-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataloader.py
148 lines (115 loc) · 4.66 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from final_model_config import *
import tensorflow as tf
from torch.utils.data import Dataset as BaseDataset
import os, numpy as np, cv2
import tifffile as tiff
from natsort import natsorted
IMG_SIZE = Final_Config.SIZE
IMG_CHANNELS = Final_Config.CHANNELS
CLASSES = Final_Config.CLASSES
# Create PyTorch dataset class for model training/validation
class Dataset(BaseDataset):
def __init__(
self,
images_dir,
masks_dir,
augmentation=None,
preprocessing=None,
):
self.ids = natsorted(os.listdir(images_dir))
self.mask_ids = natsorted(os.listdir(masks_dir))
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.mask_ids]
self.augmentation = augmentation
self.preprocessing = preprocessing
def __getitem__(self, i):
# Read in TIFF image tile
img = tiff.imread(self.images_fps[i])
# Extract Green, Red, NIR channels.
img = img[:,:,1:4]
# Apply minimum-maximum normalization.
img = cv2.normalize(img, dst=None, alpha=0, beta=255,norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
img = img.astype(np.uint8)
G, R, N = cv2.split(img)
# Equalize histograms
out_G = cv2.equalizeHist(G)
out_R = cv2.equalizeHist(R)
out_N = cv2.equalizeHist(N)
final_img = cv2.merge((out_G, out_R, out_N))
# Ensure image tiles are specified size
image = cv2.resize(final_img, (IMG_SIZE, IMG_SIZE))
# Read in TIFF mask tile
mask = tiff.imread(self.masks_fps[i])
# Ensure mask tiles are specified size pixels. Interpolation argument must be set to nearest-neighbor
# to preserve ground truth.
mask = cv2.resize(mask, (IMG_SIZE, IMG_SIZE), interpolation = cv2.INTER_NEAREST)
# Below code can be used to reclassify the training data if one wishes
# mask[mask==255] = 0
mask[mask==3] = 1
# One-hot encode masks for multi-class segmentation
onehot_mask = tf.one_hot(mask, CLASSES, axis = 0)
mask = np.stack(onehot_mask, axis=-1).astype('float')
# Apply augmentations
if self.augmentation:
sample = self.augmentation(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
# Apply preprocessing
if self.preprocessing:
sample = self.preprocessing(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
return image, mask
def __len__(self):
return len(self.ids)
# Create PyTorch dataset class for model inferencing
class InferDataset(Dataset):
def __init__(self,
image_tiles,
preprocessing=None
):
self.image_tiles = image_tiles
self.preprocessing = preprocessing
def __len__(self):
return len(self.image_tiles)
def __getitem__(self, idx):
img = self.image_tiles[idx]
# Extract Green, Red, NIR channels.
img = img[:, :, 1:4]
# Apply minimum-maximum normalization.
img = cv2.normalize(img, dst=None, alpha=0, beta=255,norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
img = img.astype(np.uint8)
G, R, N = cv2.split(img)
# Equalize histograms
out_G = cv2.equalizeHist(G)
out_R = cv2.equalizeHist(R)
out_N = cv2.equalizeHist(N)
image = cv2.merge((out_G, out_R, out_N))
# Apply preprocessing
if self.preprocessing:
sample = self.preprocessing(image=image)
image = sample['image']
return image
# Create helper classes for data preprocessing and augmentation.
def get_training_augmentation():
train_transform = Final_Config.AUGMENTATIONS
return albu.Compose(train_transform)
def to_tensor(x, **kwargs):
return x.transpose(2, 0, 1).astype('float32')
def get_preprocessing(preprocessing_fn):
"""Construct preprocessing transform
Args:
preprocessing_fn (callable): data normalization function
(can be specific for each pretrained neural network)
Return:
transform: albumentations.Compose
"""
_transform = [
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
]
return albu.Compose(_transform)
def get_preprocessing_test(preprocessing_fn):
_transform = [
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor),
]
return albu.Compose(_transform)