-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path22q_sleep.R
352 lines (251 loc) · 12.1 KB
/
22q_sleep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
library(ggplot2)
library(dplyr)
library(epiDisplay)
library(lme4)
library(reshape2)
library(psych)
library(table1)
library(visreg)
library(reshape2)
library(stringr)
library("lmerTest")
#cd /Users/kruparel/Library/Mobile Documents/com~apple~CloudDocs/BBL/Raquel_Gur/22q_sleep
# read merged data
datas<-read.csv("sleep_raw_scales_demo_cnb_cnbz_dx_sips_clinical_denovo_merged_feb2024.csv")#99
#remove 1 person who does not have a bblid and was not part of bbl
datas<-datas[datas$sleepid!=67,] #99
datas<-datas[which(is.na(datas$psqitot)==FALSE),]#92
#define good and bad sleepers based on psqi known cutoff
datas$psqitot<-as.numeric(datas$psqitot)
datas$sleeper<-NA
datas$sleeper[which(datas$psqitot>5)]<-"Poor Sleeper"
datas$sleeper[datas$psqitot<=5]<-"Good Sleeper"
datas$sleeper<-as.factor(datas$sleeper)
datas$X22q_inherited_denovo<-factor(datas$X22q_inherited_denovo)
#demographics
datas$gender<-NA
datas$gender[datas$sex.x==1]<-"Male"
datas$gender[datas$sex.x==2]<-"Female"
datas$gender<-as.factor(datas$gender)
datas$race[datas$race==1]<-"White"
datas$race[datas$race==2]<-"Black"
datas$race[datas$race==5]<-"Other"
datas$race<-as.factor(datas$race)
#demographics table
table1(~ age + gender+race| sleeper, data=datas)
datas$diagnosis<-NA
datas$diagnosis[datas$dx_pscat=="pro"]<-"PS"
datas$diagnosis[datas$dx_pscat=="psy"]<-"PS"
datas$diagnosis[datas$dx_pscat=="noDSMdx"]<-"TD"
datas$diagnosis[datas$dx_pscat=="other"]<-"Other"
datas$diagnosis<-as.factor(datas$diagnosis)
#table of comorbidity
datas$dx_prodromal<-as.factor(datas$dx_prodromal)
datas$dx_psychosis<-as.factor(datas$dx_psychosis)
datas$dx_scz<-as.factor(datas$dx_scz)
datas$dx_moodnos<-as.factor(datas$dx_moodnos)
datas$dx_mdd<-as.factor(datas$dx_mdd)
datas$dx_bp1<-as.factor(datas$dx_bp1)
datas$dx_adhd<-as.factor(datas$dx_adhd)
datas$dx_anx<-as.factor(datas$dx_anx)
datas$dx_ptsd<-as.factor(datas$dx_ptsd)
datas$dx_other<-as.factor(datas$dx_other)
table1(~ dx_prodromal+dx_psychosis+dx_scz+dx_moodnos+dx_mdd+dx_bp1+dx_adhd+dx_anx+dx_ptsd+dx_other| sleeper, data=datas,overall="Total",
render.missing=NULL, render.categorical="FREQ (PCTnoNA%)")
#chisquare - diagnosis
chisq.test(table(datas$dx_prodromal,datas$sleeper))
chisq.test(table(datas$dx_psychosis,datas$sleeper))
chisq.test(table(datas$dx_scz,datas$sleeper))
chisq.test(table(datas$dx_moodnos,datas$sleeper))
chisq.test(table(datas$dx_mdd,datas$sleeper))
datas$dxage<-round(abs(as.Date(as.character(datas$dobirth),"%m/%d/%y")-as.Date(as.character(datas$date_diagnosis),"%m/%d/%y"))/365.5)
datas$dxage<-as.integer(datas$dxage)
# summary sips scores
#note those that do not have completed sips will be NA when counting rowSUMS
datas$sum_possips<-rowSums(datas[,c("p1","p2","p3","p4","p5")])
datas$sum_possips2<-rowSums(datas[,c("p1","p2","p3","p4","p5")])
datas$sum_negsips<-rowSums(datas[,c("n1","n2","n3","n4","n5","n6")])
datas$sum_disorgsips<-rowSums(datas[,c("d1","d2","d3","d4")])
datas$sum_gensips<-rowSums(datas[,c("g1","g2","g3","g4")])
#sips table
table1(~ gaf_c+diagnosis+sum_possips+sum_negsips+sum_disorgsips+sum_gensips| sleeper, data=datas,overall="Total",
render.missing=NULL, render.categorical="FREQ (PCTnoNA%)",extra.col=list(`pval`=pvalue), extra.col.pos=4)
#with missing
table1(~ gaf_c+diagnosis+sum_possips+sum_negsips+sum_disorgsips+sum_gensips| sleeper, data=datas,overall="Total",
render.categorical="FREQ (PCTnoNA%)",extra.col=list(`pval`=pvalue), extra.col.pos=4)
# t tests two sample- sips
datas %>% t_test(gaf_c ~ sleeper)
datas %>% t_test(sum_possips ~ sleeper)
datas %>% t_test(sum_negsips ~ sleeper)
datas %>% t_test(sum_disorgsips ~ sleeper)
datas %>% t_test(sum_gensips ~ sleeper)
#SIPS models
lm.psips<-lm(sum_possips~sleeper+dxage+gender,data=datas)
#visreg(lm.psips)
visreg(lm.psips,"dxage",by="sleeper")
lm.nsips<-lm(sum_negsips~sleeper+dxage+gender,data=datas)
#visreg(lm.nsips)
visreg(lm.nsips,"dxage",by="sleeper")
#continuous psqitot
lm2.psips<-lm(sum_possips~+psqitot+dxage+gender,data=datas)
visreg(lm2.psips)
lm2.nsips<-lm(sum_negsips~+psqitot+dxage+gender,data=datas)
visreg(lm2.nsips)
#GAF
lm.gaf<-lm(gaf_c~sleeper+dxage+gender,data=datas)
visreg(lm.gaf)
lm2.gaf<-lm(gaf_c~+psqitot+dxage+sex,data=datas)
visreg(lm2.gaf)
#library(tidyr)
#datas_cli2_long2<-datas_cli2_long %>% drop_na(sleep_condition)
#ggplot(datas_cli2_long2, aes(x=sleep_condition, y=psqitot)) + geom_boxplot()+ theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1))
#ggplot(data=datas, mapping = aes(x = sleep_problem, y = psqitot))+ geom_boxplot() +
#theme_bw()
##corrlation plot
#pairs(~ psqitot + soccog_eff + exe_eff+cpxres_eff+memory_eff+delib_speed, data = datas)
##Cognition
ggplot(datas, aes(x=psqitot, y=memory_eff)) + geom_point() + ggtitle("PSQI Total Score vs Memory Efficiency") + geom_smooth(method=lm, se=FALSE)
ggplot(datas, aes(x=psqitot, y=exe_eff)) + geom_point() + ggtitle("PSQI Total Score vs Memory Efficiency") + geom_smooth(method=lm, se=FALSE)
lm1<-lm(exe_eff~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm2<-lm(soccog_eff~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm3<-lm(cpxres_eff~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm4<-lm(memory_speed~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm5<-lm(delib_speed~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm6<-lm(rapid_speed~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm7<-lm(overall_speed~+sleeper+test_sessions_v.age+test_sessions_v.gender,data=datas)
lm8<-lm(gaf_c~+psqitot+test_sessions_v.age+test_sessions_v.gender,data=datas)
datas$age<-round(abs(as.Date(as.character(datas$dobirth),"%m/%d/%y")-as.Date(as.character(datas$date_of_entry),"%m/%d/%y"))/365.5)
datas$age<-as.integer(datas$age)
#tableStack(vars=c(gaf_c,dx_pscat,sum_possips,sum_negsips,sum_disorgsips,sum_gensips), by=sleeper, dataFrame=datas, name.test=FALSE,na.rm=F,total=T,iqr=c(gaf_c,sum_possips,sum_negsips,sum_disorgsips,sum_gensips))
#cognitive
table1(~ ABF_Efficiency+ATT_Efficiency+WM_Efficiency+VMEM_Efficiency+FMEM_Efficiency+SMEM_Efficiency| sleeper, data=datas)
table1(~ LAN_Efficiency+NVR_Efficiency+SPA_Efficiency+EID_Efficiency+EDI_Efficiency+ADI_Efficiency| sleeper, data=datas)
table1(~ memory_acc+soccog_acc+cpxres_acc+memory_eff+soccog_eff+exe_eff+cpxres_eff| sleeper, data=datas)
table1(~ overall_speed+memory_speed+delib_speed+rapid_speed+motor_speed| sleeper, data=datas)
cnb<-datas[,c(1,417,351:376,377:388)]
cnb_long<-melt(cnb, id.vars=c("bblid", "sleeper"))
names(cnb_long)[3:4]<-c("CNB_Test","Score")
source("~/summarySE.R")
smry_cnb<-summarySE(cnb_long, measurevar="Score", groupvars=c("sleeper","CNB_Test"),na.rm=T)
pd <- position_dodge(0.1) # move them .05 to the left and right
smry_cnb$sleeper = factor(smry_cnb$sleeper, levels = c("Poor Sleeper","Good Sleeper"))
smry_cnb_a<-smry_cnb[smry_cnb$CNB_Test
smry_cnb_a<-smry_cnb[grep("_A", smry_cnb$CNB_Test),]
smry_cnb_s<-smry_cnb[grep("_S", smry_cnb$CNB_Test),]
smry_cnb_e<-smry_cnb[grep("_Efficiency", smry_cnb$CNB_Test),]
ggplot(smry_cnb_e, aes(x=CNB_Test, y=Score, colour=sleeper, group=sleeper)) +
geom_errorbar(aes(ymin=Score-se, ymax=Score+se), colour="black", width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd, size=3, shape=21, fill="white") + # 21 is filled circle
xlab("CNB Tests") +
ylab("Mean Efficiency Score") +
scale_x_discrete(guide = guide_axis(angle = 45))
ggplot(smry_cnb_a, aes(x=CNB_Test, y=Score, colour=sleeper, group=sleeper)) +
geom_errorbar(aes(ymin=Score-se, ymax=Score+se), colour="black", width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd, size=3, shape=21, fill="white") + # 21 is filled circle
xlab("CNB Tests") +
ylab("Mean Accuracy Score") +
scale_x_discrete(guide = guide_axis(angle = 45))
ggplot(smry_cnb_s, aes(x=CNB_Test, y=Score, colour=sleeper, group=sleeper)) +
geom_errorbar(aes(ymin=Score-se, ymax=Score+se), colour="black", width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd, size=3, shape=21, fill="white") + # 21 is filled circle
xlab("CNB Tests") +
ylab("Mean Speed Score") +
scale_x_discrete(guide = guide_axis(angle = 45))
# ttests added 8/27/2024 on Ruben's request
# Load required R packages
library(tidyverse)
library(rstatix)
library(ggpubr)
stat_test <- cnb_long %>%
group_by(CNB_Test) %>%
t_test(Score ~ sleeper, p.adjust.method = "bonferroni")
# Remove unnecessary columns and display the outputs
stat_test %>% select(-.y., -statistic, -df)
##lme model
#eeficieny mixed effect not significant
lmer.cnb<-lmer(Eff_Score ~ CNB_Test * sleeper + (1 | bblid), data=cnb_long)
anova(lmer.cnb)
#accuracy model
cnba<-datas[,c(1,390,351:362)]
cnba_long<-melt(cnba, id.vars=c("bblid", "sleeper"))
names(cnba_long)[3:4]<-c("CNB_Test","Acc_Score")
lmer.cnba<-lmer(Acc_Score ~ CNB_Test * sleeper + (1 | bblid), data=cnba_long)
anova(lmer.cnba)
visreg(lmer.cnba,"CNB_Test",by="sleeper")
visreg(lmer.cnba)
#speed model
cnbs<-datas[,c(1,390,363:376)]
cnbs_long<-melt(cnbs, id.vars=c("bblid", "sleeper"))
names(cnbs_long)[3:4]<-c("CNB_Test","Speed_Score")
lmer.cnbs<-lmer(Speed_Score ~ CNB_Test * sleeper + (1 | bblid), data=cnbs_long)
visreg(lmer.cnbs,"sleeper",by="CNB_Test")
## By ruben's request a mixed model with speed and accuracy
cnb_long2<-cnb_long[-grep("_Efficiency", cnb_long$CNB_Test),]
cnb_long2[c('test', 'measure')] <- str_split_fixed(cnb_long2$CNB_Test, '_', 2)
#remove mot and sm
cnb_long3<-cnb_long2[-which(cnb_long2$test=="MOT" | cnb_long2$test=="SM"),]
#big mixed model
cnb_long3$test<-as.factor(cnb_long3$test)
cnb_long3$measure<-as.factor(cnb_long3$measure)
lmer.cnbas<-lmer(Score ~ measure*test * sleeper + (1 | bblid), data=cnb_long3)
anova(lmer.cnbas)
visreg(lmer.cnbas,"test",by="sleeper")
visreg(lmer.cnbas, 'test', by='sleeper', cond=list(measure="A"), layout=c(2,1))
visreg(lmer.cnbas, 'test', by='sleeper', cond=list(measure="S"), layout=c(2,2))
visreg(lmer.cnbas,"measure",by="sleeper")
##clinical data comparision from M. Sounders
## correlation matrix to compare psqitot to clinical sleep data from M. Sounders
xcor <- mixedCor(datas_cli)$rho
ggcorrplot(xcor,
type = "lower",
insig = "blank",
lab = TRUE,
digits = 1,pch = 0.8, pch.col = "black", pch.cex =0.9,
tl.cex = 8
)
datas_cli2<-datas[,c(2,62,417,394:406,409:410,412:414)]
datas_cli2_long <- melt(datas_cli2,
# ID variables - all the variables to keep but not split apart on
id.vars=c("sleepid","psqitot","sleeper"),
# The source columns
measure.vars=names(datas_cli2)[4:21],
variable.name="condition",
value.name="measurement"
)
#custom functions
pvalue <- function(x, ...) {
x <- x[-length(x)] # Remove "overall" group
# Construct vectors of data y, and groups (strata) g
y <- unlist(x)
g <- factor(rep(1:length(x), times=sapply(x, length)))
if (is.numeric(y)) {
# For numeric variables, perform an ANOVA
p <- summary(aov(y ~ g))[[1]][["Pr(>F)"]][1]
} else {
# For categorical variables, perform a chi-squared test of independence
p <- chisq.test(table(y, g))$p.value
}
# Format the p-value, using an HTML entity for the less-than sign.
# The initial empty string places the output on the line below the variable label.
c("", sub("<", "<", format.pval(p, digits=3, eps=0.001)))
}
#not needed as we do not want rowsums if there are any NA's
my_rowSums <- function(x) {
if (is.data.frame(x)) x <- as.matrix(x)
z <- base::rowSums(x, na.rm = TRUE)
z[!base::rowSums(!is.na(x))] <- NA
z
}
#medications from Oracle
meds<-read.csv("../../DatabaseStuff/psycha1_data_repository/repository_sync/medicineall_v.csv")
meds2<-meds[meds$BBLID %in% datas$bblid,]
meds2$DOCOLLECT<-as.Date(meds2$DOCOLLECT, "%d-%B-%y")
meds2$yearcollect<-format(as.Date(meds2$DOCOLLECT),"%Y")
meds2<-meds2[which(meds2$yearcollect %in% c("2011","2012")),]
##denovo and deletion type
deletion_type<-read.csv("../22q_familial/DeletionType/22q_deletion_type_updated_rarecnv.csv")
datas_del<-merge(datas,deletion_type,by="bblid",all.x=T)
table(datas_del$deletion_type_from_Blaine)