-
Notifications
You must be signed in to change notification settings - Fork 169
/
tfrutil.py
163 lines (124 loc) · 4.72 KB
/
tfrutil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
"""Command line utilities for manipulating tfrecords files.
Usage:
To count the number of examples in a tfrecord file:
python tfrutil.py size train-00999-of-01000.tfrecords
To sample 10000 examples from a file pattern to an output file:
python tfrutil.py sample 10000 train-*-of-01000.tfrecords \
train-sampled.tfrecords
To pretty print the contents of a tfrecord file:
python tfrutil.py pp train-00999-of-01000.tfrecords
This can accept gs:// file paths, as well as local files.
"""
import codecs
import random
import sys
import click
import six
import tensorflow as tf
@click.group()
def _cli():
"""Command line utilities for manipulating tfrecords files."""
pass
@_cli.command(name="size")
@click.argument("path", type=str, required=True, nargs=1)
def _size(path):
"""Compute the number of examples in the input tfrecord file."""
i = 0
for _ in tf.python_io.tf_record_iterator(path):
i += 1
print(i)
@_cli.command(name="sample")
@click.argument("sample_size", type=int, required=True, nargs=1)
@click.argument("file_patterns", type=str, required=True, nargs=-1)
@click.argument("out", type=str, required=True, nargs=1)
def _sample(sample_size, file_patterns, out):
file_paths = []
for file_pattern in file_patterns:
file_paths += tf.gfile.Glob(file_pattern)
random.shuffle(file_paths)
# Try to read twice as many examples as requested from the files, reading
# the files in a random order.
buffer_size = int(2 * sample_size)
examples = []
for file_name in file_paths:
for example in tf.python_io.tf_record_iterator(file_name):
examples.append(example)
if len(examples) == buffer_size:
break
if len(examples) == buffer_size:
break
if len(examples) < sample_size:
tf.logging.warning(
"Not enough examples to sample from. Found %i but requested %i.",
len(examples), sample_size,
)
sampled_examples = examples
else:
sampled_examples = random.sample(examples, sample_size)
with tf.python_io.TFRecordWriter(out) as record_writer:
for example in sampled_examples:
record_writer.write(example)
print("Wrote %i examples to %s." % (len(sampled_examples), out))
@_cli.command(name="pp")
@click.argument("path", type=str, required=True, nargs=1)
def _pretty_print(path):
"""Format and print the contents of the tfrecord file to stdout."""
for i, record in enumerate(tf.python_io.tf_record_iterator(path)):
example = tf.train.Example()
example.ParseFromString(record)
print("Example %i\n--------" % i)
_pretty_print_example(example)
print("--------\n\n")
def _pretty_print_example(example):
"""Format and print an individual tensorflow example."""
_print_field("Context", _get_string_feature(example, "context"))
_print_field("Response", _get_string_feature(example, "response"))
_print_extra_contexts(example)
_print_other_features(example)
def _print_field(name, content, indent=False):
indent_str = "\t" if indent else ""
content = content.replace("\n", "\\n ")
print("%s[%s]:" % (indent_str, name))
print("%s\t%s" % (indent_str, content))
def _get_string_feature(example, feature_name):
return example.features.feature[feature_name].bytes_list.value[0].decode(
"utf-8")
def _print_extra_contexts(example):
"""Print the extra context features."""
extra_contexts = []
i = 0
while True:
feature_name = "context/{}".format(i)
try:
value = _get_string_feature(example, feature_name)
except IndexError:
break
extra_contexts.append((feature_name, value))
i += 1
if not extra_contexts:
return
print("\nExtra Contexts:")
for feature_name, value in reversed(extra_contexts):
_print_field(feature_name, value, indent=True)
def _print_other_features(example):
"""Print the other features, which will depend on the dataset.
For now, only support string features.
"""
printed_header = False
for feature_name, value in sorted(example.features.feature.items()):
if (feature_name in {"context", "response"} or
feature_name.startswith("context/")):
continue
if not printed_header:
# Only print the header if there are other features in this
# example.
print("\nOther features:")
printed_header = True
_print_field(
feature_name, value.bytes_list.value[0].decode("utf-8"),
indent=True)
if __name__ == "__main__":
if six.PY2:
sys.stdout = codecs.getwriter("utf8")(sys.stdout)
_cli()