forked from NVIDIA/flowtron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradam.py
122 lines (97 loc) · 4.27 KB
/
radam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""RAdam
Original source taken from https://github.com/LiyuanLucasLiu/RAdam
Copyright 2019 Liyuan Liu
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import math
import torch
# pylint: disable=no-name-in-module
from torch.optim.optimizer import Optimizer
class RAdam(Optimizer):
"""RAdam optimizer"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0):
"""
Init
:param params: parameters to optimize
:param lr: learning rate
:param betas: beta
:param eps: numerical precision
:param weight_decay: weight decay weight
"""
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.buffer = [[None, None, None] for _ in range(10)]
super().__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
'RAdam does not support sparse gradients'
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = (
state['exp_avg_sq'].type_as(p_data_fp32)
)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state['step'] += 1
buffered = self.buffer[int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = (
N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = (
group['lr'] *
math.sqrt(
(1 - beta2_t) * (N_sma - 4) /
(N_sma_max - 4) * (N_sma - 2) /
N_sma * N_sma_max / (N_sma_max - 2)
) / (1 - beta1 ** state['step'])
)
else:
step_size = group['lr'] / (1 - beta1 ** state['step'])
buffered[2] = step_size
if group['weight_decay'] != 0:
p_data_fp32.add_(
-group['weight_decay'] * group['lr'], p_data_fp32
)
# more conservative since it's an approximated value
if N_sma >= 5:
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
else:
p_data_fp32.add_(-step_size, exp_avg)
p.data.copy_(p_data_fp32)
return loss