forked from NVIDIA/flowtron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflowtron_logger.py
54 lines (48 loc) · 2.31 KB
/
flowtron_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
###############################################################################
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
###############################################################################
import random
import torch
from torch.utils.tensorboard import SummaryWriter
from flowtron_plotting_utils import plot_alignment_to_numpy
from flowtron_plotting_utils import plot_gate_outputs_to_numpy
class FlowtronLogger(SummaryWriter):
def __init__(self, logdir):
super(FlowtronLogger, self).__init__(logdir)
def log_training(self, loss, learning_rate, iteration):
self.add_scalar("training/loss", loss, iteration)
self.add_scalar("learning_rate", learning_rate, iteration)
def log_validation(self, loss, loss_nll, loss_gate, loss_ctc,
attns, gate_pred, gate_out, iteration):
self.add_scalar("validation/loss", loss, iteration)
self.add_scalar("validation/loss_nll", loss_nll, iteration)
self.add_scalar("validation/loss_gate", loss_gate, iteration)
self.add_scalar("validation/loss_ctc", loss_ctc, iteration)
idx = random.randint(0, len(gate_out) - 1)
for i in range(len(attns)):
self.add_image(
'attention_weights_{}'.format(i),
plot_alignment_to_numpy(attns[i][idx].data.cpu().numpy().T),
iteration,
dataformats='HWC')
if gate_pred is not None:
gate_pred = gate_pred.transpose(0, 1)[:, :, 0]
self.add_image(
"gate",
plot_gate_outputs_to_numpy(
gate_out[idx].data.cpu().numpy(),
torch.sigmoid(gate_pred[idx]).data.cpu().numpy()),
iteration, dataformats='HWC')