-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecorators.py
142 lines (110 loc) · 4.57 KB
/
Decorators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import timeit
from functools import lru_cache
import pickle
import csv
import pandas as pd
# Global variable for the save format
SAVE_FORMAT = 'excel'
class Tree:
def __init__(self, value):
self.value = value
self.children = []
@property
def min_value(self):
return min([self.value] + [child.min_value for child in self.children])
def fibonacci_recursive(n):
if n <= 1:
return n
else:
return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
@lru_cache(maxsize=12)
def fibonacci_cached(n):
if n <= 1:
return n
else:
return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)
def save_result_to_disk(filename, result, format='pickle'):
if format == 'pickle':
with open(filename, 'wb') as file:
pickle.dump(result, file)
elif format == 'csv' or format == 'excel':
if isinstance(result, pd.DataFrame):
result.to_csv(filename, index=False) if format == 'csv' else result.to_excel(filename, index=False)
else:
result_df = pd.DataFrame(result, columns=['value'])
result_df.to_csv(filename, index=False) if format == 'csv' else result_df.to_excel(filename, index=False)
else:
raise ValueError("Invalid format. Supported formats: 'pickle', 'csv', 'excel'.")
def load_result_from_disk(filename, format='pickle'):
if format == 'pickle':
with open(filename, 'rb') as file:
result = pickle.load(file)
elif format == 'csv':
result_df = pd.read_csv(filename)
result = result_df['value'].tolist()
elif format == 'excel':
result_df = pd.read_excel(filename)
result = result_df['value'].tolist()
else:
raise ValueError("Invalid format. Supported formats: 'pickle', 'csv', 'excel'.")
return result
def save_result(func):
def wrapper(*args, **kwargs):
filename = f'{func.__name__}_result.{"xlsx" if SAVE_FORMAT == "excel" else SAVE_FORMAT}'
# Check if the file exists
if os.path.exists(filename):
# Load the result from the file
file_result = load_result_from_disk(filename, format=SAVE_FORMAT)
if isinstance(file_result, list):
file_result = file_result[0]
# Execute the function to get the current result
result = func(*args, **kwargs)
# Compare the results
if file_result == result:
print(f"Result already exists in '{filename}'. Loaded result: {file_result}")
else:
# Overwrite the file with the new result
if isinstance(result, (list, pd.DataFrame)):
save_result_to_disk(filename, result, format=SAVE_FORMAT)
else:
save_result_to_disk(filename, [result], format=SAVE_FORMAT)
print(f"Result saved to '{filename}'.")
else:
# File does not exist, save the result
result = func(*args, **kwargs)
if isinstance(result, (list, pd.DataFrame)):
save_result_to_disk(filename, result, format=SAVE_FORMAT)
else:
save_result_to_disk(filename, [result], format=SAVE_FORMAT)
print(f"Result saved to '{filename}'.")
return result
return wrapper
def measure_time(func, *args, **kwargs):
start_time = timeit.default_timer()
result = func(*args, **kwargs)
end_time = timeit.default_timer()
elapsed_time = end_time - start_time
print(f"Function {func.__name__} took {elapsed_time:.6f} seconds to execute.")
return result
if __name__ == "__main__":
# Create an instance of the tree
root = Tree(10)
child1 = Tree(5)
child2 = Tree(8)
child3 = Tree(3)
root.children = [child1, child2, child3]
print("Minimum value in the tree:", root.min_value)
n = 16
print("\nMeasure time for Fibonacci Recursive:")
measure_time(fibonacci_recursive, n)
print("\nMeasure time for Fibonacci Cached:")
measure_time(fibonacci_cached, n)
@save_result
def fibonacci_cached_save(n):
return fibonacci_cached(n)
print("\nMeasure time for Fibonacci Cached with Save Decorator:")
measure_time(fibonacci_cached_save, n)
loaded_result = load_result_from_disk(
f'fibonacci_cached_save_result.{"xlsx" if SAVE_FORMAT == "excel" else SAVE_FORMAT}', format=SAVE_FORMAT)
print("Loaded result from disk:", loaded_result)