-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_dataset.py
52 lines (35 loc) · 1.31 KB
/
face_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#This code adds images to a dataset folder
import numpy as np
import cv2
import os
def getting_pic():
global name
global age
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
face_id = input('\n Enter user id and press <return> ==> ')
print("\n [INFO] Initializing face capture. Look at the camera and wait ... ")
#Initialize individual face count
count = 0
while (True):
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
count += 1
#Save the captured image into the datasets folder
cv2.imwrite("dataset/"+ name + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h, x:x+w])
cv2.imshow('image', img)
k = cv2.waitKey(100) #Press 'Esc' to exit the video
if k == 27:
break
elif count >= 30: #Take 30 face samples and stop video
break
#Do a bit of cleanup
print("\n [INFO] Exiting program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()
getting_pic()