Replies: 4 comments 6 replies
-
CosXL should work as is suported |
Beta Was this translation helpful? Give feedback.
-
Not works, this is the message, thks venv "O:\reforge\stable-diffusion-webui-reForge\venv\Scripts\Python.exe" [sdwi2iextender] Developper warning: *** module 'lib_controlnet.external_code' has no attribute 'get_models' *** First weight key found: conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight To create a public link, set Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8 ', 128, 8, ['left', 'right', 'up', 'down'], 1, 0.05, 128, 4, 0, ['left', 'right', 'up', 'down'], False, False, 'positive', 'comma', 0, False, False, 'start', '', 'Will upscale the image by the selected scale factor; use width and height sliders to set tile size ', 64, 0, 2, 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {}Traceback (most recent call last): File "O:\reforge\stable-diffusion-webui-reForge\modules\call_queue.py", line 74, in f res = list(func(*args, **kwargs)) File "O:\reforge\stable-diffusion-webui-reForge\modules\call_queue.py", line 53, in f res = func(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\modules\call_queue.py", line 37, in f res = func(*args, **kwargs) File "", line 234, in img2img File "O:\reforge\stable-diffusion-webui-reForge\modules\processing.py", line 815, in process_images res = process_images_inner(p) File "O:\reforge\stable-diffusion-webui-reForge\modules\processing.py", line 988, in process_images_inner samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) File "O:\reforge\stable-diffusion-webui-reForge\modules\processing.py", line 1816, in sample samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) File "O:\reforge\stable-diffusion-webui-reForge\modules\sd_samplers_kdiffusion.py", line 182, in sample_img2img samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "O:\reforge\stable-diffusion-webui-reForge\extensions\sd-webui-model-patcher\scripts\model_patcher_hook.py", line 100, in wrapped_sample_func return func(self, *args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\modules\sd_samplers_common.py", line 274, in launch_sampling return func() File "O:\reforge\stable-diffusion-webui-reForge\modules\sd_samplers_kdiffusion.py", line 182, in samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\repositories\k-diffusion\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m denoised = model(x, sigmas[i] * s_in, **extra_args) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self.call_impl(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in call_impl return forward_call(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\modules\sd_samplers_cfg_denoiser.py", line 369, in forward denoised = sampling_function(model, x, sigma, uncond_patched, cond_patched, cond_scale, model_options, seed) File "O:\reforge\stable-diffusion-webui-reForge\ldm_patched\modules\samplers.py", line 290, in sampling_function cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options) File "O:\reforge\stable-diffusion-webui-reForge\ldm_patched\modules\samplers.py", line 259, in calc_cond_uncond_batch output = model.apply_model(input_x, timestep, **c).chunk(batch_chunks) File "O:\reforge\stable-diffusion-webui-reForge\ldm_patched\modules\model_base.py", line 96, in apply_model model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\ldm_patched\ldm\modules\diffusionmodules\openaimodel.py", line 886, in forward h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) File "O:\reforge\stable-diffusion-webui-reForge\ldm_patched\ldm\modules\diffusionmodules\openaimodel.py", line 61, in forward_timestep_embed x = layer(x) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\ldm_patched\modules\ops.py", line 114, in forward return super().forward(*args, **kwargs) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias) File "O:\reforge\stable-diffusion-webui-reForge\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Given groups=1, weight of size [320, 8, 3, 3], expected input[2, 4, 64, 64] to have 8 channels, but got 4 channels instead HTTP Request: POST http://127.0.0.1:7860/api/predict "HTTP/1.1 200 OK" |
Beta Was this translation helpful? Give feedback.
-
ok, no problem, if you need more information or testing tell me
Thanks for your work
Missatge de Panchovix ***@***.***> del dia dt., 16 de jul.
2024 a les 8:31:
… I haven't tinkered with CosXL yet, sorry.
For that git issue, do
git fetch remote
git checkout main
And it should work.
dev_upstream branch maybe has mroe CosXL compability, but I haven't tested.
—
Reply to this email directly, view it on GitHub
<#14 (reply in thread)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ALR2GITFVLRA5L5CA6OAQW3ZMS42TAVCNFSM6AAAAABK2U7FCSVHI2DSMVQWIX3LMV43URDJONRXK43TNFXW4Q3PNVWWK3TUHMYTAMBVHA2TAOI>
.
You are receiving this because you authored the thread.Message ID:
<Panchovix/stable-diffusion-webui-reForge/repo-discussions/14/comments/10058509
@github.com>
|
Beta Was this translation helpful? Give feedback.
-
It's solved the problem? Thanks |
Beta Was this translation helpful? Give feedback.
-
Could you add COSXL support?
Thanks
Beta Was this translation helpful? Give feedback.
All reactions