-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreview.Rmd
352 lines (301 loc) · 14.9 KB
/
preview.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
---
title: "Genome Doubling Results"
output:
pdf_document: default
html_notebook: default
---
```{r,warning=FALSE,include=TRUE, include=TRUE}
rm(list=ls())
# parent_dir = "./ALL_CALLS"
parent_dir = "./CASCADE/CNV"
all_files = list.files(parent_dir)
# all_files = all_files
library(ggplot2)
library(gridExtra)
# a funciton to set the number of xticks when using ggplot
number_ticks <- function(n) {function(limits) pretty(limits, n)}
load_centromeres <- function(){
file = "centromeres.txt"
BASE = "."
centromeres <- read.table(paste(BASE, file,sep=''), sep="\t", header=FALSE)
colnames(centromeres) <- c("chr","x")
centromeres$x <- as.numeric(centromeres$x)*10^6
return(centromeres)
}
centromeres <- load_centromeres()
colnames(centromeres) <- c("chromosome","x")
get_CN_track <- function(mat,xmax){
g <- ggplot(mat) +
geom_segment(aes(x = start.pos, y = A, xend = end.pos, yend = A,col=chromosome),size=2)+
geom_segment(aes(x = start.pos, y = B, xend = end.pos, yend = B),size=1)+
geom_vline(data=centromeres,aes(xintercept=x,col=chromosome))+
facet_grid(.~chromosome,scales = "free_x", space = "free")+
scale_x_continuous(breaks=seq(0,3*10^9,50*10^6))+
theme_bw()+
theme(axis.text.x = element_blank(),legend.position="none") + #,legend.background = element_rect(fill = "white"),panel.spacing = unit(, "lines")
xlab("50 MB ticks")+
scale_y_continuous(breaks=number_ticks(20))+
ylab("major/minor CN")+ggtitle("CN track") + coord_cartesian(ylim=c(0,xmax))
return(g)
}
likelihoodGDany <- function(alpha,simpledata,half = FALSE,FA=TRUE,maxN=6,maxM=3){
likelihoods = data.frame('N'=as.numeric(),'M'=as.numeric(),'likelihood'=as.numeric())
mylikelihood <- lapply(simpledata[1,c("A","B")],function(x) getmylikelihood(x,0,-1,FA=F))
mylikelihood_nogd <- lapply(simpledata[1,c("A","B")],function(x) getmylikelihood(x,0,-1,FA=F))
for(N in 0:maxN){
lowest = -1
if(half) lowest = 0
for(M in lowest:maxM){
# should allow a setting to free this up:
a = alpha
b = 1-2*alpha
c = alpha
N = as.character(N)
M = as.character(M)
for(i in 1:nrow(simpledata)){
if(sum(is.na(simpledata[i,c("A","B")]))>0) next
if(half){
if(min(simpledata[i,c("A","B")]) == 0){
mylikelihood$A = getmylikelihood(min(simpledata[i,c("A","B")]),N,M,FA=F)
mylikelihood$B = getmylikelihood(max(simpledata[i,c("A","B")]),N,M,FA=FA)
mylikelihood_nogd$A = getmylikelihood(min(simpledata[i,c("A","B")]),N,"-1",FA=F)
mylikelihood_nogd$B = getmylikelihood(max(simpledata[i,c("A","B")]),N,"-1",FA=FA)
} else{
mylikelihood = lapply(simpledata[i,c("A","B")],function(x) getmylikelihood(x,N,M,FA=F))
mylikelihood_nogd = lapply(simpledata[i,c("A","B")],function(x) getmylikelihood(x,N,"-1",FA=F))
}
} else{
if(min(simpledata[i,c("A","B")]) == 0){
mylikelihood$A = getmylikelihood(min(simpledata[i,c("A","B")]),N,M,FA=F)
mylikelihood$B = getmylikelihood(max(simpledata[i,c("A","B")]),N,M,FA=FA)
mylikelihood_nogd = mylikelihood
} else{
mylikelihood = lapply(simpledata[i,c("A","B")],function(x) getmylikelihood(x,N,M,FA=F))
mylikelihood_nogd = mylikelihood
}
}
if(is.null(mylikelihood$A) | is.null(mylikelihood$B) | is.null(mylikelihood_nogd$A) | is.null(mylikelihood_nogd$B)){
#print(paste("FAILED",N,M,alpha,simpledata[i,]))
new = c(-Inf,-Inf,-Inf,-Inf)
if(i==1) new_likelihood = new
if(i>1) new_likelihood = rbind(new_likelihood,new)
next
}
val = sapply(mylikelihood,function(x) log(as.numeric(eval(parse(text=x)))))
val_nogd = sapply(mylikelihood_nogd,function(x) log(as.numeric(eval(parse(text=x)))))
if(i==1) new_likelihood = c(val,val_nogd)
if(i>1) new_likelihood = rbind(new_likelihood,c(val,val_nogd))
}
# ps = new_likelihood[,1]*new_likelihood[,4]/(new_likelihood[,3]*new_likelihood[,2] +new_likelihood[,4]*new_likelihood[,1])
# new_likelihood = ps*new_likelihood[,1]*new_likelihood[,4] + (1-ps)*new_likelihood[,2]*new_likelihood[,3]
#ps = new_likelihood[,1]*new_likelihood[,4]/(new_likelihood[,2]*new_likelihood[,3]+new_likelihood[,1]*new_likelihood[,4])
# print(new_likelihood)
#likelihood = sum(log(new_likelihood[,c(1,4)])*ps)+sum(log((1-ps)*new_likelihood[,c(2,3)]))
if(half){
optA = new_likelihood[,1]+new_likelihood[,4]
optB = new_likelihood[,2]+new_likelihood[,3]
best = optB
best[which(optA > optB)] = optA[which(optA > optB)]
} else{
best = new_likelihood[,1]+new_likelihood[,2]
}
likelihood = sum(best)
likelihoods <- rbind(likelihoods,data.frame('N'=N,'M'=M,'likelihood'=likelihood))
}
}
# print(likelihoods)
LIKES = matrix(rep(NA),nrow=(maxN+1),ncol=(maxM+2))
for(N in 0:(maxN)){
for(M in -1:maxM){
temp = likelihoods[which(likelihoods$N == N),]
temp = temp[which(temp$M == M),]
if(nrow(temp)>0) {
LIKES[N+1,M+2] = as.numeric(temp[,"likelihood"])
}
}
}
# print(LIKES)
return(LIKES)
}
getmylikelihood <- function(x,N,M,FA){
if(FA){
FA="True"
} else{
FA="False"
}
dir = paste("./GD/terms/BTrue_FA",FA,"_N",as.character(N),"_M",as.character(M),"/",sep="")
file = paste("c",as.character(x),"_12_dec",sep="")
filename = paste(dir,file,sep="")
if(!file.exists(filename)){
# print(paste("ERROR with ",filename))
return()
}
mytext = try(read.table(filename,sep=","))
mytext = (as.character(mytext[1,1]))
}
outputdf = data.frame("name"=as.character(),"lmax"=as.numeric(),"alphamax"=as.numeric(),
"indexmaxN"=as.numeric(),"indexmaxM"=as.numeric(),
"lmax_half"=as.numeric(),"alphamax_half"=as.numeric(),
"indexmaxN_half"=as.numeric(),"indexmaxM_half"=as.numeric(),
"lmax_nogd"=as.numeric(),"alphamax_nogd"=as.numeric(),"indexmax_nogd"=as.numeric())
i=0
for(file in all_files){
try({
print(file)
i=i+1
print(i)
data = try(read.delim(paste(parent_dir,file,sep="/")))
if(is.null(nrow(data))){
print("Could not load this file")
next
}
chr_levels = as.character(sort(unique(as.numeric(data$chromosome))))
chr_levels = c(chr_levels[1:(length(chr_levels)-1)],"X")
#assumes that the only non numeric chromosome is "X"
data$chromosome = factor(data$chromosome,levels = chr_levels)
# now we want to make a simplified version of the data where every chromosomal arm is independent!
data$A <- data$Minor.Copy.Number
data$B <- data$Major.Copy.Number
data$start.pos <- data$start
data$end.pos <- data$end
simple_data <- data[0,c("chromosome","A","B","start.pos","end.pos")]
for(chr in chr_levels){
chr_data = data[which(data$chromosome == chr),]
chr_data_p = chr_data[which(chr_data$end.pos < centromeres[which(centromeres$chromosome == chr),"x"]),]
chr_data_q = chr_data[which(chr_data$start.pos > centromeres[which(centromeres$chromosome == chr),"x"]),]
chr_data_middle = chr_data[which(chr_data$start.pos < centromeres[which(centromeres$chromosome == chr),"x"] & chr_data$end.pos > centromeres[which(centromeres$chromosome == chr),"x"]),]
if(nrow(chr_data_middle)>0){
# that is there is a segment that overlaps the centromere:
chr_data_middle_p = chr_data_middle
chr_data_middle_q = chr_data_middle
chr_data_middle_p$end.pos = centromeres[which(as.character(centromeres$chromosome) == as.character(chr)),"x"]
chr_data_middle_q$start.pos = centromeres[which(centromeres$chromosome == chr),"x"]
chr_data_p = rbind(chr_data_p,chr_data_middle_p)
chr_data_q = rbind(chr_data_q,chr_data_middle_q)
}
# calculate the summary statistics for each arm:
meanAp = sum((chr_data_p$end -chr_data_p$start)*chr_data_p$A) / sum(chr_data_p$end -chr_data_p$start)
meanBp = sum((chr_data_p$end -chr_data_p$start)*chr_data_p$B) / sum(chr_data_p$end -chr_data_p$start)
startp = min(chr_data_p$start.pos,na.rm=TRUE)
endp = max(chr_data_p$end.pos,na.rm=TRUE)
meanAq = sum((chr_data_q$end -chr_data_q$start)*chr_data_q$A) / sum(chr_data_q$end -chr_data_q$start)
meanBq = sum((chr_data_q$end -chr_data_q$start)*chr_data_q$B) / sum(chr_data_q$end -chr_data_q$start)
startq = min(chr_data_q$start.pos,na.rm=TRUE)
endq = max(chr_data_q$end.pos,na.rm=TRUE)
# put the learnt information in a data frame:
simple_data <- rbind(simple_data,data.frame("chromosome" = chr,"A" = round(meanAp,0),"B" = round(meanBp,0),"start.pos" = startp,"end.pos" = endp))
simple_data <- rbind(simple_data,data.frame("chromosome" = chr,"A" = round(meanAq,0),"B" = round(meanBq,0),"start.pos" = startq,"end.pos" = endq))
}
g1 <- get_CN_track(data,max(data[,c("A","B")],na.rm=TRUE))
simple_data <- simple_data[which(!is.nan(simple_data$A)),] # what is the purpose of this line?
g2 <- get_CN_track(simple_data,max(simple_data[,c("A","B")],na.rm=TRUE))
print(grid.arrange(g1,g2))
# simple_data$zero = apply(simple_data[,c("A","B")],1,min)
#
# zero_data = simple_data[which(simple_data$zero == 0),]
# non_zero_data = simple_data[which(simple_data$zero > 0),]
#
# X = c(non_zero_data[,"A"],non_zero_data[,"B"],apply(zero_data[,c("A","B")],1,min))
#
# sizeX = length(X)
# X <- table(X) #[which(X>0)])
# X <- X/sum(X)
X <- table(c(simple_data[,c("A","B")])) #[which(X>0)])
X <- X/sum(X)
#
# # Xzero are the ones that are in their final state protected from zero.
# Xzero = apply(zero_data[,c("A","B")],1,max)
# sizeXzero = length(Xzero)
# Xzero <- table(X) #[which(X>0)])
# Xzero <- X/sum(Xzero)
alphamax_nogd=0
lmax_nogd=-Inf
alphamax=0
lmax=-Inf
alphamax_half=0
lmax_half=-Inf
for(alpha in 1:10/50){
# likes = likelihoodGD(alpha,X,sizeX,Xzero,sizeXzero)
# likes_half = likelihoodhalfGD(alpha,simple_data)
likes = likelihoodGDany(alpha,simple_data,half=F,FA=F)
likes_half = likelihoodGDany(alpha,simple_data,half=T,FA=F)
l = max(likes[,2:ncol(likes)],na.rm=TRUE)
l_nogd = max(likes[,1],na.rm=TRUE)
l_half = max(likes_half,na.rm=TRUE)
if(l > lmax){
lmax = l
alphamax=alpha
indexmax = which(likes == max(likes[,2:ncol(likes)],na.rm=TRUE), arr.ind = TRUE)
# the first row is for no GD....
}
if(l_half > lmax_half){
lmax_half = l_half
alphamax_half=alpha
indexmax_half = which(likes_half == max(likes_half,na.rm=TRUE), arr.ind = TRUE)
}
if(l_nogd > lmax_nogd){
lmax_nogd = l_nogd
alphamax_nogd=alpha
indexmax_nogd = which(likes == max(likes[,1],na.rm=TRUE), arr.ind = TRUE)
}
print(c(lmax,alphamax,indexmax[1]-1,indexmax[2]-2))
print(c(lmax_half,alphamax_half,indexmax_half[1]-1,indexmax_half[2]-2))
print(c(lmax_nogd,alphamax_nogd,indexmax_nogd[1]-1))
print(likes)
print(likes_half)
print(alpha)
print(X)
}
print(c(lmax,alphamax,indexmax[1]-1,indexmax[2]-1))
print(c(lmax_half,alphamax_half,indexmax_half[1]-1,indexmax_half[2]-2))
print(c(lmax_nogd,alphamax_nogd,indexmax_nogd[1]-1))
print(X)
outputdf = rbind(outputdf,data.frame("name"=file,"lmax"=lmax,"alphamax"=alphamax,
"indexmaxN"=indexmax[1]-1,"indexmaxM"=indexmax[2]-2,
"lmax_half"=lmax_half,"alphamax_half"=alphamax_half,
"indexmaxN_half"=indexmax_half[1]-1,"indexmaxM_half"=indexmax_half[2]-2,
"lmax_nogd"=lmax_nogd,"alphamax_nogd"=alphamax_nogd,"indexmax_nogd"=indexmax_nogd[1]-1))
if(lmax>lmax_nogd & lmax>lmax_half){
print("the GD")
} else if(lmax_half>lmax_nogd & lmax_half>lmax){
print("half the GD")
} else{
print("no GD")
}
})
}
outputdf$GD <- outputdf$lmax > outputdf$lmax_nogd & outputdf$lmax > outputdf$lmax_half
outputdf$GD_half <- outputdf$lmax_half > outputdf$lmax_nogd & outputdf$lmax_half > outputdf$lmax
outputdf$no_GD <- outputdf$lmax_nogd > outputdf$lmax & outputdf$lmax_nogd > outputdf$lmax_half
c(sum(outputdf$GD),sum(outputdf$GD_half),sum(outputdf$no_GD))
outputdf[,c("lmax","lmax_half","lmax_nogd","GD","GD_half","no_GD")]
k=3
n=92
outputdf$AIC_full <- 2*k-2*outputdf$lmax
outputdf$AIC_half <- 2*(k+23)-2*outputdf$lmax_half
outputdf$AIC_null <- 2*(k-1)-2*outputdf$lmax_nogd
outputdf$GD_AIC <- outputdf$AIC_full < outputdf$AIC_half & outputdf$AIC_full < outputdf$AIC_null
outputdf$GD_half_AIC <- outputdf$AIC_half < outputdf$AIC_full & outputdf$AIC_half < outputdf$AIC_null
outputdf$no_GD_AIC <- outputdf$AIC_null < outputdf$AIC_half & outputdf$AIC_null < outputdf$AIC_full
# AIC is founded on information theory: it offers a relative estimate of the information lost when a given model is used to represent the process that generates the data. In doing so, it deals with the trade-off between the goodness of fit of the model and the complexity of the model. We choose the candidate model that minimized the information loss.
#
# outputdf$AICc_full <- outputdf$AIC_full + 2*(k+1)*(k+2)/(n-k-2)
# outputdf$AICc_half <- outputdf$AIC_half + 2*(k+1)*(k+2)/(n-k-2)
# outputdf$AICc_null <- outputdf$AIC_null + 2*(k-1+1)*(k-1+2)/(n-k-2)
# The BIC is an asymptotic result derived under the assumptions that the data distribution is in an exponential family:
outputdf$BIC_full <- -2*outputdf$lmax +k*(log(n)-log(2*pi))
outputdf$BIC_half <- -2*outputdf$lmax_half+(k+23)*(log(n)-log(2*pi))
outputdf$BIC_null <- -2*outputdf$lmax_nogd+k*(log(n)-log(2*pi))
outputdf$GD_BIC <- outputdf$BIC_full < outputdf$BIC_half & outputdf$BIC_full < outputdf$BIC_null
outputdf$GD_half_BIC <- outputdf$BIC_half < outputdf$BIC_full & outputdf$BIC_half < outputdf$BIC_null
outputdf$no_GD_BIC <- outputdf$BIC_null < outputdf$BIC_half & outputdf$BIC_null < outputdf$BIC_full
outputdf[,c("name","AIC_full","AIC_half","AIC_null","GD_AIC","GD_half_AIC","no_GD_AIC")]
outputdf[,c("name","BIC_full","BIC_half","BIC_null","GD_BIC","GD_half_BIC","no_GD_BIC")]
outputdf[,c("name","lmax","lmax_half","lmax_nogd","GD","GD_half","no_GD")]
outputdf$bestAIC <- apply(outputdf[,c("AIC_full","AIC_null")],1,min)
outputdf$rl_GD <- exp((outputdf$bestAIC - outputdf$AIC_full)/2)
outputdf$rl_noGD <- exp((outputdf$bestAIC - outputdf$AIC_null)/2)
# As an example, suppose that there are three candidate models, whose AIC values are 100, 102, and 110. Then the second model is exp((100 − 102)/2) = 0.368 times as probable as the first model to minimize the information loss. Similarly, the third model is exp((100 − 110)/2) = 0.007 times as probable as the first model to minimize the information loss.
outputdf[,c("rl_GD","rl_noGD")]
print(outputdf)
```