We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者您好! 我在运行您的源码时发现了如下问题,在eval时可以对图片中的文字进行基本定位,但是识别结果很差,和之前的issue里有一位提出的问题很类似,结果总是A,E等字符。 我以为是识别分支的预训练模型参数不佳的问题,于是只拿了三张图片单独在预训练模型上继续训练,可以看到识别的loss在下降,而且我把识别结果打印出来也是正确的。 接着我拿重新训练的模型在训练模型上进行测试,发现识别结果还是没有得到改进。而且把cnn_feature单独拿出来看感觉数值也比较正常,十分迷惑所以向您寻求帮助。 望解答,谢谢!
The text was updated successfully, but these errors were encountered:
您好,使用您更新后的代码解决这个问题了,谢谢您!
Sorry, something went wrong.
更新后的代码在哪里?
No branches or pull requests
作者您好!
我在运行您的源码时发现了如下问题,在eval时可以对图片中的文字进行基本定位,但是识别结果很差,和之前的issue里有一位提出的问题很类似,结果总是A,E等字符。
我以为是识别分支的预训练模型参数不佳的问题,于是只拿了三张图片单独在预训练模型上继续训练,可以看到识别的loss在下降,而且我把识别结果打印出来也是正确的。
接着我拿重新训练的模型在训练模型上进行测试,发现识别结果还是没有得到改进。而且把cnn_feature单独拿出来看感觉数值也比较正常,十分迷惑所以向您寻求帮助。
望解答,谢谢!
The text was updated successfully, but these errors were encountered: