(ljspeech_dataset,
config.data.valid_size)
batch_fn = LJSpeechCollector(padding_idx=config.data.padding_idx)
if not self.parallel:
self.train_loader = DataLoader(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True,
collate_fn=batch_fn)
else:
sampler = DistributedBatchSampler(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True)
self.train_loader = DataLoader(
train_set, batch_sampler=sampler, collate_fn=batch_fn)
self.valid_loader = DataLoader(
valid_set,
batch_size=config.data.batch_size,
shuffle=False,
drop_last=False,
collate_fn=batch_fn)
def main_sp(config, args):
exp = Experiment(config, args)
exp.setup()
exp.resume_or_load()
exp.run()
def main(config, args):
if args.nprocs > 1 and args.device == "gpu":
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
if __name__ == "__main__":
config = get_cfg_defaults()
parser = default_argument_parser()
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)