forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatmul.cpp
519 lines (463 loc) · 16.6 KB
/
Matmul.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <ATen/Context.h>
#include <ATen/native/mkldnn/Matmul.h>
#if !AT_MKLDNN_ENABLED()
namespace at {
namespace native {
void mkldnn_matmul(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result,
float beta,
float alpha) {
TORCH_CHECK(false, "mkldnn_matmul: ATen not compiled with MKLDNN support");
}
bool use_mkldnn_bf16_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result_opt){
return false;
}
bool use_mkldnn_fp16_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result_opt){
return false;
}
bool mkldnn_bf16_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const c10::BFloat16 *a, int64_t lda,
const c10::BFloat16 *b, int64_t ldb,
float beta,
c10::BFloat16 *c, int64_t ldc) {
return false;
}
bool mkldnn_fp16_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const c10::Half *a, int64_t lda,
const c10::Half *b, int64_t ldb,
float beta,
c10::Half *c, int64_t ldc) {
return false;
}
bool mkldnn_bf32_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const float *a, int64_t lda,
const float *b, int64_t ldb,
float beta,
float *c, int64_t ldc){
return false;
}
bool use_mkldnn_bf32_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result) {
return false;
}
bool use_mkldnn_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result) {
return false;
}
void mkldnn_matmul_i8i8i32(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result) {
TORCH_INTERNAL_ASSERT(false, __func__, ": ATen not compiled with MKLDNN support");
}
} // namespace native
} // namespace at
#else // AT_MKLDNN_ENABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
namespace at {
namespace native {
static bool use_mkldnn_bf16_matmul() {
return at::globalContext().userEnabledMkldnn() && mkldnn_bf16_device_check();
}
static bool use_mkldnn_fp16_matmul() {
return at::globalContext().userEnabledMkldnn() && mkldnn_fp16_device_check();
}
static bool use_mkldnn_bf32_matmul() {
return use_mkldnn_bf16_matmul() && at::globalContext().float32MatmulPrecision() == at::Float32MatmulPrecision::MEDIUM;
}
template<typename scalar_t>
inline typename std::enable_if_t<
std::is_same_v<scalar_t, float> ||
std::is_same_v<scalar_t, c10::Half> ||
std::is_same_v<scalar_t, c10::BFloat16>,
bool>
mkldnn_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const scalar_t *a_data, int64_t lda,
const scalar_t *b_data, int64_t ldb,
float beta,
scalar_t *c_data, int64_t ldc) {
bool bf16_usable = std::is_same_v<scalar_t, c10::BFloat16> && use_mkldnn_bf16_matmul();
bool fp16_usable = std::is_same_v<scalar_t, c10::Half> && use_mkldnn_fp16_matmul();
bool bf32_usable = std::is_same_v<scalar_t, float> && use_mkldnn_bf32_matmul();
if ( !(bf16_usable || fp16_usable || bf32_usable) ||
(m * n * k <= 16 * 16 * 16) || (alpha == 0.0f)) {
return false;
}
ideep::attr_t op_attr;
// Use mkldnn post ops to perform the add.
if (beta != 0.0f) {
op_attr = ideep::attr_t::fuse_sum();
}
if (bf32_usable) op_attr.set_fpmath_mode(dnnl_fpmath_mode_bf16); // bf32 path
// NOTE: View as c-contiguous to avoid extra reordering in mkldnn
// Use identity: C = AB <=> C^T = B^T A^T
ideep::tensor::dims a_strides{{lda, 1}}, b_strides{{ldb, 1}}, c_strides{{ldc, 1}};
if (transa != TransposeType::NoTranspose) {
std::swap(a_strides[0], a_strides[1]);
}
if (transb != TransposeType::NoTranspose) {
std::swap(b_strides[0], b_strides[1]);
}
auto idtype = ideep::tensor::data_type::bf16;
if constexpr (std::is_same_v<scalar_t, c10::Half>) {
idtype = ideep::tensor::data_type::f16;
}
if constexpr (std::is_same_v<scalar_t, float>) {
idtype = ideep::tensor::data_type::f32;
}
ideep::tensor a({
/*sizes=*/{k, m},
idtype,
/*strides=*/a_strides},
const_cast<scalar_t*>(a_data));
ideep::tensor b({
/*sizes=*/{n, k},
idtype,
/*strides=*/b_strides},
const_cast<scalar_t*>(b_data));
ideep::tensor c({
/*sizes=*/{n, m},
idtype,
/*strides=*/c_strides},
c_data);
ideep::matmul_forward::compute(
b, a, c, alpha, beta,
ideep::scale_t(), ideep::scale_t(), ideep::scale_t(), op_attr);
if (c.get_data_handle() != c_data){
// ideep will query onednn expect format of output
// if given output format is not expected, ideep will re-init an output buffer
// under this case, we need copy the re-inited buffer back to given buffer
ideep::tensor real_output({
/*sizes=*/{n, m},
idtype,
/*strides=*/c_strides},
c_data);
c.reorder_to(real_output);
}
return true;
}
bool mkldnn_bf16_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const c10::BFloat16 *a, int64_t lda,
const c10::BFloat16 *b, int64_t ldb,
float beta,
c10::BFloat16 *c, int64_t ldc) {
return mkldnn_gemm<c10::BFloat16>(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
bool mkldnn_fp16_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const c10::Half *a, int64_t lda,
const c10::Half *b, int64_t ldb,
float beta,
c10::Half *c, int64_t ldc) {
return mkldnn_gemm<c10::Half>(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
bool mkldnn_bf32_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const float *a, int64_t lda,
const float *b, int64_t ldb,
float beta,
float *c, int64_t ldc){
return mkldnn_gemm<float>(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
void mkldnn_matmul(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result,
float beta,
float alpha) {
TORCH_CHECK((mat1.dim() == 2 && mat2.dim() == 2) || // aten::addmm
(mat1.dim() == 3 && mat2.dim() == 3) || // aten::bmm, aten::baddbmm
(mat1.dim() == 2 && mat2.dim() == 1) || // aten::mv
(mat1.dim() == 1 && mat2.dim() == 1), // aten::dot
"mkldnn_matmul: unsupported dims for mat and mat2");
#if defined(__aarch64__)
// oneDNN fast-maths mode (enabled by setting the environment variable ONEDNN_DEFAULT_FPMATH_MODE=BF16) will dispatch
// fp32 inputs to bf16 kernels where HW permits. So, both fp32 and bf16 inputs are permitted.
TORCH_CHECK((mat1.scalar_type() == mat2.scalar_type()) && (mat1.scalar_type() == result.scalar_type()) &&
((mat1.scalar_type() == at::kFloat) || (mat1.scalar_type() == at::kBFloat16)),
"mkldnn_matmul: only enabled for fp32 and bf16 path");
// device needs to support bf16 if the inputs are of bf16 type
if (mat1.scalar_type() == at::kBFloat16) {
TORCH_CHECK(mkldnn_bf16_device_check_arm(),
"mkldnn_matmul: mkldnn_matmul bf16 path needs a cpu with bf16 support");
}
#else
TORCH_CHECK(
(mat1.scalar_type() == at::kBFloat16 ||
mat1.scalar_type() == at::kHalf ||
mat1.scalar_type() == at::kFloat) &&
mat2.scalar_type() == mat1.scalar_type() &&
result.scalar_type() == mat1.scalar_type(),
"mkldnn_matmul: only enabled for bf16 and fp16 path");
if (mat1.scalar_type() == at::kBFloat16 || mat1.scalar_type() == at::kFloat) {
TORCH_CHECK(
mkldnn_bf16_device_check(),
"mkldnn_matmul: mkldnn_matmul bf16 path needs the cpu support avx_ne_convert or avx512bw, avx512vl and avx512dq, or AWS Graviton3");
} else {
TORCH_INTERNAL_ASSERT(mat1.scalar_type() == at::kHalf);
TORCH_CHECK(
mkldnn_fp16_device_check(),
"mkldnn_matmul: mkldnn_matmul fp16 path needs the cpu support avx_ne_convert or avx512_fp16");
}
#endif
auto mat1_unsqueezed = mat1.dim() == 1 ? mat1.unsqueeze(0) : mat1;
auto mat2_unsqueezed = mat2.dim() == 1 ? mat2.unsqueeze(1) : mat2;
auto result_unsqueezed = result.dim() == 1 ? result.unsqueeze(1) : result;
bool bf32_usable = mat1.scalar_type() == at::kFloat && use_mkldnn_bf32_matmul();
ideep::attr_t op_attr;
// "addmm", "addbmm" "baddbmm" in pytorch allow bias to be 2-D or 3-D tensor
// but mkldnn matmul primitive only support bias be 1-D tensors
// to address their differences, we use mkldnn post ops to perform a fused "add" after matrix multiplication is over
if (beta != 0.0f) op_attr = ideep::attr_t::fuse_sum();
if (bf32_usable) op_attr.set_fpmath_mode(dnnl_fpmath_mode_bf16); // bf32 path
// If alpha = 0, dose not need actually do gemm computation
if (alpha == 0)
return;
auto is_mkldnn_optimized_format = [&](const Tensor& t) {
if (t.is_contiguous()) return true;
const auto sizes = t.sizes();
const auto strides = t.strides();
if (t.dim() == 2){
return strides[0] == 1 && strides[1] == sizes[0];
} else {
// dim = 3
return strides[0] == sizes[1] * sizes[2] && strides[1] == 1 && strides[2] == sizes[1];
}
};
// Mkldnn only optimized for contiguous or transposed (transpose last 2 dim if 3-D tensor) format now
// Will remove this "contiguous" after mkldnn have fully supported
Tensor mat1_ = is_mkldnn_optimized_format(mat1_unsqueezed) ? mat1_unsqueezed : mat1_unsqueezed.contiguous();
Tensor mat2_ = is_mkldnn_optimized_format(mat2_unsqueezed) ? mat2_unsqueezed : mat2_unsqueezed.contiguous();
// Make sure mat1 and mat2 have default contiguous strides if they are contiguous tensors for better performance.
mat1_ = may_convert_to_default_contiguous_strides(mat1_);
mat2_ = may_convert_to_default_contiguous_strides(mat2_);
// mkldnn_matmul only proceed CPU tensor
const ideep::tensor x = itensor_view_from_dense(mat1_);
const ideep::tensor w = itensor_view_from_dense(mat2_);
ideep::tensor y = itensor_view_from_dense(result_unsqueezed);
ideep::matmul_forward::compute(x, w, y, alpha, beta,
ideep::scale_t(), ideep::scale_t(), ideep::scale_t(), op_attr);
if (y.get_data_handle() != result.data_ptr()){
// ideep will query onednn expect format of output
// if given output format is not expected, ideep will re-init an output buffer
// under this case, we need copy the re-inited buffer back to given buffer
ideep::tensor public_y = itensor_view_from_dense(result);
y.reorder_to(public_y);
}
if (mat1.dim() == 1 && mat2.dim() == 1){
// aten::dot
result.squeeze_();
}
}
inline bool checksize(const Tensor& mat1, const Tensor& mat2){
// if dim = 2, mat1's size = (m * n), mat2's size = (n * k)
// else if dim = 3, mat1's size = (b * m * n), mat2's size = (b * n * k)
// else called from aten::mv, mat1.size = (m * n), mat2.size = (n)
// only m * n * b * k(if exist) are large enough we can get benefit from mkldnn optimized gemm kernel
static const int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
if (mat1.dim() == 1 && mat2.dim() == 1) {
// aten::dot
return mat1.size(0) > mkldnn_gemm_min_size;
} else if (mat1.dim() == 2 && mat2.dim() == 1) {
// aten::mv
return mat1.size(0) * mat1.size(1) > mkldnn_gemm_min_size;
} else if (mat2.dim() == 2 && mat2.dim() == 2) {
// aten::addmm
return mat1.size(0) * mat1.size(1) * mat2.size(1) > mkldnn_gemm_min_size;
} else {
// aten::bmm, aten::baddbmm
return mat1.size(0) * mat1.size(1) * mat1.size(2) * mat2.size(2) > mkldnn_gemm_min_size;
}
}
bool use_mkldnn_bf16_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result) {
#if defined(__aarch64__)
if (mkldnn_bf16_device_check_arm()) {
//onednn fastmath mode can leverage bf16 HW even for the fp32 input, e.g. Arm Neoverse V1
//so, don't restrict the mkldnn_matmul only for bf16 inputs, allow it for float as well
return (
use_mkldnn_bf16_matmul() &&
(mat1.scalar_type() == mat2.scalar_type()) && (!result.defined() || (mat1.scalar_type() == result.scalar_type())) &&
((mat1.scalar_type() == kFloat) || (mat1.scalar_type() == kBFloat16)) &&
mat1.numel() != 0 &&
mat2.numel() != 0 &&
checksize(mat1, mat2));
} else
#endif
{
return (
use_mkldnn_bf16_matmul() &&
mat1.scalar_type() == kBFloat16 &&
mat2.scalar_type() == kBFloat16 &&
(!result.defined() || result.scalar_type() == kBFloat16) &&
mat1.numel() != 0 &&
mat2.numel() != 0 &&
checksize(mat1, mat2));
}
}
bool use_mkldnn_fp16_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result) {
return (
use_mkldnn_fp16_matmul() &&
mat1.scalar_type() == kHalf &&
mat2.scalar_type() == kHalf &&
(!result.defined() || result.scalar_type() == kHalf) &&
mat1.numel() != 0 &&
mat2.numel() != 0 &&
checksize(mat1, mat2));
}
bool use_mkldnn_bf32_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result) {
return (
use_mkldnn_bf32_matmul() &&
mat1.scalar_type() == kFloat &&
mat2.scalar_type() == kFloat &&
(!result.defined() || result.scalar_type() == kFloat) &&
mat1.numel() != 0 &&
mat2.numel() != 0 &&
checksize(mat1, mat2));
}
bool use_mkldnn_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result) {
return (use_mkldnn_bf16_matmul(mat1, mat2, result) || use_mkldnn_fp16_matmul(mat1, mat2, result) || use_mkldnn_bf32_matmul(mat1, mat2, result));
}
static void _mkldnn_matmul_i8i8i32_with_primitive(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result) {
// Create ideep tensors for oneDNN computation
auto src = ideep::tensor(
{mat1.sizes().vec(),
ideep::tensor::data_type::s8,
mat1.strides().vec()},
mat1.data_ptr());
auto wei = ideep::tensor(
{mat2.sizes().vec(),
ideep::tensor::data_type::s8,
mat2.strides().vec()},
mat2.data_ptr());
auto dst = ideep::tensor(
{result.sizes().vec(),
ideep::tensor::data_type::s32,
result.strides().vec()},
result.data_ptr());
// Create primitive desc
auto engine = ideep::engine::cpu_engine();
ideep::attr_t op_attr;
op_attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
auto src_desc = src.get_desc();
auto wei_desc = wei.get_desc();
auto dst_desc = dst.get_desc();
auto prim_desc = dnnl::matmul::primitive_desc(
engine, src_desc, wei_desc, dst_desc, op_attr);
// Reorder mat2 if needed
auto expected_weight = wei.reorder_if_differ_in(prim_desc.weights_desc());
// Prepare args for primitive
ideep::tensor scratchpad(prim_desc.scratchpad_desc());
ideep::exec_args args;
args.insert({DNNL_ARG_SRC, src});
args.insert({DNNL_ARG_WEIGHTS, expected_weight});
args.insert({DNNL_ARG_DST, dst});
args.insert({DNNL_ARG_SCRATCHPAD, scratchpad});
// Create primitve and execute
auto primitive = dnnl::matmul(prim_desc);
primitive.execute(ideep::stream::default_stream(), args);
}
static void _mkldnn_gemm_i8i8i32_with_blas(
const Tensor& self,
const Tensor& mat2,
const Tensor& result) {
const int m = result.size(0);
const int n = result.size(1);
const int k = self.size(1);
const char transa = self.strides()[1] == 1 ? 'N' : 'T';
const char transb = mat2.strides()[1] == 1 ? 'N' : 'T';
const char offsetc = 'F';
const int lda = transa == 'T' ? self.stride(1) : self.stride(0);
const int ldb = transb == 'T' ? mat2.stride(1) : mat2.stride(0);
const int ldc = n;
const float alpha = 1;
const float beta = 0;
int8_t ao = 0;
int8_t bo = 0;
int32_t co = 0;
dnnl::gemm_s8s8s32(
transa,
transb,
offsetc,
m,
n,
k,
alpha,
(int8_t*)self.data_ptr(),
lda,
ao,
(int8_t*)mat2.data_ptr(),
ldb,
bo,
beta,
(int32_t*)result.data_ptr(),
ldc,
&co);
}
void mkldnn_matmul_i8i8i32(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result) {
// x:s8 * w:s8 -> y:s32
// both inputs should be 2d
// In most cases, using DNNL blas API is faster but it requires a/b contiguous along one dimentsion
bool a_is_contigous = (mat1.stride(0) == 1 || mat1.stride(1) == 1);
bool b_is_contigous = (mat2.stride(0) == 1 || mat2.stride(1) == 1);
if (a_is_contigous && b_is_contigous) {
_mkldnn_gemm_i8i8i32_with_blas(mat1, mat2, result);
} else {
_mkldnn_matmul_i8i8i32_with_primitive(mat1, mat2, result);
}
}
} // namespace native
} // namespace at
#endif // AT_MKLDNN_ENABLED