-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathhpatches_dense_benchmark.py
59 lines (55 loc) · 2.89 KB
/
hpatches_dense_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from PIL import Image
import numpy as np
import os
import torch
from tqdm import tqdm
class HpatchesDenseBenchmark:
"""WARNING: HPATCHES grid goes from [0,n-1] instead of [0.5,n-0.5] :((((( hence all keypoints from our method must be subtracted with -0.5
"""
def __init__(self, dataset_path) -> None:
seqs_dir = 'hpatches-sequences-release'
self.seqs_path = os.path.join(dataset_path,seqs_dir)
self.seq_names = sorted(os.listdir(self.seqs_path))
def inside_image(self,x,w,h):
return torch.logical_and(x[:,0] < (w-1), torch.logical_and(x[:,1] < (h-1), (x > 0).prod(dim=-1)))
def benchmark(self, model, ransac_thr = 3.,hp240=False): # ransac_thr should perhaps be lower than 1...
use_cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if use_cuda else 'cpu')
aepes = []
pcks = []
for seq_idx, seq_name in tqdm(enumerate(self.seq_names), total=len(self.seq_names)):
if seq_name[0] == 'i':
continue
im1_path = os.path.join(self.seqs_path,seq_name,'1.ppm')
im1 = Image.open(im1_path)
w1,h1 = im1.size
for im_idx in range(2, 7):
im2_path = os.path.join(self.seqs_path,seq_name,f'{im_idx}.ppm')
im2 = Image.open(im2_path)
w2, h2 = im2.size
warp, cert = model.match(im2_path, im1_path)
pos_a, pos_b = model.to_pixel_coordinates(warp, h2, w2, h1, w1)
pos_a, pos_b = pos_a.double().reshape(-1,2) - 0.5, pos_b.double().reshape(-1,2) - 0.5
inv_homography = torch.from_numpy(np.loadtxt(os.path.join(self.seqs_path,seq_name, "H_1_" + str(im_idx)))).to(device)
homography = torch.linalg.inv(inv_homography)
pos_a_h = torch.cat([pos_a, torch.ones([pos_a.shape[0], 1],device=device)], dim=1)
pos_b_proj_h = (homography@pos_a_h.t()).t()
pos_b_proj = pos_b_proj_h[:, : 2] / pos_b_proj_h[:, 2 :]
mask = self.inside_image(pos_b_proj,w1,h1)
residual = pos_b - pos_b_proj
if hp240:
residual = torch.stack((residual[:,0]*(240/w2),residual[:,1]*(240/h2)),dim=1)
dist = (residual ** 2).sum(dim=1).sqrt()[mask]
aepes.append(torch.mean(dist).item())
pck1 = (dist<1.).float().mean().item()
pck3 = (dist<3.).float().mean().item()
pck5 = (dist<5.).float().mean().item()
pcks.append([pck1,pck3,pck5])
m_pcks = np.mean(np.array(pcks),axis=0)
m_aepe = np.mean(aepes)
aepe_1 = np.mean(aepes[::5])
aepe_2 = np.mean(aepes[1::5])
aepe_3 = np.mean(aepes[2::5])
aepe_4 = np.mean(aepes[3::5])
aepe_5 = np.mean(aepes[4::5])
return {'hp_aepe':m_aepe,'hp_pck1':m_pcks[0],'hp_pck3':m_pcks[1],'hp_pck5':m_pcks[2]}