-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_results.py
264 lines (221 loc) · 7.95 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import json
import os
from typing import *
import matplotlib.pyplot as plt
from benchmark import RESULTS_FOLDER
from dataset import Datasets
from engine import Engines
Color = Tuple[float, float, float]
def rgb_from_hex(x: str) -> Color:
x = x.strip("# ")
assert len(x) == 6
return int(x[:2], 16) / 255, int(x[2:4], 16) / 255, int(x[4:], 16) / 255
BLACK = rgb_from_hex("#000000")
GREY1 = rgb_from_hex("#3F3F3F")
GREY2 = rgb_from_hex("#5F5F5F")
GREY3 = rgb_from_hex("#7F7F7F")
GREY4 = rgb_from_hex("#9F9F9F")
GREY5 = rgb_from_hex("#BFBFBF")
WHITE = rgb_from_hex("#FFFFFF")
BLUE = rgb_from_hex("#377DFF")
ENGINES = [
Engines.AWS_TRANSCRIBE,
Engines.AZURE_SPEECH_TO_TEXT,
Engines.GOOGLE_SPEECH_TO_TEXT,
Engines.GOOGLE_SPEECH_TO_TEXT_ENHANCED,
Engines.PICOVOICE_FALCON,
Engines.PYANNOTE,
]
ENGINE_ORDER_KEYS = {
Engines.AWS_TRANSCRIBE: 1,
Engines.AZURE_SPEECH_TO_TEXT: 2,
Engines.GOOGLE_SPEECH_TO_TEXT: 3,
Engines.GOOGLE_SPEECH_TO_TEXT_ENHANCED: 4,
Engines.PICOVOICE_FALCON: 5,
Engines.PYANNOTE: 6,
}
ENGINE_COLORS = {
Engines.AWS_TRANSCRIBE: GREY5,
Engines.AZURE_SPEECH_TO_TEXT: GREY4,
Engines.GOOGLE_SPEECH_TO_TEXT: GREY3,
Engines.GOOGLE_SPEECH_TO_TEXT_ENHANCED: GREY2,
Engines.PICOVOICE_FALCON: BLUE,
Engines.PYANNOTE: GREY1,
}
ENGINE_PRINT_NAMES = {
Engines.AWS_TRANSCRIBE: "Amazon",
Engines.AZURE_SPEECH_TO_TEXT: "Azure",
Engines.GOOGLE_SPEECH_TO_TEXT: "Google",
Engines.GOOGLE_SPEECH_TO_TEXT_ENHANCED: "Google\nEnhanced",
Engines.PICOVOICE_FALCON: "Picovoice\nFalcon",
Engines.PYANNOTE: "pyannote",
}
METRIC_NAME = [
"diarization error rate",
"jaccard error rate",
]
def _plot_accuracy(
engine_list: List[Engines],
result_path: str,
save_path: str,
show: bool) -> None:
for metric in METRIC_NAME:
fig, ax = plt.subplots(figsize=(6, 4))
for engine_type in engine_list:
engine_result_path = os.path.join(result_path, f"{engine_type.value}.json")
if not os.path.exists(engine_result_path):
continue
with open(engine_result_path, "r") as f:
results_json = json.load(f)
engine_value = results_json[metric] * 100
engine_value = round(engine_value, 1)
ax.bar(
ENGINE_PRINT_NAMES[engine_type],
engine_value,
width=0.5,
color=ENGINE_COLORS[engine_type],
edgecolor="none",
label=ENGINE_PRINT_NAMES[engine_type]
)
ax.text(
ENGINE_PRINT_NAMES[engine_type],
engine_value + 1,
f"{engine_value:.1f}%",
ha="center",
va="bottom",
fontsize=12,
color=ENGINE_COLORS[engine_type],
)
ax.set_ylabel(f"{metric.title()} (lower is better)", fontsize=12)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.set_yticks([])
plot_path = os.path.join(save_path, metric.replace(" ", "_") + ".png")
os.makedirs(os.path.dirname(plot_path), exist_ok=True)
plt.savefig(plot_path)
print(f"Saved plot to {plot_path}")
if show:
plt.show()
plt.close()
def _plot_cpu(
engine_list: List[Engines],
result_path: str,
save_path: str,
show: bool) -> Dict[Engines, int]:
engines_results_cpu = dict()
for engine_type in engine_list:
engine_result_path = os.path.join(result_path, engine_type.value + "_cpu.json")
if not os.path.exists(engine_result_path):
continue
with open(engine_result_path, "r") as f:
results_json = json.load(f)
engines_results_cpu[engine_type] = results_json
fig, ax = plt.subplots(figsize=(6, 4))
x_limit = 0
num_workers = dict()
for engine_type, engine_value in engines_results_cpu.items():
core_hour = engine_value["total_process_time_sec"] / engine_value["total_audio_time_sec"] * 100
core_hour = round(core_hour, 0)
num_workers[engine_type] = engine_value["num_workers"]
x_limit = max(x_limit, core_hour)
ax.barh(
ENGINE_PRINT_NAMES[engine_type],
core_hour,
height=0.5,
color=ENGINE_COLORS[engine_type],
edgecolor="none",
label=ENGINE_PRINT_NAMES[engine_type],
)
ax.text(
core_hour + 50,
ENGINE_PRINT_NAMES[engine_type],
f"{core_hour:.0f}\nCore-hour",
ha="center",
va="center",
fontsize=12,
color=ENGINE_COLORS[engine_type],
)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
plt.xlim([0, x_limit + 50])
ax.set_xticks([])
ax.set_ylim([-0.5, 1.5])
plt.title("Core-hour required to process 100 hours of audio (lower is better)", fontsize=12)
plot_path = os.path.join(save_path, "cpu_usage_comparison.png")
os.makedirs(os.path.dirname(plot_path), exist_ok=True)
plt.savefig(plot_path)
print(f"Saved plot to {plot_path}")
if show:
plt.show()
plt.close()
return num_workers
def _plot_mem(
engine_list: List[Engines],
num_workers: Dict[Engines, int],
result_path: str,
save_path: str,
show: bool) -> None:
engines_results_mem = dict()
for engine_type in engine_list:
engine_result_path = os.path.join(result_path, engine_type.value + "_mem.json")
if not os.path.exists(engine_result_path):
continue
with open(engine_result_path, "r") as f:
results_json = json.load(f)
engines_results_mem[engine_type] = results_json
fig, ax = plt.subplots(figsize=(6, 4))
for engine_type, engine_value in engines_results_mem.items():
max_mem_usage = engine_value["max_mem_GiB"] / num_workers[engine_type]
max_mem_usage = round(max_mem_usage, 1)
ax.barh(
ENGINE_PRINT_NAMES[engine_type],
max_mem_usage,
height=0.5,
color=ENGINE_COLORS[engine_type],
edgecolor="none",
label=ENGINE_PRINT_NAMES[engine_type],
)
ax.text(
max_mem_usage + 0.15,
ENGINE_PRINT_NAMES[engine_type],
f"{max_mem_usage:.1f}GiB",
ha="center",
va="center",
fontsize=12,
color=ENGINE_COLORS[engine_type],
)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_xticks([])
ax.set_ylim([-0.5, 1.5])
plt.title("Total Memory Usage per instance (lower in better)", fontsize=12)
plot_path = os.path.join(save_path, "mem_usage_comparison.png")
os.makedirs(os.path.dirname(plot_path), exist_ok=True)
plt.savefig(plot_path)
print(f"Saved plot to {plot_path}")
if show:
plt.show()
plt.close()
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", choices=[ds.value for ds in Datasets], required=True)
parser.add_argument("--show", action="store_true")
args = parser.parse_args()
dataset_name = args.dataset
sorted_engines = sorted(ENGINES, key=lambda e: (ENGINE_ORDER_KEYS.get(e, 1), ENGINE_PRINT_NAMES.get(e, e.value)))
save_path = os.path.join(RESULTS_FOLDER, "plots")
result_dataset_path = os.path.join(RESULTS_FOLDER, dataset_name)
_plot_accuracy(sorted_engines, result_dataset_path, os.path.join(save_path, dataset_name), args.show)
num_workers = _plot_cpu(sorted_engines, result_dataset_path, save_path, args.show)
_plot_mem(sorted_engines, num_workers, result_dataset_path, save_path, args.show)
if __name__ == "__main__":
main()
__all__ = [
"Color",
"plot_results",
"rgb_from_hex",
]