This repository has been archived by the owner on May 25, 2023. It is now read-only.
forked from ericsujw/KpSFR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathts_worldcup_test_loader.py
299 lines (248 loc) · 11.3 KB
/
ts_worldcup_test_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import glob
import os
import os.path as osp
import numpy as np
from PIL import Image
import torch
from torch.utils import data
from torchvision import transforms
import matplotlib.pyplot as plt
import skimage.segmentation as ss
from typing import Optional
import utils
class MainTestDataset(data.Dataset):
def __init__(self,
root,
data_type,
mode,
num_objects,
noise_trans: Optional[float] = None,
noise_rotate: Optional[float] = None,
target_video: list = [],
sfp_finetuned: Optional[bool] = False
):
self.frame_h = 720
self.frame_w = 1280
self.root = root
self.data_type = data_type
self.mode = mode
self.num_objects = num_objects
# self.num_objects = 91
self.noise_trans = noise_trans
self.noise_rotate = noise_rotate
self.sfp_finetuned = sfp_finetuned
sequence_interval = '80_95'
if self.sfp_finetuned:
sfp_out_path = 'SingleFramePredict_finetuned_with_normalized'
else:
sfp_out_path = 'SingleFramePredict_with_normalized'
self.image_path = osp.join(
self.root, 'Dataset', sequence_interval)
self.anno_path = osp.join(
self.root, 'Annotations', sequence_interval)
self.sfp_path = osp.join(
self.root, sfp_out_path, sequence_interval)
imgset_path = osp.join(self.root, self.data_type)
self.videos = []
self.num_frames = {}
self.num_homographies = {}
self.frames = {}
self.homographies = {}
self.segs = {}
with open(imgset_path + '.txt', 'r') as lines:
for line in lines:
print(line)
_video = line.rstrip('\n')
if target_video and not _video in target_video:
continue
self.videos.append(_video)
self.num_frames[_video] = 1
# len(
# glob.glob(osp.join(self.image_path, _video, '*.jpg')))
self.num_homographies[_video] = 1
# len(
# glob.glob(osp.join(self.anno_path, _video, '*_homography.npy')))
frames = sorted(os.listdir(
osp.join(self.image_path, _video)))[0:1]
self.frames[_video] = frames
homographies = sorted(os.listdir(
osp.join(self.anno_path, _video)))[0:1]
self.homographies[_video] = homographies
gt_segs = sorted(os.listdir(
osp.join(self.sfp_path, _video)))[0:1]
self.segs[_video] = gt_segs
break
self.preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]), # ImageNet
])
def __len__(self):
return len(self.videos)
def __getitem__(self, index):
_video_name = self.videos[index]
_frames = self.frames[_video_name]
_homographies = self.homographies[_video_name]
_segs = self.segs[_video_name]
info = {}
info['num_objects'] = self.num_objects
info['name'] = _video_name
info['frames'] = []
info['num_frames'] = self.num_frames[_video_name]
info['single_frame_path'] = self.sfp_path
template_grid = utils.gen_template_grid() # template grid shape (91, 3)
image_list = []
homo_mat_list = []
dilated_hm_list = []
hm_list = []
gt_seg_list = []
for f_idx in range(self.num_frames[_video_name]):
jpg_image = _frames[f_idx]
npy_matrix = _homographies[f_idx]
png_seg = _segs[f_idx]
info['frames'].append(
osp.join(self.image_path, _video_name, jpg_image))
image = np.array(Image.open(
osp.join(self.image_path, _video_name, jpg_image)))
gt_h = np.load(osp.join(self.anno_path, _video_name, npy_matrix))
sfp_seg = np.array(Image.open(
osp.join(self.sfp_path, _video_name, png_seg)).convert('P'))
gt_seg_list.append(sfp_seg)
# warp grid shape (91, 3)
warp_image, warp_grid, homo_mat = utils.gen_im_whole_grid(
self.mode, image, f_idx, gt_h, template_grid, self.noise_trans, self.noise_rotate, index)
# Each keypoints is considered as an object
num_pts = warp_grid.shape[0]
pil_image = Image.fromarray(warp_image)
image_tensor = self.preprocess(pil_image)
image_list.append(image_tensor)
homo_mat_list.append(homo_mat)
# By default, all keypoints belong to background
# C*H*W, C:91, exclude background class
heatmaps = np.zeros(
(num_pts, self.frame_h // 4, self.frame_w // 4), dtype=np.float32)
dilated_heatmaps = np.zeros_like(heatmaps)
for keypts_label in range(num_pts):
if np.isnan(warp_grid[keypts_label, 0]) and np.isnan(warp_grid[keypts_label, 1]):
continue
px = np.rint(warp_grid[keypts_label, 0] / 4).astype(np.int32)
py = np.rint(warp_grid[keypts_label, 1] / 4).astype(np.int32)
cls = int(warp_grid[keypts_label, 2]) - 1
if 0 <= px < (self.frame_w // 4) and 0 <= py < (self.frame_h // 4):
heatmaps[cls][py, px] = warp_grid[keypts_label, 2]
dilated_heatmaps[cls] = ss.expand_labels(
heatmaps[cls], distance=5)
dilated_hm_list.append(dilated_heatmaps)
hm_list.append(heatmaps)
# TODO: use full gt segmentatino info, only previous for memory management
dilated_hm_list = np.stack(
dilated_hm_list, axis=0) # num_frames*91*H*W
T, CK, H, W = dilated_hm_list.shape
hm_list = np.stack(hm_list, axis=0)
# (CK:num_objects, T:num_frames, H:180, W:320)
target_dilated_hm_list = torch.zeros((CK, T, H, W), dtype=torch.float16)
print(target_dilated_hm_list.size())
target_hm_list = torch.zeros(target_dilated_hm_list.size())
cls_gt = torch.zeros(
(self.num_frames[_video_name], H, W), dtype=torch.float32)
lookup_list = []
for f in range(self.num_frames[_video_name]):
class_lables = np.ones(num_pts, dtype=np.float16) * -1
# Those keypoints appears on the each frame
labels = np.unique(dilated_hm_list[f])
labels = labels[labels != 0] # Remove background class
for obj in labels:
class_lables[int(obj) - 1] = obj
for idx, obj in enumerate(class_lables):
if obj != -1:
target_dilated_hm = dilated_hm_list[f, int(obj) - 1].copy()
target_dilated_hm[target_dilated_hm == obj] = 1
target_dilated_hm_tensor = utils.to_torch(
target_dilated_hm)
target_dilated_hm_list[int(
obj) - 1, f] = target_dilated_hm_tensor
target_hm = hm_list[f, int(obj) - 1].copy()
target_hm[target_hm == obj] = 1
target_hm_tensor = utils.to_torch(target_hm)
target_hm_list[int(obj) - 1, f] = target_hm_tensor
# TODO: union of all target objects of ground truth segmentation
for idx, obj in enumerate(class_lables):
if obj != -1:
cls_gt[target_hm_list[idx] ==
1] = torch.tensor(obj).float()
# TODO: use full single frame predict segmentatino info, only previous for memory management
gt_seg_list = np.stack(gt_seg_list, axis=0) # num_frames*H*W
for f in range(self.num_frames[_video_name]):
class_lables = np.ones(num_pts, dtype=np.float32) * -1
# Those keypoints appears on the each single frame prediction
labels = np.unique(gt_seg_list[f])
labels = labels[labels != 0] # Remove background class
for obj in labels:
class_lables[int(obj) - 1] = obj
sfp_lookup = utils.to_torch(class_lables)
# TODO: choose the range of classes for class conditioning
sfp_interval = torch.ones_like(sfp_lookup) * -1
cls_id = torch.unique(sfp_lookup)
cls_id = cls_id[cls_id != -1]
cls_list = torch.arange(cls_id.min(), cls_id.max() + 1)
if cls_list.min() > 10:
min_cls = cls_list.min()
l1 = torch.arange(min_cls - 10, min_cls)
cls_list = torch.cat([l1, cls_list], dim=0)
if cls_list.max() < 81:
max_cls = cls_list.max() + 1
l2 = torch.arange(max_cls, max_cls + 10)
cls_list = torch.cat([cls_list, l2], dim=0)
for obj in cls_list:
sfp_interval[int(obj) - 1] = obj
lookup_list.append(sfp_interval)
lookup_list = torch.stack(lookup_list, dim=0) # T*CK:91
selector_list = torch.ones_like(lookup_list, dtype=torch.float16) # T*CK:91
selector_list[lookup_list == -1] = 0
# (num_frames, 3, 720, 1280);
print(len(image_list))
image_list = torch.stack(image_list, dim=0)
homo_mat_list = np.stack(homo_mat_list, axis=0)
# (K:num_objects, T:num_frames, C:1, H:180, W:320)
target_dilated_hm_list = target_dilated_hm_list.unsqueeze(2)
data = {}
data['rgb'] = image_list
data['target_dilated_hm'] = target_dilated_hm_list
data['cls_gt'] = cls_gt
data['gt_homo'] = homo_mat_list
data['selector'] = selector_list
data['lookup'] = lookup_list
data['info'] = info
return data
if __name__ == "__main__":
main_test_loader = MainTestDataset(
root='dataset/WorldCup_2014_2018', data_type='test', mode='test', num_objects=4)
import shutil
cnt = 1
visual_dir = osp.join('visual', 'main_test')
if osp.exists(visual_dir):
print(f'Remove directory: {visual_dir}')
shutil.rmtree(visual_dir)
print(f'Create directory: {visual_dir}')
os.makedirs(visual_dir, exist_ok=True)
denorm = utils.UnNormalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
for data in main_test_loader:
image = data['rgb']
mask = data['target_dilated_hm']
cls_gt = data['cls_gt']
# === debug ===
print(f'number of frames: {cls_gt.shape[0]}')
for j in range(cls_gt.shape[0]):
print(torch.unique(cls_gt[j]))
plt.imsave(osp.join(visual_dir, 'Video%d_Seg%03d.jpg' %
(cnt, j + 1)), utils.to_numpy(cls_gt[j]), vmin=0, vmax=91)
plt.imsave(osp.join(visual_dir, 'Frame_%03d.jpg' %
(j + 1)), utils.im_to_numpy(denorm(image[j])))
for i in range(91):
if np.any(utils.to_numpy(mask[i, j, 0])):
plt.imsave(osp.join(visual_dir, '%d_dilated_mask_obj%d.jpg' % (
j + 1, i + 1)), utils.to_numpy(mask[i, j, 0]))
cnt += 1
assert False
pass