-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathcli.py
executable file
·307 lines (268 loc) · 9.97 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
"""
CLI utilities for QANTA
"""
from typing import Dict, Optional
import random
import sqlite3
import csv
from collections import defaultdict
import json
from os import path
import click
import yaml
from jinja2 import Environment, PackageLoader
import tqdm
from qanta import qlogging
from qanta.guesser.abstract import AbstractGuesser
from qanta.guesser.elasticsearch import elasticsearch_cli
from qanta.util.environment import ENVIRONMENT
from qanta.util.io import safe_open, shell, get_tmp_filename
from qanta.util.constants import QANTA_SQL_DATASET_PATH, GUESSER_GENERATION_FOLDS
from qanta.hyperparam import expand_config
from qanta.wikipedia.categories import categorylinks_cli
from qanta.wikipedia.vital import vital_cli
from qanta.ingestion.trickme import trick_cli
from qanta.ingestion.command import ingestion_cli
log = qlogging.get("cli")
CONTEXT_SETTINGS = dict(help_option_names=["-h", "--help"])
@click.group(context_settings=CONTEXT_SETTINGS)
def main():
log.info("QANTA starting with configuration:")
for k, v in ENVIRONMENT.items():
log.info("{0}={1}".format(k, v))
main.add_command(categorylinks_cli, name="categories")
main.add_command(vital_cli, name="vital")
main.add_command(elasticsearch_cli, name="elasticsearch")
main.add_command(trick_cli, name="trick")
main.add_command(ingestion_cli, name="map")
@main.command()
@click.option("--host", default="0.0.0.0")
@click.option("--port", default=5000)
@click.option("--debug", default=False)
@click.argument("guessers", nargs=-1)
def guesser_api(host, port, debug, guessers):
if debug:
log.warning(
"WARNING: debug mode can expose environment variables (AWS keys), NEVER use when API is exposed to web"
)
log.warning("Confirm that you would like to enable flask debugging")
confirmation = input("yes/no:\n").strip()
if confirmation != "yes":
raise ValueError("Most confirm enabling debug mode")
AbstractGuesser.multi_guesser_web_api(guessers, host=host, port=port, debug=debug)
def run_guesser(n_times, workers, guesser_qualified_class):
for _ in range(n_times):
if "qanta.guesser" not in guesser_qualified_class:
log.error(
"qanta.guesser not found in guesser_qualified_class, this is likely an error, exiting."
)
return
shell("rm -rf /tmp/qanta")
shell(f"rm -rf output/guesser/{guesser_qualified_class}")
shell(
f"luigi --local-scheduler --module qanta.pipeline.guesser --workers {workers} AllSingleGuesserReports"
)
@main.command()
@click.option("--n_times", default=1)
@click.option("--workers", default=1)
@click.argument("guesser_qualified_class")
def guesser_pipeline(n_times, workers, guesser_qualified_class):
run_guesser(n_times, workers, guesser_qualified_class)
@main.command()
@click.option("--n", default=20)
@click.option("--seed", default=0)
def sample_answer_pages(n, seed):
"""
Take a random sample of n questions, then return their answers and pages
formatted for latex in the journal paper
"""
with open("data/external/datasets/qanta.mapped.2018.04.18.json") as f:
questions = json.load(f)["questions"]
random.seed(seed)
random.shuffle(questions)
for i, q in enumerate(questions[:n]):
answer = q["answer"]
page = q["page"]
if i - 1 == n:
latex_format = r"{answer} & {page}\\ \midrule"
else:
latex_format = r"{answer} & {page}\\ \bottomrule"
answer = answer.replace("{", r"\{").replace("}", r"\}").replace("_", r"\_")
if page is None:
page = r"\textbf{No Mapping Found}"
else:
page = page.replace("{", r"\{").replace("}", r"\}").replace("_", r"\_")
print(latex_format.format(answer=answer, page=page))
@main.command()
@click.argument("base_file")
@click.argument("hyper_file")
@click.argument("output_file")
def hyper_to_conf(base_file, hyper_file, output_file):
expand_config(base_file, hyper_file, output_file)
def get_slurm_config_value(
name: str, default_config: Dict, guesser_config: Optional[Dict]
):
if guesser_config is None:
return default_config[name]
else:
if name in guesser_config:
return guesser_config[name]
else:
return default_config[name]
@main.command()
@click.option("--slurm-config-file", default="slurm-config.yaml")
@click.argument("task")
@click.argument("output_dir")
def generate_guesser_slurm(slurm_config_file, task, output_dir):
with open(slurm_config_file) as f:
slurm_config = yaml.load(f)
default_slurm_config = slurm_config["default"]
env = Environment(loader=PackageLoader("qanta", "slurm/templates"))
template = env.get_template("guesser-luigi-template.sh")
enabled_guessers = list(AbstractGuesser.list_enabled_guessers())
for i, gs in enumerate(enabled_guessers):
if gs.guesser_class == "ElasticSearchGuesser":
raise ValueError("ElasticSearchGuesser is not compatible with slurm")
elif gs.guesser_class in slurm_config:
guesser_slurm_config = slurm_config[gs.guesser_class]
else:
guesser_slurm_config = None
partition = get_slurm_config_value(
"partition", default_slurm_config, guesser_slurm_config
)
qos = get_slurm_config_value("qos", default_slurm_config, guesser_slurm_config)
mem_per_cpu = get_slurm_config_value(
"mem_per_cpu", default_slurm_config, guesser_slurm_config
)
gres = get_slurm_config_value(
"gres", default_slurm_config, guesser_slurm_config
)
max_time = get_slurm_config_value(
"max_time", default_slurm_config, guesser_slurm_config
)
cpus_per_task = get_slurm_config_value(
"cpus_per_task", default_slurm_config, guesser_slurm_config
)
account = get_slurm_config_value(
"account", default_slurm_config, guesser_slurm_config
)
if task == "GuesserReport":
folds = GUESSER_GENERATION_FOLDS
else:
folds = []
script = template.render(
{
"task": task,
"guesser_module": gs.guesser_module,
"guesser_class": gs.guesser_class,
"dependency_module": gs.dependency_module,
"dependency_class": gs.dependency_class,
"config_num": gs.config_num,
"partition": partition,
"qos": qos,
"mem_per_cpu": mem_per_cpu,
"max_time": max_time,
"gres": gres,
"cpus_per_task": cpus_per_task,
"account": account,
"folds": folds,
}
)
slurm_file = path.join(output_dir, f"slurm-{i}.sh")
with safe_open(slurm_file, "w") as f:
f.write(script)
singleton_path = "qanta/slurm/templates/guesser-singleton.sh"
singleton_output = path.join(output_dir, "guesser-singleton.sh")
shell(f"cp {singleton_path} {singleton_output}")
master_template = env.get_template("guesser-master-template.sh")
master_script = master_template.render(
{
"script_list": [
path.join(output_dir, f"slurm-{i}.sh")
for i in range(len(enabled_guessers))
]
+ [singleton_output],
"gres": gres,
"partition": partition,
"qos": qos,
"mem_per_cpu": mem_per_cpu,
"max_time": max_time,
"gres": gres,
"cpus_per_task": cpus_per_task,
"account": account,
}
)
with safe_open(path.join(output_dir, "slurm-master.sh"), "w") as f:
f.write(master_script)
@main.command()
@click.option("--partition", default="dpart")
@click.option("--qos", default="batch")
@click.option("--mem-per-cpu", default="8g")
@click.option("--max-time", default="1-00:00:00")
@click.option("--nodelist", default=None)
@click.option("--cpus-per-task", default=None)
@click.argument("luigi_module")
@click.argument("luigi_task")
def slurm(
partition,
qos,
mem_per_cpu,
max_time,
nodelist,
cpus_per_task,
luigi_module,
luigi_task,
):
env = Environment(loader=PackageLoader("qanta", "slurm/templates"))
template = env.get_template("luigi-template.sh.jinja2")
sbatch_script = template.render(
{
"luigi_module": luigi_module,
"luigi_task": luigi_task,
"partition": partition,
"qos": qos,
"mem_per_cpu": mem_per_cpu,
"max_time": max_time,
"nodelist": nodelist,
"cpus_per_task": cpus_per_task,
}
)
tmp_file = get_tmp_filename()
with open(tmp_file, "w") as f:
f.write(sbatch_script)
shell(f"sbatch {tmp_file}")
shell(f"rm -f {tmp_file}")
@main.command()
def answer_map_google_csvs():
from qanta.ingestion.gspreadsheets import create_answer_mapping_csvs
create_answer_mapping_csvs()
@main.command()
@click.argument("question_tsv")
def process_annotated_test(question_tsv):
import pandas as pd
df = pd.read_csv(question_tsv, delimiter="\t")
proto_questions = df[df.qdb_id.isna()]
qdb_questions = df[df.proto_id.isna()]
qdb_map = {
int(q.qdb_id): q.page for q in qdb_questions.itertuples() if type(q.page) is str
}
proto_map = {
q.proto_id: q.page for q in proto_questions.itertuples() if type(q.page) is str
}
print("Proto lines")
for qid, page in proto_map.items():
print(f" {qid}: {page}")
print("QDB lines")
for qid, page in qdb_map.items():
print(f" {qid}: {page}")
print("Unmappable proto")
for r in proto_questions.itertuples():
if type(r.page) is not str:
print(f" - {r.proto_id}")
print("Unmappable qdb")
for r in qdb_questions.itertuples():
if type(r.page) is not str:
print(f" - {int(r.qdb_id)}")
if __name__ == "__main__":
main()