diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml deleted file mode 100644 index 7c0927c..0000000 --- a/.github/FUNDING.yml +++ /dev/null @@ -1,2 +0,0 @@ -github: [miguelmota] -patreon: miguelmota diff --git a/.github/lint-test.yaml b/.github/lint-test.yaml new file mode 100644 index 0000000..f57d10b --- /dev/null +++ b/.github/lint-test.yaml @@ -0,0 +1,32 @@ +name: Lint & Test + +on: + push: + branches: [main,"go*"] + pull_request: + branches: ["*"] + +jobs: + lint-test: + runs-on: ubuntu-latest + steps: + - name: Setup go + uses: actions/setup-go@v4 + with: + go-version: ${{ env.GO_VERSION }} + + - name: Checkout Code + uses: actions/checkout@v3 + + - name: Configure git + run: git config --global url.https://$GH_ACCESS_TOKEN@github.com/.insteadOf https://github.com/ + + - name: Lint + run: make lint + + - name: Test + run: make test + +env: + GH_ACCESS_TOKEN: ${{ secrets.GH_ACCESS_TOKEN }} + GO_VERSION: '1.21' diff --git a/.golangci.yaml b/.golangci.yaml new file mode 100644 index 0000000..2e7d9c9 --- /dev/null +++ b/.golangci.yaml @@ -0,0 +1,47 @@ +# Options for analysis running. +run: + # The default concurrency value is the number of available CPU. + concurrency: 4 + + # Timeout for analysis, e.g. 30s, 5m. + timeout: 10m + + # Exit code when at least one issue was found. + # Default: 1 + issues-exit-code: 2 + + # Enables skipping of directories: + # - vendor$, third_party$, testdata$, examples$, Godeps$, builtin$ + # Default: true + skip-dirs-use-default: true + + # If set we pass it to "go list -mod={option}". From "go help modules": + # If invoked with -mod=readonly, the go command is disallowed from the implicit + # automatic updating of go.mod described above. Instead, it fails when any changes + # to go.mod are needed. This setting is most useful to check that go.mod does + # not need updates, such as in a continuous integration and testing system. + # If invoked with -mod=vendor, the go command assumes that the vendor + # directory holds the correct copies of dependencies and ignores + # the dependency descriptions in go.mod. + # + # Allowed values: readonly|vendor|mod + # By default, it isn't set. + modules-download-mode: readonly + + # Allow multiple parallel golangci-lint instances running. + # If false (default) - golangci-lint acquires file lock on start. + allow-parallel-runners: true + + go: '1.21' + +# output configuration options +output: + # Format: colored-line-number|line-number|json|colored-tab|tab|checkstyle|code-climate|junit-xml|github-actions|teamcity + # + # Multiple can be specified by separating them by comma, output can be provided + # for each of them by separating format name and path by colon symbol. + # Output path can be either `stdout`, `stderr` or path to the file to write to. + # Example: "checkstyle:report.xml,json:stdout,colored-line-number" + # + # Default: colored-line-number + format: github-actions \ No newline at end of file diff --git a/.goreleaser.yml b/.goreleaser.yml deleted file mode 100644 index 49f114d..0000000 --- a/.goreleaser.yml +++ /dev/null @@ -1,11 +0,0 @@ -builds: - - main: ./cmd/geth-hdwallet/main.go - id: "geth-hdwallet" - binary: "geth-hdwallet" - goos: - - linux - goarch: - - 386 - - amd64 - - arm - - arm64 diff --git a/.travis.yml b/.travis.yml deleted file mode 100644 index 1792a41..0000000 --- a/.travis.yml +++ /dev/null @@ -1,8 +0,0 @@ -language: go - -go: - - "master" - -script: - - go get ./ - - make test diff --git a/Gopkg.lock b/Gopkg.lock deleted file mode 100644 index eac2c64..0000000 --- a/Gopkg.lock +++ /dev/null @@ -1,119 +0,0 @@ -# This file is autogenerated, do not edit; changes may be undone by the next 'dep ensure'. - - -[[projects]] - branch = "master" - name = "github.com/aristanetworks/goarista" - packages = ["monotime"] - revision = "2c5933638c5ef1bc320b01486100788c81d57b99" - -[[projects]] - branch = "master" - name = "github.com/btcsuite/btcd" - packages = [ - "btcec", - "chaincfg", - "chaincfg/chainhash", - "wire" - ] - revision = "86fed781132ac890ee03e906e4ecd5d6fa180c64" - -[[projects]] - branch = "master" - name = "github.com/btcsuite/btcutil" - packages = [ - ".", - "base58", - "bech32", - "hdkeychain" - ] - revision = "d4cc87b860166d00d6b5b9e0d3b3d71d6088d4d4" - -[[projects]] - name = "github.com/davecgh/go-spew" - packages = ["spew"] - revision = "346938d642f2ec3594ed81d874461961cd0faa76" - version = "v1.1.0" - -[[projects]] - name = "github.com/ethereum/go-ethereum" - packages = [ - ".", - "accounts", - "common", - "common/hexutil", - "common/math", - "common/mclock", - "core/types", - "crypto", - "crypto/secp256k1", - "crypto/sha3", - "ethdb", - "event", - "log", - "metrics", - "params", - "rlp", - "trie" - ] - revision = "dea1ce052a10cd7d401a5c04f83f371a06fe293c" - version = "v1.8.11" - -[[projects]] - name = "github.com/go-stack/stack" - packages = ["."] - revision = "259ab82a6cad3992b4e21ff5cac294ccb06474bc" - version = "v1.7.0" - -[[projects]] - branch = "master" - name = "github.com/golang/snappy" - packages = ["."] - revision = "2e65f85255dbc3072edf28d6b5b8efc472979f5a" - -[[projects]] - branch = "master" - name = "github.com/syndtr/goleveldb" - packages = [ - "leveldb", - "leveldb/cache", - "leveldb/comparer", - "leveldb/errors", - "leveldb/filter", - "leveldb/iterator", - "leveldb/journal", - "leveldb/memdb", - "leveldb/opt", - "leveldb/storage", - "leveldb/table", - "leveldb/util" - ] - revision = "0d5a0ceb10cf9ab89fdd744cc8c50a83134f6697" - -[[projects]] - branch = "master" - name = "github.com/tyler-smith/go-bip39" - packages = ["."] - revision = "52158e4697b87de16ed390e1bdaf813e581008fa" - -[[projects]] - branch = "master" - name = "golang.org/x/crypto" - packages = [ - "pbkdf2", - "ripemd160" - ] - revision = "a49355c7e3f8fe157a85be2f77e6e269a0f89602" - -[[projects]] - branch = "v2" - name = "gopkg.in/karalabe/cookiejar.v2" - packages = ["collections/prque"] - revision = "8dcd6a7f4951f6ff3ee9cbb919a06d8925822e57" - -[solve-meta] - analyzer-name = "dep" - analyzer-version = 1 - inputs-digest = "6ad4b2174ce7a75c33a183c8db5474e703deb5f8940416965fc4038652304c55" - solver-name = "gps-cdcl" - solver-version = 1 diff --git a/Gopkg.toml b/Gopkg.toml deleted file mode 100644 index e17d192..0000000 --- a/Gopkg.toml +++ /dev/null @@ -1,46 +0,0 @@ -# Gopkg.toml example -# -# Refer to https://github.com/golang/dep/blob/master/docs/Gopkg.toml.md -# for detailed Gopkg.toml documentation. -# -# required = ["github.com/user/thing/cmd/thing"] -# ignored = ["github.com/user/project/pkgX", "bitbucket.org/user/project/pkgA/pkgY"] -# -# [[constraint]] -# name = "github.com/user/project" -# version = "1.0.0" -# -# [[constraint]] -# name = "github.com/user/project2" -# branch = "dev" -# source = "github.com/myfork/project2" -# -# [[override]] -# name = "github.com/x/y" -# version = "2.4.0" -# -# [prune] -# non-go = false -# go-tests = true -# unused-packages = true - - -[[constraint]] - branch = "master" - name = "github.com/btcsuite/btcd" - -[[constraint]] - branch = "master" - name = "github.com/btcsuite/btcutil" - -[[constraint]] - name = "github.com/ethereum/go-ethereum" - version = "1.8.11" - -[[constraint]] - branch = "master" - name = "github.com/tyler-smith/go-bip39" - -[prune] - go-tests = true - unused-packages = true diff --git a/Makefile b/Makefile index 14ce42a..801142b 100644 --- a/Makefile +++ b/Makefile @@ -1,43 +1,32 @@ -.PHONY: all -all: build - -.PHONY: install -install: - @go get -u github.com/miguelmota/go-ethereum-hdwallet - -.PHONY: build -build: - @go build . -o bin/hdwallet +####################################################### +############## formats, lint, and tests ############### +####################################################### + +.PHONY: fmt +fmt: + @echo "----------------------------------------------------------------" + @echo " ⚙️ Formatting code..." + @echo "----------------------------------------------------------------" + gofmt -s -w ./. + +.PHONY: lint +lint: + @echo "----------------------------------------------------------------" + @echo " ⚙️ Linting code..." + @echo "----------------------------------------------------------------" + go install github.com/golangci/golangci-lint/cmd/golangci-lint@v1.54.2 + golangci-lint run ./... -E gofmt --config=.golangci.yaml + go mod tidy + @echo "Linting complete!" .PHONY: test test: - @go test -v . - -.PHONY: ensure -ensure: - @dep ensure - -.PHONY: deps/fix -deps/fix: - @cp -r "${GOPATH}/src/github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1" "vendor/github.com/ethereum/go-ethereum/crypto/secp256k1/" + @echo "----------------------------------------------------------------" + @echo " ⚙️ Testign the code..." + @echo "----------------------------------------------------------------" + GOPRIVATE=${PRIVATE_REPOS} go test ./... -v + @echo "Tests complete!" -.PHONY: run/example/1 -run/example/1: - @go run example/derive.go - -.PHONY: run/example/2 -run/example/2: - @go run example/sign.go - -.PHONY: run/example/3 -run/example/3: - @go run example/seed.go - -.PHONY: run/example/4 -run/example/4: - @go run example/keys.go - -.PHONY: release -release: - @rm -rf dist - @goreleaser +.PHONE: build +build: + @echo \ No newline at end of file diff --git a/README.md b/README.md index 0654758..9372476 100644 --- a/README.md +++ b/README.md @@ -12,19 +12,19 @@ [![License](http://img.shields.io/badge/license-MIT-blue.svg)](https://raw.githubusercontent.com/miguelmota/go-ethereum-hdwallet/master/LICENSE) [![Build Status](https://travis-ci.org/miguelmota/go-ethereum-hdwallet.svg?branch=master)](https://travis-ci.org/miguelmota/go-ethereum-hdwallet) -[![Go Report Card](https://goreportcard.com/badge/github.com/miguelmota/go-ethereum-hdwallet?)](https://goreportcard.com/report/github.com/miguelmota/go-ethereum-hdwallet) -[![GoDoc](https://godoc.org/github.com/miguelmota/go-ethereum-hdwallet?status.svg)](https://godoc.org/github.com/miguelmota/go-ethereum-hdwallet) +[![Go Report Card](https://goreportcard.com/badge/github.com/polymarket/go-ethereum-hdwallet?)](https://goreportcard.com/report/github.com/polymarket/go-ethereum-hdwallet) +[![GoDoc](https://godoc.org/github.com/polymarket/go-ethereum-hdwallet?status.svg)](https://godoc.org/github.com/polymarket/go-ethereum-hdwallet) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](#contributing) ## Install ```bash -go get -u github.com/miguelmota/go-ethereum-hdwallet +go get -u github.com/polymarket/go-ethereum-hdwallet ``` ## Documenation -[https://godoc.org/github.com/miguelmota/go-ethereum-hdwallet](https://godoc.org/github.com/miguelmota/go-ethereum-hdwallet) +[https://godoc.org/github.com/polymarket/go-ethereum-hdwallet](https://godoc.org/github.com/polymarket/go-ethereum-hdwallet) ## Getting started @@ -35,7 +35,7 @@ import ( "fmt" "log" - "github.com/miguelmota/go-ethereum-hdwallet" + "github.com/polymarket/go-ethereum-hdwallet" ) func main() { @@ -75,7 +75,7 @@ import ( "github.com/davecgh/go-spew/spew" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" - "github.com/miguelmota/go-ethereum-hdwallet" + "github.com/polymarket/go-ethereum-hdwallet" ) func main() { @@ -111,7 +111,7 @@ func main() { ## CLI ```bash -go install github.com/miguelmota/go-ethereum-hdwallet/cmd/geth-hdwallet@latest +go install github.com/polymarket/go-ethereum-hdwallet/cmd/geth-hdwallet@latest ``` ```bash diff --git a/cmd/geth-hdwallet/main.go b/cmd/geth-hdwallet/main.go index 6aea1a4..3b32eab 100644 --- a/cmd/geth-hdwallet/main.go +++ b/cmd/geth-hdwallet/main.go @@ -5,7 +5,7 @@ import ( "fmt" "log" - hdwallet "github.com/miguelmota/go-ethereum-hdwallet" + hdwallet "github.com/polymarket/go-ethereum-hdwallet" ) func main() { diff --git a/example/derive.go b/example/derive.go deleted file mode 100644 index 2952df5..0000000 --- a/example/derive.go +++ /dev/null @@ -1,32 +0,0 @@ -package main - -import ( - "fmt" - "log" - - "github.com/miguelmota/go-ethereum-hdwallet" -) - -func main() { - mnemonic := "tag volcano eight thank tide danger coast health above argue embrace heavy" - wallet, err := hdwallet.NewFromMnemonic(mnemonic) - if err != nil { - log.Fatal(err) - } - - path := hdwallet.MustParseDerivationPath("m/44'/60'/0'/0/0") - account, err := wallet.Derive(path, false) - if err != nil { - log.Fatal(err) - } - - fmt.Println(account.Address.Hex()) // 0xC49926C4124cEe1cbA0Ea94Ea31a6c12318df947 - - path = hdwallet.MustParseDerivationPath("m/44'/60'/0'/0/1") - account, err = wallet.Derive(path, false) - if err != nil { - log.Fatal(err) - } - - fmt.Println(account.Address.Hex()) // 0x8230645aC28A4EdD1b0B53E7Cd8019744E9dD559 -} diff --git a/example/keys.go b/example/keys.go deleted file mode 100644 index 5162ec8..0000000 --- a/example/keys.go +++ /dev/null @@ -1,40 +0,0 @@ -package main - -import ( - "fmt" - "log" - - "github.com/miguelmota/go-ethereum-hdwallet" -) - -func main() { - mnemonic := "tag volcano eight thank tide danger coast health above argue embrace heavy" - - wallet, err := hdwallet.NewFromMnemonic(mnemonic) - if err != nil { - log.Fatal(err) - } - - path := hdwallet.MustParseDerivationPath("m/44'/60'/0'/0/0") - account, err := wallet.Derive(path, false) - if err != nil { - log.Fatal(err) - } - - fmt.Printf("Account address: %s\n", account.Address.Hex()) - - privateKey, err := wallet.PrivateKeyHex(account) - if err != nil { - log.Fatal(err) - } - - fmt.Printf("Private key in hex: %s\n", privateKey) - - publicKey, _ := wallet.PublicKeyHex(account) - if err != nil { - log.Fatal(err) - } - - fmt.Printf("Public key in hex: %s\n", publicKey) - -} diff --git a/example/seed.go b/example/seed.go deleted file mode 100644 index 667f679..0000000 --- a/example/seed.go +++ /dev/null @@ -1,32 +0,0 @@ -package main - -import ( - "fmt" - "log" - - "github.com/miguelmota/go-ethereum-hdwallet" -) - -func main() { - seed, _ := hdwallet.NewSeed() - wallet, err := hdwallet.NewFromSeed(seed) - if err != nil { - log.Fatal(err) - } - - path := hdwallet.MustParseDerivationPath("m/44'/60'/0'/0/0") - account, err := wallet.Derive(path, false) - if err != nil { - log.Fatal(err) - } - - fmt.Println(account.Address.Hex()) // 0xC49926C4124cEe1cbA0Ea94Ea31a6c12318df947 - - path = hdwallet.MustParseDerivationPath("m/44'/60'/0'/0/1") - account, err = wallet.Derive(path, false) - if err != nil { - log.Fatal(err) - } - - fmt.Println(account.Address.Hex()) // 0x8230645aC28A4EdD1b0B53E7Cd8019744E9dD559 -} diff --git a/example/sign.go b/example/sign.go deleted file mode 100644 index 04ccece..0000000 --- a/example/sign.go +++ /dev/null @@ -1,40 +0,0 @@ -package main - -import ( - "log" - "math/big" - - "github.com/davecgh/go-spew/spew" - "github.com/ethereum/go-ethereum/common" - "github.com/ethereum/go-ethereum/core/types" - "github.com/miguelmota/go-ethereum-hdwallet" -) - -func main() { - mnemonic := "tag volcano eight thank tide danger coast health above argue embrace heavy" - wallet, err := hdwallet.NewFromMnemonic(mnemonic) - if err != nil { - log.Fatal(err) - } - - path := hdwallet.MustParseDerivationPath("m/44'/60'/0'/0/0") - account, err := wallet.Derive(path, true) - if err != nil { - log.Fatal(err) - } - - nonce := uint64(0) - value := big.NewInt(1000000000000000000) - toAddress := common.HexToAddress("0x0") - gasLimit := uint64(21000) - gasPrice := big.NewInt(21000000000) - var data []byte - - tx := types.NewTransaction(nonce, toAddress, value, gasLimit, gasPrice, data) - signedTx, err := wallet.SignTx(account, tx, nil) - if err != nil { - log.Fatal(err) - } - - spew.Dump(signedTx) -} diff --git a/go.mod b/go.mod index 242dfde..75bf4d4 100644 --- a/go.mod +++ b/go.mod @@ -1,19 +1,29 @@ -module github.com/miguelmota/go-ethereum-hdwallet +module github.com/polymarket/go-ethereum-hdwallet -go 1.18 +go 1.21 require ( - github.com/btcsuite/btcd v0.22.1 - github.com/btcsuite/btcutil v1.0.3-0.20201208143702-a53e38424cce - github.com/davecgh/go-spew v1.1.1 - github.com/ethereum/go-ethereum v1.10.17 + github.com/btcsuite/btcd v0.23.4 + github.com/btcsuite/btcd/btcutil v1.1.0 + github.com/ethereum/go-ethereum v1.13.0 github.com/tyler-smith/go-bip39 v1.1.0 ) require ( - github.com/btcsuite/btcd/btcec/v2 v2.2.0 // indirect + github.com/bits-and-blooms/bitset v1.5.0 // indirect + github.com/btcsuite/btcd/btcec/v2 v2.3.2 // indirect github.com/btcsuite/btcd/chaincfg/chainhash v1.0.1 // indirect + github.com/consensys/bavard v0.1.13 // indirect + github.com/consensys/gnark-crypto v0.10.0 // indirect + github.com/crate-crypto/go-kzg-4844 v0.3.0 // indirect github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1 // indirect - golang.org/x/crypto v0.0.0-20220518034528-6f7dac969898 // indirect - golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a // indirect + github.com/ethereum/c-kzg-4844 v0.3.1 // indirect + github.com/go-stack/stack v1.8.1 // indirect + github.com/holiman/uint256 v1.2.3 // indirect + github.com/mmcloughlin/addchain v0.4.0 // indirect + github.com/supranational/blst v0.3.11 // indirect + golang.org/x/crypto v0.12.0 // indirect + golang.org/x/sync v0.3.0 // indirect + golang.org/x/sys v0.11.0 // indirect + rsc.io/tmplfunc v0.0.3 // indirect ) diff --git a/go.sum b/go.sum index 58b8b39..5de95f3 100644 --- a/go.sum +++ b/go.sum @@ -1,591 +1,202 @@ -cloud.google.com/go v0.26.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw= -cloud.google.com/go v0.34.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw= -cloud.google.com/go v0.38.0/go.mod h1:990N+gfupTy94rShfmMCWGDn0LpTmnzTp2qbd1dvSRU= -cloud.google.com/go v0.43.0/go.mod h1:BOSR3VbTLkk6FDC/TcffxP4NF/FFBGA5ku+jvKOP7pg= -cloud.google.com/go v0.44.1/go.mod h1:iSa0KzasP4Uvy3f1mN/7PiObzGgflwredwwASm/v6AU= -cloud.google.com/go v0.44.2/go.mod h1:60680Gw3Yr4ikxnPRS/oxxkBccT6SA1yMk63TGekxKY= -cloud.google.com/go v0.45.1/go.mod h1:RpBamKRgapWJb87xiFSdk4g1CME7QZg3uwTez+TSTjc= -cloud.google.com/go v0.46.3/go.mod h1:a6bKKbmY7er1mI7TEI4lsAkts/mkhTSZK8w33B4RAg0= -cloud.google.com/go v0.50.0/go.mod h1:r9sluTvynVuxRIOHXQEHMFffphuXHOMZMycpNR5e6To= -cloud.google.com/go v0.51.0/go.mod h1:hWtGJ6gnXH+KgDv+V0zFGDvpi07n3z8ZNj3T1RW0Gcw= -cloud.google.com/go/bigquery v1.0.1/go.mod h1:i/xbL2UlR5RvWAURpBYZTtm/cXjCha9lbfbpx4poX+o= -cloud.google.com/go/bigquery v1.3.0/go.mod h1:PjpwJnslEMmckchkHFfq+HTD2DmtT67aNFKH1/VBDHE= -cloud.google.com/go/bigtable v1.2.0/go.mod h1:JcVAOl45lrTmQfLj7T6TxyMzIN/3FGGcFm+2xVAli2o= -cloud.google.com/go/datastore v1.0.0/go.mod h1:LXYbyblFSglQ5pkeyhO+Qmw7ukd3C+pD7TKLgZqpHYE= -cloud.google.com/go/pubsub v1.0.1/go.mod h1:R0Gpsv3s54REJCy4fxDixWD93lHJMoZTyQ2kNxGRt3I= -cloud.google.com/go/pubsub v1.1.0/go.mod h1:EwwdRX2sKPjnvnqCa270oGRyludottCI76h+R3AArQw= -cloud.google.com/go/storage v1.0.0/go.mod h1:IhtSnM/ZTZV8YYJWCY8RULGVqBDmpoyjwiyrjsg+URw= -cloud.google.com/go/storage v1.5.0/go.mod h1:tpKbwo567HUNpVclU5sGELwQWBDZ8gh0ZeosJ0Rtdos= -collectd.org v0.3.0/go.mod h1:A/8DzQBkF6abtvrT2j/AU/4tiBgJWYyh0y/oB/4MlWE= -dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU= -github.com/Azure/azure-sdk-for-go/sdk/azcore v0.21.1/go.mod h1:fBF9PQNqB8scdgpZ3ufzaLntG0AG7C1WjPMsiFOmfHM= -github.com/Azure/azure-sdk-for-go/sdk/internal v0.8.3/go.mod h1:KLF4gFr6DcKFZwSuH8w8yEK6DpFl3LP5rhdvAb7Yz5I= -github.com/Azure/azure-sdk-for-go/sdk/storage/azblob v0.3.0/go.mod h1:tPaiy8S5bQ+S5sOiDlINkp7+Ef339+Nz5L5XO+cnOHo= -github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03qcyfWMU= -github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo= -github.com/DATA-DOG/go-sqlmock v1.3.3/go.mod h1:f/Ixk793poVmq4qj/V1dPUg2JEAKC73Q5eFN3EC/SaM= -github.com/OneOfOne/xxhash v1.2.2/go.mod h1:HSdplMjZKSmBqAxg5vPj2TmRDmfkzw+cTzAElWljhcU= -github.com/StackExchange/wmi v0.0.0-20180116203802-5d049714c4a6 h1:fLjPD/aNc3UIOA6tDi6QXUemppXK3P9BI7mr2hd6gx8= -github.com/StackExchange/wmi v0.0.0-20180116203802-5d049714c4a6/go.mod h1:3eOhrUMpNV+6aFIbp5/iudMxNCF27Vw2OZgy4xEx0Fg= +github.com/DataDog/zstd v1.4.5 h1:EndNeuB0l9syBZhut0wns3gV1hL8zX8LIu6ZiVHWLIQ= +github.com/DataDog/zstd v1.4.5/go.mod h1:1jcaCB/ufaK+sKp1NBhlGmpz41jOoPQ35bpF36t7BBo= +github.com/StackExchange/wmi v1.2.1 h1:VIkavFPXSjcnS+O8yTq7NI32k0R5Aj+v39y29VYDOSA= +github.com/StackExchange/wmi v1.2.1/go.mod h1:rcmrprowKIVzvc+NUiLncP2uuArMWLCbu9SBzvHz7e8= github.com/VictoriaMetrics/fastcache v1.6.0 h1:C/3Oi3EiBCqufydp1neRZkqcwmEiuRT9c3fqvvgKm5o= github.com/VictoriaMetrics/fastcache v1.6.0/go.mod h1:0qHz5QP0GMX4pfmMA/zt5RgfNuXJrTP0zS7DqpHGGTw= github.com/aead/siphash v1.0.1/go.mod h1:Nywa3cDsYNNK3gaciGTWPwHt0wlpNV15vwmswBAUSII= -github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw= -github.com/alecthomas/template v0.0.0-20160405071501-a0175ee3bccc/go.mod h1:LOuyumcjzFXgccqObfd/Ljyb9UuFJ6TxHnclSeseNhc= -github.com/alecthomas/units v0.0.0-20151022065526-2efee857e7cf/go.mod h1:ybxpYRFXyAe+OPACYpWeL0wqObRcbAqCMya13uyzqw0= -github.com/allegro/bigcache v1.2.1-0.20190218064605-e24eb225f156/go.mod h1:Cb/ax3seSYIx7SuZdm2G2xzfwmv3TPSk2ucNfQESPXM= -github.com/andreyvit/diff v0.0.0-20170406064948-c7f18ee00883/go.mod h1:rCTlJbsFo29Kk6CurOXKm700vrz8f0KW0JNfpkRJY/8= -github.com/apache/arrow/go/arrow v0.0.0-20191024131854-af6fa24be0db/go.mod h1:VTxUBvSJ3s3eHAg65PNgrsn5BtqCRPdmyXh6rAfdxN0= -github.com/aws/aws-sdk-go-v2 v1.2.0/go.mod h1:zEQs02YRBw1DjK0PoJv3ygDYOFTre1ejlJWl8FwAuQo= -github.com/aws/aws-sdk-go-v2/config v1.1.1/go.mod h1:0XsVy9lBI/BCXm+2Tuvt39YmdHwS5unDQmxZOYe8F5Y= -github.com/aws/aws-sdk-go-v2/credentials v1.1.1/go.mod h1:mM2iIjwl7LULWtS6JCACyInboHirisUUdkBPoTHMOUo= -github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.0.2/go.mod h1:3hGg3PpiEjHnrkrlasTfxFqUsZ2GCk/fMUn4CbKgSkM= -github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.0.2/go.mod h1:45MfaXZ0cNbeuT0KQ1XJylq8A6+OpVV2E5kvY/Kq+u8= -github.com/aws/aws-sdk-go-v2/service/route53 v1.1.1/go.mod h1:rLiOUrPLW/Er5kRcQ7NkwbjlijluLsrIbu/iyl35RO4= -github.com/aws/aws-sdk-go-v2/service/sso v1.1.1/go.mod h1:SuZJxklHxLAXgLTc1iFXbEWkXs7QRTQpCLGaKIprQW0= -github.com/aws/aws-sdk-go-v2/service/sts v1.1.1/go.mod h1:Wi0EBZwiz/K44YliU0EKxqTCJGUfYTWXrrBwkq736bM= -github.com/aws/smithy-go v1.1.0/go.mod h1:EzMw8dbp/YJL4A5/sbhGddag+NPT7q084agLbB9LgIw= -github.com/beorn7/perks v0.0.0-20180321164747-3a771d992973/go.mod h1:Dwedo/Wpr24TaqPxmxbtue+5NUziq4I4S80YR8gNf3Q= -github.com/beorn7/perks v1.0.0/go.mod h1:KWe93zE9D1o94FZ5RNwFwVgaQK1VOXiVxmqh+CedLV8= -github.com/bmizerany/pat v0.0.0-20170815010413-6226ea591a40/go.mod h1:8rLXio+WjiTceGBHIoTvn60HIbs7Hm7bcHjyrSqYB9c= -github.com/boltdb/bolt v1.3.1/go.mod h1:clJnj/oiGkjum5o1McbSZDSLxVThjynRyGBgiAx27Ps= +github.com/beorn7/perks v1.0.1 h1:VlbKKnNfV8bJzeqoa4cOKqO6bYr3WgKZxO8Z16+hsOM= +github.com/beorn7/perks v1.0.1/go.mod h1:G2ZrVWU2WbWT9wwq4/hrbKbnv/1ERSJQ0ibhJ6rlkpw= +github.com/bits-and-blooms/bitset v1.5.0 h1:NpE8frKRLGHIcEzkR+gZhiioW1+WbYV6fKwD6ZIpQT8= +github.com/bits-and-blooms/bitset v1.5.0/go.mod h1:gIdJ4wp64HaoK2YrL1Q5/N7Y16edYb8uY+O0FJTyyDA= github.com/btcsuite/btcd v0.20.1-beta/go.mod h1:wVuoA8VJLEcwgqHBwHmzLRazpKxTv13Px/pDuV7OomQ= -github.com/btcsuite/btcd v0.22.1 h1:CnwP9LM/M9xuRrGSCGeMVs9iv09uMqwsVX7EeIpgV2c= -github.com/btcsuite/btcd v0.22.1/go.mod h1:wqgTSL29+50LRkmOVknEdmt8ZojIzhuWvgu/iptuN7Y= -github.com/btcsuite/btcd/btcec/v2 v2.1.2/go.mod h1:ctjw4H1kknNJmRN4iP1R7bTQ+v3GJkZBd6mui8ZsAZE= -github.com/btcsuite/btcd/btcec/v2 v2.2.0 h1:fzn1qaOt32TuLjFlkzYSsBC35Q3KUjT1SwPxiMSCF5k= -github.com/btcsuite/btcd/btcec/v2 v2.2.0/go.mod h1:U7MHm051Al6XmscBQ0BoNydpOTsFAn707034b5nY8zU= -github.com/btcsuite/btcd/chaincfg/chainhash v1.0.0/go.mod h1:7SFka0XMvUgj3hfZtydOrQY2mwhPclbT2snogU7SQQc= +github.com/btcsuite/btcd v0.22.0-beta.0.20220111032746-97732e52810c/go.mod h1:tjmYdS6MLJ5/s0Fj4DbLgSbDHbEqLJrtnHecBFkdz5M= +github.com/btcsuite/btcd v0.23.4 h1:IzV6qqkfwbItOS/sg/aDfPDsjPP8twrCOE2R93hxMlQ= +github.com/btcsuite/btcd v0.23.4/go.mod h1:0QJIIN1wwIXF/3G/m87gIwGniDMDQqjVn4SZgnFpsYY= +github.com/btcsuite/btcd/btcec/v2 v2.1.0/go.mod h1:2VzYrv4Gm4apmbVVsSq5bqf1Ec8v56E48Vt0Y/umPgA= +github.com/btcsuite/btcd/btcec/v2 v2.3.2 h1:5n0X6hX0Zk+6omWcihdYvdAlGf2DfasC0GMf7DClJ3U= +github.com/btcsuite/btcd/btcec/v2 v2.3.2/go.mod h1:zYzJ8etWJQIv1Ogk7OzpWjowwOdXY1W/17j2MW85J04= +github.com/btcsuite/btcd/btcutil v1.0.0/go.mod h1:Uoxwv0pqYWhD//tfTiipkxNfdhG9UrLwaeswfjfdF0A= +github.com/btcsuite/btcd/btcutil v1.1.0 h1:MO4klnGY+EWJdoWF12Wkuf4AWDBPMpZNeN/jRLrklUU= +github.com/btcsuite/btcd/btcutil v1.1.0/go.mod h1:5OapHB7A2hBBWLm48mmw4MOHNJCcUBTwmWH/0Jn8VHE= github.com/btcsuite/btcd/chaincfg/chainhash v1.0.1 h1:q0rUy8C/TYNBQS1+CGKw68tLOFYSNEs0TFnxxnS9+4U= github.com/btcsuite/btcd/chaincfg/chainhash v1.0.1/go.mod h1:7SFka0XMvUgj3hfZtydOrQY2mwhPclbT2snogU7SQQc= github.com/btcsuite/btclog v0.0.0-20170628155309-84c8d2346e9f/go.mod h1:TdznJufoqS23FtqVCzL0ZqgP5MqXbb4fg/WgDys70nA= github.com/btcsuite/btcutil v0.0.0-20190425235716-9e5f4b9a998d/go.mod h1:+5NJ2+qvTyV9exUAL/rxXi3DcLg2Ts+ymUAY5y4NvMg= -github.com/btcsuite/btcutil v1.0.3-0.20201208143702-a53e38424cce h1:YtWJF7RHm2pYCvA5t0RPmAaLUhREsKuKd+SLhxFbFeQ= -github.com/btcsuite/btcutil v1.0.3-0.20201208143702-a53e38424cce/go.mod h1:0DVlHczLPewLcPGEIeUEzfOJhqGPQ0mJJRDBtD307+o= github.com/btcsuite/go-socks v0.0.0-20170105172521-4720035b7bfd/go.mod h1:HHNXQzUsZCxOoE+CPiyCTO6x34Zs86zZUiwtpXoGdtg= github.com/btcsuite/goleveldb v0.0.0-20160330041536-7834afc9e8cd/go.mod h1:F+uVaaLLH7j4eDXPRvw78tMflu7Ie2bzYOH4Y8rRKBY= +github.com/btcsuite/goleveldb v1.0.0/go.mod h1:QiK9vBlgftBg6rWQIj6wFzbPfRjiykIEhBH4obrXJ/I= github.com/btcsuite/snappy-go v0.0.0-20151229074030-0bdef8d06723/go.mod h1:8woku9dyThutzjeg+3xrA5iCpBRH8XEEg3lh6TiUghc= +github.com/btcsuite/snappy-go v1.0.0/go.mod h1:8woku9dyThutzjeg+3xrA5iCpBRH8XEEg3lh6TiUghc= github.com/btcsuite/websocket v0.0.0-20150119174127-31079b680792/go.mod h1:ghJtEyQwv5/p4Mg4C0fgbePVuGr935/5ddU9Z3TmDRY= github.com/btcsuite/winsvc v1.0.0/go.mod h1:jsenWakMcC0zFBFurPLEAyrnc/teJEM1O46fmI40EZs= -github.com/c-bata/go-prompt v0.2.2/go.mod h1:VzqtzE2ksDBcdln8G7mk2RX9QyGjH+OVqOCSiVIqS34= -github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA12rnyqOA5BBL4O983OfeGPqjHWSTneU= -github.com/cespare/cp v0.1.0/go.mod h1:SOGHArjBr4JWaSDEVpWpo/hNg6RoKrls6Oh40hiwW+s= -github.com/cespare/xxhash v1.1.0 h1:a6HrQnmkObjyL+Gs60czilIUGqrzKutQD6XZog3p+ko= -github.com/cespare/xxhash v1.1.0/go.mod h1:XrSqR1VqqWfGrhpAt58auRo0WTKS1nRRg3ghfAqPWnc= -github.com/cespare/xxhash/v2 v2.1.1 h1:6MnRN8NT7+YBpUIWxHtefFZOKTAPgGjpQSxqLNn0+qY= -github.com/cespare/xxhash/v2 v2.1.1/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs= -github.com/chzyer/logex v1.1.10/go.mod h1:+Ywpsq7O8HXn0nuIou7OrIPyXbp3wmkHB+jjWRnGsAI= -github.com/chzyer/readline v0.0.0-20180603132655-2972be24d48e/go.mod h1:nSuG5e5PlCu98SY8svDHJxuZscDgtXS6KTTbou5AhLI= -github.com/chzyer/test v0.0.0-20180213035817-a1ea475d72b1/go.mod h1:Q3SI9o4m/ZMnBNeIyt5eFwwo7qiLfzFZmjNmxjkiQlU= -github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw= -github.com/cloudflare/cloudflare-go v0.14.0/go.mod h1:EnwdgGMaFOruiPZRFSgn+TsQ3hQ7C/YWzIGLeu5c304= -github.com/consensys/bavard v0.1.8-0.20210406032232-f3452dc9b572/go.mod h1:Bpd0/3mZuaj6Sj+PqrmIquiOKy397AKGThQPaGzNXAQ= -github.com/consensys/gnark-crypto v0.4.1-0.20210426202927-39ac3d4b3f1f/go.mod h1:815PAHg3wvysy0SyIqanF8gZ0Y1wjk/hrDHD/iT88+Q= -github.com/cpuguy83/go-md2man/v2 v2.0.0-20190314233015-f79a8a8ca69d/go.mod h1:maD7wRr/U5Z6m/iR4s+kqSMx2CaBsrgA7czyZG/E6dU= -github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E= -github.com/cyberdelia/templates v0.0.0-20141128023046-ca7fffd4298c/go.mod h1:GyV+0YP4qX0UQ7r2MoYZ+AvYDp12OF5yg4q8rGnyNh4= -github.com/dave/jennifer v1.2.0/go.mod h1:fIb+770HOpJ2fmN9EPPKOqm1vMGhB+TwXKMZhrIygKg= +github.com/cespare/xxhash/v2 v2.2.0 h1:DC2CZ1Ep5Y4k3ZQ899DldepgrayRUGE6BBZ/cd9Cj44= +github.com/cespare/xxhash/v2 v2.2.0/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs= +github.com/cockroachdb/errors v1.8.1 h1:A5+txlVZfOqFBDa4mGz2bUWSp0aHElvHX2bKkdbQu+Y= +github.com/cockroachdb/errors v1.8.1/go.mod h1:qGwQn6JmZ+oMjuLwjWzUNqblqk0xl4CVV3SQbGwK7Ac= +github.com/cockroachdb/logtags v0.0.0-20190617123548-eb05cc24525f h1:o/kfcElHqOiXqcou5a3rIlMc7oJbMQkeLk0VQJ7zgqY= +github.com/cockroachdb/logtags v0.0.0-20190617123548-eb05cc24525f/go.mod h1:i/u985jwjWRlyHXQbwatDASoW0RMlZ/3i9yJHE2xLkI= +github.com/cockroachdb/pebble v0.0.0-20230906160148-46873a6a7a06 h1:T+Np/xtzIjYM/P5NAw0e2Rf1FGvzDau1h54MKvx8G7w= +github.com/cockroachdb/pebble v0.0.0-20230906160148-46873a6a7a06/go.mod h1:bynZ3gvVyhlvjLI7PT6dmZ7g76xzJ7HpxfjgkzCGz6s= +github.com/cockroachdb/redact v1.0.8 h1:8QG/764wK+vmEYoOlfobpe12EQcS81ukx/a4hdVMxNw= +github.com/cockroachdb/redact v1.0.8/go.mod h1:BVNblN9mBWFyMyqK1k3AAiSxhvhfK2oOZZ2lK+dpvRg= +github.com/cockroachdb/sentry-go v0.6.1-cockroachdb.2 h1:IKgmqgMQlVJIZj19CdocBeSfSaiCbEBZGKODaixqtHM= +github.com/cockroachdb/sentry-go v0.6.1-cockroachdb.2/go.mod h1:8BT+cPK6xvFOcRlk0R8eg+OTkcqI6baNH4xAkpiYVvQ= +github.com/consensys/bavard v0.1.13 h1:oLhMLOFGTLdlda/kma4VOJazblc7IM5y5QPd2A/YjhQ= +github.com/consensys/bavard v0.1.13/go.mod h1:9ItSMtA/dXMAiL7BG6bqW2m3NdSEObYWoH223nGHukI= +github.com/consensys/gnark-crypto v0.10.0 h1:zRh22SR7o4K35SoNqouS9J/TKHTyU2QWaj5ldehyXtA= +github.com/consensys/gnark-crypto v0.10.0/go.mod h1:Iq/P3HHl0ElSjsg2E1gsMwhAyxnxoKK5nVyZKd+/KhU= +github.com/crate-crypto/go-kzg-4844 v0.3.0 h1:UBlWE0CgyFqqzTI+IFyCzA7A3Zw4iip6uzRv5NIXG0A= +github.com/crate-crypto/go-kzg-4844 v0.3.0/go.mod h1:SBP7ikXEgDnUPONgm33HtuDZEDtWa3L4QtN1ocJSEQ4= github.com/davecgh/go-spew v0.0.0-20171005155431-ecdeabc65495/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= -github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c= github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= -github.com/deckarep/golang-set v1.8.0/go.mod h1:5nI87KwE7wgsBU1F4GKAw2Qod7p5kyS383rP6+o6qqo= github.com/decred/dcrd/crypto/blake256 v1.0.0 h1:/8DMNYp9SGi5f0w7uCm6d6M4OU2rGFK09Y2A4Xv7EE0= github.com/decred/dcrd/crypto/blake256 v1.0.0/go.mod h1:sQl2p6Y26YV+ZOcSTP6thNdn47hh8kt6rqSlvmrXFAc= github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1 h1:YLtO71vCjJRCBcrPMtQ9nqBsqpA1m5sE92cU+pd5Mcc= github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1/go.mod h1:hyedUtir6IdtD/7lIxGeCxkaw7y45JueMRL4DIyJDKs= -github.com/deepmap/oapi-codegen v1.6.0/go.mod h1:ryDa9AgbELGeB+YEXE1dR53yAjHwFvE9iAUlWl9Al3M= -github.com/deepmap/oapi-codegen v1.8.2/go.mod h1:YLgSKSDv/bZQB7N4ws6luhozi3cEdRktEqrX88CvjIw= -github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ= -github.com/dgryski/go-bitstream v0.0.0-20180413035011-3522498ce2c8/go.mod h1:VMaSuZ+SZcx/wljOQKvp5srsbCiKDEb6K2wC4+PiBmQ= -github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no= -github.com/dlclark/regexp2 v1.4.1-0.20201116162257-a2a8dda75c91/go.mod h1:2pZnwuY/m+8K6iRw6wQdMtk+rH5tNGR1i55kozfMjCc= -github.com/dnaeon/go-vcr v1.1.0/go.mod h1:M7tiix8f0r6mKKJ3Yq/kqU1OYf3MnfmBWVbPx/yU9ko= -github.com/dnaeon/go-vcr v1.2.0/go.mod h1:R4UdLID7HZT3taECzJs4YgbbH6PIGXB6W/sc5OLb6RQ= -github.com/docker/docker v1.4.2-0.20180625184442-8e610b2b55bf/go.mod h1:eEKB0N0r5NX/I1kEveEz05bcu8tLC/8azJZsviup8Sk= -github.com/dop251/goja v0.0.0-20211011172007-d99e4b8cbf48/go.mod h1:R9ET47fwRVRPZnOGvHxxhuZcbrMCuiqOz3Rlrh4KSnk= -github.com/dop251/goja_nodejs v0.0.0-20210225215109-d91c329300e7/go.mod h1:hn7BA7c8pLvoGndExHudxTDKZ84Pyvv+90pbBjbTz0Y= -github.com/eclipse/paho.mqtt.golang v1.2.0/go.mod h1:H9keYFcgq3Qr5OUJm/JZI/i6U7joQ8SYLhZwfeOo6Ts= -github.com/edsrzf/mmap-go v1.0.0/go.mod h1:YO35OhQPt3KJa3ryjFM5Bs14WD66h8eGKpfaBNrHW5M= -github.com/envoyproxy/go-control-plane v0.9.1-0.20191026205805-5f8ba28d4473/go.mod h1:YTl/9mNaCwkRvm6d1a2C3ymFceY/DCBVvsKhRF0iEA4= -github.com/envoyproxy/protoc-gen-validate v0.1.0/go.mod h1:iSmxcyjqTsJpI2R4NaDN7+kN2VEUnK/pcBlmesArF7c= -github.com/ethereum/go-ethereum v1.10.17 h1:XEcumY+qSr1cZQaWsQs5Kck3FHB0V2RiMHPdTBJ+oT8= -github.com/ethereum/go-ethereum v1.10.17/go.mod h1:Lt5WzjM07XlXc95YzrhosmR4J9Ahd6X2wyEV2SvGhk0= -github.com/fatih/color v1.7.0/go.mod h1:Zm6kSWBoL9eyXnKyktHP6abPY2pDugNf5KwzbycvMj4= -github.com/fjl/memsize v0.0.0-20190710130421-bcb5799ab5e5/go.mod h1:VvhXpOYNQvB+uIk2RvXzuaQtkQJzzIx6lSBe1xv7hi0= -github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k= +github.com/decred/dcrd/lru v1.0.0/go.mod h1:mxKOwFd7lFjN2GZYsiz/ecgqR6kkYAl+0pz0tEMk218= +github.com/ethereum/c-kzg-4844 v0.3.1 h1:sR65+68+WdnMKxseNWxSJuAv2tsUrihTpVBTfM/U5Zg= +github.com/ethereum/c-kzg-4844 v0.3.1/go.mod h1:VewdlzQmpT5QSrVhbBuGoCdFJkpaJlO1aQputP83wc0= +github.com/ethereum/go-ethereum v1.13.0 h1:dZALM0PlDTtNITTECPiqSrFo0iEYVDfby+mSVc0LxIs= +github.com/ethereum/go-ethereum v1.13.0/go.mod h1:0TDsBNJ7j8jR01vKpk4j2zfVKyAbQuKzy6wLwb5ZMuU= github.com/fsnotify/fsnotify v1.4.7/go.mod h1:jwhsz4b93w/PPRr/qN1Yymfu8t87LnFCMoQvtojpjFo= github.com/fsnotify/fsnotify v1.4.9/go.mod h1:znqG4EE+3YCdAaPaxE2ZRY/06pZUdp0tY4IgpuI1SZQ= -github.com/gballet/go-libpcsclite v0.0.0-20190607065134-2772fd86a8ff/go.mod h1:x7DCsMOv1taUwEWCzT4cmDeAkigA5/QCwUodaVOe8Ww= -github.com/getkin/kin-openapi v0.53.0/go.mod h1:7Yn5whZr5kJi6t+kShccXS8ae1APpYTW6yheSwk8Yi4= -github.com/getkin/kin-openapi v0.61.0/go.mod h1:7Yn5whZr5kJi6t+kShccXS8ae1APpYTW6yheSwk8Yi4= -github.com/ghodss/yaml v1.0.0/go.mod h1:4dBDuWmgqj2HViK6kFavaiC9ZROes6MMH2rRYeMEF04= -github.com/glycerine/go-unsnap-stream v0.0.0-20180323001048-9f0cb55181dd/go.mod h1:/20jfyN9Y5QPEAprSgKAUr+glWDY39ZiUEAYOEv5dsE= -github.com/glycerine/goconvey v0.0.0-20190410193231-58a59202ab31/go.mod h1:Ogl1Tioa0aV7gstGFO7KhffUsb9M4ydbEbbxpcEDc24= -github.com/go-chi/chi/v5 v5.0.0/go.mod h1:BBug9lr0cqtdAhsu6R4AAdvufI0/XBzAQSsUqJpoZOs= -github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU= -github.com/go-gl/glfw/v3.3/glfw v0.0.0-20191125211704-12ad95a8df72/go.mod h1:tQ2UAYgL5IevRw8kRxooKSPJfGvJ9fJQFa0TUsXzTg8= -github.com/go-kit/kit v0.8.0/go.mod h1:xBxKIO96dXMWWy0MnWVtmwkA9/13aqxPnvrjFYMA2as= -github.com/go-logfmt/logfmt v0.3.0/go.mod h1:Qt1PoO58o5twSAckw1HlFXLmHsOX5/0LbT9GBnD5lWE= -github.com/go-logfmt/logfmt v0.4.0/go.mod h1:3RMwSq7FuexP4Kalkev3ejPJsZTpXXBr9+V4qmtdjCk= -github.com/go-ole/go-ole v1.2.1 h1:2lOsA72HgjxAuMlKpFiCbHTvu44PIVkZ5hqm3RSdI/E= -github.com/go-ole/go-ole v1.2.1/go.mod h1:7FAglXiTm7HKlQRDeOQ6ZNUHidzCWXuZWq/1dTyBNF8= -github.com/go-openapi/jsonpointer v0.19.5/go.mod h1:Pl9vOtqEWErmShwVjC8pYs9cog34VGT37dQOVbmoatg= -github.com/go-openapi/swag v0.19.5/go.mod h1:POnQmlKehdgb5mhVOsnJFsivZCEZ/vjK9gh66Z9tfKk= -github.com/go-sourcemap/sourcemap v2.1.3+incompatible/go.mod h1:F8jJfvm2KbVjc5NqelyYJmf/v5J0dwNLS2mL4sNA1Jg= -github.com/go-sql-driver/mysql v1.4.1/go.mod h1:zAC/RDZ24gD3HViQzih4MyKcchzm+sOG5ZlKdlhCg5w= -github.com/go-stack/stack v1.8.0 h1:5SgMzNM5HxrEjV0ww2lTmX6E2Izsfxas4+YHWRs3Lsk= -github.com/go-stack/stack v1.8.0/go.mod h1:v0f6uXyyMGvRgIKkXu+yp6POWl0qKG85gN/melR3HDY= -github.com/gofrs/uuid v3.3.0+incompatible/go.mod h1:b2aQJv3Z4Fp6yNu3cdSllBxTCLRxnplIgP/c0N/04lM= -github.com/gogo/protobuf v1.1.1/go.mod h1:r8qH/GZQm5c6nD/R0oafs1akxWv10x8SbQlK7atdtwQ= -github.com/gogo/protobuf v1.3.1/go.mod h1:SlYgWuQ5SjCEi6WLHjHCa1yvBfUnHcTbrrZtXPKa29o= -github.com/golang-jwt/jwt/v4 v4.3.0/go.mod h1:/xlHOz8bRuivTWchD4jCa+NbatV+wEUSzwAxVc6locg= -github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k= -github.com/golang/geo v0.0.0-20190916061304-5b978397cfec/go.mod h1:QZ0nwyI2jOfgRAoBvP+ab5aRr7c9x7lhGEJrKvBwjWI= -github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b/go.mod h1:SBH7ygxi8pfUlaOkMMuAQtPIUF8ecWP5IEl/CR7VP2Q= -github.com/golang/groupcache v0.0.0-20190702054246-869f871628b6/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc= -github.com/golang/groupcache v0.0.0-20191227052852-215e87163ea7/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc= -github.com/golang/mock v1.1.1/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A= -github.com/golang/mock v1.2.0/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A= -github.com/golang/mock v1.3.1/go.mod h1:sBzyDLLjw3U8JLTeZvSv8jJB+tU5PVekmnlKIyFUx0Y= +github.com/go-ole/go-ole v1.2.5 h1:t4MGB5xEDZvXI+0rMjjsfBsD7yAgp/s9ZDkL1JndXwY= +github.com/go-ole/go-ole v1.2.5/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0= +github.com/go-stack/stack v1.8.1 h1:ntEHSVwIt7PNXNpgPmVfMrNhLtgjlmnZha2kOpuRiDw= +github.com/go-stack/stack v1.8.1/go.mod h1:dcoOX6HbPZSZptuspn9bctJ+N/CnF5gGygcUP3XYfe4= +github.com/gofrs/flock v0.8.1 h1:+gYjHKf32LDeiEEFhQaotPbLuUXjY5ZqxKgXy7n59aw= +github.com/gofrs/flock v0.8.1/go.mod h1:F1TvTiK9OcQqauNUHlbJvyl9Qa1QvF/gOUDKA14jxHU= +github.com/gogo/protobuf v1.3.2 h1:Ov1cvc58UF3b5XjBnZv7+opcTcQFZebYjWzi34vdm4Q= +github.com/gogo/protobuf v1.3.2/go.mod h1:P1XiOD3dCwIKUDQYPy72D8LYyHL2YPYrpS2s69NZV8Q= github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U= -github.com/golang/protobuf v1.3.1/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U= -github.com/golang/protobuf v1.3.2/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U= github.com/golang/protobuf v1.4.0-rc.1/go.mod h1:ceaxUfeHdC40wWswd/P6IGgMaK3YpKi5j83Wpe3EHw8= github.com/golang/protobuf v1.4.0-rc.1.0.20200221234624-67d41d38c208/go.mod h1:xKAWHe0F5eneWXFV3EuXVDTCmh+JuBKY0li0aMyXATA= github.com/golang/protobuf v1.4.0-rc.2/go.mod h1:LlEzMj4AhA7rCAGe4KMBDvJI+AwstrUpVNzEA03Pprs= github.com/golang/protobuf v1.4.0-rc.4.0.20200313231945-b860323f09d0/go.mod h1:WU3c8KckQ9AFe+yFwt9sWVRKCVIyN9cPHBJSNnbL67w= github.com/golang/protobuf v1.4.0/go.mod h1:jodUvKwWbYaEsadDk5Fwe5c77LiNKVO9IDvqG2KuDX0= github.com/golang/protobuf v1.4.2/go.mod h1:oDoupMAO8OvCJWAcko0GGGIgR6R6ocIYbsSw735rRwI= -github.com/golang/protobuf v1.4.3/go.mod h1:oDoupMAO8OvCJWAcko0GGGIgR6R6ocIYbsSw735rRwI= -github.com/golang/snappy v0.0.0-20180518054509-2e65f85255db/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q= -github.com/golang/snappy v0.0.3/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q= -github.com/golang/snappy v0.0.4 h1:yAGX7huGHXlcLOEtBnF4w7FQwA26wojNCwOYAEhLjQM= -github.com/golang/snappy v0.0.4/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q= -github.com/golangci/lint-1 v0.0.0-20181222135242-d2cdd8c08219/go.mod h1:/X8TswGSh1pIozq4ZwCfxS0WA5JGXguxk94ar/4c87Y= -github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ= -github.com/google/btree v1.0.0/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ= -github.com/google/flatbuffers v1.11.0/go.mod h1:1AeVuKshWv4vARoZatz6mlQ0JxURH0Kv5+zNeJKJCa8= -github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M= +github.com/golang/protobuf v1.5.2 h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw= +github.com/golang/protobuf v1.5.2/go.mod h1:XVQd3VNwM+JqD3oG2Ue2ip4fOMUkwXdXDdiuN0vRsmY= +github.com/golang/snappy v0.0.5-0.20220116011046-fa5810519dcb h1:PBC98N2aIaM3XXiurYmW7fx4GZkL8feAMVq7nEjURHk= +github.com/golang/snappy v0.0.5-0.20220116011046-fa5810519dcb/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q= github.com/google/go-cmp v0.3.0/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU= github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU= github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= -github.com/google/go-cmp v0.4.1/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= -github.com/google/go-cmp v0.5.4/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= -github.com/google/gofuzz v1.1.1-0.20200604201612-c04b05f3adfa/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg= -github.com/google/martian v2.1.0+incompatible/go.mod h1:9I4somxYTbIHy5NJKHRl3wXiIaQGbYVAs8BPL6v8lEs= -github.com/google/pprof v0.0.0-20181206194817-3ea8567a2e57/go.mod h1:zfwlbNMJ+OItoe0UupaVj+oy1omPYYDuagoSzA8v9mc= -github.com/google/pprof v0.0.0-20190515194954-54271f7e092f/go.mod h1:zfwlbNMJ+OItoe0UupaVj+oy1omPYYDuagoSzA8v9mc= -github.com/google/pprof v0.0.0-20191218002539-d4f498aebedc/go.mod h1:ZgVRPoUq/hfqzAqh7sHMqb3I9Rq5C59dIz2SbBwJ4eM= -github.com/google/renameio v0.1.0/go.mod h1:KWCgfxg9yswjAJkECMjeO8J8rahYeXnNhOm40UhjYkI= -github.com/google/uuid v1.2.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo= -github.com/googleapis/gax-go/v2 v2.0.4/go.mod h1:0Wqv26UfaUD9n4G6kQubkQ+KchISgw+vpHVxEJEs9eg= -github.com/googleapis/gax-go/v2 v2.0.5/go.mod h1:DWXyrwAJ9X0FpwwEdw+IPEYBICEFu5mhpdKc/us6bOk= -github.com/gopherjs/gopherjs v0.0.0-20181017120253-0766667cb4d1/go.mod h1:wJfORRmW1u3UXTncJ5qlYoELFm8eSnnEO6hX4iZ3EWY= -github.com/gorilla/mux v1.8.0/go.mod h1:DVbg23sWSpFRCP0SfiEN6jmj59UnW/n46BH5rLB71So= -github.com/gorilla/websocket v1.4.2/go.mod h1:YR8l580nyteQvAITg2hZ9XVh4b55+EU/adAjf1fMHhE= -github.com/graph-gophers/graphql-go v1.3.0/go.mod h1:9CQHMSxwO4MprSdzoIEobiHpoLtHm77vfxsvsIN5Vuc= -github.com/hashicorp/go-bexpr v0.1.10/go.mod h1:oxlubA2vC/gFVfX1A6JGp7ls7uCDlfJn732ehYYg+g0= -github.com/hashicorp/golang-lru v0.5.0/go.mod h1:/m3WP610KZHVQ1SGc6re/UDhFvYD7pJ4Ao+sR/qLZy8= -github.com/hashicorp/golang-lru v0.5.1/go.mod h1:/m3WP610KZHVQ1SGc6re/UDhFvYD7pJ4Ao+sR/qLZy8= -github.com/hashicorp/golang-lru v0.5.5-0.20210104140557-80c98217689d/go.mod h1:iADmTwqILo4mZ8BN3D2Q6+9jd8WM5uGBxy+E8yxSoD4= -github.com/holiman/bloomfilter/v2 v2.0.3/go.mod h1:zpoh+gs7qcpqrHr3dB55AMiJwo0iURXE7ZOP9L9hSkA= -github.com/holiman/uint256 v1.2.0/go.mod h1:y4ga/t+u+Xwd7CpDgZESaRcWy0I7XMlTMA25ApIH5Jw= +github.com/google/subcommands v1.2.0/go.mod h1:ZjhPrFU+Olkh9WazFPsl27BQ4UPiG37m3yTrtFlrHVk= +github.com/holiman/uint256 v1.2.3 h1:K8UWO1HUJpRMXBxbmaY1Y8IAMZC/RsKB+ArEnnK4l5o= +github.com/holiman/uint256 v1.2.3/go.mod h1:SC8Ryt4n+UBbPbIBKaG9zbbDlp4jOru9xFZmPzLUTxw= github.com/hpcloud/tail v1.0.0/go.mod h1:ab1qPbhIpdTxEkNHXyeSf5vhxWSCs/tWer42PpOxQnU= -github.com/huin/goupnp v1.0.3-0.20220313090229-ca81a64b4204/go.mod h1:ZxNlw5WqJj6wSsRK5+YfflQGXYfccj5VgQsMNixHM7Y= -github.com/huin/goutil v0.0.0-20170803182201-1ca381bf3150/go.mod h1:PpLOETDnJ0o3iZrZfqZzyLl6l7F3c6L1oWn7OICBi6o= -github.com/ianlancetaylor/demangle v0.0.0-20181102032728-5e5cf60278f6/go.mod h1:aSSvb/t6k1mPoxDqO4vJh6VOCGPwU4O0C2/Eqndh1Sc= -github.com/inconshreveable/mousetrap v1.0.0/go.mod h1:PxqpIevigyE2G7u3NXJIT2ANytuPF1OarO4DADm73n8= -github.com/influxdata/flux v0.65.1/go.mod h1:J754/zds0vvpfwuq7Gc2wRdVwEodfpCFM7mYlOw2LqY= -github.com/influxdata/influxdb v1.8.3/go.mod h1:JugdFhsvvI8gadxOI6noqNeeBHvWNTbfYGtiAn+2jhI= -github.com/influxdata/influxdb-client-go/v2 v2.4.0/go.mod h1:vLNHdxTJkIf2mSLvGrpj8TCcISApPoXkaxP8g9uRlW8= -github.com/influxdata/influxql v1.1.1-0.20200828144457-65d3ef77d385/go.mod h1:gHp9y86a/pxhjJ+zMjNXiQAA197Xk9wLxaz+fGG+kWk= -github.com/influxdata/line-protocol v0.0.0-20180522152040-32c6aa80de5e/go.mod h1:4kt73NQhadE3daL3WhR5EJ/J2ocX0PZzwxQ0gXJ7oFE= -github.com/influxdata/line-protocol v0.0.0-20200327222509-2487e7298839/go.mod h1:xaLFMmpvUxqXtVkUJfg9QmT88cDaCJ3ZKgdZ78oO8Qo= -github.com/influxdata/line-protocol v0.0.0-20210311194329-9aa0e372d097/go.mod h1:xaLFMmpvUxqXtVkUJfg9QmT88cDaCJ3ZKgdZ78oO8Qo= -github.com/influxdata/promql/v2 v2.12.0/go.mod h1:fxOPu+DY0bqCTCECchSRtWfc+0X19ybifQhZoQNF5D8= -github.com/influxdata/roaring v0.4.13-0.20180809181101-fc520f41fab6/go.mod h1:bSgUQ7q5ZLSO+bKBGqJiCBGAl+9DxyW63zLTujjUlOE= -github.com/influxdata/tdigest v0.0.0-20181121200506-bf2b5ad3c0a9/go.mod h1:Js0mqiSBE6Ffsg94weZZ2c+v/ciT8QRHFOap7EKDrR0= -github.com/influxdata/usage-client v0.0.0-20160829180054-6d3895376368/go.mod h1:Wbbw6tYNvwa5dlB6304Sd+82Z3f7PmVZHVKU637d4po= -github.com/jackpal/go-nat-pmp v1.0.2/go.mod h1:QPH045xvCAeXUZOxsnwmrtiCoxIr9eob+4orBN1SBKc= -github.com/jedisct1/go-minisign v0.0.0-20190909160543-45766022959e/go.mod h1:G1CVv03EnqU1wYL2dFwXxW2An0az9JTl/ZsqXQeBlkU= github.com/jessevdk/go-flags v0.0.0-20141203071132-1679536dcc89/go.mod h1:4FA24M0QyGHXBuZZK/XkWh8h0e1EYbRYJSGM75WSRxI= -github.com/jmespath/go-jmespath v0.4.0/go.mod h1:T8mJZnbsbmF+m6zOOFylbeCJqk5+pHWvzYPziyZiYoo= -github.com/jmespath/go-jmespath/internal/testify v1.5.1/go.mod h1:L3OGu8Wl2/fWfCI6z80xFu9LTZmf1ZRjMHUOPmWr69U= +github.com/jessevdk/go-flags v1.4.0/go.mod h1:4FA24M0QyGHXBuZZK/XkWh8h0e1EYbRYJSGM75WSRxI= github.com/jrick/logrotate v1.0.0/go.mod h1:LNinyqDIJnpAur+b8yyulnQw/wDuN1+BYKlTRt3OuAQ= -github.com/json-iterator/go v1.1.6/go.mod h1:+SdeFBvtyEkXs7REEP0seUULqWtbJapLOCVDaaPEHmU= -github.com/jstemmer/go-junit-report v0.0.0-20190106144839-af01ea7f8024/go.mod h1:6v2b51hI/fHJwM22ozAgKL4VKDeJcHhJFhtBdhmNjmU= -github.com/jstemmer/go-junit-report v0.9.1/go.mod h1:Brl9GWCQeLvo8nXZwPNNblvFj/XSXhF0NWZEnDohbsk= -github.com/jsternberg/zap-logfmt v1.0.0/go.mod h1:uvPs/4X51zdkcm5jXl5SYoN+4RK21K8mysFmDaM/h+o= -github.com/jtolds/gls v4.20.0+incompatible/go.mod h1:QJZ7F/aHp+rZTRtaJ1ow/lLfFfVYBRgL+9YlvaHOwJU= -github.com/julienschmidt/httprouter v1.2.0/go.mod h1:SYymIcj16QtmaHHD7aYtjjsJG7VTCxuUUipMqKk8s4w= -github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes= -github.com/jwilder/encoding v0.0.0-20170811194829-b4e1701a28ef/go.mod h1:Ct9fl0F6iIOGgxJ5npU/IUOhOhqlVrGjyIZc8/MagT0= -github.com/karalabe/usb v0.0.2/go.mod h1:Od972xHfMJowv7NGVDiWVxk2zxnWgjLlJzE+F4F7AGU= -github.com/kisielk/errcheck v1.2.0/go.mod h1:/BMXB+zMLi60iA8Vv6Ksmxu/1UDYcXs4uQLJ+jE2L00= -github.com/kisielk/gotool v1.0.0/go.mod h1:XhKaO+MFFWcvkIS/tQcRk01m1F5IRFswLeQ+oQHNcck= github.com/kkdai/bstream v0.0.0-20161212061736-f391b8402d23/go.mod h1:J+Gs4SYgM6CZQHDETBtE9HaSEkGmuNXF86RwHhHUvq4= -github.com/klauspost/compress v1.4.0/go.mod h1:RyIbtBH6LamlWaDj8nUwkbUhJ87Yi3uG0guNDohfE1A= -github.com/klauspost/cpuid v0.0.0-20170728055534-ae7887de9fa5/go.mod h1:Pj4uuM528wm8OyEC2QMXAi2YiTZ96dNQPGgoMS4s3ek= -github.com/klauspost/crc32 v0.0.0-20161016154125-cb6bfca970f6/go.mod h1:+ZoRqAPRLkC4NPOvfYeR5KNOrY6TD+/sAC3HXPZgDYg= -github.com/klauspost/pgzip v1.0.2-0.20170402124221-0bf5dcad4ada/go.mod h1:Ch1tH69qFZu15pkjo5kYi6mth2Zzwzt50oCQKQE9RUs= -github.com/konsorten/go-windows-terminal-sequences v1.0.1/go.mod h1:T0+1ngSBFLxvqU3pZ+m/2kptfBszLMUkC4ZK/EgS/cQ= -github.com/kr/logfmt v0.0.0-20140226030751-b84e30acd515/go.mod h1:+0opPa2QZZtGFBFZlji/RkVcI2GknAs/DXo4wKdlNEc= -github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo= -github.com/kr/pretty v0.2.1/go.mod h1:ipq/a2n7PKx3OHsz4KJII5eveXtPO4qwEXGdVfWzfnI= -github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ= -github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI= +github.com/klauspost/compress v1.15.15 h1:EF27CXIuDsYJ6mmvtBRlEuB2UVOqHG1tAXgZ7yIO+lw= +github.com/klauspost/compress v1.15.15/go.mod h1:ZcK2JAFqKOpnBlxcLsJzYfrS9X1akm9fHZNnD9+Vo/4= +github.com/kr/pretty v0.3.0 h1:WgNl7dwNpEZ6jJ9k1snq4pZsg7DOEN8hP9Xw0Tsjwk0= +github.com/kr/pretty v0.3.0/go.mod h1:640gp4NfQd8pI5XOwp5fnNeVWj67G7CFk/SaSQn7NBk= +github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY= github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE= +github.com/kylelemons/godebug v1.1.0 h1:RPNrshWIDI6G2gRW9EHilWtl7Z6Sb1BR0xunSBf0SNc= github.com/kylelemons/godebug v1.1.0/go.mod h1:9/0rRGxNHcop5bhtWyNeEfOS8JIWk580+fNqagV/RAw= -github.com/labstack/echo/v4 v4.2.1/go.mod h1:AA49e0DZ8kk5jTOOCKNuPR6oTnBS0dYiM4FW1e6jwpg= -github.com/labstack/gommon v0.3.0/go.mod h1:MULnywXg0yavhxWKc+lOruYdAhDwPK9wf0OL7NoOu+k= +github.com/leanovate/gopter v0.2.9 h1:fQjYxZaynp97ozCzfOyOuAGOU4aU/z37zf/tOujFk7c= github.com/leanovate/gopter v0.2.9/go.mod h1:U2L/78B+KVFIx2VmW6onHJQzXtFb+p5y3y2Sh+Jxxv8= -github.com/lib/pq v1.0.0/go.mod h1:5WUZQaWbwv1U+lTReE5YruASi9Al49XbQIvNi/34Woo= -github.com/mailru/easyjson v0.0.0-20190614124828-94de47d64c63/go.mod h1:C1wdFJiN94OJF2b5HbByQZoLdCWB1Yqtg26g4irojpc= -github.com/mailru/easyjson v0.0.0-20190626092158-b2ccc519800e/go.mod h1:C1wdFJiN94OJF2b5HbByQZoLdCWB1Yqtg26g4irojpc= -github.com/matryer/moq v0.0.0-20190312154309-6cfb0558e1bd/go.mod h1:9ELz6aaclSIGnZBoaSLZ3NAl1VTufbOrXBPvtcy6WiQ= -github.com/mattn/go-colorable v0.0.9/go.mod h1:9vuHe8Xs5qXnSaW/c/ABM9alt+Vo+STaOChaDxuIBZU= -github.com/mattn/go-colorable v0.1.2/go.mod h1:U0ppj6V5qS13XJ6of8GYAs25YV2eR4EVcfRqFIhoBtE= -github.com/mattn/go-colorable v0.1.7/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc= -github.com/mattn/go-colorable v0.1.8/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc= -github.com/mattn/go-isatty v0.0.4/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4= -github.com/mattn/go-isatty v0.0.8/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s= -github.com/mattn/go-isatty v0.0.9/go.mod h1:YNRxwqDuOph6SZLI9vUUz6OYw3QyUt7WiY2yME+cCiQ= -github.com/mattn/go-isatty v0.0.12/go.mod h1:cbi8OIDigv2wuxKPP5vlRcQ1OAZbq2CE4Kysco4FUpU= -github.com/mattn/go-runewidth v0.0.3/go.mod h1:LwmH8dsx7+W8Uxz3IHJYH5QSwggIsqBzpuz5H//U1FU= github.com/mattn/go-runewidth v0.0.9 h1:Lm995f3rfxdpd6TSmuVCHVb/QhupuXlYr8sCI/QdE+0= github.com/mattn/go-runewidth v0.0.9/go.mod h1:H031xJmbD/WCDINGzjvQ9THkh0rPKHF+m2gUSrubnMI= -github.com/mattn/go-sqlite3 v1.11.0/go.mod h1:FPy6KqzDD04eiIsT53CuJW3U88zkxoIYsOqkbpncsNc= -github.com/mattn/go-tty v0.0.0-20180907095812-13ff1204f104/go.mod h1:XPvLUNfbS4fJH25nqRHfWLMa1ONC8Amw+mIA639KxkE= -github.com/matttproud/golang_protobuf_extensions v1.0.1/go.mod h1:D8He9yQNgCq6Z5Ld7szi9bcBfOoFv/3dc6xSMkL2PC0= -github.com/mitchellh/mapstructure v1.4.1/go.mod h1:bFUtVrKA4DC2yAKiSyO/QUcy7e+RRV2QTWOzhPopBRo= -github.com/mitchellh/pointerstructure v1.2.0/go.mod h1:BRAsLI5zgXmw97Lf6s25bs8ohIXc3tViBH44KcwB2g4= -github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q= -github.com/modern-go/reflect2 v1.0.1/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0= -github.com/modocache/gover v0.0.0-20171022184752-b58185e213c5/go.mod h1:caMODM3PzxT8aQXRPkAt8xlV/e7d7w8GM5g0fa5F0D8= -github.com/mschoch/smat v0.0.0-20160514031455-90eadee771ae/go.mod h1:qAyveg+e4CE+eKJXWVjKXM4ck2QobLqTDytGJbLLhJg= -github.com/mwitkow/go-conntrack v0.0.0-20161129095857-cc309e4a2223/go.mod h1:qRWi+5nqEBWmkhHvq77mSJWrCKwh8bxhgT7d/eI7P4U= -github.com/naoina/go-stringutil v0.1.0/go.mod h1:XJ2SJL9jCtBh+P9q5btrd/Ylo8XwT/h1USek5+NqSA0= -github.com/naoina/toml v0.1.2-0.20170918210437-9fafd6967416/go.mod h1:NBIhNtsFMo3G2szEBne+bO4gS192HuIYRqfvOWb4i1E= +github.com/matttproud/golang_protobuf_extensions v1.0.2-0.20181231171920-c182affec369 h1:I0XW9+e1XWDxdcEniV4rQAIOPUGDq67JSCiRCgGCZLI= +github.com/matttproud/golang_protobuf_extensions v1.0.2-0.20181231171920-c182affec369/go.mod h1:BSXmuO+STAnVfrANrmjBb36TMTDstsz7MSK+HVaYKv4= +github.com/mmcloughlin/addchain v0.4.0 h1:SobOdjm2xLj1KkXN5/n0xTIWyZA2+s99UCY1iPfkHRY= +github.com/mmcloughlin/addchain v0.4.0/go.mod h1:A86O+tHqZLMNO4w6ZZ4FlVQEadcoqkyU72HC5wJ4RlU= +github.com/mmcloughlin/profile v0.1.1/go.mod h1:IhHD7q1ooxgwTgjxQYkACGA77oFTDdFVejUS1/tS/qU= github.com/nxadm/tail v1.4.4/go.mod h1:kenIhsEOeOJmVchQTgglprH7qJGnHDVpk1VPCcaMI8A= -github.com/oklog/ulid v1.3.1/go.mod h1:CirwcVhetQ6Lv90oh/F+FBtV6XMibvdAFo93nm5qn4U= github.com/olekukonko/tablewriter v0.0.5 h1:P2Ga83D34wi1o9J6Wh1mRuqd4mF/x/lgBS7N7AbDhec= github.com/olekukonko/tablewriter v0.0.5/go.mod h1:hPp6KlRPjbx+hW8ykQs1w3UBbZlj6HuIJcUGPhkA7kY= github.com/onsi/ginkgo v1.6.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE= github.com/onsi/ginkgo v1.7.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE= github.com/onsi/ginkgo v1.12.1/go.mod h1:zj2OWP4+oCPe1qIXoGWkgMRwljMUYCdkwsT2108oapk= github.com/onsi/ginkgo v1.14.0/go.mod h1:iSB4RoI2tjJc9BBv4NKIKWKya62Rps+oPG/Lv9klQyY= +github.com/onsi/gomega v1.4.1/go.mod h1:C1qb7wdrVGGVU+Z6iS04AVkA3Q65CEZX59MT0QO5uiA= github.com/onsi/gomega v1.4.3/go.mod h1:ex+gbHU/CVuBBDIJjb2X0qEXbFg53c61hWP/1CpauHY= github.com/onsi/gomega v1.7.1/go.mod h1:XdKZgCCFLUoM/7CFJVPcG8C1xQ1AJ0vpAezJrB7JYyY= github.com/onsi/gomega v1.10.1/go.mod h1:iN09h71vgCQne3DLsj+A5owkum+a2tYe+TOCB1ybHNo= -github.com/opentracing/opentracing-go v1.0.2/go.mod h1:UkNAQd3GIcIGf0SeVgPpRdFStlNbqXla1AfSYxPUl2o= -github.com/opentracing/opentracing-go v1.0.3-0.20180606204148-bd9c31933947/go.mod h1:UkNAQd3GIcIGf0SeVgPpRdFStlNbqXla1AfSYxPUl2o= -github.com/opentracing/opentracing-go v1.1.0/go.mod h1:UkNAQd3GIcIGf0SeVgPpRdFStlNbqXla1AfSYxPUl2o= -github.com/paulbellamy/ratecounter v0.2.0/go.mod h1:Hfx1hDpSGoqxkVVpBi/IlYD7kChlfo5C6hzIHwPqfFE= -github.com/peterh/liner v1.0.1-0.20180619022028-8c1271fcf47f/go.mod h1:xIteQHvHuaLYG9IFj6mSxM0fCKrs34IrEQUhOYuGPHc= -github.com/peterh/liner v1.1.1-0.20190123174540-a2c9a5303de7/go.mod h1:CRroGNssyjTd/qIG2FyxByd2S8JEAZXBl4qUrZf8GS0= -github.com/philhofer/fwd v1.0.0/go.mod h1:gk3iGcWd9+svBvR0sR+KPcfE+RNWozjowpeBVG3ZVNU= -github.com/pierrec/lz4 v2.0.5+incompatible/go.mod h1:pdkljMzZIN41W+lC3N2tnIh5sFi+IEE17M5jbnwPHcY= -github.com/pkg/errors v0.8.0/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0= -github.com/pkg/errors v0.8.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0= github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4= github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0= -github.com/pkg/term v0.0.0-20180730021639-bffc007b7fd5/go.mod h1:eCbImbZ95eXtAUIbLAuAVnBnwf83mjf6QIVH8SHYwqQ= +github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM= github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4= -github.com/prometheus/client_golang v0.9.1/go.mod h1:7SWBe2y4D6OKWSNQJUaRYU/AaXPKyh/dDVn+NZz0KFw= -github.com/prometheus/client_golang v1.0.0/go.mod h1:db9x61etRT2tGnBNRi70OPL5FsnadC4Ky3P0J6CfImo= -github.com/prometheus/client_model v0.0.0-20180712105110-5c3871d89910/go.mod h1:MbSGuTsp3dbXC40dX6PRTWyKYBIrTGTE9sqQNg2J8bo= -github.com/prometheus/client_model v0.0.0-20190129233127-fd36f4220a90/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA= -github.com/prometheus/client_model v0.0.0-20190812154241-14fe0d1b01d4/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA= -github.com/prometheus/common v0.0.0-20181113130724-41aa239b4cce/go.mod h1:daVV7qP5qjZbuso7PdcryaAu0sAZbrN9i7WWcTMWvro= -github.com/prometheus/common v0.4.1/go.mod h1:TNfzLD0ON7rHzMJeJkieUDPYmFC7Snx/y86RQel1bk4= -github.com/prometheus/common v0.6.0/go.mod h1:eBmuwkDJBwy6iBfxCBob6t6dR6ENT/y+J+Zk0j9GMYc= -github.com/prometheus/procfs v0.0.0-20181005140218-185b4288413d/go.mod h1:c3At6R/oaqEKCNdg8wHV1ftS6bRYblBhIjjI8uT2IGk= -github.com/prometheus/procfs v0.0.2/go.mod h1:TjEm7ze935MbeOT/UhFTIMYKhuLP4wbCsTZCD3I8kEA= -github.com/prometheus/tsdb v0.7.1 h1:YZcsG11NqnK4czYLrWd9mpEuAJIHVQLwdrleYfszMAA= -github.com/prometheus/tsdb v0.7.1/go.mod h1:qhTCs0VvXwvX/y3TZrWD7rabWM+ijKTux40TwIPHuXU= -github.com/retailnext/hllpp v1.0.1-0.20180308014038-101a6d2f8b52/go.mod h1:RDpi1RftBQPUCDRw6SmxeaREsAaRKnOclghuzp/WRzc= -github.com/rjeczalik/notify v0.9.1/go.mod h1:rKwnCoCGeuQnwBtTSPL9Dad03Vh2n40ePRrjvIXnJho= -github.com/rogpeppe/go-internal v1.3.0/go.mod h1:M8bDsm7K2OlrFYOpmOWEs/qY81heoFRclV5y23lUDJ4= -github.com/rs/cors v1.7.0/go.mod h1:gFx+x8UowdsKA9AchylcLynDq+nNFfI8FkUZdN/jGCU= -github.com/russross/blackfriday/v2 v2.0.1/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM= -github.com/segmentio/kafka-go v0.1.0/go.mod h1:X6itGqS9L4jDletMsxZ7Dz+JFWxM6JHfPOCvTvk+EJo= -github.com/segmentio/kafka-go v0.2.0/go.mod h1:X6itGqS9L4jDletMsxZ7Dz+JFWxM6JHfPOCvTvk+EJo= -github.com/sergi/go-diff v1.0.0/go.mod h1:0CfEIISq7TuYL3j771MWULgwwjU+GofnZX9QAmXWZgo= +github.com/prometheus/client_golang v1.12.0 h1:C+UIj/QWtmqY13Arb8kwMt5j34/0Z2iKamrJ+ryC0Gg= +github.com/prometheus/client_golang v1.12.0/go.mod h1:3Z9XVyYiZYEO+YQWt3RD2R3jrbd179Rt297l4aS6nDY= +github.com/prometheus/client_model v0.2.1-0.20210607210712-147c58e9608a h1:CmF68hwI0XsOQ5UwlBopMi2Ow4Pbg32akc4KIVCOm+Y= +github.com/prometheus/client_model v0.2.1-0.20210607210712-147c58e9608a/go.mod h1:LDGWKZIo7rky3hgvBe+caln+Dr3dPggB5dvjtD7w9+w= +github.com/prometheus/common v0.32.1 h1:hWIdL3N2HoUx3B8j3YN9mWor0qhY/NlEKZEaXxuIRh4= +github.com/prometheus/common v0.32.1/go.mod h1:vu+V0TpY+O6vW9J44gczi3Ap/oXXR10b+M/gUGO4Hls= +github.com/prometheus/procfs v0.7.3 h1:4jVXhlkAyzOScmCkXBTOLRLTz8EeU+eyjrwB/EPq0VU= +github.com/prometheus/procfs v0.7.3/go.mod h1:cz+aTbrPOrUb4q7XlbU9ygM+/jj0fzG6c1xBZuNvfVA= +github.com/rogpeppe/go-internal v1.6.1 h1:/FiVV8dS/e+YqF2JvO3yXRFbBLTIuSDkuC7aBOAvL+k= +github.com/rogpeppe/go-internal v1.6.1/go.mod h1:xXDCJY+GAPziupqXw64V24skbSoqbTEfhy4qGm1nDQc= github.com/shirou/gopsutil v3.21.4-0.20210419000835-c7a38de76ee5+incompatible h1:Bn1aCHHRnjv4Bl16T8rcaFjYSrGrIZvpiGO6P3Q4GpU= github.com/shirou/gopsutil v3.21.4-0.20210419000835-c7a38de76ee5+incompatible/go.mod h1:5b4v6he4MtMOwMlS0TUMTu2PcXUg8+E1lC7eC3UO/RA= -github.com/shurcooL/sanitized_anchor_name v1.0.0/go.mod h1:1NzhyTcUVG4SuEtjjoZeVRXNmyL/1OwPU0+IJeTBvfc= -github.com/sirupsen/logrus v1.2.0/go.mod h1:LxeOpSwHxABJmUn/MG1IvRgCAasNZTLOkJPxbbu5VWo= -github.com/smartystreets/assertions v0.0.0-20180927180507-b2de0cb4f26d/go.mod h1:OnSkiWE9lh6wB0YB77sQom3nweQdgAjqCqsofrRNTgc= -github.com/smartystreets/goconvey v1.6.4/go.mod h1:syvi0/a8iFYH4r/RixwvyeAJjdLS9QV7WQ/tjFTllLA= -github.com/spaolacci/murmur3 v0.0.0-20180118202830-f09979ecbc72/go.mod h1:JwIasOWyU6f++ZhiEuf87xNszmSA2myDM2Kzu9HwQUA= -github.com/spf13/cast v1.3.0/go.mod h1:Qx5cxh0v+4UWYiBimWS+eyWzqEqokIECu5etghLkUJE= -github.com/spf13/cobra v0.0.3/go.mod h1:1l0Ry5zgKvJasoi3XT1TypsSe7PqH0Sj9dhYf7v3XqQ= -github.com/spf13/pflag v1.0.3/go.mod h1:DYY7MBk1bdzusC3SYhjObp+wFpr4gzcvqqNjLnInEg4= -github.com/status-im/keycard-go v0.0.0-20190316090335-8537d3370df4/go.mod h1:RZLeN1LMWmRsyYjvAu+I6Dm9QmlDaIIt+Y+4Kd7Tp+Q= -github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME= -github.com/stretchr/objx v0.1.1/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME= -github.com/stretchr/testify v1.2.0/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs= -github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs= -github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UVUgZn+9EI= -github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4= -github.com/stretchr/testify v1.5.1/go.mod h1:5W2xD1RspED5o8YsWQXVCued0rvSQ+mT+I5cxcmMvtA= -github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg= +github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk= +github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4= +github.com/supranational/blst v0.3.11 h1:LyU6FolezeWAhvQk0k6O/d49jqgO52MSDDfYgbeoEm4= +github.com/supranational/blst v0.3.11/go.mod h1:jZJtfjgudtNl4en1tzwPIV3KjUnQUvG3/j+w+fVonLw= github.com/syndtr/goleveldb v1.0.1-0.20210819022825-2ae1ddf74ef7 h1:epCh84lMvA70Z7CTTCmYQn2CKbY8j86K7/FAIr141uY= github.com/syndtr/goleveldb v1.0.1-0.20210819022825-2ae1ddf74ef7/go.mod h1:q4W45IWZaF22tdD+VEXcAWRA037jwmWEB5VWYORlTpc= -github.com/tinylib/msgp v1.0.2/go.mod h1:+d+yLhGm8mzTaHzB+wgMYrodPfmZrzkirds8fDWklFE= -github.com/tklauser/go-sysconf v0.3.5 h1:uu3Xl4nkLzQfXNsWn15rPc/HQCJKObbt1dKJeWp3vU4= -github.com/tklauser/go-sysconf v0.3.5/go.mod h1:MkWzOF4RMCshBAMXuhXJs64Rte09mITnppBXY/rYEFI= -github.com/tklauser/numcpus v0.2.2 h1:oyhllyrScuYI6g+h/zUvNXNp1wy7x8qQy3t/piefldA= -github.com/tklauser/numcpus v0.2.2/go.mod h1:x3qojaO3uyYt0i56EW/VUYs7uBvdl2fkfZFu0T9wgjM= -github.com/tyler-smith/go-bip39 v1.0.1-0.20181017060643-dbb3b84ba2ef/go.mod h1:sJ5fKU0s6JVwZjjcUEX2zFOnvq0ASQ2K9Zr6cf67kNs= +github.com/tklauser/go-sysconf v0.3.12 h1:0QaGUFOdQaIVdPgfITYzaTegZvdCjmYO52cSFAEVmqU= +github.com/tklauser/go-sysconf v0.3.12/go.mod h1:Ho14jnntGE1fpdOqQEEaiKRpvIavV0hSfmBq8nJbHYI= +github.com/tklauser/numcpus v0.6.1 h1:ng9scYS7az0Bk4OZLvrNXNSAO2Pxr1XXRAPyjhIx+Fk= +github.com/tklauser/numcpus v0.6.1/go.mod h1:1XfjsgE2zo8GVw7POkMbHENHzVg3GzmoZ9fESEdAacY= github.com/tyler-smith/go-bip39 v1.1.0 h1:5eUemwrMargf3BSLRRCalXT93Ns6pQJIjYQN2nyfOP8= github.com/tyler-smith/go-bip39 v1.1.0/go.mod h1:gUYDtqQw1JS3ZJ8UWVcGTGqqr6YIN3CWg+kkNaLt55U= -github.com/urfave/cli/v2 v2.3.0/go.mod h1:LJmUH05zAU44vOAcrfzZQKsZbVcdbOG8rtL3/XcUArI= -github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyCJ6HpOuEn7z0Csc= -github.com/valyala/fasttemplate v1.0.1/go.mod h1:UQGH1tvbgY+Nz5t2n7tXsz52dQxojPUpymEIMZ47gx8= -github.com/valyala/fasttemplate v1.2.1/go.mod h1:KHLXt3tVN2HBp8eijSv/kGJopbvo7S+qRAEEKiv+SiQ= -github.com/willf/bitset v1.1.3/go.mod h1:RjeCKbqT1RxIR/KWY6phxZiaY1IyutSBfGjNPySAYV4= -github.com/xlab/treeprint v0.0.0-20180616005107-d6fb6747feb6/go.mod h1:ce1O1j6UtZfjr22oyGxGLbauSBp2YVXpARAosm7dHBg= -github.com/yuin/goldmark v1.2.1/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74= -go.opencensus.io v0.21.0/go.mod h1:mSImk1erAIZhrmZN+AvHh14ztQfjbGwt4TtuofqLduU= -go.opencensus.io v0.22.0/go.mod h1:+kGneAE2xo2IficOXnaByMWTGM9T73dGwxeWcUqIpI8= -go.opencensus.io v0.22.2/go.mod h1:yxeiOL68Rb0Xd1ddK5vPZ/oVn4vY4Ynel7k9FzqtOIw= -go.uber.org/atomic v1.3.2/go.mod h1:gD2HeocX3+yG+ygLZcrzQJaqmWj9AIm7n08wl/qW/PE= -go.uber.org/multierr v1.1.0/go.mod h1:wR5kodmAFQ0UK8QlbwjlSNy0Z68gJhDJUG5sjR94q/0= -go.uber.org/zap v1.9.1/go.mod h1:vwi/ZaCAaUcBkycHslxD9B2zi4UTXhF60s6SWpuDF0Q= golang.org/x/crypto v0.0.0-20170930174604-9419663f5a44/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4= -golang.org/x/crypto v0.0.0-20180904163835-0709b304e793/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4= golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w= -golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= -golang.org/x/crypto v0.0.0-20190605123033-f99c8df09eb5/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= -golang.org/x/crypto v0.0.0-20190909091759-094676da4a83/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= -golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= -golang.org/x/crypto v0.0.0-20200115085410-6d4e4cb37c7d/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= -golang.org/x/crypto v0.0.0-20200820211705-5c72a883971a/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= -golang.org/x/crypto v0.0.0-20201221181555-eec23a3978ad/go.mod h1:jdWPYTVW3xRLrWPugEBEK3UY2ZEsg3UU495nc5E+M+I= -golang.org/x/crypto v0.0.0-20210322153248-0c34fe9e7dc2/go.mod h1:T9bdIzuCu7OtxOm1hfPfRQxPLYneinmdGuTeoZ9dtd4= -golang.org/x/crypto v0.0.0-20220518034528-6f7dac969898 h1:SLP7Q4Di66FONjDJbCYrCRrh97focO6sLogHO7/g8F0= -golang.org/x/crypto v0.0.0-20220518034528-6f7dac969898/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4= -golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= -golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= -golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= -golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= -golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= -golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8= -golang.org/x/exp v0.0.0-20190829153037-c13cbed26979/go.mod h1:86+5VVa7VpoJ4kLfm080zCjGlMRFzhUhsZKEZO7MGek= -golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136/go.mod h1:JXzH8nQsPlswgeRAPE3MuO9GYsAcnJvJ4vnMwN/5qkY= -golang.org/x/exp v0.0.0-20191129062945-2f5052295587/go.mod h1:2RIsYlXP63K8oxa1u096TMicItID8zy7Y6sNkU49FU4= -golang.org/x/exp v0.0.0-20191227195350-da58074b4299/go.mod h1:2RIsYlXP63K8oxa1u096TMicItID8zy7Y6sNkU49FU4= -golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs= -golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js= -golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0= -golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE= -golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU= -golang.org/x/lint v0.0.0-20190301231843-5614ed5bae6f/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE= -golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc= -golang.org/x/lint v0.0.0-20190409202823-959b441ac422/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc= -golang.org/x/lint v0.0.0-20190909230951-414d861bb4ac/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc= -golang.org/x/lint v0.0.0-20190930215403-16217165b5de/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc= -golang.org/x/lint v0.0.0-20191125180803-fdd1cda4f05f/go.mod h1:5qLYkcX4OjUUV8bRuDixDT3tpyyb+LUpUlRWLxfhWrs= -golang.org/x/mobile v0.0.0-20190312151609-d3739f865fa6/go.mod h1:z+o9i4GpDbdi3rU15maQ/Ox0txvL9dWGYEHz965HBQE= -golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCcRqshq8CkpyQDoeVncDDYHnLhea+o= -golang.org/x/mod v0.0.0-20190513183733-4bf6d317e70e/go.mod h1:mXi4GBBbnImb6dmsKGUJ2LatrhH/nqhxcFungHvyanc= -golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY= -golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzBzNggFXnrqF1CaUcvgkdR5Ot7KZg= -golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA= -golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA= -golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= -golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= +golang.org/x/crypto v0.12.0 h1:tFM/ta59kqch6LlvYnPa0yx5a83cL2nHflFhYKvv9Yk= +golang.org/x/crypto v0.12.0/go.mod h1:NF0Gs7EO5K4qLn+Ylc+fih8BSTeIjAP05siRnAh98yw= +golang.org/x/exp v0.0.0-20230810033253-352e893a4cad h1:g0bG7Z4uG+OgH2QDODnjp6ggkk1bJDsINcuWmJN1iJU= +golang.org/x/exp v0.0.0-20230810033253-352e893a4cad/go.mod h1:FXUEEKJgO7OQYeo8N01OfiKP8RXMtf6e8aTskBGqWdc= +golang.org/x/net v0.0.0-20180719180050-a680a1efc54d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= -golang.org/x/net v0.0.0-20181114220301-adae6a3d119a/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= -golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= -golang.org/x/net v0.0.0-20190213061140-3a22650c66bd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= -golang.org/x/net v0.0.0-20190311183353-d8887717615a/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= -golang.org/x/net v0.0.0-20190501004415-9ce7a6920f09/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= -golang.org/x/net v0.0.0-20190503192946-f4e77d36d62c/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= -golang.org/x/net v0.0.0-20190603091049-60506f45cf65/go.mod h1:HSz+uSET+XFnRR8LxR5pz3Of3rY3CfYBVs4xY44aLks= -golang.org/x/net v0.0.0-20190613194153-d28f0bde5980/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= -golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= -golang.org/x/net v0.0.0-20190724013045-ca1201d0de80/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= -golang.org/x/net v0.0.0-20191209160850-c0dbc17a3553/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= golang.org/x/net v0.0.0-20200520004742-59133d7f0dd7/go.mod h1:qpuaurCH72eLCgpAm/N6yyVIVM9cpaDIP3A8BGJEC5A= golang.org/x/net v0.0.0-20200813134508-3edf25e44fcc/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA= -golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA= -golang.org/x/net v0.0.0-20201010224723-4f7140c49acb/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU= -golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU= -golang.org/x/net v0.0.0-20210119194325-5f4716e94777/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg= -golang.org/x/net v0.0.0-20210220033124-5f55cee0dc0d/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg= -golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg= -golang.org/x/net v0.0.0-20210610132358-84b48f89b13b/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y= -golang.org/x/net v0.0.0-20210805182204-aaa1db679c0d/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y= -golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U= -golang.org/x/oauth2 v0.0.0-20190226205417-e64efc72b421/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= -golang.org/x/oauth2 v0.0.0-20190604053449-0f29369cfe45/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= -golang.org/x/oauth2 v0.0.0-20191202225959-858c2ad4c8b6/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= -golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20181108010431-42b317875d0f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20181221193216-37e7f081c4d4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20190227155943-e225da77a7e6/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= -golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= -golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= +golang.org/x/sync v0.3.0 h1:ftCYgMx6zT/asHUrPw8BLLscYtGznsLAnjq5RH9P66E= +golang.org/x/sync v0.3.0/go.mod h1:FU7BRWz2tNW+3quACPkgCx/L+uEAv1htQ0V83Z9Rj+Y= golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= -golang.org/x/sys v0.0.0-20181107165924-66b7b1311ac8/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= -golang.org/x/sys v0.0.0-20181116152217-5ac8a444bdc5/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= -golang.org/x/sys v0.0.0-20190222072716-a9d3bda3a223/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= -golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20190502145724-3ef323f4f1fd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20190507160741-ecd444e8653b/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20190606165138-5da285871e9c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20190624142023-c5567b49c5d0/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20190726091711-fc99dfbffb4e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20190813064441-fde4db37ae7a/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20190904154756-749cb33beabd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20191005200804-aed5e4c7ecf9/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20191120155948-bd437916bb0e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20191204072324-ce4227a45e2e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20191228213918-04cbcbbfeed8/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20200107162124-548cf772de50/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20200116001909-b77594299b42/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20200223170610-d5e6a3e2c0ae/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200519105757-fe76b779f299/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200814200057-3d37ad5750ed/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20200826173525-f9321e4c35a6/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210119212857-b64e53b001e4/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210124154548-22da62e12c0c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210316164454-77fc1eacc6aa/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210324051608-47abb6519492/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210420205809-ac73e9fd8988/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= -golang.org/x/sys v0.0.0-20210816183151-1e6c022a8912/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= -golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a h1:dGzPydgVsqGcTRVwiLJ1jVbufYwmzD3LfVPLKsKg+0k= -golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= -golang.org/x/term v0.0.0-20201117132131-f5c789dd3221/go.mod h1:Nr5EML6q2oocZ2LXRh80K7BxOlk5/8JxuGnuhpl+muw= -golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo= +golang.org/x/sys v0.11.0 h1:eG7RXZHdqOJ1i+0lgLgCpSXAp6M3LYlAo6osgSi0xOM= +golang.org/x/sys v0.11.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= -golang.org/x/text v0.3.1-0.20180807135948-17ff2d5776d2/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk= golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= -golang.org/x/text v0.3.4/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= -golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= -golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= -golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ= -golang.org/x/time v0.0.0-20181108054448-85acf8d2951c/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= -golang.org/x/time v0.0.0-20190308202827-9d24e82272b4/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= -golang.org/x/time v0.0.0-20201208040808-7e3f01d25324/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= -golang.org/x/time v0.0.0-20210220033141-f8bda1e9f3ba/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= -golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= -golang.org/x/tools v0.0.0-20181030221726-6c7e314b6563/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= -golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= -golang.org/x/tools v0.0.0-20190206041539-40960b6deb8e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= -golang.org/x/tools v0.0.0-20190226205152-f727befe758c/go.mod h1:9Yl7xja0Znq3iFh3HoIrodX9oNMXvdceNzlUR8zjMvY= -golang.org/x/tools v0.0.0-20190311212946-11955173bddd/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs= -golang.org/x/tools v0.0.0-20190312151545-0bb0c0a6e846/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs= -golang.org/x/tools v0.0.0-20190312170243-e65039ee4138/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs= -golang.org/x/tools v0.0.0-20190328211700-ab21143f2384/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs= -golang.org/x/tools v0.0.0-20190425150028-36563e24a262/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q= -golang.org/x/tools v0.0.0-20190506145303-2d16b83fe98c/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q= -golang.org/x/tools v0.0.0-20190524140312-2c0ae7006135/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q= -golang.org/x/tools v0.0.0-20190606124116-d0a3d012864b/go.mod h1:/rFqwRUd4F7ZHNgwSSTFct+R/Kf4OFW1sUzUTQQTgfc= -golang.org/x/tools v0.0.0-20190621195816-6e04913cbbac/go.mod h1:/rFqwRUd4F7ZHNgwSSTFct+R/Kf4OFW1sUzUTQQTgfc= -golang.org/x/tools v0.0.0-20190628153133-6cdbf07be9d0/go.mod h1:/rFqwRUd4F7ZHNgwSSTFct+R/Kf4OFW1sUzUTQQTgfc= -golang.org/x/tools v0.0.0-20190816200558-6889da9d5479/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20190911174233-4f2ddba30aff/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20191012152004-8de300cfc20a/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20191113191852-77e3bb0ad9e7/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20191115202509-3a792d9c32b2/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20191125144606-a911d9008d1f/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= -golang.org/x/tools v0.0.0-20191216173652-a0e659d51361/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28= -golang.org/x/tools v0.0.0-20191227053925-7b8e75db28f4/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28= -golang.org/x/tools v0.0.0-20200108203644-89082a384178/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28= -golang.org/x/tools v0.1.0/go.mod h1:xkSsbof2nBLbhDlRMhhhyNLN/zl3eTqcnHD5viDpcZ0= -golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= -golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= -gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo= -gonum.org/v1/gonum v0.0.0-20181121035319-3f7ecaa7e8ca/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo= -gonum.org/v1/gonum v0.6.0/go.mod h1:9mxDZsDKxgMAuccQkewq682L+0eCu4dCN2yonUJTCLU= -gonum.org/v1/netlib v0.0.0-20181029234149-ec6d1f5cefe6/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw= -gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw= -gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc= -google.golang.org/api v0.4.0/go.mod h1:8k5glujaEP+g9n7WNsDg8QP6cUVNI86fCNMcbazEtwE= -google.golang.org/api v0.7.0/go.mod h1:WtwebWUNSVBH/HAw79HIFXZNqEvBhG+Ra+ax0hx3E3M= -google.golang.org/api v0.8.0/go.mod h1:o4eAsZoiT+ibD93RtjEohWalFOjRDx6CVaqeizhEnKg= -google.golang.org/api v0.9.0/go.mod h1:o4eAsZoiT+ibD93RtjEohWalFOjRDx6CVaqeizhEnKg= -google.golang.org/api v0.13.0/go.mod h1:iLdEw5Ide6rF15KTC1Kkl0iskquN2gFfn9o9XIsbkAI= -google.golang.org/api v0.14.0/go.mod h1:iLdEw5Ide6rF15KTC1Kkl0iskquN2gFfn9o9XIsbkAI= -google.golang.org/api v0.15.0/go.mod h1:iLdEw5Ide6rF15KTC1Kkl0iskquN2gFfn9o9XIsbkAI= -google.golang.org/appengine v1.1.0/go.mod h1:EbEs0AVv82hx2wNQdGPgUI5lhzA/G0D9YwlJXL52JkM= -google.golang.org/appengine v1.4.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4= -google.golang.org/appengine v1.5.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4= -google.golang.org/appengine v1.6.1/go.mod h1:i06prIuMbXzDqacNJfV5OdTW448YApPu5ww/cMBSeb0= -google.golang.org/appengine v1.6.5/go.mod h1:8WjMMxjGQR8xUklV/ARdw2HLXBOI7O7uCIDZVag1xfc= -google.golang.org/genproto v0.0.0-20180817151627-c66870c02cf8/go.mod h1:JiN7NxoALGmiZfu7CAH4rXhgtRTLTxftemlI0sWmxmc= -google.golang.org/genproto v0.0.0-20190307195333-5fe7a883aa19/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE= -google.golang.org/genproto v0.0.0-20190418145605-e7d98fc518a7/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE= -google.golang.org/genproto v0.0.0-20190425155659-357c62f0e4bb/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE= -google.golang.org/genproto v0.0.0-20190502173448-54afdca5d873/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE= -google.golang.org/genproto v0.0.0-20190716160619-c506a9f90610/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc= -google.golang.org/genproto v0.0.0-20190801165951-fa694d86fc64/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc= -google.golang.org/genproto v0.0.0-20190819201941-24fa4b261c55/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc= -google.golang.org/genproto v0.0.0-20190911173649-1774047e7e51/go.mod h1:IbNlFCBrqXvoKpeg0TB2l7cyZUmoaFKYIwrEpbDKLA8= -google.golang.org/genproto v0.0.0-20191108220845-16a3f7862a1a/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc= -google.golang.org/genproto v0.0.0-20191115194625-c23dd37a84c9/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc= -google.golang.org/genproto v0.0.0-20191216164720-4f79533eabd1/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc= -google.golang.org/genproto v0.0.0-20191230161307-f3c370f40bfb/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc= -google.golang.org/genproto v0.0.0-20200108215221-bd8f9a0ef82f/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc= -google.golang.org/grpc v1.19.0/go.mod h1:mqu4LbDTu4XGKhr4mRzUsmM4RtVoemTSY81AxZiDr8c= -google.golang.org/grpc v1.20.1/go.mod h1:10oTOabMzJvdu6/UiuZezV6QK5dSlG84ov/aaiqXj38= -google.golang.org/grpc v1.21.1/go.mod h1:oYelfM1adQP15Ek0mdvEgi9Df8B9CZIaU1084ijfRaM= -google.golang.org/grpc v1.23.0/go.mod h1:Y5yQAOtifL1yxbo5wqy6BxZv8vAUGQwXBOALyacEbxg= -google.golang.org/grpc v1.26.0/go.mod h1:qbnxyOmOxrQa7FizSgH+ReBfzJrCY1pSN7KXBS8abTk= google.golang.org/protobuf v0.0.0-20200109180630-ec00e32a8dfd/go.mod h1:DFci5gLYBciE7Vtevhsrf46CRTquxDuWsQurQQe4oz8= google.golang.org/protobuf v0.0.0-20200221191635-4d8936d0db64/go.mod h1:kwYJMbMJ01Woi6D6+Kah6886xMZcty6N08ah7+eCXa0= google.golang.org/protobuf v0.0.0-20200228230310-ab0ca4ff8a60/go.mod h1:cfTl7dwQJ+fmap5saPgwCLgHXTUD7jkjRqWcaiX5VyM= google.golang.org/protobuf v1.20.1-0.20200309200217-e05f789c0967/go.mod h1:A+miEFZTKqfCUM6K7xSMQL9OKL/b6hQv+e19PK+JZNE= google.golang.org/protobuf v1.21.0/go.mod h1:47Nbq4nVaFHyn7ilMalzfO3qCViNmqZ2kzikPIcrTAo= google.golang.org/protobuf v1.23.0/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU= -gopkg.in/alecthomas/kingpin.v2 v2.2.6/go.mod h1:FMv+mEhP44yOT+4EoQTLFTRgOQ1FBLkstjWtayDeSgw= +google.golang.org/protobuf v1.27.1 h1:SnqbnDw1V7RiZcXPx5MEeqPv2s79L9i7BJUlG/+RurQ= +google.golang.org/protobuf v1.27.1/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc= gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0= -gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0= -gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c/go.mod h1:JHkPIbrfpd72SG/EVd6muEfDQjcINNoR0C8j2r3qZ4Q= -gopkg.in/errgo.v2 v2.1.0/go.mod h1:hNsd1EY+bozCKY1Ytp96fpM3vjJbqLJn88ws8XvfDNI= gopkg.in/fsnotify.v1 v1.4.7/go.mod h1:Tz8NjZHkW78fSQdbUxIjBTcgA1z1m8ZHf0WmKUhAMys= -gopkg.in/natefinch/npipe.v2 v2.0.0-20160621034901-c1b8fa8bdcce/go.mod h1:5AcXVHNjg+BDxry382+8OKon8SEWiKktQR07RKPsv1c= -gopkg.in/olebedev/go-duktape.v3 v3.0.0-20200619000410-60c24ae608a6/go.mod h1:uAJfkITjFhyEEuUfm7bsmCZRbW5WRq8s9EY8HZ6hCns= gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7/go.mod h1:dt/ZhP58zS4L8KSrWDmTeBkI65Dw0HsyUHuEVlX15mw= -gopkg.in/urfave/cli.v1 v1.20.0/go.mod h1:vuBzUtMdQeixQj8LVd+/98pzhxNGQoyuPBlsXHOQNO0= gopkg.in/yaml.v2 v2.2.1/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= -gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= -gopkg.in/yaml.v2 v2.2.3/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= gopkg.in/yaml.v2 v2.2.4/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= -gopkg.in/yaml.v2 v2.2.8/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= gopkg.in/yaml.v2 v2.3.0/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= +gopkg.in/yaml.v2 v2.4.0 h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY= gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ= -gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM= -gopkg.in/yaml.v3 v3.0.0-20210107192922-496545a6307b/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM= -gotest.tools v2.2.0+incompatible/go.mod h1:DsYFclhRJ6vuDpmuTbkuFWG+y2sxOXAzmJt81HFBacw= -honnef.co/go/tools v0.0.0-20190102054323-c2f93a96b099/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4= -honnef.co/go/tools v0.0.0-20190106161140-3f1c8253044a/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4= -honnef.co/go/tools v0.0.0-20190418001031-e561f6794a2a/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4= -honnef.co/go/tools v0.0.0-20190523083050-ea95bdfd59fc/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4= -honnef.co/go/tools v0.0.1-2019.2.3/go.mod h1:a3bituU0lyd329TUQxRnasdCoJDkEUEAqEt0JzvZhAg= -honnef.co/go/tools v0.1.3/go.mod h1:NgwopIslSNH47DimFoV78dnkksY2EFtX0ajyb3K/las= -rsc.io/binaryregexp v0.2.0/go.mod h1:qTv7/COck+e2FymRvadv62gMdZztPaShugOCi3I+8D8= -rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4= +gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA= +gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM= +rsc.io/tmplfunc v0.0.3 h1:53XFQh69AfOa8Tw0Jm7t+GV7KZhOi6jzsCzTtKbMvzU= +rsc.io/tmplfunc v0.0.3/go.mod h1:AG3sTPzElb1Io3Yg4voV9AGZJuleGAwaVRxL9M49PhA= diff --git a/hdwallet.go b/hdwallet.go index e0177e3..3791a1b 100644 --- a/hdwallet.go +++ b/hdwallet.go @@ -9,8 +9,8 @@ import ( "os" "sync" + "github.com/btcsuite/btcd/btcutil/hdkeychain" "github.com/btcsuite/btcd/chaincfg" - "github.com/btcsuite/btcutil/hdkeychain" "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/accounts" "github.com/ethereum/go-ethereum/common" @@ -282,7 +282,7 @@ func (w *Wallet) SignTx(account accounts.Account, tx *types.Transaction, chainID signer := types.LatestSignerForChainID(chainID) - // Sign the transaction and verify the sender to avoid hardware fault surprises + // Sign the transaction and verify the sender to avoid hardware fault surprises signedTx, err := types.SignTx(tx, signer, privateKey) if err != nil { return nil, err diff --git a/hdwallet_test.go b/hdwallet_test.go index 973b482..570d05a 100644 --- a/hdwallet_test.go +++ b/hdwallet_test.go @@ -35,7 +35,7 @@ func TestIssue172(t *testing.T) { os.Setenv(issue179FixEnvar, "") // Derive the old (wrong way) - account, err := getWallet().Derive(path, false) + account, _ := getWallet().Derive(path, false) if account.Address.Hex() != "0x3943412CBEEEd4b68d73382b136F36b0CB82F481" { t.Error("wrong address") @@ -43,7 +43,7 @@ func TestIssue172(t *testing.T) { // Set envar to non-zero length to derive correctly os.Setenv(issue179FixEnvar, "1") - account, err = getWallet().Derive(path, false) + account, _ = getWallet().Derive(path, false) if account.Address.Hex() != "0x98e440675eFF3041D20bECb7fE7e81746A431b6d" { t.Error("wrong address") } @@ -52,7 +52,7 @@ func TestIssue172(t *testing.T) { os.Setenv(issue179FixEnvar, "") wallet := getWallet() wallet.SetFixIssue172(true) - account, err = wallet.Derive(path, false) + account, _ = wallet.Derive(path, false) if account.Address.Hex() != "0x98e440675eFF3041D20bECb7fE7e81746A431b6d" { t.Error("wrong address") @@ -324,7 +324,7 @@ func TestWallet(t *testing.T) { t.Error(err) } - mnemonic, err = NewMnemonicFromEntropy(entropy) + _, err = NewMnemonicFromEntropy(entropy) if err != nil { t.Error(err) } diff --git a/vendor/github.com/btcsuite/btcd/LICENSE b/vendor/github.com/btcsuite/btcd/LICENSE deleted file mode 100644 index 53ba0c5..0000000 --- a/vendor/github.com/btcsuite/btcd/LICENSE +++ /dev/null @@ -1,16 +0,0 @@ -ISC License - -Copyright (c) 2013-2017 The btcsuite developers -Copyright (c) 2015-2016 The Decred developers - -Permission to use, copy, modify, and distribute this software for any -purpose with or without fee is hereby granted, provided that the above -copyright notice and this permission notice appear in all copies. - -THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/vendor/github.com/btcsuite/btcd/btcec/README.md b/vendor/github.com/btcsuite/btcd/btcec/README.md deleted file mode 100644 index a6dd2cf..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/README.md +++ /dev/null @@ -1,68 +0,0 @@ -btcec -===== - -[![Build Status](https://github.com/btcsuite/btcd/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcd/actions) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://pkg.go.dev/github.com/btcsuite/btcd/btcec?status.png)](https://pkg.go.dev/github.com/btcsuite/btcd/btcec) - -Package btcec implements elliptic curve cryptography needed for working with -Bitcoin (secp256k1 only for now). It is designed so that it may be used with the -standard crypto/ecdsa packages provided with go. A comprehensive suite of test -is provided to ensure proper functionality. Package btcec was originally based -on work from ThePiachu which is licensed under the same terms as Go, but it has -signficantly diverged since then. The btcsuite developers original is licensed -under the liberal ISC license. - -Although this package was primarily written for btcd, it has intentionally been -designed so it can be used as a standalone package for any projects needing to -use secp256k1 elliptic curve cryptography. - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcd/btcec -``` - -## Examples - -* [Sign Message](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--SignMessage) - Demonstrates signing a message with a secp256k1 private key that is first - parsed form raw bytes and serializing the generated signature. - -* [Verify Signature](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--VerifySignature) - Demonstrates verifying a secp256k1 signature against a public key that is - first parsed from raw bytes. The signature is also parsed from raw bytes. - -* [Encryption](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--EncryptMessage) - Demonstrates encrypting a message for a public key that is first parsed from - raw bytes, then decrypting it using the corresponding private key. - -* [Decryption](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--DecryptMessage) - Demonstrates decrypting a message using a private key that is first parsed - from raw bytes. - -## GPG Verification Key - -All official release tags are signed by Conformal so users can ensure the code -has not been tampered with and is coming from the btcsuite developers. To -verify the signature perform the following: - -- Download the public key from the Conformal website at - https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt - -- Import the public key into your GPG keyring: - ```bash - gpg --import GIT-GPG-KEY-conformal.txt - ``` - -- Verify the release tag with the following command where `TAG_NAME` is a - placeholder for the specific tag: - ```bash - git tag -v TAG_NAME - ``` - -## License - -Package btcec is licensed under the [copyfree](http://copyfree.org) ISC License -except for btcec.go and btcec_test.go which is under the same license as Go. - diff --git a/vendor/github.com/btcsuite/btcd/btcec/btcec.go b/vendor/github.com/btcsuite/btcd/btcec/btcec.go deleted file mode 100644 index a2e20f4..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/btcec.go +++ /dev/null @@ -1,978 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Copyright 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -// References: -// [SECG]: Recommended Elliptic Curve Domain Parameters -// http://www.secg.org/sec2-v2.pdf -// -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) - -// This package operates, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) -// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole -// calculation can be performed within the transform (as in ScalarMult and -// ScalarBaseMult). But even for Add and Double, it's faster to apply and -// reverse the transform than to operate in affine coordinates. - -import ( - "crypto/elliptic" - "math/big" - "sync" -) - -var ( - // fieldOne is simply the integer 1 in field representation. It is - // used to avoid needing to create it multiple times during the internal - // arithmetic. - fieldOne = new(fieldVal).SetInt(1) -) - -// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve -// interface from crypto/elliptic. -type KoblitzCurve struct { - *elliptic.CurveParams - - // q is the value (P+1)/4 used to compute the square root of field - // elements. - q *big.Int - - H int // cofactor of the curve. - halfOrder *big.Int // half the order N - - // fieldB is the constant B of the curve as a fieldVal. - fieldB *fieldVal - - // byteSize is simply the bit size / 8 and is provided for convenience - // since it is calculated repeatedly. - byteSize int - - // bytePoints - bytePoints *[32][256][3]fieldVal - - // The next 6 values are used specifically for endomorphism - // optimizations in ScalarMult. - - // lambda must fulfill lambda^3 = 1 mod N where N is the order of G. - lambda *big.Int - - // beta must fulfill beta^3 = 1 mod P where P is the prime field of the - // curve. - beta *fieldVal - - // See the EndomorphismVectors in gensecp256k1.go to see how these are - // derived. - a1 *big.Int - b1 *big.Int - a2 *big.Int - b2 *big.Int -} - -// Params returns the parameters for the curve. -func (curve *KoblitzCurve) Params() *elliptic.CurveParams { - return curve.CurveParams -} - -// bigAffineToField takes an affine point (x, y) as big integers and converts -// it to an affine point as field values. -func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) { - x3, y3 := new(fieldVal), new(fieldVal) - x3.SetByteSlice(x.Bytes()) - y3.SetByteSlice(y.Bytes()) - - return x3, y3 -} - -// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and -// converts it to an affine point as big integers. -func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) { - // Inversions are expensive and both point addition and point doubling - // are faster when working with points that have a z value of one. So, - // if the point needs to be converted to affine, go ahead and normalize - // the point itself at the same time as the calculation is the same. - var zInv, tempZ fieldVal - zInv.Set(z).Inverse() // zInv = Z^-1 - tempZ.SquareVal(&zInv) // tempZ = Z^-2 - x.Mul(&tempZ) // X = X/Z^2 (mag: 1) - y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1) - z.SetInt(1) // Z = 1 (mag: 1) - - // Normalize the x and y values. - x.Normalize() - y.Normalize() - - // Convert the field values for the now affine point to big.Ints. - x3, y3 := new(big.Int), new(big.Int) - x3.SetBytes(x.Bytes()[:]) - y3.SetBytes(y.Bytes()[:]) - return x3, y3 -} - -// IsOnCurve returns boolean if the point (x,y) is on the curve. -// Part of the elliptic.Curve interface. This function differs from the -// crypto/elliptic algorithm since a = 0 not -3. -func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool { - // Convert big ints to field values for faster arithmetic. - fx, fy := curve.bigAffineToField(x, y) - - // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 - y2 := new(fieldVal).SquareVal(fy).Normalize() - result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize() - return y2.Equals(result) -} - -// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have -// z values of 1 and stores the result in (x3, y3, z3). That is to say -// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than -// the generic add routine since less arithmetic is needed due to the ability to -// avoid the z value multiplications. -func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using the method shown at: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl - // - // In particular it performs the calculations using the following: - // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I - // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H - // - // This results in a cost of 4 field multiplications, 2 field squarings, - // 6 field additions, and 5 integer multiplications. - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity per the group law for elliptic curve cryptography. - x1.Normalize() - y1.Normalize() - x2.Normalize() - y2.Normalize() - if x1.Equals(x2) { - if y1.Equals(y2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - curve.doubleJacobian(x1, y1, z1, x3, y3, z3) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var h, i, j, r, v fieldVal - var negJ, neg2V, negX3 fieldVal - h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3) - i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4) - j.Mul2(&h, &i) // J = H*I (mag: 1) - r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6) - v.Mul2(x1, &i) // V = X1*I (mag: 1) - negJ.Set(&j).Negate(1) // negJ = -J (mag: 2) - neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3) - x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6) - negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7) - j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3) - y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4) - z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// addZ1EqualsZ2 adds two Jacobian points that are already known to have the -// same z value and stores the result in (x3, y3, z3). That is to say -// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than -// the generic add routine since less arithmetic is needed due to the known -// equivalence. -func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using a slightly modified version - // of the method shown at: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl - // - // In particular it performs the calculations using the following: - // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B - // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A - // - // This results in a cost of 5 field multiplications, 2 field squarings, - // 9 field additions, and 0 integer multiplications. - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity per the group law for elliptic curve cryptography. - x1.Normalize() - y1.Normalize() - x2.Normalize() - y2.Normalize() - if x1.Equals(x2) { - if y1.Equals(y2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - curve.doubleJacobian(x1, y1, z1, x3, y3, z3) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var a, b, c, d, e, f fieldVal - var negX1, negY1, negE, negX3 fieldVal - negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) - negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) - a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3) - b.SquareVal(&a) // B = A^2 (mag: 1) - c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3) - d.SquareVal(&c) // D = C^2 (mag: 1) - e.Mul2(x1, &b) // E = X1*B (mag: 1) - negE.Set(&e).Negate(1) // negE = -E (mag: 2) - f.Mul2(x2, &b) // F = X2*B (mag: 1) - x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5) - negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1) - y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4) - y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5) - z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() -} - -// addZ2EqualsOne adds two Jacobian points when the second point is already -// known to have a z value of 1 (and the z value for the first point is not 1) -// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) + -// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic -// add routine since less arithmetic is needed due to the ability to avoid -// multiplications by the second point's z value. -func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using the method shown at: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl - // - // In particular it performs the calculations using the following: - // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2, - // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I - // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH - // - // This results in a cost of 7 field multiplications, 4 field squarings, - // 9 field additions, and 4 integer multiplications. - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity per the group law for elliptic curve cryptography. Since - // any number of Jacobian coordinates can represent the same affine - // point, the x and y values need to be converted to like terms. Due to - // the assumption made for this function that the second point has a z - // value of 1 (z2=1), the first point is already "converted". - var z1z1, u2, s2 fieldVal - x1.Normalize() - y1.Normalize() - z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) - u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) - s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) - if x1.Equals(&u2) { - if y1.Equals(&s2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - curve.doubleJacobian(x1, y1, z1, x3, y3, z3) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var h, hh, i, j, r, rr, v fieldVal - var negX1, negY1, negX3 fieldVal - negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) - h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3) - hh.SquareVal(&h) // HH = H^2 (mag: 1) - i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4) - j.Mul2(&h, &i) // J = H*I (mag: 1) - negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) - r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6) - rr.SquareVal(&r) // rr = r^2 (mag: 1) - v.Mul2(x1, &i) // V = X1*I (mag: 1) - x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) - x3.Add(&rr) // X3 = r^2+X3 (mag: 5) - negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) - y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3) - y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) - z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1) - z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any -// assumptions about the z values of the two points and stores the result in -// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It -// is the slowest of the add routines due to requiring the most arithmetic. -func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using the method shown at: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl - // - // In particular it performs the calculations using the following: - // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2 - // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1) - // V = U1*I - // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H - // - // This results in a cost of 11 field multiplications, 5 field squarings, - // 9 field additions, and 4 integer multiplications. - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity. Since any number of Jacobian coordinates can represent the - // same affine point, the x and y values need to be converted to like - // terms. - var z1z1, z2z2, u1, u2, s1, s2 fieldVal - z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) - z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1) - u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1) - u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) - s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1) - s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) - if u1.Equals(&u2) { - if s1.Equals(&s2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - curve.doubleJacobian(x1, y1, z1, x3, y3, z3) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var h, i, j, r, rr, v fieldVal - var negU1, negS1, negX3 fieldVal - negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2) - h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3) - i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2) - j.Mul2(&h, &i) // J = H*I (mag: 1) - negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2) - r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6) - rr.SquareVal(&r) // rr = r^2 (mag: 1) - v.Mul2(&u1, &i) // V = U1*I (mag: 1) - x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) - x3.Add(&rr) // X3 = r^2+X3 (mag: 5) - negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) - y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3) - y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) - z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1) - z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4) - z3.Mul(&h) // Z3 = Z3*H (mag: 1) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() -} - -// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2) -// together and stores the result in (x3, y3, z3). -func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) { - // A point at infinity is the identity according to the group law for - // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. - if (x1.IsZero() && y1.IsZero()) || z1.IsZero() { - x3.Set(x2) - y3.Set(y2) - z3.Set(z2) - return - } - if (x2.IsZero() && y2.IsZero()) || z2.IsZero() { - x3.Set(x1) - y3.Set(y1) - z3.Set(z1) - return - } - - // Faster point addition can be achieved when certain assumptions are - // met. For example, when both points have the same z value, arithmetic - // on the z values can be avoided. This section thus checks for these - // conditions and calls an appropriate add function which is accelerated - // by using those assumptions. - z1.Normalize() - z2.Normalize() - isZ1One := z1.Equals(fieldOne) - isZ2One := z2.Equals(fieldOne) - switch { - case isZ1One && isZ2One: - curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3) - return - case z1.Equals(z2): - curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3) - return - case isZ2One: - curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3) - return - } - - // None of the above assumptions are true, so fall back to generic - // point addition. - curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3) -} - -// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve -// interface. -func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - // A point at infinity is the identity according to the group law for - // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. - if x1.Sign() == 0 && y1.Sign() == 0 { - return x2, y2 - } - if x2.Sign() == 0 && y2.Sign() == 0 { - return x1, y1 - } - - // Convert the affine coordinates from big integers to field values - // and do the point addition in Jacobian projective space. - fx1, fy1 := curve.bigAffineToField(x1, y1) - fx2, fy2 := curve.bigAffineToField(x2, y2) - fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal) - fOne := new(fieldVal).SetInt(1) - curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3) - - // Convert the Jacobian coordinate field values back to affine big - // integers. - return curve.fieldJacobianToBigAffine(fx3, fy3, fz3) -} - -// doubleZ1EqualsOne performs point doubling on the passed Jacobian point -// when the point is already known to have a z value of 1 and stores -// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It -// performs faster point doubling than the generic routine since less arithmetic -// is needed due to the ability to avoid multiplication by the z value. -func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) { - // This function uses the assumptions that z1 is 1, thus the point - // doubling formulas reduce to: - // - // X3 = (3*X1^2)^2 - 8*X1*Y1^2 - // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 - // Z3 = 2*Y1 - // - // To compute the above efficiently, this implementation splits the - // equation into intermediate elements which are used to minimize the - // number of field multiplications in favor of field squarings which - // are roughly 35% faster than field multiplications with the current - // implementation at the time this was written. - // - // This uses a slightly modified version of the method shown at: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl - // - // In particular it performs the calculations using the following: - // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) - // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C - // Z3 = 2*Y1 - // - // This results in a cost of 1 field multiplication, 5 field squarings, - // 6 field additions, and 5 integer multiplications. - var a, b, c, d, e, f fieldVal - z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2) - a.SquareVal(x1) // A = X1^2 (mag: 1) - b.SquareVal(y1) // B = Y1^2 (mag: 1) - c.SquareVal(&b) // C = B^2 (mag: 1) - b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) - d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) - d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) - e.Set(&a).MulInt(3) // E = 3*A (mag: 3) - f.SquareVal(&e) // F = E^2 (mag: 1) - x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) - x3.Add(&f) // X3 = F+X3 (mag: 18) - f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) - y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) - y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) - - // Normalize the field values back to a magnitude of 1. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// doubleGeneric performs point doubling on the passed Jacobian point without -// any assumptions about the z value and stores the result in (x3, y3, z3). -// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point -// doubling routines due to requiring the most arithmetic. -func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) { - // Point doubling formula for Jacobian coordinates for the secp256k1 - // curve: - // X3 = (3*X1^2)^2 - 8*X1*Y1^2 - // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 - // Z3 = 2*Y1*Z1 - // - // To compute the above efficiently, this implementation splits the - // equation into intermediate elements which are used to minimize the - // number of field multiplications in favor of field squarings which - // are roughly 35% faster than field multiplications with the current - // implementation at the time this was written. - // - // This uses a slightly modified version of the method shown at: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - // - // In particular it performs the calculations using the following: - // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) - // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C - // Z3 = 2*Y1*Z1 - // - // This results in a cost of 1 field multiplication, 5 field squarings, - // 6 field additions, and 5 integer multiplications. - var a, b, c, d, e, f fieldVal - z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2) - a.SquareVal(x1) // A = X1^2 (mag: 1) - b.SquareVal(y1) // B = Y1^2 (mag: 1) - c.SquareVal(&b) // C = B^2 (mag: 1) - b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) - d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) - d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) - e.Set(&a).MulInt(3) // E = 3*A (mag: 3) - f.SquareVal(&e) // F = E^2 (mag: 1) - x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) - x3.Add(&f) // X3 = F+X3 (mag: 18) - f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) - y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) - y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) - - // Normalize the field values back to a magnitude of 1. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the -// result in (x3, y3, z3). -func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) { - // Doubling a point at infinity is still infinity. - if y1.IsZero() || z1.IsZero() { - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Slightly faster point doubling can be achieved when the z value is 1 - // by avoiding the multiplication on the z value. This section calls - // a point doubling function which is accelerated by using that - // assumption when possible. - if z1.Normalize().Equals(fieldOne) { - curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3) - return - } - - // Fall back to generic point doubling which works with arbitrary z - // values. - curve.doubleGeneric(x1, y1, z1, x3, y3, z3) -} - -// Double returns 2*(x1,y1). Part of the elliptic.Curve interface. -func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - if y1.Sign() == 0 { - return new(big.Int), new(big.Int) - } - - // Convert the affine coordinates from big integers to field values - // and do the point doubling in Jacobian projective space. - fx1, fy1 := curve.bigAffineToField(x1, y1) - fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal) - fOne := new(fieldVal).SetInt(1) - curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3) - - // Convert the Jacobian coordinate field values back to affine big - // integers. - return curve.fieldJacobianToBigAffine(fx3, fy3, fz3) -} - -// splitK returns a balanced length-two representation of k and their signs. -// This is algorithm 3.74 from [GECC]. -// -// One thing of note about this algorithm is that no matter what c1 and c2 are, -// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is -// provable mathematically due to how a1/b1/a2/b2 are computed. -// -// c1 and c2 are chosen to minimize the max(k1,k2). -func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) { - // All math here is done with big.Int, which is slow. - // At some point, it might be useful to write something similar to - // fieldVal but for N instead of P as the prime field if this ends up - // being a bottleneck. - bigIntK := new(big.Int) - c1, c2 := new(big.Int), new(big.Int) - tmp1, tmp2 := new(big.Int), new(big.Int) - k1, k2 := new(big.Int), new(big.Int) - - bigIntK.SetBytes(k) - // c1 = round(b2 * k / n) from step 4. - // Rounding isn't really necessary and costs too much, hence skipped - c1.Mul(curve.b2, bigIntK) - c1.Div(c1, curve.N) - // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step) - // Rounding isn't really necessary and costs too much, hence skipped - c2.Mul(curve.b1, bigIntK) - c2.Div(c2, curve.N) - // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed) - tmp1.Mul(c1, curve.a1) - tmp2.Mul(c2, curve.a2) - k1.Sub(bigIntK, tmp1) - k1.Add(k1, tmp2) - // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed) - tmp1.Mul(c1, curve.b1) - tmp2.Mul(c2, curve.b2) - k2.Sub(tmp2, tmp1) - - // Note Bytes() throws out the sign of k1 and k2. This matters - // since k1 and/or k2 can be negative. Hence, we pass that - // back separately. - return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign() -} - -// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This -// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and -// thus any other valid point on the elliptic curve has the same order. -func (curve *KoblitzCurve) moduloReduce(k []byte) []byte { - // Since the order of G is curve.N, we can use a much smaller number - // by doing modulo curve.N - if len(k) > curve.byteSize { - // Reduce k by performing modulo curve.N. - tmpK := new(big.Int).SetBytes(k) - tmpK.Mod(tmpK, curve.N) - return tmpK.Bytes() - } - - return k -} - -// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two -// byte slices. The first is where 1s will be. The second is where -1s will -// be. NAF is convenient in that on average, only 1/3rd of its values are -// non-zero. This is algorithm 3.30 from [GECC]. -// -// Essentially, this makes it possible to minimize the number of operations -// since the resulting ints returned will be at least 50% 0s. -func NAF(k []byte) ([]byte, []byte) { - // The essence of this algorithm is that whenever we have consecutive 1s - // in the binary, we want to put a -1 in the lowest bit and get a bunch - // of 0s up to the highest bit of consecutive 1s. This is due to this - // identity: - // 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k) - // - // The algorithm thus may need to go 1 more bit than the length of the - // bits we actually have, hence bits being 1 bit longer than was - // necessary. Since we need to know whether adding will cause a carry, - // we go from right-to-left in this addition. - var carry, curIsOne, nextIsOne bool - // these default to zero - retPos := make([]byte, len(k)+1) - retNeg := make([]byte, len(k)+1) - for i := len(k) - 1; i >= 0; i-- { - curByte := k[i] - for j := uint(0); j < 8; j++ { - curIsOne = curByte&1 == 1 - if j == 7 { - if i == 0 { - nextIsOne = false - } else { - nextIsOne = k[i-1]&1 == 1 - } - } else { - nextIsOne = curByte&2 == 2 - } - if carry { - if curIsOne { - // This bit is 1, so continue to carry - // and don't need to do anything. - } else { - // We've hit a 0 after some number of - // 1s. - if nextIsOne { - // Start carrying again since - // a new sequence of 1s is - // starting. - retNeg[i+1] += 1 << j - } else { - // Stop carrying since 1s have - // stopped. - carry = false - retPos[i+1] += 1 << j - } - } - } else if curIsOne { - if nextIsOne { - // If this is the start of at least 2 - // consecutive 1s, set the current one - // to -1 and start carrying. - retNeg[i+1] += 1 << j - carry = true - } else { - // This is a singleton, not consecutive - // 1s. - retPos[i+1] += 1 << j - } - } - curByte >>= 1 - } - } - if carry { - retPos[0] = 1 - return retPos, retNeg - } - return retPos[1:], retNeg[1:] -} - -// ScalarMult returns k*(Bx, By) where k is a big endian integer. -// Part of the elliptic.Curve interface. -func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { - // Point Q = ∞ (point at infinity). - qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal) - - // Decompose K into k1 and k2 in order to halve the number of EC ops. - // See Algorithm 3.74 in [GECC]. - k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k)) - - // The main equation here to remember is: - // k * P = k1 * P + k2 * ϕ(P) - // - // P1 below is P in the equation, P2 below is ϕ(P) in the equation - p1x, p1y := curve.bigAffineToField(Bx, By) - p1yNeg := new(fieldVal).NegateVal(p1y, 1) - p1z := new(fieldVal).SetInt(1) - - // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math - // goes through. - p2x := new(fieldVal).Mul2(p1x, curve.beta) - p2y := new(fieldVal).Set(p1y) - p2yNeg := new(fieldVal).NegateVal(p2y, 1) - p2z := new(fieldVal).SetInt(1) - - // Flip the positive and negative values of the points as needed - // depending on the signs of k1 and k2. As mentioned in the equation - // above, each of k1 and k2 are multiplied by the respective point. - // Since -k * P is the same thing as k * -P, and the group law for - // elliptic curves states that P(x, y) = -P(x, -y), it's faster and - // simplifies the code to just make the point negative. - if signK1 == -1 { - p1y, p1yNeg = p1yNeg, p1y - } - if signK2 == -1 { - p2y, p2yNeg = p2yNeg, p2y - } - - // NAF versions of k1 and k2 should have a lot more zeros. - // - // The Pos version of the bytes contain the +1s and the Neg versions - // contain the -1s. - k1PosNAF, k1NegNAF := NAF(k1) - k2PosNAF, k2NegNAF := NAF(k2) - k1Len := len(k1PosNAF) - k2Len := len(k2PosNAF) - - m := k1Len - if m < k2Len { - m = k2Len - } - - // Add left-to-right using the NAF optimization. See algorithm 3.77 - // from [GECC]. This should be faster overall since there will be a lot - // more instances of 0, hence reducing the number of Jacobian additions - // at the cost of 1 possible extra doubling. - var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte - for i := 0; i < m; i++ { - // Since we're going left-to-right, pad the front with 0s. - if i < m-k1Len { - k1BytePos = 0 - k1ByteNeg = 0 - } else { - k1BytePos = k1PosNAF[i-(m-k1Len)] - k1ByteNeg = k1NegNAF[i-(m-k1Len)] - } - if i < m-k2Len { - k2BytePos = 0 - k2ByteNeg = 0 - } else { - k2BytePos = k2PosNAF[i-(m-k2Len)] - k2ByteNeg = k2NegNAF[i-(m-k2Len)] - } - - for j := 7; j >= 0; j-- { - // Q = 2 * Q - curve.doubleJacobian(qx, qy, qz, qx, qy, qz) - - if k1BytePos&0x80 == 0x80 { - curve.addJacobian(qx, qy, qz, p1x, p1y, p1z, - qx, qy, qz) - } else if k1ByteNeg&0x80 == 0x80 { - curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z, - qx, qy, qz) - } - - if k2BytePos&0x80 == 0x80 { - curve.addJacobian(qx, qy, qz, p2x, p2y, p2z, - qx, qy, qz) - } else if k2ByteNeg&0x80 == 0x80 { - curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z, - qx, qy, qz) - } - k1BytePos <<= 1 - k1ByteNeg <<= 1 - k2BytePos <<= 1 - k2ByteNeg <<= 1 - } - } - - // Convert the Jacobian coordinate field values back to affine big.Ints. - return curve.fieldJacobianToBigAffine(qx, qy, qz) -} - -// ScalarBaseMult returns k*G where G is the base point of the group and k is a -// big endian integer. -// Part of the elliptic.Curve interface. -func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - newK := curve.moduloReduce(k) - diff := len(curve.bytePoints) - len(newK) - - // Point Q = ∞ (point at infinity). - qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal) - - // curve.bytePoints has all 256 byte points for each 8-bit window. The - // strategy is to add up the byte points. This is best understood by - // expressing k in base-256 which it already sort of is. - // Each "digit" in the 8-bit window can be looked up using bytePoints - // and added together. - for i, byteVal := range newK { - p := curve.bytePoints[diff+i][byteVal] - curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz) - } - return curve.fieldJacobianToBigAffine(qx, qy, qz) -} - -// QPlus1Div4 returns the (P+1)/4 constant for the curve for use in calculating -// square roots via exponentiation. -// -// DEPRECATED: The actual value returned is (P+1)/4, where as the original -// method name implies that this value is (((P+1)/4)+1)/4. This method is kept -// to maintain backwards compatibility of the API. Use Q() instead. -func (curve *KoblitzCurve) QPlus1Div4() *big.Int { - return curve.q -} - -// Q returns the (P+1)/4 constant for the curve for use in calculating square -// roots via exponentiation. -func (curve *KoblitzCurve) Q() *big.Int { - return curve.q -} - -var initonce sync.Once -var secp256k1 KoblitzCurve - -func initAll() { - initS256() -} - -// fromHex converts the passed hex string into a big integer pointer and will -// panic is there is an error. This is only provided for the hard-coded -// constants so errors in the source code can bet detected. It will only (and -// must only) be called for initialization purposes. -func fromHex(s string) *big.Int { - r, ok := new(big.Int).SetString(s, 16) - if !ok { - panic("invalid hex in source file: " + s) - } - return r -} - -func initS256() { - // Curve parameters taken from [SECG] section 2.4.1. - secp256k1.CurveParams = new(elliptic.CurveParams) - secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F") - secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141") - secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007") - secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798") - secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8") - secp256k1.BitSize = 256 - // Curve name taken from https://safecurves.cr.yp.to/. - secp256k1.Name = "secp256k1" - secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P, - big.NewInt(1)), big.NewInt(4)) - secp256k1.H = 1 - secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1) - secp256k1.fieldB = new(fieldVal).SetByteSlice(secp256k1.B.Bytes()) - - // Provided for convenience since this gets computed repeatedly. - secp256k1.byteSize = secp256k1.BitSize / 8 - - // Deserialize and set the pre-computed table used to accelerate scalar - // base multiplication. This is hard-coded data, so any errors are - // panics because it means something is wrong in the source code. - if err := loadS256BytePoints(); err != nil { - panic(err) - } - - // Next 6 constants are from Hal Finney's bitcointalk.org post: - // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565 - // May he rest in peace. - // - // They have also been independently derived from the code in the - // EndomorphismVectors function in gensecp256k1.go. - secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72") - secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE") - secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15") - secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3") - secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") - secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") - - // Alternatively, we can use the parameters below, however, they seem - // to be about 8% slower. - // secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE") - // secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40") - // secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3") - // secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15") - // secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") - // secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") -} - -// S256 returns a Curve which implements secp256k1. -func S256() *KoblitzCurve { - initonce.Do(initAll) - return &secp256k1 -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/ciphering.go b/vendor/github.com/btcsuite/btcd/btcec/ciphering.go deleted file mode 100644 index b18c9b7..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/ciphering.go +++ /dev/null @@ -1,216 +0,0 @@ -// Copyright (c) 2015-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - "bytes" - "crypto/aes" - "crypto/cipher" - "crypto/hmac" - "crypto/rand" - "crypto/sha256" - "crypto/sha512" - "errors" - "io" -) - -var ( - // ErrInvalidMAC occurs when Message Authentication Check (MAC) fails - // during decryption. This happens because of either invalid private key or - // corrupt ciphertext. - ErrInvalidMAC = errors.New("invalid mac hash") - - // errInputTooShort occurs when the input ciphertext to the Decrypt - // function is less than 134 bytes long. - errInputTooShort = errors.New("ciphertext too short") - - // errUnsupportedCurve occurs when the first two bytes of the encrypted - // text aren't 0x02CA (= 712 = secp256k1, from OpenSSL). - errUnsupportedCurve = errors.New("unsupported curve") - - errInvalidXLength = errors.New("invalid X length, must be 32") - errInvalidYLength = errors.New("invalid Y length, must be 32") - errInvalidPadding = errors.New("invalid PKCS#7 padding") - - // 0x02CA = 714 - ciphCurveBytes = [2]byte{0x02, 0xCA} - // 0x20 = 32 - ciphCoordLength = [2]byte{0x00, 0x20} -) - -// GenerateSharedSecret generates a shared secret based on a private key and a -// public key using Diffie-Hellman key exchange (ECDH) (RFC 4753). -// RFC5903 Section 9 states we should only return x. -func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte { - x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes()) - return x.Bytes() -} - -// Encrypt encrypts data for the target public key using AES-256-CBC. It also -// generates a private key (the pubkey of which is also in the output). The only -// supported curve is secp256k1. The `structure' that it encodes everything into -// is: -// -// struct { -// // Initialization Vector used for AES-256-CBC -// IV [16]byte -// // Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX + -// // len_of_pubkeyY(2) + pubkeyY (curve = 714) -// PublicKey [70]byte -// // Cipher text -// Data []byte -// // HMAC-SHA-256 Message Authentication Code -// HMAC [32]byte -// } -// -// The primary aim is to ensure byte compatibility with Pyelliptic. Also, refer -// to section 5.8.1 of ANSI X9.63 for rationale on this format. -func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) { - ephemeral, err := NewPrivateKey(S256()) - if err != nil { - return nil, err - } - ecdhKey := GenerateSharedSecret(ephemeral, pubkey) - derivedKey := sha512.Sum512(ecdhKey) - keyE := derivedKey[:32] - keyM := derivedKey[32:] - - paddedIn := addPKCSPadding(in) - // IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256 - out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size) - iv := out[:aes.BlockSize] - if _, err = io.ReadFull(rand.Reader, iv); err != nil { - return nil, err - } - // start writing public key - pb := ephemeral.PubKey().SerializeUncompressed() - offset := aes.BlockSize - - // curve and X length - copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...)) - offset += 4 - // X - copy(out[offset:offset+32], pb[1:33]) - offset += 32 - // Y length - copy(out[offset:offset+2], ciphCoordLength[:]) - offset += 2 - // Y - copy(out[offset:offset+32], pb[33:]) - offset += 32 - - // start encryption - block, err := aes.NewCipher(keyE) - if err != nil { - return nil, err - } - mode := cipher.NewCBCEncrypter(block, iv) - mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn) - - // start HMAC-SHA-256 - hm := hmac.New(sha256.New, keyM) - hm.Write(out[:len(out)-sha256.Size]) // everything is hashed - copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum - - return out, nil -} - -// Decrypt decrypts data that was encrypted using the Encrypt function. -func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) { - // IV + Curve params/X/Y + 1 block + HMAC-256 - if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size { - return nil, errInputTooShort - } - - // read iv - iv := in[:aes.BlockSize] - offset := aes.BlockSize - - // start reading pubkey - if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) { - return nil, errUnsupportedCurve - } - offset += 2 - - if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) { - return nil, errInvalidXLength - } - offset += 2 - - xBytes := in[offset : offset+32] - offset += 32 - - if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) { - return nil, errInvalidYLength - } - offset += 2 - - yBytes := in[offset : offset+32] - offset += 32 - - pb := make([]byte, 65) - pb[0] = byte(0x04) // uncompressed - copy(pb[1:33], xBytes) - copy(pb[33:], yBytes) - // check if (X, Y) lies on the curve and create a Pubkey if it does - pubkey, err := ParsePubKey(pb, S256()) - if err != nil { - return nil, err - } - - // check for cipher text length - if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 { - return nil, errInvalidPadding // not padded to 16 bytes - } - - // read hmac - messageMAC := in[len(in)-sha256.Size:] - - // generate shared secret - ecdhKey := GenerateSharedSecret(priv, pubkey) - derivedKey := sha512.Sum512(ecdhKey) - keyE := derivedKey[:32] - keyM := derivedKey[32:] - - // verify mac - hm := hmac.New(sha256.New, keyM) - hm.Write(in[:len(in)-sha256.Size]) // everything is hashed - expectedMAC := hm.Sum(nil) - if !hmac.Equal(messageMAC, expectedMAC) { - return nil, ErrInvalidMAC - } - - // start decryption - block, err := aes.NewCipher(keyE) - if err != nil { - return nil, err - } - mode := cipher.NewCBCDecrypter(block, iv) - // same length as ciphertext - plaintext := make([]byte, len(in)-offset-sha256.Size) - mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size]) - - return removePKCSPadding(plaintext) -} - -// Implement PKCS#7 padding with block size of 16 (AES block size). - -// addPKCSPadding adds padding to a block of data -func addPKCSPadding(src []byte) []byte { - padding := aes.BlockSize - len(src)%aes.BlockSize - padtext := bytes.Repeat([]byte{byte(padding)}, padding) - return append(src, padtext...) -} - -// removePKCSPadding removes padding from data that was added with addPKCSPadding -func removePKCSPadding(src []byte) ([]byte, error) { - length := len(src) - padLength := int(src[length-1]) - if padLength > aes.BlockSize || length < aes.BlockSize { - return nil, errInvalidPadding - } - - return src[:length-padLength], nil -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/doc.go b/vendor/github.com/btcsuite/btcd/btcec/doc.go deleted file mode 100644 index fa8346a..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/doc.go +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package btcec implements support for the elliptic curves needed for bitcoin. - -Bitcoin uses elliptic curve cryptography using koblitz curves -(specifically secp256k1) for cryptographic functions. See -http://www.secg.org/collateral/sec2_final.pdf for details on the -standard. - -This package provides the data structures and functions implementing the -crypto/elliptic Curve interface in order to permit using these curves -with the standard crypto/ecdsa package provided with go. Helper -functionality is provided to parse signatures and public keys from -standard formats. It was designed for use with btcd, but should be -general enough for other uses of elliptic curve crypto. It was originally based -on some initial work by ThePiachu, but has significantly diverged since then. -*/ -package btcec diff --git a/vendor/github.com/btcsuite/btcd/btcec/field.go b/vendor/github.com/btcsuite/btcd/btcec/field.go deleted file mode 100644 index 98105ed..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/field.go +++ /dev/null @@ -1,1356 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Copyright (c) 2013-2016 Dave Collins -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -// References: -// [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone. -// http://cacr.uwaterloo.ca/hac/ - -// All elliptic curve operations for secp256k1 are done in a finite field -// characterized by a 256-bit prime. Given this precision is larger than the -// biggest available native type, obviously some form of bignum math is needed. -// This package implements specialized fixed-precision field arithmetic rather -// than relying on an arbitrary-precision arithmetic package such as math/big -// for dealing with the field math since the size is known. As a result, rather -// large performance gains are achieved by taking advantage of many -// optimizations not available to arbitrary-precision arithmetic and generic -// modular arithmetic algorithms. -// -// There are various ways to internally represent each finite field element. -// For example, the most obvious representation would be to use an array of 4 -// uint64s (64 bits * 4 = 256 bits). However, that representation suffers from -// a couple of issues. First, there is no native Go type large enough to handle -// the intermediate results while adding or multiplying two 64-bit numbers, and -// second there is no space left for overflows when performing the intermediate -// arithmetic between each array element which would lead to expensive carry -// propagation. -// -// Given the above, this implementation represents the the field elements as -// 10 uint32s with each word (array entry) treated as base 2^26. This was -// chosen for the following reasons: -// 1) Most systems at the current time are 64-bit (or at least have 64-bit -// registers available for specialized purposes such as MMX) so the -// intermediate results can typically be done using a native register (and -// using uint64s to avoid the need for additional half-word arithmetic) -// 2) In order to allow addition of the internal words without having to -// propagate the the carry, the max normalized value for each register must -// be less than the number of bits available in the register -// 3) Since we're dealing with 32-bit values, 64-bits of overflow is a -// reasonable choice for #2 -// 4) Given the need for 256-bits of precision and the properties stated in #1, -// #2, and #3, the representation which best accommodates this is 10 uint32s -// with base 2^26 (26 bits * 10 = 260 bits, so the final word only needs 22 -// bits) which leaves the desired 64 bits (32 * 10 = 320, 320 - 256 = 64) for -// overflow -// -// Since it is so important that the field arithmetic is extremely fast for -// high performance crypto, this package does not perform any validation where -// it ordinarily would. For example, some functions only give the correct -// result is the field is normalized and there is no checking to ensure it is. -// While I typically prefer to ensure all state and input is valid for most -// packages, this code is really only used internally and every extra check -// counts. - -import ( - "encoding/hex" -) - -// Constants used to make the code more readable. -const ( - twoBitsMask = 0x3 - fourBitsMask = 0xf - sixBitsMask = 0x3f - eightBitsMask = 0xff -) - -// Constants related to the field representation. -const ( - // fieldWords is the number of words used to internally represent the - // 256-bit value. - fieldWords = 10 - - // fieldBase is the exponent used to form the numeric base of each word. - // 2^(fieldBase*i) where i is the word position. - fieldBase = 26 - - // fieldOverflowBits is the minimum number of "overflow" bits for each - // word in the field value. - fieldOverflowBits = 32 - fieldBase - - // fieldBaseMask is the mask for the bits in each word needed to - // represent the numeric base of each word (except the most significant - // word). - fieldBaseMask = (1 << fieldBase) - 1 - - // fieldMSBBits is the number of bits in the most significant word used - // to represent the value. - fieldMSBBits = 256 - (fieldBase * (fieldWords - 1)) - - // fieldMSBMask is the mask for the bits in the most significant word - // needed to represent the value. - fieldMSBMask = (1 << fieldMSBBits) - 1 - - // fieldPrimeWordZero is word zero of the secp256k1 prime in the - // internal field representation. It is used during negation. - fieldPrimeWordZero = 0x3fffc2f - - // fieldPrimeWordOne is word one of the secp256k1 prime in the - // internal field representation. It is used during negation. - fieldPrimeWordOne = 0x3ffffbf -) - -var ( - // fieldQBytes is the value Q = (P+1)/4 for the secp256k1 prime P. This - // value is used to efficiently compute the square root of values in the - // field via exponentiation. The value of Q in hex is: - // - // Q = 3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c - fieldQBytes = []byte{ - 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xbf, 0xff, 0xff, 0x0c, - } -) - -// fieldVal implements optimized fixed-precision arithmetic over the -// secp256k1 finite field. This means all arithmetic is performed modulo -// 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f. It -// represents each 256-bit value as 10 32-bit integers in base 2^26. This -// provides 6 bits of overflow in each word (10 bits in the most significant -// word) for a total of 64 bits of overflow (9*6 + 10 = 64). It only implements -// the arithmetic needed for elliptic curve operations. -// -// The following depicts the internal representation: -// ----------------------------------------------------------------- -// | n[9] | n[8] | ... | n[0] | -// | 32 bits available | 32 bits available | ... | 32 bits available | -// | 22 bits for value | 26 bits for value | ... | 26 bits for value | -// | 10 bits overflow | 6 bits overflow | ... | 6 bits overflow | -// | Mult: 2^(26*9) | Mult: 2^(26*8) | ... | Mult: 2^(26*0) | -// ----------------------------------------------------------------- -// -// For example, consider the number 2^49 + 1. It would be represented as: -// n[0] = 1 -// n[1] = 2^23 -// n[2..9] = 0 -// -// The full 256-bit value is then calculated by looping i from 9..0 and -// doing sum(n[i] * 2^(26i)) like so: -// n[9] * 2^(26*9) = 0 * 2^234 = 0 -// n[8] * 2^(26*8) = 0 * 2^208 = 0 -// ... -// n[1] * 2^(26*1) = 2^23 * 2^26 = 2^49 -// n[0] * 2^(26*0) = 1 * 2^0 = 1 -// Sum: 0 + 0 + ... + 2^49 + 1 = 2^49 + 1 -type fieldVal struct { - n [10]uint32 -} - -// String returns the field value as a human-readable hex string. -func (f fieldVal) String() string { - t := new(fieldVal).Set(&f).Normalize() - return hex.EncodeToString(t.Bytes()[:]) -} - -// Zero sets the field value to zero. A newly created field value is already -// set to zero. This function can be useful to clear an existing field value -// for reuse. -func (f *fieldVal) Zero() { - f.n[0] = 0 - f.n[1] = 0 - f.n[2] = 0 - f.n[3] = 0 - f.n[4] = 0 - f.n[5] = 0 - f.n[6] = 0 - f.n[7] = 0 - f.n[8] = 0 - f.n[9] = 0 -} - -// Set sets the field value equal to the passed value. -// -// The field value is returned to support chaining. This enables syntax like: -// f := new(fieldVal).Set(f2).Add(1) so that f = f2 + 1 where f2 is not -// modified. -func (f *fieldVal) Set(val *fieldVal) *fieldVal { - *f = *val - return f -} - -// SetInt sets the field value to the passed integer. This is a convenience -// function since it is fairly common to perform some arithemetic with small -// native integers. -// -// The field value is returned to support chaining. This enables syntax such -// as f := new(fieldVal).SetInt(2).Mul(f2) so that f = 2 * f2. -func (f *fieldVal) SetInt(ui uint) *fieldVal { - f.Zero() - f.n[0] = uint32(ui) - return f -} - -// SetBytes packs the passed 32-byte big-endian value into the internal field -// value representation. -// -// The field value is returned to support chaining. This enables syntax like: -// f := new(fieldVal).SetBytes(byteArray).Mul(f2) so that f = ba * f2. -func (f *fieldVal) SetBytes(b *[32]byte) *fieldVal { - // Pack the 256 total bits across the 10 uint32 words with a max of - // 26-bits per word. This could be done with a couple of for loops, - // but this unrolled version is significantly faster. Benchmarks show - // this is about 34 times faster than the variant which uses loops. - f.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 | - (uint32(b[28])&twoBitsMask)<<24 - f.n[1] = uint32(b[28])>>2 | uint32(b[27])<<6 | uint32(b[26])<<14 | - (uint32(b[25])&fourBitsMask)<<22 - f.n[2] = uint32(b[25])>>4 | uint32(b[24])<<4 | uint32(b[23])<<12 | - (uint32(b[22])&sixBitsMask)<<20 - f.n[3] = uint32(b[22])>>6 | uint32(b[21])<<2 | uint32(b[20])<<10 | - uint32(b[19])<<18 - f.n[4] = uint32(b[18]) | uint32(b[17])<<8 | uint32(b[16])<<16 | - (uint32(b[15])&twoBitsMask)<<24 - f.n[5] = uint32(b[15])>>2 | uint32(b[14])<<6 | uint32(b[13])<<14 | - (uint32(b[12])&fourBitsMask)<<22 - f.n[6] = uint32(b[12])>>4 | uint32(b[11])<<4 | uint32(b[10])<<12 | - (uint32(b[9])&sixBitsMask)<<20 - f.n[7] = uint32(b[9])>>6 | uint32(b[8])<<2 | uint32(b[7])<<10 | - uint32(b[6])<<18 - f.n[8] = uint32(b[5]) | uint32(b[4])<<8 | uint32(b[3])<<16 | - (uint32(b[2])&twoBitsMask)<<24 - f.n[9] = uint32(b[2])>>2 | uint32(b[1])<<6 | uint32(b[0])<<14 - return f -} - -// SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned -// integer (meaning it is truncated to the first 32 bytes), packs it into the -// internal field value representation, and returns the updated field value. -// -// Note that since passing a slice with more than 32 bytes is truncated, it is -// possible that the truncated value is less than the field prime. It is up to -// the caller to decide whether it needs to provide numbers of the appropriate -// size or if it is acceptable to use this function with the described -// truncation behavior. -// -// The field value is returned to support chaining. This enables syntax like: -// f := new(fieldVal).SetByteSlice(byteSlice) -func (f *fieldVal) SetByteSlice(b []byte) *fieldVal { - var b32 [32]byte - if len(b) > 32 { - b = b[:32] - } - copy(b32[32-len(b):], b) - return f.SetBytes(&b32) -} - -// SetHex decodes the passed big-endian hex string into the internal field value -// representation. Only the first 32-bytes are used. -// -// The field value is returned to support chaining. This enables syntax like: -// f := new(fieldVal).SetHex("0abc").Add(1) so that f = 0x0abc + 1 -func (f *fieldVal) SetHex(hexString string) *fieldVal { - if len(hexString)%2 != 0 { - hexString = "0" + hexString - } - bytes, _ := hex.DecodeString(hexString) - return f.SetByteSlice(bytes) -} - -// Normalize normalizes the internal field words into the desired range and -// performs fast modular reduction over the secp256k1 prime by making use of the -// special form of the prime. -func (f *fieldVal) Normalize() *fieldVal { - // The field representation leaves 6 bits of overflow in each word so - // intermediate calculations can be performed without needing to - // propagate the carry to each higher word during the calculations. In - // order to normalize, we need to "compact" the full 256-bit value to - // the right while propagating any carries through to the high order - // word. - // - // Since this field is doing arithmetic modulo the secp256k1 prime, we - // also need to perform modular reduction over the prime. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, highly efficient - // reduction can be achieved. - // - // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits - // this criteria. - // - // 4294968273 in field representation (base 2^26) is: - // n[0] = 977 - // n[1] = 64 - // That is to say (2^26 * 64) + 977 = 4294968273 - // - // The algorithm presented in the referenced section typically repeats - // until the quotient is zero. However, due to our field representation - // we already know to within one reduction how many times we would need - // to repeat as it's the uppermost bits of the high order word. Thus we - // can simply multiply the magnitude by the field representation of the - // prime and do a single iteration. After this step there might be an - // additional carry to bit 256 (bit 22 of the high order word). - t9 := f.n[9] - m := t9 >> fieldMSBBits - t9 = t9 & fieldMSBMask - t0 := f.n[0] + m*977 - t1 := (t0 >> fieldBase) + f.n[1] + (m << 6) - t0 = t0 & fieldBaseMask - t2 := (t1 >> fieldBase) + f.n[2] - t1 = t1 & fieldBaseMask - t3 := (t2 >> fieldBase) + f.n[3] - t2 = t2 & fieldBaseMask - t4 := (t3 >> fieldBase) + f.n[4] - t3 = t3 & fieldBaseMask - t5 := (t4 >> fieldBase) + f.n[5] - t4 = t4 & fieldBaseMask - t6 := (t5 >> fieldBase) + f.n[6] - t5 = t5 & fieldBaseMask - t7 := (t6 >> fieldBase) + f.n[7] - t6 = t6 & fieldBaseMask - t8 := (t7 >> fieldBase) + f.n[8] - t7 = t7 & fieldBaseMask - t9 = (t8 >> fieldBase) + t9 - t8 = t8 & fieldBaseMask - - // At this point, the magnitude is guaranteed to be one, however, the - // value could still be greater than the prime if there was either a - // carry through to bit 256 (bit 22 of the higher order word) or the - // value is greater than or equal to the field characteristic. The - // following determines if either or these conditions are true and does - // the final reduction in constant time. - // - // Note that the if/else statements here intentionally do the bitwise - // operators even when it won't change the value to ensure constant time - // between the branches. Also note that 'm' will be zero when neither - // of the aforementioned conditions are true and the value will not be - // changed when 'm' is zero. - m = 1 - if t9 == fieldMSBMask { - m &= 1 - } else { - m &= 0 - } - if t2&t3&t4&t5&t6&t7&t8 == fieldBaseMask { - m &= 1 - } else { - m &= 0 - } - if ((t0+977)>>fieldBase + t1 + 64) > fieldBaseMask { - m &= 1 - } else { - m &= 0 - } - if t9>>fieldMSBBits != 0 { - m |= 1 - } else { - m |= 0 - } - t0 = t0 + m*977 - t1 = (t0 >> fieldBase) + t1 + (m << 6) - t0 = t0 & fieldBaseMask - t2 = (t1 >> fieldBase) + t2 - t1 = t1 & fieldBaseMask - t3 = (t2 >> fieldBase) + t3 - t2 = t2 & fieldBaseMask - t4 = (t3 >> fieldBase) + t4 - t3 = t3 & fieldBaseMask - t5 = (t4 >> fieldBase) + t5 - t4 = t4 & fieldBaseMask - t6 = (t5 >> fieldBase) + t6 - t5 = t5 & fieldBaseMask - t7 = (t6 >> fieldBase) + t7 - t6 = t6 & fieldBaseMask - t8 = (t7 >> fieldBase) + t8 - t7 = t7 & fieldBaseMask - t9 = (t8 >> fieldBase) + t9 - t8 = t8 & fieldBaseMask - t9 = t9 & fieldMSBMask // Remove potential multiple of 2^256. - - // Finally, set the normalized and reduced words. - f.n[0] = t0 - f.n[1] = t1 - f.n[2] = t2 - f.n[3] = t3 - f.n[4] = t4 - f.n[5] = t5 - f.n[6] = t6 - f.n[7] = t7 - f.n[8] = t8 - f.n[9] = t9 - return f -} - -// PutBytes unpacks the field value to a 32-byte big-endian value using the -// passed byte array. There is a similar function, Bytes, which unpacks the -// field value into a new array and returns that. This version is provided -// since it can be useful to cut down on the number of allocations by allowing -// the caller to reuse a buffer. -// -// The field value must be normalized for this function to return the correct -// result. -func (f *fieldVal) PutBytes(b *[32]byte) { - // Unpack the 256 total bits from the 10 uint32 words with a max of - // 26-bits per word. This could be done with a couple of for loops, - // but this unrolled version is a bit faster. Benchmarks show this is - // about 10 times faster than the variant which uses loops. - b[31] = byte(f.n[0] & eightBitsMask) - b[30] = byte((f.n[0] >> 8) & eightBitsMask) - b[29] = byte((f.n[0] >> 16) & eightBitsMask) - b[28] = byte((f.n[0]>>24)&twoBitsMask | (f.n[1]&sixBitsMask)<<2) - b[27] = byte((f.n[1] >> 6) & eightBitsMask) - b[26] = byte((f.n[1] >> 14) & eightBitsMask) - b[25] = byte((f.n[1]>>22)&fourBitsMask | (f.n[2]&fourBitsMask)<<4) - b[24] = byte((f.n[2] >> 4) & eightBitsMask) - b[23] = byte((f.n[2] >> 12) & eightBitsMask) - b[22] = byte((f.n[2]>>20)&sixBitsMask | (f.n[3]&twoBitsMask)<<6) - b[21] = byte((f.n[3] >> 2) & eightBitsMask) - b[20] = byte((f.n[3] >> 10) & eightBitsMask) - b[19] = byte((f.n[3] >> 18) & eightBitsMask) - b[18] = byte(f.n[4] & eightBitsMask) - b[17] = byte((f.n[4] >> 8) & eightBitsMask) - b[16] = byte((f.n[4] >> 16) & eightBitsMask) - b[15] = byte((f.n[4]>>24)&twoBitsMask | (f.n[5]&sixBitsMask)<<2) - b[14] = byte((f.n[5] >> 6) & eightBitsMask) - b[13] = byte((f.n[5] >> 14) & eightBitsMask) - b[12] = byte((f.n[5]>>22)&fourBitsMask | (f.n[6]&fourBitsMask)<<4) - b[11] = byte((f.n[6] >> 4) & eightBitsMask) - b[10] = byte((f.n[6] >> 12) & eightBitsMask) - b[9] = byte((f.n[6]>>20)&sixBitsMask | (f.n[7]&twoBitsMask)<<6) - b[8] = byte((f.n[7] >> 2) & eightBitsMask) - b[7] = byte((f.n[7] >> 10) & eightBitsMask) - b[6] = byte((f.n[7] >> 18) & eightBitsMask) - b[5] = byte(f.n[8] & eightBitsMask) - b[4] = byte((f.n[8] >> 8) & eightBitsMask) - b[3] = byte((f.n[8] >> 16) & eightBitsMask) - b[2] = byte((f.n[8]>>24)&twoBitsMask | (f.n[9]&sixBitsMask)<<2) - b[1] = byte((f.n[9] >> 6) & eightBitsMask) - b[0] = byte((f.n[9] >> 14) & eightBitsMask) -} - -// Bytes unpacks the field value to a 32-byte big-endian value. See PutBytes -// for a variant that allows the a buffer to be passed which can be useful to -// to cut down on the number of allocations by allowing the caller to reuse a -// buffer. -// -// The field value must be normalized for this function to return correct -// result. -func (f *fieldVal) Bytes() *[32]byte { - b := new([32]byte) - f.PutBytes(b) - return b -} - -// IsZero returns whether or not the field value is equal to zero. -func (f *fieldVal) IsZero() bool { - // The value can only be zero if no bits are set in any of the words. - // This is a constant time implementation. - bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] | - f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9] - - return bits == 0 -} - -// IsOdd returns whether or not the field value is an odd number. -// -// The field value must be normalized for this function to return correct -// result. -func (f *fieldVal) IsOdd() bool { - // Only odd numbers have the bottom bit set. - return f.n[0]&1 == 1 -} - -// Equals returns whether or not the two field values are the same. Both -// field values being compared must be normalized for this function to return -// the correct result. -func (f *fieldVal) Equals(val *fieldVal) bool { - // Xor only sets bits when they are different, so the two field values - // can only be the same if no bits are set after xoring each word. - // This is a constant time implementation. - bits := (f.n[0] ^ val.n[0]) | (f.n[1] ^ val.n[1]) | (f.n[2] ^ val.n[2]) | - (f.n[3] ^ val.n[3]) | (f.n[4] ^ val.n[4]) | (f.n[5] ^ val.n[5]) | - (f.n[6] ^ val.n[6]) | (f.n[7] ^ val.n[7]) | (f.n[8] ^ val.n[8]) | - (f.n[9] ^ val.n[9]) - - return bits == 0 -} - -// NegateVal negates the passed value and stores the result in f. The caller -// must provide the magnitude of the passed value for a correct result. -// -// The field value is returned to support chaining. This enables syntax like: -// f.NegateVal(f2).AddInt(1) so that f = -f2 + 1. -func (f *fieldVal) NegateVal(val *fieldVal, magnitude uint32) *fieldVal { - // Negation in the field is just the prime minus the value. However, - // in order to allow negation against a field value without having to - // normalize/reduce it first, multiply by the magnitude (that is how - // "far" away it is from the normalized value) to adjust. Also, since - // negating a value pushes it one more order of magnitude away from the - // normalized range, add 1 to compensate. - // - // For some intuition here, imagine you're performing mod 12 arithmetic - // (picture a clock) and you are negating the number 7. So you start at - // 12 (which is of course 0 under mod 12) and count backwards (left on - // the clock) 7 times to arrive at 5. Notice this is just 12-7 = 5. - // Now, assume you're starting with 19, which is a number that is - // already larger than the modulus and congruent to 7 (mod 12). When a - // value is already in the desired range, its magnitude is 1. Since 19 - // is an additional "step", its magnitude (mod 12) is 2. Since any - // multiple of the modulus is conguent to zero (mod m), the answer can - // be shortcut by simply mulplying the magnitude by the modulus and - // subtracting. Keeping with the example, this would be (2*12)-19 = 5. - f.n[0] = (magnitude+1)*fieldPrimeWordZero - val.n[0] - f.n[1] = (magnitude+1)*fieldPrimeWordOne - val.n[1] - f.n[2] = (magnitude+1)*fieldBaseMask - val.n[2] - f.n[3] = (magnitude+1)*fieldBaseMask - val.n[3] - f.n[4] = (magnitude+1)*fieldBaseMask - val.n[4] - f.n[5] = (magnitude+1)*fieldBaseMask - val.n[5] - f.n[6] = (magnitude+1)*fieldBaseMask - val.n[6] - f.n[7] = (magnitude+1)*fieldBaseMask - val.n[7] - f.n[8] = (magnitude+1)*fieldBaseMask - val.n[8] - f.n[9] = (magnitude+1)*fieldMSBMask - val.n[9] - - return f -} - -// Negate negates the field value. The existing field value is modified. The -// caller must provide the magnitude of the field value for a correct result. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Negate().AddInt(1) so that f = -f + 1. -func (f *fieldVal) Negate(magnitude uint32) *fieldVal { - return f.NegateVal(f, magnitude) -} - -// AddInt adds the passed integer to the existing field value and stores the -// result in f. This is a convenience function since it is fairly common to -// perform some arithemetic with small native integers. -// -// The field value is returned to support chaining. This enables syntax like: -// f.AddInt(1).Add(f2) so that f = f + 1 + f2. -func (f *fieldVal) AddInt(ui uint) *fieldVal { - // Since the field representation intentionally provides overflow bits, - // it's ok to use carryless addition as the carry bit is safely part of - // the word and will be normalized out. - f.n[0] += uint32(ui) - - return f -} - -// Add adds the passed value to the existing field value and stores the result -// in f. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Add(f2).AddInt(1) so that f = f + f2 + 1. -func (f *fieldVal) Add(val *fieldVal) *fieldVal { - // Since the field representation intentionally provides overflow bits, - // it's ok to use carryless addition as the carry bit is safely part of - // each word and will be normalized out. This could obviously be done - // in a loop, but the unrolled version is faster. - f.n[0] += val.n[0] - f.n[1] += val.n[1] - f.n[2] += val.n[2] - f.n[3] += val.n[3] - f.n[4] += val.n[4] - f.n[5] += val.n[5] - f.n[6] += val.n[6] - f.n[7] += val.n[7] - f.n[8] += val.n[8] - f.n[9] += val.n[9] - - return f -} - -// Add2 adds the passed two field values together and stores the result in f. -// -// The field value is returned to support chaining. This enables syntax like: -// f3.Add2(f, f2).AddInt(1) so that f3 = f + f2 + 1. -func (f *fieldVal) Add2(val *fieldVal, val2 *fieldVal) *fieldVal { - // Since the field representation intentionally provides overflow bits, - // it's ok to use carryless addition as the carry bit is safely part of - // each word and will be normalized out. This could obviously be done - // in a loop, but the unrolled version is faster. - f.n[0] = val.n[0] + val2.n[0] - f.n[1] = val.n[1] + val2.n[1] - f.n[2] = val.n[2] + val2.n[2] - f.n[3] = val.n[3] + val2.n[3] - f.n[4] = val.n[4] + val2.n[4] - f.n[5] = val.n[5] + val2.n[5] - f.n[6] = val.n[6] + val2.n[6] - f.n[7] = val.n[7] + val2.n[7] - f.n[8] = val.n[8] + val2.n[8] - f.n[9] = val.n[9] + val2.n[9] - - return f -} - -// MulInt multiplies the field value by the passed int and stores the result in -// f. Note that this function can overflow if multiplying the value by any of -// the individual words exceeds a max uint32. Therefore it is important that -// the caller ensures no overflows will occur before using this function. -// -// The field value is returned to support chaining. This enables syntax like: -// f.MulInt(2).Add(f2) so that f = 2 * f + f2. -func (f *fieldVal) MulInt(val uint) *fieldVal { - // Since each word of the field representation can hold up to - // fieldOverflowBits extra bits which will be normalized out, it's safe - // to multiply each word without using a larger type or carry - // propagation so long as the values won't overflow a uint32. This - // could obviously be done in a loop, but the unrolled version is - // faster. - ui := uint32(val) - f.n[0] *= ui - f.n[1] *= ui - f.n[2] *= ui - f.n[3] *= ui - f.n[4] *= ui - f.n[5] *= ui - f.n[6] *= ui - f.n[7] *= ui - f.n[8] *= ui - f.n[9] *= ui - - return f -} - -// Mul multiplies the passed value to the existing field value and stores the -// result in f. Note that this function can overflow if multiplying any -// of the individual words exceeds a max uint32. In practice, this means the -// magnitude of either value involved in the multiplication must be a max of -// 8. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Mul(f2).AddInt(1) so that f = (f * f2) + 1. -func (f *fieldVal) Mul(val *fieldVal) *fieldVal { - return f.Mul2(f, val) -} - -// Mul2 multiplies the passed two field values together and stores the result -// result in f. Note that this function can overflow if multiplying any of -// the individual words exceeds a max uint32. In practice, this means the -// magnitude of either value involved in the multiplication must be a max of -// 8. -// -// The field value is returned to support chaining. This enables syntax like: -// f3.Mul2(f, f2).AddInt(1) so that f3 = (f * f2) + 1. -func (f *fieldVal) Mul2(val *fieldVal, val2 *fieldVal) *fieldVal { - // This could be done with a couple of for loops and an array to store - // the intermediate terms, but this unrolled version is significantly - // faster. - - // Terms for 2^(fieldBase*0). - m := uint64(val.n[0]) * uint64(val2.n[0]) - t0 := m & fieldBaseMask - - // Terms for 2^(fieldBase*1). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[1]) + - uint64(val.n[1])*uint64(val2.n[0]) - t1 := m & fieldBaseMask - - // Terms for 2^(fieldBase*2). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[2]) + - uint64(val.n[1])*uint64(val2.n[1]) + - uint64(val.n[2])*uint64(val2.n[0]) - t2 := m & fieldBaseMask - - // Terms for 2^(fieldBase*3). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[3]) + - uint64(val.n[1])*uint64(val2.n[2]) + - uint64(val.n[2])*uint64(val2.n[1]) + - uint64(val.n[3])*uint64(val2.n[0]) - t3 := m & fieldBaseMask - - // Terms for 2^(fieldBase*4). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[4]) + - uint64(val.n[1])*uint64(val2.n[3]) + - uint64(val.n[2])*uint64(val2.n[2]) + - uint64(val.n[3])*uint64(val2.n[1]) + - uint64(val.n[4])*uint64(val2.n[0]) - t4 := m & fieldBaseMask - - // Terms for 2^(fieldBase*5). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[5]) + - uint64(val.n[1])*uint64(val2.n[4]) + - uint64(val.n[2])*uint64(val2.n[3]) + - uint64(val.n[3])*uint64(val2.n[2]) + - uint64(val.n[4])*uint64(val2.n[1]) + - uint64(val.n[5])*uint64(val2.n[0]) - t5 := m & fieldBaseMask - - // Terms for 2^(fieldBase*6). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[6]) + - uint64(val.n[1])*uint64(val2.n[5]) + - uint64(val.n[2])*uint64(val2.n[4]) + - uint64(val.n[3])*uint64(val2.n[3]) + - uint64(val.n[4])*uint64(val2.n[2]) + - uint64(val.n[5])*uint64(val2.n[1]) + - uint64(val.n[6])*uint64(val2.n[0]) - t6 := m & fieldBaseMask - - // Terms for 2^(fieldBase*7). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[7]) + - uint64(val.n[1])*uint64(val2.n[6]) + - uint64(val.n[2])*uint64(val2.n[5]) + - uint64(val.n[3])*uint64(val2.n[4]) + - uint64(val.n[4])*uint64(val2.n[3]) + - uint64(val.n[5])*uint64(val2.n[2]) + - uint64(val.n[6])*uint64(val2.n[1]) + - uint64(val.n[7])*uint64(val2.n[0]) - t7 := m & fieldBaseMask - - // Terms for 2^(fieldBase*8). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[8]) + - uint64(val.n[1])*uint64(val2.n[7]) + - uint64(val.n[2])*uint64(val2.n[6]) + - uint64(val.n[3])*uint64(val2.n[5]) + - uint64(val.n[4])*uint64(val2.n[4]) + - uint64(val.n[5])*uint64(val2.n[3]) + - uint64(val.n[6])*uint64(val2.n[2]) + - uint64(val.n[7])*uint64(val2.n[1]) + - uint64(val.n[8])*uint64(val2.n[0]) - t8 := m & fieldBaseMask - - // Terms for 2^(fieldBase*9). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[9]) + - uint64(val.n[1])*uint64(val2.n[8]) + - uint64(val.n[2])*uint64(val2.n[7]) + - uint64(val.n[3])*uint64(val2.n[6]) + - uint64(val.n[4])*uint64(val2.n[5]) + - uint64(val.n[5])*uint64(val2.n[4]) + - uint64(val.n[6])*uint64(val2.n[3]) + - uint64(val.n[7])*uint64(val2.n[2]) + - uint64(val.n[8])*uint64(val2.n[1]) + - uint64(val.n[9])*uint64(val2.n[0]) - t9 := m & fieldBaseMask - - // Terms for 2^(fieldBase*10). - m = (m >> fieldBase) + - uint64(val.n[1])*uint64(val2.n[9]) + - uint64(val.n[2])*uint64(val2.n[8]) + - uint64(val.n[3])*uint64(val2.n[7]) + - uint64(val.n[4])*uint64(val2.n[6]) + - uint64(val.n[5])*uint64(val2.n[5]) + - uint64(val.n[6])*uint64(val2.n[4]) + - uint64(val.n[7])*uint64(val2.n[3]) + - uint64(val.n[8])*uint64(val2.n[2]) + - uint64(val.n[9])*uint64(val2.n[1]) - t10 := m & fieldBaseMask - - // Terms for 2^(fieldBase*11). - m = (m >> fieldBase) + - uint64(val.n[2])*uint64(val2.n[9]) + - uint64(val.n[3])*uint64(val2.n[8]) + - uint64(val.n[4])*uint64(val2.n[7]) + - uint64(val.n[5])*uint64(val2.n[6]) + - uint64(val.n[6])*uint64(val2.n[5]) + - uint64(val.n[7])*uint64(val2.n[4]) + - uint64(val.n[8])*uint64(val2.n[3]) + - uint64(val.n[9])*uint64(val2.n[2]) - t11 := m & fieldBaseMask - - // Terms for 2^(fieldBase*12). - m = (m >> fieldBase) + - uint64(val.n[3])*uint64(val2.n[9]) + - uint64(val.n[4])*uint64(val2.n[8]) + - uint64(val.n[5])*uint64(val2.n[7]) + - uint64(val.n[6])*uint64(val2.n[6]) + - uint64(val.n[7])*uint64(val2.n[5]) + - uint64(val.n[8])*uint64(val2.n[4]) + - uint64(val.n[9])*uint64(val2.n[3]) - t12 := m & fieldBaseMask - - // Terms for 2^(fieldBase*13). - m = (m >> fieldBase) + - uint64(val.n[4])*uint64(val2.n[9]) + - uint64(val.n[5])*uint64(val2.n[8]) + - uint64(val.n[6])*uint64(val2.n[7]) + - uint64(val.n[7])*uint64(val2.n[6]) + - uint64(val.n[8])*uint64(val2.n[5]) + - uint64(val.n[9])*uint64(val2.n[4]) - t13 := m & fieldBaseMask - - // Terms for 2^(fieldBase*14). - m = (m >> fieldBase) + - uint64(val.n[5])*uint64(val2.n[9]) + - uint64(val.n[6])*uint64(val2.n[8]) + - uint64(val.n[7])*uint64(val2.n[7]) + - uint64(val.n[8])*uint64(val2.n[6]) + - uint64(val.n[9])*uint64(val2.n[5]) - t14 := m & fieldBaseMask - - // Terms for 2^(fieldBase*15). - m = (m >> fieldBase) + - uint64(val.n[6])*uint64(val2.n[9]) + - uint64(val.n[7])*uint64(val2.n[8]) + - uint64(val.n[8])*uint64(val2.n[7]) + - uint64(val.n[9])*uint64(val2.n[6]) - t15 := m & fieldBaseMask - - // Terms for 2^(fieldBase*16). - m = (m >> fieldBase) + - uint64(val.n[7])*uint64(val2.n[9]) + - uint64(val.n[8])*uint64(val2.n[8]) + - uint64(val.n[9])*uint64(val2.n[7]) - t16 := m & fieldBaseMask - - // Terms for 2^(fieldBase*17). - m = (m >> fieldBase) + - uint64(val.n[8])*uint64(val2.n[9]) + - uint64(val.n[9])*uint64(val2.n[8]) - t17 := m & fieldBaseMask - - // Terms for 2^(fieldBase*18). - m = (m >> fieldBase) + uint64(val.n[9])*uint64(val2.n[9]) - t18 := m & fieldBaseMask - - // What's left is for 2^(fieldBase*19). - t19 := m >> fieldBase - - // At this point, all of the terms are grouped into their respective - // base. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, highly efficient - // reduction can be achieved per the provided algorithm. - // - // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits - // this criteria. - // - // 4294968273 in field representation (base 2^26) is: - // n[0] = 977 - // n[1] = 64 - // That is to say (2^26 * 64) + 977 = 4294968273 - // - // Since each word is in base 26, the upper terms (t10 and up) start - // at 260 bits (versus the final desired range of 256 bits), so the - // field representation of 'c' from above needs to be adjusted for the - // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 = - // 68719492368. Thus, the adjusted field representation of 'c' is: - // n[0] = 977 * 16 = 15632 - // n[1] = 64 * 16 = 1024 - // That is to say (2^26 * 1024) + 15632 = 68719492368 - // - // To reduce the final term, t19, the entire 'c' value is needed instead - // of only n[0] because there are no more terms left to handle n[1]. - // This means there might be some magnitude left in the upper bits that - // is handled below. - m = t0 + t10*15632 - t0 = m & fieldBaseMask - m = (m >> fieldBase) + t1 + t10*1024 + t11*15632 - t1 = m & fieldBaseMask - m = (m >> fieldBase) + t2 + t11*1024 + t12*15632 - t2 = m & fieldBaseMask - m = (m >> fieldBase) + t3 + t12*1024 + t13*15632 - t3 = m & fieldBaseMask - m = (m >> fieldBase) + t4 + t13*1024 + t14*15632 - t4 = m & fieldBaseMask - m = (m >> fieldBase) + t5 + t14*1024 + t15*15632 - t5 = m & fieldBaseMask - m = (m >> fieldBase) + t6 + t15*1024 + t16*15632 - t6 = m & fieldBaseMask - m = (m >> fieldBase) + t7 + t16*1024 + t17*15632 - t7 = m & fieldBaseMask - m = (m >> fieldBase) + t8 + t17*1024 + t18*15632 - t8 = m & fieldBaseMask - m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368 - t9 = m & fieldMSBMask - m = m >> fieldMSBBits - - // At this point, if the magnitude is greater than 0, the overall value - // is greater than the max possible 256-bit value. In particular, it is - // "how many times larger" than the max value it is. - // - // The algorithm presented in [HAC] section 14.3.4 repeats until the - // quotient is zero. However, due to the above, we already know at - // least how many times we would need to repeat as it's the value - // currently in m. Thus we can simply multiply the magnitude by the - // field representation of the prime and do a single iteration. Notice - // that nothing will be changed when the magnitude is zero, so we could - // skip this in that case, however always running regardless allows it - // to run in constant time. The final result will be in the range - // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a - // magnitude of 1, but it is denormalized. - d := t0 + m*977 - f.n[0] = uint32(d & fieldBaseMask) - d = (d >> fieldBase) + t1 + m*64 - f.n[1] = uint32(d & fieldBaseMask) - f.n[2] = uint32((d >> fieldBase) + t2) - f.n[3] = uint32(t3) - f.n[4] = uint32(t4) - f.n[5] = uint32(t5) - f.n[6] = uint32(t6) - f.n[7] = uint32(t7) - f.n[8] = uint32(t8) - f.n[9] = uint32(t9) - - return f -} - -// Square squares the field value. The existing field value is modified. Note -// that this function can overflow if multiplying any of the individual words -// exceeds a max uint32. In practice, this means the magnitude of the field -// must be a max of 8 to prevent overflow. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Square().Mul(f2) so that f = f^2 * f2. -func (f *fieldVal) Square() *fieldVal { - return f.SquareVal(f) -} - -// SquareVal squares the passed value and stores the result in f. Note that -// this function can overflow if multiplying any of the individual words -// exceeds a max uint32. In practice, this means the magnitude of the field -// being squred must be a max of 8 to prevent overflow. -// -// The field value is returned to support chaining. This enables syntax like: -// f3.SquareVal(f).Mul(f) so that f3 = f^2 * f = f^3. -func (f *fieldVal) SquareVal(val *fieldVal) *fieldVal { - // This could be done with a couple of for loops and an array to store - // the intermediate terms, but this unrolled version is significantly - // faster. - - // Terms for 2^(fieldBase*0). - m := uint64(val.n[0]) * uint64(val.n[0]) - t0 := m & fieldBaseMask - - // Terms for 2^(fieldBase*1). - m = (m >> fieldBase) + 2*uint64(val.n[0])*uint64(val.n[1]) - t1 := m & fieldBaseMask - - // Terms for 2^(fieldBase*2). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[2]) + - uint64(val.n[1])*uint64(val.n[1]) - t2 := m & fieldBaseMask - - // Terms for 2^(fieldBase*3). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[3]) + - 2*uint64(val.n[1])*uint64(val.n[2]) - t3 := m & fieldBaseMask - - // Terms for 2^(fieldBase*4). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[4]) + - 2*uint64(val.n[1])*uint64(val.n[3]) + - uint64(val.n[2])*uint64(val.n[2]) - t4 := m & fieldBaseMask - - // Terms for 2^(fieldBase*5). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[5]) + - 2*uint64(val.n[1])*uint64(val.n[4]) + - 2*uint64(val.n[2])*uint64(val.n[3]) - t5 := m & fieldBaseMask - - // Terms for 2^(fieldBase*6). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[6]) + - 2*uint64(val.n[1])*uint64(val.n[5]) + - 2*uint64(val.n[2])*uint64(val.n[4]) + - uint64(val.n[3])*uint64(val.n[3]) - t6 := m & fieldBaseMask - - // Terms for 2^(fieldBase*7). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[7]) + - 2*uint64(val.n[1])*uint64(val.n[6]) + - 2*uint64(val.n[2])*uint64(val.n[5]) + - 2*uint64(val.n[3])*uint64(val.n[4]) - t7 := m & fieldBaseMask - - // Terms for 2^(fieldBase*8). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[8]) + - 2*uint64(val.n[1])*uint64(val.n[7]) + - 2*uint64(val.n[2])*uint64(val.n[6]) + - 2*uint64(val.n[3])*uint64(val.n[5]) + - uint64(val.n[4])*uint64(val.n[4]) - t8 := m & fieldBaseMask - - // Terms for 2^(fieldBase*9). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[9]) + - 2*uint64(val.n[1])*uint64(val.n[8]) + - 2*uint64(val.n[2])*uint64(val.n[7]) + - 2*uint64(val.n[3])*uint64(val.n[6]) + - 2*uint64(val.n[4])*uint64(val.n[5]) - t9 := m & fieldBaseMask - - // Terms for 2^(fieldBase*10). - m = (m >> fieldBase) + - 2*uint64(val.n[1])*uint64(val.n[9]) + - 2*uint64(val.n[2])*uint64(val.n[8]) + - 2*uint64(val.n[3])*uint64(val.n[7]) + - 2*uint64(val.n[4])*uint64(val.n[6]) + - uint64(val.n[5])*uint64(val.n[5]) - t10 := m & fieldBaseMask - - // Terms for 2^(fieldBase*11). - m = (m >> fieldBase) + - 2*uint64(val.n[2])*uint64(val.n[9]) + - 2*uint64(val.n[3])*uint64(val.n[8]) + - 2*uint64(val.n[4])*uint64(val.n[7]) + - 2*uint64(val.n[5])*uint64(val.n[6]) - t11 := m & fieldBaseMask - - // Terms for 2^(fieldBase*12). - m = (m >> fieldBase) + - 2*uint64(val.n[3])*uint64(val.n[9]) + - 2*uint64(val.n[4])*uint64(val.n[8]) + - 2*uint64(val.n[5])*uint64(val.n[7]) + - uint64(val.n[6])*uint64(val.n[6]) - t12 := m & fieldBaseMask - - // Terms for 2^(fieldBase*13). - m = (m >> fieldBase) + - 2*uint64(val.n[4])*uint64(val.n[9]) + - 2*uint64(val.n[5])*uint64(val.n[8]) + - 2*uint64(val.n[6])*uint64(val.n[7]) - t13 := m & fieldBaseMask - - // Terms for 2^(fieldBase*14). - m = (m >> fieldBase) + - 2*uint64(val.n[5])*uint64(val.n[9]) + - 2*uint64(val.n[6])*uint64(val.n[8]) + - uint64(val.n[7])*uint64(val.n[7]) - t14 := m & fieldBaseMask - - // Terms for 2^(fieldBase*15). - m = (m >> fieldBase) + - 2*uint64(val.n[6])*uint64(val.n[9]) + - 2*uint64(val.n[7])*uint64(val.n[8]) - t15 := m & fieldBaseMask - - // Terms for 2^(fieldBase*16). - m = (m >> fieldBase) + - 2*uint64(val.n[7])*uint64(val.n[9]) + - uint64(val.n[8])*uint64(val.n[8]) - t16 := m & fieldBaseMask - - // Terms for 2^(fieldBase*17). - m = (m >> fieldBase) + 2*uint64(val.n[8])*uint64(val.n[9]) - t17 := m & fieldBaseMask - - // Terms for 2^(fieldBase*18). - m = (m >> fieldBase) + uint64(val.n[9])*uint64(val.n[9]) - t18 := m & fieldBaseMask - - // What's left is for 2^(fieldBase*19). - t19 := m >> fieldBase - - // At this point, all of the terms are grouped into their respective - // base. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, highly efficient - // reduction can be achieved per the provided algorithm. - // - // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits - // this criteria. - // - // 4294968273 in field representation (base 2^26) is: - // n[0] = 977 - // n[1] = 64 - // That is to say (2^26 * 64) + 977 = 4294968273 - // - // Since each word is in base 26, the upper terms (t10 and up) start - // at 260 bits (versus the final desired range of 256 bits), so the - // field representation of 'c' from above needs to be adjusted for the - // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 = - // 68719492368. Thus, the adjusted field representation of 'c' is: - // n[0] = 977 * 16 = 15632 - // n[1] = 64 * 16 = 1024 - // That is to say (2^26 * 1024) + 15632 = 68719492368 - // - // To reduce the final term, t19, the entire 'c' value is needed instead - // of only n[0] because there are no more terms left to handle n[1]. - // This means there might be some magnitude left in the upper bits that - // is handled below. - m = t0 + t10*15632 - t0 = m & fieldBaseMask - m = (m >> fieldBase) + t1 + t10*1024 + t11*15632 - t1 = m & fieldBaseMask - m = (m >> fieldBase) + t2 + t11*1024 + t12*15632 - t2 = m & fieldBaseMask - m = (m >> fieldBase) + t3 + t12*1024 + t13*15632 - t3 = m & fieldBaseMask - m = (m >> fieldBase) + t4 + t13*1024 + t14*15632 - t4 = m & fieldBaseMask - m = (m >> fieldBase) + t5 + t14*1024 + t15*15632 - t5 = m & fieldBaseMask - m = (m >> fieldBase) + t6 + t15*1024 + t16*15632 - t6 = m & fieldBaseMask - m = (m >> fieldBase) + t7 + t16*1024 + t17*15632 - t7 = m & fieldBaseMask - m = (m >> fieldBase) + t8 + t17*1024 + t18*15632 - t8 = m & fieldBaseMask - m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368 - t9 = m & fieldMSBMask - m = m >> fieldMSBBits - - // At this point, if the magnitude is greater than 0, the overall value - // is greater than the max possible 256-bit value. In particular, it is - // "how many times larger" than the max value it is. - // - // The algorithm presented in [HAC] section 14.3.4 repeats until the - // quotient is zero. However, due to the above, we already know at - // least how many times we would need to repeat as it's the value - // currently in m. Thus we can simply multiply the magnitude by the - // field representation of the prime and do a single iteration. Notice - // that nothing will be changed when the magnitude is zero, so we could - // skip this in that case, however always running regardless allows it - // to run in constant time. The final result will be in the range - // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a - // magnitude of 1, but it is denormalized. - n := t0 + m*977 - f.n[0] = uint32(n & fieldBaseMask) - n = (n >> fieldBase) + t1 + m*64 - f.n[1] = uint32(n & fieldBaseMask) - f.n[2] = uint32((n >> fieldBase) + t2) - f.n[3] = uint32(t3) - f.n[4] = uint32(t4) - f.n[5] = uint32(t5) - f.n[6] = uint32(t6) - f.n[7] = uint32(t7) - f.n[8] = uint32(t8) - f.n[9] = uint32(t9) - - return f -} - -// Inverse finds the modular multiplicative inverse of the field value. The -// existing field value is modified. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Inverse().Mul(f2) so that f = f^-1 * f2. -func (f *fieldVal) Inverse() *fieldVal { - // Fermat's little theorem states that for a nonzero number a and prime - // prime p, a^(p-1) = 1 (mod p). Since the multipliciative inverse is - // a*b = 1 (mod p), it follows that b = a*a^(p-2) = a^(p-1) = 1 (mod p). - // Thus, a^(p-2) is the multiplicative inverse. - // - // In order to efficiently compute a^(p-2), p-2 needs to be split into - // a sequence of squares and multipications that minimizes the number of - // multiplications needed (since they are more costly than squarings). - // Intermediate results are saved and reused as well. - // - // The secp256k1 prime - 2 is 2^256 - 4294968275. - // - // This has a cost of 258 field squarings and 33 field multiplications. - var a2, a3, a4, a10, a11, a21, a42, a45, a63, a1019, a1023 fieldVal - a2.SquareVal(f) - a3.Mul2(&a2, f) - a4.SquareVal(&a2) - a10.SquareVal(&a4).Mul(&a2) - a11.Mul2(&a10, f) - a21.Mul2(&a10, &a11) - a42.SquareVal(&a21) - a45.Mul2(&a42, &a3) - a63.Mul2(&a42, &a21) - a1019.SquareVal(&a63).Square().Square().Square().Mul(&a11) - a1023.Mul2(&a1019, &a4) - f.Set(&a63) // f = a^(2^6 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^11 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^16 - 1024) - f.Mul(&a1023) // f = a^(2^16 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^21 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^26 - 1024) - f.Mul(&a1023) // f = a^(2^26 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^31 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^36 - 1024) - f.Mul(&a1023) // f = a^(2^36 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^41 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^46 - 1024) - f.Mul(&a1023) // f = a^(2^46 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^51 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^56 - 1024) - f.Mul(&a1023) // f = a^(2^56 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^61 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^66 - 1024) - f.Mul(&a1023) // f = a^(2^66 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^71 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^76 - 1024) - f.Mul(&a1023) // f = a^(2^76 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^81 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^86 - 1024) - f.Mul(&a1023) // f = a^(2^86 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^91 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^96 - 1024) - f.Mul(&a1023) // f = a^(2^96 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^101 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^106 - 1024) - f.Mul(&a1023) // f = a^(2^106 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^111 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^116 - 1024) - f.Mul(&a1023) // f = a^(2^116 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^121 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^126 - 1024) - f.Mul(&a1023) // f = a^(2^126 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^131 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^136 - 1024) - f.Mul(&a1023) // f = a^(2^136 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^141 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^146 - 1024) - f.Mul(&a1023) // f = a^(2^146 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^151 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^156 - 1024) - f.Mul(&a1023) // f = a^(2^156 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^161 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^166 - 1024) - f.Mul(&a1023) // f = a^(2^166 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^171 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^176 - 1024) - f.Mul(&a1023) // f = a^(2^176 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^181 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^186 - 1024) - f.Mul(&a1023) // f = a^(2^186 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^191 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^196 - 1024) - f.Mul(&a1023) // f = a^(2^196 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^201 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^206 - 1024) - f.Mul(&a1023) // f = a^(2^206 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^211 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^216 - 1024) - f.Mul(&a1023) // f = a^(2^216 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^221 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^226 - 1024) - f.Mul(&a1019) // f = a^(2^226 - 5) - f.Square().Square().Square().Square().Square() // f = a^(2^231 - 160) - f.Square().Square().Square().Square().Square() // f = a^(2^236 - 5120) - f.Mul(&a1023) // f = a^(2^236 - 4097) - f.Square().Square().Square().Square().Square() // f = a^(2^241 - 131104) - f.Square().Square().Square().Square().Square() // f = a^(2^246 - 4195328) - f.Mul(&a1023) // f = a^(2^246 - 4194305) - f.Square().Square().Square().Square().Square() // f = a^(2^251 - 134217760) - f.Square().Square().Square().Square().Square() // f = a^(2^256 - 4294968320) - return f.Mul(&a45) // f = a^(2^256 - 4294968275) = a^(p-2) -} - -// SqrtVal computes the square root of x modulo the curve's prime, and stores -// the result in f. The square root is computed via exponentiation of x by the -// value Q = (P+1)/4 using the curve's precomputed big-endian representation of -// the Q. This method uses a modified version of square-and-multiply -// exponentiation over secp256k1 fieldVals to operate on bytes instead of bits, -// which offers better performance over both big.Int exponentiation and bit-wise -// square-and-multiply. -// -// NOTE: This method only works when P is intended to be the secp256k1 prime and -// is not constant time. The returned value is of magnitude 1, but is -// denormalized. -func (f *fieldVal) SqrtVal(x *fieldVal) *fieldVal { - // The following computation iteratively computes x^((P+1)/4) = x^Q - // using the recursive, piece-wise definition: - // - // x^n = (x^2)^(n/2) mod P if n is even - // x^n = x(x^2)^(n-1/2) mod P if n is odd - // - // Given n in its big-endian representation b_k, ..., b_0, x^n can be - // computed by defining the sequence r_k+1, ..., r_0, where: - // - // r_k+1 = 1 - // r_i = (r_i+1)^2 * x^b_i for i = k, ..., 0 - // - // The final value r_0 = x^n. - // - // See https://en.wikipedia.org/wiki/Exponentiation_by_squaring for more - // details. - // - // This can be further optimized, by observing that the value of Q in - // secp256k1 has the value: - // - // Q = 3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c - // - // We can unroll the typical bit-wise interpretation of the - // exponentiation algorithm above to instead operate on bytes. - // This reduces the number of comparisons by an order of magnitude, - // reducing the overhead of failed branch predictions and additional - // comparisons in this method. - // - // Since there there are only 4 unique bytes of Q, this keeps the jump - // table small without the need to handle all possible 8-bit values. - // Further, we observe that 29 of the 32 bytes are 0xff; making the - // first case handle 0xff therefore optimizes the hot path. - f.SetInt(1) - for _, b := range fieldQBytes { - switch b { - - // Most common case, where all 8 bits are set. - case 0xff: - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - - // First byte of Q (0x3f), where all but the top two bits are - // set. Note that this case only applies six operations, since - // the highest bit of Q resides in bit six of the first byte. We - // ignore the first two bits, since squaring for these bits will - // result in an invalid result. We forgo squaring f before the - // first multiply, since 1^2 = 1. - case 0x3f: - f.Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - - // Byte 28 of Q (0xbf), where only bit 7 is unset. - case 0xbf: - f.Square().Mul(x) - f.Square() - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - f.Square().Mul(x) - - // Byte 31 of Q (0x0c), where only bits 3 and 4 are set. - default: - f.Square() - f.Square() - f.Square() - f.Square() - f.Square().Mul(x) - f.Square().Mul(x) - f.Square() - f.Square() - } - } - - return f -} - -// Sqrt computes the square root of f modulo the curve's prime, and stores the -// result in f. The square root is computed via exponentiation of x by the value -// Q = (P+1)/4 using the curve's precomputed big-endian representation of the Q. -// This method uses a modified version of square-and-multiply exponentiation -// over secp256k1 fieldVals to operate on bytes instead of bits, which offers -// better performance over both big.Int exponentiation and bit-wise -// square-and-multiply. -// -// NOTE: This method only works when P is intended to be the secp256k1 prime and -// is not constant time. The returned value is of magnitude 1, but is -// denormalized. -func (f *fieldVal) Sqrt() *fieldVal { - return f.SqrtVal(f) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go b/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go deleted file mode 100644 index 1928702..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go +++ /dev/null @@ -1,203 +0,0 @@ -// Copyright (c) 2014-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -// This file is ignored during the regular build due to the following build tag. -// This build tag is set during go generate. -// +build gensecp256k1 - -package btcec - -// References: -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) - -import ( - "encoding/binary" - "math/big" -) - -// secp256k1BytePoints are dummy points used so the code which generates the -// real values can compile. -var secp256k1BytePoints = "" - -// getDoublingPoints returns all the possible G^(2^i) for i in -// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1) -// the coordinates are recorded as Jacobian coordinates. -func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal { - doublingPoints := make([][3]fieldVal, curve.BitSize) - - // initialize px, py, pz to the Jacobian coordinates for the base point - px, py := curve.bigAffineToField(curve.Gx, curve.Gy) - pz := new(fieldVal).SetInt(1) - for i := 0; i < curve.BitSize; i++ { - doublingPoints[i] = [3]fieldVal{*px, *py, *pz} - // P = 2*P - curve.doubleJacobian(px, py, pz, px, py, pz) - } - return doublingPoints -} - -// SerializedBytePoints returns a serialized byte slice which contains all of -// the possible points per 8-bit window. This is used to when generating -// secp256k1.go. -func (curve *KoblitzCurve) SerializedBytePoints() []byte { - doublingPoints := curve.getDoublingPoints() - - // Segregate the bits into byte-sized windows - serialized := make([]byte, curve.byteSize*256*3*10*4) - offset := 0 - for byteNum := 0; byteNum < curve.byteSize; byteNum++ { - // Grab the 8 bits that make up this byte from doublingPoints. - startingBit := 8 * (curve.byteSize - byteNum - 1) - computingPoints := doublingPoints[startingBit : startingBit+8] - - // Compute all points in this window and serialize them. - for i := 0; i < 256; i++ { - px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal) - for j := 0; j < 8; j++ { - if i>>uint(j)&1 == 1 { - curve.addJacobian(px, py, pz, &computingPoints[j][0], - &computingPoints[j][1], &computingPoints[j][2], px, py, pz) - } - } - for i := 0; i < 10; i++ { - binary.LittleEndian.PutUint32(serialized[offset:], px.n[i]) - offset += 4 - } - for i := 0; i < 10; i++ { - binary.LittleEndian.PutUint32(serialized[offset:], py.n[i]) - offset += 4 - } - for i := 0; i < 10; i++ { - binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i]) - offset += 4 - } - } - } - - return serialized -} - -// sqrt returns the square root of the provided big integer using Newton's -// method. It's only compiled and used during generation of pre-computed -// values, so speed is not a huge concern. -func sqrt(n *big.Int) *big.Int { - // Initial guess = 2^(log_2(n)/2) - guess := big.NewInt(2) - guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil) - - // Now refine using Newton's method. - big2 := big.NewInt(2) - prevGuess := big.NewInt(0) - for { - prevGuess.Set(guess) - guess.Add(guess, new(big.Int).Div(n, guess)) - guess.Div(guess, big2) - if guess.Cmp(prevGuess) == 0 { - break - } - } - return guess -} - -// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to -// generate the linearly independent vectors needed to generate a balanced -// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and -// returns them. Since the values will always be the same given the fact that N -// and λ are fixed, the final results can be accelerated by storing the -// precomputed values with the curve. -func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) { - bigMinus1 := big.NewInt(-1) - - // This section uses an extended Euclidean algorithm to generate a - // sequence of equations: - // s[i] * N + t[i] * λ = r[i] - - nSqrt := sqrt(curve.N) - u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda) - x1, y1 := big.NewInt(1), big.NewInt(0) - x2, y2 := big.NewInt(0), big.NewInt(1) - q, r := new(big.Int), new(big.Int) - qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int) - s, t := new(big.Int), new(big.Int) - ri, ti := new(big.Int), new(big.Int) - a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int) - found, oneMore := false, false - for u.Sign() != 0 { - // q = v/u - q.Div(v, u) - - // r = v - q*u - qu.Mul(q, u) - r.Sub(v, qu) - - // s = x2 - q*x1 - qx1.Mul(q, x1) - s.Sub(x2, qx1) - - // t = y2 - q*y1 - qy1.Mul(q, y1) - t.Sub(y2, qy1) - - // v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t - v.Set(u) - u.Set(r) - x2.Set(x1) - x1.Set(s) - y2.Set(y1) - y1.Set(t) - - // As soon as the remainder is less than the sqrt of n, the - // values of a1 and b1 are known. - if !found && r.Cmp(nSqrt) < 0 { - // When this condition executes ri and ti represent the - // r[i] and t[i] values such that i is the greatest - // index for which r >= sqrt(n). Meanwhile, the current - // r and t values are r[i+1] and t[i+1], respectively. - - // a1 = r[i+1], b1 = -t[i+1] - a1.Set(r) - b1.Mul(t, bigMinus1) - found = true - oneMore = true - - // Skip to the next iteration so ri and ti are not - // modified. - continue - - } else if oneMore { - // When this condition executes ri and ti still - // represent the r[i] and t[i] values while the current - // r and t are r[i+2] and t[i+2], respectively. - - // sum1 = r[i]^2 + t[i]^2 - rSquared := new(big.Int).Mul(ri, ri) - tSquared := new(big.Int).Mul(ti, ti) - sum1 := new(big.Int).Add(rSquared, tSquared) - - // sum2 = r[i+2]^2 + t[i+2]^2 - r2Squared := new(big.Int).Mul(r, r) - t2Squared := new(big.Int).Mul(t, t) - sum2 := new(big.Int).Add(r2Squared, t2Squared) - - // if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2) - if sum1.Cmp(sum2) <= 0 { - // a2 = r[i], b2 = -t[i] - a2.Set(ri) - b2.Mul(ti, bigMinus1) - } else { - // a2 = r[i+2], b2 = -t[i+2] - a2.Set(r) - b2.Mul(t, bigMinus1) - } - - // All done. - break - } - - ri.Set(r) - ti.Set(t) - } - - return a1, b1, a2, b2 -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/precompute.go b/vendor/github.com/btcsuite/btcd/btcec/precompute.go deleted file mode 100644 index 034cd55..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/precompute.go +++ /dev/null @@ -1,67 +0,0 @@ -// Copyright 2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - "compress/zlib" - "encoding/base64" - "encoding/binary" - "io/ioutil" - "strings" -) - -//go:generate go run -tags gensecp256k1 genprecomps.go - -// loadS256BytePoints decompresses and deserializes the pre-computed byte points -// used to accelerate scalar base multiplication for the secp256k1 curve. This -// approach is used since it allows the compile to use significantly less ram -// and be performed much faster than it is with hard-coding the final in-memory -// data structure. At the same time, it is quite fast to generate the in-memory -// data structure at init time with this approach versus computing the table. -func loadS256BytePoints() error { - // There will be no byte points to load when generating them. - bp := secp256k1BytePoints - if len(bp) == 0 { - return nil - } - - // Decompress the pre-computed table used to accelerate scalar base - // multiplication. - decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(bp)) - r, err := zlib.NewReader(decoder) - if err != nil { - return err - } - serialized, err := ioutil.ReadAll(r) - if err != nil { - return err - } - - // Deserialize the precomputed byte points and set the curve to them. - offset := 0 - var bytePoints [32][256][3]fieldVal - for byteNum := 0; byteNum < 32; byteNum++ { - // All points in this window. - for i := 0; i < 256; i++ { - px := &bytePoints[byteNum][i][0] - py := &bytePoints[byteNum][i][1] - pz := &bytePoints[byteNum][i][2] - for i := 0; i < 10; i++ { - px.n[i] = binary.LittleEndian.Uint32(serialized[offset:]) - offset += 4 - } - for i := 0; i < 10; i++ { - py.n[i] = binary.LittleEndian.Uint32(serialized[offset:]) - offset += 4 - } - for i := 0; i < 10; i++ { - pz.n[i] = binary.LittleEndian.Uint32(serialized[offset:]) - offset += 4 - } - } - } - secp256k1.bytePoints = &bytePoints - return nil -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/privkey.go b/vendor/github.com/btcsuite/btcd/btcec/privkey.go deleted file mode 100644 index 676a8c3..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/privkey.go +++ /dev/null @@ -1,73 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - "crypto/ecdsa" - "crypto/elliptic" - "crypto/rand" - "math/big" -) - -// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing -// things with the the private key without having to directly import the ecdsa -// package. -type PrivateKey ecdsa.PrivateKey - -// PrivKeyFromBytes returns a private and public key for `curve' based on the -// private key passed as an argument as a byte slice. -func PrivKeyFromBytes(curve elliptic.Curve, pk []byte) (*PrivateKey, - *PublicKey) { - x, y := curve.ScalarBaseMult(pk) - - priv := &ecdsa.PrivateKey{ - PublicKey: ecdsa.PublicKey{ - Curve: curve, - X: x, - Y: y, - }, - D: new(big.Int).SetBytes(pk), - } - - return (*PrivateKey)(priv), (*PublicKey)(&priv.PublicKey) -} - -// NewPrivateKey is a wrapper for ecdsa.GenerateKey that returns a PrivateKey -// instead of the normal ecdsa.PrivateKey. -func NewPrivateKey(curve elliptic.Curve) (*PrivateKey, error) { - key, err := ecdsa.GenerateKey(curve, rand.Reader) - if err != nil { - return nil, err - } - return (*PrivateKey)(key), nil -} - -// PubKey returns the PublicKey corresponding to this private key. -func (p *PrivateKey) PubKey() *PublicKey { - return (*PublicKey)(&p.PublicKey) -} - -// ToECDSA returns the private key as a *ecdsa.PrivateKey. -func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey { - return (*ecdsa.PrivateKey)(p) -} - -// Sign generates an ECDSA signature for the provided hash (which should be the result -// of hashing a larger message) using the private key. Produced signature -// is deterministic (same message and same key yield the same signature) and canonical -// in accordance with RFC6979 and BIP0062. -func (p *PrivateKey) Sign(hash []byte) (*Signature, error) { - return signRFC6979(p, hash) -} - -// PrivKeyBytesLen defines the length in bytes of a serialized private key. -const PrivKeyBytesLen = 32 - -// Serialize returns the private key number d as a big-endian binary-encoded -// number, padded to a length of 32 bytes. -func (p *PrivateKey) Serialize() []byte { - b := make([]byte, 0, PrivKeyBytesLen) - return paddedAppend(PrivKeyBytesLen, b, p.ToECDSA().D.Bytes()) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/pubkey.go b/vendor/github.com/btcsuite/btcd/btcec/pubkey.go deleted file mode 100644 index 3c9d5d0..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/pubkey.go +++ /dev/null @@ -1,194 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - "crypto/ecdsa" - "errors" - "fmt" - "math/big" -) - -// These constants define the lengths of serialized public keys. -const ( - PubKeyBytesLenCompressed = 33 - PubKeyBytesLenUncompressed = 65 - PubKeyBytesLenHybrid = 65 -) - -func isOdd(a *big.Int) bool { - return a.Bit(0) == 1 -} - -// decompressPoint decompresses a point on the secp256k1 curve given the X point and -// the solution to use. -func decompressPoint(curve *KoblitzCurve, bigX *big.Int, ybit bool) (*big.Int, error) { - var x fieldVal - x.SetByteSlice(bigX.Bytes()) - - // Compute x^3 + B mod p. - var x3 fieldVal - x3.SquareVal(&x).Mul(&x) - x3.Add(curve.fieldB).Normalize() - - // Now calculate sqrt mod p of x^3 + B - // This code used to do a full sqrt based on tonelli/shanks, - // but this was replaced by the algorithms referenced in - // https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294 - var y fieldVal - y.SqrtVal(&x3).Normalize() - if ybit != y.IsOdd() { - y.Negate(1).Normalize() - } - - // Check that y is a square root of x^3 + B. - var y2 fieldVal - y2.SquareVal(&y).Normalize() - if !y2.Equals(&x3) { - return nil, fmt.Errorf("invalid square root") - } - - // Verify that y-coord has expected parity. - if ybit != y.IsOdd() { - return nil, fmt.Errorf("ybit doesn't match oddness") - } - - return new(big.Int).SetBytes(y.Bytes()[:]), nil -} - -const ( - pubkeyCompressed byte = 0x2 // y_bit + x coord - pubkeyUncompressed byte = 0x4 // x coord + y coord - pubkeyHybrid byte = 0x6 // y_bit + x coord + y coord -) - -// IsCompressedPubKey returns true the the passed serialized public key has -// been encoded in compressed format, and false otherwise. -func IsCompressedPubKey(pubKey []byte) bool { - // The public key is only compressed if it is the correct length and - // the format (first byte) is one of the compressed pubkey values. - return len(pubKey) == PubKeyBytesLenCompressed && - (pubKey[0]&^byte(0x1) == pubkeyCompressed) -} - -// ParsePubKey parses a public key for a koblitz curve from a bytestring into a -// ecdsa.Publickey, verifying that it is valid. It supports compressed, -// uncompressed and hybrid signature formats. -func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err error) { - pubkey := PublicKey{} - pubkey.Curve = curve - - if len(pubKeyStr) == 0 { - return nil, errors.New("pubkey string is empty") - } - - format := pubKeyStr[0] - ybit := (format & 0x1) == 0x1 - format &= ^byte(0x1) - - switch len(pubKeyStr) { - case PubKeyBytesLenUncompressed: - if format != pubkeyUncompressed && format != pubkeyHybrid { - return nil, fmt.Errorf("invalid magic in pubkey str: "+ - "%d", pubKeyStr[0]) - } - - pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33]) - pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:]) - // hybrid keys have extra information, make use of it. - if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) { - return nil, fmt.Errorf("ybit doesn't match oddness") - } - - if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 { - return nil, fmt.Errorf("pubkey X parameter is >= to P") - } - if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 { - return nil, fmt.Errorf("pubkey Y parameter is >= to P") - } - if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) { - return nil, fmt.Errorf("pubkey isn't on secp256k1 curve") - } - - case PubKeyBytesLenCompressed: - // format is 0x2 | solution, - // solution determines which solution of the curve we use. - /// y^2 = x^3 + Curve.B - if format != pubkeyCompressed { - return nil, fmt.Errorf("invalid magic in compressed "+ - "pubkey string: %d", pubKeyStr[0]) - } - pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33]) - pubkey.Y, err = decompressPoint(curve, pubkey.X, ybit) - if err != nil { - return nil, err - } - - default: // wrong! - return nil, fmt.Errorf("invalid pub key length %d", - len(pubKeyStr)) - } - - return &pubkey, nil -} - -// PublicKey is an ecdsa.PublicKey with additional functions to -// serialize in uncompressed, compressed, and hybrid formats. -type PublicKey ecdsa.PublicKey - -// ToECDSA returns the public key as a *ecdsa.PublicKey. -func (p *PublicKey) ToECDSA() *ecdsa.PublicKey { - return (*ecdsa.PublicKey)(p) -} - -// SerializeUncompressed serializes a public key in a 65-byte uncompressed -// format. -func (p *PublicKey) SerializeUncompressed() []byte { - b := make([]byte, 0, PubKeyBytesLenUncompressed) - b = append(b, pubkeyUncompressed) - b = paddedAppend(32, b, p.X.Bytes()) - return paddedAppend(32, b, p.Y.Bytes()) -} - -// SerializeCompressed serializes a public key in a 33-byte compressed format. -func (p *PublicKey) SerializeCompressed() []byte { - b := make([]byte, 0, PubKeyBytesLenCompressed) - format := pubkeyCompressed - if isOdd(p.Y) { - format |= 0x1 - } - b = append(b, format) - return paddedAppend(32, b, p.X.Bytes()) -} - -// SerializeHybrid serializes a public key in a 65-byte hybrid format. -func (p *PublicKey) SerializeHybrid() []byte { - b := make([]byte, 0, PubKeyBytesLenHybrid) - format := pubkeyHybrid - if isOdd(p.Y) { - format |= 0x1 - } - b = append(b, format) - b = paddedAppend(32, b, p.X.Bytes()) - return paddedAppend(32, b, p.Y.Bytes()) -} - -// IsEqual compares this PublicKey instance to the one passed, returning true if -// both PublicKeys are equivalent. A PublicKey is equivalent to another, if they -// both have the same X and Y coordinate. -func (p *PublicKey) IsEqual(otherPubKey *PublicKey) bool { - return p.X.Cmp(otherPubKey.X) == 0 && - p.Y.Cmp(otherPubKey.Y) == 0 -} - -// paddedAppend appends the src byte slice to dst, returning the new slice. -// If the length of the source is smaller than the passed size, leading zero -// bytes are appended to the dst slice before appending src. -func paddedAppend(size uint, dst, src []byte) []byte { - for i := 0; i < int(size)-len(src); i++ { - dst = append(dst, 0) - } - return append(dst, src...) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/secp256k1.go b/vendor/github.com/btcsuite/btcd/btcec/secp256k1.go deleted file mode 100644 index 1b1b817..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/secp256k1.go +++ /dev/null @@ -1,10 +0,0 @@ -// Copyright (c) 2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -// Auto-generated file (see genprecomps.go) -// DO NOT EDIT - -var secp256k1BytePoints = "eJzEwAcjEAwaAOB32NnJzAxRUfYKRUNRymwKDZ/RIEQKTUWUlXbSpkkSyUgpo1SStNNQSEmkhPsZ98D/SV22JPy+0UETkw1YojoYD9z+SKNZij7p55CAQSeXdadRTqgC2CUE4/4QMzCa1MPez4VgcbgEdWYBBqlcxEclw4Qnx3D4YXFIHHwBY3s6Kep9LjjkJtCAQxK99f1FYmv7IKKnCwInyZJsy3hQ/3aajTTfQHZyNP16nUEDiiNoTCeBoEUpL9tlDQe1RLhQWRhMFNbjW2M/1NYYAsmlA5yjbkVzaswhtXcTt6pep+8Vxaj0TgKexLVx/LI8eHJYkwLfiPCJj3+5MeEC+V+ZiIMG5YDZU/h1yVi4eO00n+87BKYLX9O4rtVUvGARjHJ0Bb87J0C5sQqNMjMw+74ihM2Nhllpr2Hv9Gg2+Hyeb22aSyd/vET7nAU0eaYzwYKTdDFEEooERuHQ5cXwveEsNIrmk7ybGcpqVPLOkbuo7aczJGqL0INOdXjyehIe8b4L/9z34YKt17DS9hFvfDwPZgodwoxzmrgn7hC7eyvBE5PNkB+9mFZ/jOLc5+Ls9aMIZ0iMxbUmN8lpRgauUrcm1WQrMHf4hwUZDRTyIIl96mLYqHU/uR+Xg/if9Wjk24zFY3th+JsE+Mh20X+Tu+BY83ma+lwJpFfeQvM3z/i5vDzdbjtAy8cuh/45EmAWKAHmrRdgVX8FiJdc4m2ueSCdZMmjR0pAopANzSwUxkfFgjArrxnimwop0iifJNCWogZzWC5xJTp2HqSFQhvRTK0YX7sqQaG8AJlHD/JP/11YuSiMQD+TDyUU0eSv7ZBxexV8/vIbbUZpwL/N3vTNeje1d+qgWIYTbtg/wAZakrh+4Q1wd3gHiVMuQsUOJbCIGAs5xxneaNtT4I5rVDd/MxbYPOWgZ8X49Nhb0tzcQo8XmoCK5EmuCzhJKdOOsuicbbBYoIyeTVkPHkOO5GAyBrqfA2ttVIG9JSJwNySG0VmH1b/lwR6T5zi+e4C2yP3D4CuVnMU7SFRWG7Jlt8LHLyP52lAl67YGY9Kkm7x7qjA7+IRSbsAHPG3yG29JKYKg0nV06TrDHdgGXoc2kkt6I6nIfOYVt5dBz1A7hudGYlT9aAibu4dV49PowbAlBu4c5qzFY8G75R21l87nD7W/2LwyC+9+MgGPjSas63IMDp7LoZ4zGVh7YQHrvR6CqykXeM5TYficN4qK1wuAbG0TX/g9hfrX93Km6x3w3uiGIQ0HOeKTHxjcSoO01x/J2EcQ5ig4wvPWFNyaZwSbZyaBS3gzmT0tZ9z+Ab66nIKJ18r5YIYR+KRpQ7uTM2h/nYg6pa9hd9sZnO4wB2+HToH33U/w0LIMGN0jA+IzNnDwLwsqOtLF6h+HYNdDS+5+EwHNSxRI+sx2GL9rGpzZqATbfn3CBI87+GrACz9eK+VPh1/yrYSZvG5GC5i4/WOze2KQb6cCcr9buVSxjsrdllJpTDD8gga+fq4MtNxL6feFFn5oL8VXZezBcJkzjf+gzIV/b6K57w7Sk/em4tYo9D4xDNld83DJ0wsgp2kAIn9cufDXfFSQs6TddRHQmcfgQ1ZsmOGPsjrb8cqzdZwooAL/0iNAuSCLSm9eovG+BWxVlwWXh1Ip+sk3tD+2gr7fXk9PCpXA7OwKGHLJwWUTK/h2+HVuyrkE+aKNWL1REa+OO4/99sVoPVcQUs39qEgqBEytM+H8vlcwbs5HbOo6gBtiK3BNFqDUVj/4OUkP9l7bREYLfsG3s1vBVFiP7if18e/YT6C72Rhm3lkDe/PbIeWzEUz2CsG8qH/86Kczbwi4wMfGToSddaPhYYwfKGo2k27qTe4wHAEFWbt43yoPnHJiNuRPeM47Jn8G65WdcHFNEVQHVZLDClcsuSUAG79tpgXNSrTh3AwsCKrhN29m87ap9Ziz/w39do5ARe/jsJ6F4IlpLTcZuZCW0nVSeTgGBcbGw6akJ1y3bREFf9VB1S2zaeOcsbB69gxQUH7Nl4as4d/7o8iO2yhz/DBIikXTK/GN8Co/nEp3C8Gqwp98iWMg6MxJ3L7FhB9pzOINWufg4YoTaOP5FT4IOGLpyVFg5NRFC88NwoO+HvK6oc9dUtHgfqeYprWLgKigC0XPTub4X5qgousD4tWutGayC7b2nMQPk/agu+x1Wqw5gYU9TFn8hCt2LFeH/379hSGzJl4rFAFyzu08c5kmZ60qYrEUExDpPY9D1xyRnMZDfX8vGq8spN5j3nDhyGxYH9aGU+EI+GQcBrWEI7y0qh4GsqShI1ccOns6cOPZQZbXfYbmJ4Zo8o5qXjnPESrvGNH8qgHI2jwKVn8uxxFzgZqGrWj9gfd8R1GNQt2tMGh1JgY9f47T99yDmhQLOCPtzPvudfPCC6FcrefGWnEGuLbqO0+cZkdNL3v43hlnvqmiD49uB2CLfj+IdTrwK8FEwptekP5kO6ovZRKUGgMlZY788/JIMFKzY5Wi52S6qhUHnziQs1wMm/wQwvvBP8H42X0uCnzNprmGsOmIDCVsn4zrnrdA49LTGP/BnR/Oq2Ohjjtc2LkVUh6lQ9hkDfCLXQgs5Yj+5iP4wNypSDIyfP3maD5YN0ASptp8wugwhr9VgKZr4+HDiDfg2pWMGb0PwGJ9KR1KroWYGV/wgV4ap+w3xiOhEiCUqc7l9jXw2T+Vsss1yV/lHqWPuwRFpQfg+BFbPF82gxsVJ8MBvIGx4S9wQs5BtBs7FyvvycLdUX14a6oWmA134Qj5/SD0wxBUs9PgReQknilbTH1pB0A8fT5OeRlKH8yioVtLnnsvCOG1JwSpFQEseWovL5IKhLB4XZzeac4zf8qR5rc6eOHczu3khX6bCHSermS9w/V4WtyV9gXcw9wZV9FGc4CSTtnyvp4x3HF0PB+sGQX/9G6CXIQmDFw4QDq7hSBt7FmQ3/mA45NP0xm5YooddQWXeaqBl/cbeCR1gvf0feVWdUmKNtJCpdRIeNAlTBulp9GCeGlOHaUKhxe2E1YIweJ9ndCW9ZwVW75ziJII7x66wMlV4Rw35ABkYACjre+wTMgTaiYjkDwyD9ZavOYgbwOwc7jMJ2yq+PnWLWzqKg2HFGtxzN8aTtzrxjPWDOAuZSfQmf8c6qwO89jIYzwY0oi5umNhkdRabls2yCdLvWmjtBjUfKwm523m+DDRBbo6a+CLyknIVjaGixkzacchQfp8i3DE76VUEvCOmuJewjWhfZhUfh+/HGtDG9CCMar6TIG/aN5xByz7eB1uunVxb1oKXpbrI/trfVBzbBro71cGiVpHdHHOg9muu+isSB4831pO045H4O3gTlQYskS5r56wX1QcDqz9hA8vrqST42djdeFxXm1YDM+fmcLLxc1o+uw5bEtNQkdpCxCSjcR3uR/wyhxnsJqymIqMP9G70+co+sJT9PqRBtXb/tG8j2YwcLIb6i9fYhnFozjVai34HJmFk12NQKhmNK3XFELZxnykRBWYy5YcM7qGuFadMtKv0ubXHWBiHwWV50rRQXoq/AxdyIbCelDxeT4+tAiGVypb4cQqNfIcCsCitACucijmHTvW06Qae74sJQvzxQw5pcGeT8o2wyxhfYoxCuSLbeYoOOcL2sMk5Jdj8NIUXRAv1IK25UY8VHkOp9kUUn3ACWh/Nxbvve0m75hFIBWxicYPTIS+hlH4TOUwi+dfgps346go2ZQN5t4GrSFnnPCjBTX+0yG/bAFIdNJBv6XStGtxNvpcLKb+2CJ63G0Km1V2Q9P7jbyhypOH4zRg7YwsWDH/CUnfm0a57j1skPUHNxmdZ6Vvj8jxozU+mLmIKEgPrmdPxUl3NTHzzkIQNv5EL/ofcuRZUch3zYL9qzZCx/XvpBegDjM0HtDuAnneoaAIW5/08uFRsnhjyTuQ+2OABcb2sCDKEu/tMwLP9H/QM2ItCMW44r/5M3HOB3v+3WMNi72k8ZTxTrD+Vory80bBzpv25Jz8mXO9rMkrfx9//jWNurZI8T35PLodW4GGg+fgUKIEPA4aD80iIzlavwjCktZg0v5eesIStHFjBtTjdnq/vw+GUjThlWovvtyryLJb1Ehsyj284H6FzixNYnmpIJhx+Asv0XMljUXy4L3DALy0Z5KG92e+ePAJ/St7RHdHrqcEhyL6EZ/NqT9HclOgJNza2Yd9YlV4NXIKfPeNR78dB+GKSSk+fH4X9637jZIb/kF2zmQYP8kY3BSLmMcVgtfwWXzmn8+7LQ0gYHkoSjcrQanPKlolrQwFJIojhaMgcPxVDHe0Q9uj1nyxtodKttWi3p1e2iEXyIVWk8E7T4F9G5ZR7e9OapA3pNrTxyjqzlc4tukw5LlroPm7N9wyj+DR3VR6IrKRphTX4UcbKbRvzcX5759T0CMP0DvdAOpiR3CckjFIRr2j+urbrJs6hS6m/cL3Yy5hh14lrneYzcELnVHnlRyNNJKAFn0nEJXIhQ8ab+hMpgV5FE1Eiews+r03iBJy9rFGshvsnyoCf149Q80Zw7SrPp8WJlXBgYPnQHjiGrrjoMEV0oWkvdcYNy1SB7UnzuDWOMTlPelQ+GkJXJ2hwOPsovCPrS6unl/LKtU7wDBrEuiET+R65dvAEqU04OKD5UaL+e+qOZzTvBOnna7gL7+SuDzGFFaL5YPCtO98RmEY6qf2Qu3dThhrvQa+XbGFrsRNMCQuBQNnteHa0XPgab4f45KXkNNYBZZeXQvHFxmQT7wBPhE7RrXTH9H1lFGwyskWCmRqeWHAdd4sVUz/RtjxqC2n+aXWeojIuMdbR19nse168NimFU3PFuNi1MTtSja44tAuaku/wQuarKAz348tk9pgWpEi7LEsgSsh4zkz9Ao7RrfjbphIL1Kv08gl4bB8zj5+fa0JuvwNoGk7UJ/7R5yz/ywcWrEM1b5mU5jLMpouJMzRAe3YHrqFbi23hT2JQ3xphBU7b9Sl851VYN3/D8eItKPGSD8yTIsB6Wvt9LZeD7Ti0jDWL4ADwlfTjNQJFNvmD817mO70fYCLuQY4oHiCrK8IwpFdpnB5lDV1WpTCiOhC7v3PA1cdtgff/2JoNx/Eb3baEG03Cva4PuDHjYOgdXIT7+1JgENn6lhFwBU/HHgLWC2N55xCoK7DCuzPJ+Bax1oW2joWdpxQIsm/JfDIQpinhSXh67AZtPPkXEpYz3AwxA/EJ/RTzU6kQc9COOcQDHrHCojqPkHa9Me0buprKLlrDqOse2nT+xCWvatAiyNH0J+nJ2hnSxl2bHxKK64O0iqZdn440xhi1ZLhtqEdvEqZyoK7KpDLd+NfBw9UDE5iqV2FMGsgFOSEJ4JXehTtEu4lOQMh1liyGZfWAhY4TSdNhw5eJovsnPOGVDVFYbr1DQpcrwiTm8eh7b/b4P50EZnsE6S25das2BuNad+U0bpEFVblRSDAWLxyVhNnmLry2p3bqaTGmJbNOo8npafy1vtqOCdRBLQmNYPnuSn4qOwWmmgBa0lmYU/4ZZCSFcAdjQf5aB5zzGVFMBbIpH5XF4hZsIY1lk3nBMnjUCWzkiLmT4GFmkGoPlMdzpZpgrnqEkyYIskehf60UWcfB39KpzP6WrBwy0d07bPi+c828PWWUWDSu4ynhEhgo88Y2DpWnrMG7an9vjYemGlAY23rsPPsR9qrNQnUvfIgeJEhOtZr823rG7Bw0Bg9d6fz5FP9YBv0k7QHz+MpT3OQ3FXH4RZHMXFVC78xSILYHVW0LuYSD8oeo5ifjbzhYCDkxwnAt/P+fP5kFUhefEjSUhfoRMEhKM2dDDA5iyLFx9CGCdXYJ6AN6Se+wMXF5qRsMEQaK/6hz6OrULfelmJaHnFR6xDBf+u5sFkGivMtUfZcGBXZPMFNzUVQgXu43ns9LP/1DjN+BELv3R6qadeBJbIp5Nd3H4bbc2l3705oK+nG7dK/SGxpJCqFPMCfE6ogMxtg67xE+vOqEZ+vqePImyWstU4STp2y52tiL/jmjl1gGfsc924zh/saC7A6u4PSAiaQSl4jr9tvQEaoxyd8dejZMnf+nFwCGY3KcNM0iSo2a8AP/XCefi4Wo7dIsGVBAW0x7sNX1z+z3jgVdNYxgsGh31TRvg+X/2dMU0oLYd3f+/D21VbU1BAhLceL1P5DBgQdbeDPjnScpzUS6c1o5uQJMBdyqfpFFwqlZoGuuzvJhKRA7nsBkNH5TEZXDGjjwmvgZO8HlVJp5DJtIz+tOAy9dxroyOvHXH7LEAbSz2KH4xg+7nWczzqnQsl4IVAyAPAYo4OJv5/Sm7xQLGmTgvPndWmXSwl/rd9DVQbAk39Mh64AVVS9dIdCs5XpYcc6tG9UAinpNr65OR3WRP1j+TIxlCp/R53vK0h0WwNsdhnkNc+8WcTRDnqOTOXFDX8g9YIptejak0y3C/06HokCvmuxq1MZJQ98pe/ZRrBjqQcq7raHCHUviqxYwnWjbLkv7R++WP8eo1uaMTRwP0pIyEL9xOPgrb6Ifrz5y4oZx3CfqwCaCdZj+1Uv9nv6A3RnHKbN//ShpeYvZg1o4O2hXvawEiHb8f3Yb/0aqOwlJg8WQmWdBLzdYgBxSk85ulAX7w4GYEjxTDafGoVd7zLx3varELS9ik5XddMxG11wa9/NxmbaXHqkjL0uhrLamFH8aaUVdN2bi4eWn0dj24lQ3iAEuiplOEbjIYVHvAG7BSZEtzxxWl07r5nymsWWvaKyzm+gOk4PzmVbkes1La5TzMcEn0A42tZDuztPQ8rOGbgqrRHLTj+Ghy/lQK/iIJTcrsb3L1tZXOsGzFleB1dP3aUhnc88alCGdsQ+JQHV8RCb4AnKLwtAZNN5sttviEF972hOQjLaSmZwuGwPS/puQdvrxuBjpIViIb9xh/4viqux4ME58mBVbs03NhA/s3TktD8n+NFofUj6o0s/zgmRispiPOl5liJPGKNoz2z8MS6M1Eakw5TjodjaMxI0c7+T8ovTMHp3OMXtHQVrkh+A+O+TOGKMII5zWosVovPBTtAMjm88B5cOrUG3RITp2QcRqJKzMmMg4cx2Mp3swBkX6rHunCAUKIhS9KIIqp5UhaqkTZ0/kqj+kAF0uu/hfXsEufzoT9x7VQzmfPXBmfp9sDptDTTI/sBPq9+BwUcBLl+lT8m509msJxAuNevAkehWWu5Uxsei39OB4t/QNmsdBcF9iDmgQEIXbHi5yBwaLpKFD3SIV4ic59Zocy7UuMtflqfw6ylt+CtmiPY7IEt/vUUrvxJ0xyXDEcFBMh4lT2ceRPJje026fEyKVfsyueFZK5xVLKb5K1Qgr2sSOkdMROXUu7ypTZpsbW6QTqc6j2vaiSH+d8nVU4ZGaxmD8Ull8Io7BrMt9qDVolxYvHoBbDqew8villP/rJPYIaQEd0qEYbpZL8h8loAwBS/2/5yCPae30qK6ibBw5wFyi8uEmKMP4YqpCjTa/uWek+9oRsN22iJ8FfvbtXnBjBsgqRKGA2gPDTo32P+THbT23wfBrjg6WP+NfNcks/OucZioGoY1ZxwAQlToUXEduB0ThdQx12hFzisqlz+H6zx7sGS4iMxedGPuZFt0D8rGb/YiJKosD97+8RgbEcmBe2NxzAY1uH3OEIdS36Pajrd0QMYEOyvzKOakAbwrMMOo8F5o4ilwwHALSa05C5Vm1yBo71rmxedQKPgIrSlQh8Z76mzkqQC2kxsocclo3ny4mLwy16D9QDkK3OmnP0FZVK8pCQWXflBPaDwEdo/CQZ/ZtOi/zSQXupyjhlfDlru7aajKmZJvjoO021GwoaCB3947SQ7vZ5Lzj+3sf1KYF0qMorKgPxA0LpTDpBTBZb8ja9RYoG/HffbUK8DE7w3wzFWLrqbcheDqRhKVGaZVj4VA4/53EjqlRH+vmqGtUiX1q9vA46I+dFRBElgaB877R4LJSTloGtqHR6y1cKD7IiW6rsNNv3/Q/jgbfHEhlAS/leHs4WA43ToJmoyOgEHUC5w+Q4LuriiF9tofmPtagn4ts+eDd6PJ/89JSvQUBi/vaygQWcDzfTfQz5QJPOh2nKVWTYIZj5bj/NnHqWR/B/V6WQC8P4dNEmGwUjsXujclc6hCJkfRO9is2AYnWB6sFklxwFttiJ3rxjLKySzbWEJzFv9kYa1xRHOfUO+cPBQ5kg21oa74afJoeLdjJObgUgiQP8WtmR5sJzKTRgrV8I3trzEk/QgUZ8zCdyNF4dDVGM5a/xsWbFuKN7ZehKSXkynI5xgPO9TB99BGaP0XQct6zaCkbgfuPNNGBsPtcHr3CLCd/gVztgiB9pZIVh8hjNU9I+igyCjoh19kavETbqicZj+vOg5+lsNjdKPR5tcWNk39y+bi47guXhY8vlSyR00LfHeYyw9/5PCK206k6aIFpU+Xc6TkQir+dBgMdY3hj2YOeUZGUlLKOuy7tJQd0ifT15Br5JZSx1Z/BFGu/zn+jgD4u2QsClaFs+qIYnB1d8fJjT189FUo0/F8EI4YxJshlrh1kyjEa9ZgfNgXujMxlwwMh0DV4iYlpttTzswMtto+heJkQ/hLhBboP6iAUy810UDNg10Wi5DNukD4UC2GpRfkaL5EGoody4egXFlYYCSLEroTObCzA7+UPKWnJ13xy9B5Lqr1wrzQdWD4MZd7k4xg/K8fvLbuARfsaWe347Yg/KwQvofIgrf8cTbfo44Xtg1y8FplECmVIqdL4hS+4i/b6g/x7KtisG4J4lQvTzpw8ySdnaaGF34DVIn/w4Tgbqp6vo5m5baRwcg++L5iAs3f/gvb7dbz2Yse9PPyeNg3NAei6qai/I9qzrVU4559OyhyZDX/zh6BpWfNSb3hDm04YwjpC4O43rcM/P08YWtNG0+4oYul99uw91sVJvZrQ4ptHOkLq8AjtRzau+EsqodroI/FZHz6O4XGFs+mTv/bcFN9EKvL1TgyXRAmTtECepBAfpiGrc3ucPngSL7+nyca1v6FruCvZLaxEbRfASxUs4U0z9UwatoZMPEi6G8OgUE7Qb7xOZYKe7bTgyu3accNG5gQvgkXPNXGzz+O4eAXc0xXjqT4Td1wTu86diyYCSZpkvjMVQ5w6BBKmUdz/5ZafB11kU/M1UeXbWV0b9FVeKh8Cn2jBPm+rDQcMSzD171/WWiXACfeYjBXHWad7WN46Mse9vGqRXVjVdgwXhYMStQh9GYURcv1Q/OyXu4aDMb+PGkUq1xKO34k4JrxF1lTXgNObdNlU0EFytmpgk/VnSjoXyyvnBmA5lZOsOJrOO4alY3D/mLwyFARvzkmUMWfN9jwRwNcl/nQgq3feWVWNPi9CIBSjRk8skAHssaKs3zgZ8jZu5ciPARheVkxFkyt4sv1e1grLwJaTIdpV78MTJYx4UzF/9Ch9D/cpzYRDutowREvT/pstpla9yZweZg4TZ8hDzUi0jR8WxWb6jdwmmwy5D1R53IpDdR/4QZna9fAxreV7J0jDRWNg3DHrxryNt6i5MMvYeRFHXSo6OU2NRuou7EFfkWWkeEzSWhCM1KNW4CuwUUg6vsWNuw0IInnM2h7wwDgVQ+oc96NLf8ZQMyBedh16Bk/ebUYTma+419NK8lWWBtypk3DFafaYQg28KtltrD1mD3c+KFEkYsJvY794qp3pTx6Whp+9d0NeT0lYHBFk5INR4KR1D1YmCcGH6ep8BGxbpI6cx7UZh/jjI7jcHqLMR5ODOdJt5RB/YYS9+k8gL2+jdS7+Cjd19zGK8wEqGz9ODQIzqf5zdVsfkoZYq49gcTdRdQnboihom/IIOsf+GmPht6VEnB8x0sIuniaLvbbgaRzK553nsPXn9/jZg97fFXWTyK/z2Nifzb3CZjBB1dlHq+qCHywhX2fH+LSE0b44fsOOD0YQQ6RAaz3QAgsy1XxY/V9HtcF8JxsQMfrLJ5vP0qCJjNQ/3IJKKpkclmtJ/k452CCZR69djOBmXKuYCaRAl3bD+Cb7BTwOnqZyq3i6EDTUS4LVuD4f1F0qkoFEhe/xB7dyaAg9xSGzwzTldp3kCqeTmPGL8c9N7VwVEoy9jmYwfDUNXSjzwla6BY6l7VzzDs/WnVkH14LnMCnLDJBxWmAp8+fBGYLRUnu+wO6apnJMv2OvOWlMyQtckGLiSKgV7wP5tU5QNE7AzhrIMTiodawJtIKtK6qU1J7Ahh06ZBLlw1aBZyDWx810ChJD65VB8N++zB+djmB7Mdug+D1viA2bMXWIWb0bas9as7+QrbtemAdYMRO2bdYR66O7Mq0WH76QoZWBZRYMYpmeM0jpY5kLr4wAuwOniMNrSOgGicC7k3LaPw4e9j/bATpFq/A9OxZoOszH6zmGsDyxePY85ATu1RV4Mlfg1zVupT8EgKwJMGOyzc1UH3/VhxzSATWikwEv9V6JBj9DU1vmuODKEn8uSmKtk+7x1dtzyIrPefvh7Tgn4ItnB7WwDMHjMi2IYRNx5qTxuJzYPn4Al/pbCEXm376uUoMypY/RpEZiVR+0RrnuqvQA6UF2Ot/DQWufkW50Psst1qHK5R0QTCjjEISb8KKj53skL4AI+JmwHurM3R19zQI++EDcl5xVLNHFhaIj+bW559RoHs37Dn0Htf+O8NT+vJR9dY/kBdwBzeFUhIKlACHJYHc1eGEUwLEMVRkER5YYoMe73+ha6wcmd28wmeVzUjm9kRozP4Ei1TmUEqgApqLFFPdyNFUuU0RLwSNwUd+ffzhqT4/6CbY+HgEDFvdgvjsN+QjaUXujbvpd9hatv79FJRt7qHljAjav8AM4qQfUpJlMVUXfuTfHw1A/pkI+dzfj2P9bQG3n8E2D3lOO60C5hn1MLb1Je8KeYWmYy+wkP0kbHEeQR+vOdIk4XUgbbwX2vfYgqHsErS6vJcjElP4vkQwCnYVc+qHZWgsN8xfjD5xXU8LXJqnCuETC1DhVhZ/TxBnL3Vlbrpjg0eu99DbB+X4ULwd1ffPhDunZODKrFrInpCL0tY9qDK+CvYkTmf9ugqOHPwGU72mQV7BC9jnrgvTbq2GWc7yMCDhQUYzLoHmqhtQKvkftj1fh49eE1jckUSpP3IQ/lwcr9b7wO1PWhjnuwNnfrCn2N9bQEhchR+d8MU2cX8wtVODV09MYDhgImqLjaUvcZZ4WucrPO7S5oZFAzzXzJPHNGzmBSNF4cAKRfJ2FIQ3G3QwZmEIy0z5D9ZXjgTvKH0qcFuIT1OXUqqbJJheDIVfH0pwUeMXtP5dT/P8Aili7Eoc88UPQrqmw85NnVB7Uh0Kc+bipdZu7N7zjmPWJ9AiOS04eSicTdOl6ZhPDu20UCXPc4IwPt6E/IQyob8mDNODL6Dwlxw+576Cg4K+ceXqLu7+nE2pXWYweu8ahBfbUKt+Hy3+sxNzX1aS+IPleMUZ2E3kDuyb4AXLHA2hY4U6xC+6xxamD/iRwSC9GN2Huo77UHG1Hxpv2gxiPrVsYz8Suj6pMu+y4Mf5x7B7oiov2XEK60SrIVhnIW3doUiCjzyw22YsaH6opXiZZ5z16RArnWumc0V5dGTaLtIheb77dwtl2Kexap8pXEkygvXXxDh5337UmeoOI7dX8zLVtfRnwhwMOiqLJbN9IM9VFu4Uv4GJSfeZl6qzi1MmNm1Lx+9l7vhsVjS+ExmkJ+s8+NjiEWCSmQ7Psx3o9t4eStjsSQMCnuRtsoddxwfiWLeLMOWzLenmG8E1l/Gc3imJ4/TfYfmCs3Trayt/nmULTy5Ysu+d+dD3JR/+3B4JfkXidH7qT5TUKYJlBpdwkk4mh+ot5/WXNHCK0A5wmrCIIl8rg96S07DySyHmrqwgT+NQWLlsOv/Qmg5JOnsp3iIBm4S7QU1FEowz7vE8jw66HrsW5rYr8fRrnXBLYi/7u/Rgp9lOOLU+AL68FYM8odPcqWBH54/8YvB2YqcjV/m87Sj+Lv8Zv7r+40/JhPqKFrBG5jxO/TSD6gr9eUZTBkXkzIOZDR9p8sxr3PPuOOlVncIIQQHwWZSIDXOcwTNuF/+pm0v3386mU9MWcva7mzx64BJX2O2BbYtt4eDB6bBQQobu7fUly2ADEJw0irdpFhObV0F6Qi6GzdoGQpbWELLhA31ZkED52p/g7h9R+rbbgnw+R8E+vUTsnykKtW0FbP9oLBRsO4Jmm1tIueMVjP8rTfJ6nnCowo/iFMrZrLYePsZao+lyDWjcIEI1XoNoJeuDTRvf4tdDm9DpnBadHrUHFpI1Twz7SYpS4rAnqocjd/eT09qPnGVyEJXrH0LTiWNYdtuTVGYF80qdDJK8ZwoxheocrtqNJxpUmBPHY/C5O7T9vTWYBM7Bl8cuw/cQUVaMUIC0zkwy6f0G1s3R6G13k7Y3f2T7wZH010gMP/fEk97kRdgfYAQR9uXklr4MDeUm4NF1IRQ2uI6Mr92hKoUGymjyIttCKZYKV4WS7CJ4h81Y1zmWLC5Z8+2RP3iR2RkOTp/OQsvO8tLx3zl/N4H4QuKbv+bArrDvMHdfPa5cYw1JlpGUpf8OqxyUUT84lOKkCVZ/O0y7o/eB+0orXrLEEeqPn6F3UWLUlu5Jj7d3oMRvA3yePBIe+rXw1ZtP8dhywKCN59BZxYVudcnwP5kz8CrRFN+ctsRHvnog16tO7luOUXTgXTYKMscFEnPAaUIKX628hiHGSqyX/pzLFUdAQfwtDDdWwuJGQaideoLSVh+BctHNZJY1CeMnnKDzs/TAao4C3BDdCv7RV3GDSA1uvVpPN9wncfVxHaqfpc8lU314tb0zd64SAHfXV5S04Cwr/nChml5vmGU2TFuif2IoNtH1wJlwR0ATOzN0IHvfHl73Xz9+/bkIPepNMOHlPq6cuB1zZ+2HKpuF+GPFarq6ygZyg89D3oijsFYtk/z76klF8xKtjTSkoBOH2fRPOix4NpokbhnCdNGPdLl3Gmj55vM4Gy0+2iIPM8+24/yEjfRmuhNOmuMCrjJSICnrznJXq/EKH4DWuTnUKT4WFjyI4cahx2y6zATnKb3g1iZFUJBcDR807cDt2TE2rWzArONq2H9rBHVmiEIOx+KlUZfozjgJCNtew38UH+OR762wtfEqnswCtJ0ezoMuTWQ/zY/EK0fCYWMRqHuXRuOwGuUWx4LaGmW84JpMG4cswX2HJzhcaiOTZn+YeV8O1uzXA8ueLfhxtAmoP5hDyqsqWKfvOmToB/Na50m43UuUr/7RBopexYVKomBuq4UdswTZ2m86+G5Vgjx1Gxqec56b3ETwQaApbDZ8QycGAyCr/gL9Pr6WvkREwIigJVztNArcrEaxiZ0AnFS2gt2pIvD8Rx+KrWjDto5UqD7/HXx0pvCT4S5+Hx+EOee3oVjACIg1iKWJ4bvRXsOZS8rvUuLaFehffonC+73ofq8ONwx3oNrc0RCl/BaX9u8BHs6hzkm7qE97CC7diYD23GYq2aqB5dqBpKVjAVP+OeAS3xLqS1iA/l5/QbTKGGuOBpDGthQsbDmLwVYRKDrCAvLUN/C8M9tYNzQa5qmuZZfez7x4wJeevqkFnT0XYY94A5fb20LRQA+3Wm2DHvu3ODmnmN4c0GSzS22wJVeOv0j14ouJjVDeqQd/o5dTe6gbden24TEvH5h6tJQD512AqpfCuHOmLydm6+Bo14nw1zcMJP6lYfywEBuKXuV9WXkgOuI5L5WShDCTJm4dOZte39KHP/P7eM5GGdLICYTQVz30zLEG5UVmcqTERHRL0kPXwJvYXq0Fkw+mcuVHLXqZ+5Oj9G1x0rAIfL9+G7oDNEncIIu6nVr4wyNFkHrcjsuLptEnwfGUIODDS/T2ooj/IqA1apTj8QfmjfhLWU4TwKJwKk1Sb0F35wsoU7aFjpuPJf1oP6pTUOE7rtPBxnIuL/UxAhg7kia0TaeE/Qc4QlYO+lQ6GFe9wgnRB7ETMsl6ejk1yBhBfGgN51xaysedI6g9YxBVF72FpU8/cZzRTLhZ503vLRdjTvcEsHQcgjHX7vH1e9KoleZGBlu6SS/4GsxNz+fcu/ugXmcLuxQZgE3KfkovbwPPMWo87/RF0oiI5M2P/FjbtpLDb0+n6uQzHJMvDHXnN8GLowc5a7kpOkVr06xeV1y0cg3ZWhTh5cQf0DQwD0IkROHDp1S4ecKC7ucvgdov62ly5mhesHo/BB1QpaOtl/i/xmcgdEQGRhw4zMV6feDffQV07Afxv/m2KO+xEaRO78RdHjH0RqEetzYxDMxdj3sv+JCDdADLCyVhm+4YcN75l5eMlILb8VvZ+pIviOaNh6Q/41gkZhSOtHoLu/ZfYtHDSjhTWxG3/XFDj8ND0JLzgXQdR8OBPSF8xbMd6qIusXCHI0nXqEDExnreVdPNdvqxvDH3FT9zEoM/sX9RV3UjxhskkVRBAa+VPkfpo2bz3ZQC0vQOAu9fNdh4Sgom3vZH+YG3nJKcAEevC4CfZCQtOfyYQnA/3pr3kG/f+8a/ZW1BeIILnr4uy6NPRrHz81ienO6IyyVkcGTrUmwwcaAJzkboECUHPxf0o//KWhzpKYUXetzB+IMwZA95QWe5Nka9aqFZl87TNmE7WHtGEy97T8J3MyZy5jkCQbsSWOj2jM3X9cNaa0mcssqRw10IFh2IxLdVu9Gg5yvUrpOirVmzSOLhObjnZkWd38Lg9/YfcO+eMnRN1ueIKfFQO/8sbbCOxC+Vw3Th1FoaUZhIo2685LnbemDQQxL+7PjOOhZT+MU+a9wpXYgf1huyufQrvLFrLcaOk6MqEy/4Ugugn7YXhpLcKdXPCC59m0yrzjXSuqPVdFlyiB88q+OOwTuUXKEKd97NA9sqa6oOEkKZBaYoZLKTdUVi8W/BSrKN0qAXRQlkOcMCIu7pgUfsU/jIeVRxeCzubMmGyF++ZObynF2Um1kgto9fSBtB6POZZNN+gNxuHgIvVQ2Kd+nHzJRwFEtshAiFCNZ4v4YDwtRB+6kJHQ+rhsDjmhz6rhqPXjwMWSYaWKyggMJyN1nh937W/W88LIs5CzfnWvCsCmFK3j2Rur9FceVvRbT/MwJ+vani0gvZ/LtAHw74X8bMHV9IuX03em6zYsXEJj5rmMoiwTnwV/gTKeMSPK8nADZ9n0ggthj2vnBj7dPX8Mh4Mz4l8xKNoz7A+9WfqOjFTagUFwT9wkdkM8OV3FdJ0Mi7wdQRlQFL3Pei1kkhDlQ6Stu+hOOijZbQ8rGPXh52h+2nZpOg2RyUnDQTBzO8qWNLJeZfugk516vQS1gayt6Z4APnXWDnsY2a22bStlW5PErtAybsGwUr99/BjL+ptHuaPqTf1aYrxevoz8kSlLrri+4X5PGsmAwvrjCmBi1h6HAe5tGnNWHd7q0w+uNnrP19gN6u0eS2kNWYOkEdM3Uk2EZsBTz0M8IdClZwq0oEey/nsL+DCH/Te0DzIB1+Sc7HjDeJHLNzIcg3P0PZp2pg77qAhI2swf74eNpsdgRGztsFn9ssuexGDzZvL+Wd+nGwz3YMhF27SwUbFfHArChW8kqiUxVTuaLyEMY5zCCFec4QfCqF2m6YQ9+XRnhU8B5rFCWxc+omrvU2hoyOe+h75jq6LXLlIMNiuBQ1ESRKbemAsSU9PHkPzaZehANuOWy5vIebEm6ir/1nTrK5C4EjDKC09iS+n3+FTcep4t6zAmzaqcbZe+L5r2kymm+LRp/K/VC8wRQ+TA+iFypHWHu0Fu/zvELCVi78sbGQYyz0YWbPH9o9aS55ndCCWQeGeNOAO341VsRpkWtYInsuFs0J5zVdWVhzS4QuuI+G5+ONoS3HktPL3nLDpl8sY6yA2wssONhmiKOzK3EoZRlc+64G9MQUUH8/rDa8RxUWJ8BHawEd113C0y1mAbc3UJhuHC+acQk2RI6D96nZeDi/CjNkQ+Hf5500d0IlexpMovhaHVTXWgRiLj94eJkIpK9MIIX+R3TXswf85rdA/0FFeu3+hJbE3WTHok10SOgXVvyVgeJMc7SLLaWXQfm437SfF+7u4paSHNqR/wyd18bSsWQpXrZ2NORGpmCYey1eb7fD2iW5pP83n+q/xdCRi81sXzUX9D++Qh1jM7hprU9trlt588AaGGdZAGHxj/Hu1gTw/WfIi6WKwFb1LQ/ftQW5VEeQ+DlAAknHMMsPWPPwQuglH/yz9RS9E9bBq4HX4eQaG0i1rqVX51qx4oAs6OZVU3btT/bQE+dijVz01XpA0pp/aF26MoRqaGLwd3PwtNxLk3a3cyX30qclSnh57HuIzWmi6covccdaRbgSl41PV/6Cdf98UOi+BvhvWgOjz6uAUEg/q6lM4ztNi+CClBGs0JLAgUmnUE3qOJWrzuPndhXgbPaI0j4OkkOaKGw41c9JfbYw40Q8+7/fht+N8+iU7zhQqbsOT+pVUailmRtnCaIT3ob7I8TBM+s8KAdeh54/x6HorxwNv4uHO4vOsvS8bN5i8g+/fn8Gy9uFoWhbJHuOD8Q3uoN8KHwcng6xp1HzbCjG4A6eL5uBaePzuclODTYO+3JZsD+cX90N0YurYeUROziT+YrqvurBTpkIPrjRkQ2PaUCLmho42x2msGnBpP87Bj7MEKJYqRO4rNcOGmYLQ4RjBC4SYVhxcRNPdTqICoHM8a0GZDpKBhcHZkL44ymokXOF9q3S5y51VahLqOYfg1vp2+d2sjYrQDokBM1fXtOK+cms1LqT7pt9wKiRdqC9axW3Z7uxvXUrqI7VQ9nkX9C+QokKnwbAR3cNzDecDqEVijCQr4C3LzpS//2/NHzXnzIEjtHzJzcgS+0Wge1+rq1U4TtxsrBONxvK83z49L+3pNbzjub81YW+kghsnryPAhpL0TxmMR5faQv326s4RaGLBp+6cXLFbmidK8lr2v2gpmsjxZqco5aaZdj2Rw1mlTbhLcWPvCo6ixwvrYCfOVoQs/ErtnnOxqkRa9m7dQBClmtBnMUp0P1njTaXd9LEW0hbIj2556UQ9Ow5hMm+P1hM8TsHh+hD9/4xpLPBFKI8vGGU/xAuihvm9lgvWLomkjtmrwff6m8sUWsHn+wkoWy0Ll9/mo6nPR7zGkN9+tB2HK+E6XGOw3teW5JJlW7CIFyiBe+lH4Df7HPUcTCE/yt7Qeo33rP54ZP4eMVVUFsegV+f6cHMAUtQOlwPT+4UkNp3W5qSdQEDnt6j/+qc4dKGWtynmwqGsRqw2HkMTHdLo7a3wvQ5vo2OGd0id/f5oHTzCzq7+GPe5BncbKADxd+vsOBfb5rsLAVNkgtJaHE/fXIJgqojy9kh5hRVt6vhZ0k1eP/TmLUFq6Do9io6MLUbfU+48M6UbMpXzES+sZ8mHT6L16aPgKnr3nBPRh4Zyjbgw6mpuGzMbFaoVIVU42R41LIEO1gLfXN0QCI0A8YUNeOnu760cUs5/X2wEiPXR0GavgN5bn0PmrmOKPB0JExd+ZAr5e+z5NfXULBUhbpnipN79AEeqP1Hx4vKuPafG86xFQXJJhcKNzOExpNfcUDeGb7KG2Kh2QnsfrmcatorYWz+E1KbLwtTPL6Q9Q9d7j9qSnt9n9CNmeH8q8OBTHYMQ/HlTPbti4YxUpNhs2IIhUV8xQWdV3Co8zc0lE4Eb/8gsjp9kJe4J+OW44JgftEabj09Bjfqj5CclBakbb+AIv3T+HXIK5r6UIte/dbFF3r9fH2kJvyn95jMH2cxDflxjXoJf3MLwglp9/FhbQdNfpYIEraeaPSfOJh7C+L7BqTMHY84SdmFiiILMHSsE7nnJsENXVFapVnB9h9GQJe5CU3JWUovr57ib5e3cajYPd6q3sEBT7ai9KTZoG98FurOi8Gs9D7E7XGYme4MJTBIY6r0+X6BB6d5RoFL/FRcp3+CbyRJQ4B5HP4MSMecA4fRPHECH1b5Tk+7loFuXghE3rGF5okypPrCBiJ1wiBp9z56HbWN7xj9R1fDp1CHxXOsVDeEOFl72vXfOO4rQZCJfMgfz+nhAs+xHPW5E2p0m6F6Uz65l/8hWfW/4CTpyGq3jWGHdQioJH6lXe9+Ue5thvWrDCiyZjG8Cytm54J2/n55BclNsoT6Unu6uVgPOz4o0YKJZqj1RhR+aemzjWQlTug/SdoQhfM2mEBB83e6oBfFW48Qac4po6k7SsDyngibC8dQdsRFNMm6DpF35UE2Qxe27V/P2YGfucn4LXuG5VLXQSe4fzcCVB6EQl3RN65cLwm/3rZDqpIeVS1dDUZxt7ApJYTzZ3wg23HnWH3hd9gd/gnHlE+G0NjDPC34L341z+f8hj7Qt9qAH7bfoIJ+M+ypeYdN/jJosVkAHoybgBYFidgd5YHO8zSxdbo4P+MgIi7G/dpu6HdSDcWHBUHDZjTMPC5Mj1KFwHaELj9Ou4YOIS7sGRvME7u/0RbfUxCeqgLLLJ/BwMe/ILXFEOoe+ZLx/Cf8rVcMBkbtgxW6AzAmRoIrtk8C0UdRNEVoNcgcV8KoEm1smF8PgyIe2FhjC1ahQ1D65xAKHxoDGt820FX3l+gVaMlLX33kVNlA2vtSnzZKq5BZ7DwYXOcNofc1QFCT+eyK97B6Ry47u4lR/zp3HgpFqEjPQwrz5eikKpo7DeHr2gp2eHURVJ7lsWy8LFgcSKXEZYzWn5eQw9soyC/spSXXDCBnqw1hOdOTeB1QXf+Sno/YAvWTw+lL7QHye+JGdiE+lLNWAuxNp8DNOT6wW8kAlrx9B6rdYyBtZCmz1BD5RVjTQPN7qPYzA3VZB1jXvgdNvjhxje9D+q5zH5sDX8PsvAf0Uu4B5ktvpgd/7aCS3PBISCW1x35k3cJZeGnoLLnEjaCt4wQ4UWUdRe9swOBZI0HhowlsnfAAl7+6BjQojSkJE0Ah4xo5t5fA2EQr+ChbRqs87ODubSPMKToA8SPkaPWOqWza8wAywlPwQ8p6wIe7UWrNWRrVoQz+Xrmg9ViFSk/2kb9vC8jGf6NV21Zz2N9KejL5FBdHJfKK2XLwO2oBfbobgMukAnF4khdvCrKiCqGf7OT/lnfnOkHpwj+0wkAQcoXmw91+Ffjy4AP5JC4E+6er8dO6ieD9UgxaxJbg71p5snC2g7LsH/zVyBsnLL2MXWW6MOH2Y1K+voCmPkik8HM3WaO2nf1PyUCRQA0+KJCjDcNzofNgKyU/bkAPp3moqU5wyPw3Hm0RpJ8gD1PjWqH5ciEvfhTIn0S2kuDSbuoSuI8j9Tw4bKkbuMknwtxFMtBimEaFa8LoXuowJ6WchuVrf4DH1REwX+g1nHFwhCq/vyw8VRu+OgqgrP41Thb2pEwBOR4OHkCPxSP4fsUuTpnojQE5KbhASwhmKDjT9oJhOh+6CvJlSuG/bwvpLJRwW+Jtahhahrvc1KChheHEsuM0oJmK906WYpfzM6o0fY8zS5WoaGYVRd2o5mHtbqQeAaidNZPfvHjMseX2uOv1JDgtsQh/LZkPootOkfIlVz6aGYVgoAxhtj3wlX7AbTMnNFCs5LSeXrgvugvbyl5xyC1/bsnR5p/7AETPLWUf7/0srSnCCU6ZPEdXjzTf76CtazfAlfwCXK+SCQXetjDas4yUo4bwS0AY7lz5mTMxnzWfnGLNJeHw07gY2t/28Nu3BI4KMfDJcAWvv5+KVqOXwFENW/Tw96MfK4TZwCKc96TXYOBpA5gYLU6WzUkw7SJTirE2q/5TItm+taC6YicOCdfSWNUL/G6CNkTOaMa6N9Kw17UVS0yPs2znM3iqfwqFlmykx0/PU13mGRqWFoVWY080vp4MWjH3+aFaGf52CaZkyxespdgMjXdWYuWpXbgkUxfyV/YQCN0F73wnXB4wgro6otC5yQpvLAvk/jF3OKFajXtmacOdoDV0Z/R9zlSOh9obsRjgEQBnC/9H3H0oAqGoAQD+h2SECElG0rJ3iWSkQSWzIlIJiVKc0tKk0qAdQkZJKRlZmZXKigYlaSojJYmWcB/jPsm3kX9kXGCF1e/IonYXqdwaAQ2VXRD3PpdOtgXxg6AjcP5+FvyLVeMXIhFAViX0s/AkzbDQA6dYa27fNoeP+EsAujTjIZMFFGEQy/FSd+mY3lEeoeCAs+tmQeF+c2i++Jabwo9Qbug/misQwmlrXPl4x33coH6ZLpsN4OGfhhDrZ47H7/3GmQl76fPPU5i2vYqln9nBn+2B8EfBE06uGOLlcQzBcatJzsQMLIIGqb2pEyyuTccHYw7RM2sz/JgoDqqTNdFilxzMsfvGd/6W8qU5+/hMYB+J9QUTHFvE9x4r4Q+9BD4xd4B2nR4BU5ZZk3/rTdS6KwA7Hw2h4fql0KHjTiPL9sLlSg94szgKpx+aBKV/d2Jn5ST2EvXBiPr/cPElMTB1AxQ9EkRBE1dx6/4oCPMwhaUfb+PawO0gu3wa3V85Cwd2fYdmj/e0OtyV8lsiYa6lMeQvloOhBARbgXRctF8D7285Bdofj+InzS/cvX4VzC93hpvaOrDDfRwY/DvD0w/108IEc5CrNabHd5ZT2D0LWv9yPOb0zOM6tz10/5Ya6KV6UpdNP+z4oI6bopfzguEGXLe8h7a6LKZb++u5dFkM8NMR4D+7DRICSrhTfRl/3R5KnqsGuWvgF2/uqYee3UCCXjo0XUMWlhXtBMNUQRIrngOO1WmU9d9KWiqagNkn13LF8WA22XAOT9aLwS+/IPbpvYM+PxTATSYYwuI30TKVbjp6vxiLe1ox9ugQc7gqrHabSuc6PoLx5ygKKwnlef/s0FUomd7t7oKRqz+w9dkvIHJSC8z3TeCOwD88+UIinrJfChnjb9A9kzpqPf+X0s7dhaU3csk81wxmvF4MV4W8uVllMT3WngaH+/SxtvQVtcqMBdEZnzhUdTn+KTKEdxqv4GlBKcf8e0WLZUroRrYPfrlcg4bfithy63m4nxFFmn+0wcs1ArQXG2DY1xdwc/gprzi/HJc0J9DfGl3qOBGFl8/nkGqtKez56QgGBjrQ7mDCe/ILyf5XMn59epFHV88k/WkxnF55EmZXysEuI3n26PiItgWX6XKhFI12fYe9665hkVkXdHm/oL9vfsBEWYCw0Yrw2FUVpEX0OfvsUopL0eY0CT1c4zgSD1y5SR5px3DZaXVYFZuBaY86uKXZg1V7ZUg+KIl3/+rgi2HuIJ/WQUWnPHixtTmobvXj2H33+b1GJb4YJ89xZ/+gzVEvztSpwdO360hiTwq8nDsT7sxbT38eC/FBtW7OFrBlJ+VWOFNKWNNzH4/sfIjCXxQZ9wuBYFwc5Wq8oMTXxuBQc5HnjBfB5KoMat3mTFXhJzDjzU0KmSsMmS8C+LU9YsVEAz68ZTl8KNLCZaPOkPvmcP5w+CqLeB2AxA5F2Mdy+ClUBVJnnoSKtli2inrBfclbuXFZJb29yVQx4TKZnjGDRR1XqaZxLZ/zecbvT9aC+9zxNGWlI/YMfsLAx9tw0PUMO6sYQVXZVV7uPQAhuIi33Tfgu3XZJLdECiXCvoFfylJwXeIJIbqjQcRYGuV79mBabjaI9ZrjuOm1+E24AJysX0K//y6Sr29CkU/ykJesy/deIv/NUscVc8+jcdYoask5jE2Xn1OU7l5Mu+XH1dKy8EvAANeWnIcNUy5A0eRe+HC/itx+jMGYsLFQEXUQrv2KA8H/1GGU0TH+LOnOatOlof5WK3R9jYPTLRa8KeI16Mt3wodhF37mPRkMF0iA9/ksuG5fTxKjHnC25TG2/mqKhoryYNmGXCeyGkI2KsCPBwuwa9ANFNq1+OVAAcWd9Wf/fmPYfmYLsrMYhiqu56NlimD4yIbv7cokfU85iPQzwOAgLyoRreONIQEYOdyDlZ8UeM52IZCv38w7ruRAzrEPoHVSEcta9jD7/uDvAZlsnPWZm6282P+hMSyLWMCD/AFF84fhluwwBR4a5BGqL3FD/n60jpEGR8GRuGC0BjTKbOIacyteIlQM7pK5+HPSaDLM1aCSg0Gk8Kmejl66jY/nSUHem2k4VikZG0xT6M/ubrYw3IRbw+bSU5ss2h1+FKw+vme5xHEwevY3fDZCHW5/Ws7uohoUJ28EIhO+kfr+gzhf9yNLdt3AIZvR0Ct8DTJnqMK++O9senA2SG7fyNtLX9BDo/M4WtGCJT97css1A+jyRPZz20dqH9ppbJYWuvbdpBtKs+Ci3gNyojI2GnKgwQOy8Oa9P4UvnwKvn3xj3+vppJcqBcLOvbyhbBENbvJG+xEVvGTVGOj76QjqD/Nh0sI+LvCPRL2Ln3D/LH3ycn5Dj9JGcJu5F5RZ6UGHyEucG9jM37r/sMw0e/ZtbaKhbfa4ysWBw2UT+b9l6dReMAGOHqsFoS0R4FxtRgt/9GJyTBianhiHayyNQVmE6PKph2Q/XQPGqv7BgP/Oovbf86AZ4UC+R+NY2sCFay6nQFHkdprzo56cxplDh10gpRyxgfPfjGBNthX7zUQ0/3GBH6ZF8xrvRfTFx4v2FE4Htdo/qDClBt4Nj6PAqjBovvMW5HOUyHuDCc8RXEBmecdIVkgBTDd+ht/FBlTs/oo3G66n1VGbSEvbFCwLX0ONSD0UNmdy0ZeRoD/BirbfaYeIB79pQjdh+LK3uP9tOjitCcX/2sOhz/0M7yQDWH1kmL52nUM1i9skWiiLRm7ruLs6Egfvm9OaSB2e6VqAcevVwcdYliyXDfCykf1Y/aqcM1z+osac4/yxdDIPKiSCVZMmlJRPB/ljNSQy4AHjLWsxwtQWroYdJispWyy65486QgvoToEjtX6WAMcVK7mgPJKPnQsj97WvQVDhNfcvNsLgquu0V9ENb4IwVYMeHP+xhM5Y36PNeTv547Mj1I1NEG3oCwaBOuQxFbDsbB7PV5ODFy/EeWD3dyxuXIjyb/so22AAjBU/Y7PeczoWZEjNAW00csEE2ONWBc80PKl71DvyWYn04awJTDDMRofzW+nQnA14yqUX0v9ThinitnBqxip+VHcanty4DEnZQ5TzWRPWd+5gccUdMKe1nPfMFgPR18/ww75oPqryDnblaZD6rIeQ1XYF0g6GsFukH2Wd8+Fi+RHg+zcPrx2Yj4sVz8DBWjGUXKRJBx98wvmdPrB3XB2XVl6h/WMBGt+q4vCMIfg8cx9E9Ohz4LwsljCwxK8V/aD5wgunHR7NehliMLQmF3TPGMOb6SfZeU0k1JzTI7MzWrR9/hsui35P808EcdTc2eBv3cACZX/g8IJfaDuqD/NLN+Iiz1CyXXsVDUQsePmrRTywbQJcO/wYGs1UeKWuKjaOE2LVpnewNsAZEq68p5p3G/CF8mbEo7Ph/ewqWq3lAV2bulFy4k8aSOuiyFdJ/Nf7C16++Zxc34RiudAIqHgqTYKbO+CvxlaKajWg52MCILV3iDuUZGHeOTWS9cnD7zlSMGHMC0j7dRkO6Q+RnvY8eBRRA/3OtVCqtgczd2+C2zr6VBFnDOGqmznQuhq9Wu3w83hd6viiwl6njXnnBllMElyArcHVeHSvBnjbieIBcCfF/qUQefUl/+cyGWN++WGt5hG4k3eIrg+9Apcj00D/4xb02BRIwx2joeFoDAU5ZNHyUWGQbKfCm04oQfWy29xzdzykvP9Mm/44gId8GVt6ZNCDs2bs+CUJnp8shgSpaAj/L4t72/Uhcdl07DGUgPv7CuBrzghqkQqFs3vsMWdWPj297cqPtAmDTxL4PcvDMUd/wj6DKfxZxAr2zrgBXXtNaNzBe/TWsQsdLkyhp2Yy4DsUCNM2r+fZM5cAHjXgTusk1ps/E+S0TuHfV7Xw4J4Yn/WeAvsStEj8xW8cCs6BgpIYcEr8geujx6FSeTv0XY4nm9YQZhtZ2NGgzrNfiGHIkUiWmXgeKx6Vs19GLPy38SIf3GTC7ZovueSmBox/4IyWBU+54ZwCacQGwB/NXrqXKYMrlfK5MV6J9YP6wGMiQkzXMtRvnMRfVOTxqX8tv6hK5Eln7kK+cgrraFXR3xRxrlOYCNoGTF82J8Dtab30bbsGTrP0phXvTpOixzOsC3tOt17og8RIBcjPnwjHBc3ZMukTnTUCnCf9Dc7iLWjzFMGUj5tofUMBHvkwAhQ/ZsK18irS9cygsSunwc/SdCrSX07zX05CJ6F1+Lf3Opj26MJzOSsKi97KXbdvYkCOPDjXypPrx8loarKWQ68eRc83muTcJga72jtI5mwHx21MYZvPySAs9JgPSF2BtrIMHoqLpjuP7VgkWQOKFGMx97sW79gfij9n7eCsH5WUXDKbww8Xoqb2IfTt3wLFr4Vhs3EjfYwL4aVXrWlwSAsf51RCZtEPuDZlB9yL8QD5+A5uFpsJioX1+MpAhNwWSMDhG89x/tHH1C/nwTsLvHmSTR+l7y1A81+yoDDbnUT2W6Auz6bd97Kh/6ozrDRKxN6CMfTl73FqhwDw32IAU7KT+GVdGMsYrce1o8pwd9lqKqvsYZmIZJovZ8WVqb4YloKwa/NJrBQ3gOz/voLUuj7+fl+Da3K34pshA5Jdb4v+QxmUP10HttsdwNrhZEqL8aLh6YGkOKAINqkBGD1YBs9HFWB3lxeZLVKFwt5gWJdRCf/cetB471se57yMLg0mcYZAIrVf3s7ZVxyxqUIFqt7v5dcF2VS5UAWON77HHA1rll/pyZPL9BBzL8Bg+1TKcVQFnwu7+KOHAkwP1IEznf3cOEEO8i6kUnnbRtrldh7i7T6zv6cB3L/5Dxxit8EVwfHkevUOSa6/RZ8D98A2k0A4+99Jmq4ly1fu6ICM/yuK11tCC2SYT/QqYNq5EdAqtYpnbl8OfbOsQUNalmbuHgUnPBr5rTKDot4lUv78ndZWjUa5qc9wVlgDXekIxALRE+D9dxQ41N2n5aAPFtYN3HqrDzaeLqPVo73oeq4lRYg1c6PVe5pvoA5HalJ4W7gXNbkfgn+/gMsujeKqfzEokmjAUz1+Q13sPOjp1AbtUC86N1zHXTLmnOTlT/Pu5NO7BZfILzodvu0Zx7emJkKg1Ez4tnGQT0ldoDELOmBxyyVUm/KJVi28B0tbgvnO3VSsr2jDlCPjYISdKlp83cDdh9X50TVFWjpKh8wkRDHfI4gmTs6EN+erMGKtIiiNKcDzw9bo2BEJxhPzoO3+NLov6cCGqtfwbmQiFwhbce2skdAicpxfyg/zzuAqfntPhZrGD+HgvHwIL4lDkc5G6jp3jJ/ZMfyy0Ye/khogd+0hfj43hga62vFJ9lzWv4sskW+EgQtVwMRbFfY/KKMlF/SxeKslHow9R9aXSqm/ZwSn6yvjWokWCi9UIrcAEwhOcKWQKgEwtTmPDss74fjgOPjxL5ukp1/EEbmhYG1iirf8RsOa7E6uSNCF7HcTME38ILq+08J45XKeeigevHKm4ul0e7p7Vgz0xRswSWMvHXzcTCGHs2nHPVH8FaxNhuudsHGNED/8WEWnrSUhzGCYq5OM0WiJDkzpqSYXDCfTr9Z0clse6AXWseS7Y7xZZwbMyUnmDWHx+M1SBvSbq8DmZzgaZS2iSc0WJFQqxxsmh6KQpA78w2ryc5Qhnyn7eI7nFOweHIdr/lpAt0A5GUz3ZvGSYdgPRnDRYgaEJ04mwf4sNj45ltSHbnN5gS3PTFRkVYnzVOT6CShaG1J9dsHeI0dRuf0qnxj4xNc9DqOJngOmrwQekquBi3a/OaFMAOKe5kCB9HL+4CeLh2vGsr/kLyrPPo7TqqX4cOwL9rmXTB/NFOGSlwx06Z0mR69jPD81ixt7LsGXFb9IJ1ifTE1sMSZVG0MH5aHM6DzndUTQuYohSL60gu5tfQClj05yppEArPj+E/Vv2+JSMgXd/FJe9labTp/wwjlV5pAQkwpHHEeDd4wqfIcYVFI4ACc+6oFr7zO8OW0X287bCgdWfuODAzfAsL2NG5a9wpdfzemUsiaeOmEKqofLMH5kEUeuEqAbbT0oXCKPR2sqUNnLBrwnFOLZg/4gOkUFcoI90LniHvdf0KXeS9kYPi+K5zqfYiGHUjaeWEAWM7QoVlAGTk0IYOmu6/gvxJMMz0yniHXeNLJdBRKji8Fxqh99HpoCH8frwvPeKeS8q4Us3kzn0+EH6NZbEa7adYC2OwPLfPDDhuFaflgvB0b74/hBvDGXrjKiaTsTwFndhD8v6OeMe464on0nqNmr09k/OvCnKQG0s0M4KgvAqfkz48A/tJ7sQbk+77HrzDCkZmTi+CxBOHZlI4fPUCR5mfuof64cErd+whi7rWA7NRge7F0N4trz+O9UUSgWTIDTvxM4670uCxbt4KyPivQouwGOHmlGL1NdyJukRdJfZOH3l0e0cMk2ED31jrafmUkK5RF8ctNDEtjdzLXLcljPvJQuRSrANdtRdHfcSgoUrsRCM0vQfV4ElooRuHP5W97VcwhMdkVzXpghiD+eRSseT0XD5xto9YpBrv/6D8jjGyuV/0H/5TuwTsWNKixM4NpvFW7oqaB1jk/Ze2waLNT0RMN1+0E0IgDNHi8B5xdWtFXPCLqWP4b1vjEgeeQfHx6shoqud9Chl80/YlfyubBouBjZDrDICLo1v6BwxFLU/d3DMZNP8cneBBi8PICqkdPR7lEWuCTYA0zTg1OSGzlLI5p8ij/TDmVFLPcN49Uufag26zJ+enuHPK4/oAYLYfjvgiVKvflMphdjadaSFaBxPRmfmv2hrS158OBDDTirqNI4l1Ew9lorNpoNMZg/xz63EEiPCqS3Uhdh3W4bMksYywOvLSiuxRxebfOmB7ezeG7oHZ7REQKFUev5XcYyfPTjDjzKEsHaMnGwuT0DxFXt6VLOFKgveotYagKHIwQhdc9Orrv1G+v0rNn+jQIu8NGGFwP3eKJ1MKhRIBiF9fCV3ZfxSZ4CenrshdsjS6jefSYcuaoEpw4XQq6LArs3X4RMj0gKWrkdhnr04J69CJ6qcIeMUeNAvX0GfKitgaDn+bjWmPmF8gJcaXSKklO/Q+dNF6p48Z6y/NvAz18fdFec58PXS1A6ciGHyQN//3aEOgv/gNJldTogJUX9/cNosEoDnvoK0cH2Bi5/dQLW7dWFMbsmkHZhBgtPPwAZzSXw8swkitIWhKc5/2DB8Fv0+eNAV/e444fMet4/tQ2MIm5Qx6q9/GpMPw27C4BkUytESu9F550fsNjwHF9IWwbBfRPgz8JNkD1qMhQuaYDSRFHwdN3Eh/Na6ZO0Di/0fMwyldJg/Pw37pU/TCutgiFs8Xgwh5lgnbmUu/yLsGXtWTxofJnn3/mFRaOd4BzEQtojH97dfJi63UfCg+pzfCVpgD25FyqUdKDOPIqWjdpGX67q4ibVVdi4ZQNar9YH04Gt6FRsRY/eJLF10VgYFzSJb0nPQe0t7rzktiw1Tf5KZ86qgFlZCLVE9qDpwUh+9fUlbk58Qn5Pr/Lm8FoWp1d0uN8I14+YCBdFjtGT+IswPnQKTjTN5YxNlnDT8gs67WK8uk6BRHJVofbmZKh+t4TGLgji1w41NOHcSFLvtaW1zz9D+vAMUjmdQrtWS+DIcG3QKbXg0g3Z5JFwAsUGwum4lTS8vf4VJ1mv5ctC5yFrsTivLJsB95W9+ehbW3qlr4E/pafD3yRZVKBKGL96Nfz4XsUmTXkc4y4Aap1raOHBYvox+jd+e+jCD34doE3PIyld9RWMfCmAvMSPejZMhrWaFTymRZtaOxHGrz7ItlsmUWCuPbv05IDF4GkoKG1B+0xl6LdK5T+fnkHLEh0I8piBLTtGQOLilzAnVJbKbl/B+AWXoHi0DDgmqdCJsJdcd3UHLtgnBOZyt7g2JB4P6Z7mJc8SKSXCGn6/ng0RfJTbBqoo4MEedi3vZOOLp7HLQg+33vyH1zr9ICZ5BfqGasMHFCPx9hwa+JOJXk4lUP21mXUjmNTebaGmn4exaZEU3Z4wCbLvTcdT6k2kKZaKgn1F5OhWxzqm88BIz5ac7C7wJMnrNMNJEzRkcuESrSDRJ29IANeA8g1VzutWoiTN32Bnp0AOegHQHCYIZjJvaUTEKHhocJvSV2wBx+JRsNPhCCePdaBZU8P5o5YP5eTNgu8d73BK01p8jDJgX3mKErPioGWiAst4iXK9ih06VcWh7glzED0/il6cX0+SKddJ0auIb/YosG7/UTpe30UG+wVYslARfy+ShC/10ezi9ZIfHRqDK1d5w9OlClTc+52uLxSmUNWX9O/TVyzKEgA9f0Wyu3oOd6yYRN82hsGoZwXYcrobvx6tgINbGVdLuuAYP1FolPmNj1sHYf+Cp9DTPIPOeP/C+w4KcCFTBHO8EkDvxTEWWqQA7hsS6MKpTRTvXQ8rTttR0GUJQtU97PVtJ598Cixp+orrk4xAcnsy9v17zx83LYMr5x7jYr0Q7N03BXLXz8PKi0/hTbAKrPwxC8x7+/iPkxaFf01gH7mz9NHBiF7F+PLUZj0S+F1JJ/d/oVWfFGBiySpQ0pvC/hm/sbPQllQF5+DtqB5+cmE7San+xo9Hf8ARQSNwDttGM+/H0J37onwlW5EDb7/hQ8JGnDY6n9foi1LF12L4tlYGGq970sFcJVSeORlt3Mazt2sxW0QUQsr7BzDJbzR3Bv/hUy+loGnuXr6R6sBuUXf4uZ0jvr8qRLNn+eDMLX7YtSgJLaZZwIVbhmBzKg8zvc1pg9ZR8NYQgq0pW7F2axmPcjlOb60k4eGAHfwWEoLtSU3w9cMntB+9jr9H60O6VTI0BnyFMZNT8fnNSzRfdRmb6YyGtG31MPIoU7HhDZyptZdsTVVI7rk7v11WA2hwhrZJX8b0i3pw4/wq1FRKhQOfIth18V5QXJQKXzV+4IEgBXyycZCznKeAbIc0VJsIQlH3MGu17aXGdUZg1PyCU3utSSbkNVguVKZ/uSthXMN4SO8wZf20JBj1eS/9WB7BzcdlIX2GHmsknoJYo9+UMDYHHz2aDR+GWqk8JYiPPxiClFXRuOHgP1gxLENaH7Sor9cDVbamEKUQOARNxNjMe+zt8gMeG4lhf2o8rBv6iCELK+m/iGQSveuCY6bNBJAzA5+M79Q/3hLcNKdzdo0mRGkjOaURZfv0oZWtLbRuVoO3T7dTtHYKv1vzE81fybDfyFWYNSmFwcGS/3NThHFZX8h+oxycuT2fJ8c04arQGr4lHERa3bdZee811hw5gb9/nwhHFxTS3fETIXlbBe//OQS5Gx/Sz5knUeXeGPIvOIf7EgNg/6I0uvC3gScmzoAD0VdpvvdpSNMcjUf4AL5ZHcmr9tvA/JouvtH6CS7uW8blpiMgT2Euq+kcp/FGP9G6zYpHTqjFJ7rraKHyIjgRGUGFyU8hTH066DY+5Ya76/FQQgLNEMrnDbvMKD/uITyd40f592+BwcZLvLAc4F3aY5DsnQZzfZV4l6Y2P550E2yXHaAnZ/pZZ5EB2W3ShPv1DBJd9vw6fxsE2XXAqsIDqLIlEXJPNlCLwBCsvZxDud0ZtFNtBpxN+k6GJ6aB7w8dfjBTFjTUrrFk0i7+/LAUj12thK93L/L3f+PBYvVWHph1DDXwKF6fYszjVHpQ5s5s2N/3GDUWBVD4GjVcESMJEw4Uc2vefby9MQiPav3AEcn2dL80kh40nYSftxxJNv4gzwmRheLNu3GliT1MDu6D8uZeXGQqCVYpwhiQG0r5trtYunEiWGXOhrcQjAlxe+jqVw1cJlgCRj1/cX/KWK5PaoY7s5Q4TuY1rXgoD2Orp8AM0z2cf6MWhk13YmW4Ao5x90SJqyEUerGVTtu4sPAxeTh4IgX2PrWAdce1ofeSKESt/gAFRU5w30wUOmZEUNR6AwzsnA7/9h0AqrpAXaN62EXVlgMEUmnV+yRYPqcZfs2fQZ1qvshVUnDBzol9zOLwZN5y3qhhivfiH/JozyEYW+OHmyvd+NxaGx6TPAquRzFN/6bOn54lwmkaSzklYfhfkSyP+vMSzxleouPtBjToLwn1Y2RgmosaG17OouP78yF+4gV6IOoDzSPaeN5aS7rJlSh2eiqILdXj46uuceHV7VQtc5fGOa+ki74atPdUBeYEJ4PZ+i4oFTUG5wVreOeNPtg8/JrSnPTJsm4TLAyTgV6lfh59N5giuqrhTQyC05k2Xqs3lkr+syXHwn3Y33URJL4J0aXnPrhh0W8e/u8ptztIwhSzVlwk44Kz/znjgc31tHuNCZ0e2UJBl27xvxOtaPjEn53SpWHUGDlYEWhPFv8GcO3EydCtKky5+f0UfWY9Hpz2H4nQAvxePBkaK05hp2M8CUzIoyfSvZwrnsIz/VagwsABTv+yBpTMtpBesjws+paHXeGH6ZvPQ5haugHmujZxU7oIVv+p4tiS07y8yJgcRHRhh5IQ6Vlk4acbZmD86ywvbS1HwY5fYLFaDC21JGlT4i6e7acH86+VYbpWBv3yvgMl0h20/UYVNrRuBmnnBC6MLyV8+Yh/fwQoF/1Je96tJJLaRQtqLcBC3BrWGM6G2weT6WCtD0n/UYIoCUGwf5GPAWtesFbVYtpoYkl7C3PQtMGOglefwE/rbuNv06fwd4oB9PUmUIKuNcW+GQmgu5RW3ekEH98BLKhWxO6QHdgc6wdPBpUgzFyZ0pICKW1DBxx4pAjiX134uk4Gh4zugN2p12D1FDV+kaYMOWrPOUqvlE89u0+akyvp31fmQveF+Ls5gL8s2c3h6cLQ2KkCzXJzeLHfIMrJLOMUO1c2CZrF01fs4ycnlqLTURt6WPGHQjSmQ36mPAdE3+U7VwiH7aLphMR5lM00hsyaRijZK866O77wt6tTIOJmKx5L64BNHsZY7WmI1zMu88MHZyguOA6EpwuxvY8Y9xoCyL3x41mL10PGP3tcUnCD99e2Aqyowyvaz6HFLhtMQhPZaaEx1Nr8gqBvj9CtZST+GNKG7d8Pg1nqE6yzegxCo++Q2HRzuhYuC2vPVWD6ZVMSObKC167ZCkrKHyh0dyYtX/EFkkZHow1kYLsqwWNBVbDqeYPlmTKgGTcO5z1Q57Ny3ziwvhEKNoZgU4oZXugZA2NHXsK6mWfg6GU1Wi3+mmZNjebQR9VwpKUfW8z16OnDfL4cqguHyufys/1zeWvfJ7p81wEXzO/i/E5/epIbzdkjD7Jp0yDbvVEG8ehcONK0gp4pbwUpk8Xw3007ksqfgYt0VfHT9gVkrT6NDb8KQlSLLy8pDcLvRZIUmR1CEWZpACveU5XZYRo35jP8+7IapoSLQcXG5WR0T44sKuLIuUSZEr1tabb7IE/tnk75sT9ZMfEDHH8hDGOb5OBhRSec0TiLIg3zuTz/DabssSI78TI8fuIBNMWH8LPomaDw7gvdFlqDJRbCVCmzCbPqNoOH1md6amdIKz+s4wK5GJwrqAGKB3fQNsNieq4hy488X3Pv2QoULRKF+k372Ud7J0dtK6etIYpQt9gPF1z5SRMGvlDt++VYfc2e1tg/RIEIByr7VsrvF7fwJF8NCOgIhHrtTXzXogNPi+3nfDlbkFRdT2M1gsDj3VmW+7cVNwaZgb6uCX9QrKbx/1ZS+4lGnDjhBm1JmE+ez3/wj/FrKNjmCZoPTwB5ZUPOOrcKKyOMeKztWhqMeEADThv4VvZavqXeAof26LD3Pwn48/EyXnYIxuIWJbbR6YGbronYLxrFtzu02EiunG7laMD61wow/2oI+cVNw8o6bdjXU4hibjZsLbmad66spesBPXjiyi5Q6hWEY3seo9YOGXhv8RreW73m62s2wsvjvzEz7wK3PKmiiwvLcOXG8ZA8oQR/2z/lDZeDcVb9I7gotJVLu5QxrGcVT85OJAmpLsp6ThCnV4Wn/1pBskIYeyi1o2TNJBjsuQPz2oRwilEBm2TcwuF0KZj5OIM1jwng7vs/Yc6FFViVZERLL+Xy6XOfMN85Bl+0PaQSHQkYFjgL+45rwsLzmzjM4hifLkyA8qt3eJ3TIPiuXgHFm2Lh55ABlEsNUa50FwlKvKYxRxrJtsMJWq7/hnY/H1oZpINnD4nT6AglEBkfiTu+TGRzGx2uHxTE/bviKEukgkhmAJ0DfVnh+F1UmjEJYk3fgpNLOpe/PooFz05zxLXNKKF6nQr2PaGA0sng0myHC1X1YOaIZBzyeQMu12/BiHRFPDHzK9Zkh1FzdCbIvIrh9lfBfLNFAp7XrqRlb0Lps5ALH1+jQpM++0Lqpt/gNF8O7hQtBxVjfRIBWdjpMI1hZAkZfEiBJSsFaKF/Bsx7GMjfI32oqXEKhE7bBeUSE6D58jse3XwfZaac4rKAWcBT5VBIppXXfFDGqVGJPCYtBI53aMFMzzcQkn4L0caGNRqegsQlFeiPLeTAJDGasC8Q8pO9sP2MHrgVBXPoryTs921E64fVKLlZDZZfMCa/Vh84q6EDzV/TaX2PNCyY1kLjp46h/DUNcGzDWNz2ewYvFtvN41OzoOeJLTYqXeCU1Qpw+vhHWJpcjZnLBCBWNonjdy/FpcdE0GiMOnl7xGC+/wFSPUAQqhzCj5d+5eijfVCz+yLfc7vFt46vh+oTieD6bh/PHJcHVqOVYda6r2zmUU+uc4tgmssxMlogAXoCI0DvzBV6d+IQDwhuYMsSWTisa8A5EvbwPlWSRMfvph/L4mHbpJE084M1aA5F0NAIbY5arA03ki7DRrUEKMqPx3em8SwuNZt3Hp+NJeesoHPPDXb59ZTjJWaC7qXTLPDKngNOhZD1vB5YpOyKSeHHKSzgA00bdxiOCjyA8vmqsGHXJzguTJgVMIELL6VAnGkXTkzaScu2qJOFRzponu0G1xCARs9M8phRxWIXMzmm+QVptiyGK97lJD3dj4M3WuEc+ThYOE0D4nfoMO6zAc9vvtyVOw3nvPtB8pXvecc8b9r2U4jLlitg9aJZEDUvBK8tLiHR2XLok3+Sb8sYsJ1XAW8ovY8T1T9TlucgKe+UhB/pm2hrsyvap8+DDOFa/qT1CGe5feKzG+LQZGIt/RZXgh2FaqDeac57e5PAbOE0dhrhR0e0pGD5kRRcmy3GJ7NXY4DFLBB6pgi7Go3AXS2KQ5df5U1L5nPrwEu01GrkqOA7lH8hlf+bHMfZcwTAw2c5fH4tzGGv54Nuaz4bztPhFy2/qOSNB5fv7qO8WWU0J9kQBs4PwdE7YmiSO5/DrcQw86o2Pb/pCQOlK7jfxwkzjoXAWidlmHNmGJpqS0HC8SQmp+qR6cEudoRZnHRGlkNXfuHui50sWGAMlzoioXGbM8abPsPPJ1MgcmQODO+vY4EeATj1pApXCy+Fj3+UIM3xLwi1POT9gUf41b7ZeM/mKFqOy+dFMs/YOayd1kxZgiXvZ8CUpg2MTYlsr/SBSnaospKBLk6vzWKV7PE8jtzI/r0KfbspDiUnsvB5ZiWuKWnh50pPyHVRJPms3I2zkzPIVXYNRErtg/UfZWBzUhc3eTfwHlsTOF3rxAlq88Dt7maw/BoHA5PG8ByvSjDpU4JPz+Rwpc8CHilvzrvOevGECW3k0zefzilMpYyDhbxftJh2liiDg+Voeu/gxWklfqS8XglaXrRRQPEgxW/dQPfOXYGx5MJyEaIwT8wQsgvv8bNTg/BQQYcoMxc0DhSCwKsBfp4ZT3seX8c5rxlCUv7y3kkS4JTwgufb9bGb1Tz89SucxqwugKdRBTSUdBX0d02Hzm8T4SzX0YenAtBww51GTpqAOcXCZPJmBYwWt+WvY39ii/Jk8My6xfbO9/jtijOsIZtPy9ZKYKR5GfqaMFmVWYDql5HYhkKgwvvZqF8CJEUBrztqwfz1v+nyRyO+8a2FinERxE44jstGy4GDSx0sTUiD5Y194CchCjoihpg16QSkzXoJm5y1qGpSPf9JkAeZN+OguKEefbJPgpzFU9KxkqfikIfo/fUaXp6wD0dufgQnbQRh+4JVtH/VRBbe8x/vSJmE/YUmMDBajVuX+3N5tSTIm3rgCwdpGCGuDVmLj9CNbAla7/0NJscP0w/zSpqbZM09F67Dl/uLONFXBjbXXQMxc3faWiVG56WM+Ei7Cm3jefwzeRrMhwL27cxkQ0OAiYILuc0qin2dg1jHURMiu7vQvqqWtCxysK2mh9XLQuGa1jQQ0ZXBExcdsTurnFdmCOK96CTM2VoFN673IfYLgt/qxeg7YyocNY5HGQM7vFZ+FaXl1XlkkTqvU5zLe3VX4XZzZdKek8Chq8RBJuYdu+0xJfnNiXAkZwpX6mnjDIFt/FXsFMXzcjySeoQ9t80CN+l+MrO6B8+FN1GmuDZlxDZgsN5aeN8YT1eWnGDtp/p0/rUWeMfJgU+XI+iV3SG3gDSwSjLBPYsek+VZJ+jzi8FTO57Dxx3TYXgqcof9ejSc6AJFHYdhzKv5LBgfjvtQhx16J4FNkiVbnRGB0lvRaDNUxzPtRuD6lxKkVWkDB31LWPnCCa7e3kIrRA7hYicj6J6YDerlv3C6z3jadXAxBx/UR8XJriyv9xmru1VpvJ4KWTyXgL8H2qhtshM0jtkH77SNyKKmE6t/nGerzLmc8ikcpj2T4qEjgqAu8h7e2SJtUb8CfWWP2bHYirR3v+JWcxF+8SSSc8+a00DaJHig/pd1OndQ6cFimuLux60y5zlZcwJ4LgvhzwfTOerkaFrK42Dq5NdUNuRI7LsBLJbk8qzsYl6sLAxmk5qhUnYAtot0o/ZfdRiK0MKHnmIUWzubGkMfoszWJdTdXsOhYftAbvNG3L1pN+a5y8HbKw4otvMgTn56D89dtcVHQedwTMcpuHZTHYW+K+D7ezfprbA2TNz3j/0Mi9B4rAa/3T4B5tcl0PKaN7gjcQcUWI+CF6d3w/i3YhCqtAh2yS3jpt5iOKazi8ODzqLt2xg8P2INLuwYydsqHxNrC8NgrjKviNRDF4kC0g/SpRkHPDhlxTC7BwyS9LcB7vedzjnB06EudhW+GnMWRL1uY4PTRgqpvkL1U5eTTKEnrAk5D8dOyMD1ydJw8O8nyL92lluU2kDqRiw4pzaCUPUG2pFzhpvD52N6mzxpTdeEItt3PL3uJ1xY9oFle0YSd/3jOeeKSWfkEe7vm8HTdLwhfZ4OdCWXQPbWGXRvsStsFH1B19uPQEHkT1Y5uQRiH72kK26HsX/DKHiTrsCW4yfR5oPJHGC8GHoV6plBlO+mPuO+jeX8LaCb9G5rwhkFLfTP/AKxTqb0xNUTzzXUwPjHe6F4kgtWjfwHZrNVsdbGCKSTjIDG/6GfaaE0xjiXHsadonXqDjSqbjenx77lCO8gjPKRhprSfXxX0gGEpr2khc8y4EJIME99YAN7zhwGjfX9qKXSRPtOECwdNRF6FSeR46lFfP/hK9gdb4CiKnl49VEn/xV2pJsj3fhrqTic52SOqdDik5cPkK8CYYT+c/z+SYsTBBPgpPF5+DvZlNQExCDzZCd56N+lZyWeOKNICE4M+lOm3zaYuHMy0ZPTJOI+lppJCzjoHI/d5s+/LaVxapEjx5RIgPZ7F4q67ooBv/3gkLMYbVqnBKmuJdC58yqIWu0hx4xD9FqlgEQbp6C29gmQFfKEed1rAY0nwE39Rxz0MxeixbLoh2oNa8Be3lp4gLeYzYfRMouQ9yygQS9DkM54RoUFUXBJdxNE7xkBH467YLjFG9z5XQdm/PpBc24thAuzCaLvDKHWaAdctbUHhHIP0piSv1y34hH3+xtA2c/vcHrtbPiRMAvaymvYrd8EL328SWLxuyh64laUmZuGY+PPkvLSMeRSegfcPpjC972zsDz6Ij9wSkW9wN+UJyYH8RNj6PWKmygzbALiyicw9s1oWOmjwk6HvbCgQgGvZa/Du2NS6c2vQFCZl8a3xObjmsx+EsgYB9uv6ZNwph1b0zUSe7QOFIUX8FflE/jReza1T1uDRoGe7JAhAAdyA2iMVwNcLd8Nbsk1aBEVypEOwiiUpUOpO01h4mdrWHFSEuYsnkhZ6X1QUxVJOVJd9NF0JvqJHqSsOev4iXIDF3Tvhy4ZWbhspUNrvnTiQwshWFlxBaft3MzGjeVsO2cVt4tr4rPl9dwerAhWaXuwe/gn/Nc4CWzTA8Blkw7cufiaUt9KkoesBt7UtoG6GiXI/W+QU89NA9snFagyVQoXrdSmdX7VcMdEjpYs+Yu+wheh3VMNrgcf56c+tViwLxZjhZpoSUwlf3P3Rpf+HbhHM5a1NhlgdvNYuD6kyPVFNrB/szn9mulJFb5x+NuxHWLV72LfajUOz1mNb7RV4X6GCz5ap8Uix17gnvULaHShOl91S4fngY2stnQpHRhnALalAL5iUyljzC38e/k1tFUE04ct/dwupQPbxd5AseshapsmBbs1NGHbLVUcjCwmjVw/krRoA0vVbigImI050tXwcuJCWOJejmlbCa6J26J+hidNEk1CA/EOUGt7Qo5xf2HzzxkgqHYQnOP08fFIbXDyUyXXV0Ces25AvOY4CHvZQhmxI3jv7tM837iZ0j4G8F4PQfC0+QGewffp5oVqfN1pRCPjf3ORRColti1GW6s10Ow0CueEzgK1Vx/xVlsA/puTDcKKs0BWTBO7A4bw0VgJqL4zCpc59vIVPYClN3bDzc3G8GyhMkn3aPE333z+WlqG7lVqwBYGHLKjhveJCIBjmgIH/QuEN2rd/OahFFUEK/Chy2tp1R0xihv/mE48vgGL1MbBv1wvvJs1gU7tu45J1p0YsnonJqhJo8txfw79ZU6Jb1/iqHUi8MluNETWBvLJaneAc3fp70jg/17ocLJgD9S1adC4feJU3jcGZru3Q9K22SD37iAcOqZPbRZXSeOFOE++eYefT1lHi8wlwe2MMERPtYDUM8Uw/DiAF+S3UmVDNNhJqWGP/SB9r8mGtzcrIJVMQUWpCZ0sAtk4/TSZnRKiL6f+gMRUYNWSIFjbshCXzLyOTwbEQHioAg80K0GQ2T08tckT16vVo3lwGlgURNGIG454xKgSHPzHgWZnNzRvyMC/DueR3GaibGEldv5pQImmBrKdq4/PlLSQ1ipAywxxHHleHRftscMEeUt4/MuAbodMhsrNybxB/hr0Vd5l7xnaUHBHEjLsHmFnuyZvTuigyxs1eHfwUdoqLk4Cgffpq04GX/44CtwmrKLfIiJ8bFEyVbs/pzxvXwx0LsUfa77jvmN/adFOHcrz0obs35Ik3HOCT7XZY1PkLxb8u5Mq3MPIIegCzpnvjdFe19BCYSL063/n7iAbfL39Ad2T2wNTvtZCd44TvGuxZ4vZFlRf7US6YnL/L/4X9hTag0D9bT7QUY1KG0JpUskUmn4/D5PqL0Pedx/yVVkE82PMwXgD84uTATQIW+D252tYsVuMx735hRBQQgN3XGmGajQ5yiFYWonD6yh/XDV7Oq5bshTuiaqAxNvtPGLrXFrVtRTD1stCR4sQPLZTpy/HfHH6r7Ngf2Y8ats5sPK326T/toJazvhRlXAxXJWZAPb5W/j8bhmeUydPz1Nng/NXRazftZAPXOpj/6UW9CXchj7q6UMDFIDUg5u8c1MoRPRc4KfXLFj42nuYH7Sdy0Xz8NGNYj72aCqE3zpHt3uesfiSXNhjdRu9xtxgFyt1aFU6ytE68yGhoplfbhGAUtlJlCVRjc8uhkF5916I4nlQ5SNEot1vQC7VBU10Z1J0jCLMTL+Lo98r8Mv+bKqTuchnUwVIUCUa1+Ypw67SXaCePoY+2wuA3ajX+CpvAY/qXQfh9i4YePoXTN2jwE2PzlKxty/FD3wi6w0mcPhINI319YYAmSx+5HWXVl5KYn39Plj6QhF9REzgy6Ua3D9NDl48aWWP4rkUd2Qi64z0Bd2PU7j2QxR2zO/D065hPKzhACX7xWHv0U/UlSRMw7vmo7vaDNqQ4oAbnL5zuvEEnPVzGWspKNMiSYbyBDvacv8+HVghTLY3q1DLvIKS24fZfUYllN47j35jnuCcUEE4veQdRv5dADJTVeBJ+S30gY10xViS6PsZ+CuLcOk/KVh/SxTsxSejq8kHMFu9g303+8P6xgwOXzqaN/m48CKjRKiBm/RNwBiwwJXyxd/itM6prL5Qgg+LaIH0xg5Kun4elr0uhN759fjnrjnESzmT57YrlDBmA97MPcfH55jz1NwjfHhfNFiXj2dD6y60b1YHyOvjWr98fGKqAzoN+Sh9OBFyt0ZRstorSjbv4W8+4njXwgTGm7xjHKvNTr/eU1v6Sljc+4cmmezjU7cfspvYPFBMFWTPZwiOFkHw9/Vz0Ois5HPVkhQtq4orYQZ7LG0g/XHzQNVpBCxvkoZPvq2oYR7AwT0jQOLoXLxr+Z2iZBaya8coqNwBrDu1AW/UGEDn2Rbc9v0pVvtIY+q9EPz1eybmZFSTfKAPLaw4gmHVtVy5WAj6F9zCoNAsev77IkuYpaIfyPGF7gxYsGUjKRtf5tcu/lSuKQvH79aBjaU0f5F9xkELGuiDwmxSK5pAkmluKNi9BUtPacKA0RhYlfgJ/VP+UMNyWZAsvgTTcpVwg5gNvN73k9XpEq95OIQtkyXg39q7VNXmiCXST0j9ryDHtG4mqYZUXHzKnPcnMv70mM2nR2nA+9oIXGF4laa651JTzGh+4TLMCU3voCL+Goc7beBxYuocs1oBMtOe4fQcUy5cYsKLt0yGyZ8Ww5fvl8jv2jDMvVpI3xVLcETtSPCUuIbiG+Xge+cjSvP0x1VDRyhrVhqpzPsAWcNW0LBlGxcICcBQ2DMoKpSBsceBrJyX0fJ71+g/vUVwYtQolIoyxI871PFltTlsGc7Hu/FRtLGniRu7xtIfywU40N9BsXHt0LC/jIWeDsAfZ3Eo1Pakqnn9UBGymC74FmO/miLMUplJKy4I4JqSHZAf9wO6nxqC7ocDePhZFrqJ9rKfuQONHK+BZ471YtT0hexS9gvS+xVRqXQWvJa6QhGWJ3lj8BmYavqA79bocMpGA172yZc/X4qmO4cOc7K3DHResYDkqveopzoR6ix/U33+L5668DnlXUzCVz1uNC16O34dHA8HCwP4TWIjfDF5hYZzbLj6nBGrxqfylxGCvNUzBf0Vmlj65Fi443CQNjR/xKTfE+DGxFIKbB/m1m03KFIlDTZa38PWz3fhWYQgxAytY/m7Kbh1zUaaWfoLpy3bzYIyr7F1vApNm2gL75LdWWmeAHz+mIF7GmfQgo8J1FHbxyMxgVHShCzn2qOpXhVruA7xnhZTeOQ+lfpmfcbxMj9wV2gS/7DvhGPhc+D6OWsS2OKON/IPcV6BBKS8NiKpb2/QrM+GHi0dgPcn16GDrhHtX/wJ37/UA+Of3+nvMQ1IlhugksbPkPVzLxnvHYuuz1Kx4wvBrc/v+L8sUwhVCiDdFcKwsGgy372YhXfc2uDYzgo0HHOEW4QKUO+tP23Z3U5ZeSFQ5CMOd84Dqo//RvPCRVm1sgr/XB3i3EpXTtVURw3FvzT9UCwc8BkP150L+b/Vz6HwDsCLzKsg0q1GZnVNtH5LFRjnu8CsuN3QZqkJe/cuhubBXJJoMyCzs3dx3bM8Fq+OJcv6KDykZAVTL83DyiId+Dg5jS2FRTmtm0ha5DlEbLsLLaZe+E/SCxvr1PHCBYACgVFgGyNOZwVycbefIB1RTaOFMQ/5lUUP3nVXg7bB5xh7ezQqZmpC5st28qOpfFT+Dr6V/Ydzu9p40/PfHDnoD166ZWwUNAkbV5nBsqCHsOdXOB/eVURK35fj+zIl6k4Jo8gHduS86xIm227Cpn5hSOwcYDXb9Xx1lQj+p6tGgrXb4bOVE8/65kS41hYlHOeRc70k9HSrcM5yG5o16jieO9WGQbePU3bfbXLt203yYqWYGF8IXTsmwH6Lw7gkajKJr0/la7X1fG2kG622KuVbKXl8aJIVS4RogUPRVDg0eS4+/h8B8AEIBAIFAPQPKsoWsldk770VEioN0lC0aEg0CZWMNIRoaEjaitK4lBSpqCglo6gUoai0hLgXNYanLKtml69f6HitKk10+g8yxKzIa8J6kjsRAYoNWmB9/yLKxexkr+s/0Xv9ZdwhsQ2lVlihyoTjOLNMnTx2ptLMY8aw2ykNen+L43fF6fR+TgS4jKpG3/OPcHZxPVWvCYWd+o/x2U0VeNcvTEI/plPL8Gtsd25hKlZhYTdbun12KYqHrYPknsNw5YoK1Hj4QaR+FzjYyzDXXoVdm3eDuMQE6rnfwOFz1wA5j0ataFPQVlCFW+UOoBIdyx1tzpifr00Tsg7DmwfXUSN2mL+cmw0zHcVhf0A1lAo58rgTFiS5ZDQEn2Vau/4EJ/xL5VHzlKnsoxHovLOHh47f4d6mg2CVfB/NFZaCYlINS+NrnnbYEVJs3/Klo/cw/8woiLlrwQ8W2vLUenFMC57Nqq0ncO8XK7T2eM0nJdfxWcGX/HKnMhTbd+Lj7nX419EDMoxu0dV1Nhiz5hqLFUyFN4cPkHtXPS4+awiqAmm0GE7yZ9+DOKlDCjZXWaGw803QHfEYvEVEodcNyVdQFxZNiuHWuh8wZ3kEdJxMgJa8YdBtOEHVslsxIfcNeXeU8DR/DXgqfROfSdfAfXdf3hLgAJ0JkmCh+55I8imWxtnwlMpKvJwwEiwfe2Dn6J/Qd+MDWlqI4n8HuiH3qwbvkR5F+923YqKsI33QUAH1bXlknFrDfaq3+P47UyzP0sXitu1MpWKg8r6A9PJ1eHqZKtQ9a6b6z6dx6whntpp2CrVtv5HoZKY59xZjurUH7siO4LtHREBdVIgPzffCbJ9zmDRuDmQob+EwPsu/n4/Dp6wA8dPNIfjqWBhlvgQkvs6CUtVavrjZFnq1tuPV33PZyS4WI9pP8FeFYpCZaQ+Sq2WwaPta1otIghnVt0Dptgr8mfWCc+0DaFLUXc6vy6ZF6oqgb3cZpFy14ZD7L/jbUwfXfmjj9+hMKFRrp+VdYhA2ejmXB+qBv0Y5GfXvhiHFDRSnEc+yyg30ael70IGHkExlWDx2D7hZmcMxu9+wM94Ni585wpOaLDQZ44itxkZoufMNJ2h7QsmiZjDUHQVtq5H+Ku4hI/c+7qm8R8r/3uBH4VN0NrWZVpvep5ut2Tw71w6erdzLi/8G0f3ICdhZWAw7NqSD+4IoPNGuBFf6P+NB40JwDBOA6OvPwX+hPPfpCWOsUDnelzvNriuqaZ5XJbJxCIhu3cZPr00Av4x/rPBwH04X1yWFMS7Q2Hqex4Y94hVBv+jwK1PI+eKP522NwFHyHc89EQ9hCRUkuf8Tn6mthCvzJUg3wg/H9O4HzydGnBc3AS5sycLGn/dg2dYOjgqUgf9kjLFs7UJSufGKbl/fwKYaIiAzzgA+Xk+gr+pxHGGug7sltNHvhTGO+rUWZz7dDf/1uOLcXjF+rqADnvtaYZ+PGqvMdKLKaAbBF8QBX+UwYIwbD4b4grhHN8WOEgerHUa06P0D8LyxHS7q7EWx48dwKOgOSvT6s7fnfPJ12g4yFWbQIVeJsYnl1HrbACe1ZdOkG5mcWzUexKKFeYPWeRp8d5NCRkmC3+wHaBOXSIlp9+GIXysrCV2A065TuNNLh0+btkPWimLsVBODpPoQELgkQbN8/3CbfgWLzi8ko8h7aH0pAgtOHMEOizn8+aYZfPe3BKfBN3TYYD/d/XgKpgwLwZvH0/Bm2XtqWGQH12tPkHCsHhz8+BpSnpjjaolufA9tMNevjV1rQ1l/0i26pnyOupz9oaNaH0YdFKUJAXbQr9wGklfCYUXRaSIWIBNpL5ymqoROvb+gO8sIFqxaTaLPf1D8pBi4Mame/P7MJTO90bxvzBPQXB3CJ95LgOJ4hJs5dpSSWUxRn2V4qkY1GQqFULysGjyK3Et3zTdR7ux4HAe2sFLYiO+oCkPuv3sY9qcSJ4fmQvoCA76zPhj1o0ohafsBsm2VAIVzobjhXhaMaNzM9h9NwD11MtCjG6jqPpu927biOAdBWNOrAm8D5/KZofn4zkeINBX3oNmRfg45oQRTd32CuPBVJJWjj+JfneD31wMco7+BDytvA8mz8/Cx8yHcZT2C9mXKQ+/mQtIQ3QZpFsYwgkR4xkof+pDxGfN7o9gwQxJdFk2mOZ2KkFXbA5P/beXrGdYg9M2WoubNoYGCk2gjNBPnPTkGdlcd8cr3Oaih6oJF7x7QhQZdWNxoBZ7qqbhQ6ihPF9YE9fgiEol0ZDOdRE7ftgG3Pixlq4dmoLZ9gCyl3OGV6RM4WvCKM9pl0HhmKg+5jAChgxo4YX8C79AZAZm7oslvzBK0WX+OE72ng8b6cTzqrC0qFi3krswb0CtyFuipCmTWz6Jkg3fopRfGK52eQd7sz3iT56DLiPlYKncSS0Xm4ibbUTDKvxNLZhrT9KvRcNbdiQ4+bsLIZY+5Lz4JZKwqySzJn48l68O/2zdZa+wCtFhkhhfz9MHk+nFQPfWGNhU8pB+6TrTh0Cv6OWU86BUaoPvZUg5pNYF1UULsav+WJI/LwOKxBpTX/Rg/TWrFDcPK8N7tPA6fmMzevqdoceZF0FKW4Mz3VTR/oT9cXuAAWqcOgqGUMFhmL2MDGXWKPOSOXydUQ1eIDtQatIN3WxmHrTIhHR8ZkpcwgKXb72PdmXjYtn0V+4f9o6S3EtB6ZyWuDJiI056XcG2eOPcbKoHT1QTIk2+iF/eaWKL2ANtdMCbxsOn8zdyHOyW38go9B/gzWQwcaupZ+sh7uCItyiXVEfjm5RYcKBwJAhXx2OWgQndn3eJ2TT3YfGcWiR00gsGX9yBUeSvXu10kh//2sImuIiduUmXfhhD6Z2AJQfvcIfOkAVTt+o9dlI7DpioHPvxUiexjf7Lnky9QolOOHmudoCC9lVyOrcMdJ5/A9xn7+ZRpO0jSD/y8Yiuam5+hlifq+DRCF7qt93HwvXCak+dLhjIniG+fo4G3UrhmfB8M7amEwfqtYD2gCqGeKhQjMYKrRM5io5IFjTUP5OJx7pRn2sXtBRvh+KFo0i8ZBycfBsKylmzyDrsJWqnTIeJVPa+YuB8y7v+CqbomPKJnNJ+x0ASPQ+coda8AJNx+Det+3qUpM4ww2+c9/H5RgS3TtuHCE8Hwa6wYiIxl/iZfhH1/58KsM7MpbZ0020w0pMaXs+Fz5h/cUWhGHkOCsEtuLX7brg4ZT/JALk0dL+r54vsr8/ioaDQ66hlC/+IO3CxBYLXoIp7ddp5PPt0OlVtKObIvE19VPad7VYkcsuwx/2iYT53zjaBZ7SyP1PhCbg9Fqb3OnZqey9OcVb289vN9XNzVhXYSx6g9QxuGRxjTif6jfLN2EJ32bOeXcdPhU2Ehiw0dYN3R0vj8RRRlisnB/HXZVBtyn8uSxHnrvLM48cEXyixMQMV3IgiT4jHYOhnurDCHfW76dPpzIp+uHID+hU/4WsFZFhNbxlGaynArWIutWpswfZQqfNeVh4I3Jdw/0hz7+2fi6qnVMEHvN4kmLCGZ1nvgoVDGY7NkYLIc4bwZs9jWfBsdjnTiU8EeXHD5DcvBdf798Q4WbLrJyXWiIP+vhOasG2BjjWp8Y3iXVu39jUFn08nTKAdueB8BHbGHZNYtCQkOsyhgaiesu1TBNi3P+Nr8VEjPrMObT9twdzTBRxs17my1hV/TvoCZbgE2pTvT9yNPIOpYPsaYHISrLf8wxv8mjjGKw+79o8G/8B0LDHWxQaIGZ4SGgcbwP7QJu4/7qjJBu+AHy6f+R1/ERkLNEoZiy23grWaNjv+Z05sFdnDD5jY1BqrSj9kL0CTWkFYe0IL0R+t5RWcvVWZNwpfFN7i9R51rnlTA8QoZvF/XAF6HxFBNTACuz7fgXY+kYIbJRUzLugPiIW/gVoU6TDMIoRi9LlgVsw1S1ezB/XYN2C+YQFF5D3GG2BzSv/Eaop3OQ/EnBVYVOMcRDvq07LEabK1fic03LiJ+C8AVtj9pYL8FzrDuRt/2AZK+MYaVPqaSYbwN/MnNxhbZJ3xG3JC1BU9R0bJSEHA7TO+7nGHXmEvQMN+a5o8aCZKvHOm6SiWJ3/1OjrJ6YARxLBF1iYK1v3PibRdU/O2B568YQ7vDAu5MGKQovZ/gMTWS1fZMx0DXd2Axfx+qj/3NF7pzMCdVCmbOXIaOR4Tgmls731ceYndBA7zbcoYkZCM5c2IZaCm5YNznUaDXJEhBk85BXcw3CA8Xggu3XqLvozQQWWYDU/I309oebVZhayjvcYZ5Cx5S/oFqzvMX5y8aXmgbVIfxosG4zCsWLNOEqD7cAsbp9/BeSWkwfLcE7LZOQX5YRL8WWJGO7U4qMT2Ije6nWeWQFfjtaOSUhDq0f1HBTemHcUqyK/7cnEoZqZ9wSeF1rNeaA65OJnDvZAwnqLXRsGUehhxzwIcZk7HcOxez869DSOQ7ELk2Hq8Y20PAmnr6WVNAdQ7d1D56CjZ5mVPX6JXYkyxB4THjUfVpBdfl6UJfeAMER+tQWncfj39nR7tW3ISmpbp4WTId+cx7MlMKwpKFUjD8ciIYJN3ijuPf6I/UFJ52IJzg8wI4f0uNntjOo6DlA1AyUxh+mW2j3iePOTBiLYSY6TDkuWN4UB4/mzYPG8YZ0rc2fR6lKwGxDs7gev84jHivAd/F2vmB3UhwyPhOtupd0BXvQRLSV2D1BiXwLnLFzSL6GC0ejlLnFpP4+8esNv4qny835tjKSdRi8gefiTlCvudVdimaCVO/+9FQUgr9HhiAwVN74EFsIK3q2op3c6rAHyfAr/tucKBoFv1RzuWLrp84dM4CXH2vHNw3NqJLiz7PfepAgcnWkPnRkPTa9vKF7VPJsL+AzNfmkM6CKhBo/o0aD1zhac5BvhqqBxVRh5j/buLxER8JDfcibuwE58geHLn2BCXvWsJJ+oV8zUMC8jxc2baiB/LcH5DnBGs44vCdBaKf8+DfQcoT1EDPuc/wUpsVvLk2FmT6vLhmVAvx2icYsewzbn17jH1Lj9OO/FgsyrKC2/nK8ETrHblJJPDh2gew0207ykqb4aOVVvAxXwEd9pnDFq2X4CKhBdLV8eQDVWAyOw0GlwvS4vMNOG3KSx4z6hYfcW3ml1Pa6KmSIliuNYeNC1aB38kUtBJxxn/Vnaw95Qa8WvgVstZ6ceeWVZioiPBetI+CewTQR+E36O4o5pKVefDFq4QmxUmS18hrHBc8G9LiR4DZbWNY8k4Co8aX0+grSnjQcgg0P87FrfVZ7Gl6DdQXMxzTVoZdsQiXR17HWKN9bA9fOCwA4Pa9UZg61hdct9uD1scs7DEYAX8/m5Dt8HJ6GDqP+6wEsX5QC/ZNVYCkuEKwnkKw+MNh2BbhBNtiG2Ds/gScFCUKLPGBZlwyJcEcRXQpvcPlmb6cp5KFqofswWlhOm7WGY3ZL8/C1vszwPmLIHyadxsyFwL/TSgkLb/f9O6nHuSne0OnvgHOkdChpd1tfF13KpolnUaN2Zcpb7QQ/S4fBlypBaWCTZShtoenO1pQWW4hKJ7PpY5ODxZVLwXp3SnQqT4bxj8fB5eua0BpaQoONFxh2yvzoSblJ/qp9MGRk8X8LPktym5aQCtaR0LA/pHgGxCPka/W0Kn7n9HRTBJHFpfhUNU8XDTgDnPUVWDFQnM4bBAEhrcb6Pn7mZAs+ZRffm4hhz036OreYswW0cGOjbksr2IOx9NESe9XHVzy3gAeH33Y+/xV3HZ5mGodymD3zj9QcGEITGqMwNt3JIu1vebfPsdgZogl7tz1gg9WFHNPx1UsGiOBkRf0aIGEHfxOSWOtIw6kDBd5SZ0zB3Vm0NhufXrs/oDGxMTQ1keiPHDDClwDe9jdWYGTvgVTcH8K2xpvBOfvomRRc4amfBGHsMlfKatVCx5ck2JP56lo3asJRzQOwaKALXCiaSRV5/4Do/P9ON0+Dv2njgN/g7P8zXA++V/aSDMCq9Dmgh+XLEQWTVXkmvSpIOQuQBs7hKEheCd0p56gg9qz4YWvAO0x6sC64G3ovWIjydstoJIlCvREaRzMrZCGmjktVH1uDXaGnSarwCg8NaKSPJY1wdTxZ2CxfB5f1TWD8iANWpi0m8xkEyndvZm1pwbwe90P8OhYAfyUlYLRlV44XYggr1gVV1l+5kWTHlGB1B9yeHuEP1cswPmizWjqepMjtYbpts5ISFFbDQM6rzj55A/eb6MDI6098OWu3ZT43QqPLvsBVvWr8VG0LhSsleSdvwLgk5EF8oa79CU4G+Ur5lNnxwk8l7aSnxwaoB0CCLFzrLjhkQ0u+lOLp65UoqamFZroCFFy9DosdBIFq6P9ZNUoDn826PC1fR4gVqZG33dGwO6f7znvwj8UnfqGAi+as1x1B9WMBNBRfQdZ5WW06uQUEqmupUudYWj0qYX/HkjBUtMEvmO8D4Vc7CDh3ULKTpnJOY8/UtgVB1Suyef8F0FUIXMTWLGVvgZYwOA0e9Be2Qwzq0/Bg+/F8C05jK9crcc5z2zo5n96OLnmC809854e3xSBUZfn0uaYieDrrsylqTLYK9QLOpKT2FLyMkiMWkbasnvhVpccnLwjTPWe06BuwU+qy/kDMt1GND5MBB62xWH8q0j+PrMDbmmIgYWgB0KPIru92sgpa/fA0YOTQOXcHMzZcYw/nPKGVZcvU2CuCay5VEOfPvhxhJQfB3kdJbcvutg86yoodjliUMUx8Dz0C/faOcDoAzb0aHoUq087y4lNFXxqhjYKbrLnjWLXcMqaUggfrwRnfkjCgPZ3mO16kc10/sCYG3mU3HGXbU1N+NP4eiqf40yBL6aRGcvBCoMDeHpbF3zc20Jjn/wmA3lxGFp0h8KrFmKg3w7upjooeiQCyVfewf69f/hKoixveLAIcO0yKpjgRrnijRiuk8rJQVfwrK4wjNsthG61E7AspANeDevgCVtDFlbLJ9kNT1Gv/iy8sr6G3wbl4PlOeZYt+UErHOR508cktqRyGnLag+Q9Fzq3FfB6zzj03iMIo++8odmXzcHHLobLBGM4dtMiWDFeCT2zLHjp1QwK1H6MI40VIOjnAxxjuZV8xgaitIMtX36bj9W7LpB8iBTa6/ghbgwnAUD4ZJ1Ml7zXkkmIPmsppKCTZyccF42GdTpy8NJvAs4oDmFdo5EwQ3Is320UoytVQ+ju/oUuHMzlsHtbYGtOMsh1t7PDJFd2+aMJv+2ESU/kOgbclsRDVwKpPaicm/7JoL9OB/4pu8n9fj/57UsdkOxH2pT+AGyFH9GJaafJdNVh/u+eHjdJz+PA+5L41D6LYq20QH1jCEaY5fP5bZNIo2Yn+WrNAK/SRg4X7uba0XGws3A63HqiBD/M59HtD+ZwoMydnBa85CNWYrzhXAOaTp3GUonncIlNB7+yNoAzk4xp/t4bVOShSPpVHfxQuhpUI0/hvM+l9KV6JhZGa9KCBBO4uESOdy8/Bj6XGyCy8S84lu4A0B1JsT+GcbVsA76/85APuoqDV3wV/V5YBme6N0P3Yws6k+YGF8ZX8dKZt7DjVjS9rggAS68RoBAdTsVtDij29Aj8OZLDmuG93GBnQi0PzvH9UYoku3ITqSfLg5bTTP4bu4+qxJvJVfYQeXZco4WujaSlvYltx12i2uoWXBNG0OwzhFvLD8C52tmst+cKWax/Tm/upLHp8pWc8OQSBsrtx/iRdvArMgE+ryqDO32O6BdvzBkTMqDKbRM7zKsieYdHdFlpF0++LQkv9qyiMiVdfvW3BU68PAHOPyVZ8UovNS49C6/N/HjY/wmLgwrsVQ2jyhFCeMe8iWLCLWClz1gQSOpBebPzqLbciqc1S+CNVQAXXydze8ZtMl+QDhk7HmH59izeOXQaHhn9ozjxBdy3rh76u+xgwffX/GtEMjw65YNNiQu5F+ahYcpy2PAsGRWNnvB/P7dg7ViGmOzPsD++AbWSw+jcGwXWyB9Nqw66YYBDPyoEpOHtlRmQtNsOtoSG8x3/TnJTCwa9GcYI6cdg6H08Oi5LZoFzT1E0NhtUz6pDj9pPnGisRwuujWYni8k8+2UohqzqRLfIQDTctZ+KllnR9nBHOLqlB80q3+IVX3XIlm7iFZrnuWSaCBs0zyLPIXmuazwPQhkAK6Tv4Sv7m+DsuhYU1Sdw6jtRaF+cAXF1wVDOPvRLMgBXrbWFOG0drhl8zbP+W4YNog1gM5hFJ702odJMb865fBBKhfdjQybBalUXdqs3wXdXHKgj/AMpTB1g+QOJZDryPS66O8gxb5Q4cRPAJodYaEqPAFJI5aXyJ6mvyp4m3FnKnRuek/qUUeAb3QMVw7Ig91YBZNPi8K37Ky5fto8m/kvmQyZOMEZDnV6F34Rl7ufhcagDHP8cztcu72XHlnnYk/Scs2I2QNYkK5zcuhV0mitgZosmFQ5Zw9oZB2Fa7id4dy+dfrbGobJCLwlK64LD0i2Qa/+dVR+NoFVTlYHODdLjZdN4ybV2ite/ygqVZnDfLRXOKe2n6sP/eLGWCSvNMIX6KTVY8TgD+zQeQ1j6Dpy34g7s9PPFM6ulMHOvMXgOHCAFfW2Y/dUC24ZdYbLZNS7UyiAly/e4WD8HckPTWVh5O+mtUmXDLRqw3k0HjHQHcNu2ozj/y3jQNCqnvpsEd9ZGs4NABSSEu+IRbVGYkG+NLf2n2VPxKqnMGQbt4wn8PZPAXOwU3PqvEc+XyuFEZQfo0ReCK6FNJP/fZHpw+zb0W0xgsaAYvOpdjqtOXKItmkqYmK0Alnm3uF79PW+QysHLbiuw/stl+NgVBQaZHVjL57H70XKMSLSF82TOLqJLsOhRKclSDEwZ10o3emtJ3yoZtO4/4pRnn/jUN0vY8G4J+Aqbw7+L6+GzsRF/6rXn6rbFYFOmC1ejDvCIqyV8d5cCzJH6h9sW90N+lhb/nbmFyhKvUMedGrpvqQ+3G0Jhz5ANjIyWhR73zxgtrYmBc3ZQdYcwN3j4wbvjRnQncQV+CXiMhxOsaNI6Gxj/vh+6Tn6GEl93fPpqE2y5/IBenEyjMnemrmx7dHxxDr7GCUKccjlfib1Gmjrf8GiiHU3I9OWaiedQKnARaoe68yWtGZRUbgQ5F53h8dwpPM+vEqa9fc1fK0P5aWs6fc+O47umP/jKlaNQFz0B0q/GgJtuJXbmlYB38Rp8VYqo+e0frS3ZTkK3z1Bb+2uouysHTzyQqmedYePtPnhhhyzsal9EUap98MffEl6IbOCwzot4feQY+DL7In4Iz0M5jWUgnmFK1hXhHKXUDWcyG0HviiqpfBLERlEbOBLwBa4YXOfiqPm4R6YS8mxN4GvIWvy6fIBKsq7B1k9NvGMFgvq7Ooq5W0fHFJ6DsPE7MHHQxdVWx8nu1zf2s8qBOvSCz42j4drGaRRmewj3hphQaJUnTO+aBSM/BXD411n0pfYHKVySZ4sMI1CcvxUOP+vDoE8eXHfoGLw+okhLbgjgzfHa/H5gDm+YPIYdd8tB2skGUOl1hlM/9+HYQwjTVJZDfbsI3PMqhkM3vblx+R3IHmsKUyUq0e1hP4S+NaA93kMEhuPhRZ8nv3u1EQt+OoBp0VFWWmsHl17FAeX/5jvW1SBQlAku52dDj00hLarZyUsrVoOgsxiFj1GGv9WEe74p0dK+JNKffQtbD32Ck1umw0SnA1Sb8wvW7VpIXoKG8HzFKVqd/4NGTXwAe08XcOCrI6yXchItl5+nTd+rcH3Dap7SPwqi+uJpzKdC8i7yIEezZIDCkaTacQOUMzfx5yMpvKtvDfndFYMPV33orlsYNQjL09eZaXzc+BH2fW6ld73DsGXuIQrUvoaTt0qDh1cXeJseYLs9fyH48CW+1p3Hm+etZX8hI0qL6KcBnw345L0hyHWG4FC8HZm/O8YCxpU4YeYuuqS6g4S0M6jGZj3XbO/k5RMRfCuVMJ/cOPqyPvRMW8/aC8/y4RhGwzVrcUHVSqgus8KCckk4NHEZjt52i0cOhoNBrTa/WCnGywRLWcTIkwouRUC/5C76dMoO7liEwu+9Hzk89ih7FTZQws0gsH3ty/+ZfeOuB9chLf0eGMSMBPmZ1rAuYwyeOCZAa92fwgpbJXLLOUlTa+zJysGFFmx5j7ZLrKGsZwMYu+TDwfOf6JRnHCl+TeBRX+dTUKkk3snyYv8399F+lhyoTw+h29oD+DeSoEpxCf7w0EHL/EjSapbA6VNyocqmhH2aAcb/ekEhy32huDMXr165go2Jxry8xgvn9mtyaqU+pQceps4hEfjyKwg1phvTjqm7yEhoIp5zCeVC3y/85WgaSxzrJadv0ynjoxLEPtZCGc8iakj9Di7CivC704IHL/vwow97efGt5zyjZTnIf1OGLZE/uS+rmNfdU4G7wjuwRWEGea4sISW7FvZcuR7+yoyFO9N1YahTE11NguDyy24euyeLnP87wA674jG46w5t3LCaN20pA8N3wqC+UZGbjv+gjfsU+O4zL1bRmo9Rypvgu8IyyDv+i9T8X/G8ECNIep9Ck++5wC2JFnifOcB3vn3AKNNeDE2xRTnlmXw2sB9kzWVhgdwVXPvsK4p/sWWadxQ8ZpdiROFomltRRz9cq6B4Rz5o9ivCzFHvWHfuI7Lx6KL9u/NpzupTsPfLFDAicVy3PBz2X/VB2YNjYMkCf94jcIkGnZvQuSAXWgVrwWv5Ftoaf5Ov3RhJF43f0S8NNTjdXMa5ma7YEZ+EIyb8Zi/bjfT8Ry3Z58jwIvNlPCM/mY8Lm8FhMyV4/bkXVhcnc3JDPl+P/AB2yoFcJrEFowPfksztKHB8aQNyO7xoxu8I2tBSCu8/D6Lw2YucqpzHNtlmfGP+LDJeU8frJxhB97LlXKAehU0pXtT8dBP+vOcCiauUMcBCDD6qJvGXLVf4zho1MB1tRHPnPuCFHXdQJziM7+wrQ2fPmVjz7A6Vb5KBytJs3pHlAJcapEEu8QYHpWSjhfIOVkxsxv+UdpG841t8LnmVtz3TYi0wA6fgNSTx4BFuX9zM0z/dxdruXl5QEQPLWvdi24E7nNhSjun71UBx1QLsVavEBK9m2hOrCwJ6YVBZGMOOa5rpa9l2nPyzkVt3Inh5ZOLR3Ak8K2sfCcTFU3BAGulNCcd1fh9gZOg07s4klP3nCH81o/CG5Fz6eqoG73yppoJL9ryOdqJvzVOMXPKSxZ1VKGDLKJjX1AZ2O+7weulxMGKNBx8rq4YvUREw+sAYDMjPwtB3gO3uDjBjdxJoyX4B2bvNKLFvJhTMeoO+k3fhy2uC1CSeCvlX5NG9QAWu1tRisJUDjNqbBiOkHWleTzrQg6/EM1az2svJZPrSHdsyjeBFeAKWOqzDV7F7yPlhCDUvFMSqB9X41MWbVvsyrpn6nWreqsOqiDPc469M6l2XuO9pC5YIyrMVdMMoPabDE+bg+vUzqLXFEjo0j7F83XWenygMjY/MaOjfWs4+uZXiDFXx5pzt5LYzjfbnmMPnTgMe++Umev85AOVjJXFWy3o+4/qBygSFoXp7EOCZfi4qHA8TnOJ5IOcuVv5Jp1fbtanCajIMW+uy98+PaOrcTdGflWD6mfEQcmSQgk71YHD+X1bYUwImoU/JpfM9zjdaCGc2WqDIh9UoGqkMw3MR19uvRyHBfjh9fAy/Lt+Nvc8TQGr5JBT/E85HxZwxSVwIpG3cwGYoFVSihDBl6jpSPCYIsQ4JrCnwhFvm/QaZt3dA1FweLMUUqCsmgZ9Xx1PK+VzIrfqHT9wO4uyopZA88TSYSm1AEzEjyF4kDeJC3Uj/2jhEOgInX6wHrVmGPG+qGjlYTcGMqq1kEAXQlWCBS7YV0/ggRTTLMoAd58RhUs9oCnsgyi2eASD7L5sq7iNM1VoKx0Q/Ul07ge6CYGh9HUuWv1tAJrqQpsxJBWkVNdJ/ZQgfsos5fLwyy266zGIH93DEi8No+m4ax85dRoZKOrxCwQIdr1nCcacVrJraC7ODl9HP2dM5IX8hdV034fyF2/lhYCOdWVyND5rlQDa8nyvH3+XSuVdhgut6PjzOH05iKFU0arNDYTy0vXpL1cnicC/xDEXEZLPIqmG+mjEZ/8v+CBdPVaHkGy/YmW4LoZ+qUOKPGpzc+wDlJ+VR0N+zVLg7FVwPbmNJsd0cHiJPuWNH47yB5bDqtT70tcjChXlNtH6DP/X+HQNZa7/zVB0T2to1Fwcl7aj8+DMSeiEE6+se0q8lD3jyM1H++noiBu8vwE29YVjfmo+3i3o5yH0lNCWNgUPqanxr21IqYh9wnniMhw9OwlKpbgg77ogp90vx1G9zGphmAd5DPmxz5hPcalGAzFcb0N4tky9UxNLG8eI86nQ7BI4+TQs8BaHJpZCL+k/h5Hn2dL34FIS8vE3aI06jx5M9mKBzlFa2XualV1XBc5sDFLbWs/TS+3xE1YieR3rhj+pMDloUBXPdF2OjgxyMqRoFvuadsOTbVcySimQplxnkd3YVJjwp4KOG9/HQ1UQ27TpAfTkicJSl2Mt6O61UNoDitCDYU78Em1yc+GL6BlK65c3Gcy6DcZ0JtB56SUWqC9hwIIavzfuGM5IksObldcgYuRNvFudg/8xqsBC3AcmOMK6wSafDdW20Wfc2dTaao2HeKBTetJB+FGhiXPBN3vVaHzSqbPni5CTUOBtEl9aU4IrhR9iVMoNO7vyO+0WL6erCeVziJAA+sm/Bx7qb1jdq4beG1Wx4ZyLUpcWR7/GPuFegj+u9hPBGmiEI3E2lt+oHCaKUkZWbaKXlGPBPHYK1x5dDuvIxjopjPPJ4HKhoHMS1chd5/c2JJF2QRy6rpcmnsQe/eJSSUfMHSHGwwkteo2Cr0CA5j5zJ4Zu+wi/HW+h39TaWvGOKFDlGSX2fMEJ0HAnel4PBl4vxb/hO6rloxrueWiK+vY5x14bJYCAb4/YNo+SENfzvgQJc7bOBDSe1yXpWM6grrKOyLx78n7wFjNiqDA0p8nxvKJD9N48Daxs/LA2bSiKPP8AIuRu4N7WRom5W0PxxQqg5XZHOpzuhjKckvF7lw3vuKpOccRynmPZyUuh+/twoSEvibFBEu4NXmYhRbJgmHIk6yvd3NXNNsRBOOhML73omU8PLUtrxo5OMV8Sxkes9VjtkD6+PvafL6/JR4F8tFw/r88aJnmzcFQvDl69x1qEeDJhuySMKxoK6/FkolDXEQt3DqKp3nZd8NCOho9MoJm8QdhyXhv2y/XzS1wQyPSrINHMxPP96ioWCx2OF/F6uiTCg4oQtcG95I5wbfwEf7jQF78wSrH/+EE42PODfL1Ro3vF5tES/kMvsWxEjHYAejgDx+4awwGEuFx914uZ+D1occwILTgZRstQR1MSfUBwdTEqzFKmjQQjKrA/ijoOn+O+sMVCSaMeXn+2ilb7vQTt0Oj2rPkwrNuaDzTNhOMXdXPPLCjQjhkiu8gou2SJFotf28IsGcZq62Ia2K6hxpIEOaL3t4SUBSZQQNpbfVghy2Y5J+OPhR44JeU7d3jUcnhDCNvYakDgsyXOqJrGhSTS+qd9M2Yov8Xz5Bx4+2MQBd2LpaEQNdYQawrX2BWC9rYJL0tpwUKiNlTUcyVIZ4HntBaz5psbjglMhS4fBdOIAGMfEY+PeMfBgthyvGa8Hl3uF2Sh5LEtrhnKoqRfH6xlD03AtL5wsR3W2e/DF+tvkl7wEVHZEQ8PUe7jNaSzZrcihA4JysG/6I/DPisD88nH0vCGTbn2ppsKJz/G6zVsOX3OV50brcJulAbRv6YNaTKJlfAtCHltyxb1HkNW1hDKXJcB9t2V0u80KduRqglXPLd47MgCOH/LFTy8PwsmOU7ClYwUp3LuDZplufPTNDVplDTB1sB9/HtwHOdqn+Ofy+xxluhjcQw/C9EV76JFiDxt6pdP+VBsodfPnSVP82UYBQDfZE8avOwQx1TVMR0/ih6cMwmONuXa3JmyUVac33k188oUxjCnv5IeaAlg8qoy++htx15osMtyuQlrjVSDhlBKtG/yGiYrbqFBdFrJTFUGyYjsPpzygcblLOWU4GQ7WqMI71T2w4Fw+08ex7PswhGXnpOC66TdgsfMreOgQSVZvn1POeDGI6/SkPyu7wb4hj/+p6OAmd0fOmrEIK2T88O/fOZT4bg70CAnAcetJnD3nDI+c3Ew/k/pJar42qEyQwRvf6ult9A/0OzOVv6ULg2vcSD7STBx/LwilAhtx/N5FlGuQCgb/suBGwHdeGEGcvF4UUrbuRL28jXDFleHCTwE4NzUapCzGQMG+6STndBei5v8BkheADwNpFGf3A0siFalvvzJFHp4Dhnp6tGlzJs9ddQgcv8/D72utQHa8LsQMDUDNOQPwXxwAOnaX4JbCY7hs+BTzR+5g4xWMga9sQfOxCmaLFUNgpB3Y9juTxKcInuX6kMN+NuK3rePhSPoffBAgBZ9oGnYmHKP3if9IXHkG/6e2lc5JOtNLzVoYvXYx9LxW5NWn9EB22gRM/XoFjh1ugLAn7aTp8hf9f5SQzrylsMKiCmPdzHlylATML/OELE9tTJNQxPE6H3GLkBQHvWnAHqsknl+3l1SGiwg3yMPLb+1c4xqHW1b1wKoJddxi/hK/hR3CNSJ78bi1Aze+fsg6V03gam4x7A7Qgy/PX6Huyyc8Qfg77LtUyQOFd/n4p/XQffMghk4RhuxUN1jv6Ezirr+gPWAWFYfeJNFzFziyqQQ/iC2FbZpleDlYDVpCV1J3JdJ2raVw8e9OOrLfBR6/lObkjUZk7+6P37reQuQzK2hrSiEDy7dYNdjDgk4+4PxuEkZs8+KIxrnkND4NZlTagfpFa9BJmwwb7zeT780DJCZeSL1uflw09xNa7L5F634toVsayWSaqwmiF2rxzMBiOFB/Ey/0PqZKr0+YGRSM2X9GoPulA6TYOEibq/Xgu9QsXD/oznYD++j19Td8NjAWry12Y5fl+yDG/RJcRzsYv0MeGt6YgZnPbPIqGgNmJoTfgmrB0OAF/534AeZ8K+cnz0xZZYceyNR95UOTBfllhjEvzImGlY/LOfSXCXpPsMPTF1PhgXsy/xzUhKGcBHwe4U5NK+PRSC0alWc/Q6mFN/DP63ReNzDAIwVNcfkqMzg0IZKnz2fum7oExryeSQdW7uC8GVHsU1PMpUueYXDxQhqhJwIb/yTSEYkfuMr9P76bsQ92/jyIBz64UN2helrc3k4pjwfIR208hOoNwpvUGpCemsiv1i9iydP3wFgoi0zDJEByyStKnjiOjt2Sgu9psdhnv5xuxzwil3N+WJ82liRcHLEofxT41Vzi4R0duOuRAfz7fgMK1NxBJQihZ2YZHp5eDxGK0/D33xVgUhYHki8noO4Ue5B+fAyWTQyGGm01UJDv519Fl0mr8SiJy0byYYdmFMsDtF8jDkvudkJ0syiIamihX+hVNstsRqd+R55j4gJ3tFIg58MQ+topwRJTRTz6rYn9ZpST/EYRzm5z4+KeOyQ/PIp1kuRoyWMhag8bAR5XneCR60zac/8lPO24S2opezD8bC41BAjQui2/4Y/NeRb+ORJ0kiXondsw/NXvItsAeQyb8RT8/xyiPw6t1Luyk6yM/vKsSzIg4KDAda1N3OqgyS5Xc3BnD6Dw/tmcbZnBFxTq6a1NLua4i8Gelalo+L2R08oe4xmjh5z4ZzT4pURTEemDR+k3LE4dxxY5BvBh9k1UmOHOpasVscU5EnX6t6FURjTurYyklKIbtHXKJO4PNIO87CewXcMf1EfLoJfLMd61gyhtogdPbZIm05/ScOaQPJw4YwYVCybSg95JdNlNDm4P3oCTDRWQl5jC39aIYIbfei560YsdBQ6gnXECJu63RVh6lGx2FOHzbS9geeh2zMsKxHXFx8Gydojb16rBveN7IU/UGJcGI6+wtAWnL2U8vWEz7M68yHGLk2iYMjFfzQEU3p2lsJb3bL1yGn3zruJJ/93ET589wVSjgxcKCXK7jAcaPbeApGYNWNmijV0yLyhTfzTLBDpCzpAzTCkuw/sxF3hrtCD4HVODwTfD8PhUMJ+oduCC6RKo6FgD+31CefEiGzQdG46fC2XxiYwsuD3Uw80Tz/ElxxVY71iIB7WrQeFBHRUPP0LBHxdg6uxcfrFZHG7L7oW/dVPRYKYh+w5446gTR2BM61o88vA67J71FDtkL1H/JEfwEh8HZyTUoT72Gp1zsYfV+xvx/J9FfNr/HLYe1IP0mP1g99wKBNERLpEsH1qUR8bng0l5kxdkX6ynWMM+nmFvR28M7tORVGtoEp8CI+b8R0JHo6l7zy+wmCBG84rU6e9SOVr59xkW9ZtAjLcFvOpeTvNlW6F7oJiW29zGs6xOox0lOSv7NdaN6wO3/CcU+MgJxsrvYJmq5bhaV5mmzH5AFm9d0OBYL4yd285uSecYHWpJYKQjjPmqSLz8N9Snr4XsVxOp6aMejn5aRS9NI7ngkiNKPlpAO8pHwSHN52j6oY0nJk7H5ev+4hGRVfih5x+cPO1P0ww6YeEkLeg+ogVr1EuZ60/yXE19PqPzj+7657B881jytgnHetEymP3WkGws7SDC8BvsCTlP+6WHyS/UFR56iaD50j3gO2xDIdf9KP6oOLelI7w0sCbB7SX8Vp7o160PfODVOmi7WE/Z1SnYtzYXoqtT0H+3PoRFd5H/w+8sEhlNpbqSHFh2FHLtHbDmgBOkHyxh49NfUCxFAFTOZ2FuwhT+GjSD5gWnk/9QL1s8HsYph/+wx8y9WPEpkPC3GAxF/uMpCW8gdtiMlFWX4RQHLdaX+MjNza7cOXcP+o4RYs12FXiXg5S7y5KLuk9x0u9mUJpSQsY64VCYI8pNCzv52sIuaNPTAc9FL/Bb7nq6t8uQKp/M4RrnT5yruxTi/16n5HwhePxlFe9XFwfzTFHSNVGGfyNK2EMqg4wfKOC3bZ40re0DH/jqQ8rqE0luEGD+AOALJXPqPrwLIlxiMdNogKQXr6E3S41olMwp/C/rJC9QUYDjKSK4OPkfnFZvw1PNM/mt/X/sdSiAl5oX0ffPGUy3DoFAphSQwlbMlXyKMTYn2ENQF4ffFtHu0CPknVMD4uHdNOSjDG71BtDSa8zLRgyQxd8hcj5wl5Tk1/NaawHYLGxLCwdcyPeJJe9argcP5oyl+aGf2DBmJdtO+csn5U5Tse5nEtCfCarX56P5GR/y2+IIOVPsCNYfpMqkD+x0SAJHjz8NPrrf4IyXFrxRP0La2x+B+t0J0NYdhJ1uD8Fn4y+61O2E+WfcQOqWHZf9/AGtY/bQiP/SMe2gEISG9LGa7nZ4Nj+X63u28zL5NmjL+YAiU5dRkWssJb2fQQWS6nBh7kWKSbOk+2f14cj6WyBmtYaED2hw9OUW7iqQwN33F0Lvb1vY9Wo5F+jPxZhYWTI0D4SHoTG0TC4IJ0Qhq6dOxHGFk8Gq3ADqVZdja+0rjJUwpt3rI6D18DPe27+fXo1bxrG/niB+9aFCNRlYLTMWY8454zzPpZCmlElmAaXUVjmCG29WonZfEd9J88TDWpIw7mwJbni5Cnef8OZv+ZOwJ7INdrUt4RFZoXyr9xB+nJtAT6ItwCNHFs9uecjyqQlkPX0Ifazt8fKVDloslA92fBW2mg7yY3UV8Lw7jM5S+3mL1Xi85qLI+OMKjv3si1995/GWMbfh1m45/JwnDdOir6FhnQveXX4SHGu0eOVoCfgZpIrBIqnkEdtHYZPOsOUOVSh87sCl2x1ZfE4KqN+7zJUyXtyYvA/fXz6Gu1dKg4CQOeS91AD7549wi5kTnssToKONyvxc6iQs3R3Eyg9VsFK4m36Xb6JFrWMhed0K+lFzjpteWeCq1DTcfe8fWTk+hl9ZyjirOY4ffRukls2jYX/Qfhhz3pXOr00knQdfqRSPYXdfKbku0eT5OSUw3VeVlFUYLvlZwWKNIH4aJcpbgi/RdENnEnm4kmaePk1bDKaw6+QSdnltDWNNhNE6dBGtfz4dRQPFYcE4fdKP0ybjpo0UeXAfrQi+A913R4HX9VmcYWMNy9zqYPui+ehzRY7tVpvh9OVr0X1bKhUdW0/OM6RBaq0xF6tKwowbD3H9sCpeSzmHd238sVloJj6bZIL+b1MgRsQYvMpUIaQlnHYXLsFgEW+q9B3A4ZlbIN53C0VnPwHrwIW0eYMJaNQfhLSEeMzQqYVZIb1k+dqYXy4S4+Z7hbw/4DK2N+dT31MRiP/zE/5kJfLm0kBe8esYbRWfCJ/a1/Pi060wmC5Hm+ck0b5AhE295bhg3XzIyL+Fp5USWcMyhu313/JGn8vw+VIq2OfdYsX+cTDlgThJPG8Di5ZGcNmnRLdDlXn742eUrT+PdV8/px6Z93CtTwL2Ff3B9W2/0e+IIW3+MY67zm9gtJxFg8+CYXPEKlIaOMLcYAp7HhVQQ6M0JguJ4uBvIfzaPw+GH4hDdUkgHxlrA+Kz2+mtpihEXTmPAa3+cLZiIrxKDaG2T4mUuvcHS9W2Q9asfviafg/P3VCHNYZyOIAK/CopllVao1GAfpLhjd9cq54J7Sp+2P7VgNBGET43F2GxuCUfPezLCSOleeu1Gn5xJwYbfMT5P99L7Hi3GGbc14AO71z26LlHn4Y7cZZxPA9q7qLe5nIOvTARS1cIwfH+UPiZJgzJKQ+45tRUnLVXAlukE0jQtol7kv+Aol8rKCgxC9u0oKreWAh+c5Lc99zEt74XsbxoJAyc+s3WVRkoNvY522gdp5mHdvHtPICtqTvQ124YZwVr0PLrlXROqwEitqiy8DYFOi02Ha2FbQnfjQHLwXJcMaSHSuUisO3DfsirMOLZS7XxwN5u9pNaCzSiAzyv2kPJcWEceeApSjb108K9Sby1W5nPfl2OVT3fuMRIBqL2HsWvCwVBI+wHnhYaibs3KFOWXDlf+/QGzSe8pblvk6AgfRz8TT8NkU0qMBzdzDUNyrDc6gLnbkphH2dP7h1ugcHJOfRzli36bj2AW5zs4ZD9d/wkuofbQtPQOcoJvi8B6A3Xx69BD7G9qQ5WHVsKxx3Ggd7E1ZzyrJ5GCdZCkYIguBxqgexGIcizmoUCUefQpeU09AiYgeDxHejWFEBnAg/yO/F+fKwtApYX1HBm/QJsHwzm9yfEeJeBOOzzdGO16rUQN2IJT0uaxRuTN7NhyBUaW+rI5m8teVGJGmz7TxB6MpdSRaQc3OyL4f1Ch1nHtYYsFatZdd8iGFXyGOMWmlCzmypERgSyQd0g3deYxhEeQ5j7WprGr7qFqU9bwVLrCK1KyKEHQ0qglT+LU5oU0VuvAtLyuqHAR49jlbbxkTHuULlyJgmHecPa54ogUJoE2uLbaE3hIhhxmkDRLBNvn20gl2u+mFjoShXpVlAbIwVhH1LJ0eAJJ7WeIaW7vSyyWBM23l3P+1ZYwfxYa0zZXI/NRSqwpUoQRhVZQcCyhfxGcwNPO/wREy3jQbbsH0718CXLs+qcu1oAJGE737U+yqFT5fi0bhd8VllI821bcON/Rlh9XA87jrRD38Ao2LkxDDa/cseDWrP50+xEMB4aA+3eFSxSDvAWp7Jr0Fxeb2QCET6S/GNNH1VJBPOfJ3/pvHYHX/aeDmoBZ+HSL3eILYrggGVyYNzfgtL/rOhSuyjsktADxfhIHnzXRpYC8yAkYCtFbRGFJluEFeNTMbVqFV+NK+eQCmQXp5W08LwPCXTXsW5wBAybnoWfTdKgF/+TzysdwbkTJ/OIvir2KUByTRpDKqpDaHRPG47Lvyb34FFw94g6pBwbyZc/z0a1MUnwSa+Kfjtrk6vmIB3uFIcptw/wY0WADzJStFq4kIQ+a1F4hiMG1SrQ5pvLYI/mbdjh0Yf198OgUlYIjqsBzf5cT7Ou7cKl3zfBnPvxoGhVhnMMpVjnf+LuQx8Ix18A6HcgK4RIKSsySshIZYREol+LtBSVhgpJqVBSsjJChUpUZKVF0lBJGkqS0aBBKoqMROJ+7lP8n+E8wHHShd7/+im1URharuxi55G2MLojGD1+u+PiLjN8vCEE1RPnQ1mSF4RcnQdbcmVAYNZh2uwkQanJmmy2p5lW166hngMBuK9sIS8I+4AnSzbTxg8CENuizN7bbnH5igCUFMiiSJVwvjCgwS1Wptx58ADk/b5GAiEaUCg+EfU6s6HNagIv711NIfpjcMk4RzL22Ec/m2/j1fidnDmgC33XayBR2YuWi2/n1Z4GkDotD3XdN5JgwRwQXCXC5evv8BN1Avmsubjn4V/4UdkBnud6OHPMNpactwbOZ35jU9ViKFZJoMMiFvDBdTE2HDzJOaElXK9/DBsG99Dlb5u44aonb9liA8bcyRJaomDgfZ9DXoTjkNddknZ7RKNXSIPwjuX4Uu8Y8Z91NBRykp1MBMF08xi+nPsfVk06wTvfG1G4QTkbrXGjvQJxrKv0ik6f2Id3z86A8MkbKE7hH+xLDAP7tttwcvFSXtdWCHvbLmBi1GpWLVlLSbtGQHehGv+dnUmRteGQHFuHNawKX/I9edPGFPp2+xRdjfUiUQFFaD0QSH4JlnRK1JeG7m/iqfEDvO9AMGf0faHysE9couENsZ0yoJVcz2M/rObfZ7dT29qnuO2eEi9xeMu5uqZoZj6NRk8eDRqeYyA05gVqriujYEVfCD1zBMK3qfNHiyFcKWTKnTczuWWnKNRl6cGf1AT2PSyJjZ2GFF8bQBsk9XBy+ScE2X+wpr2aRd9FUkSKKFiO+0we9l9heW4l/dr4jvfMD4BdWzxRy7SdItdUU5zVAubHk2B8uDvcnCvONcEVvAzFObZ3EtcVBUKR3wSuif6KefXmMFxgApr/avH5GXWYiQ/Ioek8Lf7sjV7GufRwdTmmJ27Fqxtu49YTCLkGwXgZxFh4uzxIDBP81R9Ar1MNnPqjjUFHl5UPDZCSoylUZNrB5qdH0W1BEZeMUCfL84/YZ1scvPJtYI0NBnB0xycaGq8Hzt0x8Cp1IV0Jt+GKzc+w3U6aRaESnfv3ssThVAx+KspS/42BbcdCsD5DE7e590GjdBY+S7bF9T9F6ZizI59fehSMIkfR8zJjwDmtuO7lZbi5M4N311lh0dnVWLRZEyJb8llz8BVrxyRRwjJzgIDpHNLjA28yf9Kr++tIb6IIp/SsAZdZLzFteJiuiTvCuUhheP9ai/tD5+D98DLcdXg/hMSmkODVatq62hE9fH9ju7QNCU8TAyHTK+zhM4iW83RwTO1oMlHNwf3j/fn2gzcoEOvCbfyD+g4CDMw3hA0/J8PRiS9o4NdLyk9TpojKHrgm344pqqqw/GwJ3S6WhT8Rt+Duhj245b4MzPb1hQTFHXAuXx7eVahy5fBmviL8mtpdR8O1b94o8PkTSC0txETXBLDy3ISLrgnhGB8hnB57l65rxvBuW4b2ri0YsUYRYp//BV2j8SjXZ8dtPil4pqEHel2u8/t/oRBwThv25Eiwpf1MqClWg4zNs7D62nc6JbOAZ+WW855DCylX/R/PUdOHbllPGqnXCpN3OPCz9VNo7rRm3K72k89IBNGkH8f5yA5PVnioDl2v3+IK1wkYFfiPDj5T5Nc5znTcaimNEjfA07lGXJ+vhALDuiCvkYwHJqwhz2tL4ZypFgh9HyAJ4YlQMZgM79pWUrlwJgwPC8K7vFycrCGFWYfycJtpEjw5/AVPCvnQqHGLyWieN+QPxeDiNlE4nnUTpta/g6s3HDGzdi/v0npK9xZ8BeULI2HlKj92cFXnLhsFCBh7iZ1mzuZLcQnwry6JjM4E8NhNT3Hj7H/4Q385c9xh+F0uAXFzylmsoQDLu2bDZ6P1WCHyDT/ssKaumw9g3v4Ejo4Npjcf1OH67NMgdWc2Dn2Pwr12zjy1ZQmJjmrGcS43cJdRFwY4noYtS8xB2XMmWE+u5fuRd1BqOJL/GxXDrdmeJJFhjtUiFTTm9Gx4KaUE3zo3U+6Yq7z+VCJbP7nLJ2eIwsvRPWDmlMYamn9hT0g076waD85j4+ml90cwemOAU7KD0W/CVfi7Q4tEawVoo/5l6q0KxfDJ4+BNfCPljBDEi953wGNeAf9yL6fAL3e4a+dzdBpsxxH9a+jaQ114k/gQQ/TWQOmvfbh6ezdrCF+DyfVaECIYjS8/bIK04SGs/yAL0gfWwFmfXez5zYfjaBQoCoTQ5Y77HFn+lsP+3oIPZUJ4S8gIIvVeUq30Qfhv1Fra8UYfRxq+QNVXHRzy7DRbhRnTyNiZqC2vC9U8DutWi2Pv+Tj0XNLPnrrm3Ka5GcTHy3PNDlGSNdgDz7wIRk4xhu0rcuBPrwF89O1HMY9hmlARCinPM1lq0i/asW4LmUdMhpi0D5CT70Ezurbgcwc9sp+fDYthNp8/mc0P8i2ouNuA7veqgK1xJUjs+Ax//F1g93FRaNu5n5y6s3l7YRQvCO+mUQLNVNhoCBfT+9A78QBLT3qIei4K1KpvDbnKP/F7+1HUfJ8IhrpNKOikDc+HYuHU1U34LGAyRR/S4Em2x/m31nV4cng7r29xA/TPI+0GOTDqloeXisHIIfdAOGUJmbmVQnm8A1zPLOTmN/Vs/byZjwqrQh/N47J+LVSpLkUNnRycePQ0/JWPgpT7N3Gt5QD3bgmjgUdSkGUSTG6X1eBwcShXW2rS62P7qF5lMt6Onw8qaWL0+Zwl+jpLgeOCM2xlcRPGPW4h4zmN9KjsErUJW2BEbQAND/rSZbUmPONmBp8qzpPlsUn8fdcNDFwsQ339VpCfYs/7rSxo/+EkPLY8ke+oTQTj6m084oYL2Yi8wMWip2CseBTcs5LAhs/HQb+omX7FNMHDXfowUzmMZg5qgtFqEdYKNsMbFqK4W4egO1YId9k8hsm7VsPMeAGoSJoGu9SVcMpOU5qeZksKNx/ipeR+FLljiOM/PcQss3IMdtcAf3dFzo5NgZt7FmBRYgJM/HUVQ86MhdHpuXDcfhEtnfWY3f2kISJ7Ni67+h7eafTwkrafWKvSzQbfq3leRxj9qT1PatOl2MJeB3rD0uHVs5Hssmgt1jovJMvXGyHU1pTSM1sh7UkfJO7aDY/WWECdwwL+1TkIYms38Fe155w/xRulpfdQxLJNGHJhDgWk5hCcmAgvlrqQcvYSqBFewa2V3jD12XYuMRlFf4YVwfdUFpRO6UK5JhVw6gvEWzFRaP+1EzR6lEhmyxIW87eAUL8C+LtEFPbb2CBe0YXOXcEwMmY6mc7/gZmvYyBnlT5dfvWWzk1YhZXqdlj7KpmSKsRg2XYHVuw5SJ+NjoJ80H9UYZIK8XNH01zeTb8Op/OD8HbI+YbQ+60RzdSFWKnyAO7LtKf0L0bsVOtPOgn7Ua5Lgzd8jaY4Aw1QcxVB/WtzAaCJneadpbT0GzCuYSXcWSUJ05wWw4VTyly8RhC01WNg6XkfMjnxF8cd6cIJg0vhktgYCDndjwoTW3GRURVu9VSAq+eTIc16FH9cM8i71iTQOn6Hpp2BfPBsLp1RmEHHs09Bd48W+N8dA0e3Tyfxiw/wv+h0DLH5yY73W6nUwoCVraaRkGQtiRSMgxGVaby47ipVLsrmQ4pn8ZTXWrLKZzjq8JJebPiOc+/IYH40wrkpc3lsiySaTxWDNT0RvPW/WDZ6vJy09wFI5uvyoaL1/LpPBkQtjeGC3lyat2caCE89hw9+umPDqlH035tcsI/sBDWNvfDIVx3mHktGx6fAHYHvwLznKn6u60KLpQfZ52UIZh8dwZN0l9I4YYQqzzQayGvjWdZP2X/eCHSjFzR8dBAXV9fTQFsfvmQjrgrQh5FztDEkoJ0eS1+i4Ze/8fv6c2Ch+w0PpBfw68nP+JrXH1pZLA7Rw2rU8EeQLMpc2FqoFaojX/OrCZWkNzyGNnkPUPjdWTD6rxkM1VrSzRdyJJ7uC99vKuOrvVZgmWHG9ZICXFsXQjqhuST/SgW6MrZxW5gRRBT14e/GMChqvssTc6J5tOJKPulYD13D+ZycNRouTpKi1YY2nDFsiP/5OtB4K3mW2XKYp3vnYs20MLKpOAIVStKw3DwDMzT/kc77fqrcVwyX5cR4Y+AhDHWbgYXNSfDhWD7+6EIQ+FZJ+1w70clhJtrLnyOp+eac/esBTNvWDG/22mGL3iuct04DfnSepC0Xb9CZ6lP430RJtHPUg7wDWnR5QhjvH5pDk5yXYcCoCWCfMgP+RZfyiMPh7L7gPPa65GG56UJ6csqQI3b0ctU8a779axJ0Jqehaet7TGl7RPufbKTU/ljSe/GAo3obaH/MPdj30oCe24+AtPY0XmuzibdWp5Ldvpk8rU0bB1/XgaeYBilZHwXlgU7a+1sbDGulsaPkNIeOiqNBkQN87vgfHnNRhiOiA1Fi7yg4KV9J3tXy8C1rGtkOzEFXARDofJ7ESX//8RnqwR1ip9lP+RcIzxhNv0/JwVen47hv3VnYJNgLtZdDoU5CC1KTAkB7gTlMchKlT+0L6Le5IpxcqcA+YxNwb0gdLw2xJqO6QbiQNg8m5kvBhIOi+HvNabqcPhrU+3Nh3eVKKguVgLKRkeQS/wRlNJ3xX8tE+uQawIbbz7H4UjU4NzoOIlSSuUX9A97OXQUyL5bw+nuzwGGqL46RK+W88hd49AvDir21tHTABU+OmkMzyq5QvM5UuA+H4V7KHdT9ugv+Sk0Dvb0Ac+5Gcp6MNuurBGPDKmmwUttOKqu9SDAqA+MmTIXowgW48IE4tM5UwKu/j0LMvBiumZXBVzsUUGdnPRduPMRhgRd4fPZ3aK+fCStPOZKZegMFqW7Gk8HxfMtvPR6w7+ahEhUQvRGLx9aJ4si7E+Dd9GHM+jIKTaMXoe7SBg70HAIh5QookFzJe2uNQP5vMH0tGg8vUiqgYYQfTj9xmr9p/cN0mQkceLGI1a704uW4Lvjo/4bvOCnAjhBNkDI5DHWXnGiLpSUGFJ2gxOSH0Ks9FrOuGvHpx9dg5i4DuHj0G4gG12NsSTX8UX7MSyf8pZBFGzBshAfEzQ3jLocZMGXYCCQ/z0WBD8sg5tEaHK6WQOmbstj2R5n++M5g3dt5ODEhg/VWm0DEBlFM2n0P1q4MoiTHDaRTfI7HJDnzqwMqIJvtgIun7EcPb1F4NqGQVPLzIOunEc1/1oALzDzJT+Ic7tjiyllVT6hhZS7dTBsFVoFn4ENSHF/7nkR/1K7A+7BhfpUtQPb5V7h541kmTQkqWzYavLOQ7zrNAyM7SUgK7qLVNwwo6vpZUpe5S3+njCUvSScKn68Buwt/omq8JSpfa2TzIXvs+5lGOE0Qb0e1UK+vHIlb62GDDIHXZBW4fN6Tr/qP5vx1r0E6VZWeDE7DByOus+sHKRzZvQMTnFVgtLkrvvjViNMsFrPGSAV4HmXEYSLfeLL2EPguXwvSWpZoIy8GEccD8UDJdj43fxpaXx9DHb+UWDZ+Jn5z3k7ytyOx1uAY4rOpULnMitc/WsbRU29Cg/4v0u/7Bk9Sz6O8pxGVfjwOac+/4zltI1C73cHq+33hkrEk2ibPg+3eUaTi9Iqupt/igcvIKxY/45HLLEB3WQWtuLSG+y7foVvjKti0xomOzFnNvyuD2edsJ/imn8Dd2VOht7gBLoTIkO46cWj004Mz/rZ49dEN2pgWTn67P6FbVCh3xk6AoLR7JBEszzJdJ9jv8VFMVk6AbzMcWX7FBBATXQHq71UwpV8F8qQK4e4CY9Z49IX6b5dQ861hPpbTAGPSDDntThvd3HyKm7aMhvNLfHi53Ed0UtGHC1si6Zt8A1u6IA5pjuHLRzTZJcwD01cpgHXoX3yyIhnj7nSSi487t5q+o7K8j7BPqgan+9/AvQ6OdO/lRBCaY0Lb8h7i8afFYKVdxcuKY6H/3gqua4hjp4O/+YbdLvSRkAXnnHUwybWQagZu0VnxQtz3+TE+3miFowU7adKMuajoOh28HMZAeshffnRpM3h5RNGfbeuob209HVqQBPObnXlqaA1PckrhW3P04e2L+YhKJuAdUYpOH46DydRtgKJ7+ULJJ5CaMJl6n6mTU6c6KEh5gJz0PzZ+ZYbx/bkQNnMGh2VupGV7Ktg3cQ+eLt+PWXJCsFNTl3WqrnPTVzscX51E230ZVG0v4MldglTuPBc8382E50YTQDxfCDN3f0AR8Uckevs9rvExwQqra9SrpwG/hNz4lFgk1/sZQc56b4wqYJ4c9xK/zHCgxlXHsPWyIu0wHQVDFpHQlXKBvQPEwObNXVQvcYNXis/5rdcz/tnfATP+xGBjeyxk/vxFDjJP8aw4gfGSXnbV6oSceAm4/H4tWD7oYOGg97D3uhddN9VC36kBtGc9gOTjDhCwFeapNzdCrZ0GZlzcBonXqvGQXjbOz16H2kubeToLQ7iuHL/OWE8Pb7fQC5W93B6lh3oL71DmokzUWnCDbr3pgO56JQgYbIH21j7w1/cAy7f7MfrmCNzyrwPaXGvx53EnkNgUgxabFcAvOhq3OcSw+tPTMK9jLR4ftQ3m7dzKr95UktYNQbij6c6bPxmBar4dx95phy9PfeizlwFeXFrIGZmbqG1VMlp89oGwkE2855wAVH61R40nF9jl73j61dxA7e/E2eOjL56zygIDn3+wcL8mrfAyhAoBETzcm0r5z3/itC+dePSdDaV/dQOnbSokOKefVVvDKbHGAk7ap+HGS/l8sjCHvVZ0UZDgR/jGCmh47Q2dan3FGQq1tHiKEWzX+4G2Wh/wgEkh3z57ACTm5vHmkmLouNKHvlUzYaJBK5st0QGjQHkc8GijqabLSO5uAA3UmOGUWZ30W2UZGuQok+ZXDXqweATU5SWBl942sgmIZp3pg/hY7ApNi4jlwq7N+GaOK56u+sqS5vLwwvYBxIvvg+grw3Rm6kJcelOROgsusLr4F5Taq0Y+R4d55+Xx8M/lGz5rUoGzKXf5bJIBWPd+IVv1z+RCxzm1Jx3eLPkN1lYz4NehWkrZG8wXF5vS8dLj6N97FEJNNkDXJzl676FP+rJGJN4yGfKD9CB1uIeexAfzp/s3OGH+V7T2OAMq6X9g67AfzN8tB/q+Y6F2lgK+n7APa4+Yk86/Oqw0COWgRAN03+AMPb7f8GPyAPdHakKR3E4W2DCV7h+sgx8Tm3jhhTMsZXccQt3nolm3A1lcfYh1jjMhymEOz77uz6nesajR7UOZAT2w2p0o1fgAtcUIwQgTfbzYJA13C/uwpvQsF3x8Qj2eQBYrdVCwV4iGjkdyTUAKtg0GYtl0I+jePwu2HCCelTAF3gvLcPyXN/Ah1BxfswwWjMzBySssMNVpDDRWqkGCzn5eF/MSsow+sX5eAO72WE0z343EZ/9c6GBpPWm7T4QRngbQ+mMHhXsEcMgIQ/xXkAQtVU5U8OscVQa7wQirR6h4ZRwcyN/Aos53uP7ITr46sZ5n+NXwouY4HGWyFbRWb+V5j/ZC9QZjCDBUIP9ENyqQDKQ3I7N57oHzNPX1AByb6Yx2VWdA0lGGS7aqQqlnCMp29WDUwr/c/qcUjQvSMeNOKqjaGLNHpDWnqN3k7gNjwfDsAKvYOsHR6xtQGM14hfkXurbyNjSnRfPc/nhYO6+OPtlbAN9bBiduiMDrFSU4UXo9y+2Qw41uQfC+qxROGY/GHqFJ1FwpAFKPn3KsyTUSN5WGu4oqvERUlqcpqWFsXAZcOqWEvkGbYcVJFXDMXslzxFWoVzcK8u7s4Xkf9WH+VFvqm6/P897fgE2u2tQjOgGWZP/GKXvWovWlLbgyvx+WnO6hLTMn0Z18CfzlZAEiUyVog64IpJgagGaTPBaHiUJQ/Se2qbehqmM6KG9fRM2r36GjWA+clh8HMxd/YJ+eGiw+uAvbyg154csKsit3xbqXSWwVeggDY+eQV5gK/Pb/gzvXL8M9hxv4kvERqh67i7etKYQSycmUKf4bnScf50MeOiDqV02J4+7he/c2gh+X8JJHIA0GXUb7pOOkddKR3xj9pH9lItDs1E+/Xgbwc40iNHdZhe9uWWP5bk0y8LfC8xdCySVhBoz3HgH1P51AfkgVXDuNsGXqLnqrHclaA1PYfGEQZs114Prn0hCaPhJyNl2kXRUjOW38eY7Yc5BKfeJoUXoxLrn5DP/d6QSPlu+8wHomJMbq0oP/+sFuzTvm7W955BglPHbblw7sc8ORh/7y6K3XsaFYD8xijvFkUQv+vFkQxgkN8RvopVKbfk5+M4Vme98krQU5+LZEEO55rGfRyY4UPqUFT7VKormTD9LhaA6UugJ+GxaRZ0YNGJ0WhAVzt5P47VM4pNODZTXiUKVyg7p/R/HCsA7ME98Bm1L+kIuhAmiFTQC1TUtxclgY1T+8DbfnDOODRm+wOaFIR54uhX0bZsGO3pFwbcQqwNbDoLFTE6513YKknEwMF8nhx0X2fM5cncHgCv7ZLAL+0+ZDRq0bH1wsDwZ/l9OLJ6Xwb38NCw3m4LwCSWg1c+e0qllwJf853WZFKC7QIBX7DrTSXId6Sv9B0btCuqWzn5erh9NKR3HYOH8hPhZ5jDsWvqZjs/Ux9YcfT3T9yltH6aB7yFhUXVeIDeWjoGZHIrT9vAXHazRZomMxnFw0iaxDhVll0znMr1mK0kkVHL3ZHDwUGR5srMde6518SOEnvDLYi9a2HZjncB/fXg0F8YvzMD1sHCzeVsDVXlHkOpxFAdkS8DkwifYGPcL13tpYsvslbZ75FVvi1WDW7mbed/Mm6JRN4oc35tHfwrucESZJ+65sAet3z6mhRJ8eL9cGszXB7KcJ8PZfI+Ue6OeaFdvBccEDXPA4CRWXNMGRBafAa9NEKM7vpnW+ySD9NZEsxouxf9RzHjnyOP+M/ghzjF7w869P4NQkJbAaE8rHb90H0550CJh5AR/sKqCS9n14LW0fRb67zI0rY7lFh2C1pjU+GVzDY68a8QqDSt5aGEp730vC/Eoz0P+zAsMjenn3Vl049vgZaczbBLO+bIbZyqEQ/mElFqw1xOZOSdb/lsfjzq2CqoPGcOOlMT877sgG7wikr2pgo3cBVAQ84+geHx5X/Yf3r7wNmnojYejAfdycp4+5c/x4drUnHPAYwcNfCMyt0mFieyAINT3lm+ki4LmshyeV+pF1lzAaNWdi3K9OWCe5ClLfbOKeZbJ0pNYE7D8aQYdGPbqZX4EeEKEZxoJ0y6ebtW/E4hKJk7jZdi5XSOnAtqcaMH3dFDg1uZTC6ooo8f4iblniy0vT6uFr9zlM6fjMaR11ePG1OeiFdPDa+ATUc86ASx5DvDC2FP4zkIMNgadYLX8ADS300VVyAhwsTqHFY3fSnR3R6HYyANSlcikqP4BCJ/dxe/453GCdi7YNFpCl8h99mSZD+iiK1+0XceEsF5xv/Bos9j3j1TV6dCRkG606qQv24Q3gn7GSxbPr0XyxMarf1YOgGBEc2f+BJfclY+YIZ6y7Yg5LHOSx1MEeAlZcoEGt5bzb+DcPbMmjntDl4OVgB21KZZgUrQdvUtyg9dl7FF9yj5+rW+A2ZwvYn2HEhfmvUb9sGy/BZDZAZag4vBU6BSbhYY1SMvIS5O68dt49VY6F59/CRSM+YvDCHaDRZAy/Rsjz8XALtvtjRgcP/YahHfLwYpUMjTvwFBcZSNNbq2hKVVeC6I4lnLRfgeM7PmLleT+u3fSWE+8/wHuLbWDJ0DyyjFSkHXMILr0rppX6qrzgqzzM3GNE1UscuZbEcaS+ND0a/RFjheZz94mR0JUkzcLnjnL3YXeY3OAOaU/luCZuGtU+T8cJafM4uCKI8lTV4OKHN3RztjD55GpwEylg47kssH8izWsbu1FgaDO/c1nGq7dpQeid7fQ0PJdPaHlxy+Uq/rZEABqMgWU0pWjK4hxqGboI/r8BMnf4Yrb/L1gUHAOsZI8NMR60Jk2A70+oIj3pOyi5QJZfJyvCl9CLqNeUy4ahltw0x5aSPD6g7NlhNJtgCmvOWlP01S0YnGkEbkIBdHtyEFv3xPJ76WaYJxBCn5dGwsnyRi4+mEMN4IhHzyCkK5pSgNsxelyXSQYN+7m7PQ222gAIF31E1SMxFPloPJS5C0CTswNFm9/noJWd9E/gKqS7bcJ9I7pou9IilP7zBv6eWkl+/zHMC7PFGccauPfhIc4t14ZNk1U5/vhWOD9Vg2PGKtEul/1YlzMRGlVFeXziXRBz1+eEfgfuHnmDLutGstbFeAyI/ABJ/Ufpcao8jA2OwqAnDSD0OQlk1q+Go/9N4JrHf1jefy4Mfj5HWyT/w9up+jA2bTPmz3oCRts92VLXCYc047nb2Y+ePfgDec1WvP/JQ0iIFIMveVWUrOdAk6x2s2NDJp2LOYBtukmsG14E40VesPfvMAgLEYU5RU9xRWcbmqtPI0kRIXqqOx9j/MpZNDQMLx1qhaKcTtwsqwHbxxSQ5ogi2uPTjFa+MznsjSi1dhmQo8VeFAm/ygtXyYL+HEOQtV/EVz7qQpjlfczQL8IO+QYyb/biy/+UQbzhH3aVWlFsuCJELZ2BI48pUtbaCmgP+szDgudpescmvH3BC0YufQ7DJ2vY87UKbIl3YZfiYthUcZx0ImoxPKGSQiwegWdJKykWy/HTnl46/EkEWqsqIXhBC59al07u921pQWkhj1zzidvP91BGy3fUGTUARoJT4OnJbnD5E8eBAQlos0uHnIvN2Darl0FRFac+yeJkhxJqNhaECYK2WNrRRjE5WVSlNBPataLJzeMMkKM1mcanE/3XTPMlxUA7sxst7fuxQ+4L4UlLODNGlktW1INCny+/sutCyflb6eGAOdCdCAj6McwvOoK5OvQ2FDavYw+BUzwhLp6UXFtAOeURjeuzABwfw65x1tjn8J30vpmx0pNj5Bh7GWyPnKdfj6X4ZfZRaNg1BlKOEF9QUQG7gTZojbuBOYcTQXKjP71P7SJP41sgWulMGrtEwH6oCNzeqHLZOz9KK3+Jgv85U0ijKv9tXc0yDy9iULABOdoZwR33t2RbqIumh51RNbAXUg51gJlEAHfs3kmh/wVgSvdYmPJaEOzlE0jb1RKC51eC7FxjGDXohTsfTsZt5enUunghfa8+hEGHBeB6PNO2rcbQ0bKI96sd5hcPrVkvyJK/DtaD+BM//Jv1EKV1R8OdTaup/UQKHBnQ4Vl9X0HjejWVZD3F53VapF2myXZbR+PY74LQ11pO9gVrUULZCks1tDhcUh0TZ4zHlPfOXHj1HE5RfwDhNQTzd4TA9Ech9OrLEMy/vYe746Xgh8xLUrs/nkdM8eKfadP4zWgZsHc3Rd+jI+m63Ge60D6eXk8PI655A5HJSjxmtge6nC3ga55i4BnnimLSWqjpup73bLuADueL6WXdHWrW90W/cb8xaNIZvnJQH04LNcHJike4L10czWKeg+v4SzQu/j8S7VMEaTFLOhvpxScGDKBFpI8dXXLwlb499o2cBQXiS3GPoxV5nXkNXcm5uHuhNy+R0YGjJRW8qH0ZN3y8hc1H53DBwwaUkXen2IO3eObBenbPWEsCuQqgn+tBW/uiKOpiCLVvv4QeQVsg4+oV0M/uYwEnG96hrMTP5opD07Em/D3JgXZOucMJg2awc44pTZG4jrc9fnLwlEwqMNzF+oEEisV6tN16iKYHB+PH0BJ8ohbPDXlCIHxuLDeJt3Pvjzg4sUAZ3HYl4pvN02jsIX+40miO8nK1eMAnAC9rquDuyhQ64JYAe/0VIHW0GvTeHsZnblV0tnIZdd4MAz0rO7b+8ZpX5v+ANNl6WCCpAZGGr+Bt1nR2dvlJS/PHwe/eUdRhtxAHDc/TMyMREhvYDLljBWGIdbEvQgeHBeTRhLdAcDOD3kp5iMr1pwm3Iyl/zi7qLrOAnqZRNFszHR/+eYAq19TQ89wnWjyNMbF8AAW+jsBHh/0ocD+DTOgdyDPcCrvlV+D2iS9h4skA/CW7idS+H8GoFR/g1H+WfMh6IjgnVkN+lRpOENBjofPuFHNhHCZ/keTXh405ctkAxK+cgeMmjgHLs0k80Sed94q95w1OytAy1QoEbcfDqtfFoN5sAKOoFfoHzGDVzCSWulVD167n4ttvufxEQps/e+0jxZ6ndCWqmgLCoilrtxIsbjsGiXLJJLSlFt9wIq2c7IKZO4Jh6vlmdPTr4nVBI0G9Xg7szATxZ9FFGKU3Cvzcf/MM1SBecXc9z9CcA/rhEVw4ejdMNpAE2e/reZviSF6tP4tT0o1obkY0Xtb1hCU3qvBygBzIWz7CZxU6kK/wGqqWvsN3Jo7o39AFC+wiuHnDM2jLk8d0lVgOqVdiyTh9mPF8LfRF+GOcWBXEfL3IB/4iWtsZkIKdHqiqNPP9qHLs+jIRjodEYWp7NOpGtJPrXOQHdYii2gF8L+AmnRry5VddX+CdjzH8rieqvOuOy83D8FPYZPi+5Cwld/XgpvJP9O5fAi82SoBjW+XAovMKLjR4DJNPaiM1eYG38HeQ0nZB+wIx2tf0F4es1pFaixGUHdDhCxbWODa+DuLrZsLkkzVYlHeMLGSOo1WsIS9SWIW71omAcOALWLbNEOK7JvHp0aaYq3yX2ndGQMrPxeQRIomBjYxJ8cbg+smYI6Ir0OrCNmj4NgatNznD5/7N2NLVww1bdentrdN42Hg0jE1Ph7IjfVxc+AT8fHSx7MFUjHgohAFuReC9kbCez4Fx2Fgg9bvgecMMZw2to2aRb/RqjxGc4UpoDBBEzzGlvEtyMZi5TgC7h70cNKqLOmIuQ91pCS47/Qvm33gKilPCMZUtYceAGdtGjYRIu2nQRJfxk8pavKJwiK1z+/D76B7IvuSKcYGHaKvKVwhGM/iqWALtw1agIPsEpvh+QYsjn/jP9Tr6JSRN6Y0vsF/+Ma54ORYmFU/CNSmXWbeHWU3NF2Olk8B5bTB/sD9L4pc8ecVqQcoSloDR3fsoRkACrsqp4sNsURbYs5DMfmvj4oZd6G8dxF/y93HLhzGwfFiOf6UtgPCP3Xjn1V8+KD2V+mt+8rFH9iRQXYEyN9IhZbQwNN2bSanXq9nGtZYsNURQ2/IPtWx9TgYVJtRkG06LLIZw5EpjuMbiBM5PicaMwPvLL2FNpAk9inCFab+dyGHtDhrvthllz5nA2LWOWBXlz+6lmRhfKQvnFMfBmiZ1OPVlA3msb+SFI17wernpkGGwE8R1I/jgr3IMu9XPFQ/V6azSetQ7EARmgcLw8c0nqrtpDF/fVMLG12vpVv1x2roinuSee4GH33k+FCiH+0QGaJGPPpy+Oga8k0R4YctFrAxYxDv/NuOD+LHwu/MomWQcoHOTF0Dlsi/QqjoOVsY4QWT9Upqb6g17Kj5xQfAfODL4lFx082m8VA7Oz+2kwAfi0KuZDia6fvzb8wlOfx1LoudeolLnKZho70RloyfhmpgAqAkCUFF/xSK90+jT1ZPUuMqGdPLS4aPeflylmoEHbeXg+qbzMLx/AtgefkHmsQlwuLwR1XYA7DrQitowj5MfroTTjj6g12HEC12kwFunn7+3zof1Td54zPQH+/8Mptt2J2FmbCR1K4vQmBep9GiODognbkKbI+8w51o9ZY1ahf1pNRSrGQsPAz/iP00hEk/PZ5nZ+tAnkYMPYg9xbuFcbm4sh9ODvngo1ZYS0R6OCTxjj/X3QXSHJJytX8GDGbkw+epBikocpDL7SzzrjRQJpAVxgPAx+LDkGb/VZRh9/DmbdhjgweuW2DeUSdV/16KO7Fwon3oJHI5rwcD1VFA1mQrxf13p+1JzOH9tHXQf/Y1NTw9x/lI1vH/jCNW2mlJe1Du0mGoEJ5at4rolRvxruyT3jBCi1uTVeLFhISTRUxpSj4KICcVA39Rg/o9nUDL/Iu4RiYSCj8Z09dUDWiohDE8rfEnp9HcoXPOQntfIgcajKD64aDW7/S2Gdzs6uOzwajQzPI/FdxLx9H0j3GAUQV9dx4DJATuYtnElbhdpxPirV0jy/HRq3vOa/nOZxa1iC9jxmQ5tszGChzvtcY6MB1c+KuEdM2NxVUY0TulcDOvqGnBy/UIa372bIix0weLsBjb5tBDFwYY1jr/FuMQxkFpnwqklH3i1xUc+4V7Fbj6TIMPpI66+6E5i+5JhtkI3Ko0Lw09nWuG++TQYozaK4/A/eH5EGuaFbcG4yolUPVINs5Z+prMnYsHHbgqV72+EszIP4EutKBYvHAG6c6fAfa3zpJ/uwmFkTSMWi5Jf306ubjbFitIUcujcShemj4BHkz3hhdEoCim3h6xPifB11F9c8qST17tPhx+xHXhJq4euvVKDpzP3sE1hLZXsEKba8R+5aOgEF/0XSXuPucGlIxEcttWcxVEHcp7N4MjHgWQz+BFmBHxBq+E+FPs6jv57b8cVX12wfOoUGtWmBP+Uc1DFvI2+vhqHmZYqsPX8AwybJMihmuZwIHghCIq9xpP9DFULtvNYQXX0bNsFQ9U3OLB9MwwODFCM0CJ0WL+WFo8Vp8QbEuAfGAPzT99AafuN4IZDPH9AgfX9RcC2bCJc3fcVNc9lI5rogsHHJ+j9J45cxCNxbcZTeH7Ai9ZmV/DMUc5wNN4AX1tGY4f5eBCMdYDwNx9gbt4EEmq15cXuRnRh1276TlL0+ccuvGwpAQKTtP9n/6/CyhMQav4Z9y7J4bcbvtM377Xg1f+RJjY/4YN7GmGRwQ8sXzkZuvO8yf7gI77SZwm+979RnlcpGcp8pqvKJ/GklB2rVYjwpPWykCbdyk5Gx7gyqYzXbNxNjtalsOVWGH4oWQEHTUzonb4VRZSpw7yuOZA6fJoW26njjgV+fK7AAG73aeCZgG1o+92Afu1zQgVTQ2i8lQeGBeG4zW8F1N8M426vSPomXQGN+9UheI4CV03Lx16cDissVkDWVhHadLOR456+pD9P3uLDdTepZH8XGuhNQtU/eRx8TATufz5PCYMxWF7jhtaCZ3B8/BpIPyDKD++KQY92Fh5NfcstfbLQmLCO5q5xAzupBOz6qov6uk9xgvUXbu9KJmv9IcofvQ7zRHThwSE3XHe3HJtjhCn94Q1+c9eeQpauJ/kF3vB01Uvwa5iFgwkSAHtcoTHPl/vUl2FIhiGE6hzH6oqjcPjkfrp3OhfuFtmjw0hhaDwnQN6KCmizSguv1mSwhqsBxuwI4CafIJBbbML7h4+D6gZFmL/Yje4qXWDR7NewbHs2rfIX4qbbxex+oI8f7FrBvTrl4Ng8A6YrbuSOZ7Xoo1gPd6Z7g/2VH6Q1eh8P5nSSybQ3sCulCjcWjAfTOXn4csgatfwayDwongeWDELMWAd8p3udkjYdhhw1Vyo6JgXH9q3k4nP+6Gv4HK8NJlPZbV/4LqxNloKVeCJsBx/6Lgw7XKdB3zU3KjhmwtMH5uC2whu47OxSjndIZK3bwjSl8Q1Gu6ynycskwW9wBH0qHCbXF264VdsL5jvWsdrbkWgxtJcUrxWzyA8Rdn9oDDm/ruCEqhs89owQT5NOYRVpC558dy3sGv8Cb+aroYdHOGTenQXj332Cw+ckiI+c5a0d1XB41U/AQTsYN24ZBXqqgM67fi5ZMgUS4nfS49LR5LRnNUyT30BVz3fyLdcOjn7ynqyfOsEDeW36ZIvQ1q4FkRvvcoOrHt2dG8rhcdPR/0kvzH+xEP7rKwC7PyPJM1AefLOLsOBcKKd80CL1OcAPuw2h26QSOgX6Oe9BFMy7dpC3qWrBhQptnjfxBj0ZZ0lrjuwk7+QRvCmij8/OloaeDR6wUrgX502VgPGRUrjnyCG+t3AD7NoUjUnHZDD36FK8IH4S9XfOhnVNLuxmrAbjSh1w/7MUeNmSi+W5O3FtyyBUpfZj+fKtWOhZDwfUf5CatizIfvpHPwqn08qie3xqaAq0hT8Es+elcKP3PxLwTcfZ2d20LsUCUh80gWb8cbBCLXIMCELBLxEQsMibHdUGwPi0Eptm/oP1L6fD7rwkel0ylXut0/lx8hrucbLBI2JHuXFfAQhkfYaczEaUaTcBr6J1WLdTAsZFfcJNFh5ca/adXpMBSxt8ZAkJedru/QnO7BoDEWtPwqq1EfTt8iw6TobUEJUJjYZZdKR+CgbZXcMzP4Xxwl0zuD72PY/78opb4vwwp8uG3kdqQ9HhNIoe9kP5T0sh64wEdbbqQ8x7S8rKU4PzvUJ8IuEedR51pILwc3TGeS32lSrg+vEX8bqlHvwLMcBtZYkknP6CY++K496/aaCkq0kdlqtJfKUyWJRI4qWfs+B7UTZGdn+DiMedrC+/gKJkOnG0fSD++dyLfhprUOT1eIJFs+DJxGR63tUIH4x209TZXXwtTYuPrV1GXY+CsObpWtpgFoL3r+uCYmU1qr1wpA1117F5FPDgZxNQam8lnVmuKB6xmVwSJoHla3FYNCoZjx+YRNm3/1I7edP0Cmlcp+xG64oOYv8aDUzINqIm21Eg/8AId2dvpLjOG5D4NwvLn8pS+axt5JS5nZ1HFPGFzDK49U8QjpyfSG1LByAtbxg35Tzi9vWv6YzLTJbotETZmcowpC3IZCsDkVsPceyV3+iVk8mC97TBxVYOerJOgfaWuejfkcVTns9hw4VKoOGmig/OhNBf2/f0maaAmeMe/l36iK5tnkqrhB/CsjhDvLVUFmL+PObuUBcYFbOFnBsWI8+sxYtT4vDluHd4p6MO1KKaQOazBjw3aYLkKDfOmnWJvJWdoLHECwsHJvPiaxeh0rGU1t/ToeJpJvBomju6iuwn2eu7qdngIUt+TYWSoFVUJqaPYe8jaOFACq6PmAhObx1xYPMUPCu0iUd7JsLIDY10r8ORHL/acfOJjdBdMMjl26dCmGMMJDnNpdSmv/R2xXGUS67kVX+n8TihZk4/9Akzl23HZc3KUOAwgprGqsOft+NpTul/EDhLG18YudGFnH1QP28rF9dshKqdqmDrko6LNHLBf0YJLbr7Da3ur4UH26aifJsfOZcEg+vuTfR9ljEkHDEgSIiigRx70P0kRWnhNSist4wEZb5wuGQVpyaNJqUkC/g+LZr7Dm9gJ6F2vlq9iGfdqiLnxzdIVjKJJt4Og9WtG2FlqAlc2HoAi3+9A7td0/Fe9XLavGo6BO56TdNb31J9wm9W8thDps+MQXPRbVRIPQrKbf1oNOv//SfhlfFXaMz9HMxmdzoQKIOrLshCgtAWUH74HlY7n4a0S1E8KBQKh6w245vk0xifXYvHas0wYeIMmO3ny87j1Kls0QY2craG2+NHsI1JD4acqoS4yB2U+MoBw+bIwfOtdew38Ttfdb0FlX5KPPQzGm9MqMaCecO8Lkge3Vx2oLqhERyZEsclR8w4pK6Ux3quxcDMsSym0AHzQ3WxKEKM66uvoKPzGBCXyYZls3egx69UHL3hPIZGOuCZFWPw4BhZCN77kyRNrGij4HRYby2O5uZ7MNkaecykCrb3WgGTbxyG+d7z8bT1N3Z/mI1C2VKQfUuHN/unYGuNG7xNLWOfBaOgXeAUGq5j9NE+ThUR7/Fj3yzolAnlMajG0R8zSWTPAg5a4kCV4cYw6DXEy4M2s3/mG5IaTXDljgVsXaoNTu/EedvRNF6wPR93t1WQn24DzTTRhJsnhqE2SQ9OXHkJuk/b8a/ncvLfcAkMaxlmi57g16MW4jLdJ+y66Sd6zVaCv1Mfg8seWXrW+Jvc7bV4+fl2vv9MktQ1tHGa52o83XUeO40M4Fb5Dz520Bl0vqlizaoUurloLD/udcTEvU1wU7+EtrenoYaMCfR/6EDV3dPRU/YVbzv2Ad+/XwFdL2ZgS10OBJ04QC2rP8OSJ0YwzVSX0w+3oXLyInyleotf5e/jmpj5lFetwS+6S7G8ahNkHBMD09BTUD7GBh9l5rKA+l8wPRyOF0/X4oa9FiQa7IR3cuoosXEkmLosgf41iTB+7iC9tF2LTzNNQTHtOH+Urael0Vt4YWg3fXk6CpRib1H73MN8JlmIX7U0w+D0ZoyOHAE3ml9QddBL6B6aB1VnxCE+TB/ufRrGccezYITARnogmkiDdctx6PQQ5FRf4o4p3mD31Ay8fiphysf5EOroSq9xgNX9n+MCHwlQqKrEWvlUbDIUxZhAMzB0N6eSRatI/uoQ6VbexH1Kvpjk5Qu+N+pASnQsy1ZuIX1rFegX7cCxUeN4xYgk9jVuhuQZo8m+xJwSbH1BarECyUm2c0S8KsAWa1653QbWhJTDpPZ76L79A9eds+UNuh38Cp6T/qN+Xi6rC3sU9XCNXD0d+pSOAt8jMXpgCm4Qe0an5syh/TNL+brSGNL2nw66Z/ew3a43VLjsCo8tqaSq5HDc8TYb1Go0IeWPAg2GAvickgRJucXkff0xrX8jhCsTDVjP2opa0iSh9EoZ5vrEgznH8DQLfSjS04GeNYL8duM+fiqoh5tsLqKIcj9F+k/ikwqbyWjxfXZJkwBD+0l4u+UKi1etxRMiZaQSK49hm8ZS8j0pvusejUM6R9j7qRBcWsgoZVhBFHkXvzTk0gtZhLPf1eHCixaUWLEeU5WeYNFFZVD0ugEdvAd/v0tgt2EzbvBZT82fD5Od21aycRsFwc49cGbFDNBa7kZS1uqgkXEWjd7ugY179Fh9rDGNeOJEETMHUMdFEbIOzoKHqrNxrG0HFzTEk+H7Iixrmg5lkX246q41HJW6Dyl/Izhjthw4KsXwlLx5sNP9CFZKEzddnMTTGoTQWtGKVs4HFp6zBY1KJQH8L3Jt4WsMXDiOVqsOwtpP6ljWfZKL73jRyYUH8MyiXaz+RAJOVDnhBct1dC9YhU2WFLJ8jynFqE5GnfJIii7eQnqH9jJulYTwPc2kb/MLTt4rQI+yFyDz/TapWOfj8koRDClSp2MRF/HSJ1OQbDPmWU4+4PfKB0I9qqD232deFipHt7TVKcNOCxoLJNHj5VR44jKE+pvP4MYJn8hsWRs90HbEMYEbeEX7XIpoWIFqQ8pkVjwSzOWW0IW3mbBj1hFa9Xo/zZ44Dz9u3AgHPMvRSsQJVom1oniIIZScLoXMP0+xtXkZiS+2gsb4Epa0Midx0xZsd9dEN9VqmpmhCHJ7zkP1RxsWy3GFNzuDKLj4N5YWvuB50E029Wq8+PwrGmchDkV6MfxVvZ5E520A93s9kOFjDVsuaoPa9lbcuGYUt5u9o589ynBsuTlMNRqgnC1vKXfCY55buwCiXilR3eW7jB07sfO7Ocqdnwq+Rb9QJmgupypngfDxk7R0ihfsl9vMbeKeLCdpyOd7+sAhfiLcl72LGv5qWNfwkx/kmqBWgB2mZsyiBWbVmJnty7IhPrzm6DTgVm30b97KeFuEWnkudcQlcOvCer65/TtdsGuHPNM1oFCgA35Hmzhc7BAnrrsBY49dB5uzQvTePwOG1Qqp6bszlmf9xc54BZBWUubZbR64vO0fzTlSSp3jUlH+vC8rJc2C2YsU2O9rOmycqgjbkz+Qj78CHexN4SKPQ6gQosS6UX74zGwhWX8Wg52vhqnIUR+m3p9OP6rt8OZ+T+j+5Q6jvyaT8sE7HLk8DdwvlMNd62/418YUOlW0QTdJgO5OEGGXK7o8dkk7Z5i0YlXaVjCWl2abmi4q8BcDM/cWqNK5Tj8KfvD5PjUWH13Iyr8coTzAC9x/5IPcFicSfzoCokPj6GxPDlb/rOf2ESV0yGsEBrpsxrO/s9mvrZscrkTSdl1zeKK6lbOSH+M5G0PePbmEB1/G8Ob0IBizvoIkPCwpp8mcVA7NgI5PK0mnywJHvbcj45nL8bGrFMXa5mBaXAgOOk5Fp/PyIJuvDY+3hOLcnyvhvJAYXwn5yg43mKS3nQZNnwQ2FrtOxQdv4ZbfypDtM5/fWb6gAu9csAy2hc8L+8lSJ4HWxNrgp1dzSONgI660kgfZtEkQM+kyli1bgxqbTPH/CIAPgBAQKACgfxTtTVuh0NYeUpJRKSUaVCgrKxUllISyQtkkRSRllV0RoUglxBUlpShpahiNe0+K/nF7+CKuG96IEmabsN23BX6tGgsf9/Tx5XdzeWacGVY+O0cjWAehcAcHqL6mkqOnMe+iKpcN6MGez1u50fAFKKqv4FBTESjaZ0x3Z/3mXUEJdLLRiNd7mvOWaSLwU+oWu+1WYdWL//ha0w0IS9lBTgZP0H1oHPRqDJPdMmeS17OBmb1q2Hh+BYbmD5Bi/lj2TG3jWf6BXH/yISvUOtHVXdvI6xbB2QUOtMp3DiQEtdPLia00JuIVVbzXx8RVphTVVIne55bBBkl1iK6aSy89CWPfO2KMUjp0XVSH+Jqf+NcsCB9dXEcXz3bTaxVlCNg/Dtsis5GPHefGvD/g2TSb/c0DSbOzim+tdMeRZQb8PtUY7qbuoRtHz2JvyQVwvSONtdNbqOTILtqp2E6RZ6TJsS4DQnsF4O3e43h5rhuVXG/gI3NTqO36ZjoyeBgrHqWh+PgLMOXeFFodqQDNyy/ShBP3Ya2VBUZvfQH3hUTo3j1L2ql4DYf+5tNaj0l0V9AYfr48gpke9vReaBbfePyPFGYFcemKKB4If4QqAVW89M1hiFqjDvMMlbE+liBweCYkrirDo5UfeP4YVVjz9j2dzarDUcorIUZZHrr9nvATg1xUcXLD7rA22ExPKGP7Kni/TovLSt/x/YhAEJWdAr9v6bKwsAatqImETPNlcNzrFW81GKAJdh3QpZaGT+xO8YpLSjB9Yy8W67vxyXFTwHB0HR2zPMqOuzLJcPFklm+bDCM3qGFhmxxc6NlMU3Rz2CX3Gb+MdcCIV4uhq+UvtDlH0rfAKWifVUWftorCaq9Buk5bwb10MXeL2WCnyT3aukMOzV2foXhgPi1UW0Nb3ptAd5UaLQy4wQpa68miQJemBZxmQefH9DgpDXIbX/OCNFPYlW4IgmuD2a0IMXSMIHWnjKSEpgYW/RpAg6324CrqSqEX5+Ox7TZwpGYxv7qyF+dHX+Rp2zajaskX2NO0GFIaVfizYTC4Yw8uGK8Oq4IeoK54B7Qkf2Ofm4DdnStQNdmKPZb+o4arTSBaOMD7Z1vCpNMRnL+cSatFlpVL68lA9Al7efXyBBUBmmX6D/zVPXDgmwLIZiyA39feol1lA80arU/VL0J5UNcYTSoeY+OSSxR7XY3MlxvDUjsz+B13Gz4n2LHaHUkeMW+Qmsed46tHveluK5J6bhJzhhY4r3agHLN8bvAz5bi1e8hW9jEG9iZhR/YmECg/iulmk2lflgqojP9C628nYXVJMr0csuKXbeIsFDPInmahMH70A9pz2xsjRMdCnHcgLi7IhnEsyw9VwyAkbCTP2TCZ/Mdb4e1920EqSAX7pMdA8W0xmFp/iSW3haHphr+cNzyZDTIeQ9yAPQm/PEPLhWVRsXEEJLMhBJWHcdv1JBqxJZVaw/w5+agOLXG8CD2+sjCrxArTNGwhcrU/h4yeQzfF51D0yT3oWNJHHVKneMtyZ5QI+QDDkxPBdIcIxDVn0rjkBzTFpw+ClxhB0Kzj+ExpGr07/os3VxphPNbR5/eG0C+VwL8NvHh2TjvExaqhzllVPjlaEv2+h8HqyPuwYjdDu8x4sLTtpeH0LyxXugSDU+3RTngP2G+bjdPKl3Mo+vOtc/sp39AYvKRdUadlJAm6eLNYywSe+ssMr3pKQGPsSV4vdJiMg4pgUG0SKPusIM2lT2H8r620dWc3VET5sjPWwWvVAZ6r6wUxup8xUsoGcmV96crcMPTQbIOnmw1w7+pyFDvtB0LB/VRUVY1ZB49S0Tlz+D7yE4z65Me/7xBWttpj/uwudPx8Au8d6OJFKc+4wicHx8hNhIJKYzwb28zODjvhi+xtOPeqjfzUp9KxEdfQtL2JHh/0AO9obTj8ZTulVTAd8ljMH2RuY1ulJsRknoNvHxeA5MZz0HqvE68NG0J1kzGk9+dAtbsOeH9dREk99pz5KQejpCNJRrKUzQT6aPUbVZBeOAQvI0dj6sd6eHjIANM9siHMdCaqlkdhytd1+HDuB/g2djSYFB3GCsVcMrQZYs35m1Asw4F2XtoBEXv2k+NGaXzjkAHNCrZg0LSTrBPCSFSwheLljdhj+TALxRiho+x2ivnSwRJ7F3OAvxAIFwnhOtmtdPaBKL5R9ofJ0yTp0+EMXJ0QSArf5fBf8USeIqQGw1n+5FyxiladX42b+6+AuFQKqfp85vbuLXzokyp/mBpONT6WcD5Jn10vGpKJUDmpTwhCA9Vv4G7/EKvb7pJQdBsejdhDOYH6sNGmm0KDiqk/OoejxoSD3MR1ZCWlQ0o/ZmMvfcM1GTG0abomiB50oAixcrqyRob/XarFLdO7sG76C9gxJ4327DhN357PguqfYiC81wTCsregltdYbFLWo8+nkvjQvX/cPXY/TMxI5WyvRDyipwk7tKaiU1UCzJLQJeHYOBifdBDvWgjw5yeH+ZnMHVr9vAyE5zP8jruJb6oqeLS9IG3b2sX5J3fxXd1qTDjjhz+eHoPrHqNRJ8sQ+pMHueDreJq+7h1J9BmDyHhbuq4rRxlPRsD0liBuN9XGpcrSIGY9yKHJv2FqRAv3aiaTUtVNSnsTgd+ajoHBemcS149hgbOm0DNuH90wXMH9abmc3jcSlRXdccmB/7igwIp9b84h57BX+LRECzKyHuP3Vi1Iea2BRY+30MYtrYwXXrPXpAn4XkqbDSz62SzcALQTSrFyXwiLWDWhfro1rjnTCaX+D+lv+RscDu3F5sRUVlJi+O03hvYJ/ubJO8uoqDOITcJkILdbHi4nnuC9RV38rbiBzEsNIGPtT1zw4BtElbwEIVk70gJb8sz3puHgxzgUXEv5qeWgFzQJbmwpJ5uj2tBi1gM3HzMbXrSmPochrLlfQwErCW73z+H7RdLwcgTSLtvnWHD8Kb39cIYLopejk3UBHlULh9KC+Zgu2MWu0jagLOkCTjmBfOK/An499QX2TfWBl2/b6J2GIyvdmogPMwuwMA7hsfVScnl1iY/4FXGXYwHTDH2YMCmeL6VeAMGfITAr2Y1/gDhcqo3hQsVAMp46CPKPxmHfqnC+m9JBgfuk4WmjD3mvfUAbv46HhSUJfP2EI/2JSOEdbn48nF0Gv//LYCfjBLw3JAaJJeJsKDYaLki58GR9gswZP/FF2l/612yPMkayYLGhEiWoifeXysKnH1qQG3iCexxPcILaWZgb7MtiibP43fh2EjIQofsVu2FRlSmHiynA8mTm9PZTdHRCDYV0CnMvO2Je8l7MdPelZxu94aZ/Dp7aqABW5Am+G7zZOLYVto3QpJsHF5L+RUXQO2dBcid/IUYewrRqUZj1oI7+jPuBh1cU0ojQW/xJ5j/wnZwMJRhBx/qqePKvGRQlNRLun1kDgVGv0bq2lG8GmoKLQQasFP6OEZI/uPuWD1Vn7kafSG0YfmqHJRqraNSiG7BhtinYVe+HjSJTIcw+n6JndnLh6AdoUogwZZEMNV66z1WXRMjMIoDMY8wx+uU/rtmTwDuO9cHoOUfI8YY4uC8BOL3vGOuMmgX5xyZRoeUu+m19hI5s2EHHBeeiUb4NPlMfCetefuDgxR2UNj4ZNnYepeM3DlHPrHTYvWA+tKelk9yeEbA2TgT+a26F3otvIHvOJFhZeh5ab06AV62bqUg6k9TM19PEGEl+Y60Lbh+LoUX9PTx+5MTXGv1B3OAuqA60w+aqYtLzmwkR99+w5bEp8DfcmPvnXUO9KjlIDf2ICgq6/PqnArv81Mc12X1kM2U2nzCSA+nPn0BYhaD2biuEy3ug4Z0OiFu8AmMNUnH9Ozcm6SI6skcI1sxJhdcWZugoJwD7bwuSZW4Bb9efDjs6ltDICX+w/VgJ1xy3hFtBu6Ek+zZmSNpgdtd6aPFch7rS7nx1wzA8STnOBzSnYM7hkSAq6oYKr20oPdmPtqa+4FNhGWwkmU5F+cJcPE8K3y9qZ+fvtnBy81yYGvaL6hdI4si7tiRQ6M7dBumQvjEJKv4E0+LMy5yRJwANDt206q0+1uybgzdk1Um4xYGvuhTzR8U2nvFKGmccLYExL0fBitlDqHnWEwa0hMmqxRfcZaIpw9aF6h91Q5tyLz2QNOMAFVVYINzNub2GVJh/mqy8d2DqqsmUbRzK8/Iy4No3GcpbvYmzauRhak4yH3r8l2BjHLYdqeb4ZCAR24NUuluFq17PoafvDfjEBSOYtNqUq0Qn4NXAmfR2vw/nWN5nX4exLHDSHzIOiMMSoU7Q+zIVLOI96fAiF1oXUMOyly6wuE8eicethJF+57hyvjkfuDMJb31Whwm7n8DbV7fAcn8pR0sV083p+bS9xRmu1MWhnQ9Aqsk+uNcwAQ7W3eMJ+/twx/gC1jHVp0/zbamnLAo3ZB/ksI4cdLuewTpa2hBWEcWPhSTh0tptvGnqH2x8Gs0/t2iQXs8Jdkp6jnLXtqJEsD4kByvSqo4aikhVgeeTG/Gg20JsEnqPKg3RdK5qO19qvYB2YmLQJCUAJ9w28OSN4rDlrQH1f3iHW81NOGN4LK3Me05ndDTw9y1DOFlXCFqvKuntIhcYuWoeXhXr4tTmTZD6K5/cY5wxdsiTRmtPgKO3TfDbY3VY8jALazaE8Nn/DtIzr146MnyDLnd8hkekzh5jdGC72FNomRXAUucG2T/sC03awBxaoocT22vgayHii+BazrYZBS4iV7hxygMSONcHjuu+gMAXF05Wug+Pjwfw/huJvOyfHKLJZHi0bh0qCBWwjPNN9FFOgHvlRiRwrwVyzqlSm9oT+PyumbYfUIFdxz6w1IpQuNK6BoJebaZr1q78XHI3vFeKoIMi2RxqlQpynkKwcssJvLxDl/edE8XgCQvIyLWByqSWwMPTF1Eo3xROyN3Fl3t1oFQ4DMpq1pBkXgy4fYpA97W99PnMGawwP8TDkgn4qew77Lw5Au7bvYSLX3eTmpof73QVoJRaTdbXnIEDgyupa5YRFjz6jNM6ReHGWDEo3/UZXHcSCA9bYgcdgoD5zYjZv8FrvSltL6wEyzNT4YX5FWz2PM9vLkiTrdQUWmqtDVv61kHm76dc2O5IgWaj6KCGMBz0sOfR7ybj0RYxHDBdDgoF7+Dk6Vcwc8ZqdA0JYZG8Wj7+1gokdI9jZkovHBT1Iw4opueyciR1cTk6fnCGSVpPyMcgnWujDODy4hUgaSXBY2cnki3ZUMaHRKya/hiWv5eH1tEyeHhhKbhbMOz9fR6vRtWgY8wmOD/9FDbKD5JG+1m65ryURVwNMOZGM2p7yYBcznjcO9YV1sdLY85pwLcBbXzPdSl2SGSyo2oRVk3ZAPl9ouAtU4WTBx7zuKMPoOemGV3JDmBrpTb4sb+X8pLfYY+rB8v/ZwAvr9ZhiNACaFGNxKdr0ylduQ3VnomjfvBOLH30jp+OiaKkElW4nGFBvmLNtGtnAN7zOIcOQglQDr2k3JsCf+yeo2WaE1q8sQHrwY+YcLKNDu08ykEDwSyhtJt6tl0g+fWeKDb5HHYaGbEGWkK1eQxbuf+AZJFLbDXeDk7Hv4Uh2+dY+KGD/Q76UfqVNjRNtIbU3xkUqzkJ6j6nUW30c/A4uAAWFIrCvJKTsHq7Ez81PweX+oTgR/hDspc6St0icrDx7CYoiq7Dj2Gy9MLqNcqc76MzkkP0vmQqPF2SD90DG/hy1Vd2zrXEbME4THvZTDJ5oznD/jvbrX7CrXnisMuqhQbHmNJnI2I9DXUeGPUCZ31GljQ4QOD+CBRLf7HraGPgY1UgNuY53RRohVxJU8wzmAt+G5ZxqbIB5XxcA7+MuvCYnCWckNmHcXY1qHXmPTcIf0dlWV2k2rX46m8H/Ki6Rt2VF6jF0hLUHY6zp0cotlxLRO/N3Tym6B3NKN5G9lGNZPDnG+4L3QsH302C6UbBeLIhl26nBMHZuFNYOvMaHI67RcfuaXHQBlFUl7uNn8KswMPZFVvPSlKIhzdo1syGgeuN2DPOgnYlicPXlX8xtDyGzSfIw26/uxxqFEzDk0u5TroMZ0pPxudzWqFEaRlnr0qg8tWWoFlEMPW7Ogzd9YOJf2+T5p2toNhmh7scgqgzcD2W0z9s8mmEiDYJaBK4D5IzP9JHlRJ6MHoV6Fg+gkXy/+GerZI8gHPgedJ6svWThfeJi/nAmgPgv/EZa6f582Q7Wfz3Ejn4QQnNdtyK30r2wZ9OURCQKueWCcIkGrIGFu5XocerQ9E4spNeWBnTGFk/kA5Po89PNMC+ZSUETo7HMbdroP/+Aagf2M0u3y7h/Z/COM59gJ+cC6ENR0ZDqYkNeklehPuC+gzH8rHMt4vnXVTgZvDFg5O+8Jbz10j5/AjQ2lKD7b9OY7lXPIe7p1HNKmfeuckMZsi4kPyTfXAysRgXsCm87/LjptxEmud6mgrarGC1bABWrnQgp/qjELAziHHAE9/MUwKlX1Zs65rOx1bm8ftEezKfdhh3nrWj+X36dHy7EUUvGgM+K8bCt55dbHrBGA5praczclcoxs0Ppu9ugCMXVpD7URE4oJTL5to6oG4SBY5jj3GZ1SiwUK+npVs+UsOxcmw60YB6GwxJrPEz54oKQcV/GzFmwBmzt8Xwu3rEhFRl+N36lJL2rGLBJam4vUAGqgvF4OMZZbp4bzWZl35lHV9dXjxSESXHC7CBsy9ODoyAp3sX4Ao7CVhsZYO5tsLUpnQUpP1WopmDIW9OmotB+Qwr3p+CdpFjZFqvAo1XE9BrhCt9OFSNUiLeEDApHGx+7yPnXflYMLKeogrtwNlkEtRpqXFhdxCqHHCkZ9COixJMSNylnOctvAa5ERnQs8Gcbj6zgMyfSnxbKwZtzZThr6M6lFSL4BexNB56GEQ5Greh+fAzeHVQDrZfXYEjTcMwLPA02KaKYGz6EToi8g7eFV+G2bLJ7KYnCZJpsuDSl8Guka7ou/QGTX/ciY/uWpJ51DTsnGDNz4Tm4tSikfTnoSxoXfNk5+dG1NX2lcP9XlMexGKQ/1zQ32aEMZuuwB+hMFBN1AFd8bUcVDKBujMH4PLPGPr4tANyv6eQ7/MCVMNAtNx/io9enwol0U1oGaAJ2pMWQU36NTIfu5Bni5SS1MQpoP/fbMq+sJueX5GGFBlNmBIthfWHV+OTUR/B01kbBh5epjFvvKEo7yQPRLzAV/EErySEYdGTDzAm4haVV/6kXYlx+PjAEc75YU3eft6sMkGZLjxQhgJ5Aqfj7ZT/oIqUB8tx3JrzZDHzMr0wWQb4WBMlT3+g+MIJULrnI+zQ+4QPr67hhseH6Et7PtX+vAwVT9djQ/cBOj+4gfoTzKAjO5t3xiznlF0HIf3mbVi+yYoGdULhcsQgftlyHqd0nsb5fQqwYq0jTu7Nxg1LLcGyErAhVZ6v28fDk5n9lL24A7dIHeUF4iPAxlIVZVWvcmV8LWT1P6UxNX/whJ4pTh4fQBV5j9G6IIEmaYiBzOtx8O+LPc0MaqeKJSsxZ+FyCknNRp/IGhbvXQIem8JgKEwSwpWqaVfXbJqY5EZS25eS75IncMh2Kb45p4j5T+fTvG++aJlqDZeNb6L3UjWQWPoDruh6AHYrsw4YQabSVmwwmMRhpTvptshoaHPsp6VXl9PuZd0UYtABq3bEkLS9N/9L9KDH8TO53NGex+aZg+zqcfzW/xldFbFF0R2vWGekIJ0qEkDZL14ocWkFpllsJcdSG5iyJA3CttjSqB93MND7ER/4W4ulH0LJvWwmNjp0w5FiDZ6XbgDeYUVwaZ0YGppPQKEvS6BH7AVYCvhjbOV32hlvjpPWb6CcD3Jwd1UG+SptotvHs+HXlM/4x2cHbIwZR2kzFqKyciT4RvzBVDeG1h0eeMTEBmYdSkJrj1+oa7QASpW/4a8uM3R/Ow5nlH1AnyfacCEvlt6pfGLzcGGUuywHj8/OYYcSO1hRsobz9x6BFTeOcPDEKVA/fTJqi9yjDRJdtC1kPYT2i4PzPHW612gIUvJGoOy1Elf8mwIntxhQ82VxKErq4S9X40jyUAw8KTUBlw2BXKs/BYTEkjlUTBAUr/WwnKkddZeLg+W6XAyvfgxfItbTi6L3pLFUAEsFczF+ohB8uKcDR2UduXPQkryXDMOcn3a067klrS/ay9uW3cQJG8wx1scIVrg/oLVu4TRyqJfjPn5gqB1Bn5z20SKL9ahrNp62HDWC/J+asFh/BVidnUf7v/bhHvM5lP0+EG8F5LDWjwmo416LeUXp8F/kCNBXOYujZmzEnOkbobEriv7VaED8OS1S+ZZI34cN8c65YfqRbQavNmbQlJZtbGUdj1nJz/GQ/CgYjL/Au6bHwTrXaJRPSoJZmrpw79tltG3TpXfuwFMexqJjWz0d/dqPL38AmqhN4ko9Wxg3djyMcJnHxQut6duVJI4b/5pd7VUpsvonCPyq5BsdS8n89HLKOj0CTB2ScLBrGnj1veX5v67DA6FLtOBhCLQ/2s/1dQepOWohSY+WgGa7DVTbtx7V/67kfp9beCx2PoSsn8pDJSVUuuszB+zYD21rdCH9uAbuubaCot9soUcPrWm8yzfSsnnNLlO2060bquyxYpBJWxPUb2ri9ttjIdN1Ns99482q2rkwdHwWTrn4HNjRF/1dpsBJWzmofrGCzxnu4cakx9Cjbwb6I1vQrGkbffuvh9aIpEL1nlbe5i4JzwZdaYlXBUkcY67paMcWNWeSybxMr1rWw1aH2egTfIzeVY6EE4+noXk9oUOqMFW/3UJ1xwvI+kQKfJZ2p/D8HojYmE4L5Kzg2ShR+DU/Gyo/uGGDcDUmeSpzVkgoXXpdysFhe6m8cB0oigvCZbE7cEMkkZW2BvKSm9FUknAWvL4OoIb4d3gtYkrThpRg8T1D0AvrpbT1ojxcbcdyHho087UYKC9g8so/xWMeSqPF037OiTSFk8MmZKQbTbvrt4GOwSK0LdfmJatP0+pruzk4+Dgpp+tDSLMq9IePgE/bZlG641scu6iW9/xthudJUegVGMMXK6Op5GUKNg8YwuDwelIKziGfDftxnTjguBmVrFuqCSMeHCLDkj9QZ38HJmUrwKrFb6FkpAI5p32m3R3lnDH4hU99PM9lV09BxYXndK7uK+7PFgVDiTwAywjIDr8J/uuaIFl9Ppzt0ifVhVkg6m3KY406UeiUOVxIrKQ4HEC30eNQKG0ajO2pxsMrZ5D/+yhoGH+euvQEKWKZJUyums9nDv/AUctGgvPe0yx6wwsXby+kWxL+6Lwol0cvWwB6j/Qh8IUR5+0ejy+yFcG82Il8V7lBmncizrA5gZWnXuKvRG/cXDgaJi5M4AydKfSfkzkcczyHYT6F+MpwEY33GouVBaYUtFEEIhImw/rL0dwVeoxtm9UBbjlR689xmDBwGVvuTSTPh0/QVT0DVmXLw3LdLTz2dAwZtYoSTjxN2+zmYVzmCuwZW4gi2iF8VHshuT9Rh+WSx+FXiAg11DnDiEsn8dHMZ3RSIBpOijSDzM1tPC90CS+crQvxlIW+u9W4e1EyV623YP2B1xAfbw5yua9IsiMQPb9WolWZLegM5bNM5Un2z7oPEwLfwA3Ps7Dc5xJ9+iuKG9siqHd4Ad9J1YQD09M5+dQPsrmWyEkpbrhQ9SU91TSjYsu9WO1QCzmtZ6HunC5cF3mK9/WkCD/OB0UJD6q7eQUbxhZD4vB26stbyEk6T7DtiCzccQjkBRNO89laCRrzpwB0P3lA5e5nUDAqH4r3nuOCijI0SpCCd5XEtnfEear2X1qqFkbm98Th2stxJLi5Cu51pkD7Sm+IfqYLAjWrcJPtH/7y3w6Oi5oDRlce0s0VnvxmtzFPtGlF4TVR+F3NBvbffofzjm6CIjHAhY/7yOtTC03YuZKvDdWAV1QfmT1247IXArAuKY7/+7qZHVsOwGavKnhiGkqiuzv53vxg/jipjkXcbtMlA1EIN50HPm/kaFidsTtDmNBpLSU8mEsCRhl8ItoNn7sroaKpBRT8jiMDwTuUtUEVmncX8JwFTVjuLUZKE0LRMlYIyvJSSU0e4JWmGEik1oDntjxq9H8GR+S24og7V9C5ZgvcklTEi/JHyWT+ZFDK7yWhp5M5ba4NNZ3RQcnrzly8M4xapYl3Xaqil/MuckCbEdw62AAV9fXo1d0Klc5OUD3JnmIDfXHjnrscsMcY4/L7MdxCG7ZcuEy2ZZ1ccKQKc+2u4LpqxuKtC7HuIMJ1m3Xovq0PV81Wgev7eyE/agrmDZWhys4bOP+sLY6oDMGU10646V49nzYJgmHLKZB6toysc0bxLKeb8MRbG+cMLed/Lb8wNfsUrFdthP7HqRy+UQAsbl/kG2+VQHJJMaiFj+cjzwqgu8GWDMJica1vOtxa+YCPLtIH1Y8+kPK0ELjPk40nj+EM9V8QUziN3v6SZ/lMTzRwyae0JkNYtiqRnrnao9XXflh/ZiLMTA7ibaNX4arPItyz/i+tmT0JprkYgd2Vn2DjOoihD3Jgf2QaHW/L49g6gisWp6BmaimUz0+C1p+yUKd0G/pDhhmevaG5mdKUXGAAn9eM5yNfxpCYxAk2i9Mhx9fjYW/pHZo62IIn1RRw/seV/PrHG/r72R63HzgNrmUObB27mbxvqEHR0hMw8DeXp67YA+rnNOh7Thbs4cUwN/kc7rdfjwm6ACZTtOG/FxM5I0OSO5U3sZZ2B8fAEfoZOpVWBTvxiMKXIHntERe2CcAV9wEMULwCjjY9tMz6KFs7xlB9USDDjIsgY5tFOnvdsNxiBIQ9E4BFOnUsttWJG74m8v2q5fTguCNbC76D9c36eH1TKMzarQvPHI7zllOP6GlOFmYExpOU2gPcEhQJ/vF3cbguGhLHSNL6SHMIPr4IyTEJTh1UwDsfV/H8gUxMWa+CBh/Gk5D3K6q+sZ5tHAThfXkQuCx+RXP7m7it3YGH9GrZSMMSG5IyYXjrLqATk7jX3xw+BTnhUdMFdO7geapf6ESeQqYsKhqPxxNP0N1ZLVzhN5KOPJsKWX+O85Z3lnj4RA9bSKWRw8AAZ1+ZQjPaInnjnsX4yPg7zr0zDsLllcCveAtMPSCNN3el0BI3XQoKn4WCnqEkfMcX//j14PZlQuCUO4JrvkSQ8fP7PGrOLTbx2c0hZunUP2st5UXMYD+rLjJ31IcrJcd4TOgOiH44GdrSuvFO7gFKz9pL2Z3bIXWdEr/RWgAiFrLwquEtvjYrw3YPFfysfgNHLfWk52nLOE1QFPYqx1LTvw7YcVkJZEws4GzKcbi7dg8vki9DAe0JYD7rL5btDYQt7I3Jh8Ppo7QF7PD8j5fmAtpLDnHeh9tot0yJ3g4TRYlHwbnmSnotWAYyYhNgxFIz0NW3wTCHnfAs6zkdKn0Nf8RawfXhEf6mM0gx6x3BwkoRrt3bSf7iN7EBfoATvsC1d0Op7sw8rgvcjS8UQllqbR3eNdOHoqSdsPAhcKN0NYdMG4lxcjG04O9brBj7DF71jaUQq3Ke+k4ErEwHcIV2CQrsGQFrYtag5f4jPOX+StY2aaesPcU8+1YniKorwud1r2GBwiXqHVbn9KN/eLvtEQ44kEphI2/TE91P3NwZRoYbZKAkxRd6Hax4QFEUbqcqoKSCDZyFMpaYfxXXalwBi6I+iFXUhWOek3j7DlFcFn2TUyY3o/+dazBz0SoMdxDmpmcSlDluBZzwkYUTP5iFM2QwXGkx7PP/CMdVrXhpVBzxFTUaVP9DCSut6V25PBgV34PEmidgOdYDXisXgkLEJuj8V4T9Z16D5tgbPHtPJmcYqcCQqwp7KHVQi1gA7D8ZzGEvOqjV+BFpCb2lG3/asTE/hgtrRcA/sZCcFrtT+kd/PrnBCQaHFFFC0Ymu6hmRd3UenxdNxJvXx4CSYjRKTHXD7GpJNJtbS9t/KdJ/Eh7osyeKcx62cvw5d4xMFYQAh0lw+hbR/N4X8Kmthi64llIwjOEJehPQ00uJTkme51/HR8KL71J4puEQKdUuxDPFITjbVgWlh9bQlzdS9Fg0A/ud98KIdBtYFPGABKGCLsXfwZM2K+nIDkPctUeP/fpqOGtPIPz6tJw+N6qDs1ETe0zMhNORC/Fi2xNK9RehQs0vYNy/ibuH1OB7fQFvOCsLn7rOk9aHEpAIjqJfiRLwM7qQ152/BDsj52PBoQswdsRaum0lBWsUMvnR1z0woDKSRs9xptlyqli1Pg4VQm7DUo8YoNUnaPEOIXBRKYeXd4fhicNVSLjhCjMOnIHrHmp4994CPLfuNQ/GzKHpiZpgl2cG5NmKJx/JwEjPXSiHc6BwoRSKm0rQsRtuJBm2F/zqRCEldx0eCLyApq7DfOeBDBvvbqDE7UGcaZmGW6+Nw9i2Cl40TwrstgjTjXorilwrwsd1HtHbt7EQaGLEh88WU4upJ23Z/ZM7zghCXEY9vExwwZRNXbzNw5c2mIpwwIAZiLv0c+CuA/BcUQr0p0yA39qneO9Lhrw3I3l732zOmNtAzScm0HXrL7DLLhSjehU44a4BaAhM5LELL9LTnX9ZO3Iq+7xNg9kVTrTaZT0WZefQSTkPTtRWAkv/YMwouEA36jcTt72Hvspe3HfuC/wxSWWJj1/IxqmTn68bDaWb9pHrsX7K2m1M04N94XCdFSWqN9OeK3tpxqnpfGBGPXuBIfwXsh/OyjM4xd3GoTHrcGzbb7TfOIhxz0dR/Bw3bjBQpsm3R0Dt2J+0IrIO+3Y5s3BWEHz7+hj2rcugde31qKNqDttcHPnzOFnQiKunxBplODYwhioKP2Foowd4S/fjZhcHqFLUpKAGMSp01YOPfp9ZWP8waXieh7LfxWQxoRi9xxxn5cX9PN7ADVa1DoK7ljhc3DgPjv7RRdHPIXjqwxZQ0neDW52OoF59D6Y33kdIawSRtYIw9+sinDWhmb92xWDQ0BGc+G4HV9TsJc35Tlz22RlEvrzCmEwBSBhdwb/vpWDb+l8k1rWdGiALtvcZY/i8D1DkEIGpg6Ow3kwOpgpEYZv5XN6g1UNN4dNwyaNFoLdTF+daTcfuD6P5zO8eynIVhCdGrnAUn/Kfqiz8u20+hj0Lg/inWrjX5Bh/m/+exWTek94JhK/HO7jkgjc9UJzDgvtscMffQNKu/c6n9zjyWtDC9DJ51kjUhPrOVzBOoZ4NqJS/rPlITlrnuXtmNDdFlNKymYcpOz4Fc2XGQ+jAX4po6uHfm25T7/hKFAqwhcv3F4HC5DTWqT6IB4qVoWc2Q/s+L/L6J4LX9+9A23Xi3NglySZHw/hrBkJJ+zZSeJXE6p9lYe3Jak4cbw0Fhjc5VymWH76IY9+CzQQ//+PGhefgaLkPgYo5LFdwR81/xzhT9irGq8vwjNeCHBmyjH8K52HV0ia+ruqP1wZloGd+CSmHWLLLB3WcG7kct63t4TspP0BucQ1869uEiVZNfN5LEW5UfKCrgU/pjrYbvhHugVkjo9ivu4VD450xdn46vcp6z3IaI8GrxI/mFWTD+0fuVLbrAK8ObaRRIYPcM6OdL9hX4eLVr6l3pQ6oS76Gc10aPE3lCi088Jje+/yE4x0CtOBYAjosu0Gy2/rpZpsceKEqiFy4Cp3//lDtTTeqEvyH7yPMcZRcHgbY78RLG2wgqUccorQektfiB9xhYccny8Nwxh1f/kXyVFb7ClakhYKv4Ab4pCQCKdeu49tD7djVnUzn7ZtQ1SeKFv+No64gKXrVbY4b7+3nI+/kYczeUvoi9otv7rSEpct76ZDiU7zo74b5Br94ff1CmPZeHT+K6EPMVheM6elhHWVz2hyZQb+a+vHO+UrKH1vAr4LLqP/CeUqaPgEOSsTj/IUDUPLYDwyu6XHWQTs45D0DT66ugJ8eiIYlT+HAoVFw0mkU9VlfpRfzkRwvpkCecDxN+xqKy1Wf4HnVufzB5RzOzVQD8cv32dZ0DWjLL+DAvBD0W3eUryY2w+ZIDXR5LQL5NQl49pwVPJ6wgB/urwP9dbUo0dMGh76uBYWMGbQ4oQp81h2hwe+efCjZCDQKI+C/lEBKdNxEzxRj+JOeKo0s3gwwvAfNHobAvYEhKhEWgKlq2XR65SOevEgEXr6fzeXPFmNZRT9MmzWKFkWJkc6mRvbKsQFr+W+0aaEiSS9eBg+UZoGSoQhkrFzKXV7H4O2iUVgkfY1dflvBDD93TtWwx5etA3DoQCNz/wc2ybdhWYXdtLqvCaVmltK8sCnQ4mhNsu3msKROFk3LZ/DkP3HwruYqj+/Rwluqh6ja2hp03giCgJ8VjNjrSvDvDrdO78fZy4XB+u1PNLEu4WdFA7Du7D4oyDYFwcXj4bqkG+8+sQxfj9zIp/5bwzNVHpLqqzLcNU8P0tSTeKmOMIQ/n4P6nxbBwFwFtncfIEHjd9Rx4Td9ixVj01kI4wR3kN8DHbD5cROvJK/FBhtAr1oZmHRBD5rq3+GD2jNcI69MKpdNyf6FMdhxF0YXLIZ/Jh7k39iKq/Z08ZHZeSTeV8yhV6eD5OrlXLLaEIo0tuOyygK62aiBce7uEJVaB7bec/mI0wt4qPEGTHb4QrqwDggsXophX4Yh/+Vn3KZViYNbO3jEjMP8O+stHXwhz6/WrsS/cmNg65wC3Omlgxe009ip4jr+85vDxlFnyOrgCt4wv4i+DUrg12Ap0LxThT4TO/ic6xyYeH8X9EeO4+er74OkShO07vtC4tH2bOCsCQEXM3GiljBFmq2h0OHR/E/oJtx5NQcWqXyjZaCDt/XC+dNpQ6j+DHwnvxyXTS/hZS1/6W57AxmxNI7rNIVM3we8b84SfHdABULE3cBniyO2dVeDpZs0lL1sxP1HlvGv/bIQqPIJdlV9JtqNkJKnDL4VduxzYyscnz+KptxlvFB9F+dl1cJ/94/y7QeXeP5RBItiV551xosfWLbyw/P7MLZpiKed3AttG93IMvo9uAsFg4aIPhxSTKacTBdysL7Bxv363G9hSEcSN1LxxjsgPOUrX2udxeWfx8IK/oMSzy5QTGAzF+V/w7cvfUHi/QUAnWN0cJ8lxdZEQeshE5g4rg9zHy5lq6HL8DIhFVd6yNN8GQ86/baBvzaN5qlJB/jCqClQvDMa5T0DWUH4JhZvVAOz/WFQpyJLhQKn0Lo2lsoDDkLWXS04GFADbTkEFGMM3vHucHe9PsWft0AVr+d4qOw4vNytzE/+qcHMfZfxzK8n8P7XAgzf3saJPd103YrxXdtSvOIQwENnLNjygSLU5oYRLOsE8R+T8PeaURw5Zg+rz26GUu/v4PznByclZdB0f4LcnNWUtLWPHpacQq85o2BeykWwyf+MvU/u8KhrGRRi9h/8SgXIHbMC7QT70Lg0AOmuI6/+MA59c+ay36xjaO1hQuLVd+iMji0MRNWyrXAbjzr3nZZp34V1XfZcOLiTdf8zBUefHBpcaI/6EQTx1vn86f5TFhWIpblyyrilKxHeJsmz27RVIP6xERf/EuDsjrGQotSAWl5puEvZACwahlD9zRSK/5bP0ZNEKLaun8yCRpHYeSMoztzFet/+A+NHPnhsojpbdN3F5iMqIPz2IaZWmrJC8z42NjQAnaIW0Ks7yVnsA+28HTbriPPa7E6MOf2Xot/6gsO3E2TTJAhZiT04Y34PZV3TgicHpFFi0BN85y2k3KpPaNcrDPFZr6GmRRHivyvh1K44Ks1NwMqL2XDhhCwGfDpN1v9U8Z91E3d29nFApCVIbU8mCtEg+WTin9pf2KzlIZculsVnufvg6tyTmGcjzQl75cG8QRNfhu4D7gQwVbRnKasMmro9kzadbaG9h2PJ75MlC080h5rKFJCP/IODr95SvcNd1JNYA1NtdvGIp370SGEtV59sQaf9MtDuthMUt5/hXUtyOTB9J70YMQqa267igYNGFF1RAkV63hi/ayQYBEhiwMcrdJiWkbNXPJU9qERf30YasvpMA99fs73zIpRPl4Df8/bR5ItWNCbFE4QCPTD8sTPHSnfTkN0Wvpf5FrRUh6GuwQRMy/byLJGN2JgkBREFG8h7SAz6KBour/pM2gVa6K9XiUZjNWDPJ1UKOH+Wjz/PYFcLW+T3+eRu3c4V4Q85KXIibJPRo7lZMrBJeDLI3X+OH36uBbun9jgdZOG/40m08+19TI9Upi4jF5iDRpAQWM3yJgfpdt0TnNlri0vviVOkhiK+2abFj+bokMAGJfqlPBq+BlmDZdUpqJYzYaONHQAVRWzc6cm7/5vDlw45EItms2u+Apx4Iwy3332ig5u/YXZdFVbYL8Mxq7yh9IAleD/X4sJjw7haVB/u1l5l+ww1MjvwlY/dOcjkWYErpWVg/vhUijT1IYfN+2FxtA4crN0Np2Sec0bbMPXsqQS1VSdgDK3lnxIW+NHFCR5JvKdsO0No0wzAY4/Go1HnTzJbageZq59A1pcp6HfwOoS7NNMHe2v6fdcaMq6IkblFOFXBINmYTeeYVV/pUJoBti8s40uVxdDSuh27xwiB3/qT7KSQxkHuw+wt1sPTfQwgSW0e7A7po56TNZBZ6Is1E5XBYmsmKzeOwqvSZuBnp4mdyW5UF5YNYVPn4YmjGej6Mp7fnTKH6vJP0PykmyVeScLT3E9EE0wh+t9LtNlhAc2//MCmYC4d0BOE6rlDGJbG/Hj6PAyJWsIfu51AU3cSiT0ZIK25v3DdvrU08oUezJm5id+45GBatz2cqNWARx9jca3RfLLx6OWagmT+UivOMjtFYbr5ETq+zp3ELBfwepvnqB4XQaseMcP8XLiv3Uhlgas4r0EahpK9eKYawOAtZ276fAombJ9M8peTQNfuB+akp1G6nxlnJFtC/qkZ+G3UK+q3qQalq2o8W9OYPMf1gvrTEVx4fjn8kTgE8e/kYGNcOcQvmcc/my9igJ8RloiPZ8feOq653MUPNq7jj9Zz4WulEtzcJgDTBE/x6uWlWB2ryyoemzh+Tx71z2nkgYUFWPTdAR8n6EHdkCyL3+jDWKkkfPFUAg4YjsGu3gUY7dMKxknXuET8IdveMoYHUf8o5n4CrnzEcP9rOne4aoO/jBy+M07Apc6v6PxYSRANHQONO27RKzU/PnSyAAL8l8OpBz68yLgKpDqvAnz3Iim9Xrz0UxUefp0KLzXeQKN1Pf/4YM8fFJkeTKmkzM3jWaP/D+x01MN3tuJQsu4RyHpuhisbnFExdzV1Xx2CtqB88DufSVprHtGxgnOUYyIJk78q80OzdJDUaoRd2oGYc2I9W1SvhuUB76ixQYW3vVhEMsn6cCB+CbrvXUdGc69yiNY/PDzsBZvU6uHC400ktz2UL445Cp1jBeCfcBbuDw+mXTsPkUiUAB+eLwLKIEYhNQPkMCeaDmVNouhUXZg7FsDG5DJ1RhzGXVc284ehNPJZeIdSbzlA8qRyvvw8hc1LheBAejIZpgySwqd4VFk7CjxqZ8N5xdM8alk53Kr4Dw1qUjlu/RiwvH4b7BV6SOGBMn15eA3nLuuH1F8fUab+B02MTeH1z5fQTT9tKDZ9ygo7l+CS6zvRbXgc/fB1pgVTKqD+uRM6PqtEyZeaoOJhA/m33PH76lmkktxDUlP9cMwXQZZLEGXbQ80UGD6R2kb8ZbUHY2FIZjVv2rsP86oT6bi7L85YV4FnW9pY8twk9lp+D0QO+eAmMVvQvLiP9dapY6fXCIztX0RCabVYGDYLd888i736Oewy6Sm7nhOE/cHj+aLsbdpYdYSFvd7wtNKbFPPrM2uoSIC8bh3EClRjc6QpZI7WYge1C7jPcTpYbLIgcbckHCF7lWYO7qamNm1qlgnCGO1JcGvOCI432AnP+tejQ8hKcLhuQ6lgxZsPv+FZOwNY16gFbvRbQK1+AY+c9Jba/x2AqQd1SanvKdWUm/D0ohUYHLwM5919CYbSo2Bjwni6Hb4Fbhrao4tMO7v+/Yktmpnoz9upWGgi7SoXhdcdE8Gj4Tz3rIkHQZN7+E0tghundLLUvc2wrjKRflQVQKzpAf6QMhr6UyUx9v47+rXzLPXmvyLlKSIwclMyzd21mEtPlNMk16U0scAGYLM2j3kyTLs+zOX9FSHsVPqQT+utYKdPznhofzFOejUXfr5Tgo0aG8DylgzmxPmwpWwhbCuvgLbdMVhy/SQJZOTjXnMPzrJQho6Wu7ByjyvfHF5Ip2IZftNOnN0+l6uSh3DkqMuQ736c3k6SgPMvc3BCWj65SMyksA++GNl0jTZftufY6LGwIDeNmrOGKFhTCX5+f8DqO6ZCZm8DeTw8D4MWTlgZXAFlmmbssP0vHVVIYOVKEzg9eyXYFoxCD6NQ3nKqg/WbruPAmAs48+408HvxnQQxGN7XjIe/HXfJpMURmrSk6Wt4D23q/st3rM7h5u8D9NU9hNe9+0rf7FTATUsUFpx14KaQI9CoUUXtqVI8w/43TdDezFp3H8DppQdwfOEICOqehYI3xOF6yi7yis3mgwE2qO0rCO8n1kPV31Z8NlINJJYZwLnR32mnywISFDDmb2If2fxLBexsF6TOzZfB5PEjVJ+Xw1Jh2lC29gF/XT4Tfgh8wi+HzfD8skqW23qZIo58YluBO+Ab/4WDFDVgcvEamn/qCL6WNKM7PxPB7tEXSI86z8/GDHFxhADfneSGQbut4eL1bnCZd5+lN44nbB+B483vsEn2Q7r+W4/nRHvgAqU5GBCuCDtMz0DtnztwJbAPG57XUYG7Df2YspsWGeqhRtdBUnd+R847RMD+nBSob54Ahxd44xpvF1o6QxU/iD3kH2nFMHamBo4b+5U/6OvBuOti/LKhhQdqnuBIzWR+9Hgzvje3hEbdfWw5r4KOXlxIyZ+UoCbIDX/se4rvI5yhbo0sSwyUcFCHPy34u5Jnfr+LOWpzcPpeK3gdsJJL7KZDyIxiuD3LAV5Pqqa0F0lwMmkcXcuLpWyBLeB4fCR4au2lecaSEKmrjdqzv5DMm3LWbD7MkaLroPHHbNDLuosv0ozg0JOx8Ea6F8v8f+I38e1UPOIYJ25eiqdKIjhr+w0InNkKa/7JwnHRcCxcmAzeawdwxS1V+nq7hj6av4PHewG3lkSD3FYB+LvaBJpnL4KspXVwa+gzvT27nLZukGH17Bhe3lkCMsUWlHFtC8vbKkLw1IsQm5nDHVEOcG+fO++/9hQMrIx53M0PoOh3GtNnPgOdkSKwZEE9mGyejtPPTiBVMKKGjyWw5aIqP7KSgGfDB6jhhghvujUZ9sgfwUfTFNFGXo0V/n2F7bX1rH8MwdskDxv+nqfgC41w4cU4kHz7l/q/KdDsW+b8eN9VmHvoFP6bc4JlbofDpPRcKK/xRyc3TUit7eeNfz35wKluuD/OHex9W9jacRO3SLbQwr6RPDzdkJYOE2xxFaWPuZPIRDIHyoM2kFm8Jti9XslU/A0sYufA2AotuBcqCi+kHnD+n3A0iY3ACU+uAXwUx4a+SPp5wpfkZ82E2uhV0HBdHSQm/cSUBwkoejuKXTYvodT+sTQtLI6XFQ1ga94JKpjVDF/vqUHs60yq6niGaeGn2dn4Itf/nsEFb4uw9/J1sljAGFGFlDFRDcqe3QWldGcMnhEHN4pH027587gpv4T0r7nhgU2t7DO2H3dcHgGBn7Th/aPd3GLkAVvk7OFb9Es0ka1F/z+5sK3uHgdPl6Th1ULw7l8+j4/axeX6gri9Zg3q7nkDy4JUKWGbDdz5NoG+XJSAjgo5UEv/Cd6m4+DhWzNeE8dkuGc+nGnuoor6JVjmt5/cH9nQlHHW8G11F3do6pCSfiymC/ijd9lnkD2qDNPi6tlu5XP0XGSP+ypHwFsMxph5SfBz2gY+6l/PccEPyWSyGE82yKGK4/WU19qEXdcVITbUGlye1fMmp+swehSjasEr+K45ivKyH7LQ3rWUucARYnMZ/ifuPrSBcPwFgH+HTcooheyM7ISQraRklJGiiKiUfiotEkVIVNpFE5GUVEiUtoZRKIlKUdKw2pJ7zn2J/5N8kux6ceXOSzhaSZfVt2nhwZNp0F4ZQsc77cDj1AQO/rsXUlYwSE/O5ZARWtipLM41GlLQ/EmAt47whNdLe6F/ehSf7OjBIqmJ0BW0lDKvl3BU0SoQO5aFrIUAWQbgUxyCNxsSMLh4M6cY2YCtzQE+mv4POhWK4ZrpMnDwjGYt7cfg296Iwac+87fH0/CKjhDoSUyndWH90GG2lUtz6snv9jXqlU9lZ1F3pI0pWLXTFWZ5KIBV4Dz681MYZ9ePZ+eAbA6NsqAJNsfxi8VIcMBVbL5yMY7ptILvoXOxIs0Ybtlv4ed72nF3fyIt6rgMz9/vBIG+bPpvoz7uva4GooFf2fj2arh9dZDzWu2xHyvZ1boRwhauwlmr6iE9Xpk/nNGDMK9nFHfwKR6N3YxJI7NYfdc7CiuKw0bBTrbYfJC0PU7AR1156FrVDBd+evGJJHlqeuwHhz2f4IqqD9xx+zV6O76hVwd3kNGyUbBB9ilvWbMOTk1PBCvHATAw8YTgxcvBsXgLxqQK8Ym+Dn54Qxxq7qlQi5MabHH/SNU7bNjR7QNEbJfAzx7vubmqB/ZPfwEbmgk+an6E61szQW+nIUsWuHCX2jlSq5CBiH/RnO65D2Kbs0AS9aBjSA9PuO3Bod0t/CpFjx9caOZg2XCIaLREFZcKJsPP+K1qNJgJq2PM5R8YXVtAcUfyaenGOHT1jMRP3XPAv9SbCuxSIC9LFoSbXsIpvXHkHniHTY3jqbjuJEZVa/LgbFUe/r6YCpU+gPYnA+h88QGjl9tidf05vqVpRfM37ubxXhakGGoA/b8Seby9MeePEwDd7jss+rCSBM9awsmR52Fa9BGcUO4L6ffdUO2CEy9tlUSDLQRb3G6heEkcbhL5zJELNpOlK+F9m+Mg8HyYPc6Ko0JPOyYrjgXDN6dYLOsedcQ8QxS/hZXHlWidRSi21WXQc/UIjqyK4LzoqRB80R+ljrzgQY9dICXTR4sWXYNfU2Lwo24MyG0/C5t63nPISmk46nYLlDNug0vnJz4vfIvPtE/nN8sbOOGpJ4YphFG66yTu0NOD/ywegOenZJKdZkMWV3wo55QUvA1QoDjpZlqg9YCUt06goaNSoLajm1Qi78EFg9fQ3fkHdbLy+ORbT95mH4qCukYYajiG+sdqgv27Y5QfG4l9EbvIu04YcWcYmL1YQXfe3oTVD7/h3gezILhEFl4H6NDx9B7sXDMRPju/gfLL0jAcPQlX7krAx8+jeFS8OBclmENZnx5473uG6Rs78POSM9Rz5xYEBdShUUkuWO8YIIV/FRT5zALy1u4Dy3HzyC1HHBp4BgbZRFNsQg8aTlMgadEOlDTcS6rNgpBcPhHqBes4s7iGjHMUePWrRoz8ugDnz4oh43xxLlSKQc87I2Gv9B5a7b0VsW4xzpT7Q3/yz5Piim1sYlmOSVO0YWykFf1baggpY3tYPHkJn1MpII9PPrj74gc882csF5lO5ua2I7BIy5ztD0wBnPQF9bOLQWStHt1/NB1u/JPkEON4PL5OjCPEhbieluGRTgnwi9pKyZffwb9dyeDeMAfTT6ZAYl4uRnalkOjtHP596AwUlUlCdsEBKgiaRVV6GjDm0Gmo3OqA0nLhlHhCmaKc28nD2ZZrMy3AdP5ati+WpbjMFSB3TZVbfowEu/6b7DNQwYdTvDjreS+v3aoAPSZHcNH0hdhg+Qi3p7mBwqVR6KO+ihxnmzCtTef8TV4cFGEIhpOaedR1fzjDzH5rDHD2zBHwbmgIRo2opaTBNjKt+E6W6wUgwyWFbCM1we/ULFqZsILyzULA9aIKx4ZnQ+zdLs5RHIVvu8zhVF8rXZ68hfdZSHOo2gX+z3Mjz3Uy5bL4dXikazudr66C02la0H/tA9O+Piz/WQ79Tnr8+cdemnc1A0Zek4Mr18tx/syTHGUvBlUXmvh4whTcsN6L912TYZPjd3nl4qUU970CPmz9i9dyv2JTjhhYaWjy7IJwXCeaDubLauDA4hS++Okazx73Esaf2A6q879iiYw8lBYbUI6oLTf5deHTERJcbLuE1h4NpIJoT7x38ibkxOjixN3iMP3AJL6y2oncjMXRKL2NixoTeeXsQcoe+Yda/GXo4PMBfLVqCnw23cLLhL5z155ONI5+DEPSSmQbUcMRAj40Lvgx33xeCMoSFmC08Df993sXv7KQokNK/twTEAzDiz7TrFBJShMOhhCdOo70EYDc+IfkEBhMRgIVtDyumO4/JW5a1cm1YTPh4JkufBn4FrfkScLmo52oq9CLdz5kYt2DP7ByhD8nthny5t5A3PvSikaIxUDBVVWQu2BP01vlsW7jcnp5YQXqiAqQyt2t9C3lIIflFLDsnWl0oHMCnCntgo2l1lgY0sG6DVMxUOQBRed400ePIAw4/wZ8graxbooa5D3ZTbH36ihGNYkkbv3hmLj/6L7gR9je2oHu77zAUtQO9x1QB/VYB86268K7CXsx799lPtD3Ft6eL2OvCw+wyF0NqyZIgnC0KVSePgRt6htR4jFTSpEy+I8VhT2XaiE2u43DnTP4YP5BMjimDNcXP4b7xrXw1NkXjh/s5R7JnUgtoeDUHwpiM4RhbkMifVUfD2NDESyc2tFjQTPEDhbi8TyCuYkvObCqG96K/kePPAnrMhFqZt3kfXEtOFLXmvdKtNAi2UCeebcNs403w+LL51hutzffeGkBjxQvUX7RTzKSeQvVC+7A7AeeEPeqnZqkozjQsATCJLb9v1/WYdfJq1/Jws/h8ZD2RgcLpx/BKEUXkLMz5Hlqm2mo/jN+HLKBGY/fs9CV85Qy0g/st8XzUpFDfO+1NHmWnYYzX/U4I/kfK+UbQ3iUJyivzsAuGX14LLsYPpyMQuE1oTTooIDLTO2gp0CEcOUUCEiVBal9HnR0MA4dLo2joSnlPLCpiNZUHUKWNqILFwapJksPJr9xgBlQAJEGW+AFSPDWpIf4wuk+H8vqh/KZnrAqRpWyoywhy+81fdc8wJN2z4VBp3E4TuIHWa0awx7Rj3hNnhsKXQ2mKRcEoHnfAuia94hmGi6CvL5qfDBLGX8uN+TT9hv46utuHoz2RFN1c/hy6RKtDgnFC2+6qfftRIxMtyXmaLq4MxNdTNt4vuZoeldvCG9j4qHI8StKSL4j5ZgKCM/TpBle2qSf+h19DUu47ut9SlgiDUvXW+KX1iCuu1CFyvrJcHWuEHQoysKHfc/R39wHH/zShmtRliD+vYRrMoqgtOYXlWqsgtNDF2nSokG0y8jBEVUrIdSxC8RWycNHAeaDInZwrq0Wnhgfpzm5d8m9TA4P+2eC70ZjHj08l8d+FIfCuRH050MPretLxqr0BxBnF0A4QhgTjwbwpuPj2XFwNRuk6gPHFfNw7DlE1SVwJfAK5hX6oc0/oKW+Nlh8RA+D1qiByMJx8PXXXPio/JW214ylXfFV/PTHLD7cqAXBqy/zzUI3NvMVpYk1YhD+0gB7X1Zg1yRx2KL2B/+b/h0MEq3I1noau62Iw4HJh8Dguj7AxWXcdmEF7Dx/CLyFZPllRQYcXRgDOidmoqlVKEg5JdNVRXkoWPwXxkqksK5fPo/MLwR3M0kQfT2TtpiNxGv7FWlH3SUsLZOF14VeWMrOVJSaAX4lb5nfCwEluYLPvdMo1SOMIcOyOGEvwH753axt9xAaA2pobZ0on+YgjNEN5xGqDvDq/Bl661zIGybJgYBkH/dONefeukNgbtaPmpYHcINpErd8Ogzt+/4D15sHSfGxGdx4vBtD/RJIUcYXJksoUu2VcpqyivBHvTxpJc2goT8RHPFkLOxT2EZKo47j3oUxIJY9Ai+RBqfKuuJ8OT04cdkd6m1iualRFxT038PHtXPobsN+UO7JpjvHHaF+bCrqT3BD9dUMd08WYdXkEVB78hwP1+bBk/l7YJlXKveIXaT0ez/w44X/cH94Bmgs+QgbbARg9jWErAcCuLvRD+wf/MZkFEPBzyPZZY4ghbY4gfjCStZt04KOfbPIMSqOTEoKMUryEtgqS4L4OsaPTTdIunAJi+x/hbN8TMFv2ADVH4WS6ob38LDsExxKi6BLX2xBY8FUENh3Ew43B0Lq/akweMCOFmz1pPx76zlZPJklgr7BociDoH3uF/hZtsEVnQ7y7TCD+odxLDH8EB2nLwH/T19o5HcxWLPemtMuj6cZV4cw/GMqP5imCZIG5tQk/pBcnPpx4Ws92HY3nX7OmASqUsXUUSkFHy7Ng86dsjC6Yj4UHWxDLRVtLIweAe5zJnLrT0G6VGFK9gOP4foyGU63ngonjJCFbMxgUMQBf62+QG71U2GSqjrEex9EbdEjcGZcOJ+0sILlM4p54+NTsKdLgh/tGIOv7ObB3WOvyDwtga1+zcCrFR54aKU43I+XgOFF1zg9qQnXdmmCdp8TN6edhzsrmyDg6XLy9XxAM4OlAGa9Y5WHOaC2wAfKFx3FEcG65DVoTlNKijl0020SnfSAzL7JwrJiB1ikYs1vfj9njVeuHOtWhHnnt9JF2xtola4KX6TLyahXAvY8GqRwvSDY/8GFDC/OAZfFRqwwqoQfhq+lzK5zMG1VKpvISUOvlxieMJwOq44Okufr63zfOYwrqkvw+WA4Lf26nGQGHpJkkAWMV3LhDfXTQf5ZJppN0IfODS1QyNV4Xa0F8lt+8ybJEoxoVgV54bUwd6cVGBa+wx0fP7PdASG2F7kA7SIjcefvCzhGoJ58D5pBu+9RFBx6huLeK/nVuXa8F9AKxgqKZGL/Fd0spXGmzSc481INLrhl8f1iPbjj+gNevOiC49OPg8a6M3wrVxXkj8vx+PHRUFRqCyUv6zk9yhzCNYQwQnw/rNFV4LBRf7BW5yXd2LKZdlZuYotgfXDfH0/jc7Jpopoxyp5Yxbf/bOENE7W4wFYL2zQjQCr4Bx+drAoKk1VhX7ovDjd9BNWKCJQ0W44jNT/yrthZeKL9Mlx93YnVKyeD8PTJsPGUNPwJv8nAYyBF7DmkjoiHfa+vsa9OKNg+XkN3ZkyF/+a3sMAOW+wxbgK7/CswpHcNWo+HoHzqWyqMeEaLzMoQt4iCQK0le4yrwd9+ofTv5lm4NtqIPnko8vTSPvA7+Z4PLu8EMw1lGPR4zj0Pn9L0P5GoEW9DJ6oSsE7qO+lo7Ob5Qv2gLrOI5nydCGLFTljfr0vK29xRv/4GmViFY/WmASpv+ggDxvWYt0AdmnYJgr/WDygqPs0NJpPp6Kga2NoagKubruCZyc705JE4/bAVhgvb1aDhWQtG3RvJU0WGIDpNl35MrEdZqyA4dScOszO8MWFfBU+9awWm/vPBb/I/upToSP49v+nJ4gEa0zueU3O+o3imPappxfOSCISTnrdYfd9RTrxkB3EyN2Dbw3dgdkoRbdQMudR7KosnvIA6FSkQHHUYo2Zrw/Wkc1Do2AnfXD/ACv1YGnfnEe/TmIb1X7RB1EoNvn4Sgtr3B1F3bQXsF9nJnvHRpKnaAMfmmJBPoQ3djPtCekKTwfRQCmS5dIFBSgSsbnNF9zVbSXbVeH798gCWbjzFWseDaPsHgKS3SG4KMqRtpYR3FVxokcY2llwbCm7ylWzxYh8tN7tJweusoeHBdM4WQPTv7eGnno8x+NwoAsVn/GKhMvgvUMWnWfPwgKowmB+aQKWlubRQ6hHPireCkD2FkFs/mQcEUvFdkTQ2KQlgtagOvB1xiOXm38djmyJJ0mo3nZwqSurrvnCT1lHoHlOLHz9+olRFC7j67T3svziGvfr1ITTXmmoS1sHtMwJ0fH0NLTijjSZP3/ITf3PQbvvEZedD2co3gRZd7ac/gcXoY3yI4zQ2QdA1a/q02B9udQlCo+hiOGTZDjYJmfzO6gAGByvwauFJpDHhKe5pmc8DaYexvUwKLBRv8dnJE2iJVz1EV8Xy7iOrcamxDsYcSgaJugo20zhM3WsVwOPLTpQsl8cix4l80tqem+olueZLB0e1H8Sutc/ZzVidj4Aa3FlwAQYjNVHztwdPOLcb56pW0aJNF3m3Ug2Vx+UAGClg51p1uDP2PEdZMCfuNOGfqtP56PB0OHHjGFzpbwdPzype1L4RdvUrwfcmFzZfWwUOma9pVdlRGhd5EvYGHoXErt1wXDCG1ckZyjXlYcjVjTWDetluwwtcF/MGRtcm0KrGQn6S0kiXT1nR2e+luHO5NMw03Q11ietg6+SbVPWphezla6Et4gf7LpIDZ5staBIeydFp1jBtsI8TvefjOA4H33GaXB0/GzUbculDaBus6BtNPybuoKCn0qAs7U+3g3di32N1GipfAzK7RvDtXV9YTsaIv97QoctvpuLU6wTxHyQoqnASSygcgbzZQG9F13DzRAlwEO7Gy+BG+UrLefwvGfAa9EPJv6k8WLuJDnjsxP8yr7K5piVEnZAgfWrln99HUcJkHRgVupHyq9/iH38XoCXz8Pz8ftBUmI0nQm7TaZPL2C8yjBt0jeHvv9040fwc/xHtoLmrO6jzv3p+fPwJ1y6cxh05Y/DwL006kT0Zpoyzhi+lrXRxxni8mOyOq5zO8YM6U8xafQmmjTThStc5bJoiDu9bREFL/y8UV9iw3e9MmC29Af8Gp7HwjlgQDxqAfe79LO9rBTrDR7hi4zI41HgZZmd7w/TXiWyw5BiZv7PnTsPFXC3ynbYfV4FrC06RbeRKCnOW5KL6rRBQ9xrU69ajvf9K/nBKH8Y4LefBRlt40boEPuyZBaWNP/n4i+d8zL0W+puducwqCbLHPqdpI2eBjs1k2GPZD156E+hmTRsbp6+BRTdV+cNwOJXkJ8F065lgdTsT3B7LgDU14tPKX/jO+wvp/Avh+7ITaG27MQVsjKWb6vFgX2yMmy5awHPpTbAsdR4GR2eif0kNBvwXgQ3z/OFv7DQoT9XE4vsO2NwxARLK5PHBq3/sJbiBPW58BevgCM750oXnAvpQWLKIRVe60beZBnCqz4yTvr/mok8nsWm+Og5HLkM1Aw/cKvGUl54JBz5gyKVxapC+ZhCWeynDi1UVtDDBi4b2ebL+dSLZUQbYL+QI5yTTyWmfJSxeWEc6bvvAPU4fcy0Pwd/pEWx6rZ/CRqVAxp4g9tq3nm5f0QJ45sZq63+QVEcpge4qOm4TySohA7RLTYGlUnbyDalPPOK5HpyEU/C7yhkm7VlICQZT+UFCPXxZco/mzz1DgS6qIHtSDiZNEQcji3XszS/ZnleT0bgEzrvUxTOOl6ANmICxVAZF5oSjSsAU6I59hQV96+jd5YXotXMnmIro4PXVreSWW0S1g6cxsskWR2xQByXTGJabcw9vfnLn1LyzZHv2AxwfUwc1butw2XMJdi/2p4YeEeiffo6P7vwNFke2QkNTE9Ylh/CDccUosioZhrarcaXiXx58rQkm+wV5uacfrlo0l4ynrMB/cipYabWAn1ue5n83ajg2SJ4KTpuA24JuXHO2AZaHOMKMxM2gMFacHMt+wNg11nC89x7qzvlFY9MnwOCcC1g2VEv7UAlX7HDC+TbXMNhjKiUtscH4R0HMQ++4OGQqlO/UxLWdNjhZ5BEmOVTA8xtt3K9lTYc2B4DjvGVY9VkKBe1EIShqJ1+430k5ty5SGjyihQZeoCWrybWDZ2FIYB1nhH7GreGTYYzVdjpU7QiHxdrAoTONzBQXcJxYI93R1MPjWjbgUpaId7vkQDjQkicGeeJfp0joFQpG1Q45NhI8Q5b6W2hGzlaaY11E2kKjwDR+LP+7UE63cmyocO4xvn87B05b5/Gafco4pnssG7ia4MzdCrDK9TL86yzGMqsdcNOykNdfEqU1qp5wX/spjSx3JemUqXTh83jYoPuXqjWu4euCTxyhhXi1/in5m24nMYkpULVGkl79fsUlv6Xh7FM7qn6oCz+X1LJsyHXyKE+nEmN5rDiVC4eebMOxA7c4YpQwqG2MhrGW84jRCyxFIsF+tBvG+STygg2NEDblN6g+LKRp29RhzdkVcODxAoiWuovpA6p4ap0gPbPcw3NVell38Te8V5RDw1sEQL5bCWWd0zHwpjiJXttCeDSHZoxZxZXmymy5FeGA5DJ0rlWCgO8FvHrSO95scYyVHIkKbUNJxEmIz70OhYrzt/m4WTrXGyhD5ue9zD+BB89Mh6vvheD8nGEO/VeBExzNUWmfMjxY5MFXVU3goORfWCB1F9vXfoNrfhPhe0UDH2teBrnjEnh5+SBqnEqhNC9p6HWdBb21v6BWeTZd/B2CT6e+Jdu+azzxxlIIzjTk6OMbMO+lKWzuHcP5H+ZSybhLnFRgxHv3nuf9w+Kgv2IZVx+2oBU//PCbuRn88LCFU/H6LHvLgfjHOMqw3oXPLvRS9U11XJJejh/rgzFn5gh4rGuPjy658LS1gpzRPRkXZp7AJuUqXNEhR7krQllVMZM1Dk6FS3vs2H080ouu0ewgF0Jt6+KhtN6VHBMa+MyjUlA6NIc37paDxDEf2KLblVSnyoCLyk5Y+yiN9+Vk87HQu6wZMAJCNuVwrqg8vHJIZsO/WyAuSJyFG1bjuSfDoHI/hgfG2KMv3UEd1Rsw8FYBgt64cON0oshfTTgUGc+q766zZHQgCHyx5RaThZBweAX1WEnAogsvoH2LHucu2UZfP1TwxoPXcdZcHyxsmUqD0+rYUUyMSrQloaell4eSc+nkaR16uNuSxc+aU8+3OzR6Vwf2La2HHo0ZkKWrCxmb1/CUy36o3XeJbp5Uhz2SFZRg3kanXvnC3m9KsKTkBTzMlYPuVA+8uNCD6/x+cJvmVbov0APNdZm4qW6A0gJvoaP2dnJWs4RN1cv5gtolPJBSSI5TtnK4mjjYjzxME+9Kse+2bMrREsaxM/ThO2rzv8oflBpfyF+XvKaGa8fhJHwn9/+mY9GBP1CTMYGU3opCeGMmSf64hhXVQTxCo5k109bQ/lnbqPSOCxRkiSIotUHZdF3wKBfk4yLR7BbojMtnZEBGviClNhrD5L5QuOu2hjaJWfH6SxPguUwKufqdwcV2VixxZQdM9vWmac/ncFZJCW2UNIJ/ect54x9RSPpxiPeNjOSXKwfxca87jehzwaBCMxBfpMZO47bwf/8J07VN+rAgD7hgw0eQ7xgia608th9ry9XPtSH1sQi2jFDhhSL29CbBEGZ5j+BL6x6Q27Ju+LWgHPKl38D+MmlYmv2QVpr9ga2+v0hS3AQKK3Poa28aOIRbg17MbfwT1wL/qR+FKW+D4NIXYxrxTYBGJo4DozI5ul5WC4Ay7HyuEa8sn4vOzYFku+YKxr7rom2nKynwujWMUx4NZVl2UKt5B5X9v1G7dAHandiMOlOISp/o0uTPgXApTgqUc+/htLUO0FJqD20XW3FIeRBDPg1SxZb9sFVlFz/pq4HoujGwKeUCd6fl0qn2e3xlZAeYtRnQy98a5DCcjmZC8Ty3wB7F06XA8HA0D9yaxk+e62NnSRlsoqugue45OtvV0kG5a5R13IDeqmiApagxzbebjo9fXIF74SvpaIABZCkIolZBN1qUBNFxI3G6EmQDk3d0kfy5nbR21ACse6sJ1gKz0W1ECje395OPZAtdGfal4iQ5qEzYxOO7zlBGfSEXV5qzd5QkSm57hn+fL+PNpzV5a5wPrtaxgm6XRtjrMgVfGRvAq+wTeEM/CAR9B2ln8mfYEbKBF8zuxJs/1GA7zqAQywwKLJOnIPEdNMF3GfX/icVYo0J8f9UYfduO4C9fCciU3kD5m3+h+tNRNCOonN/V7IfV0ZkwL+wRbih5x3tlQin6DsHm85uwOMSeLATF8Hb3TWyNIMJOPxox2ptjh05jnpEovEoTgI83FLFfZw3ef1rJtOk31u9MQ8FHp6BttAj0mq0liyc7OPOoFOzs3ENnPbRJdHAjt2iPpTkRk9HdfzcFzn7Bcbu6YPs+GU7JF4VNAS7w4u9sHDVaD2I1FOnOp2500bjD1/YNgFzPEVJer8J/z2nBzs3VWNgZyp3eM/lEYAI23TwGKoGZXFWcjBF2+TxhZB8PSqlCdcZy+vBQmzxT3uP23mUcfmKIfk3rpsHVufDqSDm03bPHhbf0ILYrCe3mxWKD0XrasjiZyFqS6nTO852MBHLblkPOh9+jbqspCNalgWauDu6asZjck+fx/edZtPbDQeoL0WdvOyFeU6DGjt26sND0LUOUOy9VWE/tz8VhufNCtilKwP8e5ZHmXDf89+wzal5QgUO/6knPaRW1162H4VxVmFJ0BO+W9rPLtxiWbsqjkEuxdGujHCzRe0/yUr6ADu4g7awAN54chdUOSGPM9+Dh/zzYyiSGRlyQgc1n9lPyjs+gr+RDtuMX8Oa+MNwc34jp65+Sue0HWtk4ixVahUBQ2IQlnrmRQ6ckzn98lmVjrKFyngpYztiJDyMfkNC54yA+YAgmL37j4S2SHKA3gXbmfKLk7FfYN8GYqsWGqcG7j0XPzsA20fHQ0bGUcrT30oiWRFaqKcEsuXewNKYFxV5Xcs5vZXY1OQZtn+TgoE0H7HDz5Dzbz5Q0dQodWzkL2msjsDjIEY4N3OGMwZ94TU8G5s9O5ds+2hyYrg2OI20oc2o5+kfY8zttBS6SPgvjxk0A1UZNuDZNAw0eLaOgbRdo8vXXlPp8OWTEiWMstVOZpgZNS51L57VEwcrCn1uMszFVuISlj6ohB7ZC6NMqXD08lWO75lCVnzz0mqjAmVGJLB56ilaG+PPfNCWqkNOjB3AOEpduhtaAmfxb051O7ZGBl1lGVLvbBAK0D8CwzTM+FXKHo2JK4cc9N7iYsYZEfBx4lJ4ZdA2uwmOYjfI2yhCwowcmJF4DFYVG9Dq6h1PdnsCPE6spJNME4k98g31P07igJhSl24foulk+nFpkBN9jTSn7nROarz9HL/PlwGCGJXX5Ihl8u8Vt7wP4iPZ5DFymx1Y3b9Po89vYaNt0sik3AkNnA8j4dh6rPE9As5U4v2x4TDHG+Rz3p4Y3Vn6Hr8esafkLYZDYeo61VX/jjAcmrNjmS5+SzsLXyM20TdeFL9vuwEqBu+ijJQ2eH3PxQ2QQpJ8ph/m5teSZdAJ19U/xraMb+UhDF2RcXA3SYjKwes5mbPfZyBlLjGnkfCHw7Hfk47NKWWKWIzkFXYBUEyOelysKNW5b8EyjCDWYL+K/VyLRfOYgt9/9ga3aj1BP3xHPpiG2J6nB7l+C/OPNAAr1nIKeK0G05n4fhxWogJdgJjmEH4PbPafJ74U2dJn7UV1xNnzre4MDlW/off4f+FzozBlaGqzq+ZnyZNQx32EMjFGajdPyU/m3ZgGrXZWFbqF1+OKoOK/69ZNXbsjEoipTeKepD1cPPwLFUaK4u/kuJl3qYMeGJSyZKwNLf3yFKHFXXgVNvMzOAN44b8ZvxeZc834kr9b8zUqfzfBGgTWl1/ZBr70hzLwXhO79CuDsP59KPdvw6tn5eE5rOUVV2pNM+h0YLbwbqhSXY1JaGFj0igB4qvCCkvUouyiLehq0cHPfJUjROMqyC8vpufMY/jv7Mf9XbANO+gHspDMF9fZb85JFylB+8SqObECW3BkKN2I3YprLCC7WQli8w5CFpJyoNnUxiixeD1daXSDG+i1tmnyJnG/4QrnLbbD+pw7yu0bDxYFNtPavEk6sqYQD62xR3jAG52Tthux0Jxr1/gAt3ysPLwa2sqbXKLwy7Sq/DfzC8yrF8cWROoSYWDQ+MR0XqQTRwTmaEDH7EOodXUyykVbwZ9QLjDd1pfm6grAgfzvNTvxGGxR98Gq7PEzaooSK83fCzwsadPasH8WUNbKJeRG+NB6Aei8jOjj3Pm9iE1gpshAnffGA1d5jMHPFDdg4FIMKcw+SzPKpdLv5GYe9/Q+uaUjCAe1U8raRZS7ey5UXjnGcgAwb6njyzqvbIUBIFPQ8g/mDtBJotmRSezuybVU4hot+BjGtFRjulEhGQ23UGptJCQUK7Oc+6X/m/3aLBfJ5ES22jRJE4x3lqLnJFn6IJkEljaE3xic57zGh+WgD8NLV5EVrltIB5zssvrAVg2TM4W+HHH3oTaVohfE4VraIvgkow89d22HtTDGstFxFDobZdPWBLX/8+o4Ujv3g76lWFPCP8dyZCXD6SivlCImAU2Yxsa0JXbyxG6VHngexlL2Qc2UOSKvtw2qWhYQNAiB8fyPYPxpJo2+PZt+zsVRlqQvS9/5B1e9y0jq+g/yXqkKF03bec2I+NmQl4p1jlyD4aBjKT/KgdW+1wcStBpZO6OCub8rw+kYQvc97RkV6nizR94BmPNHBiesKsWnTeHoa0MpbH/uAv8k4qPA4g6e9X9KkhDosuG5BG5VfY+7xhxDjcQpzkkohLMcThoqsoSkrmjVFZuHRvd7gU7gIya8WhBfZwi0FdWxt8oKhpwDFazSg84UdN82rps+Zw5zl/Q3M3OTB1dIOTiX7sqiuLHwtOwg5OwmSB+rh5PsH8OuODib3y0LG3Tg+vbYWWzY50vSZWexauoRc3qjA2/Xl3H1jAycfO4Upyyay8/vv1DRbEFb8eU7FGYv5RUscL9o3AoyglFMX52OIwmTObDAA5XG/KDMvnpaG2vCXhGBMGHuZz8RNgFdbblFzYR1ObE2gOhEBEnVupOXq8rC7ZRsNb7jBXhEFvKRNA+6/bubnY6VA+KEh3WuchOZmQ7C4IJ71NJwxf8c5qH/xg1bc14Srz+Sh2UMA1p5eB5dnWfLhMidWOO8HUXEmaNIlhLWaBdCMk6A0yY+7TRyJ715k/2vS5NnmTifvFVBDzCoe/zGHNI+fhi3yE0FLtgIyFsRhe4kIuuosgrXDLuDzcBp1mLZR1RJptBdVhOxCHVi/YyPJbfRFDUUdXDtDAudeccHXjb/gtbMczRXQQbEZ72GZF0D3hEq8ZuaPYqs24Ff181T0uBCcVk7Hps/zeJz9MZjSmMyNd8dDzpxSft4iQZGVtfzI5ziYX9UlU4fz/CTmM9gYZUJwUxTv6xWCc+5OsPedOCtv+UJhtufp2VcBkBV7iX8Xa2KNZgFdKP6MujmjIU2mlRrKDQEsdWH64GtsCtPEhzfVYObkRqg4tJFvtNRjT7AKHPY1wY7yVB79dQDEfH/Q3c+tMMrenH787YFu16ugtEcFQy8agDf5k1hhCI0UGcdPyz5w6ftMUAjZR4JvJ0LXgUCcdFmNNzRYQ9jkn+T5ey75zFfnS6ffAPAk+rv+AI3M+knp83rQbuAEGX22AvXgP/jkSiP0WDbilrC7sNhPG04dnM12Mz0x+4IXOHUPYsqvSVBx35FdDyThtc1rQDRzKU/STOdX0el8YpEsBwR+wrJeFYjqtoUSz0SwmHofCjtXonjhS0iMPoNlve04eetLrjEfgWVZaZzroQKPUgVwx3pdfPCoCafav6YhheV8+WgfvLrwhK53CpDBxVuov1Ybfm7vhBu2rRSzZip8MW6loXR3FP82Bwa+L8F2I3PuKxpipwdmYOH0F9oeroN14W9Q/mQrmv9AeG2SyD9dIjjSK5V2/K6E8u0KUFp7kezEElhGzIQzm/djXfFCDMsUwUsJHTR07gdMsHvKZRfGgZ9eAJGuPgLPgBknt+Lhy6fRo/g0rxEEGP1HEN4fE+B42xFw6+Z4ir/ax29+O9NasWF8LHWJHWpE0OP9Ux7tdYYi5eTBskUGZlh+gl2L5oI39EPG/Us4OHEemE/shP1zY7mm9hNNCnrB4/tNobb0BWkYJnFzphf1qN/lyxUPKMitmV01U/G07w/ePOEnNyeJQd4eVcgcCoJss1L+MmcVyeUNgLn9bC42WMK/M+aDQ7gWO3yyge0rp4Kp0l70/HYB+xbp8XDSOzK4uZSX+6hwbkoW7Kq+y+Mlx8MJ71LuqX0BtbnGrIzRdP/6PBz1MwqzTeJoTvl+NhFKwrA9RvCmrpLqQ4JYJaCaszL28nXHGJ41v4lNnVZCWHURHmlPYclmdQiaeRaXzD6L2cJ3yXX0Z1r66QFErijit4ucgLdY8PNJnrhZVx4e/L5IyzYqY1ljNVd6mnDYg09s9ugrOuUkQmD7RHzXsAuNzkhA+X2Et4YV7DocCBUfRmCJsSjZjfBBz+kHUXrZNL4rP5urNfRg/7tj2D79BSZWB/PtlUK4eIIa6M6s5843Mzg79zFn503BxNfqMDDjFbx3igfbjscY3S2PLY2OnDx9AtkfuIG7F9jB6qKtUGw2Flb8vctPl55lUv5IbTZL4U79WFrwcCy1i23BZNpAG6rKIU55LAjdzqKZF/2wWsKOtviEQY3aT5pdvI01lNz44+if1PJ7N605xJBR6EFfdfUo9vIV9CtcACueX8JzQwfIUbCCtxb4ULzDHfj8TAS8f/pymJgI7eg0hm2zw+nB3TTM3aFI3neUOGewH7t6c+jL8QkQm1eDpTKDtFAghFanjcSjX15DlWMCDnkI01ardApZWQcWZxBapqaRi9FjmPYznhtrL0DMrlfUoeKJ37Vn8CNnXSrL3EnoIgyyb8NQfZ8C7lw4yCN7RoKTUwgpjDmILz8UgKy4AI1+mIPvdIwhTWM9D6etI6UtT8nl8z/wGhtMS3u0cYTBVG4zlgKVTyNBJMMMtFa9p/dWhuSxMREcX/7jzdGFKBTqi7GKSzj/zGn+2pHJP9fbwA6JPjY84oUrKk/TzckuaNb2DcxaK6HDq4EU3h+FTXarIfGwFAw6BqL/lGTIe7qV9+7Mwy9KTnhR1gd//j0MbmmeaIc6ON6d4X3ZJC43uQV128Tp7fzH0Gzji+ttJ7BrRRE7TdaHiOWl9MhHA8q7TeDDosW0ODGTF46YAzIdiby3IQKbRu+mt5KuEDfrMN/pGwWXpk6gpnm3cbypBOV234fFue0csGcZDM/I4NDXETD+UgU124+HhzWV1H6rhQrPiqCk6QoOmPme9W2uQMyKItIpf0S7vKLY4Y8wfO0/yZEnDmHR62qWfr4cz1ypgzkCV7msTBUbSi7yl8+vcMIfEXDsa0b3/l4u1tBH+7O7eZPOEvgcMYdeKJrihw/bqGlbOuXljYR/Lo/QeEkipGbpkHq+BYbZ7aTRnrE8eXAqSV4yJrFlcShrqgWv578khenjQW+SN4X7POWqpmno1HyMvKaZ4gjMwzsxn2iDwAho0InGnnX3aWO5LWqKuuFtU3OS7HkHS9OUofvnBp54djH08DiolTRCi/eDJLgiG+ysBdFBV5V8tTagVmMQa4pf5UUDncDyQvB8lQ//6pyCOzf6wKhXBjD6cCiHjFoJPpfP47k1k2nq2EgQaxUCra+fsVp9Me/X+4PnHi7A8W8Avh3ZBgEW/nBDWxBnDaggL5SF+0dL2PPJRy6oWIfXTuynm6uT8X74WYxSOEqulTaYmnyWZPMZVBf+gcIvV5BfRWDDhiBek/UVvGSm4OsaI3CU1Mfdo5+ih7A5JGdmQZ3aPMCgQNx1fhQ3egyxzfd8tk7fgcJ9IbxO1BsfmZnAyOpftPrLZNLPKGCDVcfo3/PtcIYjQDhQHwQ+jKQ4TUk29heB8/Mdeab0fHr7u4vkOu6Cgb8vDcRn418vEXQvX4rewVY4TkQQEmWEUf1aGT+4/owNlbypcbsm5y9UoYEWUbDRzOWVbtq0zNYIzvhZ0MHd62C/rgFoTc8Gd6tmUGg7SuL9aVgwxgh3PXuDS39Mhnl3Z9Ggzgse/VeHm+YOQAb8ISHlBi51OE3dc9tw0dJsyLE2BRURf8obl0biUcdQae1nXr58DiSHb6CQg7UYm/uEgnqrOMgOIEsxilVeBrPY9gh4NUGO4jK8sLC+jEM9T8KFx90Abd7wy9IKXpr84F/ro9hzXRaE3XPGzu9PMEo3gmTTdgCte4uxyhJ0/bwhbCl5yCcjBeB9dhdZKC5H45gRHGk9GV8lWIFioDHyzHVc908LbPS+wopsQzxbFAwDIqfgtoM8eg0Us1+/BjcPbILCV4l09aIs3A7dBX5OWlA0vQrHRB0Bd1c1dDcNxFDZUAqsUgTPijc8N18CNlSr8YIv1/ic1T10/nIQ/32M5N+vEiD+uR7dtxdFBSUH6BgtD9ZyT6FMLJzkMlxo/8M1cHDvL7YVEaftU/wgSsWd7p9dAdGh6rB6lSKcKQ2DSV/ecvs+IxRU/0M+j5vx1LciftmygBrsnVmmbQKscDCm3JJMGEz9iTfeVFGA/EYWnQN0piafurmO32k3Qby3NGxOX4zPWmSw4+oz0jPwgi/rTsLvkveobVGLWl76ONpvNl/ZMAE8akbiseY2NpfdASYf1NDm1iMuKDzHDSUB3CKbzJ8PVqJ8+hTwT/aHP49+kGKmAF2Jz4abY5WgeXQq/Bt6xx0JmVh1foj+CajBpNqttMZMh+YdPkHbXiNVJe+HiUZGtIxyeNKfj1R+0AhNj00BqVI9eBf9nSRS9Cnt1GM8tmM2vp6mTLcrjHl3QTAnCstDSaYg/PZJgwML37Od2QwK0iyEhquRcKZGA+0myaNRSTgLl4jC9tZJcMb2Ik+ZYcO2Dl84c4skJkS9APNDs3nRowZqNuglw2WXIX7LKAhc1saOq+O4VcaZxPtz6bfXL9JcEoBaf7uoJnYpNKx8Cfai1vDv3A9aqriYmxcJoJGWAj7TK+Qz7xNBtfo1Reb3wsOzC8DfTgL+C4sFt/wimLN9KY1WKoAXR76Aod9UWvU+HScePomn32dCoOYYaFiwFd8utgWYY8B/L58CXVV5XPhoKVbHLgAbdqWa9v+wU8oafmavhM1TLsAUPQ/cpvMa1roK8K1nztD+cxpoNBRjVGMuenqIwse2/9DhbTMHy1qhV4YinJVrpe4frzDw4nt0ELCBp29X4q+do+Der1gQ8BdGNYEhTC+SZqUt23Bg1SV+1C9F0VqvUWLVUhitMAkMjTZjTe0Nqr9tjFKpV1mvxpzqM/fBwLJlsOpMOHwSO0tTnktBb24mBn+1gsBmMejZ9A6VN47lnb834YvrQahbe4w21clz2lshCK8UhmpwZUd5ZRyYr4/3FTRpRdRukBk1hu+drOIjJWdor6QxiI9dRCJ96qQ8cJLUR2uCUEELTfNRB1mywLC9j6DK/SXmBlgC2WVD/MlaKP79iYtFvPlo9WcM+TfIEgPm5K/9jpN0Yziw1RxW6vtxsLY6kuslDPtvNZ59lwafd82ki7eT2XtmEedmaoDAJRtotLsNKfrT4GbAQUxNngpl8hW0I7iHv4X9Y2NXPQrTXEdTnfVgKOkv2Z09jakphzB2oJHVZk+BtB/mJDsxBBzNv7HI07E8QmoEJIvNQH5UC5fu5YHRyrVw3k6Apw6u5wnKL6m49AR7Xa9C8TxBGHnfhV7f38gx755S18EKzhMP4E+9kyGjaA0dWyQDTU9PkfkSRVgbnAq+R3NojaMOf2/uxPffdcBz+AccOTkNyzcWwn9XzlO1nTqYrFsJvbav8InCATyVJcv7tN/AtitvSe15K0+cGgqXF0+h9q+iIN94ge9Wx0PsPyYrmWASGA4heQtRnD3WAxfXH+OwyQupUVIczBvXwomsw7g5awMbFbnzYZ9qzM1V4dAG4ndPA/D7sp18StcARKK+8Da1ifjEaDRLB+1BEa8yOqiliyrCZaSnFcaakm4054gU3MxtpbiZISx7bitX3PzOVz585r+i5/jZ2NFkd90GPri20OVDcqCgIUqnf9nAQp08TtTbjao6i6g2rhe6FjaATNAlepPUyW4I4Hi7FvpuSHGA4BsQPGdCC9WCOGiqPwxrJeCIrmTINj4HpZFTYCRHg76aITUIPsE7l9Zyh+YC+v2RcNu1pdx/y5+vamjzxgJpiGjfB4LiPmiorINtRxywysUEFoqsBF2VYjp29Bltv/SX930ZCz+VC3GJeTQON5fBvPGrWW/GOtyVmEJSZ65hkG0XNO1vppANsjDD/R8o6nbjcOoSeqaoTE8WA8nP0EXFTbK0++M3mn04DFW6GTpbABoOLCJVVzmy2LcOJRUOg/FHR3YOHoEDEitw0OYqpH3XhNjhv6SZcJiVMueg6NX9NGnTERS0+ASJdadh5fAIGBn1keduN4LlIaPwe8dlXpkxiwc9SjBC8yJ7v73NX66X45IBV1xpbYHdC4yhy+cfTOo6hQ+E1chgojF52ljwjhvdNKz/Hq7f64F8/Wd44KUt/LQKguCgUCqYt4nz5v7guaOE2f6OLkyXn4hCsxfDoUfWkPlIFc61HqaFA3tAJqYerhv4s0psOUd+m0E6Lx+z3Pcj3P1NDST9RODExHRcrePEVm0eOGRpikG4CmMfNIGzmD7d/JnIKv+5Ai5XB6OWd5RsmsDFerUs5F+CF3t6qY8fsKWSH1+rXYw47ROPWysEbo1a7P5VhqeHaVHz2tuooeVHe/S+4teTpyHpgSkqtWTjg48SIKT4h54ETKfkUZ4Y2qiFKvLN4OM1Cxw7G2FaySf6eyoFSoWMIOm5CFpNNOeDKgE0+84vlogwpsYd3+hvwmz03+OOQ/Pu00lrSfi3RIrmV0bhq6Zh9NvuC/kqEuBfro+FtyRgV/xaurvEnKusNSEqAkgx/yP7hj1GhYS/XDIcBWoav2iL5g/8jS3Y0pTEmD0aIicXQqtVHTZ92AaTCrfBpuwkkr+eAnfk10C1czsl7h5H/mnjoT5zB++0cucpNlKYdL4bsr6dxtUTv3DCxY9QrnIc6gonYq/NRHB5aY1yPbNw8NcCMC98iNZft9C2gI0kPeiOCRM+QkdqCkoekoNprv0YssUP/uQtJ/wlTu8f/uE7Zas4JHw2xWS3ISreo8z1urAi3ZoGXRRJ7Egd5/h9AbsNlXxO+DOOWxoOX/We4MJrmTQrUwGkQhbw1eJjpNaQRd3K8yi/0ISVCsoxGzezvMJYcr2zFUZeHgfqnSpQYzqRPKa+wXyBYDp6zAJlss7w5Qf99E3GnYf8voD7tlEwf/JNHjW1EmNXZHHlpJkgeicflqqMh3KTv3BL+jE7TFoJAyvVYcrFcDALL+FnlWK8viOLjR+vwP/melDurTXgm1+N7UFLQei4DlhavMOYBwvw17wu2MJPufViBQ5sD6THdzaBmNpvqrkdBSJsBtkvM+hItDKb3Slm8YIVPOW/CMxSuI9r3/dz0Is0VMME6BZDaFhRyooXsuGn6UgKiJfH82OUIL+vHx6WJKHSPCX2Wx/DV1oQVn7y5s9NKVB5fCoeCopFwYB56C3xiwpObcPYc02URO2omGELK85thjXz9Li//CM3KN+C3jnivMPbgdvNrOGyyCT+LX0S+yeMha+bsniwpZlzW33AtzwFP66biLuEraA/rR8DpdXAyiGPd+6dClIT1HjaoYXgZqwJCtX6ABOt0fz5LvJNXoJHzoZit+YbfFNjAPE7D8DCZ36gUGDJvoaybK8WQ+WSG6h7WBrCRazwd+ASkFgiDIcePKZEsysQ9aAV9nv1YnzaASYJRSzvTSbv1W2g8fA8elwxgQU7mrmlNBU6635whexucvnmB/Jay3jkxOX89aYKpV2ejuvDpMDUpRKCHXpIPNuTo6pPwCY1D1wsU8kLKhfAdZtDNHzqG7Q914bkolb6+M0aH05SQjgpwPnRNvTXQQ2rdxSSs/dC0itOoRONAtAWkY2Bj77B3JtGcP+YHJWNe80RGpt5aFcSeYe54EKLFPJRGwVyP8OxJHotzNS7g34neil1+iwca7MPZveL8PjwIjqWcow8NwuBjehC+PL1Nx4PEKD71Sm4d7QF71i8BI2ebuYe1QaY8vMFmDtNBF2TFzw0UQaap6/kdeMjoNBeiRbUZ8DltkN06Oc0cGrtwPMeMtDdJ8ST1Odw0nJTUjpcyCvW/WM1pbv8d/EF3Gj2DMat78HLHyzA8VUKartWYfR/IpQ8/gYKnh6Hy+EoRLiJwP8RAB+AQCBQAED/MLNlEyLZO5WsSAOhlFGRkTKSrj0VUSIUUqg0lBJSKNpb0R4kRDSUsqJJuXdZ9T4aLYjBxw/HwHKhHApP2ID6G+5T98c+uHH/FfZ+16AX2+fQ4seBsEvzF5TdN4PIv4excrY/WIREguVhGxCZoMdHf3+CkNJzMLqlg5ZZh8CN4/KgX55Bx9ploUtFh/91TEPflF5wD19OR99JcP44RYh+GkEuTQzbgm0oTGEFSDiep3BMhm6rAdC8FsAvBeTJccIkOL/aCAI3CMGZm2dB8oosVmTVwH+5y/nPKj3Kfziek1z1obhVHYMPLuGiGoT+yj7mkCR4MX4aS77dQJndrfzQM5UvTN4Mq/VusPE/RMfvMjBL4zCHz34OyqOWwqHVb3HgbQZP0hsgpRmJ0Hl6Gb4dW4+928bAtnUnoWyOLLj4HcUFzVto6FUMNz4SwQjtEjr+yhelOzQocJcNHI0YS3VPN8AN00tgMhRKsRGjyPxkCb75EEmP7RZQUq4/bQgQhC39Vbj1phUUKBRi5chmyFF7QzcsLsIj1yvsO8UWRD56cYuSKpz8+p5zFzzH44K7aMhgiOx9P2KCUDwtPmZO5drz+dUJJ5Z7JQrPNqlC37JIqK1uocav/fS3JJ3nLWvHTx6afPmmN27Y7U5yJjIQmBICtyTDad1Bfboy7IgNrxzY7FshGUduwbS0YjJ83g0WgyIgqCKJOcXP4MPSctK8hBwza5hNbbO5fHYm3E2+DTVJ++ByqSLc67gOWoI/+a1JG/+aYs1S0RtJ7vlrVlq0E+sMbTA/ayaG7JkAYWfD6IzxIriyPQ9eF53AqaZnUFj3AJTsO8uj5cJIe9kQLw8SgK1vnfhzjBdVTWkHkRoZ0NtCcNgzFnbfl0FNsRTeX3UNZ+bowzNLS+7zeE9+yzzIp12OygeVaN/c3egypRzKisppsWcHrjqvCe7r1rDIHV/K/jkRjYVbwWqcFl1cMparekRxd5wzfd77h1pSdeFycgw8c59CV5NiWH2EB2qHfeJFrqnQM2s6j7tfz0N+NzBCUAROPVyA3neisN8zg/s075N/wFYIqrhJqfvE6No0A+oOl4Tx4arQbWmNJyWb8Vx5L9RlFcDF2jcgNuIYrr60GsasV0B75SNQ0slQXjuJ9laosHidIExRWI8XZ22mebO+4tmVD9By93huqz9CYseNQPOED+ycMZ5mFalSyOcHLJQ4kgpPuJDtaGd4v68ORk38APP2OIBkliZUyp+DA9WtsE5kOmrPzmROtqQ7MQbgKzoPFbfLcs15M0hPvY9NMy24SQdxWcp3DM79j9d9SKfum+q8Id+HZmjHYomOIPTXF+CXYTc2vPYOdidXY9RRVd4hchxaFc7ThFEfSXlMM+4QEgIdhxnocnccrUjz5eB7H7C37Bd72T6GWQZd3DM2mzfV7uQXd6VA5Uoy5s+I5xHOvRRv6ELLo07ywWM/SUTrB5k8u8ZNGxt4YJcIFLyVQEU1b8ze+hmTg6PJbYoJdnQ/ofnXlCgZ//Gj//bBsVodSMoIA4PVkzjwTCa2qJTR/CFtNNifjoPNLzh0/g44VeFIo/cqwud7/XxlzGOM6Z1Bxapv6OygOd5dv4Vd+oRQZN41Wnd0H83+Mwasvk5iuwuL+a5rCqyXZ9arFuYrlb7UInyJCq5GwZ7ZATRRSA1KvJrQJ7SaN414yEWbjrK4/lLM4SjOzxyJufaKMHO6B0i+lYHX9pbc4nGPJFMTsWraS1T2/EThnjZwKq8HWuc3sPQ4KfyyVg+2zpAhD9s7eE3Cnk1NHLDRZxpOzjuEsOMw6WQ+xZT06RAZpwZfz6ygjDk/2L23FnfFN+PKRWOowUeEX66UoQKlOSzRU8JN4bLARZZw75EvW2R0ouqOpdTdJgBfgvVpxFUdLpX7CBcvqeJvR0NwlcjB2ooeejmmHD6brYXws1Jke9eF/m18AvUOR9mmfi6fNVSAm9ZzYUJ4DHof3oxLT7XgCqt+OBz7F2sPb+W+KZU4454GiyyQgPeqgXRf1ZYVm4x5/jw/Chd2R9vR/bTM6jhmjT8McwdEYMyMiaBdlYU97Ub0Pc8Qi44Cedc+5qChR/Br9H6e/WkhbCp0xY5VyuCV7UK/x37Fc9vWYpZXLSeLj+AJ/uLwSFGKwmyD2WlTKK+5KAvlTSkUpfSC619Gccd5UxpR+Bh+SztBfnYraP0lskhqA+HMkSDX3sA6xi+hWrMBLqxJ5smddzn/0DXYt0uIZ4zcya8CgmljnRKcmfgJF0eGU/A1HZSda4PzV+aBfksNS71Ohj+aVbx7ZxZrvB0HUy8wCL2ZxAsr9/MDD2lUaxWlAe/R+G7ybxKZvJiLrbXRj+0hH8rw+TRN7LzxD8NURsA5dX2qkj5MXTiNrKw/0UPHAtAonQgSacfgo3U2xGiuxZtxN+lP3giybQzhpY2NvOpKGpn8EYNb5yZA+tpPrKMoS2GXrSCudjTdaYyi0W9D0Xi/MNlF34bFt7eh9QplMFdWxJRVC7Bl0A7Vfx3HnsYDdNx4NuTEWdCmXTPIIu4C3lwxEWQGzUD97h1wURlH6bifrbIfQc+7n5TxsBoEVg/z7Fk3IW+rLITuuoW6aZLov2gZyijUs2WZGk3Zt5RGL/PAyy+rufyrOScXmMKjJX/pzs67fLN7Dq+efpl5mzNJl2mCy6I7sGNXJSn4V0L8LkHwMcmGFLF93CP3CI2bSkHNT5A7ZwI2mSiAbbgCSuW9BlPFifA9ogfzd6zhZSHf4WbpQYovkSdXjwiKnqOJ4+x82GX+HTSwNYIv8VnQInwfhW/94fv2i/D2tA4ccJsMnstfQ0v9Z14qHgwrX0nCSz9XMD+bCwunj4bre8LY/ogzVDf9gjE9k8Fl1iFaWP6NK5aageX2RpbbWI32MkfI3fEGhakmYsW+THhY2ARSca1wTbyHWwtU4J6QKf0rfUpbDt/n7/bn0DP+K/e87wf/v4L8CP24wNaIdzgYQsm8AiiY+xtkUszghvMDmtWewbltF8D5txPEdFnTZVkHdg2QBa21ZbA3byceSh4BaS43wPG6C+nkPEKx/F64kf8Ffoq28DRpGcg0imD3NFVYfNAQl40yx0V3DDlCeBJmFlej7PxwPqp3jaQTLCF9ZAZXev3DzRXBYLl9Gr/vVACp/v/QrH0ZvfMMhYFrM9C4XwbWqIfRboPJcNDtE1Vq1VBr7CQoaTzM170csGCEOtybqs5Su+QhteE9lW6+AfWC9Yx/tpJwZh6kLJ+ITp+KadrQSrhonAJxahrwWnoQTkzxRuenuvSk+C+kpUnjCYtwOOTnRVVq+8m3/Sl/TNOAxaZnMf3WXhzxzAwcEuJ5Jf3Gzme+JO86jC79Qcw75dlvJcDaiH54vTWXXMo+osSmi7h45DqoydQlN0VZeNGzA81nSYNIjixMsHpGN79ngYvdLHB2OYYetoFopZ5G+ip/KO/zd/KZvodXx9mAwsYCbl0aiamCGzhOfBNHbquj19m6nPjhGe6d8hH7IvshLMUQXtQX8KuIUDJVecolV9U5TcsB7T/u4wMRx3iVswTkJpyDKf8JwmIdRQrOkeUVO3T552hriMwqBqEhxluTVVH81jiQ70ngOZ+swW9DHd2Wm0kXxN6DcdxNVrEUhqePvdnr2GEsuaRH94SWUIaBMsiLZcKw1X/o+/47qnu3YGdKKtQ17sGJwelUkB2Gnk3VKLvWBjyjYvnJHqTrXgM0/UMTXUyXh7y5YZgyLAoLMl7g0J23sCNAHA4nPMCChmkcknEI7E7th9kHfeCqSQRqkRPctbjAQ9sOQoyXETQHHKHpah9RWmQmTr3sD3VzTSl1KB1yV+hTtGIVqicWYIQbwU1bV06p1KJh9YP45Pl1GD05C7aPAhjaGkeHm/1wikAXusjpg+87fbYbzISzXkvR8EUEJUIu/CouwZdzn/G8U+cpvPQy1SqZQ+v9o3S7YT1P7VIgc4tzNDjBmjRulsGrr46ouTIXn4ZdppIvE8CkSZ98dY9Qh9ES0nKyIIfXUnB3TDcIVL7Ez7oHcd/n3aBsZQCBn6/yi8R3+O5aCrpJ7MfIXW+Jis6z7CFBulO4B69HneRFD8fBhEt/MfmEHaa3bKNv7IB30RguX9kB3RE3WOLqEDSddMI2i4kQYSiFUYsjqeVZDH5YfpZ/dUWzTVMYD39dBVZlbXQl7zNlLZWATauu8xuP09AnpA2dL++SrfIPjlMJYJMdP3mb5VcccBVl1SYpOFn7mK2DnuIN0yoevXMS/Chfw5cXhUBEYCnttNzNR5y7QTRZGg7sVaGxFuV8P/0cnvu8lAVsjKCjuIM9tx1jVbs40tJoZbs8Ufj6OR6/lzoyzn8AhjvPYPRpWbhxbSXf3raIc6Q7SfBBLEV12kLKpOeolbQcthp8hsAtZrhk0Wc8t9MH0vRs8XRBOrlVmjA+HwXH45/R7BWFkDLDAQM/SfLONy9hUf9j+qTzhuIt9GHudHV6sQ5AVlyPGj6/xy0vg0Hl/kQumL0azfJtoPenLj5e+R8lDq/Cv6lK4FC4iWKq70KfQg317lpLh6RP4Vbp79DZ9xl+yT/CrE8e5P1LEOwlVdH5gD9e9MnkmYs24Jr77pyaMQJL931hpc1qnG0zSGURqiA+RZTrF/ZgUfFOUoi5QfpPNGmmwil8WjxEQXeyYLB8OqZEqMJ2CTlMPpRL/kWfIKD5GA2LrMGpXtuxbGiYEuashUr57aR22gouXwuBHo/DtCmoDQLWLwGxoDf0bc4SEpWrJ+GEyWxcfAL6bmjA2Khd5Kmqyg5bF6GxfAs8Wj0f2rU3oPHES5A2rh/j5kXyzI/asCp1Nv6dsphWPR8Bt2Ym8sEFcjhqwhP8NS6eLl7poiseL0g23QTULY6wyd6zuC7mIi7sjOM/I2fjK4lmvGV8h0TLm1HZUBMXTgRIW7+Wnx4+wFk35PH6V1kOtftHe5+9wFkbVak0TAWd/k0jmXpRSNptDl7lW9jeuR/u/F4GZlcb0WfSVTjRcB97bBrhisYD1nw4Howa+7hl0J3OrDuGIQt78EF7EgyHjuT8Lwuw70kRJb2o54P7EBzVL9HYLfLYbPUEglZup3nh/8GeMQp0t9eGV8Qac2hFEN/tGAnrZv/FIk1PXCEgw8q/UklY/h2s1xeiJwneKNjYC5brHpHPDSsoLptMMyEZCj4IksxaBBUtV9pL58DkugW+1zxBE71FsUxfGeKak7lEyoUqMyXJ2Lubp99mHPX7Ovs9robVZ6fR3M2neTvKg270Dn65dQtMjluP9+a3QolxNY9RmAd7FwyjwUwtGH3gBU5eYgGB5eX0n8AoDLw+ldSr0tDCwReVtZ9SgUo79Izq5EmLtuPXLh1YPwtJ7VQUWY43xYprQzzqrj3+nWeK8gtSMM6mFKssF0HdchHo9DaHfoe1bBHzFjrVpCjM5AGd3apHPuV7oFlagKav/skzdpvA35KJ+Ox0FilsKYSrq/VowthgThKSAruQUM7e/o8rDN5Aer0efBj6TnFRc9h2ljpbibnzx//aSP3ZLLSslGf5o3dhoqMCK4EROPRuoLKmcBYquMgHfogRX1WgXbW5bOKfye9zluCnyjj+Z6sGM4Y3gJuGAfSbW6K/lS6fXjCHnxtJ0baYFNIc30n05DcudhgHqeVdaN66lCzqv/HnqGzycw8noRO2OPWLFTvsTCebMi2ODdGCPTuV+FbLBjrs+QQmHd3MErE70FhyKltUenPcZEN6mpkOek/GQ0GFJa2ZH87jx6lC4cEWSqi/SGlO3Vxi2oD5+efpw5YYvHpbC+yOi3CxcDG6WiziMQap+O9ALW97/Acj8yVYuGse3gpJgMmdcjDPZx70jX3IFcMHaZuMPnx89wtvbrbC6IuTqV1tAgmI1/PP++bQma5IM4Py6EhoBuw7kEZRD+xZ4q0V9WbGkLaQDyYVfcSQTYbwVPYRZ2wVgVkvajhsUTl5rynEpPdXwF41gG87vYGAHWmgnTsK5q6dix3dZ2C+YzsVfHbC27vMsfT0UlQyGAWNTkMUnz6Zi/tkwXC1J/r6vsC8Oerov6uNT8aWY2vUKYBXC/n0hETYdMqHhrzlwCjoD3o074Gyy984NMqcG+8Bzb+hSkuG1tEj6xQc0d+N1wvHQke9NLarCULg/Od0/nkKKm2R4c4DpuzV4E77bBfR+k+H4XC4POj5bIfSi3XcePc2pLj9g106r9Dt2QLeF2YHtSED2JRwASuvKoPDOCFaNixPj07L04lyXfY8+5VfPGpl/ebbtF1EFPwXLUWDXoD5dwLZ4oIHyC64BXGF/3HSmVJ2LFDBKVM7ye5FAa/IS8C8gZHw2FkQVlYdhKo8C7JFQTivO4ZGu8vxqfMjeJlrNg1Y2aLvRxFYe70UQvd9QcmJD7Fi+VSOk7Cms8+QTk5dik96V/GOHhty26kCg/V7mRMPQqy4Jd+VeEnSt8eQxlcNWHVhIsvIXoN9q0ZT0iUhWJ7dhr5ZE3Dc+TYQ4GZQKOvCEcXa5HfNEQo+RMJSSWfezTLgoquK45+70/Qfs+ifUyCPH5ahk48L4ctIE0pufohJLctpXqI13BkbR+Oq07nvyzw427AGBAzP0ULRWGjb48ArNJvA2sgTJaVV4JHlY5y27SEcVVzLRQccqeg64qHXfxnftGHy5+lwRyUR+6NM4ENXJCW9msuFnqlgVbSei+Yuw++/FvAf4/HgVfQGzWaU0hZXC1i16DznXoqgjTfyUbHxCf0VnQ6RSlqg2agG0hp2VHDvPO1cJgXP5R5j84aDULy2hj9cP8mDX6JQ5m8pbIiKwAVGQ/QscRUlDE6AFW7CpGA/jY6vHuAVdz8BdTlg81Ytukh/UanRDjuWN4P7qNHwaGMqih+RhuVjJ/Pf1/vZZbcOJ7jW4uboJDBNewknTixhux4V8DjaSntGB4PX93O4OmANVnyqxBPZGSAaYserfiyn2Ton6OCG0RCYMgjNu36w/VMH/G+2AV/5ag0aB/7iLSUXmuq+Hi50TOUjHuZgPmcVOnmk4WB5IMi0q6PNRwMc3zuXznkOc6elKAs/8sWHjpbgqOGH58qzSe7VVz6iOAn2zjCnhd8eQ6y+N48IzODdI9dzyD6Ci07WqHKklDxCvejm71r6uTKDly3OxYiFmnhZbAZ3JE+H2jhlWCZ3AqRnxeLhuvO8Lj6bUzUv4q6LjWi/bCV5DahQ/ms9qp2vALd1irH2SD1JKodiWKYjn83dQLU/muk/i4U8ZXEazXquzf8KJcBAYB6M3JVGcxbE43+rj+O7sHf4a/NT9JXP5n3Np/lxVTeGu8mBz9JLHPNEFkf9HIvL8A6eSNvG/aO2QrW8DLuEaOD2kfFo8XYc3FRZA3O/3gOYtQ0FVi2nPre5qOdfws/HfoTu98O8WyuRGuI0IK1yLe5ctoU2zZRCG79fcNk+lJzbTPjwjmiqO34DS6bn8sd3I2H/lD90T/oGzNiRRXLeMWB3QhmCX5/Bll5HrnpzkDqO7APlC0rQFRLEDZMkuCTBDoSixuPAulC8vWIqX9E5wJc0c6F7ZD7N+wAQIfCGrReYYqRrJL7YUM/yGSdo7cRsktB5zkec71GIVQHcW2ENQTOHcGrNFJz79jQM5A9T3QZvxpTROKQZxNLNCRylaMNvwpXhjfIfXv9ZkfZflMaysrsspFbJkif3cq3IYrj53h3k9RTA3VMD9B2v4AIRIuHTXpCp7EYbjiswhcvR8PVuEHEdS7rtIdxSpAxvps6GudmbMcplMwcKBOC6J3MoZvgOW3vMBNPtVlS/Joc7hARhjpAKFi7z4h86vXzJBGBl5jvsT13LVxb9YvMDo6nt4z3+L8UYEgqXcs+lPn54Tw1FlxvRQg9HVnDqojAlWdgbdYNjXP6y4A8bEB8bhilhm3lrnzMHRndCvGoCf/8wh84a/AAzx1Zo80igHw4TYGltDKp/PAG9u75hnHc3ZKWfhPV5ebz/+Rxs2rOfBiVaKGmqKYjXTOOjh87wDTMvUl3nwKZLZ5OnlC/oXTIDmV5llJxxHI/utQYrYWdeNe8KF1WvgJqj1pCZMJc2jtlCqyOuY0GzP0fGyFFUFEDbYj2y2PGTXN+YQFOrFc6NvA3vJkSS9bJYej9yCb5rfQJP+2xA64EPdD4x4qbn3njwaTa/W3oFrCKX4d2691DqoEVi7xyxe50BmEhFcn6pH21bMQnKBx/R8HlLuCQUjbd8x9BauxR0n/8UywJkQT1sBQZ4FpL5YQtKPNyMyqav8YyfE88Uuo6OPybxQ4dMkO7WgCfnt7C4sgHGmglxcbkFO/UL88szISh37iOvle7Gs0fKafdiLdhnv58WzkrCCdr7KCPOHNY7uCIET+NXquFwudKVbRNXssUlASj2OgsN8Z34t2A9n7TPQ5G1VvR4wVZ897qNR91tYoE2Xd6zUAjq186HKb0xqP2fPlaZ+qKIiSwePHIDnlYpwcyc/Vx4MRmbLMbAq+2BfHx/M2tNVaRww0K+0Die5GZZ8KvMcDqftIAiLteQRNxE2ON6k3NahqjS5Tv882Fe8ESDWskDHwTNx46cA/CQXpCXnw68dyA4GGfP8fazuXxrOM/7LMAP30XC4DVV8uv/wuc6NpK1uykoDXZT7bdRKP9pNU/eMUyRTr9wa64CCEYF4vpze1HxYSQ9mCwGXeM90OvnGFQ+zGh95gjE/D4B0YGjoCB3NA58kUZzVx16CPpwbs9Fdp8iSYsy7kDpfCuMqElhp6WDpPcrB1v0xaCdr3BDmDJ4mX0FY29zHOkvRfYLpejLlHx6uOkQlkkEUnXMFDA2/Q6xQhoQnaUDK2W8yP57AiaX5PAWqyb0j46m1P0OWGuQwa2iynRn5TjwH/AC6f0n+UGGE/iYJXBkzm0+cOY1bcraxDaQxAnSs0EoWgckA1O5UVkEdm0xIv8rDtjjdZqXnZmAWyp8MXLjXpBvHUd6wiqgl1lC7fKLuOl+FUtsfEzHO2/C+3dj6Wf9Bkjq8kGoaMOaNA0IfNBOVanF9Ls/HqQv6MAMgwCa5raeoj48p2nVqbhy9Tda/doUHMpusetuGXy+oxYv79rP4WKxEJTdBLG7vCAiI4Df1SnS3F5t+OhxEgP3baTaWif8+3sCFFTfxb3792Lh5J+0ReEIx62wwvhTE2DDKB0oV9TE0bMVuHHAmLQSjlHjTnMefUUClI4dQr+1FRj52AzM/cMoUkCT5DoOYcCps/BgrzJZG76n6VoisL1wK+2cd5l4gxjUL3rIsRHIsTZluMU/B71jJ1LhmUSM+FYNCYZP+PrF8fhARxqO/c3mz6WDLLH7P7aOGYsFeXu5YGMjbz72jOf2CUChcQDefkUw630P5W7aCDHd2+FxUglKnr9DicHX4OPIjahauZaO/p7CthVCcOJ3ElmrqbJj+lmwPSHPAk+rKUNChtQ7/Unet5sLPxrzitlGsD9OCOtmLMH5k/r49pMJ3IUDpH0ohU5pWlJYgS4Y+YfSQW0JWPX4GbuFm5PbQBl8eLmdaIczenm14VtRT1T1qodmB1uo7xYA+/mWJBTVxPfeC3FZ2XHMtv1F25xFoPSkI6j/TId860KoG5IGYzllFv8qgI3BMnzx2UUc663Jv2Sy+cFPeXIL6gMBMVecuVAFcq5284aCHVBwzR2DdiHs23iWFU6txp6q7eBRdgjSV0bBv3ohcP6eDlP0VvKf9aIoVLUOY6MiaWHdTkz6fhbcnFfxoR0SGHpvAkhfKcP0E6WYEpEJw9mX6E7ZJ4zxG82lnxm+FpRyf8UDUp2rBI9HFlPlUVHc/2MzTe9+RLr5lljaJkaZF7/SkXwxzMrVgeTFRrDUVIjmRczEHUILSeD0O+r73M/LPRaz6bqHeK1zERn98YOs8bqg+1wBp46xxU0f1mFEgD/WHl2MN31m83eJtTxDqgp8re5QcjRBUMloypSyxDanO1Tx4iOL5x6lemgl6bGO9ORdN008Kodfd42GG/Pfg1DCYy7SMsM5e3/xvuFC0nZqgqmistCokghaO/fC39fiYP9kKR/JyKZvSyso9e02ks98SOvk8znBO5UmqSSCveYpCq4zgP0vE2H53Avo8PIcPk25y+UPt7FvaiWT6VMMyk5C/6+H8EiqDHjJ+YP91wacaXYT9/U589EgZs9YL4j/uw1sD10nl/UDVKOL8Gf0MZwQrQT2k+xJYrchVXxcjpclZVguSJw/q4dgd8VZ1kvWhZNJB2CwbgLkKiA96hqP8pfcsFYyBTSElHjitj3Ud+EL5R5Uh7kxqWgZOsylHrv4j6wu7ru3gwU2lpJ+Qgl9U7XB9pC/9HW2DgQ3bwSfvBKUX7uIWmPj+di3o9B9zAWylO/jlbxsqoj2o/hwgvJrfjRonEHLTKtBZ1cb5m4fh5PaT/IMjyM4V3MKXm38C7eEZOGqyC+eYXQBWz8fY6eUr2D0q5nzNdUwdpsdxP6zx9G5JTSqSh9cBV7QkTgNgkmxaPsliib+9OQ/hqe45Phm+vT6N79Mk6fzNQbQdsQJt7UpUo1nKz/Ieklfn4+BNtEbIGm6GOYZ3eB1L4xgYK865Anq8NyFP9DrVwYaC0WBy5MwntOggjeC9fn0YAIpHvgFEq6GUNjtRLEjx8PTPIL99VcxefV+zO/zoq7Vnhj4PQ5tw8ogz9QKutbpcWrWZF6Z+owy6pfRnjJt2pQzlmp+jqFgwXioNo3GJhaHRO/dNP/pVQxb/5TOtRxjBYlzMCE9GOwkjeDK2nUY9+0WvqpWgluzbLn16DOOC5oFfe6aNHq5NLYqi/Kd0mFe/HUQ9rX9gLhedSjvKcK0/QGY03wBhvaIMf6airLfreH2oSp+Zv0PxhbOIO/tujCjNwXmrI1k+BCM3oG2HNDqyM91NfD0XxnWXmxHa+P2Q9UKJWjfIsRrlgXwYXkxHheyEhTeOdKMzkG8v+sopG1LRCG3bzh16SiI3hJHqaUaYH5rCE68M2HDDVNhrlA3zSsuAsWMjfRtyRcS8bODDIeptGBxFmhFW4LLdxW6PpBJsqHTcPdfT9ZuLCY7MmLlqaZw2SiPLi36Ccf03mHW5TeQt20T9jhdgk3WInx71Q0+fTuErn+UhoKWKtoif5kyv/Tiki8WfF56NiWU3yXtSbb45IQP5x88Abn6BFUowjc7XEBFaCeAuwYq93rDsHk6HJQKAGPZhZx0oIxn6+lAXPwUulr+iy/Gh9Pj/ny2XNIK8yMDQLF0NazNl0CDYml+K2EC63Yeo8nbN3GxcDD5Vz9lMWcVyOo7yv5Oi/F4XwakrZcC/Xx1CBv4C8de7uS3YWI0IzcWj821hk7pxUA969GweDW8so4CWCEFk2ang9YXP3ptugoV4i/z8oXxHHfLgfvU1GH5s0skoi0Kqu1qELl3CU1of8eF6+fyn6AjUJa5BNSljEA/9im9C5Dnu/2pqJs+Hg6p5GNWuwxOCTCi1au/Q0FmDdmuf8dHo7vp35lbMOPdP55z1QqqRi4Gi8FREDk/nLJn36e+1U54P2ksbNsVQB5TnVhS2RPWuIrCjjej4UvoRlgVks8lIW5cevsvKP3r4k98mXylLEFH2Zm3P9OGtTeek0FDEW0OeM5Lfdpx2enLvP1AP7y9fh3cvo9H1X3+nNxlBdq9D9DCUwlObc3jtORoivFoQRe9c9QoswVW+tjBk9x35N2hAr+6m/iKeBkNhYwGXJkI3/6F0oNLKjTnryAONQzQDsPHkLpNAzpKXfCGpRhMzn+FKU+aUUrOFrTcEuj0ycN88b03bMtHLKw1B9P2Kj5x/AHvtYunBXUzOWtEJU4Tm4SjOoTpipgvSq28R4dMR4BP8GpeUtOE9R918NjUQmh6KwHvRP3oRLAdnhCNoHLnw7Rlmh6Y2aVTxhNEofA4HGWlyMWaGVziK45l15ah328Ffns+iIVi9SB0oh7vNZ1CZ67fZOFzoXBh1DQoe+5Mv/sNSXfzeVJOSseeJXJgIzLIrS07cPp1DXI/dgZ6I++hqOFl9Oz9DLaCuujgaINt06VBXrCIz7pkY/2EW9CaXQ6tGtWkkjiH5x+zxUzZDlSrqqCnm9Tg/d6VFBT9hh9emgjrzu/HGqWp7H4rnv6ZjgC11zo4cHMmLt+oAnr5T3jfjzh48voBrJEeD3/SknlUQxOadNTBYcM2FA1y4dJj0jA8cxDPaidQnsITDiseJFnDW8TS6SR+pJZOv1HBopQ/rJwnBddf7yWlETepa95jcJa4yIF7KvDpzzj0dqjBE2Ez+EBiFq2VM4AtHiL4s+MCBcpFU52vJVaN3AYn961AF58XYPBfNLZXxcMlI2WYov0Q5e9H8nqvGGh/5U1yU2Zy6UZlvOpbQ3tezOKWZkHOP24LL/e6wcRecQizewFaC59g9yoplM1TpbZuP2yWl4fh9Tb0X6oNeB+2QemJ73iH0ET+MamaOvQ/scJ1hOZpEjCyZT0PTVnIEhtEobXiOL87OwdHDdaB60pZurpwK+y6uxOtqwTJpPsQbJsuRAtuTgK393nkWzofSbeeFXe34nGpbLC+VYoVdoHoSsakdXY1vvkgCNQai65OmdjgeoYnzezktoNp4NGhQi+nNoJf+hM8NfsNVs1kOHrLhOVDGFL0H9DDnXNJSH8k7QuV5eA9gUwFTpzwcAuPs9IH++0C9EXDj0tU/iOflWrwauEoqkmfSqf+ttHfrm8IJ5LxWYMmRIefBiWlE+g6ZInTxc/TWDkHunZfjc51nIXrnz3JyqkW/plYw6xxqzh72IFyJvmjYsd+fNEcir5nE2j2oBg4Cziy+70cHnbThQtmXaji8Z4Fn16Fuy6HaMYbF/DydyaeOZrmmuTwEc9tKK+rD2OeqaFa7jWa0HocXpXYcaCwBFasms1/0g9w/LJinDHPFzX6ANwffcbro9KgZXUVvr13Ek4YTwBxQTWUsfhCIaEH4bZIKb9abgvPwoXIbulTyvXbyZnrVmBo83ZY73IUy9Xmgf+8fizeGoWFvyXAoqKITxRZcGGHLb7F2Zh7OZ1u6hizkrIiDnmuw7zX5ZQ2IAX2+z9xS78mvb2bwF+LD/O7Og/s839BPi5avGOTJi1KW003ZigARzSCzi1r6NhvikeW3aacd1PJ4pA73J9RSWVn9qBLyhpUlreEvWrGNGHhCLhzLI4F3K/Ry1BL/PG7jCoPjiRU9qBfw/PoULc9WFwOJ8P6DQQZATjxdjB9dJuI/ukpHNS1lNcZbuLxqavIXEQHgps02E9DEzYGF1Fxxi1YnbiaTMaNI09pM171JgUIFtA4UR0IHwReay8B5j8P0uG3z8nqzTa+GTaEsKIRwsQ7+Uf2dq6cYgRlA9m0fOQjajd4Q72aa/iRwFQ4OHOA1s7bRK8CHMGjMBFySmRguftBtimeyXdgJIv0jMAKlXysnL4H3fr/Qq7kJ56rqMrhOuNh4v1D8OBCP+XFClHQ9U+cFBlN132usnmyA4mIycEBvyMk568NFxPz6LjgUoypEuGYSC82z2mh39ltELInCUbfioTrLy1w+Is0CFrcBof0Rs608YKceBOKvjyfL84dAlfhK/DNQ40WfFvE08TMIXtvLvASBtUlQeip+IGz/v1hj8Dj/NhUnLp6zNm69BRuylEHm6oJfFh7HHoe7QKLhaYwZ2kUGAlsof5b0iRgWcDlWo8g18wMxkVMRW+JSrr3XYniRr3AIw2WXKv1EKwynOHDson439OFqH5+EiyRNIOiKYlk+mQebD3rTjPndeHyuIcg4J9FM18sYKHqUkq+qQRXrxTTnEp7lBPUw46wcrJ27gTLZ65wrOY8zRt1AKZ898AN1ZOg63cbPtvSAmM2VdLK9QVUdPcSotsTcn+0jutTR2BdmyGNKTQBg4LZnHptN8/NLWFD/VZ2H5PKn6a9Q0xxZD+dGh55eRSoZDD8zJSid4WlFBhXAa6698mnIIkXB2WB7kNdEBH5hz0aXjA0Vh0SN/fjqW+iHJ/3Hx1SHUVFqqtxz9A6Lr6iTCMm7+FFLhehdboi3E3uodbuVl7h0sRax4Xg/Ko1lGc6GfvjvfGGmBsXt24ikWgzMK3/hu/fXqKZRqH4VuUTSu9KJxsjJz6fZMl7feZTh+5qCKgwhxzhaTwv2Q/8/O9h+7cArmuYD0/XOnLTNVMs+qrPZm+8YIe9MtT0C/Mf91DWG9oDDuGO4KftBMJOBmQzNo5/CK/idTE2lLfDAPYUZuIbvW4UnmxDIyIc0eME0p0DE8nm9CVMuTONjpsBrOrVhrcyoXDa9xPH6Dixc/gl7Jaw4vk9b+FR0QGwbWxgRRFXjn6lDBXZ9iiXlMkrFq6Cb5+EUdfIGeyypHhRynGOd6wkFUFhunhTFNoSi/j2D31emnYXBLZd5pZ7S+BrRhmdzvxGLRnlfM3KhUNfjwThLBtsMJ2AAk9C6czKfdAwpxSTbXbD1MAj7GlxhHZ7/yWp9RIw4kce2D7PoJ77OTBaxZo0IgfgUGA1HDOpYvWYaAjJt6TN1eKQMXsUiXsX4/O3JTj1VzuXWgWx+ns70nyqStqXnfHHqEX8sE4J9rd8grffjnLxLF/OLxOgf32VdF8+DMQCxNCu4QI+vzKCnwvqw3DUc86jUaB+3x2EI6xIMECL77spc6yGLz8b9YA32l2kZf/ZwtfTE0E+YDPo5sVBZzuQc3oqjS3KZHHMJO1Py7GnZg0JSUrBWStnakn15yU0EZX2H6eDycNkMOMBc9UEMtZ0o43/yshiszykr6wi3YVn4UBNJWxR1KYW+ddQV5BGK88qw5MfLnwSpXlNhAM4Ws6CVyvuQ9apCA5Q+kKT3Wxh7aP9aHF3FuqWjcO5ddnwe5wERGl84M42SZhRdYGTz+aheGo27wgqhvnXxDlc8yY27ROk2kNKYLHtHa09Z8pjo3ZAmpcPrBJUZJv5S9nqUw7t0/TnOktVXnjACCK/pZFZvA2JLW2nXwETqOP1dAgNXcbT09JwZW8eT5ndSdVdmhC1pQNiT10Bk9ZgvvwtmzWuT8Pz2zZSUGk5u3pa4ZhgQl4iCC2hnXjSI4xiR8uzd8EsEEn3R9PLH3HxvKkse0eUziTu4fUaJjB94z4uXzoIE8994plRqqA3ZhLWLBLip0HdkLinHTSKjNi7BuF0jjs19nax2BIvWh40DI0JK3Gfeyq0dc2iHg1p+qYlgctd9OBgsRpt/k+ETX6epJ1eEzmoPAgcih7Q3N3JFIzubBFuhN8HdEEg1I7tF/pRyikpCJKtIu9LtXR2ziNuGHWZ6nYM0OAfopEOY+Cjhjp8nzQCLxjuwGjBq3B5yQKIHBIDi8CbdK/Elw5E1HD6e1nwrATWdxWhJD0Z/PC7GRPC16JgyAo4bT+L209bo9GMRrj9TQbqm93xd9wLasrypdzDgviq8AM8DVYBgRJxLhkq4xt15SgerQ47f/pwkE40a00vYQFwZNOvR7herwcvr9lAE0ov4OmlaZTz3gEkL47Gpde3UX+GLI+zv0O37UWhzLMBf2o7c13Udapr/8EiHnqwb4UsquX/JJONV6j9zH5sIEXyy6mDVxelIHm7AQkaJ8CvJIK+zm7u+2rOJ9K2AlTkUs2YD6TYtBLeTpxO73u0WTIniD5MU4fOcZI4UPoP0/aacMjic6g/aScP2Znhu2FbinrdyRvXXaVBKRGI170LI72EseFaI0WrHIeilTp4MjkW1hz7hEoJJ+HVMRs4eEUMzskj9R/egIMSRXCu7xUOetpD0SZFfnM6ntf/EaLEL2Xsc9keDIqQuibeoE2T1aD1ZjBnhD7GIIU77Cvhi/dGmGNkfC0LJ0mB7dfNrPpoIS/SckD3g+PY1eA0HAsyQTeVRq6b9o1/t13jOjN9mFMbysm2+Si+4j5puPRib7MJ/IJL4PvQDD+2GmOikSxM264AJcGxNOVlAohnhFFIozDuXbSSnJ3fwJPlJTBCdAvd22WHE6QUgIwXkXduJr4sbIaqL+aYc+EtzhfcSrULk+CYoCNt1tmJQQ/lYEpKFry78we2fSkiQdfX0FCigue1VLFlzT963NaOX2Xew9taWzAckQ7eEwNI+oAiyrRkUU3hHnQdnQDmkrIgW2eIqqen4WgvGzDuIwpJuwO99WugZfl+ujLyPugdieSNE+WwOvwmxjnZwN4sMRANnwLrYCbIDD9jq4evUXzjdvp3ZydM3beaeyWc0e9PInbbWcNaek2PK8cQuzaBfmEGB1pGQ+CK3Zw5uwpVL+wADnuC+dNHQ0VBLoR8zAbxmN3sKNvPiqOCICBbH27I/wQxo81UYXIV3riYwIsL/Xi6Xh63nNyD1ydW0EvVPL4zrRd9Zw5QU/deOCC8kF8dEIDAg4fw5aYM/qa8DVPvBdCSPQo0+V8RNKip0PLdw3A/Mo7xmRzsXl+N+8TsgKNkUXagmB8nmvH5Wfvos7At6bo48KV0F3wqKQ7VJ0p506txZDlvPxWqrAGJV0g1nwpZ/udOPKTsj1rGbpSibwExm/LgQagfD+vvRZcha1S81EUFf07DcpNXuFCiAmZMs4dDqybB0bHbOd63mF2sdkOQaCd+LCthifajEBeHJHCuhUfu7uVX/ywhTWoIfWQbQEr5G5f/J4/x/xVivc0AFJtHY8YGdW6sjQQft/HQlTifP79cwYtsC0n32ykyWKWD17bbwuI3VrC7qB1CDTzgnoM1DIlWg9KN1RAydgTcbZ3HatcCQXLyYZLevoxU9b/Dkio3fnFNDIR+vSXzmUdYLS6GuqfegrTz62lNWBFv3/8T/fXvwbo3j6F6jinM+LqYQwyXUZFgHCTsbMAbxf/Bl3O1UBjZCEcVxlGh4W8OPy0GO7tieUX6f4Tv7THniTUXf5TH/cZ+2G6ym76dnAV6kX9gxRItML9zlmcp5XJKWRJteFVC5gVDUKC/lSJlK2D9vDyo61WhoYnSUJ9mgR6tviiTOwjBd01xld5Bkl48xOcXt1DW3X+YfyIYDoUIQ5Dqcqhz+ozT/Y2oSz0Nqocv4Y8ni8DaaSPLTvuO/+38wN96ZKHVZCrsFS3h1tqxVHjvCUcXHEdBudm48VomDDT18UHTo7AjQhE6LfXZOnQhN18UBt13STxLIJVuB1nC5x036GBQNH47NQ5ir4+HZeOiQObedD6NauifWsOn8r/R6/fn0bAqBepDKyk/R4XuLpkEzUpPudX5Av56l8MybRbcvl8WJ3l10cz0Epowuxv2fi2g1DYzOFl4B9L9l/Abi9V40zWQ3JQQ+M1fepImRrMrL6GcqClrJwiAq3YjzTtzCI7uEaPRFq/BNvgLqGAeOU7JpZPLVkNfthaf8dQFTbE6yFVZycfXZ8D3F4k07fB1uCVXgDN1tcjDvRF9NiVC4jYbSLLT5Ulh3+mv6j9Sv+4NzfqidO2gLTY/2wsq0dtB9pAL9S40h6UrIihq6SBN39NEA9eL+dfAD1J7eokWnIzCk1XL+FfML8waORo+X23BQHcJGnl4Dj2yKeCoDVU03+ogfPHN5N8vPTl96y14usUMhqdYUNrJ9VwR0s+Xb37FU8mzsEc5CzP+NlCOqhuuEs3FxCgrMItqwqUPBUm9poofH6iAFUNr+FDlBOg9fomXH1OiKP0alowcByavNnCh9yeaHNNE8lJjQePPcdSebAvxd8LoU7orZe+wh5NuViAU9wMaZ6nSQ9UO0rEOAjdzY6j4sIJkGqfgVXFxanJqh7fXLaHoqB5afktD/apVNKLvA2tl18PivcdpvPJVVNd9jlvlPDlNQwL0HuXhFy1RHOVWTVbE9GJdMezV7eHaUGm+uyqJBv7dBpN6KThfXIm3tl+gwEvlcEvPGBquWeFTL084fe4BzzxxiXa1SmH8Kg3YMe4FRPfXQselPqg5bY/KHv943e0SFrAfQ6YHP2O65G4qXSYDZpUWKC/xnR7HNFCtTxAM1qaST8QSzK92hR96ydCplQcxd2wg4L84yLscB2bT1lK933f4UNlCnwdecYjdT5q3kOFKgxOfC1OFK8Mp2GyJ5CI+Ag/JTaGPcQdpjb84TD7thgvhLHRnzISGPRZg5quL8Zn7cdmv6Tz1vAo/vycChVKi9KbuLsbWi8LqzUOUOd4QNJwG+GH/OOY/Y+n8Sj1c8dyYKlpnUvlsWQjevoIKxt/CmAg90DpWg+tsXoOdzim6eEKJz4kM4bj1RGkWC1AyVwOvSbyCjTcVQLe6AQV03+LUmjLq/buGkj9oUvnAcZA1WED8ewUUppXgtcWWMHdOLy3QfY7xhZ7kVfkRojclgG7/F3oTfZNquQGuLhelcU2SsER7AaamZJH703sYJbsWl4lYs16VN29I6GFbJ0NMgl7u80P4vGAsxxnaUEeUOX0dN55VTsTCfy9jWWqJOqpkV8L5FdtAdtsEsFRdQD3pG5iet+PG5DZ6aDFAuz6asmXxHLiQkMgndZR5ddMk2JYsiGd0ByBMzxQa7rzn60WOMOJoN/2q28DuumdZ/nYrjEsdB04FXuh5rZ7PG62j56e14FhyGDXJOEKFwQw2nG7BEWvCaGWfA7jkvMH5KyfhgS3VNLl6MlzRAbaPtaSdX2Xho5EhXhC7R7MHdeDPf+2kfbiLLEOsaFtKJLz6kglRunth4Tc1vGl7kuvnSEL1Kyv499OATKJTyXAfg6TGSs7QPAI6gnbgOsaFZMPXg5vCAex6ORK6Em/RjPE5eGvrWF4XrQETBlXwq6IPbnkdQuVytVzb4Uly6xxgsyVQ55FdeNfpDWmvfAJ6y//Swuh4vmi2nDZJGFN6iA2PiNaHb4vLsOR5PPvVedLyBiEcbTmdLqyRot3xM9nTNBaEj5tzQNZoCJ06i9fXTIV3uVdJaqCZhd2JK3+Z4c9vLhA5ygD+JmqCT64meG33xa3Vu8lw6Dx2xPuy5dvx+PHDDJ7n/BaPPLbiaKnfGChlBR87vtL6rUlkc1MSJnQoo32rG7uWPcdCyUJ45KYIZwZX0PSrE0D47kw4+GMO1aRX4MCnJB6ZeIZm2njhqY/RuPjwMc65m0bHVeXh4dFfWPLSlryFX4GpZhFN+fwDg3Z4wYcHkix62Zn2aWjTbFshkBav4jd73+IVYRs+erMKBZZ8watRk9h00QYOHetDdsL2uHS2Aey61gBdr57z5p/OXJHjguXlC7kjMBUu3pHn7fiO2w6PgITpIvBRqgDFi97CvAcHYOW/hfRU/C2XbCU2NFxN4pvP01nBBRxUKwyxY4rI6dEZXKC7FT1q5DEm+ix0LPXAzbWb4L6HNU+zuYWioTqw5s0SnuN/CX6XJZDf2waqEt/E/u3f0fTPRZqor0mkvJY23TSDoc4ACNZZyFVBG9jY0A/u7FgD2zwbSL3nCO8fZU/FkadIr34SXNmyFT80raEtrx7hX7VHNEr1D5bYncHguhSQaP7BG+cUs5ORGmS3DsPcQT1WifhG56e6YnB8CArZvCWBj6tgvaIfqyVYoJ38JHgWcRnWBNtyseEfbGleAsun9hEIrMOk7jxydZtDo5LFUGMKw+q766iL5PilTRVmCE4lx5QVXGq3Ae5NUUDJmq18qVobRs6ShXANb37qcYxvXI3CUN8KxPNW3DxXFba33aC1nSq8P+E6BaQwyPUJ86SL17lt02EMXqLG1otc0MBrPy/Tu0VSu+fD283Tua5LDRwNxfBZSQf82LIZLRVM6erNd6SVPRs6sjJJ//kMOnrZGSXsDUDY7i/4fhrEuWtO0aavd7B35DMeV2OKR5z2o8JjxBMXFuPlVRJgZDiTEhv1cNbyX7z3dQC0zV2BL8dHwObUSXymVBnFetzBx8ge/oyRon/CE3njnZOwW+k7xtxdCyOPvMc8g9H0+qQpqNiH8HlnZTDcUgC3NMu4LH8Sy6SJYFirHkl0PUORnDe0UU2Wr4ZuhE5xERBVXEcOi+ewWX4gzK46S2bjczEgZQLl1v3m3f+Z8U2nfFwgqQn3uIV3mT4DnmuD/xN3H4pAKGoAgP9B9hbKzB7ZIjJKIVFSKiJpHZWVEk2RaEpSSIMoqQgNtJVSsiqFllS0lAoZpbqPcZ/ku5PzC2ZvLYWctUzqyRFkeH8Tvl/gwTH/TOBWjyKMOt/IM++8oesZnXgtWYZ7x4TC7oGLkHRnBVjPySTHhXIw7k0GjirfAGKyCXDPZAlYVfiTUrshfms6h2N8huH3SwEMtDaBNisE1RN9IJP4mLyfjaZty1M5b+Fj6i6ej1G3halhuISfRZqD4fMRGBc5mi7Megz9N71QJTqffKI+osOIGeidcBb8/s1m2xgZ0BI2orujvvF8wUo82fwCF32Zzq+zRfB1ZSR4H76DlQ53YcxhJ5BTTcJ/Xb/xgm8kJ/mZ0ejdfbywIZNtVHejj04dHHKpgQMXLUHf9ibJNCxgFRFRnNBzgFs7RrKvcA1n9BpgqognH10xCKvbZcDnUTUkTNLkyVahaB6bS2lO2nzk2npeX+/MYx9dpjrPGJRRZqj9spbjpu5DK5tAEAsJ4jurLuFl7708deNJXJlTRXv6o/GMow7IX8rBO2WfqbtgMwhZjKGiCcbYm2aGXmuSQeFOPe46q05fmp1g0219CHpwkhKXH+PhmiO8QDyAoOUF1Td70WmlibS1+gmemDgKzNe/gi+hO/HVhVVY7acBYaYFdOTjcliiE0kbd+fAK7smil+pDeZ+jfh91HtMvT0Mt7YV8BOypr8T8lHWNpd2Hsnm1/8V0Jl6Q7C120+3UwuhS6Kc3W7sZZHLAnjb3Z32VK6HbpcxnJcQCf/CpUBi2nTMluzEa13h4Ckrzhp7hRge3Qfxnvtcu+sBuffG0QhjeRjzyQNvtX7nmBfBlCE6jFEj/OHojxH8Jvc0Sf1VgkRBSfjmPBpUrT5gQ+E1LNxyjRri4yHKex4MGbbBw+JNvDilCTMXrYTbHsagWKfGn6+OxkcPNSiIbnLW6+W8889bOPijlrJWDeIb1qZdP8XAPlkQt+1Yx6KeF+lq/nOMbxyGtI7HZPIzA7Z+DCWnEXoYQmOh+vIzXPoghc/pl7B+vQ6rRvjwn8uGmKj/Cs+HjwTpEgk8dg/h04c14NYSRL/cKmHy+yA2FXvKt+Zepco5Ytw5G3DaWzGYUKIGklt3QcjSP/ztpSWOOLsUV92qQZPgcJIvPA5Ll97H7wmnQPLjeAjoPoYyqs28xzIUrxi1c2PXXFI1NsfVZ4Xptc4sMu6cDibjCb7slSfBlntkmV8PjtbBNPHeXKrTLcSgr55Yw8Z8JN8Rg14ThBmdZSenGzj6Zj/PPt2NTXCU0y0EedPWNSQxMwVX6BwhIUcbKF2ky/VLzHhymRjWRXbyWm0tqpCeiw/MD4GFZw7k1wvBjA2KECCgQW8j/NnYXApajYXh9qAF/YoYwYv8B9lnSjV3JL+iHx/VoRCcqcZ2AIVWxrHdDxs6fESFBifPh/zkHtpf95OuPr/Jzy3tQGuKOdbzDDT69IA1t/RDoHo/fz+ewP7ZobRN6gGmjlnMyxsEQcbRFht/rwW5qUtootQzaM+Xg2uJQzjK1AKyzjuQm3IEXfysA+97jejjPl0YfpAIr/0fU7a1HFfCOnapFUFDCVMOksnmnqlysNtNluYtr6f49f6859Y1GFh/ggvmfuDir+95319jflLzhn91G8Nx5yA6t1uTk0sPs+64AFrfG8Drvezh3SNAX6s80pLOxtn5o0Bx0W8aN/IUHP86yALOa3jLcB0q/DWBucUT0HZqGWitzadiSSUoHfaBH6PVKP2bAQ3cukrmM+7Bz7+5MMV1It9tEAKpqW60QFMLCuSvsMJqxNtdqzn3fi8KnpxG+XtH4DTvDhK13Q1lIiso67UBnKmYwnFtyyDq3Cre0lYJg97GuOJFFDt1x8CI4YuQMU8YuE4XlIKTMU0snoa/SNL2jlH41CMK94w9woKPtDl81TrWEfmCVzbIg3uvEgyca4XiIydAYpsMu9ofJsrq4pMnPPGaQCyU5DhCx4ux0OC+A3ufdUNreQlFLdlEFYrSfF8tCS8kCtKN7EVgWvICnicyHFmbgMLXt1BSsjWUTgsFHfaAgNzH9OD5WuifFcQLf37Bm3WiEC1sxwtfnuZQ/b0gOfEEe6Z3kfzILRyWmIOja0dAzJxuCjAfD2mzWvn3i7EwtWwUvdumALF64uiUVgoiWSk44cZpPpsyj71ZFaJOF+HOjVOovyIOMg2K+UGcL+T5V7HZnPnYwPfps3cznX8sDsFja+ntpzJeI6ELU+EKSPkqw7zb9fSjToZ1F9dQ3WYTUovRhL0by1jlXhPNMO2FEx0RbCqSjzLp/bj4pDBWHjNA8zt/efipBXQXToEqq8k8868bfzikSV6n3Uj1pTC63UujosptfP+ZGw+d14Yf5U4kqv0ZUutE6O+ffNayWQmLHtRjx8YQOBnvRH/nHAexPWIwL+4t73kpRPVn4lhi4BIMSGvAKLdEElkSQFcP+lJG3BV0LB8DsydaUsZaIw40FuBu506ulbjOqf7Lmctv8J/ZrlSlb4gX9LRg6351WrJ2A8nfkeXcUfEMg1dR6PdGNGwIhw+9b1gh9AZFfzSABTJxdL5xFkS4jcB9sS4ce+oUfY5Q5PjiIbwoa8iCW6/QK3YCG729oF0+j5d5i/MfwTEcd2MWd5v/4KMNZ1DPqJIs66ZCWowBrFy0mOJDrej4mU4McN+KVrWLMXqTKzwdVQIhaM81uf8wT8oIFh3zhNE6/ljVIkeLXmhg5Z56SlmsgEmjEyl95DXevvkKGMrqw5Gzp6Bo8U3W2BaAB5ccwN6JmrxDy5YvSy1EjYmXSGp0Ex58Kw6vxd2ha/9oLOvMh0xpX7avKEGRgPXoorqCxBKUOXjyW/bOsYW5y15B5593nLMuBeOSvNlw6WZ+mWBBAvr1NHjMDg7fWwZb/tjBH1Fz3lYqxX/jcrB48w42M9GGDbcrOC4zEh2jp+JCkSPQ36MMS6R3gppJFcX+/M5PvkeTqEE5Tl7ij+Xfz+Dx4zr0sHUA/v4nBtvSH2KYqRaKXTkIA1EpkFluiVrrL7BUehHEyWvDxZsHMDVPADyH7clNwh9ybcdTTPcenjjzHEU+boZNM26T999C6mIn8HymDs+LgyhD2IKyLUI5Vd6DZIsWkHLCVuw220lZDRfgXdMC2JKsDoqrX0C5hA9WPXXFVN8FbJ56iTbZjsd3qg+w8rIuGcB2vm0gCLIRtfT6tjBlviuHP6deYsu7OC7x68ZT3fvIXiCAKvWbcEeOGDy5KIHFfBgTYt9h2wV3Vgu4TCmftWCzcCkfWOuGDUPz0E1rJGR5PYacOUtIs9MG9R0jofvEI3679ArnRi2kr/4FaHL8IX2ZpACC1y9Bv3oAxpQc44mnz+DOrL/YHDSDFcbnU81zc9a23gFDcYYwdt0TyN3oQU3lThBSnc4OT2JY4F4IzWl2wDtlgxhw8SG+TtCFvFmRlIF3+az5L+7AYyyq+hoWn2aY1xNNekPK7FJdSM6fx8DJ7tv0seoUGfgtxM3OOfBKuZZv3PDh1tI8qHfSo+gJHexv4gRJkVY0ct0AvSp7wNvFzfmM7VV4oCXDj6fZ8L7wuTT1z1r+r8oObL8xrR/1nAZLethjZS6uHXYj99Hy6Nt2gwSO7oDdZ5yoYZIiVG8uII0VAvgi+QZdi9iBbU0h+Op1HVR5bMF73uFg/34kRawwhJMaNuTcMwnlREWo474KRWjngtFkX1qpHYN/1O+jkZEJf2l2hIg17eSXfopbU05yT8VR8nnay0vO2PCvhnE48ac6Ng6JwLw/CnC3Kp36o134Z548DSSfAt3YlRQbe4Ej39XR6a125HUqCauszGG31zZ8eGQhl9kP0sK6Kj4oqkK2yWKUVDQH5pvbY+CYY2TdYAdllhexIngJiItNhnMPivhP5BG4pDSLXNr3gariBxxpmogwn8BIJxznhffDlxJZehQpSrOtV/H9lDmcnuaOqzcL452fU7kszwJyNr+iHTFLafZAPr68bgZhM3u44OVcTrhUih9LIjhhvSjuizECb588jtxuRLsaWvAO6eEpjTAM0CwmzcUSlPwwEzf4xrN+jRNEeEtg4Sdz3ityhBt3pvE2CWV+sqwJvh25AIVf2sFrWx+eeWkNkuaM0oElYCj+hZfvruInkn68/u1DPlr2gRfcf8BqghbUt1kJXj7+SVWGbeD7qxK8bvygO/SG5q1fiStkM3H+T1FUGpdEbrIyUGLykc8EraPIRXE89sNJsP01iPOlV7KZSCKuvTWZY/Wlqf+rHkjvyIe3Puuxu3sy+2ycC4tcXOGjvT2ofr5JJWeng639FT4RoQ4HRSfxl6m3IDNxDKZtdseXR9V47p0+MjN0gJNnc0DrmhwU/LWE4j4p0pD2w56NPmB1/ADuuiQGVfff0DP1jazgIMHtH1vogJ0eGBXm8MvU0zw3Rh+3FQpQfhryV5OpLBHyE2vM/wPnplLcKGQFFzLcqd/Nn9bKd7NHhSvMfP8QGpfUY1vESVx6246LOy+BmJ8QyHW9g9WS8VCcYc3Sit94d+la7rzWSnjiPJ9b6MwtLUKg1WAGOc/dIIV9cEWcP/j6zoboGmvu+9ZFk3XbuEf6DhwzHAaXeiPwjdkA8S41tKJWlc9/3ABn4q3w+8z70Kt6F6J8NNgoOgYW/5SCAyHnqXrEE9qdpYHV+3KhVLMKXr7NIid9xiUXSjBHRxSkFznAsS/laLLhMfq81MOmimNIqaIwb0kpOw6KkKXIYWxM+w+SFY3hy9AfUN1xE/emnOaI5VJ47ls3q0+VwwcRl/iWUBJHv7mOpfEG4GQ5n08svgXrlj6Bff/pUsjUB2zyrA9Gb/1EVwOt2fvXBrw/0QlKxh7k6eWrcFLuVmgPjMFR86o5ReQdfV5+HL5l7cSVfwKhaUAbXo7PhlLfBaCb/IM97abAtI4WbFhWBJb5ZpwonUOmjW5w8LY8rDD7wg6C9Xw9NA3+tVvTiOxBSI+ejjcPv+BP1UmY7GWKNQfGwqfJR1hSdDTY1f0C7efSDKFLYJ/GJ7DcPJ3TdpeA96ZEnGcmDf8FxuLhPSmkMXE/bnnrhE6oSOtNddHZL4TmSclwXtVJFO4QgJUZ5bB38loofuoKOp3v2UQ9gKImpfJGuR0oUSZHO90kaMFEAzj9+C3W92bw+WhfHpKsg5QfQ7BkoTve9jnOCt8nsK3aUdgqZA9rvVeQxCEnVmvRxf2yeaxcpkPBGy7Rkx7iK7XOdO2eFjk8FYDvf2pQbAuD9ZV6GN3mh4/ttsKh9Ym03d+K54Z8pV0F2fypSBNGKu3gq4OFDLdsQdl3PcvJTwfv+nl0QboPNL8po9kiTZRZLQsWru9IALbRrmf1EFFVy663L2P9aFdosnKCE5EB/Gf+UxqfpQkNoXV8o2Q/5g+40FKcxLfVY6Ek8DAkz26GIVVnSvI9BB3vJCCl4gIcan0AK1z1YGvLXsqZGUCrnAAuBF3H9pUlaLbRDgWWS0FIyGUalLYF7VpRKK8PBVKfj4tVvgJM8mOTnkhy3/0Xvcerg92MzeSy2BIw9C6fe/sdHhf6s/uUOLL2jIFp7kO4skaXJ58Sh1UpH7F24lycOKWJh/qGSHL8OKR/apTSuwd/1YjxxiY3TvxtAL+eHYWSml3oZOHEVvVf6arDB4boGTwg2Qnra7voTaoF+AUqw3ivHv4pOJpenj5E8UmtuC7uK8rPTeBglVwwkfah+BUv0LnKEVyvnYSOkg0cMsObBub48oJXZ+jg6tW8V1gVzA+n0a9x+qgurAdde+LhfEoyL1rYS6avFaCovZk21nbxpnHPcOPS87RFQx5PNI2FAxYCWJbXRkkVVszZ42lW1FWe+P0maRrcpbPCV8Hb3RntpMfD9eML4XTVdZK5uQCnr3eCCeWXWMlFEs/3NvH+smUsX+MFPfEGsOeuCC+XVIddymFcXLwYf639wJrNiVgZ85jytarQWtifrW6NBUvlEnjdJwzLPu3Cobnj+a1cDFTKHgeJx9nw4uFb3LFPC47rGYBCkx9cnWhN18iR5l4U5YLkx/Tefgv11D3F4aWzWWrnURBfIQjRKuPZprEb+5SsSbr5NGvUXUCjuctA/sZ+lHCIx9W/xPG+riPUOEdTL3hAQHw5Z4v+gHB7fbyiJI/q92rh+3ArWl0/jq7mNnBefBfYdU3Gra/8+cf205i+5C2anRWHpJyFOG3lfYrV9aFzixRga6M3g916VpnlAvXjnoHoOV1Y7uxA00T0aOrBNHJy8eaXOxxhxdOjGOP5EISEEjBEXxEfPz3DFaEJkJcgAIuz54Fdsz22lo+DtrpxXGtmDfOOTMYdz0/BlxRZfNb7hz9euoZkTrDq8ixIP24GBqciuX+7Lu73TIIqN2cIPVoLegVZ9G3fQc578o0ebc7j5adHwevAJ/hUTwIzD0aQRDewicY7qCv6wWUv4rhJ9wzfdQiEHfIy8HbRGHYdsZh2laTx/ZmjMe7NbgwyXAPRQVfp18pp2NSWA77zlGDcUA3v7ViI6x3NeWpLIfuHbqPUp+uB5T/hiulvqebnWdxyEOBqSROHL/fGLxM6obbRni1WJPM5+2W4z+kkVA1vJo2Fb0DukhN0ri7mB78/YtubdbygK4azzyiw299JJH9mDlR+ngrVO89DrpomOG7dAjaDyfiyWR7NM4bArHUmtME5OGg6DuJOa+L1qYtgX6wijBVg/uD/CNQTD8OGVldaq1tE5aE7ecKUzXRreR3exd+40GA8OJh44t7kBPCQzqQclUfw6z9L+OXiy3LPXtC9K0/pvMpu4gcT4JzvUTq9XxzyJ7fx2Euj6INDJsyuC2JtuQ66r3uJvFIEeN5HHTjtUEib+oY4fNd0Xn1yFGRfjIWF1gfoqbQOzmpzh23J23mDnTVUXR4Evce7WGlbO5+rHYPp9ZVYfuYFBu6yx0P5Flzr04RgowCRUtHk1rKbzDwXsc1ONTQqbuFMwWFSnSDFNy6OAdeZCqzfoAULXsXAqjWv4ffpABBQbyeVyk100XSId/+dQ1lMUOVYQeELx4B5ejU0VazH0+7G+MerA1zDuuHSpfsQIRmNM75fwhuG5/G8qAFYKvRQUkYDz9aPRN2dT8hQ8AVXZ7dgff9zvLG8AXdc9AfnQFNIsd3KbSGWdN7gHZ1NqSGf3/UUHHCI2x4XcYCaPsjOUaflS0bBBJHzeLrpBTlkPEUnQxP4MjcIx3SdhbAyQziaewPKr0pR7z19EFdXoZtFinjX6AqF7gE+WerMv8Lk4eu+SpKMDGbjXT5wU9kWJFXyIWLLXEo09OXaQ5tA0jsF9n71hs2Gs0lCahZmpQyRgpsQeNbfg/CNtjTD4hMM6U6l+G9veIzKM87fF0z11+VRxckG3NpFoTVxHV2/dQ7bbv9hqWJJ2O3SCWk/jmH34VIOKVSlY2sOs2XlCKh8a0KlgURRy+9jr80KCqwSIY+138DZoZWctvoRabfjt2EnCH2lD1sPZtLskW3c/sMGW/vcscHmOu7alQM5rkYoGBYHS0NVIaooC1QMp5P6ZTkOGu1PpCXM14J66cSpuzBJ6TycScmjizQSnuko4ur16iR3GMF1WQRNGJ3EI08m4N+0PVz/9yYnhBtQ7l0TcP8nCCC9mQcnrwF70XCYJmBKO9Jn0arj89nlghqUq+ijTeM4GDtvAWbIvIfe2u+wl+zAY+JvmPCvD+qXn6ApO3K4XWURv+lFWO0TyLuedZHRSD+scHhMBt8L4LbjdVzxbi7tfNmCat0e8MZrPKxTbae3E0/QaK+vdNTlK5iNb8QtfpW0pLueTa67U23JXNTdrAVxzbv5soghnOqZj59qX+DPfUN8q84A7k9JxIgjB7ja+BruA4BtF5BGBwyC3NMXbKQZAHI7R/HKEwQGhhZUtVYRGjIesPRCcZB4bon3Y4TBo/czJFw6z6aHvlDRgzyKefUDJ4cZUpnLHxbLNINFVqe4ZFgEIjw6yORGBDYc6+Hp+a6gdEQUkqrHsciya2zgbQHfdWOo7vxF/t1UDjkqkWzWNshvnIugfaQ+Wdl+wi239SkoWRlsPt2mE25f4UBqGLc/ccfqdWMpYIUgTIg5zOrTD/Fua2sIbzMGO6dRrH9EEY2uHKWm0t+02cgGxNp34sgp9my8Txuq5TVwhLsVYOxFWnqqkOLW3OGKtEQoM7jGS6oz0Ck3gMLrN+OGuOkYWiABmx4ZcPt4b4xskSXDjymYVXERXFNWQ1nNF76mHgf3/mvEf5L6cDivDCSn36XbboGc/j4IdwqM4Se+X/lj5w62WH4XRe7sBJioCV8Uivn24Xcspe3Hp/0q6E/6RFZ7tA4dJx9iiQwtCj76mh90joK7zoVEpyaAiPJ18P8VynafYlnN5RVNTh3AsQe2cd20bj6QZQfKD1LIYtCCn+mOY4OcgywxTwtsXg9SxSEXTvKax6f/uwWtQjLwWPgn77+wF/NeyVPXLmHel6QJdU3lbLhgGk6M1UMx3wck7WgF9heEqGrNZIyevh5vK58D1TljaaLNXMpsLyf71ZXoFf8cDQWsQTR7P6RHlrPn98W4akc5OLZd55bAG+QaKcRF5SWoUGzA1x7JQKSJIj+e8pciVurwYMhGGB58TOpVwXT53XM69vI6mv2Q4wo1W1jaaEw7P6qhR24vKPc749Honbw95jsNRWvg1ZCteENwBxQmSEDUVG/4l5hMX7reUP/McthudReerLoJH+f5ko55HAhmG/MtdUFwmm1H/ZohpBO/CpRCjuDbzlUgrdgE57r38IqLv7GvQIEbC5WhiZNhvglT+xZ3khh5EY58WI7LRozCq1ca4LzVLXbmb/RsjTYcDMviwElxbPRbnCcv76RpvmNAvPMtaL62oGS9IliQegVXdAjBoqH7oBMfzeIr4thhoQmmxt+HtrTteH3DZXJc9h5kXgzw0nMyEKG9EScYyJDSvs0s/KMHhv3/8tSwOgpN3caTfo+lYhNBFjNUAJUThbBveTd0DQtwStEsWD9Xk3/M3Uv7+rvwW+NRVvh6hr0vS8DxH9swtVGADrs2kv8iI0pOMoGC6985+ZMP1D3YxqITCvBzjB1UjbwCeW35nFTkAEaJc6h1XRKZuYfi9TFIJouk2PjnZ1zlpwur5vjhLzsFLJrUyifXJtKJsll4XS6Nr5Y9he9Sn6GgVg0bQApi1l/k6/eEKPZSGHhGz8Z4HyUYsS+T4q4+xCu5N3ikaQ0urrKEwy5fQMfyEDw6KEiJY+wp4nIx7NvUDJ9ttHijSiA6bpBC8Z+yUKsqAnvzktl2wkSu3qMN5y8Usxhspe6RgphbI8at+z7yV70RkOqM1O95E+w1xMD6tzycv5FOcypceJHYWVosXo3h34hjPW1hzQ5dkHJLgKC6Fsz+PRsmnB2LN78n0seZDbBV8z8OnzYGyg3H/9/83z8ekrxjRALVb98Dq0JWor1NG9+YfxfnTEvAwA5bdG11h3VrdeH4rUzcprCMlshmMT7xwl3iAVy9+gZFFathZtkZWpjpytnLJUFolgnZLrzNI49LQ5nrR4wMCSKBIwH0YutImPe6mmMsFOiZlwScMM+i0bfmkwG+oIcbLehB4FiuG7kDmzzP4v6u8zBrsg/ulBIHodqXbDbfCc/JtbFvkj3G55YyjGkjBxdn/tpnQq/WziTTJ44w228NTbh4GM9Y74KLURIYWfCb1bSMISzSmP6MjCOfHEdwabGBdHlCg/ufwHeLMAaqfsLhMV2o6O/MX9OnY11JNExW3Igq+SPhvWcoSUhNgjV3ujlqviEHr9hM2vsvATlmoVuACV6o3cv+r1RhUvwESNqphI+lNFCl7xHsfKGHqeQJM2RkoPBKMBybtBL3TVOCiJpRLH/vNJVGn6QFWISKMoXUNGoNmGhG8NC3k5ATbot75OXBwMURjGp+01iT67BYNAd19jSjmvQwPHQNxGLJt+A6fRpr7RgF2xTD+USjLdoePkbPS3ewqLU/+yz4h7ZDi+jl12kccPcOzHFRgYCGFFpbm4suIePYObOUFfNH4q71U2Gh81Pcp9KLW7TO8a8ECTiR8IWndRlA874IcC3eyvf9W/jRBCPccyUPzI9IsYzESGiXkIL1Z95Sqed4+DJnIaRn+vHnPYm4al4BrvwkxGlHinnViNF8pMsS0npVeaOMI5YHvqCLU/dBjcNnelokhg0tj6k/3AFO6CxjmVhZaM8LgDmazyns0Qf+YdGN3+VOgvpGddrzdhMJn5ZnUwE13JhpBKMa7/DRC/P575AL7V6diK2Ln8Bt3AiXhz7gXSlnrM6TxGebEBIz59CFj5NojX8amrn2kUbBSbhV1gzd/xJwrNBi4n3BXDDPGCqU1tDleX7c6bMeqpKdULDYDLNsLVCyyJufqSVhsGIuKS+TA+WEPrTU/sx7k35gQLwKbarMopojiayQeIkd1+yj3/NlyeaPJhSnTIcLN8ppl/JVrjvTjMEngLwWLoYanWX4oTQGZ/Znk9yx8aDioQivjJ9h78TFPPthOY0w9Qfx23EUKrwOa73UoLl4LF6ZqwBaW2awZ/xqEv19E0e8DGR8GAfSsal486QfB4XF8qiJDhAgoA+C17ypx/I9bv+ZQdsuatOrjHSOeLGCDDXbuFbpEJR57+BcGSnIikqH/djIaR0O1LIpEeVDpVh2fAxNMdvPJuhKQja/YY6ZBWhL/cX/gnM5dSAcpIy/0f3pfjBxdiAZnfxH490OYFllAz8vN4WjM0ZBpXohRPUawKxt/pC2wZyasyVgXWQubZd+SKO/vkOMsoU1phXgKbkVy7Z8xCq5HSCrNI4dl2ZTQN5d+vfuM/539h+v2KICr4/Ooj8eM0j1Yyn4fHzD/3n5st1NaRp2s+Q5b2ZzzcGptP3xaBCY9YpsdTRAtHA3twiuRrceURS4rg0+bnMp71ob758gjammVjBC/wyfLIulUSfes4KQMp38Txf2v/+PzePaqS2wmRV1DFj1iCVwkg+ciTLio492s8iLARCZvgoXpemjg0sU/BieRFuSb/DkXRqwYsdu7MV3ZF95jIQWtKOM6Fj+EHocC6+GoKSZI+WfKETbcnk4mxADtb0/Qe9hHyWUy8DHEWEglfaLunKMQXnnM5j63hK9HSSgX1afAx4c4zn/tsANEwFS9IqC0PBUVCrVZw/TaHjRIMGdwlYw+LyUJoYLcv+rCDyzaAsY+4dBQ1EPNZx/irWXXvHCFQXo+ApBoHgKteRF4diNkyDWxIw7G0bwzLFjWTsvBCe4yEHwWlN6+kEG7rydzQrhy/FlD7PG+UmkLf0BPusGcUWjPjqY5NPtY4o4WWo83NQYhBcLz1HSwUbA9ihuvwA0V/AIL6i/SackramnvZNzusXhsexmUP2rAkdT7nDCWV8crWKOtcb9JJqgBWoVm8A/xIE99AWgY/pkhIL1YKKQhzdXa7HR3L+4WOgYb26Nha8vs/h9SyXH2zvApQ3eHOh2AIOyRYhV9TkjfA+I4TwoUloCs8RtOLiqnSR/asHyEcx7epiCD2ZCw3FterRfm5QsjvHy8nT2MjxLeofL4OpTO1j9/BHn2lTBm20drGc6B3b2yePhD5/haZ0eTr69kzboXMfZ54ShbygArGLmkWF/L08qHkWPfAENNshTtXIPFz0qw6T/0iivzRB2TwmB7T+6UHzLJ8oVluagU7UokWZKk8ViOTF9Iv54Iox5gxOg+XMpvN46lW3Cc0B/4mhoP5tByW8moF3kTGy2cCDrlzEcW2ICmduNwbiUSeq/NrSvrwRePJZU9BLoQNhDqm2/hzei/+Ofk0VhjtRj6m0/DCVbi9A4ez+99zWmC0E34bjvLJTeogrv22RQQ1cRLjed45VXTejssQL+usyQcgfqWe7udJ5c6U8aDzTYQWct18w0g4O9evBrTDOaPwFafGAbf//vPbyhUlKcVUDfghbS4t3O1NslAv4xs/D4JD9qE3pNn/ZuBK/OW3jD6y2sr76F38wcqE5oL3TukYF8L1t6Smvpq/h2evf1G/xT2o3bG+Vhp4oVL8p4wU49tWipMBYG5mbjjKRTKNLbzy7WCyjjnzDec1NC9Wnv+AuehsbbldjjZgOXo/5hWNYhrM96Rd4D38Hq+lkWqc7n7ZtCuV+lnpbmRJPRGhnoj8gFd9WtlGuznntXnIGIa5vAxcIAFtjNw+ll1SBm5wK/hDXBPsyXjR9rsvTjVSR14gm3BCbQ34KvsIbNUXapASZ63UC1VCsYtPtMq0+ZocubmTRacxNueJFL6jqeJJAxhZ+e/svhzz5CYbYNyB16yR+7O1Hp6mbe+286+62fQCc/N3J42kcIefaHPAvjMFRMEKbZJvHRK9NoypFO7pi6koM2fIANS+xhZsZsmJmvTDny90C1TA7cg0VB9kITpofvBLVxf2Hz1RYuVk7E8qwu3prayjODxbDxIMOLrFSaXLocX7rfRKUvfXjW/Rx2uZTg5PdacO6oECRYTYPn70bB1ulV9F7zIAh5CKFHqzVpdXryyL3jmfaIsMLiFnx7swhSfojCOXln9rUby3/vrsWrxwTo580v6OWnDabv1yH7dPPUTwV8qGosrBhIY7W8uzTp7RFOPO8AeW7S3Hgmk01LxrFgTQtHRNvwpPHqYHM9E1ddukIJ+/fwnuNJ1PlKjFaPrUL3IGucWeOAspGy6BttDBdPPuMlAy9YWn0qbwg8wv7jx7PlvxuoKDmJ7034giv1GZe0y8OYOQZYkfURj71u5M77fqh1axaPc1vFHj0JYBo6Ckd/OoFS7cKgtvY0N+RLcarFLXj34Qw69Dqzaqgl3Z5kzVtjnLg9dgsumaQIK3RP8JSLs2G6SQcGHt8DF1ffpban9bzu8l5yk0yDgBsn6VidIuw19sen8pkce9MbV9X2UbpeK9lN8eBJ/XWwf1kIGYQKgmy8GdgHzEG916HU6zsfzPzvcZj3Fv7zeBM4bnABpZpUDB6soNXK48D0Pw9uU7lGJ4cL+bnYThRZMxq38HG45bibbt66xdpb7iONVgCFk4OU8+wlu0dVUPWgD5x5fI0K1mWgaNAd9Lz8iz78O8KLL6rBgFMp+KrEQW7lWTzUpUh1BTP47QxVuLzJGKeOXYKvVHv5vYsFuIj84Rk/l/DmrxqQs/UgcGcV3x5zFqotP8GcpGaYs7mG07epQ1H6Gn6tGoIpQlsx/O4L0tuzm69kLsa/qZ/4cNAAT/zZDSomZlAouJNvD7tB6HAK646eQV7Wf6G3xIuc8u3Idpc6uDyIxIhUW9hreJoe5SzkeRel8KKQNDk5WMKZxV60+pQdrCkL5PFWr9nvkjJ46sjB5Qf74ZHlLPw23gAzBcrYbb0Fd8T9xMstvTzDIY15rCooT3hB4n7WUPj+EC743MCdq3MxsjGE97icQUnvi3hjwnp44yYKd14Kg2i6OD6w308bs3257b01K7iWobxMMs9/Ikx/U79QgvU46F/YDHXF5bh7MJxlHjznMJpPFf88qTjyGmQueUyLG5/S8wPK8Pt+J9YkJLN1fCpl6InSyo9D5DnmDXxNfs+PfA5x9adNsK6IIUg9n/o2yOAov4dQV9FMSm0j8VlED22Y/Ig1naM4afkv7JIUgPbX13n2m+Ow9rglq376iZfVjEAalsLLj00s63+V1m1einvfjIZGs3zu6JiKZ8ROUrxeBPrpWJPu4t0stHgL1rW5UMfQMF+eIgD2vuHoIfoN1WbXwoRFH0h8yXeK2CTCG/7t5mWvu9gjy5z3J0vCn13K2CDlRuu+uZJvmiOf+XWcWx6PxF1n0yDH8jRz0H2IXWMKkxoRSjrs8egPWcha5MYeEh/w8Qk5mBQeRedoCVj/7QUxvzFw0Ow5Fyv9pJWnnaH0rQf75IRRyNBuTAI9rj28gwPfvQVTOxvY52jJ33x6ofamNL0+nIynl2ZCRSmCoL0gTjFM4nd+41BXxgF4cAov6q9C9fAFPHNvEvdEfaMdg+5UEHYAo5+dgrUz0+nNIUOoHfqHFiPSuTymEXJS5qJLsyj0/bPmL8v2s8KfCRgWugTeptgB0S88PvchdJSNpRt2l+mt7AD8kczBaMmt3FNxiUNKFPHaoB14ZT7gSxMOkJLiWDx18yWef3qa3V23APhuZ+WjitTuk8kn5QzgkJc3Ru/wILVTtjjmhgj8PDSH/I4NkXH5KfaZu5/Nk5Up0VUZ7uasp3ktC/HZ97d8NTWLx7l+hPuxGVCSFsmDF7bBtsh08BwQhIlLu7nhpzfvnvmIT+hEgE2wGXy6owFByvHolCqMn2xbOOO0ArxY5UwHxA9w3dGJ3BV0Gb/oXqZpK+KwJroC+hRrIMR6H8jP1YHORAfu+DfEx6QngNjAfZyaa0bB2mWkVLQchPJFUaHnMFSbmUCkhDR6fHDEZblqvEliHA8t/w5ya+L52DxBMm5JpYu+5Sg/3h7MFjRSY+Vn3CB0gewOdfOMkApsj35Ixi7FEH0zBYe1T2OX/Uj4MPoO1GXbwD1DZpHF5+DgHE188nAsTA2Q5j8Os3nrOA/WX+8IdhXrKFBIg6bN+E2pbxbQwvsFcOrlaLj+Nwe+iJnCTnF1fjdaExx9snDIdTlJj3mC8rcFsaFVAS5YrifzrfdRrzyFuyc8gCUl8lBwuQr97hRQU/5s+GOYhR7uS2ntlni0iRwD24WZgt6a4fUAAXhosQhkm2352LJEVpn0HC329eJ5y/k480sLzQ5WRQ60o9RUfUhSHsODgy+ZMjwgJuk/lo+/gkv2WmB/6gkcSScxN/4JR6iLQ4iqP1ep9qDH9yj2/GbF5etl4NKUWD6xuoi3YS5qVP+CNYctobOzgKTTfejDcyUe+DgVawcU4bfOUX7m9whmT+pi6+q79GOTCDh+nkkfggtwzN00VoqTxTeGjynM+SkNrG5lanajqw3vadJII7Ccs4hWHd2Em5/MwyrnXHpClaC7QIM+yvly4dw4NhRu5hFXx4Gmoj6ylxVPGO9Ac31+80ODQTr5+DGv/GSNBY/G84boMlqxUgQeloejx5sgMnu5DcICGul+kSAsiMsk3+ILJDw3m82iRqHL6HEQH3YYrUTkcaDrLceKrkP1aWNAOv8dWb9Ix5ebzKBnuI+ev7CGtNRDtNlTDKK8JGj+TFUOm1BNhx940FvrIJxR+AK+/hrBqbkEjeu0YJzMeTw5+xH8uD8PVGXq6OS7SdTx6jaPHVqL0e5rwHeRPOyriuD0V9tw1nZBoop+zARPKnOTxHfX2+CRdx8+mD4JExZYgNzE99itr8Y1T9U4Q1EKrMbeg9T9HrxrUzCO3/eb8jsD6UGaDbgWhYL3a01sjhvB+VuO0BS1S/Qhd5Ds7Kv43IxwLpJbxBrjNcH07VIs/CtGn7fMhv9arpF9tBqoJvbhp6zn9P7DLrpoqknSYSKQuCYDIrLtSPfyBDj2aD9vHj0dAv4ZUfU1P5rm0IQ7C1ZQmfx4EFXIwPb/QnDk/ulUZOkHCZ8WwMVXfiAVLctVP1ax8oMZUNyuDBf23+Uph46D9JRuvlGQRK0/kzGxVhtuCPTj1DxpTBPNhNBtBEWxM+HjGXOuuXialIRHopZGK04xT4Lftw7gWnjDv/WP08bxBnC5pJimtjjCcNlDNJ73B/5rz2aLWc/xzaWnUGC4iuN2PcRl9eNB02s/Kh23pr6RD2njSU34/FyXatZXo4rifqi+143mV0TAc7YoRBxOx8BTq1E3SY3EazdwfJ8AKEbEY/mhRJQ4aMbff0dw7c0R0B3Wgwc1dDBn6XiQGJzFWrlF9Afj+dHma3ynpAYvjT/KHg8Jep+L086tBdRyoxrNLx0nZQEr3myzgzsVP0Fr81zatKIL1KbIwLuxA3i++Rc6CTxgwd4HnDjPh+QCJNHTKYdVkh5h0a4MfBxuD122xRxUdxP25CVAtqEz6k91hh8Ny2HFPSfI2A68t1gfY8bLQu5sU/KdIcP+6pP5WLMVfVU14uDzaujwaj8/eF2Ityp1eGqGEAzP7gLB40+gJ+kxH46+RseqX9JW3Sd85vwNtKi7jRViBnh10UhYYFQML20Wwoemclg+MY90ljvjggFF7Ak+TAHfXWlZhzMYzlKHWz+7YKmDARce96IF5Te5p3AG7LGLwquv0nHhMXke1yhHSkcM4Mi8P/RU+ha2zJYlmdIAOLAA2e25McXWOMHxICn8POcmFU4Tgh+VF7g4qx5nVljjvwJpvDrpFExePgOsOmzp419TWC1cSMsejYK02rG86Esr931w5Y3vR8PEcd2o9rUNbaT7qLttJv1adofam0aB7flcfl2mhBOnfYKaRAW65JlDpVWVNMXYmGP/HkP55DnoUm8MFos0cJSVL/yQ/MfCzmqsO1BGIh1e8HD7VrbQP4f0OpiKhqRA27iW24L80Of+DA4sKuOvisU8eCwYdrAOfHUd4NfV2vT9oyFkHY+i8OJ2ul1dxCLzE8Dq0jV6H7UCI3zTqCu2B/tPiLL2M20oPbISz+suZSPrn7gr2JMy0RY6rJvgbckW3H+3kEvLt9DIe+aQahnK1QKjSLcqiI+fmkubc+2o+d0G3P6vC5/Nk8c4QTm+7mgLAtvv4Ip/dqi0VpgOnpzPNo1GLL99HY8SiwHZx8Gg4WUCpek6IOpVRU/yjPDL3SLULd4Ff3r8SebPaVKvWwqHbq/FN9ca6M9PY4jcY07rirbx8+1b8Oq4YZyfG4sPUr9BaMZ1niG2l32m/yadKDnYEd7K6tPdYLGHHHQX+XL86H/cKxxLbpNt+c+/UXQvO4f2JYrAaskvdNGmDFbEuUHU1hf8fPYtXnBnGg+8UYY9wRdpa0cr/tekBAgn6MqadA5etwUmJy3FG7Y2ML/4MDdv3sUtxcZoKtMIKxMlwd5MlsevkuE7+evoMclwv2gumH7/CZn3l9Gop9Pw11FlHFCQBT2Rw/xMcyq+uSsBKVVjsGOCPM45d4+0dshRd7Mfza8t541XFeDA6XCU1jrGahUi4DVtBZ0UGIliXWnw1CWU9C2vQWpPEkZt0wdFYysqF11MVRtvgI7RFzjCi1hLnzEr9AdIqt6EvpXCeHm5NDhauUJOVyScW7kftjivAmcXOZ7uGMteD/TZMEkb5p8ivqZuDO5O33hS9mN8ETACD7uK48MNE2iesg0ZCc/i9h5v+uy+CqLbBEHrXDr2bfLm1DWG/EXvGz89ooaji+352eadWGB/mbNT8vChuDQEylZCTFYmNwWmUt85G1wzVZK1Pm9E69cr0G+XK4YpzOe1c4Vhb3Qqpjk8g3WCe2m2xRg825+H9cNXMTYgGCZUCvOfkashrE8LrvVkwwH533hgUhiO8RyGt6YKUJ8fxNWyR2HHNGn60GmB23eqg0n7Td55ThAWxJhBv95/oH50FM5WKsLmU99Q9v1BllyTw3InjGD9v1JoCmkk89tvWKTQk1y0c9hdNJxXuavRqUpH8NkzBbFVGiau8WOxKaW8ILIBHk6Ww6Fvo0j5bQ6vsRTBUYORLPWI2a9LHkyvi5FP5j+6N0uVv+oXYPCi71gzooxWL6kj7ZpYFK8/zOOKpeC5tCp7bY+juzpf0bskDorueEDEU2Wo2fiWhcKqUd+pnZ3+s4KCRHWap5/A+8pCUG2tAShUH8MEx1/wUnA+B2+5hNazZnLAFBEwbWyis/cBa54cplGHp+OSn3aUF7WaVNVSsLxUD8JsCOWzZSANpVlhHuCL+Amw5tQImBYojqLrcvHJlE38Qjif66YfJ/UeOZDL1qCcxSeoOXAJ+Ci0sqBpErT+FecjScy7hx/hg0J3WOKmAyuOl+GZo9bUEuPLS49lwL2Oo3DozSnakNkHn/ZdhTqNTk7rN4DuxB+0YOle0FsVTsnRk1mxI4k0W7owpdWbQn7vp00zp6H4KlGobfmBrn3abPLjM69w+wQdxpX4WLKZh5fp4iv7Rq4oreVxhfoQ9EiPX+V8o5HO9qju7g9yMsXwdNcxVCmZw7dzDlKMzTnI6DWAKRXhrCtwnreu8aK9kRZwftiawpL06aeBKxnad2PsjFr2nuYANgdfwtayh+CZpEin31/CVR4PuSwpDFe2ZdG9zmbOHFHElR9HQIp0ErPAHbZasx+vbreDRxWbSKW8mhq84kFDyg4u+ehxlYgprFX3Zvu/TjjVdgc/8T9EFhk3McVkL7n3KIDjv8PUM0YWxH45QdErHR6IjaaPV7dRtfZzfpI0g4M0O8nyzh/+cyOfS95VgnCWPUhGe+ABNxPY/2sVLXt2AZ62M6nkPaF2jVR4lrMQ2+SD2Xy+Lrw7tZkVLgexy9ldFBoZBkbvBuFe5nbMls+HbTfv8oKxRbhJThdExufw2ZIrHLP2PI3+2YUN7fvRY+4gbrvrTx8mnYSms958isygdQHCHe9+CFa7iPtlPrFCgA45VKjTE+nDPLgzjp7ua8SxGdZQMOki3XFeB5fvCsGnDQ04/fEQd7zPw6vT1uKegBT+azCdXyiNAzvPIpZItiPLC+nsGnMGRs8ZT/xqJ9aftCXHiir8/MqZdn3VhqG0F5ytK8d+V3Pp0uo50HL5GKcrluJ7w7XcsNSIi4XC4MfJ8bB2wJMETohg6JUKyhtYBYEZz3D+pvmY2CoHUSPEqOdDNuT7C4GpwQm2mTaNJ4lmUNgbJS7QOo3eI25Bvste2CR0HfB1CSrMJPh8fCatm9RJKqv8+fVLB6ycnIuz7oljcFQx2Uyr5VV/mlAoYxwMPUOw7wnFo9d1Yem+cCjS9cCxs0/wtwB70EosJZkt30EvUAFU0s/DsGQrvF+XwO9tXvPvDAO8cEsV1lk00L/Zo/GZxwd4E6IEx5rPgfvXLBhr84lG6s6kM2OSYIcsUKxGGVZGZ/OZ3g5Q+ioAGZVzaZVYHY7MCocvWbU0R/IpXvOdi6efzmL5Vw2oV1wHxb5OYCr7CJMXz4O0hbtpsUA0FnhOYv+xT8HglAXsffsVlWo64HyoOeyO+0mXtrwArymdIN4AUBYlhvLzN+IOvRoKV7GgAbWVPH2ROahMksbnC4uocLk6yRnv5lXCAlQS/ASXyaqhE92hujpZOjlFDzQETuDC7cP0uqCJtt1xB4cOI5QcHiBUvgxiW1xROHMQ5K5ogs38OtTKKKKXMZM55Gck/DfFhDOmmNDP2+XQYvOP6rGAdvmJQ5fjTQ5dWkU3tVdQX5saTd0rRT/7LpLcuSg+1mkBraEHeWWLOJhqDuOD23tI7N9/7H33C2pMUYfCOxPJc8gUDiwoheXnxuHvdTYQ5mRLUV/fsuewO3XtCaNxGAMbxJ/TykxBnh8+TF8TF4DrTVXYNvI8ir32xtjOACi8PxGOqLqDRdczODHJBdRMPoN/5CQaLS0J727mo2hVKHaEVGKMuAaKqvawtcIEnOEtRz/Vsnhn4UtqbzOBc1cq8ZlAMHfxKnJzkEaJ5f1s9OEe+3y5il0q1XD2by5MW6YFZ4+Ik92VIU5418cvr6WDvUcXj0kgerToPwoWvwrul41oygdhcBO1J/3vF9k59BGGTA+EFTv+Yf+Y39BfsxtnZZuDw+lACvoyEnaM84HLb2JxwR4PHrmmD28c2AaGXw1p1Iy5qJXXDmo1aaSnYw33xymy0eR/4DaZ4VLLGtqoFYLsp0+GUtK4csYwBmXm4fFgDXBvLiT9u5ao+DEeJMSWU6xGL2kc3I63d/tw4tAn3CDvy8M7tWHnolZa3RIO5zq78cbUOmyuXob2EofRzlkAb05OpwPZyXzeyAyeFyXj4I9bKF9bxaFnIqAj+Sf1ZQvy8w2mdD+mgptCxuNSZ00YSH7PvqqHeXHjKP4a4st2fzPZc4Y6BItOxAm2UtiaUkzBWw3glKgef9gZRoteP8CY0BS2nnicc/+Lg74ZfTj9/RwWWrmRcsKUIK9VEDUHsyj/xjOK3iEDC/SCafFsazgzYED9vct5a1w2tc4yB2XHF9D7TxuOTZWmMaedSd8qjn7tnYq2G85gv8klXLJsPvyPAPgABAKBAgD6B9l7ZWTvPaMho6RSOlFoKUKLkNUUkoYKDVFpSpFoSIWoVBSlQRo0qMhKS0O5J7VCHzS2D5JtzQf+DF8h60EE3L5fgS+XH8M896d4MqiX5tY3wGh9ORA6XQD/RrwC79UD0Jg/kka190LMsdmUHFGBPclnYLa9JYrKG0GAoSG0yj2F0d5/qVFhLQ7EveE3B9aQa+dhMnIWRuEYXXry1BI+dnTQ0LQ89DpSh2aixbwq9R3Jr1SCBI14vrxtBMg3p8GlXDGQN/KAwIpMlrMohZ99Oqxa0gZu2Xf4S8h19PSNJovawziKrKBupxad3bQfxnzuJh2JLJbe0UoeJ3+DiowNGabl0/hCddLtUYRm5Up2s7qMmimb+bD1KF4btYhktk3ClUmj2H6RFg1W/eWcUSNgVFo3T3jcRnvNaqA4xQ4nJ+Vi7pQ7dPZQEzj+3gr9FT6wqkwLfMWVuEPpL237WcfvhEWpXaUC5quMAtUtqawqYMr0RguP6atAg+FomqGlSj0rf7G3twt2HomnjYU6cFtqJKYvdkKZcyWAmRaQJm+DEQueg/io9ejlooQSkwfQJVgeSPQMCfQuBueADUD7RcB15lpM7hlGz4lTob/hGP830xI8/WRpff8ISHq0mt7sOkW8diTMmuvHwRtvckNNAX3+u4vLPCrA6vF97Hi4D0xn6rFb1yo+ft8UZmo6oeSDTticcRPNf/ziUV5usDtpCUitCYHKqbO57/ht2FJHcHjeS4yzKybftrlQUnaHHpu2s098NJ3VVIfvbfps9V4ABdoBrETP8oXfLfR4fBNXXixjmQXueGTtPV51RwgXq78isdhcFDISAS+HpTjl5ClKvgHQOmoJGC6SBUoxBm+jGFwd5Ep3jwpxarkxnDlzHKvfXEO/sm3olSDN4odG4esCQeJVF3HjDk8YPbCMQ/Rk4Er4ITBfrklqY5fzya7/4JXKf/i8SJXjG425qnEXey2rgJH5GuCooI3vNyPb5gTC6LL5XF/zmye6tcKJ7mZkUSt65rUMNsfbg4ySAXs9GU/3sn7xsGQrz7n4FKLF/5DS9146FCyPqadEofWRGgiP8aHxqypp5fkKVpYzpI970tHsszsELe+CD+/O0l+/NK7JlAbLb1PY879A8NJbhvN+doDUtg0g6nGHJsYJwCO56SDYxugf6QRRQs6w9Bnze+8gKv/WArhdAfpVNMm+IYiq6yPh37bL+HVAGQ4sHmSAXHI110B/WRN4M1eQ4i0DSDzwK+X7PYfsxiL6IAPQ7RzJqd8MSCv+CZ6rG6RHJbLs93QPm2ldpC/3SqmTv/MmXYLZlRdY9v18eA2XMdioDCdm/MShM494WYALtjyaSgYlgfynxALuKKxDj21RvDX1ApgLS3P0qWf45udf6r3TyvqHzfDM7++Q2iYP3lqjUHVKEgy1boI9HS6QVNxCrzo8cURiO48/UA+/fyzkZEF7+N4zgbXO1WLezx3guOwP5p96A0N6Efju416ceT2Y3M3SyG6FDmRYGaK2QTe6eK8DlRfrKO1gHZ37epalVizDqsYeFGwxpR0rRsH0z9P5dechkjSIpmPFF9Ci15v/M95ELde2gcu9WfDD2ZYNHG3Au/c9m73Ng+51ziwV5snGkUN0+vRUsjf5y5t+K+CW3y5sEC8BP9q64EV3CK8y9IAL1e1wUL8cTH8e4oARvuBv3El7q9dS5yt9uFGcB3aNyTA+gBiHbfmiqwys+/IRJ16fR+nSdvBPwg+FtimDebg1ldi6Y6rtVT5nqQ1y667ybofFEPLpLBmmVePzAEvSH3KEG72KJBQjg8VH7vGEuAfoYrGCbo35RPo/NDD/nBnG/LuKqu/FYaHtIliVkgVJsQ9Aap0GHOySox7fUuic6AZrXqwjxVFlHP7ZGkptziLBPUyVmoIumzZCl9QVTvHeTCbCfVwycjr+1f8Ae8Kl4OznMorraMa5+9Whsugiz3xTxscnrITVERNol0c3qD5dhN9224Kt2nFQi3qMnqECtEbiMvevKCPtkmnwvnALnEzSxKBHKVR4ZhwYXzoDx7/ch9jm9RTILVzqexsP59py4YKr/GHrWRRViMG2FnFISW8g31YR1l6SiIf8PfBY5UUusiDeq7WKNnWtgNU1OljbNwLyFIRIPGIK3rzfCj8n38KdY7ZDR9YeMFp7lnQfiFGSighfrDeFq4mWJFaXyGZKkXBBzYX3vdrAIc2ZJNNDGHf+AF1s/AJDDcqwoX4ELVqyni/MvEXjd5Zx6c0kDOvw4asF29E/4y8rjPxJbu5j4NkvP0pRd+Vfma9JfEQxzelrBJWJ3tApcogWLjHgEwE/YYKXCAhdvAfHh3tp68BGGqkXhD9G3sT7Wg244sQsvLgyhAZenoeozcJwJ2kNTr8gBd9X3CD5Bxk8Y2Y7To9wg/euy8HdfC8PxDegsckEsG5JxtfPO/jJ8QCcbiuGo94vhIZ7RuQxOxcu+tRC9MPb1CSuCr5Bl0jk5W1app+BuZ8VeduTWVw+dybMMonEt5iDcmc/Qrn4SBj7fQf7/WiG4ShhqJHdBQPquyFymwEIlSyhgkUnUco5A7qj7eDS1eewoHAaN156S8b1k2BcYS7/OxEHQb/tcWKmDy8RbgUdDXOwd5Gj0w2beNVmZTb4PIGj0vXw8+JqTJBToSSrj/j52GP0z9aF0dIPoFB8CckEyvCdkM14SP8gXowQ5lcbGylkpTCLF8phWIYAzH58gBQOdaFhz1XAgR1ULnOJYyiEX7argE3sWJisEQ5PpeUg+18OBBt9wy1Hz1Key35etmAdK5ToQ0rpXH6ksIHHFx7nwb2KAA+lQcN3iF/YXYC2j4b44s0Q+W03xXhnTQyV0eSXi+eyjIg0+O0PxUH986Rg2UBxd5fBz2ZR6l71GCK6HenZlkqK+PcGhJxUQV+kjv/FK9K1dQMcZHQd46IlYU+HFFbPf8Xrp52CL6+i8LKmBEwSbOH7e6z59qaV1EX+1F6uQu9+T4Wt1q9pTd1PMhGTQHspHTghFA77nsugwJkMPrjbliQCb/JPuWbwmDiEr1Yf5T3dtbjk6mgIVBOn7mNtPCn1H9XqhLDeNwmcsluTVrY+pIiohVTv3Q4LqxXAMuMFiExfBTUjPOA+aGHVJGEUkbdDlfomCptyEloC82j4rAGcGHCCtDX7+FACsXmEEI4dMwkfeweRdONvDjOOgXGuz9m2yQ6Cp4zHYpEmfBYzAfLO92JUtgIlX33CS3sMMV0kGAtPSvP0Kbqw4Fo1VjXtpBOWAyA8eJ+nrC2At+bb2aK8GVMn+VMDnqf4tQBbt1uA28NHuH35LQpePsQFmTkwx1obW9XXwGE7S17y6j49ymEYOfEa7Hxdj+XLInB8016UfjkLQyENDirZU/sVZTB1CgTRgzLwIcgDG/yPsneIEE++o0t9Tnv5fs5qmOrI/C1pDl06UEbP72vDojR5TDV4BlPLXIkkHGnkxQQ4vNsfRu+TgqcnxpFc+2USyFSC/K/JvF3cAsYaZIPi+ZV0PbSPPoe8wIxrrzH2lAFW+Dej5QhtMNU9zBWJGfhv5kswP+ZEZ5cthUtTq3He8FNYcqYO3h30hEXG5nDW3pm+bntO10658661dTTHageuaGVwTQnD23n3KWOUE41dLgA9y9oh7eFJ+Dc0BfofbIbN+T78W/8WFzQuANQS47Dzt3hinSEcvr4Vdj1dDRLH+lj250eom6sPMsvek43EQZrsuYFzXM3pRq4oNIfOh/Qz02H9/uv4UiIS6XAOKyqtwYjDs/jbaVtk43qob7aHX58m8T69V+QQvAmH951m5WdXOX5OEOzXceO+v2vg9q7R/H2SAkiI3sFw/WvUHNPCvv+9x6woLRLcSxy6LBTVhZLx2aOfeLvHDMSVN8MfsKWjxpGs7/sBo/Ifo80YG16meBoqq+ZTaZIQvxnQg4jh25SrKM5FCzqw3jsZeqWHYNqTF7Az7ysGH91EGwYDcEKKLfiOlaTDSnLw1e4u7R9jwH73d+Lk/wawN9oRdw7c53GuHjxaVwyEJTaC8qy3fPvpZOx1D2aH43EcpbMZlH+UQVHcZBo8sQ5uzDAHJ2dVeFmezJcvX4OME6o0xyECP2ExWhbvw3lUAb2mhyjQiuC+TQPIOb/Au+E2IPwzEx+5b8RFQ2vx95QJsEN+GkyW/ASbFwiAXcBz8jnTCD98U3HK9BhqWWqOEi8fwc/Ow6R9NQaLWgd5XbsRvE3J5WxbCZR75oWrZoeTv605SRq/5+wfyhQn1UlRPzwwatN42PrMntQm9IFG1A7siQSou34b4IwVbdrXQRvSD7FTVhX9jXACl/2y/KpzJk8WasOn1YdBry6Bvu6aA1/fOfMYoQpojTbglec1wXrwKFs02fK+bZVcrXQaL0WOxHXbVFmnqYm7zVZg5swAWK+hB1XFH3jajIPoHDwO7t35w5MixkNF1AN8vE+UEw9Nhzuv9uLBcgUYp/aNpvY84D0efvw+pZO9lifCFvO5ZOgWRqqOUyl9UhAtOGUNLQtrWepEP573tiSd9R94iaMzB3ffhX193tRS0MDe20wx+aUeOKQ2U+vFNaj7dR1vaJ6Ks47/gc02ISxQvI7fJ1Ti7k3HsEdFAJQCW+jXjZV4YGU/fBCuIsHAdopQVodk1bc0WiyWfU4Ww+rr0uAq5AE9ceIsNLmUO0e3ofmEI7R/zhHMbhhGh0dLwfCEOwnaO8Gyc+00+VM1zrnUCIrCDzgkuxX7JLfRspMzcOcuO06695JMVwtDcHUm1e0bByXRZjQru4rUrkZQ9slFnLNKEw6GHkWXwJWw/7Id7BDX4/erD8ECxQcU0WeOpvNm82pbZZgevReVlkhy/p4DXFLP0Cozm1taw2jj+YPkoveBTkITOjef4B3zMtHA5Qu8ssjk07IasGxpImTW/4EZAjqYkDnECzf+xIVPc+nYPBEsvGZOQscF6H2eAiy0Sucvnu85eOMP/itZRNe3N4Cq1Dqe/WMdNY6pA98mL846OhoWpSTzPFiC09evZItpy2GNyWyyGC6nSOnHnLV8Oz/3e41bhEyhIacZhv58AxUpXbj1cgwUdbbQ45kXSEB0Ag67Z2Bd6W0a1SgDkyxN+c2sOXDJezd76pZw5qXjFPJtNa3Id6Smmnfw5HwwqXzUgE1DYZChYUFJphmw6d5YehnsDR+2f4WEoTRuH30CeqxaeXCxGHx93wU9RatAJkGfbzk85p5bLzCbFmOtxGv8a3uda5y9cISRBhz7QShxbYDnHFPBDW/DQUw/Ey68jeabKZF8xGgM3pIMwojs0XAb3/Evmyb0ETBhmy/xsPOeKN15pY5R4QUcXVfDoRFilBEiDln7htgkWRTN+5+BiV0Ed58+SBfTvlPOynFwqT0MUgwO47QKCVBM6oOZdv9IfmcvGwwR9m7wx0DfX2D8+TO9XB8JBT6a3LLGCIQ1Cil9508asIwCY/kquHj9MHVfqOHOxBE0MbACbNPnoqKaGXTHvCTJgl4wjNvBc+N68F78NyjeSez9YiE7t03AyeVToVLNCVInlXG58wqqCgI+qhOAZ/1Ws3pADL/fIIxm20Zg73w5vnqL4eghHybpBSwwrxfqqs25aUszZiS+w7VS3Vhw+gl1F+biogQB4EmXcL7/CW4qO0P5Ym3klhYOnk8SqCw3lHa7hHNf0jeyuSkJODsQ/Iv/sZTWTto4kAqxqn20fVcqdi0HzFh4huPyTNnnoSbcX5FB7TwabhSv4CyRUNbZh/h8QRRvjWsEl5tLMMXkDY9ZpQxCpICuCdX080s9zZh8H7ytHGHL02h4Vncdu4zj6WyqC05tEYDI5FF44OYXCP7sQPv9E/FVvhV9zo4iWZeVsExtDg/FdtK99zbww/AQpcWoYOmkP+B2yIc/zl7G9q+WYmH4FLJ9v51Xb/3Cm97ogNy9ZF5wQwq75LNIfJEgJ+bdpH691XBRzRxlkszAKkuRS60FoHbUEuq6VQ0Z0nFcvime7SaPxYn0HynbncARR3+y/DcjtjyuA72rG3CG6FZ8vfwKDGUMkkD0d3J4kU8Ov57SQfs2GGmdALslCJL9PtP+oitsMKjBx3zmoLCDB0VHJPKwcQ0O31GDi355YBNoCoJnbLl6833WSttBugdv8jlbRbj3bQatOxFDu8LTWSx/Lj//ZwmSd++jncANpv80OTf0E67K7yAj01FwvBQoNsGGnvS5c2TQCDCYMYtnLjfhmPsmEGQQjxeTe2nuiTd44pA/9so/oq1GVbxbRBCOWtTQoPFnKuqVA/fYbtoj9ogkp9hy0BJBdpVxpikX1kDFH1VQlI0hWa1t3BpXT7dflsNKhTpY+Wo6FDsV4/M1d2ioJZvWbHaEwv2F0JOqgxvkBWBQI573LlQjyaZwqFp3i/ysBflr0Bre/1MSim/rYPI+AYx9fgUicrthTaQuPQqfDqHbzVh35XNeGB2I/4UogtSnUHaxH4W2mn/Ab8kB3lZzmu59LKcio0149kEs+Ud9JIdIZfB7eIh/fJUD/Q0d1H3qDe55YU1p/drUk1zCaeHW0JeviO2TZaG6u5b0+osg7dg+0LlnAhG5+Xh160+O9BXjpO3rYVuQGZW/coQcz72s+EqF0g47o2qzHZw0TuPs/GDumnMc+5sYHmMLGsWqQHlmDOw5fJnKs+bzsvGfUPuFNQyeD4HhxXH0JXUPdzY4gkOFNshddWRlm6Ww5+scbhHV4Ibb1WBj6QkTP9nwv9mymBIsRlvuAMQNbKeZZnIYFbAHFdbH05ZnFXQj8h/WL3DFqQZv4H0WY90ObZD7FYVZ61tIrPQfvehrok7RcuoIu4eXLZ1Qvs+Ngr/exlMeBG13W9lm33zcKhJO+fVFXDRRgJ93/OLIqaspfnkhSau2Q0eNBZitnUOhlmPB5JIYGPe4QdWNIVrqegKOTp5K1zY0UNoFKxjtZQYndjB+VZ3MlwxNcO0JS/JflIrjmzeTym+AiIUa/HD4Gk/X0oAj9er0Opax8GA57r6zjgPuquH561Iw45oHn6nZD70jsmn1QnuIN91Kq+wfQVqDFXScj4fr8RJoQv/A85kC25nVUoboO/5+ZAQ8yKiEq7ZedOoB8r1pb9g/2RPfPZfDYOcmlliQjwWJB/jCAm04MlxISkZ3ePezSGDPXxDy7gDPCe+nepWzNHN1M9nrSVCm8gSY/04OfPNXs/PKTorO6YTFN0Np+/HNtLtyPo35XkZOwREAxirQMbcTY/pMqMGkDw9MuQUJTxNo+RN/GNMRC3IOehjMKynsvgRkbfah1HI3upF0gGI3j6VHYyeB7YY+NH/rCcKWvlAUrcNXJ6mCtbQF5Nt7w2hnJ7r4SQfTT7qQpIcFJL+ciV8FDoDnj29cpGMGmrsv45k6AvtjbjT41oZ27d0Da9snQ/W5Ck58oswTRT9wi7EUmNr8hYlz/ShCqpY+TkNkuS7aPkEJrnS/wIpZD2F/zhKqPSQAc56+pnXbEnCahABftLvKhWYneNuSVI74ewQOXX7O/okuXHdYE6x0ouHCxk5ap/wQlaZl8Yn6ejL6KkDbKwx445AGf9xgwGfdbWGRfAdqlFugkHgIe0v3UlFIFwsPvaFFu7U5YpU7lut40ZQyAVDpHA2vC3347MUS+nFJCQboH1dF/eSLE3aTQZgsx+n3gKSTCmyeMhXCxl+nuix7zL0ykY/5ZED63/3Y+WgeqERXkZd1JEtaTYD/TnTQcKcR5eWtwOP+GgzPD4P32zyqGjoOEgf+kvodIV5wxxwOnblEuz9OgK7xPaQ/KRQlmgvxyZEV1PY6EmVmfUH/rUHoO0kTKjZ8wFuNM2DEi3m0UMGVHv+WoAFnT8DKG/jdKwFkT04EA5fx8PwqwYGzRbTTcxG5jtTCJPxL0dkJ+Hh2P7w1ymXXrGlYUGoESXprWNa6lqTmneKo6gTqfzMMxzz6SG/PQzDS9CGxwhCOVhKGFPfTrHjQlbpHxtKVo6NBX24PeM/ypYn6P6CtKIPLrOTg7EdTWFezGmxKavmXihnM+DuOk1OGYIegIT9V/QK7T2uD9bvv0BAoBlEJk9FM8h2sjU6Btc568LdNnyX6wnHTf2VsvG8qa097jtAqAaW6/yDK6DKbjDVHoSXR3OBRjwk0EizlBDD8WwaNOy0PSy+Ngj0u7Ujj5kJW2T8ScrlIkdMy4Mb3KnB+1gXxV/q490U7Gio6gtT7BNxaZUIiDx9jZMFn0Cj+SMVdq7lmhQ++3jYbUiI8eWeWE+zWT6aAkJs8tfMoLOsFomwfPDe4DxyHJmGKwx/WO3AY18gog3CrNAb0NbNh2l+wOrMMmyvj6bNdDs8/Fwdjrx6DWvmN9DdKBZYJErkqOmOjqRePlxdC0RO6fHLSb2i0dIa5K+5CSMVcsO81gTnnt9KZZepQNqqNQmYtwrXrG4HCUyn5+woqqH4Ca4QFaW2pKviW/yDrUA30TR/iMwXj+dX4UZA2z49NJX4Tb9Pmz2nDKFOqD4K57pyqVM/6I7Vg9iJZ2PZ2Iy/6qA8vVomAmF44nRGdwIm1YqB7IhQtPuTit/oajCtgkkscgK6dIeAj84bfTR7CR5WJoHhDAf7995cVZwN7z8qFsqcGfNr5GChG9IF74Va8efE4rh7fyqbfdEG/fhbeqL2E08P9+WptOm483Ei9BgtR5Mh62GnmSr8GlpHXQjs4XPQfSbU4wq6gGFBeI05ZQ4i6VQZ4ri8TJdcsgqzqVxzcqQa3wlfQVLHn+GX3Qpr85wOU1hwjW8HL0DF5HIf5/EClolK2yzWB6+vm46zkg9B2phV8392CYFVZOr4vhIKLTkP+PmHWcBmg5itj4eHVMNi/YQ63kDx5vmlGNYlGCrTqoMWj+zFI6QE+dslHjURT2PpbA1MUY6hnSwG3KowAm4oneC2lmAojvnBwgBLGacSD0mYVOHR7OphLGqJ55FaybgOIueMAXVNySHthHmwQ7+I9Ej9BcJkxzBX4ivNrWnhIZi1MnWsO4olhHKRzn11ufuUVX2Mpb8lemBRuBL6nqvnuBwNcZGnACja7aW9bCgT0h5G8lS5Juw7SnLogfHR0PKx5cxCPJbnDBomfvNrpAR6Z3gZ5woEwdto8buiex5On9/OF7xaQK5yHLxOCYEvWTHoSXAG3LKV5X60Sp43yZt1LRlQSnU7uZx3gfKA3azeKs+j+6eBM3TDl1wKqFl3Mt/gq87nl9MfegZP9JsCZGjEOefMHH9a/hRjhbB5Y/AECv3uz/Aoz8goxwOKqLHg2meHPki6m5d0gor0ddH938r93qSCz9xIfnVgNJes+wCyXMjh3zAneXn/CF1KXUkWOGyn0VeJA31iMkIqgE3c1cbJ3OknqWPOKTVagGHQXV53uQUV1A6oeusVuNh/gxC5PWFrgBzLLV7HqOw8e7BcGUE9nbsyjqYGL4Of+CTw/eh0K7U3E101SdGT1ObBOTsCmS6JgWecHfx574YTRB2jK4h8wteUgDOmuoHGq13nEjGS65CeKi/dogpyaKFzuP0O6V6Lw4rP9iEt3wiz1AG6Kf0KxLQvxlOU/OhwlDtMXVfKVMYcx9sEfMv9SSaOe1PKquR9w6xg59r88mxQ1XFnttwVIPK2EWFF1Ur9XRhoa8vih1YYfnc/iMXJ3IfnwSEo+7A1Js5Ug954jbMndRyaLZ8AN5XaINZkMR6c9ADp2HANNFCHlUh18IkH47+MNbt0cz557dsLmsslU+SIQdCkN+m0/wr2sKjQezuHIAn1YO2YbBd94xI8WeJKqQSPHCDzFiNXjuTToFOh62AMl1cCPOCXoP/qNZEtuY7a5OO6YuoxDr+xil8kd2LH/Onvu/I9ulJ+lqR060GrTj5xowTfpGun9mg11YafxwT5ix3sXuNzLlhNv7wDFWHsoDx3Eez/M6UpTGrXK9uMzRUPqr1jEySFSLFGxAPu0ttHRqY4gMSsNHmaGccURcdK/PZff+ZmyxLuH0D7PiMaMvkwdOqawq1YDrmZWcOC7FFq//AbV/3PASwJvYajrOqS8zMSrp7+jlWkTvvvoBJX7Kll57mdQ/XgTlYIHIb7aDTotJ4Dxe3W03VYFX87fxZQeEThwuJ9VK5vxVM4KGK1dz4IqtrT+YQfnjReiZfvusigfgSmr9GFr0hNYXB5MQ+vM8E9TCLw9GcHawvo49bobyITk0Xn1pVSaIQlr3odSsmcFGzQg1Z5czJH6mejjN5E/J1RB8uZ+nObzmKrHCsPiIzWw2Poia5a34eVH8rzx317Ye1EUJs/+Qy5SEvDUSgfT/o2Cj6tFcYyrCngvuYWHT8XCHlsvmPc8CN9tEcGttt9w/HV/LNtvDsf/k+IHLMJ7ZsziLv99sPFeKj0iQ9rW3QxHLndCubEeDEQbwvGAJLp64yzuV7nHHaYyoOh0G7WcXnB4rwc7KllBhZwCrE63A6cv0dT8eT+LafnQYPorFh0fQK/GtbGvnQouMfXlu3cHsLlyDKzb1AQhp1LReFwJjso3pKBR9/BQnAnEXBrB1i0NmDS3ltJ5JBQ5nEKVB7H0QjmNni59xyJu/zjsoBA1zh8EI1MP/j5am15ZOsA6q27KuSCNSRsa0GHYGVxyptM5cy9aUGTGO5J24pBmHE+LNYfvqXNRz9scHQ63UafKG34wsxzV751E34PKnPBBix79+MCmpxVh3t0LrLetlHxinDAyBEhv/Gp8VvSdvD90s0rQW1g/eJb2lUiCRU0QaOoDaC0eD9rK2lw45jCw+g48ssacg9Ia+Z48kIyCJGzOq+I/BxP57rMVYNLuT1lCqXS14Csl5a/nwszfEKoaiyceOIKjYAbJ+orz5aEWSKs+TJUxjng/PJmKc9KxlNLhzNhkPtA4Dj6sU6OlUy7wj+x/NMu6mdZPOQ3RSd28+qgTWyV1ctjrCjo9aQzEz/SEtuGH0JFghoHjXsJrzw7yatuGz3JGcceIK7w8pI21joyE2Te3snPXH8pP/M3y9tsx1eUuRv+ayMkCWrzR7ANFFXrywaWWULfbBCbCK17v08chQsHAKd58P0QSPCsewdtr+TjdqYMSNcRgUvcwPLcZAYbzhtE8XZf6dr7Ak6eHaeKDHqo9Y0z7zx7An33CMLpKiDK/vcTmjC8cN5DMui8vcu5JF3atWw96XYdwp/ocHNhnCY8SVPC2WghXHuiBpZvvkZ1EJ6vkuFH7lzNkNDKapcviOFBJAnbaT6WSrNvgfcmZw0cGkU1ONss9eUDzj2ehzsYDuGxUDAYE60DZvB6aeuskZTkIYXvWInRtdcb5rUBTRxfzQbEeUBs7DTYtMYIP+7KxMAFBWfQbNoW3wrspZ1DZ1QGV1kTARBNN7h1F6NRoCbEbDSBunjn8NrIkl/ODEP95MskERKGR+BBFWx3lAJ/DcMHdHmx2+3KK0W8yjTLiW1c70WTjVJ7ywZ8S5Sz5xyVZiBRagQWyY2H+2ho4pu4IqYrhVOp2m28tb8SNan6ou7ODr8wAiHkhyJvMHeG22i0Q8vQDwcmbMFJ0E727Np7mXfCGkYGJ5BofTeGeVVxMAJ+0ZuO7PQpw7kIhd1Wfpyt6YegUGE2yJ7fg5qM6tKB9PBaISMG58GzqmBrMW3vvwmKHu1SgtA7rStdgsfNlnBaTQ+rvI8mp1hT0cvxw2Z5n+GsfQEvvdlr71pPlhR9gv/9ezp0vDFs0LvG2RCGoCEhk+XN2vMrrEZfnmdLrokP4cGcq9Pv9YXejQGyz+o0H/MRh46Ui7hPKJ4cQX/7x8DQvNVsLro0D1PJkMWZNDqEX+t8pP0UPthf+gwaHElyRcAsOuBXwPhUf7C8qB0m3LJq7ayL3qNznkguasOZLOW0fc5pnjjuGsnKhPE1QBCMmvoHiHacoxWAI80KsaayxMETyb150+yiUXQ+CB3vq8eZKA/hbvIOnTX4MOifNSSigmaoXa4JTWAS7VuZz5rSlkCa3mE36g3DH1SqwM1hPLTcPob3aMf7hYwZjjl+GhLRlMD8nCLabTWHpjzPQLLYbezqsKQ3lOVnpDxzwVASBlDYSq0xnWTsRDFt9AAaXJ3Le6llYlOzFljqB2F/zkjrrHWFJyxYM7v4J4po/4JVIE9nv28YK19xwbYwuRdtdQx/dCJh6bgyYrPpDdLyXKWQljZmlhtcmbKJ/Yjl4orUK4U0TH5ifR88+m0FR1Eaaob0dbfSD+OHr73gzLBXS/orQRvkRuHZQkBOvKFGnrTiIgyNd7XkCYa4xMG5CA2qUy9C5/eXw79ll3GQvgTVRH7msHWFI0p2cfPN4YX8FydavRYFNrTw+bQfXTInjpO0ReC9CEDqDNaFYTYZGLf8IhuntGFXYRu7bxOGJxnpUcRLFJunV2FCvgdvnm8BCxQHqPfkFr9zTw1fXDbmnOZTGihEV3Jbn/fUncbbXbZoYYgmWB7xhucF6MhL/gg2CFex5cy/aSFWz7obzeGxsMhlYlPPkBQKw0NqdD2YP8Zs3KpxuVwUiph00zjcJ1PrqKbQji742b8E8Q3uQm3waPihFsV5bP66dvgR+BBXC5b8XqN53I+xXWIaaZqmwSE0EbG4epfrpZli+zprbx0rzeauNpH/tGXbN3YyTWtbjuKMJtCRcCrbPQDQ66M9b8r7wVrc+fpayHfcV1sGRXSKgOHcr+elqIFY6gozZXlSd+QPkVqSS5EA8NcZNoPqX8uy3IQBkyv6gQO9RXt8rBPMSB/B992ZQ3HwU22XDUO/GXgzIdmX1Fz3cPt2Dk65MwjHu4rD9SifZTf7Ft3Uuo8C4drgsGEcGPxVwjrs+rFM6Bq4ZM6mgRgrcfBex3PaTfHezNC7R/YpJm26SkE8tPxEtp9UrZoHc7BXg5yoM1+b3cs4OBUyStCXzCR/g+IsKer+oFdzCBKE62xjsQBkjk8TA33cfSywfDdb/7UBFWVW4qR6Csw8Jg8NYQ7iy5h8bUAM+ENOHXceF2T9zPnqfaybDlx3Q6n8P52sEk2TpVap4epw9vGdQUtMYmHVLHT6L5tFpzV1guliXE1eZY6t+GWbrJZOvUB+dnjAC1XarQ/GknbBeRhsen3TGK3KP6M3EDhi5LoEqMZKvavmxhsdPFpEzBvnb9ehrfA3H330G3es/wa+ab/BoUwk/2zEOZuiooMz8vRQ/wg6eSUjQ7nlOdLZekmalDtLOxHxKm/Gc5P7VspduH+x9I8trqhi4ZTz/OHEf75wXoiOS52HDvDKc4ikIG6KS6FCdOh412wb1h6Qh9ulR7I1rRbOR/rTQZBe987jNVveDYdsuI47bng661w24ZZst9OttgWHBDpAO/UiiESowY7gFE9aWwpCXDkRlrGJ0W4ozuzXBsloKwLUIsmIFcZehIgVqOYPrt7PcdSIXR5vawYIgKzTNlYCQw7koIxTDV1UVaW/4L6wLkEX3Uh2sl4rjmn4r2izOvDdLCPJCHXD/4Wkc89MRrYrb+UVVMj3L0YN5eSI4odSXQ5u/04ZicQgpO4NlCco4UjIFbj0aAxLvlenmoUyK2ZIPrQqV8HRuOYk8soS0LkvIdHiDP2Ycgjl+e3Hx1ACoEJ/O6cbKqNFzF3xXBkB6pAp4VUrS9dZw+HT3LTuddOIbtyzJy9ePS00X8O0FXvgx2YpnHheCOA81KH4+G5IUDuIu0cmwyQIpRCwEggv76Pu7XXBGXZsvr7KFR2eO8If3PmQqcpj+wg7UjpzJWm0fsHPxPLh+pAXzbS5hobg+LMU0vHhKnXLLpuMm/QH0OeOC2sa5/GxtCk8KaSGzxkM44rEW9Jdc4/ihOiiumINuW6QBr00gu5DbqH1hDzzUL+Yjm7wR7owDucep/CjWDjPCZkN2WTZkHIjnfW+0qLDkBx//dg8ly1rQSngcfI+rp1uV1+mxwyR4Gr4OxfaEwLsrD9FbYgyMORFCYwOLeUqmDDjqBWHeoDpExm7h4UfKOEHmDgheMaGC8950wf0S/BkepLv1cpBY74WtuTvxl0QyJov7c0deMkRkyaPrwvHUnX2CBSeJUeFsSdi76wvP+24C4bUmAHtW4caUP9T4Xpt0ljZj4/5szuR9qLjUHhx2RONe93asnazC6s2vwVF4Dr66KEt7QqawbudeuL5xPwf9VgHhmym4tVwSc2R3UE/EMA7nt8CpESF4alMY77V8hmcXq1OLviVc+NZIMXbKLFOxkSq0CFYkfsPSNcvx87yHDAfnkZGgCFUXS8BjOWGsHJ6PmuUlMC90GmWSAOd3hZOHmw7fEP/Nna0ZlLFbHDocBaB/2Afmmrym19cusNeHO7BjhzfMEerhsqTLOPnPIXafpAaV3TvR9G4+yzXexs/JNbikVIE0Sy3gluFtjr9ewKrZaihRNArKD47GtkEZ9peKoMnHN8DS+mP4QK6CbYMN8EXbC5hv7wa2w9Iwu3wca3xcQ8MeX2necwdQnWpCthIW5CKUQnwvh8JNbKFmihA8qSxl4y5Huqx1id84ukEDaPOWs8K8OLWCDykHY2dIIyZoj4Dh/lOkcuA0hjxYAZo2kny6ax7N9PWD760h8HZzMJrcOYXSbwXg950wSB9bT2BdC1nXJEDV35SfLQvhirhQ6Oi25GK5QRh8LAFu/aOpr0QD2hd4k84xQ9Cdwry+9jcMBe/Co5P8aaxlL4p2ysK8E+6Yo+xB0+bo4J/ShfRQzAhkhvfS7juaMOvrZS5ufkKbd2mA0IhVUJ21E/VcJLhMzB0fHsnH/zTTcOZoWd4zqEqNcetxwSNhmDZ3EvdntWJeyjzOuPqXXv/ejHMPboZvbQ+xPvwWZ4qYwZvjABumr2Xs90P++g5F506AWJG5tD5Jl1616sH8KA14aCoPqW2q0BgxRCLKP8h1vgDdnNfLNwJl6NNR5PQvE+nfrFXs4NEE0vI64JCeADPSrRFuJlNOriDunJNMGVmirPbuGQ+eeMxJGmGs26EJNXcyQbqikn1zgAfS/4OtJZv5hPM4sry+B5oNltP20UrYu1UUemvEYZ7PR6q0XgZlBt3kvsAcF354TIr9dexmgKgjO8wLngJc+/aWjlqogSjMJNuiTh5fsJZ6LJrw5Ac7Mr3sA9veP0dHRQXYGn0ENqYO0i3Vb6jz8CHEzu7mczIV7MQF8Hy5Devufs3BehOgYcZJ+H4SIerKcfhr/g+s/57ks16mLJfnxR/e9OJzpWgMvmwPy5cK4h19oDsPt+H6iCP8Z8oa2DTKm7/GBNLVk6V4+uJT7EieADO2v+f4r+sorPoFC8kCKwpE0aLeScSb9oKBM7FtfB5OP64DH8xV4O+739DlVUrmQ8WgqrqD7afPwIZZm3hxvzLOuWPAM3Mk4MqmXhIvFWGTzf+o5701e09by9MFQkDlkA5+/9kDAivFaJSHGETafKG8gENwabCGDpTkc7LdfxC7q4Ufem/AAqN20kk1hzFfNUG1+woWnJahOwovqKs1ETdHpYClogX8kLrMj+bqMz+/D5ZVo+HTzGTM2hqDQgkF6P79CT388BtmbxClHQ2zWGTxBTb1M6MdKaLwaG0pCqkO4bcES6hRXY+hKesgzdGI7S0aYOQfEzR8W0JFfWPh4fk2yv59hC8v/4qlmoOs3bwUrzRaw9uqSNRZ7M41WUVceGYCWMUFocY8D/CVmANrIlfCYTVb8plug+XrNoFmciZPfvIW1JYbgem4OjxvPAIu+MZBlvh6HL1FCBYv9qGMkU5w4/QsMjedhCvDdEC57ghBRBpredhh66pEEpHYzpq149hkgyYZfQrFV9/3ouYzbbBXkMTINHE8bOZODfMEOddfDo5AHce9SefUgvNwLEMOKuPMYdbn9Tg3Ywxczm7BkMeSsFvWjz1W2dOIE4vY5sJsdJ7tCXc/qcCV37fw2Nw/0KVugkeTF9B5O3lKvXQQu42v0GYpY8z9Xo6ZV+TgpnssJ9o2UsXiUFAqncWfo7eSuas5SIsvpJFK9+jb6FqepCAJ41TW8obq77zW7ys82hhJtU5+HJPyCZST58Kd4RFk6/yVjMT0waw9jKVkH2LC+hHoZpBJQmov8cKTkeyr9BgGG6ax2ZoGlFJzBNsDROW/b+JZnxM41PMXigSS6FxCGZfkh1GDbwdrzXnFK5ergFX4adrv4c1j/BVJx+gXLHX7h3amTD6t8/lPcRQ17CymhfpaMLJ/Nr4Nf8vpF/eR/bEMds6eQAJvRmHz01bqHmEB9ycW46lKc3CRzYG7M8bxg+tbAMTuUn6nGGS8egDvhJ5ybfpCeDv+GgvOMgUNMxXQkWgEp+rjENpfhU+2mqPFWQnYLS5CnyGcnSrbKGemDoi7i0GoZDqeK7oA/x36yn9qQ3nM/GTYdYGwpHYXH9PfBksk1OCZmj7Efs6hc3k3IfSKEI12tSYdl6+grq0GO6ZPp6cjpODg/tEw7kEJeUq50Vp3YS7KX0TW7T00N2YEip4OxGiPszDJuQUXfjQEG7ce3HRHkjT/zaY8x3KSumBIw/05dOHEKY5p6eELeqHUkSYP5XeXYYrQRXStv8Gu1m1o+y+ARiZ4UGn4ENR+vcppU45guYgiaHtZge+LNCxI6qQ6mQBQO9WAurnjsE64BJ9vSccflh0QMFILnHVdYMekM+ia+R1vuPzEweledOalCTd695HBIRM+MHUU3J2oAN2fW6nkxjaebulApW0ydPXjfHj95wbUZq5GgS3ILt0l1DtaFzbGlLDW3TOk3alP8TmZrGsvywtb9rJEmCv7/XcJazY0wHkjbWgsbKb6U+o80rsLq1pOQlOLPBXf8USBmnZe1O5K7d0dsO6BKej+dsDnO9/ie6e5XPhBlz3sTHCrqCd2RVvx3tBecrFPhur3YvBzzknwv7SbvvWp09Pqn7ha7QcfWd6AZkmvSClCF+V+SeIeJV2QWT0fNF+NghWRsVhWdY2SU2sxYewH/JIYQBcXTQLroyloekEK1OqeQHClNcy21GO4p4nbVu2EDWrTeUeYP+77Ios1t0Xx9T1FWJBdwnuCEPY5l2B0RDn2CO1A6ZxvIGs6Ct3ksmnA9hhNRD0wbH8G/pMk4SvPYoEMR0pakkXGGwTZRqAX/rmm0i7fcBK4MQG6R8/hQxHbULTXncHxKTorddLw0Ukwsv8PH946Fgbj4im0TxEafEwh7u8P1B/cAWHGJ6jYIBZLC26R28f90CEgB1aJTTTYYwPvp/2CmwukiFwiWIxt+EGuOTywlYO2oCuwuDeU/B4v4Ncv5CBzfAZM/i5NlgYTuC1xD8x1icFFvX/gyLdh8r09CDNLU6hdRwQibjiSfKgKjVC7SSLZwBU7RPCOw2V8OhhLJxfeooUKDbB7hxB8mHcKDdzfovva29i79yrbxH/FI/f28RGBc7xHOgg/Xb3CzuZOoN+lB88LF6BWgT7ee5GFR8dI4V2bPSy/5j/2dEAsmbUAlxdIQ/qKT3TtSzSP0zsM/+QEsW44AvMM4/FG/RxwTH9Bizw72UtBGkapeqCN7kVsVNOARA1lzrGPhaIZB3hwcIBEPH2wUn05jfO2h0bzJH5+8g2dHP2QFVtXcEP4Lfg5ijEsbilNGZYjn4NHQfyMMmQXmWD0PnUIPnAdvAPm8MHoYphYOhP2dYtQ3+AdfCVeAFrlYtCeqsXCY77xCZseyP9QybGGe2mEfRsrXmiiPGdLONgcyVM2jocimUrOLiuD/6KXkMviS1ixaz681i/DcL3DtD92IawOzcCeTzoglqLNHXEJvO5jIWjOcsGGoEiaLnsGFl3+zD7nZLip+grGigG0f6pCv4nSbNevhDP/LYNs8S8Y7zWJWaYGyqeU0X8b1DH2iwbciSvi0Tk3qenKRH5rOhdCUhdATpQ4vL71GzObE2hZYRZ8FHWEr+mOuNLjOQT2rkOdrYEwbs1d+JfsggtaxWHWAgH+EmAEFjWCUOkWgAv2SLL7Gwc6EL6bzTeMpJV5xtTU0MJW/5nht54mDi8XgBNpxGMyFKhR6S02Dd6F04+G8Nx2oq7r0TTtTxddnmdATsoSILswH4Z3fqJIDVfYU2XHYplvYL6GIWv6ldL+8QHcMWUFqBYZwC+lkRyu85U7FryBzRK9+MLnMNRWTQTttKNMAtI078lW9HKQg8vxr+DY91KYJOPA6V1lsOmSBvx9OJ/OdL6npeenw27RSsiXUwOZdSfp2oSjPMlqMnyMVyFh0S4qGZeNr2ukqXuMLBsv+gsPRjDMTrpLx49E0y4NZfrc7ATO/iUccCENsysqITtyHuq+Daa3I0aC1kU3WmA8k+sTE1iE1sGYWyPp/unHYH++GHc5DIPNHXne6j4C4OkeVl8kQncOnibBRT58K/QHxHpZctjYfVy/cjoN904B2X0KMN4pDUa7SPJ9LKSeUIa/Vup0pvYqxxlqo7urGzje+QbVxkYgvHQSWeXcoMXiYrTRugAHIoaxcPovCLh4k+KmDkLvyzxqWWgIJvmDHF79go+8zqRPK7NJQU2TxRP386Hmy1BlqsEiQqv5sKoGnJL6ChlVbpC114EUWi/Acbnp6Lv7CJamZ9LMp1n47nwv6WaNB/9ty8FV7zWe39iEyTnZ+FxMhWO0NXH50RZYeO0maIUd41XqgmBUshFM05X53A4tRM1eCnQJoC1d/vyf90X8JTkbzNbMJmthbbBMCORiUTk4frwJilW30qV5v/Fx6mVc32MNx4MXIemP5bIkQ1g/9yHKHzvGC8Kr4HHVSVYxDmJPL10Y+OcJgyLSeLWnGCfWj4Mg7+NgUdpI82VvkaqkIc5tvUnNSxxh6ukxMPXQEfz70xK/n3GCqQVnGa595PsbLGj/SFUUbOrghx5hsCc/jRxKlsHiU4GU+XIcnLQSQ+9vR8BM8zrrfbqJ546N4nTfEpY2vk3b9XdxftktXhykDS4iHvBmyxBWqiVCRL8vf0sJpZu10/HapQCUvhROv+2qeM9qG4hNXgnTci+B+mpXnLy0AnKLVmHS7xpMajBmmQdylGhkR1flpeH1h0XwyXwFaYkirbY4RPdSBLhWLgeOzzgEusoRcHhlHTV3j4JZOXdR/mQjLdn5HNX/niSFhgOQGHufH+vU0zvvPXi+wILeyxqB8ON0MHkTRTc3neEfku+5wd2DEnZ4w9tuOzT/9pxnu7fCxQOScEnNBBKnyHLhQCBOupLLwZUvUAS16LCWHrjMucNz3xdxZswE+Hg6lwJM7HiR2TMMfmEOrjX7cflQI1tFhlDQ0ju4LmoZjBq2BvW1yZAu7MxeFkYIF9fBy+uysLzpNUc8mMnXHO4ht77gD9rmsHnXczq4fQFVnR2LBwd+kkyDJTzJKQALNVmuOTAMedEVKPpaCK4t7sT11ZfQJPI/drGMYd22V2jhU4r+ajvoqrkt7YmKI6twTVj3eggvjvgONnXCGL54AZ31OY9Ld0TjFrep3OByHN4WlsJdNyWo1Q7F7xbSGPF3HMfY1UA2hkHbnuusEyQJ99fNJ7psiTHLdWE4PIv3rtQAecEouHlhES9yv4le32+iyYA1bE/9w06HDGlGmw0sczrFA/Vf4ZgXIBbp0I0LnyDyigs/PqDCAxbSVHSkjDWqdKBR4Axa3/2ND/795AKNCfzURBoDJL9Q/GgzTMqV54tbOyGxSQy2z7sJVNBJP+6l44yFxXD67gq6f2MCeB5cQUa29+ha7kV8OE0GLOxfg8ESRVKdqI6KL9LhE1/lXP8yWv7sFJrtdMejLv5omzsSTn3Sotjge/hk/VEIvlVFDx+v5iextZg3EAw5RmNZNLGCusYJgruFFY/6EwaBYZP4/tclOONzM2SWj+FnbM7xcwNoWnwGJ1qMguanNXBavhvXf/GjviVX4MAEf5bOa8Bzn3uoTXwiZAs5YNjwSJif8orPbDOnn8v2kf77LeRrHciyVXc5W7YG/7a+xnZhU1zy0wB8BjPx/sR6znnQQqaZk8mwfxr8T9x9KAKhqAEA/ofMhFJ2KiGjSJFkhSINDUohSYokTTmkpDJKpCIlokERSUkqo0VmRUaaKBVSVIjoPsZ9kk8pJJWakgW5a/pVXOezhLsEDED+5lmevU8EE+12QER5HyvHWmHOEQVc/7oL9OespLBJR+ndElX4/NEIXqlfR8n1j/jTXhHUt/fHoopI0PSLJL81RSCvWIrdY01A5esQyC424pfDx6FKo5Riqj5DypndkJeahIvup6F1WwlMlBMHvXRdSLuxj6QzGtnuYCbMUSukkSt8yDTChQvnx8J9w/UYJS8Pb2kan1LIZD4TTdOXj6N/a8Xxge9RODT1HiV3F8Pl1WEQ6K4Ny97/4S9S8Xi/6yEEfPuKP8TuYHnXALpVXQZnxxfgfeoxnDloClPoCV7R1MQHS5Jw0sYgeLP3Lpnulqdo5VSIW2yDtSY/uKlDCJ6PN6FJB93pxyoziNQbzdpKzNOnmlKqaRFbLQ3hoJwpFNU2EvxKhthiSS4qvVrEPlnj2bgzFBXTrpBM61FaIqxLmYIl5Ck7BbaaXeFyWWW4DqU4ujyYDg/bYW7nMZ42chycH+0HH0LUMXCfIljP6cWZrjaQ/PEjRgRHcMt5OXRZdxS0eyspJus0WZz6gkqrDMBFtQ1Ftv0g58L1uPT3C/gr9o4KBrww1PUbPGjYTmOCr5KRqyToH+/h5SdvUPqrp/Cv8xPn5yF2KXTAPfUStph3EtX+vMBXr/Uga6Ex2+hFsavSP65ZsZT0S+6i+cZfFLBbD3P1CunGQCvq1U8BJ68f+CUhHMQe7aTztpvg+uP51KOSQa88zNmsZpg29XbzsanCoHQpkpaeWsISqjKcW3WBHdo9OMZpEb+YtB4Ls7rI0XoAlimPBZP2j7gm1w/Nn5yGZYf2snBjDd03uEy2Lnl0WS4ObDOiaZ6oMHxyLqTEbAXIWmzAA3eNcXafHc/w+86iKmfw4+5CVPv2i4+d0YG3KvlU3XgQv6m2ofltKZ6j4s1Cp8xQq8IT1gRJ4QKLftpbLwJFChLU++sTnfz+gUenFoLFloms+yecNBR+8EOjq7jG8Tv8OKgO4+IMwf5qH23uv8Un01bBgwkzaMx7oLKireT14DqJPV6CeVLi0F6OcMLqHAvn3qSKk1PAJb+Kspre0WEpawrZbstmS3v5+Q1JEL9UBf+lXsNLG7TRqcqGfP9pspWvKMjn+ZFLajTSCQHSODoR1LtXQ4+VFces3AQVbuq4oqoezxYXk7zILh7a9pkG7z6mfKGZMC5XHBKHj4DH6C24YeRRHnnMBA+myvFfgUEcPXiB7iu/Y09Xfbh9z49vjQiiEdXhdDDaj1dueIkuw4/hVYMTiWm4A6d846IQTYgY9RsrRIe4d0UROXufYT9DdZ5wdCc7LtDHqf6G4LK+Gq8skwOJ2R/ol9EJnlfwB3nNO3qreBXXmyymEM9mXFC2jJ5eUYHLlkawqmQYXGbdwH7nRig8/4xkp4/HI/Xz8VVtLkS+vMESs5t47nNNsJWyx8iWZLI38OEvfgYcf2QzF4+s5cv92Ri54TqW3x6FnWMFQWmMIBbnbIXkACO2CTqAtLQbhkpe0vm4XDgyMYYGX6tRy84pcHD0VH65tog9Ndw4LeYtOPscx/3phZAcexgy4A3ZXt8Lm4qE4IdoH3xa8JHd70jzVbszfGF4AfSJB5JAlhte6F1I1zX2UoOkFMzwJOo3UOSoCGucLFDGD8Ucef6+D/QoNBoDTBaxtUUByv8VB8O7+VBZEkggMZb6RbPo420NlE5ugdg5wqzp1oRHereAYNxIEN/vRpsjzXF4TxuOCN2Pq16F8oJPt9nU8CdOK2uFIvt8NIwiaFX7yoccSqnW1YNTa+bhreXEB3SWkvfc+dTiowTKLkos/W4UpMwcj7vDHqP62z9U55JDl55Eosfip2xb3Anzf1yBkIYEbFuiB88//4JLdX4w60k4G1b0UEPrIy5wbeAgjiGbd1v4843ncC9pJuxousfnFjnieM92XDruCmq3fYUDrzsBjl9A96nFKLhbgmbVCcByiVAwkFpDK++vxpqIEE7ftBSyD52l3umn8NScE2B7xRGO7jWG9qctlNOwkdsmPEP51slwTuw7zPrUTv8GJ9OW0lEYLt0GGxWlocVkFLl0CKNxfyNz7mZeNiIRP6zy54Kxq3mm8gU443Ye/nqZwuLcF/zXqom+TqnnHNEsOPRMCOUTv3FG9Rw4mCEB4V0baVT0CMhwkKOuOelQmNCDVW1BGJ9/C1d6VrGpsCHvMnmP60U2wNQQXega2IjLaiTgtYkA1qtM46kLfuLTo72gpXkf/XyGcWZPKQmHjADdoX38t6ATZqR9oPgjc3lyTgaZTJjK6de6sf3QfWwMmMB5w5PgxpdXqL1AhLSF1nJ/hjI0ZEvxBcl/dKW0HU4p7sckMXtWL9eDxZ4KtOe9E4evBbg0ZQrMHHWeN7gd4DH4Aq9eHyRhp3XwJFUbkuZ34PugIjL8bAb6VedozZQ/GHkuDQxkqkBXehUFdFuyvaMUCLwPprWViE8crpHP4yb8eU+bP278xk4t2jRv9Q9ac6gfltyYDG9yp8KzY/mgdeQRlrpqwaRro2FFxnS69WuQjqWt4i/PDEjxryLUpb2FKyceQ6pUL8YdGOD7VsfgyJ44HFW6GGUUzsPaZd3crTQDZJa0QdwGGXT7zxxGTJfHA83zaf/SW+SOe6lSMx+myjnjTwFZeL+ihENmnucNd3bCxv6lmFsbxo1+2SRnd59TrZ24YNMW6BBSgl6Pi2A0KRBvBatR8pzrVJu4B+TOdHJTgAHcEnzJZvMOceqYWbBeU5G3T95Jp6SXgLr8FeyNiOMZkTU0fKGJnNP3srWZAHX0KsGQ1QuySk7hIWNRarCdzmbZTvDr9jNaddyNEgNFWezsbgpPnw777BTpxc0KnpyZRZ6rmiFj3B148aKMb9YupiL5eNrPBqTbIAMP1qljtV88Vt/ZzoKFARCUrkA11g10IsaM1pk9hBfNX8EuVBI2TBtHRi276FE70/vbA5yt4U57xS0xYOxhnFsbilVSanxXTAVOnzPHyIA2vvmkj9rG2IBqQBP3jSsDnQe7aeuo5fDK0Yle/VUAva6rML9Yme+90aeo5IM4c6QfDPq8gHYD4CBJXdozKYJdFIQgcHEod6dX8onEfvgz0AMxcZX8q+cfrlytywIjxqJhXx1b5glC8HplEvSxg8Fjc3FvvTudMFUF2xhR1olK4Ya5L/nIlBm8ca4KpC0R5QN9RZwmLAlLo9PA4OJkct41AafrJ1Ho+DwqPfYBwsfrgNqjzXBmiS5tbpXGW7iJvbtEuWb7TPxkEQLvDiPe+f4YLpZOhkDbUh74Zwg3/pODBNknLHlmBXKYJzt11IPavR6uRy1InzMWpvUYYVh5G7ipN3LvVHP+qzWTmkcTmdy5TysV7tJWBxv+7jcRXO18+Z/NSR6fak4vvuRD0L8s8OEOagn9Qasnj8EB5ddwRVQEzN/d4asXS2DgQhs51dbi6L2+0JZ4EgbSI1BCQ4pmQDwZvFCAfRXaJOpwBTa8lsIptbr0o9MTpAuDIO1nD+xxjGYbjMWqVCMo07yGe74psP12a2wIlABzI0ksUHDgEI/N1ORihn4l42DyPRmo0VfkPZ9TUShniLvsJWCV9jRO8O5DYZUN/G51MsaPqESbO0ZwP0yUrnltxOQnkuTZq4z2C8vxmdsnPjDqN8c0WlFa03f86i8BTso3+c17Ax6yHYPRj0ZS8HpL3tQgBYvF5XFt9neecDmS1j0fDfMjy7BGXZ4+X5uBmcK/+IazHWrnfML8DHm+POISJsgrwvp5k2CMRR4pbFvKk3fvwhG1EyllRQp5TtgCwStGw8vmGtx74wzvD5sJe4TicWSVKoxbqMNL0tZjrvRh/n42nPZX3qRtNj7otlUKNzUJQM+9L1z82xOFpxuDr0wzVY/fzh594Rxg2Qw3nozgAxvSMK9OAd7aLoUN+0/wIv/tMMuumma7i5FlwUN48XczvwxtZIu2TSiWKA45L7JQu+ckTe/biuafRShXcz75NopggaUcFJrokPeDPFYzkAKXbSo4eaMMll/4w3vX7aLFmba0O/IOHzFewV80xThm+zbS7FYE/dpN9F32HQ87tPFweQotNezn32ukqUz0OR5ddQE+fBkHVjKz4ID3YTiRMwVDVqnx0a4CniehAZF/PWHAvItcRm7hONEP7L12EtztE+LEQkN6IzaDi4Pf8Q3xcJqVLA2VV6roZ7IoQJMNa2mLQnRjEs9zWIJhy+fB0nAT3HI+FNX+bcWdVn20ME8U9o8eSY8WiYHQyMNo4qNK4ltCoEpTELYU+XD0zb/svX0LNcUOYdYiVy5crwcvJ4jTg6sKWBzogqqSSzF8zmfenBkGdu3ZoC75DBa/vMS/z+jDveO5lLfqBmn4R/HO33q4cliPzoA9RI/agV9+zoO2xFS2uKgDIngSWsL7oHtPCHh89eEpEc3wSlSeNKdfwKUbL8IFDWvS6FKG/Tm5lPX9JweG3gC3uxs53D6Mj69+SGB8mTdFZDKftoKhoSkw6LOdipVDwdLtKyk+mM+3rn3kwQ9B9DFgHAqoBqD4wunU2CAAXdYXsPX7RF70vBDXrRnLhn7rKfzud7IXfsYeN1Qx69pysFo7HU7Ev4Wufam8bl0miO4Lpgf+C/no2GYMk3TmSaeVqSFCiDrVJ8DnZCOWOObPjwyf8U3Zbq5fNIVEB6PoiMcsVtp4ml6N6Webgpkwo9uWRVYaw+HZG8DpzAPas6oDO/TrweHAQnz36Cce9H4Cwj9VYdzKKoo4awtab3aS2QmiU1Pu0OjwLjjZ/YjXjY7ApWLKEOFsBlfuSVOzVhxIlCfwpuhduNm7F7TTO2CMVh4YvBHnpW+SsHGLJqTZV6JdZhN/e5DB3/yQKMGHwjR9wDIskS2633L4shQStjCANWqibH55Blg65cDD2qlYQpOxynIPTX15hdUkvPHcr3wyFjOG/Ib/UPWAEA0l/oGPOxfh5l1vcH2HFf6T8IOHLyNRI2AnT3klBBf+ZHCsah6/MNGnlxF1ZKr5DeYbjIOd8hNh0VRTMrpYhKH/NCBudRNqClrT311jeeGZPWCSpk0VwzrYZRLC31bow7hWcxrzgcF5jw94tMfiZ39ZTFn0l58ITKLEngE8Er+ABNc/grOHSljVRg/GLnaG1ZP6QK/AkIS0L8PURfJwZG42nFwjDavOCFFNzixqtpkKQslCNDRHF50jr1L/3Toes1ufDl6JIvvVIZjs7Qo1Jf9o+kMdmDa/mPwLJ6LkWiEYKi2jQyGSZDHnGbmuE2AhsZPwc5sOPlw+HrY1BZNe5yHouRWM400PcpnFXBj/MYC9V77jY9+iofu/B9xvNg7eT7kJzuYm2BIVwj3rb+DEUBHWt/5NTgMP6W62LF9vtqAKmTEQ/d8rqrywD61UtMBy1UaOqEjgSy9e8akH/+hA1W+0idmF9EIQZqtacnWoJRrkxGNL2AHwCjtDuruXgMGsx+Tm+xwaD+nxjmcjoOSmHx5JeIZ9sQrUe6gX/vgSDx2M44tHkfQkhOCjwRAsblcAUaOJZLplK4iVMU7wXkOFHbPQRqEYJbLqSH35ZNR4NhGPNgnBjT59dlKL4ve2cqQv6AxR41dDTONZ3DOkSGPu+9OCJ/5kFakIBT43QVe6n//e7QIU/EIloy1ocEwL/Zat41ORwiij+w17+gVBKnEf7ZL7RWuS51LV704uvEFQXpYNanPX0gHRWKj4cpjPf5OH1nlB+E7mMj95/x67EipJR/MvbV6+D+1GC4LXZIQfUaFQIG4GR8W76Yvndah+LcjbNrvzsMYlFH5YBH7JLjzTUJeiJx2EckUVqJkbTlLmayE2t5uvH3zPjR6FZPLcAI/sUeKPqXIY3jcLF6rPgZR782hztwmNWyfOBX+WY0noAOmlxkCe9l948Gk25N/M5o/9MyHw8BGslzbk6kV34dE4R/IdPoxynl0YLn2ARYTeUEVfH9p2zYad8vuh8MNU3OVTCoef9fCS0cao6nkEN9ich3rvHDyfE4MLrprAQMQ0cFvYBNcHO0A8px2VZC7S09nOoCn5C+9HeNDjrHcwPCQNul6/YNbqZSyx8DO3eWXiU/cLIPbeETc89CUdsTze+cwaNeskwd/Ylz69lUajW0XgYH+E6g4v45AdqZQt3ML/go7jRIeXIGwuA+ZKz+hTfDWM+ZcNsYU7cPer0+x4/g28Wbyb9E/dg7tPt+PYIxPh9qlnlNGZQSkqEaAq5EKXnv2h0B2xcKDmGzx4ugdDXn7ivv80YGhPGbcfUqOs5X9RLj+Ra4JX4dmlPnDhaxdagzOmn46HJlddeB+8HZqWrYDMlfYsVKuJF5udePfnl3QvwBZumJuz6mAZ81tFcL+YSU+730LK3jJ0bawhq0kt2Lr1IMaOm4halkUs9OweS9qZgpmsMFqsFeNfkIkJhfr059sqKuuRp1B1H5ZobcXVC6/xdiEd+J14j5o89oGQSwQ4TDiPW0s2c7LOeXhyswOCPMSx6XsvJHydAaP/xOHyzWG4jcfjmPX50KS5lebDbvQ77cSPxo6GTdeD6WfhGDgttQWzJYcpvHQA2//+YQ6vgieF1+i9TR1OEt1Gl+MVMWmnOFTa7uMWkwSK/fUAz+rdg7Gr90C53VvYU/0RbeZX0DXnZla5PhJg60G6s+caxm7R4U367uAxdhu3WbfTGasUrIm7AYMh1dSQPRFkw2yg29sG7sm95t6mIbrwFHFDyV60OyOHyuni5Gzrj9X+4v83/1dMaw8mzTakjIISfq49H3Jj8+HwyUTanRYCczsrKOzxNz6SJgTvmgbRdXs0O9ieBvsdmZiqMQ+Or7JCgzhH+hDYBH6/+1DljiycS9bk2hINqHm0Da1c3qFg/CUecO/mhn1T6IT0dPpeqsy5mYLw8LkJ1889QldODZPy8V1Yvv0fKAguZM154pzhsRmVL3Wxu7M8hHeWwTsPNy521+WPllXwS7QQ/bJuw4ygESw5rod+jk3HD9FK8M5HCQO3L4RBoUyCWfNgZqIdGukX0lbBfhrqdcQFUnYcfGgkxPt10I7Npjjt0VI0tp2KCaPcaQmZoMf4X7hs7EywVRSg+49nwMt9q3mMRR/F2MbxYBiwqYUInYl9jNYb9+B9gU745TOf3n/XBYETOnxWrApEZgZxnckAaZev4uR/+jCmWBLi9fvxyoGNLD8foXDac4rOMcct4Y3QZHmCUq/Hs5qZC40x0aONSTNwwz5NSGqeACNOrOAlN7fwroRNVODlg4cS9PhG5yFODjPDa7LroO6QKf67NQJWGPXDys07ee6ObXws/TL7rTIjpzIjiqmXoWcTx+E87XZ6ulYC9NS+QNtwNvSHVcMKe3uaMjkObdc0kfPLADby66HT0/5BY4I8ZNeJwdPAhXj5VSUKeq0H2ZdLcNW9YbwZLskLX5fS2AY3rHcUguGSNDI17IHFv99j6adEltKczSMUtsAL0Xho27ERp8hNxl0CgrCzcjvZLZXAQzayXDq/HsYIPYNT6ioYZfAD+q3uUfr7Kgj8qAFhgfOwYL0K8bLZ7DpmPpw6L0gvSlRo7eF9cPevAdLYQxQuNQ0mlhjhNdn5cFemlupWz4aLZZfRR0wS7/fEU+Oxu9QeJg3OZ6aB4SobLr7VRAfwNA1FjaTQw+boWSEBx8KKedqNGeyx5TPm946FJQukMcKkFe/6jcazod0osc6OAx230KejIfwrtQeUrGbgtsUzwSnqCl5+vZU2xG7l8RpPMCgpAF/uO4mx+7zw64F+TF57h256i0PPJsSDRc+4hefjZMuzYO7bwVe+hvDCkaZcKBgE4kkqkPHKCN7OOUUJe6aQEPlT4e8orng0AUoPp1PA2k+UF5NGfx6sgKCAWeBe9Q+/Si+DB/kyfO+kC9QelWSdrsVQ0uqJsrPeoEjEbZDbIwx5ahV0b8dF3B0ch3srrbny2DwyDNAkM80iXDTwG5PW/iDt6XJQtuA8zzyuCJW24SDtuIicpx/juPI22uicRn6Z6njocQ/aFE+H7flq0PdnJ4289QmebJLD1FmWkJ6QwcfKY3nj4xperLMbo8IYfGybYNafWlqc/IPPRVfyqDET0aisnafvlMQr08TwqM1k7PUTgTubamGDjCveJgFc/zMQxtonc7SvOU6WfAz97ftJcVczXKmdA5LWBRA4J5kyOw7A3joF1twRSW19bliRM8RC9z/wyrJm3FCsC+8rCqllxS++5tuAx+ymoqCqDUyxlqAlE/3ApPUE2UjW0rLrDOsilCFeW4dP/xpgj39dGHdVmt+pLEe3kf0w7k8xa6zVoqP/lGAo0xW+TAdyVBwJ83U7aLrYObK2ayKF2e/o9MIJUH7rJ06I0YOHl36y2JOpJC1bCuOvKNCCiHbMSq2mGoFLKFg5FyI8xSl1jBicu67NunmX6ZSpEPQ+PIu2/Ia0RvaAu+cBmD2uA3K6T/Djh3IAo5UpLtOMj02RYf+M/eineRLFFkdC+MU9qKMng2+2ONL9jUogucwH5R7F84opMrRw23UWn9ON9/oms/Krx/Bs5FYM7zwHym1mYFArANNd/HHiTTdU73MCb7XnXBJXCh0pjeDqcpLEG+sw6dJoWOHyhO96OdA5uUbOG2J+P/Ybvd1nCXd1ouj8++f0aFwU/VeqBGqPutDgxW8oV53Bp7s/Q/WltRgqf5QltkijS90INlvcimcHJSHNwxiMC+rAJrWXH7dYwyQTR2rdXwLOlXKQqZ1Cz3fZsIiXHGytTkZBl374tD4Rcw4Us4n0CnbL+Yf/HXWl68fLOPebNUysVYMJhybw5EvbYAO607XKZvz6bw5L51aDia0hHD2VBkIDVTBsOgIWX0vnP6JyLCtlSmsddTHt83TsOV6GMycb0RfjITjv2wxfUxRhgWgTlVw9xKf+VfPdnN8kKNEEHj2TccuH4/xPYiIM+qwA65PS8Fcwmb7m7+ID845Ckqs51nmr88qo5bhj/jiy+F1GofGDbL5jDui8vY/L9L6y6L+v2HjSnyuzPVDmux8uk9LjL1X2JLDTA+O3GoCG4TX8MO8efNY/RHPGT+fZsrW89vJO/G8n87nsnTA0dxlHqZrBaVcJ1HDMg+bti3DNy2lkMVTPmV2JrP6kmwIXJnGVEMKu9SZgtngZf02vxQ4NI7Z700KTQju45cElvPz8N4qYJrNv61WslUDIu2XGoVnqMOVbCs0sWYYXalQ5r6kDA7NKaaB+O75/UwNncmVBNXMA78FxnDYynnObVrGF4SW642jNgv7VHCxuyDhuE2hZ6MPSV04gayWAdr7ZPFVfmGdYbkCn92oYLHAfMqQOcvidXKieR3B1pzxvkJWh7/t/wpW5K+Ds230wploHc6WvcN3WEfhlgTA67GSICZkNAuEWpJQZSTdff+SzUw/SWUlrLPI7ioU7WvhyWyLmRElDVMsx+KOpQXUBU/HonOfcqI804J3JnqO/Y+ymMbRskz87GYwCCZ9sntTYRl9cB1nFyZ3mjlLi5Tv+4N7kS3gv5zaHes+mX3tVITxkOZflZYLK5tu4/V4z2HevpsfN55nD3/LO3Kd87lkhNZ3Qhbz8YA4vug5ObwZYNnwq1oyoJJ3zZTxSMB8OtneTw+Kp1PBoHExQC4MtKp0wtqCEBzYD1ifVQbqHG4Re+gxG1he4luNgmo8gNH5qoPwjH1i/dxkrTPAFQ8cPWDHJkp5/8qS1geFcXWpIe79KgszeDm7+qA3jbhTwV+8u3p/OtCdakRzDlnKioRre6PWgTJ+pMHnwL+e+vQOaEdUEMiFQku8JP6YHYMlUb5z7k3niYUuu7NeBrY4jUDHMAeMPOPDrsNe8vmE7yuvuw01fZGhEVT7rnBUGYSERSH76HDQXd2NX/VaQKnwPjyOOoEeRAvqNP4wrCt7xcPFrqq5UhraxM0Er5TOmnLnF3C2JDQbnyPiNGLtc0YYNk4pw34sJXHZZHjoLcll8WAUapAyoQeAsL/tdwltNLCHxti2OfBxCW1SWoKKWMmg8uMoZdZNh2u10FDcTQ50uBy4t3wmBfzspW8qcPE724s1NEmDYJ4KGfkN4pGIeHq69g/MF62jB3SByaiJIjKhmq5gOuKyhC1q399M3Dx8OXbUULb+K4Wr9UExrOQdme57wUyUzHDNqFT/tVYYysQvcJ+9MiXsEueyRBVb5ebHFDkOMuT2AO2Tu4HL+Q87t2vB+nh6u/9nEkz5u5D7B1/R070dY7jALDg6Lw58Fd9hSvB3W/9OEujo1uvSrlP+VHKXstBV0yOwt3XHMpXDjalgythheWijRD3cN6Ne9B5WCX+GBlAA8Pa6BH891cEWsO1UrOMBLh28wfoISP/whD76H/Ohowlg4O+UHZmdYQvPM3+AglE4NXp9xZ94HLnYu4tyLY0DlmAQ+GvWEnhu2kE9wLd3yK0ejxmiMspZDE5HXsH9WGK/zUYPAPWHs2huOdTqTaLeJLD+PTKYyi9Fw+oUYtdtZU1bqUzpaZgq3gppYy7EWHprVU7FJPtumV/CJ/5bTvcJRfLY+GxQ7kjnzG0MWt5NV9w84tvQrdkuZwbWiUpAUEIb39QJY8WQqp70Y4sdHx4HkjBTu6b9K0eXlPEpLHRzfi8IdrRTY7NeMfu2tUBxdi/JPxWE4NoWLpwXRq5Nh+PnGTz5Wtp1HOQyRgkMgRTtm8OxOHfQyVoGFDke4LGsBnvggT4YRr/mFbjoGn+rApVp/WP39Zvi5fBOuUZ4NC4I302ivr9idJw8elaacY6XNco9CUfLaEK4LCWWPxZ3wer0URBY3cM7CQfK74M7ZG19za2I4tb6T5jWN4XxM/C66H34E/S9NwPrYeniXs43WR0Tx+N17uHVXES/+rYAeE87DOt1F6J/qDCJVynCxv460C/05oPMazt96B+U9m3nvjc108bUy/ls8l35O1qbVOeKg7C1P385Noa6Cbhi9R5JP/HXl7XuNQfr2NWiJXQPjHRZRl9xYKBjUZPugMDqhfxSWDUbiiNd3oHasA+VdfUKV89/w+MQv5Dl6Kijd0gf7wI9YUZcK9QY70PrnH/J6fRL8RueRb3A/jPUFyAiVhG9F92Dkr7XkfLWSGob2oVfKZ4o21OEgiR5UsBaCdSq3MSJnBPxUisANZ/UhTvI/vCT2kwd3GIPEy2ns+P4In0mOBPGlt/HxEgPoiZPiSVcBAuaOoeJLSlSsE8Unozfwz45alh7+RoYXRLH0pRjogSVkxZdzUZoxi77oh7mfjfhvexc4S39An0W+NJCzGG53ToOK1fUsKw6gKjJE34IFcW1OCeGusbhRP5Ey1nbxEk9jqF2vBhLXP0DBXiswvRNO6p1m+HKEHUtuLKLClWP4Vbge6o5T5H4ZIzjcnMKb23fRSfkxaBAeRMP1kmxrEYXnK3Ppo8sy/H1Rm9RjNMDaNZFjXrfia6uNpH8olaK4EgRfOMKugCCydpiABqbuUGaoDo9s40F2yVq49joEz+m+If+NmVhZW0h+d7fBjie+pLZ2Nr9uGAWPpSeShupFOPzOFxbIPuLHkj1w7UIbm7qMJ4lNt1hncQc0ahvCCj4KGroB2G22CF/JDoH/UBFXqxrDvg2HWKu4iasObYOUAiVw6lYHDfM+8tEwo6Rt5tRpK8TYV0RJck2UNRwEzWsO47ZyJVDsSED9igmYMHsNG4Tq4tEpVnyqaxJNuKQFq06Wkc7eQZALUoVnq3woONQeBxd10JE1l6j4RSq3HDmHw5ZzYOZ3Wfa0Os8Df6bA40xpDv7kxV/1t/NhVRlueroQ9y6dhJKuWpxRdZ0CtPZAevw0UEkw5dHeS9G+7CobCxxi+6h2iBP8CFAzgCV1rnzT/g6664lBp9ZHtJoUyA7TDDl96hfu4YPwqXUBLW+vhqeiaTBW9hzteT4LRhXVk1KFBf6V+wtHNJZDmZ4Q3FByB43BGWBxYRfmxwhRavYYcL1VSZKHYujgqxIcNkjnVz8286rX/8H0tbqwvH4KxrT9QPWZBhC6axFf3v6V82Wk2fPgRIr+E8ALrhpDK9mTc+INvGrzF48HGsNyiT+g6FWDn0ru46o7U2BZ5jFUOjaaVGtmIxf4ov/CfhCuGwMnB+9CreMCfIj2GOIrQPIpN9gjqAKSvnxG2/GeOCfAko7VMNR4lYC59y7SNpTm1vEm8De8AT1hN1WvEIfGHcX8ffl3mH18FCTmG1FKwweUjQPc/24DOc/S5I8CcfAlaIASBEbijy8ToPycOLyKrIKsWY1Y8s2I30s8wU1Sx8HIUIY2K22npLgueCaxEtYoTIWCuOdUMu41PG/xwQteq8lyYy88v5JAzot0eLl6NOVYfORyzzFgVLyDuucsAIPnfXSs5ARlHDlBWbNuUqfVLvoxyYw26S4Hy4Kp4HhAlM7+Xskm3VV4Z14gvLOTJBFXa+5v+0mXIhto32U5Sr4/EXauNqdVeVl8PQfgbNMiKNr/Ae7M/0mCfvkwYtdtvl0ZxR89CaYJWOKv53rU7/AbP4u0UtXoZ6DxaBAUPdVg9e6V1J7njAGd0yDbzpykC7140t7XIJQ9gsRs6/DjXyM+O60Bby73hHGmK0BznSb4r0rj94rx5D4AmJqdync85DAnIQa6Gtvg2L7HYFizmzu2T4ZR6q9Q4lMD552u5Dq5DPBVe0NiTafxd5Enzr1TDxVjP4OnvzB0bB3mCRIn6Yf8M6pJY6w5OQU1hySx+8g+uEDXOMD8M6+MFoHKYBneoDOW+1eehnKPII4YxTDUi2jtOx1/fOiCNKcoerJ9AgxoAEioS9K1NiFcuc4V18YvolslJ7D2gQpLJqbBkTRDaI0xhj2iG7G1ahzNTCE+LhWOdXGinKvsiIVSi2Dr9d040jec15qKw57m+TTUNpuiN70lg9PbMHRGKLRYysF8y5VsK9yBshZlqKUyHiLmEAidNoaE5BgMrVBgpaBTUGY2H884mFJNgT/HvR8FjzO0Ye9WM5xlZcNm457SF9tqSP3Qi1Fz21B4dwLGe0tBr48pdP5RA9/d18j/6XdOGpXDiYKXYcXiSla/9g/3q/yg52cdOX9UP43oNYCcuONgZ19HX7Sk6dFJSYyWcOXbr6+SvLUJl70ooaUx4dR43xC0bZpZIcKLTGb5cp1vHoi4zaKIqENk3PyLInRCaZnxFq5KMoDv6ne5sP8h/awLIQt7D6xLqeUxn5p4eaQF7Xi4DjZqVoPRuhkgdzCaJu+yBvnfNbS9ygELThTQyxfeNEq+kOvnnuQrr16Q+4QxYL8sCrY5NsFpoz5ecjaL7xVsp54eW/KdJwvTnPahxvoDqM4j4OObXEpKSmM3i3LSto/jo7123CB0gNSvOFLgixC6lV8DbXcFIPttMm+wcQbvWxXQFLcAr6/Vw0tOX9gyI47ipHfx2ku58J/KLMgym0a30u6hsu4OuDglEi943cE/H2/R7qvXKFNuFX62COXt1wUh/GoUl35xRbeRWvBCVJwm2o3kl4++cO7wTDr+8xgd8P5Mx6dpg7jYb9C4dBW7Hqaz4L4yChAdDT/KzmAJ34Rsh1AKUFvDt0JmgNY3BZjRt5P3Vf/hibHNsKMzE+92bAGZpyl0TfgCf9g7H4P2zoRrm4/xqWOHudMjiSXHbYKF777DhYRcOq/hBiErCniijyngSxUokhIBu1glLgtxpy9dApxy1BY6pH1xXYYi+tWnssL6NEqfKws3vUNYfpcIHm4J49Y5Tez/fiwZB7ljgd5zLDwYTbGJN+mtqwY8M10Jd7WMwCbwFMRPuAcrHl/hFRt+wCVfJ4z5cwVOazzH/FvC8OyDGulMeoZF88/RCcMG0Nl6llBPlvR8/0NT7c2YN3kEP5wmD9/mfACzW7vhQNYQx7z+TesDc+nFy9PQducuPOwvIhs9MxBLEgbVQ1NYLlIZJASIIpo2QvBQCjrIScOM+3GQf9oZT7R+5xPrhGHGXmmyK92EZ/zzsDZyN0xb/gEVD8RQxPUokp5TyqFbOtFRcRSMOLCAPC5dx011G6Dl7DsojdoDbx+XYrbAU9JI3gvGh2VxX6wINCxsg0PrLlK5zSt6YDEarthOBsH6qxS2UgSDB06jx4yfsMJbGW4HZvKn9hv03/k0djsyil3Cv+DmEzv4bbgnGKlqkuiOJziUoABJHnNoREYS3FDfwdUfZqFyizFMnKVBoRMDYMam9VxUr0jrfk4HF/GVdDxxEMJ/S+Fbh7u0b/ZKxubneGfrYoqaFwcWatdY/5wKBEdmUiIYsar8BVKXv8/nx4zgxAQ3VlOWZ+mBB/DB+CMuRwTrzjnQOmot/nP2R7Hyn9DSGYDqVyvo0i4v8JlyDesHT8H7qSqwSfUtLS2VAQexx5ibacOXb3VTds5x/DdjCSl0SqBaQSS09MrAbDdZqlHQwARopRj3Bvrnc42ePJzAi8w+YkxlCKhFZeDigyPBaLIiLBiQwIer3uEr3VQo8/LCOyG+RJ7qJCe1A//ry6NF4hMg58B6OuI5Fi+7NfGFgzO4e9x8ODvuC+R7ruSyBQQPnlWgdrs43Ox2wAu9hhBcOgVOFAhyesJxuDcxlvP/niTFCjswftxDwi+VIXyxPlz9IEZer3JBOVaM8jPG8AGTGP53qpHG/z0AP9c4scsRBVhmrUZ+J53Ic7MdX49/TfmqqWQ2LMGn5mRjYOgSFF82HlMmTIKqu+soblEbuRa2s9j5RA70nkCiy17y/F2z8GwfYfsbT5S7PRtq9L7zk0VaPHBcBrUXLiDL/XnovasXks648LxeAZTqmgdthWYQtGQkZGEObvMaBbDbm5c+/E7ZoS9YaPVP7Em6DW7BKTzihjw4puykp5eX03uBFLoz5TmBfRM+8DGFfU39pD0hFhwOFAL90YBTy3zpv6Jk8Pr1kJZZnCY1FU9wurWLVhorgQ618PeFQdwvogU4EMw1NpM4Q7WX4098oLozm3iB8VUumq+AX+PMUKNyNGanq4Cm7Ci+1RDIlUencWGzDH5NvY1iz+6ymMkZHHViNj3KbMJdnzShqi+dFxYP8H0dUx6+pUIFh/sgS/42dQxt4q5yR55QcwGtlyL02q/Hgd4XbNHWS/F2oZxVtx1bdTo5eeJNkJrxmerPrebDUgJQvEqVm5MTaeGEkaQ+KxgFJn3AOuuTNGP8LAxv6ucFOQokZqMNzXcvY+CLb5zqEgLe+5N4hGkgrO2zh6zxilgQvB+3+R6E/duUoHWDJJc6PAbMEOPb3VNh9rVirIiSxpSIcC6J+4zhNcdwyEoU3BdXUkaBOuprp5LejUvUPvof2zs14ehqFTaQGMWuPm6UkTQV3kyYR2Xik0HzuANV3LyDFxy00GJqNb+NP84Z/83nxHdqJCgyEzw/qeKZK1Ls+ywV09o/sO0dxhx3edJVMSD7b1/JSquL81+IwjrVerYr3gquLS/R9O4AXLssQjV3J0MTbmeb2llwUTUN/00ThmkXarDMsZvfzR/kPOk9MKu1gjrmNIL6V18+WtkI41VsyH2RKihfXoMKr1xJyKmVFh5wJ4F3x7F85mEscX3Eom0mlEH2dOuSCVh+3E7frzWytJc2h54Zg8fUHPDV/sPknyLK+oPmcL9emT9NVwUDl2JqMh8Hj1L7QOTYM4qZbo1/DsuClEgTfu/V5E0lmrQoQx70N37FA70bQXTjMVCKm8bNkg3ooPSYLj8NxE+D+jAxeSGmRzNIWZRwXLgwZD3YCDIBsiQkosvrwj/g1h8AdqLT4Osjaw57oAXJ19s4ouIhrZYcwsP1l0D//CdItd7A59XCcZ7BWfYad58bnSVBsm8Azbe44e8Rv/lC52EYeV8RFy9/wga31dG8SJS99s2jnJ0Am97GgnVqPf7y7IL1HUWwflgXP/ET+vjhPVRuFcdXagvJ+rIerIlbzV+Mj7PHNncoVzbgh/qK2NhtRf8Z9HL39gCsS02BUkNNuJ16hDYNDqDhhFgo25LBOkGxEHXegz8nC3HN6z9YGqRA758qgvkVG2xKSKHo8pcU6G7IU0y1ye37Ej6esg3/S9CiZ6pRIGejClcrGzGvJ4p0zCXR5MhafH4hAaK+rQKpry6U9XAFmN7wRLdhbciP/oYLkxL4b1kBWM/LwMGWepZacIGWWbWgbpEe2bIkXBMWg/hpUyE6I5n8JC7hV5MP5NnTgjOqVpP9ZkEY//kqnNW7ST1sDKcKbvDcZVnUoShNRQNZuDZkGJa4RHBPoSRmHZxCFz4Pwad0NTjtP4DtR1bBuElxKH97Bc1Lmok88R9OCt+PkYvm8XvZySwXKwRjUhbybuk0XK/ewmNG/oN9D8S4W2otfi1vJav47yzak06xIcpQrDmRsi4lku37s1zUr49ilh7g/GYr5i+TwTc/K6DZbweofhoJ3YXDZDlhCSgZxGOQfhOUxC3CixFrsDw1kQJDV2DIkCnqtBhAXWwLn55xitOmbWX35hwwl7WC3o0nceVqEXT5bs7ZmzVhZp0WuGqXYffWfPJfcpn2ZpSi+RQNCqwfgeLzbtFzOQCjPfo4xWcWaKgJU+TbNyB67QW9mnsKPL5/JUHBl6i2JAVDrZU51DUTIx+KwMHZYSha2wZrE05g7u8DeL+pCTzmF/FM2T48uX4xrG4NAKhSgUUzxbl8VhgVtZ/G+KR0dC/tIjfT7XTz6hMy2uKLO+vsedebsfAtaSx0bC0lpz9rIeKNFlRGBHBnWQmfDD6FbcU3eeIFF/YxNYTs6afpU1cYH7G8ggfHCXCN1Dv4fFqOSmyMaJNjFP+dFojKYAbdWzLhgMlCTi4xxa1FW+Dm7h0colZBIvfSYHy1KghHhtA8KWWoyEgB04x+6HctZ/u9M/FAVQx/Mx/J+k9suWTeLggSzUIOmglZcQshumE5D986QSOCNKj72VhuN3gKLh2eFF/3lUwWDPG+kcogvjaPO+1WIElM5c56aUx/voJSeqo4R2gVLlm3mjfutKGH/02EQklvVn5hyioLGuCLySS2URnFT2VXs0WIPEqdKWb/3FaoVxSGUb3HuSq/nw0XNILbhzC+kvKBVM+roISYBRWYr4KOzxO5OkcXDMzugXVtGC+4lw5OLpNgZ+szOJ3pA7Pv3uAVyf00XuEgyXXKgbC/MtzzbmCpX8WoN/AF3S62Y8sOBbw+Opi8Mqwg9kIJmn5G2FzVjPHNS8F321NeYrgMK01kYMv1DyAU4c6LE9T5oJ0dLX01C+Z/+Q2LDM2g2s2NQ27G08v/rnDHjlKSt1tHe0cK4/RPK8lEdwrU7F5JvlcP80LnNTCuaCWXlE5H3cgjHBh8AqD1L5bNrGepvZIwLJ7NvquLseDdflrauQCSwiog8E4midtexkLvJJ5wNA5tNihBuKAvVa/Qw4UjfqNVXy7noj+enzwZ0ncfw5ZXoSR5zogPvlaAief2YcDZn3BoWgB+dzLFoB26/EXtEwikzOETb17D11+78cx0ObBSGYveb3bw4yEpMrCYRrOTy2H12SKed6aHt8qaoE/NM66UUwRd8XS84kb0c4k+Xz4ZT8/zYvHAwSXocUyfy50EqbN9LjcfHgsehg84/V8LZPtLkt23K6D36Qg8zqlG18tKLLJ5DWkb+4H3b0OwUggim7PX0XUXQOQGBQ6620GF42/AlTMJMPBrGz2JWISqjxXhUOUifE0b0abzGQaXX6fo/cMgNc2Q1N9LcrqpAddV78W3w3qwoL8K5W1kwcLxLoxZ9gplho149rKF1GB3Gyw18iCz/Q7WKCjBVe1z0FZUhies10FroSg4GdfxCCUTWie/FB76ZrPXt6vwWFYT3OoHcOhRCiZd0cc344/Tq6f5nI4jcfPubSgjJIfeqwpA/ocJNM59j00r3XHNljkg6ZjG7Y6r4JzXSFwr0Egfdq9Aa/LEjB5VqMm4gG2yAbT0egl/GZ8AG0+XU+XzbaS3byWv9jkEirEb8PftSSDUGIOV4qZ48LkMbV5zGzA2FDenVmJ2vBFW+VjgxGwtPKoqDGnbrKjR5AfXVe8HibHxqPXfANZndHLspGKob15Hz0STUbJ1NJTrOnF1sD8YqU5l5SU6cFbsOy2SnoUzVq7ES2rzqUNIFOfWaMANJXvOfxCD5Q0q4KDoQRZ/TdDov2048eBYnvS6B1652sJ5w8kQEumILXNXc0vOKh7RYoDxsbZcqTeLSx+u4bqzv+CB/0i0uWgGowp2gkQfQNKtOMi/VAVTay/jmbhg2OsgifYx2qxyu50zSQbqf8fiUYc1aPNlO4hv1qLG/7LowPhR7JK3ncdNTiJHsRF8K04HlkUd556fk3GduRYPnZ1MfeqbuDjhD1QrumLUfEH0OmFPB9sJPgXHk6bpeBQKDEWLZdOw6ZYTB3sNMnyy41/OPexSJkad4yfBKr9Kule4ls8Iv4B/Y+PJ0kQEJbv+ULoso4LYD9hxrw2vfxaHvzsYkl1/kHucOlPcO5jJizn+7TkkoVd4xccblDaZ8tTtY2FKmCQUmH/DFcvuQYr4Eo5JfMfJFx9iyjlfThp6yLor7WE3zoJOMeSqeEGc5dzD10X68J6SMavHzQGKPkvthh1846c9RuSYwKBYGfq+WgnyOzbCt6jT1Dv4l7br69HO16ug/MFaStTyZidXbaCY55D5mfD4QDTd/mWObRmDnKl8HZakyNCbGGkscV+EbdIER/ZchJdWfaRS3UrCX7/DUZKDoS/P4Pujbj5Y1Ailbml8a4M8KOd8JK+E0bxVLgO3xXhh7BYF7K/4A/oWO8hq5iESKV6BwkYMhfsC0SbsKu+2VwXdZT/xV9lOilzYTO90ftIWnc8sFFtEAU4iUPpXGkSvvKINz1XI1vYkbPo2FVPkklDe6zTIHA6FeJd4SOyfCqsen+I53XNwlpI1uHmfJvlmf1w7OoW2bzCDqX+fwIfQGdAeKAmjFu+G48PSaOk4Ad2j0uBirCmUh4jx/OVyMJe6ecMNHXo8eiz0iYezSecmeu9SDWuy/oDxuHp8rnEATkSG0eZzhxDWjUfpLFV4G+dPD2sv8t911pSruRgLZ47GEqcwUrTbSPP0mtnT8jJ6nBgJ1xrH09dNJiTR28ICj8rJokqVy8Wno6HNOc4LL8DgiWqsPFodouMewTLrOSRzPxeqM9L4V/BueNB8E2fG9OJWLx+sPRWLuGMC9J1Zi1N23OLVwzY8+dcQKJw8Bj4//4NLyjNBrCYLgq0b4HiHOHy/OJ6MU4xI6c08fDp4kyo65tK2in5a0RuNpxPe8c13a+jxqRkQPVcSEgolKD7xKL0ovktq9x7CiBme8Pz0fN65xBrnTI2mJlth+LK6BVXLOsDj6FyqKIkird1SYHtfA4W9ZUh04V9QyBsHhtITwcxyG5qkTofkf8NwqE6BiqpW0uCC+ZBzyoVVr56gsqw2zIrUgmXpy6HsiAF5blGAxxt3M0sawoxJcvzcO4cSrwiDh5QzK3YIwyhHJXg9V46mf/CgxSskwT5AGOuMX0H5yROYsHAJSu21IF+3CSBvHYl+S87xl43VkPx1BMQn36YJ2xwxoOElCvwwJKGJjyhQSh/8L0/m7E4Trl89E5wX/0dFRQ1oWVoGexsj4fjYZCrZ+YjdwsygfmUAmme9Bvm9sexeMpu/rHGHp6t/Q4zZStjlZY0j/oiQUJMIKBxIIOWReXSov5WcpZv5+9A8su6thkFhf/4iaEU2k2rBpkcR9s/zhpaI6fRzWiu9AzM2+/kek1xzca6CB6y8eAdPql7no3NGwZiU0aid8pZsZXUhcGkYpnvspCzVAdgf/4On6XrwV6NPGKk9B5waW/HpZn9OeWaAmd376NWCHBj+OQLq/Hp43yoZlvIyIzVZAOPTgzS1ZBcuun0S1lwShLkxRZQsp4/PWnt5xtYbNOZqKZ2rMoBFIUac5vENtuwqwSdy7rRIQQnw1AJccqwZJ97rwXL6C6bnZ4HpARH6HwHwAQgEAgUA9I8UIiJ7FdkjSVmZURJFFClFmSmjHW1poUR1URRKQtFOChVFkiZCkSZJZSaqe+oVmezaegE2bRjAtgm/6dK171RHFjg6RxSOzDrMAks1IMfhJKdzGBiE59HKoed8SXc/SHSHsVfdL3KZe5qmlmvz9qti8NovGSoMpsKJ/BPk8Gk/+F5N5NW3f9NNFScwNWmkJN/dMBQtDXboi8saZ+CsRDvqs73P4Q8eUM3NabTmaR4cmmcFhUOWdMLCCmRFQji1xhKnGXWzrmkWtJ5KovKiyZTd70IBq0vR9HwnX4sUhbYtCrx9WxC25K3hr3GP6dwSWbwms5Gvtmfyw59ZkNc7hMfWT4J/pg/p4QlN1JHtxlXZxJn9u3Db6XE4yUUd1H/VkY38b15RpAoLQ/to/2N7nGd/FydLHYFnuQVY8n4DWHZW8F4KRY3tL0E8Tw4CJlmwupkGfJrbj/36geS9ephuxhNKqB8iie/VGLIwCm64i8DW5l+QvsEeLttJ4I1CET7vFYoTG5Jg27iv3PNUktJ/v6Lz4TowsXIQD3Mhnl7VBlmZLRwqYUFzf/pT/X9edDz7J2VZNfF859Ewfo4neP/SoIhvZ2FoSyF4S52GmyL2XLr6Oa6+u5FHJwah+Wsz+G27H+okTqN0wAlQ3GBC2xQnMShX4NTyQT4ST2z55TXca5wMGyOs4N034HqtZtJO08RHx1NYwaKZxMu+4tNVG8nbx49HOBtAc48Ud3mVcrjicjqy4QhsCW2DggRB6OtNJqdCP05XrsDUcbogUY2s+DwItHETD1o6c8SkXdAS+oPTNivBinU+rPnlPr8PIlAbKwibvbfiUFozVLnWcMK0VD6/bwHFdDfT/rMhFLrQBfLHIKxvVoWAt0e5TWkczK7agyvqDXHKh2DsvqyHq04Lw1yV+Xz8izg8k9NHa9kUHGRFOjvyHIf+GEVZq3/Ck7v3SP3AfLDwr8SRJnIw2zIcf98XoRemCeQ9ZQqevXQaGp1+Y/ilOGqNIe7aX4I2l8zgcSlwoJwpqfWMpOD/pnGMxWr2CZeEsLrZNGvSfYzKOwOaF2Tg755heKUlRxa2K/DkjFQarSYL8wT0sShwDS1ZEcD3J3Rxds9kkKgbQ2NHfALrpGFs7lzFHmUhsCN6MS1QV4WWW/dhfXMTrHSZDAWhHdR8fzkaXVjEv1brodidj9A60IVdde68pH4NeP1ZgaJNWnB9Vgq/ym2B/Vr5qB0pxDqPN/HpOeYcvOUV14W/oRum0eSXIAexsSNpZa4k5ZSW4O3SlTD25XLsiq0nC3AC9Ws6bNlTzgvfTYRzGoNk3+oMjSYXwPVkOGZIqKN9fg1PWTeFrarHYsyZLZD9Xhruvh6iaZsCYe/BJJosiry7ZTH9aNXjvUZdVHh7DT09kcvBNtNApEMBz++ai5fNqomX7uAF9Xa4ousz/TANZufPl2lf4TFQ/a4Ji2zLOeZuI6ouE+BCNwMu1A3CphmbMXOXMH1doMSfLz+E6kk6IFa7AuTWScODtZ1wdsxbWqFXxXsqF/ApwwbKLgilyuzHHDKgBF+Uf1H9rvfYN8sORhrMRtuxMuD4UwA0RVTo9pRhdG0Mhc7RI+HA2AO0O9OYTI2doF9GggwnZeHre0c5NbCY7l+LZF3Rx7xsCYH93QGKC9KhrpZPVK+Xz5ZDCqA77yo3tE+ijyP/4MIt5iDcawAfy5eCfmoV2Q33QewXLdhqIkHnDstS0s8/3Dp4nqctd8VXeqYg8d8I2J6tjDZKe6FbYSGNFFChI/a26ClbRtZyF3Cl3id4N3cM1JyZhGt9vGifZQvGvrPC6GV+OH21A47fUYDhQhNAKqGfCi7qwufQWLSVCcVVCZUoFrgTS459hfIESbJ2CYFbBmFU3aaEW3bJg9RkYTQNvssR/6bAzsaF8CNqETaPGMRH4i9BrmQGnQxaxfBAHXYW5NCfe7vRcF47ekSeIMOK+exztxEXSNXTjlglUIjposHFI+DLVBF4KWaAb9+GQW1SI3gvqOWdyYso4/gX1jC8Sqs7DhE7iMCFDx1QsVaXkvM1uYwIGxtr+N/V21SveBjcHgviNwkJjkgxBMN7MZxTKYZKTeOo6GAgl1VfoxqrDPjxOx3bCg7hkz9tlJYiA1OSJDBebCptMvPB+zMX0DLxaBA58Jwe+xWDlIst35HLYdMtyqAXtx9sHHZge5YQG0pa0KEPWeiz5y8sviGN+SenovTfNbT8kzy4jpeExlXT8diKGyggMwu3Gazlum5/tBXvp7mwBX2HrsKMeGl4cXoRH3lvyydnC+BD9x28VqYP76kGQ6rDQz51/Qc/eq+EX0RFIPLVBfaYvILtSZomdEbj2NL5XDDyCsxwTeah5SuhTGMZXROVgaixn3HPCCN+G5ADQUbJENU0iI1mk8Dpbzxc+LKQ76x0JfvecSDTpAW+mYHsM2cd/Mj5gsIyTtyJ3yiy1p+PHumHWSpzoGuGCJhLdZOt2htYpnGfJjw9TkkHhsFjiSo3N93CiPzT2OraBl6DU2G6rjdmR/fQoyQJnBE+gM3rxaiprYQ6JmbzXc1rfEnYlONjJMHs7lx4ZuxLxbsCQcBclJslLfGq4jRWkgziv6vk8MKtrbDppThIPnpH30X88L/seLSNAHxS9QHMzq/g29MlyMjZDTdKelH/lxGwasgUTOcP8os3iTiaP3FS7Xu8nOWDF/THk8mRPXxumgq1JUrCHr06euO4HVQW1vHw5SQy1rDkhlOnWMNkCQeddIMVy67STlN5OP31MwvcMsFItxCe1nIVZ9hP4EmnLkHAQ19Y9rOVVwxNhhefRaBv5T909ioli1OCvOfwX7zRMgK9tsTTRYUX2GIfTm8vx3Gz6hg4qAb8VkSP1IqrYWZjMq6/OZK9FVopK/AuvqtXYUc9ZMNSGXhauA/Ori3B4i1X4INYFz74bw782A14WM4a8pKqgWtsYd1RK1BXWgBqogdpjtpSMPm9AS9cZn624RPnLozDmISF/D1flWKqLCF16xjsLCgmNeEUlttzER+PkQPLd9PpP/Mn4BB8gbzWGeKo8QJgN16dN45sAaO2i3xlhBD7/XoNm9/ko0lUAEj1ZPE5YScwc5CHzI274V5eCfTcq8XhmFaKKm5m3dP/IO60HO36+gZ5lC0cKR8LLSgJr57K8r8D6pz+0R8uBmwnNW1ttF11ELrrVkBl11LcUmkIn911ebujNZwUmcoZAxNxvF0Zbr5sxom5y7HNxpZ/2fyjo6IGcG7iF7wxWEQJu+LQ9K8vLt9kx2XzpmNbtiuvU9xDD07I0izZiVBZNRN3FKazdHMIL57bDxffW0BXajy82UjwCS/TnImXcNIDK1CaWory64pJe3IaLUn8RSq3KmjbzmBOfqaPRdf24oEdK2h81Hj4rv8IJ8xfyS51HZSpY4cTY9tYNmgY9dY44U4exbfFhbDtkzbkNP7Go+5WuN5tLYo1n8WppzvgzsQqFlW3giSJZtpvYcJTF6tC0ajHeFJlAfrME8H9Ts9BP+wzVTqH851oLbp3ygV+rNGDwPnKsMuwlWxTbVnYcxqtcormY5PkMei2OW9acQc7lAspbUUui9tLQ7q7GXjKIK+bZgHGTxdBiJEYvVa5wsaP59Cxafn0bJoEaOrIwRH6wEEyhZw0eJfa497B8X1CaPD4IFT66ZPyt7U8PjINR8SIQ/lLKVq4yBveTjuH9+7eR787BpCc/wFNqxUw4FwHx265Ao2HpsKV50Eo7jQBR2/QxxPi5WQwPZ2m//EC+46VrFtRzssjfmCJNsHl2L1wORJJsGcnpuf0kfb5eRSzDsC97hceG2uOc98n0uckEVAdtILwzDrOqr3NR7QEcfb499AgspM7c9OhectJnpw2jUaaW8HLhKP46MscDik1gm2/qnlWfieOurAJ1uV/xpalSfjbYyRb14iB2rMqVI/Lh4oLI6ij0B/p3Xia9xTo9Nn/MM+oGhT+W0I2y8xhcXYd2W6149CpRjRu2RmQ1XJBY+WL4D03kI0WCGOD1CHYt00bmn+Xwu+zslSo2wAndqmgWv0bat7kQ6NUx4B75RasmbIct88GkKlYzBF9jaC16DZMtdCCwGuDdMZaj/GmGr5W3gv78q6g/3kRUK6cyY5z1Pmd5zOoebqXX0TG03WX02xEW3HPqThYdHkEr9eZBBtnZlON9U8qWugGPzWT4c1JKbw9ciPVuyhBhNEokJUXY56iDnP0Z/Fp1x7qcjAiq5G6HFz8CTaDARQJV9GZ46fJ+Y0AsZEkiMfGwy19gujg+1CenALeJrb0fkwR3PpiRMMPR8Cd9oWYMWAO8dG9uBOyaM7JTP56ah+VicRyqr47T37ziD5cLwLzs5WQXcSgZlfNchl5FDPNhOL0nTAmxB3aMmZyfegjTh2hyenWNaRoagZWG2xAffQwySRdpEuhoXi2dCVrPB1Nq2eGUuXVhXBY9ir9M58IEY9vs8mN+/T7YiAv6ZiJbmMrKSluPOgKf+T59ypwwqOdBLMtYJqlP/6a+5zv1E7m9f+9YcFnieBW7oS7ShZQ3bUlrH1vDRbcN4Fdg1YgnFiJm1N0QSVyOlxc4sQBZ7+w29ffUFKjDII2rqiQqQcj7p3gDveH8H5hKT/6fRG2T90D/XtK6YLTBNxo6sUrS5rJ+RxDk1wRll27zKGPDlOXjCs5lbymM6dl8JjMFJwu0I1Kcbq4WM8MTHxNcdWD1TyQGkPqz31pzU/kKq+bkCvApLqgldYmluNDHS04sDIQbQ9U88Bmc/wxK5w6uhbR2VXjMMeyFW9c16Z3o+JAI0ELsgreUuVaP577opxTjjij2Es7eCluBzJLT9CZDbfYfsEyiL4rAot+hnLM2yoW6H1FnRGXeX5rNrw+Nxez/wSiWkoJddeMIZ9dEuCwZ4Bve7SQbsJ2fOf6gP47HIZHTLzp9vUdeEvmNQxa6LBxljl0KrnR5kua/KPVACpcb3HweWNu1M1Hgd1uKHbgC0xPU2KN3wAyBbWYdMMfN8VXwZMXGyB7nw+9PbSKD/a3UeRcH3ql8xlOfB8HGx83wz7BH6Cc3wN3TqhSWJIw+CiMIxN/Zdbf1ArV/6nDcQFp0J30Ba8nbqR48xj8NDEELNJu0qml91lXdBo8pWcYEmGHykW6IBC7GnIzrMAv2oy0r/fTXusVMHVVPEZdOUunjrmi4ixBEHquCLG9OjT+0E34VPadytaeZP/lMVA/rIIJGwBFNX5ilc8cVOkbAfVLNnG88DNo4B98/4s0Vpn44rCHBrj2R+OGkAruWUo08a8prEpUwEmRZTRKaBQe9guEd+ltJCHdSnEimnT7zmnu3lWOYvOkYa9VKEnMSCHRwy/x1KwMnuA7HzUXS9JLk824wU6c9x29BObaEyFzy0LsdSlFDec8jtyXi5ouMymbv/HZsDXUdqEAIitaYfdJaTAYfwa7gpmOqQmxr78gSsY3UKvUZdz4Uw52euXxkn8d3PLCHM4Xl3JggAqtfuyDYtNHk29JHFmlS/CasfPp55fl7H5IBRxPM5RPv4cORgK0KmY037cMh6MPTuCveT/56M01pAC9KHXTiGfaSoOyxnl86HAez1e5wkodZYxbP5vD+RQ/zHtPaZaupBC1CwRdlEB04hqcm7kVzzcvpCMRT+iTpBQKSTpjqONsnC6fjJEPQsj6tQrIqf/FIYGlOBA8AzXej4bfLvWkmboGPi07RIHFN2hyYCW/lUc42eTN/XZyMFv2H+it/kMLDomR5KF/+HjoHbvNPE9qguLYZWgGPWqxqLXUCHZ2eLNv5hSsn5mNHcFx9NPfiVdJfcNtf56A9Tt9CBQ/jtv9V9C3+WIMjxTpVE0m6ipdpjt1N1B7TiCl+maz1gstuG4iRadUotjiayd93F7Btr6e0PSmETpKn7Gg9B/Q23kH/X4bQ6GfFmpKGKBDeQV5/E7DSX91yGbaez7x0A+nNlmzcbk9NoUDzLDIpuGQ8TDnljTF2Wzilt5zJJMixfciEqj+5j72ahvmwz4CICA3DlddKCbxtdVokh8B6nN+wpfYIBQ+/RcPP7ThrzuNSeqfEEhmzsDBvpGw9e5XTDzWyyk9n7AzYw6GmYlBe88jkj08m+736YFroBLVzXqNHyTfsc3D4xQ5/ikuSdsDLiZyXFR/GtxbgNpPj4e7w78wYrc139EQpKxvfZjzvRcUv5lSWU4dLpt2CxpMp0Otqxp06b7DRNm9YLFCAj9qtOCZud5g/OUDX1PQgwPHTOi4QREct1WHOQNWXPnPhpqFUrl5oxG3fE2DCackaJ6CPx29sgGerP+AVlPlYNnzlyiTsYZ0RzdB35FxVPR+Kk6bU4/j1+8gW/dEcOp+T38VReCf0UzwMBrLdX3t0BHTRkeGfUH79kK6V6LHS43tYKflDW7dJwD5eW/ojdooWKNujUtGP+M/VfkYJKbITq/2wmivHJT41QUGsgDtwZMZx4yH6XunokzBU+7tHUTLcYtJ5d4w51l+gZeB/zD0ig78S0/G/QFXyHvkflDerUU5zk8g5m0PaJ7rgCwPxJHeAXxqxFhorbwBCqs+gkWFCz/abc0zuzNZLqOD57cyq4uoYbieKLr5ToSk5F/4xfcfO83z4+sZxXzvsCOcW/2XFizPY0fh8/RWMZQflwlCpLwRr3s0HarnOdKREjmI/vGPtcTX8tpMO+ia30Ov6A2o3pWEC9W3qduin0Nn38BCq3JMPzQWDoWZ0mupTpIJjAA1rTlwat9oiG3rByOFMLx5sh0X6+hQUec0OF6dTBf8CnikUzsNHNXh9eajofSQDvwd20pXgwS5zW0qvk7I5R2iQihnthUNjI7ym/oL8J/1aCjyXAWHw63RcP8c8lS7R+OT+0hEIAtGORSw8DcvDPdNRcM7ZiD31Boe3D3GZuM+k2WHN6mb+tPOYjt8JtaBNYde4JjZ3znzPx0IE30J/jciOH3hOhKN2w8S8Q086sg5zq/swoseJ2hJVheuaVcC95SD8DPUDlf4SmGn92y8bJNDx/OGWFLcld95D3Ps52ZcmCQGyzcHYuEYE1pf6wjusmag+J8iS123xHez06l2/2a6srgJeyMAvD+NxvSblmSR0snRVw5wz/trvPt4G577/oDLPKSpavZJUjw4Bpz2zGTX2jSuX+jEeR7zKctQjEp9+zC4IxO1Vxfy4Z+ObKkkAlNcjWD0nzWQMZdIPUoej8pchjMGUlS8agtaRfri9EAAQUVD2JqYBL3Nj+iP1zXa3lgEMpuv8OLnobDyzAJclnoZs9b00t5jYiDlfwRMHlmQx9Ze3DO4hO5oNMA3ix5MG/MOxg9MAd23d7DC2xoOeC0Ax49n8exrhGNXDXnF8Aw0ve+E/Yof6cnKl+zwZx3Iq6vCy1cekBuaA//m/YJpPa4sLimL471n870VuSxXfBXvB8zl/EdCoDpem2om+GH9tAL+7+5E9qkMA9Hrwqx9Yy1kz2mH/46ncrHIdAhrek3dH23x94bH+Gi3H2uGd9P2vAFWWUG437sFOq3/kFUiw1XrAk5USKQ4PIhJNxCTwv7wYLYB1k6xparnB/C8tTrFfNaFy2mC8OrbYXoi2o2vjNQ4LKCQm1/vY2nDm7z61WmMRlP4uNIMuFeTzZ8eIDFlT3zqEQiVv35S8JOvKOuUR7udfvD2/+RhoGQqSGn/hj3Vp2lUTzMV8S/4eTiM/EZYQ7PGHt7c5QKOYdko+xogfYc6V8QDLjjhR6brv9Linx9QIWcF/LhxA293H4c9z2ooqFoCfv2NRp8XZ+nm/BPo9rcAJ1XEc1j0ILg1qMAM0wYaY7EV5s1DUB27CY3FyqHjxyX881YU/rnMQnmvP6DucZPix+RA2fBMHvqoA0mZHVw83AnLbX7gifsHQG1eAUfCQq6pyMclhedw1PTF+GCVODxoXc/fb3gBm6ixb8VXSNonB6ljjcnp2VWo32sM0uCDjiLjYPGZfvhq/RjdX5XgkIkB0M8T9GXDIdq3/jeJbNBkHpdI631U4PDvHlqWU8ie4jPAr0OTWGw3325UoUcjXtKeGf/hjp2mbPNMGQznhUOGrTYYlLbidmNRypizEAveTuU7QjdJVeo4Hl8gS8+szeHB+Kdw7XYfpZRHgrCbHLuNXw6Kgkv4cuZ5+KjXxtlz97GX4ygY6+5Bza75HA7TuXKHHFeP0qW+kp8QKDMVdvm/Bd2ea5SrKQddDyxo4PEHXPC0HQW+WMO2VmfueOdOyeciWNxcmO1e70ODLgl4GG7M/Rc1+HnUdSrUrKb5B//ggWJddjsjCAHv7cCgzwd3fBWF+AMqPOrhIwjyqKelMu0wNW4idqpYYMDbY3hk2TZ6su8PCAbJQ7BsCfsfWoTjH27l4lo7bt1oBTMaqiHfZTynRX8EpTnjyN9jOkwueskfd23GEVp3oNw0kdUXvqSoHwOceSOT3CKPw6Efanj7pDTEVhTR6GJHGO3cCOsdU/n5FBsKCbqImh9V4ZtxJDo96wKrDePg/iYnSGLggDxTfrGjCchuLskGG2ByykQ8usKL7WU8SThXE5YqicDEmVrk+FKP1w464cEXpzD6wxxoLvuEDQ6qkLxgCVxNEoKyr9cxUO4hT1D04nILOV4mM4cHloXA4I4cfKu5HDobTCGvWgfsjq+m/8booseiAa652gQJ25M5XXYzvJwqgcfXEfllEzkNq8Djd+dZz9KNXBy84MMYDQ4RfAVzyY3Kynv4XqkfrBd5A993EsTpCFL/jQ8oOdsLZcr3wfuABL5foA+XnBTpwZAu6Nw+woMN4lAlfIev0T3cXv8XPJocIalcEu4ui+UMt81orPiTBEd5gUqSKezX1WTZc1vhTsBezjLfyZnjV+Ji8YM091QROputgzlHd3Kv3ERYFC/FtRfmUZznDdC4egMXsDf/cxDg7Dm99G2wCJae9+PXWRPAU98BzqxmVPS8xZliI1kheSL5TMjCgy/84aLSNjK9eYuXt04AhZpwPDv6I1qsVeYtz3Jh0+clGBx4jW0S3VEs3J3/lK/BqFoBWLzyAFpM7WKthXq8JKKLhbw304REBWw4Fcj33ujwdyUVzBg9Eh4GalLyjk4Kyynjk1bxILvGA9wltOhZgTSm+szmzaqD5PFLDj7E74L9R30xIOQOyJno0fgn4nRAo4MicsazqkgWfsvLptmZqjAj+Tpd7tGhJy82kOunSGo47kWjI9pgp8AReNVfQP/mLUCF8QDbbQeo+oQsHFowmrxDD2Gi0is+p1pCE8/44hMZNexOdOLnk6VATHccKYxOJBuPKoblxXRnQzkJ3BKm6MPXsVxgPq05/Jf9xEfCiidVHFdVTWZ2nlTzRJ46bvXR2/fvyP7QFhLqn4xj1vXR3VKEZQFm8KC9FyqD5QC+9tG6RndWvrwFm+bZYbH/fNy1vZp7BCdBTFg7e4QEQa+KMzTs12HdhdPxWaE+jzH5i/a1y8ApqBHNw0Xh4plSyNlrw9qyLayuUQvVY0LQfdJ0cHWoJvcD0ezy2QYtnUUhVX05JrvnwxzR+WyRtQ+tFybSxdY79DFOnx5lvybzrCMQslEOFlklET9ZSo+Mg2jG1nP4ZXMDXHl+jo+oR0PeyCMs8W8xelyYAG3rh/DXKzHwPPcEXqsPYHXdMfA49w/7UYdSbnpAjFcUT3O2BH8TLZLYXAQ7slNwr/8r+hZgBJkvhyg+dCd2DjdDk+sGrhmUBbeCM9zRawKx57+AQ40mu+3qZI2AW2S3VYXWBfjRLksrSPkwAs7vTaYNfS/xdFoc6y+/wjGCu6lBoJq0Ewdp3AwD8k17zfN0jUAxDODYvgK0e/OSSgZ2QavgD/Su3MHiNs0kPHUWbn//CVsHNKDZvIKOzQhFhRl/4XZrGeh86aWjqwPQOs6AIU2PC/bk0ObRenDL7xOf3XaRDf+YwRenO7C1dZDHhDO/0ukn5QMtdCfiHUKmKKxbfIfu7JWCJiNHjE/QwQ25q7F2pizFi+jyCt9K1jO4h8mVJqDvWMsphUG8ZPIvwhXj+PDCJ3TY9Qr6rbrOsdHFULrHFs0lAV6Ui1N+tDv42hThQYkmXLFCGzffDEPel0Ig8JUqH4bw2j5RqAhKxZN7JKhBNgq/LptPFye4UKf3czKb6obXOjtxefBdKn+tAAfD3qJzlyqGtoqTXdU7fuKnR0em72XXmWPRRTUMZQbnQEKuFOzePYGcN0dA7dTZ2HlTlrJuuGPFuItQp+UEOq+mgPWUIu6M0oMDMevB7ucNzo8IhK9BVtS1Lhef7etm86pZgFvzcP2nYio/qw4PqwZph9FjvpxpRN3Bo/ip509cnB4LnVa36bZHLGsEzUYrNTEQqPCBL/fH0kQ5M9wwt4HnVa2E9Ra1YHl0M01/+Q5zr3/H9FWmcNMsA41WX0SrriU4RjadVWx+0s88DQ4ZnQPHZl/FRROWU6yyBGToxRC+joDYfn108RailzqmYPhKDm5mN9MevaMs+NsehsYowoFsM57Ruw2Kgnp4nfIVMJWdyeM8rrJ4sjYmSurgi1t/aUyUDHwd+YAt0hJxvYMMt31YjAdkbfiy/AB7mjykVXNnU/bVJij+oQI9cwhmnX5KEr2XWAnTaHh6Dz3oHMvvhedTdOJTWi4eCqPfysLayp2sc8GSD2/dQM8fCbFeewHVW73DHTVBJOExkwRV+nnvoAGoScSwrtsy0Dq1ERL6Q8lsuSLNM3Dk1Gu7KaujntxyCvjCdFn4t0mJZEpfYHtuFEhXfoM+KwGsrlDBIXdRSm7fzw01ljCrmWBirDUsHPaBtip3WBRmCIofP0Gg93hc8voL3Bvwhj9SW/jA3zFg/BcwxCKKdm0YhaIGNyCpPpVytDdRk4cznwq7BusDo/BjyWQYdP8Ap4wmUk+IGH9dqs/t9/6Sh1A5erhf5NyFAtxobAzX5hHsMCxEIb0SmFa5hONdvEDz4gkqdT4MDiprMNVeH04vWYgxwdawpSwI6aMOB17UhDbNNLa8uBM+HPuJT0NG4H+JO1lxeg675E+B+Xt/oItFHabUBeOG62Phu+1vLtiYBY7Zeym/JhpLthnA0jujobGgGcd/lYStM3WhoHUetR56S5tiDmDA517++juVk6c4sW+pLpDsMVp9359iT76E/mVOVBZeQS21xzHl0n4S+uSJ9vO/8/EABejcsw9rLgzxMh0t8Fq/jl4oyHPl/lc8DDmotT2aZtaasuwEMXC1+wWGzeU42SKehDTXsH3qCW4Omczc8w5FskVw8d0Oan4zFv7jEhY3ywTv56VwXus8Sen+oZ9je2H8cy/U9BOAd3cqqPS9FjyJUqDulBrICxXltzcMsTLKDrvtguHb73DYcmYEbBX8g+YLtSD30lX8b7kxdQ9J41HdcJwmmMjtW0aDt2AbXxmcwg/2eLB5lh4YnMmjq017WVwhCkIPefJm/kmzxZdDwUM1vrrTgSdGhNIcO0NotKxHiSolkGm+C2dmTcXifd4YJWrJUbFzQb4znVLWjOfCE1NBsmEBidvpUddPVbSdG8nGB/dwtOdVqDsZgddPfgKb97N5grUcpPq4s7nnNa4aS9DkIELfb1+DmMvdtH3kUpqpo0ms8Zbl14vAPMHXaGouhmWHTkPhkq/kOvwaa7J04JbdBRCOrOfWLfHkVKoAk+YTK7mUob/JDIx4fhCzpz3ioXMGrNYXTWfdJ1Jvw0iQt1cEt89HMUqKSVX5Ic38Y8b2r9fi3W/+fPSzAu50v47VwuGwsEIRWj5Hgtl6hGcPT+LLtTp8W8+Ka0WuU3tgId+9WYF++VE0x0sQpBvuYcWKMOiY4gGunpepcsMPVLR6iVrholTYbE8JsSdga6QY2EyxwSKLVfztcDy3yMyiHwUOZPG6DmOTN/CuyCKaKuzFAgtkYJGCI2bN+kJ7lguR4uutNPNxHl+Jmo4nF5+jGb43SS/6M/87bwESexbA2Jwm+D3UDna6ApRwuBofr13HiQW72OTmHxRzfMARc2Rgi9wdirdJR8H+Nnr3diMMZ6fB8p9vMNprPt7tdsalKbcpNtoELszcSAknpPjLSjm+MEmHZ6cZgWreAJ7d3chxi+No0lkX/GCuBXoH02jXEgWYdSwcFzzcwFeW6sN75WW0zm0xNBzfzVsFXtErUTVQeNrOYZZ1GGyoj3faRWh28RGWrvnNxpMP0OMjv3idgx6pxYlCyr1AaJobTO0LhYDi0+BQ9DR6NeUxaj2eBjuSpbHr8yL+ZqUCQRnemPxiAqnMLqYyh2FMM7XFfdfNUE6wAyu+TILPCd+gVE0B4uvn0TtPSSx8oAL3D57ljS5VPGPCatr75yQrvRomOdUCDAyRBzXbnSjI+8FV6CBZ75+HbfcecX9ZDx2zTMSvrl54+VUXCMZIwu28u/BwIACGZQZ48bkoHm4LwHt7JlJ3SAduzCnkwJUS+ERbD2LUDPjY5G9wt6qTco2e0hXHA3z0aCvczPpHialZZHXhC+i5KUOl1nuaf3Y6u+cHkHlZKkRMN0DHHGGGFf5UJ5eHsaPmYcBuUzDbcQjLP0vwvGorahnhzbvTRfAJbsSYWZLYsGEC9+UuxGBJBfg7eSXVeprhrrDpeO+MEaQraLCF/D6oaVuJ914psIcjo/R1HXgzzgh+Gavx+NTtJJ9jzkfa3Pi3cTmfrv/Kv5zjcVnaEzD+bQAW89+gu5sy9SVfg2slunzXj/BhiRrL9JrC4KzzXPRyAjnr6oLM9Ulks6eSTs/tQH+pfoqeogzv5I15YJMPy/iNxG8Zh/heuSz8eSWLNp3/0UX7hfxltTkOHYrljq1NVBJ4knemDeLfkFnoc5ug4noX7cq1J7X+TzhgfpxE3AfAXfIDNttWgsSrpzzQkouZSyUhPzSJuxIjScfqBL7ZYMYX5fR4//QFoFyuxymHiDYnjKLvB3RgXMVD+lk4lyycGvnRc0vYZnkKvyXuYvsUcVqoo4HZ6uLcMoTQ4z2FFmW1QMlPPzyc+ZzDKk1AsHonqnTloG3NC5p9Mwz3XxSE2GujQM93J51DU/i1JxPELoWiam4dT7T/RwdH3YNrOe/okZApzO78xpHR4bBhpT0KVm5lo+qrMLQ7mAy+ZdCH3Qfo9pvj0LBDAK5NqaNRD79CxFUl+txdyZc9VFHl0XN8ttKX5wzG4ayNObByljLcWvIdrLQz6WxYNTsrz8I83fssY+FByyyegO+uCmryjaC0LAMouJSB5rPiIOedI/fN242O7uXUNl+etbWice2SRjgYYgtUTpD6KYHg6wz22DuRLepKeNtOIdIt/subv26h62ZV0BucwS5D42GFsw0/PLsMhOf/onlWqZiWeIf1RhCJduth5thusPrWS91WwjBn5h/Y3RPOy/qK2FKUWeb3HvrQvo4W2OnjhcZUTpdawqbrdSFocBV3lX3mjMDD0H/oAqidWQMlGd24Z8ZS7Dp4EJ2+vaBFPwRAyeYYvI97BZp/R/LbuYKw1UYU1qZqUaVtLZi9eoQ7V40Glz2i8OGTKQUs6qbVKaNwzY1I2Ny/HSe432W5Z7WAHgN8OiEBLVEdwtotoD1/Jdt0VvGML+L8vSuJp+/7C49fLqCcyAgoO3oEX9lpQN/GVlowKQCcr+0BN9WDZGo/DsVv2rPE1gSK0g5AV/U9EPtzImiVllLqNxn+GTqTzp21orOb0/jaPVkqeWFPgnL+dGmwgkLER8LiEnkSfTsRrtoNodoRI3j3foCeOPjAyEpl6lRTo02/K8ny2BSIWd1Gp4+c5tXtJ/HcKQ+edO8rCYgl0HoaYk316ywV0whx0xXB4PhcHiv1l27oHIO2F5bs9KWKJyU0gG3VGdx2TYs6xq6g5eMtIX9VKFnHifEUsTCIunAcZ65+RV+dw3lNeBDxph4oveKJnj/1YPpBQ4q9JMU/HQoZg69gQP0U3P7UAhbp3gZBAXl6et8b0wangN+FctLctQ8thd/wI+lTOEv1JN8z/U4Xo83xcOU0XEHq1NejCkuuzON6qb/Y3NtEdtZH2WVuMS+pc+RkmToeePuEBXzHwPu/ynAzfhwdfy0A1fKTsTxOgPIs9NnfZAD8t2nT8ivK3PjEhxbPF4B/x0/Ans+JVL6lDOcsU8JvO3PpYNhTsN4az97e8/lGvAQoBhuDqrsTnvpwmeeqTuLoJA38e3w7Lij6RYvqJcCvWIHPtE/EiyKToefiNNR0E6A/2cJ8+IAW77iiwzPPrMU4Z1eYsjmcjXIDcMHdsaBeTXQ0247M+6PoyaTLaNjuSJ/tZCGyoxBK1yyG0hXTqfj0dFDSrQBLD3HyPW5Eho4JaJg+jqsHpnJW9W5ccHknFD37wX6/x8OXiNHsmS8POm2zeevG/9AzNBiVs26BsWUikI8jXRTwJZv8SRD6Nx8eG4lw1p0E3unwjv5K6VOPUzt+6L3DDnUR6BkqAJt0VUH3tzXWeqzhsldrKO1sEMtXAb6pd4cD1ipQN2AE2dccodtSCaq6TmNjXzg+7c3nHw4hYNzTgauqn+DG23n0Vm4VJPRPxpybJpBqhZQvbAl1Wzzh3ME+miDlxM+/D9LYSIToRRFUkbYPBCzMYPyJ+/B1wz9w1vvGuhZJqH3zPK3aRiB36xhsCzej2adb6MoqaxhYaIaii3vpj/9egE06oDGgT5bX2tBs11Je0LaBj+e6w45AK5DrzmalEnfyWjuWfcd5YapKAi+PckCrUe/Ab089Stks4FIJSbi76zzLmQ9jkMEnhmpdGjDPBNJxo671Jfxvfg5ljAjmW39HQFzyNoAzYzF1iwPY1LTDloBSHlo3Fwy/1ZD0r7+4vNiehgoB1Mpb6GmLP3VMDsRYi5Ns82sX9YZbse9oNfLfcAEE2h7xlpvGAD4faWnWPFArv816alFwY6Yq5r0+TbQyhZ+rFuLJW+E0ECMKAWq1cFD4GeQaukBjlREs19QBP5UOrh7WZt8Mddqp74qPro8G/nML59pJ4Pnrnnzv8HcaYzqJnymPpXMTtrHss7ksJJDGk3xHwTSbSNLJjoXzpYYYnf0DP2t+JJ3hUJxx8DWvdAmHhN3/4Zt2Bo2DfiTVfJm2J0Zxv6cGfIwS45XxWYRKpmz/pwfEC3JZTUkOZu5vpMej1hFeKKZ5M17CyqwDqF96CJuj8tG5/wO7OQRxwZaRIPj3DwRI2ENI0xRo9RLj7DJb+BpQD+ce7cCvWzTx38lcuuIqCRlPT/FTr3044/JHKhyUph1rpkP6szlw/rws298ZoFicQ1EPhKH+xVaYkl5IayoOcEpyPlaW/cYxVQKkYyTNd1864LHNvRh5UBwqVvlCsJshNxl8x+rbHXCrbxjGlhRTvQvj4KNTuPHJK7baNQmmJgWhuNsAtdzV4aGMJRhTfpvnQQDm+N8i5Y9poG9xB5oOm0B4Qz9mm1rSGVshMq3fQkcKDNnWSQfktb5R2vAGKLFbRY8F5UAn8RRNvj4PjjzeSuOuZ4BvZw5EzDoOUac+gbN6OPg1lJK9iBooeqvz1N6ZWFF9CPvX+HL7KnVePksRel+eZy5cwpZ1N/G6owXcvT0aj9leQbHgJsyzcKCkXf/o8eJ4eJgrD4UpD1HmeQ7/EgDYf/ESLfsqy/aYAFN9XtCp/EYuzt2Hr0TMqdR3Lb3saYJXOYpwsKgUL9y/SgM3XdA7Uhi+HFHiVtlD7CBTgh0b9XHCsqec26IBniVIwkX7cblPNuYX6+J143bIW/GARIsfwXm9SC5dXkqCruIQJh0HEhf+ksF/gzDz+hFIuGcN5Z3ZeC1sLnxOGQNGz/RRboIl3BkW4aItCvQlNQo8XnmzwwgxSHk8HT3NcuHhuHFkuvc8ROUJwY4TxWBuVUXSSqfB+fQ5UB1XBHEZJSD9V4L8freyyuuv1F0jDT0zr6B3RAxKryhGaRlN0Fl9Ei/kTsZ7i3R5v1AgG+q6kIOlADg/nQhJid28M8cX3wwFw+/bO0HTIIzVD+lTksVe0Nx3EspkDMFnXRq3jL7E1rLfMOSODiXPGoVqbx8w+TvQ0/vn8MSqRnoiPAKS35rB9z8XQfx4BF823E+btllifu4W/PZuPi9tvcXuGurcfmY6XHhqjc79XoRXTsD8aYUQnmuAzg1LcNKRl/iiowcsN8bxrk45KMjdzIGzbPmHzhu8OsgccJs46MxXFNMQYd2q3WDzyJoWDcvCjLs/6dVcY1r5awCrTbopwakU9U/+4tGlC2F3TCQZztDGJsNJsOyEDip4zIa/U2bTofUILT+2wNymYvi8sI7yJhxHi9VJGKosAitNx/LsFwrgWZIEIxtuUoR9KKwd/IpJM5twZYcMmHlchuuTzeHstZP02dcArz8Q4s9inbjTfglKKwaTfs1iNMnWIkGhCfTE2ASO/FNi3PwMFB9NgN7adF6TbADCQ1nwrsYd9oScJsPKKMzsEAWx5M8wNrETzbVvgbrwR3pe18WdCx7jgWX7KOCRIzz6p0OXa8VgtdpVmP9Djw8d9mERQzPY+2Ebf8s7xjvm+4Bt5FG6JqZIffLKMEV/BGbN3oCmH3+ShPkb6r6hxFXzRkLF7zPY2hJHKDqJ5M9NhK4Rc8D9yhAM74tETL/Ppxs8cH6qI7p7COHUD+c5Z+9mit8rD3jcANzkb/Cb0Ea8m14ErwvXoLX6XqiN3ERyZstA3lkS1x6xhKMTL8Jfo7tkvqgAeWI9dumvo4H5b+m07gssi/ehJa/cYOFyYwi9cwAqLExBwWMcqohVcOuex1j1YZg2aY2l6FnO8M98OX+6qwFeL2v5sFwtdXquxpUzTDglai7aftcH2++OuEKmlo8fLsJzE5WhtOsplHtO4mWugKkyh3CMuT2OOdKOj0d5o2ipCZ25OobF5abC1eHd3JD1GaYXbIUnRkfwwRglvBksSX0Db7jJsA4uvn4Idr8nwf7cIk6vtcQ1hp6kUDaRWh7as+D3RbxxWJ2jpwujyKx0Wq6uBsZPhOhjtAv+3ezAc1Y2oKu6OpV3XgdJ1SbKbu6mESUxMGQsCmNsYqh6zDeYeq6D4kYFQ5tXLwSOKUT1a1a01+Ecp1R9wCn3BGG7wUN42ZdIn5+/pb7XGbDbfyufzV2Coe9b8fryG/wlogN235WF6z9n8f0QgnTVC8Cn7XFutTbKxhbju7tvabbXfC5WYEoKkwHhmWYgnuOISwu2855IHxIduAKaSdqsnnqYXTa6UWjqPgzQ1oBfEjpQ+zWbdrr4QMxdL1puWInaEV20bI4x582+CWuXbaMpvWIwvqIaN22XxuGIbNyaIoexZaPgv7nDqHlKAdP/DaHtkxnU0zAJbLR68RXNp3UL8vGTbQjeqzxAwV6pvM7gCDX8HuQNzYlsddgUggdb+JD/TtrUl47X/h0m8SEheu/4nHUkV+DueRqUHj0aztwbB64zWjl48hMSXX6HRw4r41j71+BXdBUdmhRZ6bEuh5ZkoWOzMARkWqJs5gR2T1nMTvXt+CNDnMUNTPCETgecXiwDPFudp3ebQ51DMdYePwPXkj2x6bUU7bawZ/8/ypS9OoFloI5b0h5D2VNpOOZ5h2Ui3nB/ug+0Otxmg029nGj7kZSPjoQ/lrN45Py7jHZSUBX7hXN2aND3pQupIT2M7nu6wSqvS7xh81usMf/IBoMH4PYYIegN302x0l2QWdYGr6UE6It0NLlJifFmjzekMFjCt56egmkSoyHjz3WSmWmMg7bFZP99Js0qeojCLUoY7rgdXBK72Ko5D+1TFGHoziM22P2TBn4o4QmTjzR19xmSNFpLjt+2Q7LyG2ov1OIAcTH4/sYLFT2fs3aSJ5w/qExneo5x8t6X4Nc+Enz7ovFOXzKdyhWG64uCoOfQY6rqsOBynWAWOnuYTpxJ5qLmbjz20ITXucrDuznjIKD3Erdc1mF7nxBMzmhgwcW/SMK+htedrqH6u5Wc/HMxbRYjmJavSquNsynvsQbo7HhM6pPLQdHwMjw8uB6fJ6SQrOMD2hAnCvUheeD/ewt551hC2ZMR2LwymT86HOYsrzUsMuoSVfck8nZtaVjheJV3XX4C0WUjcfsTNf4UlMbyDfl4P0acW1K2QVcY4weaAu6CgRhW8gm0jmriUIkCbloaDUKf1oCYWgFNDcmAcS23OMHHEi63a2PQi2W8aLQV1Pk1onakPWb7d1Nu7CNcfPswZ0vaEwSOgkubPmCG8w/IaJkCK18cRYG9e7k26AWl9uRBTUIJThWP58Sno+Bz80da5/GQs7bOonEbWjGtoYqj3WfA5TOz8ECJKU6eY0/jMpXBUOsH7NhugJKl7eSiHgjbL1SBhfYYaP02AdcfzwDnFS5kdU0X9F8dxHjvbBDJD4Ovx55iW38txdcuAIeuQCx3zoLXn0L40LZxoPlGHW2mLMNNL715q4skCB3X5dD7n6Ev4R8o77yKSy4SV+ZZwVwZQY6IK+Q3UjUoJT+ButKMed0uBWqar423d9+Cqsqb8FGUId1AFXbtmEOVnrcwcKQVLVIs4ymJK/neWW+ULFoJ7Z92cUKkCmxUVSXjafK49dBbPo92mJK4Fs7uWYbXC4S5xsuKvPRCIC1TBh5OGovWssm0VjSFlPPXwpU7QRSwWwXnlUmx8sTZ9KhkiIbum0Bm1QKwWyPP4t1hsOm7Hn8qeoDpfYZY+ukii6tGwcv2bvooZAwnNobww9kfWe+4IF+cGMPWkWdJSS0Fn+Ulw81CL355eD/bSQC8bwqhsOqJ8PdJCtzwk4AD3ofYbGABGbup0tEjMfRNqQO+BUvCqiVPaaZBLcXaD0FHUAM0nfmGBhs2g6jXLHz7eALpx86kXW1CcG59AQklX+QM6TXsKT0P7rcWsFt4OipnTKBp/apU65eCER4ScDMpBoKez6UyuRk8vSYeKiu/YdrwGeh3/cET4rfwmwoDnLZfBPwNXpChZiNdf7mUtoXEcd+DIdrn74+KRw6imPRxBtlwFmmwhsEZv8jRRR/qpqRTaXM/tr+OxpSp4nhntzupV87CmYJL4NpzBZDMtuHR93Uxo+gsqBk0w6aqFhKaGAzVQSVkGpJCPicXwYIbQqCitwNvmqnSj1EDKO+kg9/FCC49O8E1aYbU+8aBdS+mwsvGEVDi0QRvojLoZNpe0FcQ4WyvT9DU/Ii3L/oOAnaPwS1TBYbkR4LfjedwXe0v7C1+Q88SvWD0CX+ccmIrXZbdgN1NW2jMlhdc6mMFJ8e5g9ilYdJOCIbRq5VwQnsbhvmvgmMGiXTOKJC6bbOQIlVgQfwS2BFrDa2zk1G6UQfUF5/jFWLzIb88GZWK2uHoKKI1YeMh3qCWSha7QSYEU9XXJVS78iHWeodyveV8mLhWFczeZsCfCZYgdK2OvX6EYXr4eIjq30tXj32Hg7dNSeZtJMkpW9PhHy9g5b8RkLD1J43boQ7DexVI4HgKdzjbc1HJMpj32wltz1Tyl4uCEJ4zFibZDFG+/j4OK3sG+zy2UXGmDM5LfQiu2Qv4vd0a0gqXwzdZarB/pABar5ekmqOZ/NVdlBoC40BymhC/XzyFN2tfozUiF2D0RVmY8cSTpzU00uy4cLTdmY9O9pUUf3cl197rho8VqrDI+QJvcraALSGXUHd1KopQI6YXevM8pw5sXmuCu5vi+b+5gbj/SyzjJmuQ+H2fneS06UHnStrxUREqdf3Isjqc5As2YM5OTXjw5D++OEsAzlj8xc0Tu6lxyWJctDcbNl1YilZjnnFYdzZmXAmkfIkm3puqCPJZr9mv34b08tMhqLmI8o0TaH/AJBA1VYHKKiOetfs8mmeNh6n9b3GvXB3ueFEH6XLlNNpVGxQOr6Pcvkc0c7Im/0pTJoujoqBxZB9e1z2GU9VOQabjNn5f/4ZNrOz4WsJ42nhmNx6594QcbRnC9DbxS2Mbqt2+lkT2+tBC/b1w8J8nfT/lSK2ZF8By9gjYUiEFa5ybyCB4LZ3wDmHTj8U0S1SPZso5UufJSfA/cfe5D4TjLwD4O6SIzOyIKFtWdihRiYpfGSVKhUIlJUU0SVZKaYqoFEp2hYikIUqElkpDVNLWOJ9zFf+reF4+12cVQNz8erZPUYJ873Jy0JWE7TOf4ZthLX42x4GFV62AGVtn4Y3xQVjb780eK+Vh3IX16DJ5GPaVyuGSPcOwLVkIt42t449SodyzJo2bb1lRSLgyHG8m+DbrHGUXWILdUneOFyY603KMsxTvs0L7dTb6rY7H9BkOagTjrNmu0CIxAYuO/KD3heGQ/iGJQuNGsmLTLbqcZIqJ3aqgG2LGYq51GD5sSC2Pc/lcQSYpTh/FJoOBcObIWXY8mckLBCwhWlseWvq+8d6rVTz1lCGvP/Kd7c5d4Z47BZxpdBDk1Obi605l8JOwR9MQdzTX02dvIRVKTDWAmrYMsmloRai8SRV2O9BJVRPGnOmDxLH70A30+aq5A4K/I6Y6+6FcZi8duDQZ7jgeg+WPFGBF3lt0i/hCT9VukZX0KlKIVcYz76/gvGOCPKs8HYJ229GmQSMQyZ3LbrcUYJv7QvBTzOS1I/rYZUI9Px+nR/PbmkBqqI6HboyFS17RnDH+Fusu3cecog7ftk7AbTcdadjhHj455ASGf0+T3DR1UA9+iblW96hjuzd0za+nty/U+N3Y1fxmry6dzY+CmxGnsLAEwMwjGuw3C7LQjRaO/HAFigpvskPNanL1/Q8OBNfSq9A99HqHOeR/0wc1xSjQF16GbkGr0XziOB6adArLJl+Annsq9DJagOqCrWFBch1VXRCh9qmSHKVfi9s/V/DXB8Jw8p81l8T4oK96HEybqwOrhxfT4thflJtyEu4KpcLmqJMYKCeDQ48Pwt+L09HL2xB6LEbDJUk5kOhwQ8rTwB0y2qw6p4nPNMjA/gFHTPtby0c2D3NgowmMstRgi3H36VFpML7I+Ed/7TLoanYS6a6dzn/2L8Tujcp4bL02ODY+hbyV+mhIG3B/mRL9+/Ceol4cxgrdenBWkAcb31Ru260KXz0Ow+PJ67le5xUsrG2mXosfuMllCi+yeUlRFuGcOkubx0YQPBu8z7o13fC8zIwn3P6B5ieUwU9yJ04pPMoSfTawxyqd78gaQPfzqSDbaMHu+R4sIjaTFt0WhLLz53Cf3A4YEC4Dg5p80j6lAZNcg/iGkAChoC3BSGEy6NtKdV/raPepBjQY7mCR/bVwZtIkcBjRTw4jjCFCMwAzDrzDJ6e3wPqDwXTnTyMeWXSW6v4l4cs3hrBT254rBs1QWb4AYjyJ1wWW88uff0hQXwEGlLvY6OtS0G4ygN8nw+Bschx0bRug9UXH+a14G8X/yqO5Xc8gx6uL4yd/wpegBTtWrwLhX8l0SLmWxOuycO8SEdS5no27c6xQbNVrLOleC64nLGCmTg19fGKOhww9YZy0Br8R7Ufxx3PgrGour2ncydZ/rbCtWQocIvTwfb0ljlKZQw+UgqAr2xIWF7UDrAyEbePFcJ9+MOrFAHzJj6DMyiF6eCEZHo+4xtLvx5KAiya0d1xFgVJGxdxCtARRUL8ZTMvnpsLYJ6Ow6d5SGJHoQd4pNvTcYjxo5P5muaevsd1ZHk5sE6bQ4OMkBarwR/guTllTiJ2Fx3Gi3wi8cvs0NIQ8pc+vtWF71F8KPbYR8HkajY4fwqD9s4GKFKg52RMCP7eR3JR63NU8BSZEKLKl2y2KevSKD97ZgS7rPtDxr7NA7b4FqIqP49bkZfTriRzY2tTh5hPK0HuiHnKKavDwzyu8+HslOaw+T4+36oBNQB7+qdCC/rNX8fn1GJzQqcBHviRC4ipDFnjojzN1dOj03wzIlizkb8WjQN/6A1rpD5Gq7jwoj5nKEkeise/MHlxeMp4maodx/vZEGB+lCvkm78B2TDAuLXrJn99l8NIjD/Cr+xC2X19KeYdPU9XEjaglZQN3C6ahp9s4fPRrCnY/7aDgcS/pZP8dtrqkCouSmniVbxa37hKE7fau0FAUxr6f7vI4gUkktrgOXMQ1QaJ3BLjc08Cb0mWwUkUDXl4Rw8ZZK3BX+F7wjTGEoxqF7P+nCrLOuOOl3lS6tu8lCTycAkdGGOCGYQt863gBZs3URp/wQKpTKsC7Uz2xaF00FMw+QN/nasGEzXUUTYa8VeQlyo0YgzVW9bjwjRvCuGReBT/51ioj/DTaDK7GhcBW9V0wvCqLVhoIo7FeKTp4Lsckz2/oubsYzbar0IMp4iB8OQv8Emtpjv87TJZTgHEx5lyyKRCc5FVpa6AX+b1yxp+OCEupCh6HhUD4P0v+elQVjBbsptwteyguLQJEb++ljO2qqHHdGLbdDuUjvROhKegtREybTVuTXbD9SRRqys9Hwdm7cW/HYZo6aAqOlyrxfNR1Hhr7A4ubXvLXpxrUqpnOOqvTYbbYCG6+PcC7qieBwpx69nCOh1PzpXFLVBTctVlBTlZidG75YTyep0IDWYEg80QXIuJ/4yR8SLMlHRCvO+OaGbNh+TZHDnD7g5KfhPjFuSUsWa8Dy775YnzoIqrI0mStO4X4+Pgh8P0+AWdHLeSMoz2QWiuNXy2V4MlgOx9/7A7r/Ctp6gUR/Dl0B09dEMS2QF/MixTi4UXJtCxRCUSeXuCtE4bg6lFFGv/cFsaXnIZT+ypIQEGT45OK4K9WNc4UVIXTmfkwEk9DpewHVLuejDqe/TR7+hCGRl2lvPP/cUjORTxhMgHuBT+FdxayHLMrC3uDLSDoRRvkTdvAe+eegrKCLFJbdhU+HFOFlkQGmrmbXZ+1w3BnPz3GTNYsW81i1rroObwJj82LRIkjBqClkU+nzINx7k972vB7AL/1u/Gi+b640Xg8lV92hlShRpihzxBc2wjDi+6TcLIueQ1b0c7zORSeH0/ieatwVM8qWDD8FFPtbSHYbCGaW3uT8eFG+JOzn8LT02HSsTbcsHUxHFGczzZKA7CjRAzkf6ymFzPOgKuuMnjduUxOb9azqUUnlhk3g/YSGfB4NxZC7yiDS605D08IhBWtbQznr+JN4zhoywil8Qnn2cqPwelRDUb0mIKL3ETc/UeCpj86S2+zKuhEYiVtPhNHvrP6WE+oA4qOR6Cp7URwLtfkEVph0HTnCYe3mJCCVxYWfTzNk9KWs2/tGnYcMRdk1HShestMWP5YGcYIK3LD++Mc724BeVe2oKzibIz76osdS/rh11lJsDrnzkfeScMDE3n8qbwNV3EDvHTsBO/yCrwhtZN/vENyktUE+Xm/qIV/s6fkU3qoacHCxZpcYmCJo/9KUvXgNMx5KAO3FwuC9cw9oFgrwu/Ta9EoxR6XWuhzZrcIbKebPCi5iwP0WvkUIWTJ93LqaAGuC/Dn5VcPcv3oRrqm/hviA2Tg0VcDiBCeCBhnCOL3VvDTzhoQTluOFHyZpoX24vV9O7luhgxvCl+EvuvMqPaUAIjZTeeFkxyx4853LNp0j85NHuJj7tvx0hxxPnk7EmuzRqDSF114n+HH5/A6Ta7Og12XHfjSqHqwVlsHrfAMyzwLoE9MGZOGpoJmlwkqNwbzuPXzKSAoiHbplKLd2HOQ0eWDgjvNuSYjlo16ZEAtRhk1tfej+PdsFFgfx1cqSlBz+wEqlUiHqqLLVNqUxVuENSAtV4Syc58D6JWR+cf94N7yhKzF3uNHz0H+4OeAx7Md8MtkOVCQ2IjVb9Zh4N3TdOzIZvRrO4HBocto1BwvPCEYybcmfedYeyVw8ZhDVioaKKYZi3pDapgXXAgiL7RwlMEP/BUST8WH/qGV/WQgVQX+F+RPzRXx0NXmxk3P/sM/MQvhhKkgim/XheKMQbqoYAzRmROoz90VjVLceN4JZ2yzTYNMT0tQWvGVleJPkf3cPtrdogxuoi6oNNAA1Rbj0L0/H5Nvv8IXS8xpjXEZjXYdxYVCp3ielBBslFSD0c+IfzQE8squ+Zzj0EY93l4o7T0KfilVcsPZhXA/TRzemPvAy+vHsctEFkpcpnP95hz4XCSGE6Xnw07zGro+/whvGTMWbimPhPjSZpR44kSjVbRx8LoVTIjt4QusS7uKg9GmuQneL2FwSzlLda3RcCYvDgp2/gcRJ51AVymAMMUOnF5ac7OdKHUXq4HF21V0sigbv46vApuv+vxaK59NFxN8PP2IEicBym9WokttU/5n/+8C3kvRtu04RvwRyKVvY4HBdvC8bUa3ZiiDYJkAB6ZN5RvvALZk72bli308RecHuB3rQLvG+/i30RFn78vFh+/NKfSRGFw/rgTvY4Sp9vRJlM4ALnQ7Tx1bJ/LbafZ0MW6QP3SqsbrdMyw5bwtXc/3IquUq7R8cRxaOqrAlsRSUtTZR64fr/P7jA9p/SQ0OvJaGFXJXoNJ6Mhu9XAYZGv2o3pUAt6oq2K+uho6M68HKf3PA6LAUjLXOg/q7ehjo84A5tgxTcgrpVO1kkrhogYNhw9x0spi+0CSAvXp0IPQDb2zp4ymBPjTv9BZ6NL8AROzz+WXMOxY1K2GTmRrwcOV3EFmUB7c+FVGxSTKI3y5i7fDVnG8POHN1OOnc1OGf6zTAJy2FxY3m8XtvGTxsaUPLLwaywxQH1vqcAxNLskFV3pU2eIjBgOsUmt3/GD+aZ0Gp/lmEqgb69GgsP0zJ4SrLn6xa/ZAFpYzg9+IJGNh1AazWncUEB3cY/dsFzLKIV129B3XpXlC+ZAPn1puCl7gx6K8Jww2/hKnvyCgStrOFEUkDYHhpL03oPoJeCzxwTcQkaPHbCyIufbDT1hO4aTTOnjMGtwnu4hVJyvhv7XIMy22i7AFTiOpM4u1hISy9VI/HqlrjXMNQnBihyCi3hKdt98acr+PwxIANqLybQQGxIqjj30RXYlLB73Y7+D/bxyPPllN8oSp7b3In2ZdmkHLHHa4HeoCg+CO8HlPNpRqraePYMAr3yqEzgk788tR5zqvVAj2hUsp+spFuZORgrpsIKZxtpH/hy2Dnj9Hg8noXV17cTcqd4+HPyGbQ2lzGKQM3yFN8GlkcNQKP4glUMnU7lztVUcwGJ/qQOxJKpwyiusxIqI+J4kdbH6CF0QCGW91GA98GDM8WovYHovDWTRd05krQNZcDoCVWiyI/E0Gj9wc2JR2nioP/eIPPbVpd8Y+ny0vCPOdGmHi2kefMmgKaryeTwTFf2iD2GQME3kBP7jXmwkN8QE4HpNI0cW/ZZni8PglG2RznRBXC6omCGBd6k88vy8Eva+Vhp5w+vL4TQGdNk+jU9X+0YJwuT0seAiktRzic6kiN7S8oXlGSMk9awVKsg6h0S+hc5Aql1nfpv4xpnH5gG04UWgGi8qK8ObKWp29UBslYJyobe5/VelzwwOF6OqsvykU54eDacQQyxBxw3ckC/jJGDCJ/SeHQnH4YeCzI9iUJtPbrZX5rIIQNjsjLzpfTUa8IjrYWhfzfu2BRkQR4fvlDUgGnEcM3w7bsP8BDZ+HVuTgSF3OlJhM1mJtmRp5UDfN/HcXGhHQQrXKDsDJdatjyBCtSlkHYbRP+aWkB5zV8ecLKNzBLI4nEDtjBDLVULAhowcYtZeC2K5p5XTXJfpSA6wsKofAI4NqJT/jChWF0U+6FxcLjKHXRE7KU+gzf363Aoxlq0PfYH6eENEOD+2lQ/DQbux55oOLaz2S88gy+StjHo85uo30njWDR3TOwp6yLgmx/46bOarZyDKH/tzO1pAEljwxyaXkP94+bCOO05/LmSf/xkXP76bn5Mpg0sQ0a3/+l5sVLqVstBlIeuUFClj70jXGiS4dG0L9F5nT7aQg0qqfw8U99uHnkGmytnoHpNkJ0oJmgdvQIjM32AG89WdrQ3QFXZw3jk00y8Em2k+LSvjLs6KLoPyIwubUMfwRdJt9bMqwxMI8rwuRAK1qHI7Yas3dyIkbaTsE8GynwkxXFiNt3yE/GDU/fCOONOV0s6ikBK4siuSlnBGVWBPHqcA1YWzsH5qzyBd2GTygtnMgjP8yk8n8mtFu6AxIvVFDKsXDMeWMID+ghKE1upVKh85DwxJ813v3Hl5r2YbGxCWllr8PZN/15VTNAyJ0RXCJsA9MrO7BeNxi6+sRAwmuY0xaYYu3lePS32In1ISrwrkyVJCpXkpl5OG9ehfjqyw7ccH0tNN60Zz2tUjozqoOF7LVB69wUhEvf+Pv3IVCLX8+Thuvo8IQKUG2vgxpBN3xzcjnO1hSChFkyKP12J3zLeoEnMhbg4boiuvm4lTS2j0Gfnx3of+wGa2Ubg/rDblCbfBc+tl1Hx4LlcGXTSNpRqcurck7g3FPlHPJbExrPKcP1dcFgnB3BFg23aMaqo6h14Q4uVq2BRSGb0FxGHuxLunlTkxAkxjbgu4MzocqrF3Y9TmGbFwXs5HOSnNOFeE1NHcrHHCRhaVNg50O8rWs3NQh1U9v7q2A/2RWe3EnnJZMTUM7cnftmTeflR5Shy7QEtRyXwZuBVzTVtpPE7fbytp3pIHC5nmuXVYFQyBrY5WkE5rKmkNKzH+VSTqLvHS/69OoSWIgE8O/gBPLZFMWHA6Rx/4mJYLqCKet6An7RNAL72vto0JbKwwkf8Yz0Z0y4lMxFQV70VUQSLM2rQDEymeYFi2DK+XOorTIaysf2cLpNI0wbZ4ZNU5Ph47mpIBV9DXWHxWhTrBT/+JuBYYmfQfX8RdRJsEEvUsO4WyJ4uNoA1pRk8gqDZJ42ahOkZ/Tz0J2jkNY8gLvLitlAWxCLbrwm6Tvq0Pw+kaVu3uRxCu9Q4aYfdX6+BzL3NHlN8lp2UznOFfUeYNsyEUw/r6EWnzsoe/cH7JgAoCjjwR1b15JWrxut9muAGSYrcCkaQMfaJric2kxK/WcoKtOazr7+Q1c6nXFf4H54+Iwo8ssT3FZoDVOWqOG1kzfpxp9rUPYkEaIds2BHkS3/8FWnMx8W46V6CQj6BJCr9QTtO69A0+BDyF/gDOM7M2B+ThAENidANSRy4wt5lG3ShrEiGfhNvIQadexxzpcaTh5fAH9eiIPOeV9o8ZKA9JTllN2uAAV3Gjgm1Yme+NbD/W8PqKz3Ld66vRpHTNrGmlNXQ4TKEvq92hASZy5hLckWOL5cgd3qIllI6zu9iPLA6MvddFpRg5UNdaAzVx5ErObjmkVjsVnIEU+qdMGbLz+hP2U/zH1tgyULO+B0kSe1p46GxB+RIIyHsKLjPOQ+NQDbOWpQa+KETwVb2dVXCt6v28jrF42Fb4//wOGCIty45Dhf+PEELq8p5R1ZczC3roGej/rOX0IO8XL7cTBdaDFcWhlCM+ecR+fLE3lO6yt8GLqYZlfW8MOixSC+9w9ubLMC87ej6FzoBRw3MxfkX4rAjXfXSNbnC0u8qgXjm/L4b+FFqLouCwvDxFgNvVnhUzE8H0oCR+WTPNtiNz2UfE1HVnrj2+eOoHVdCQpFdKFltjH7L20ip0/XQERLiK69ieT+qo20TOUMWdoFUu5eAahcIAqfMxTAS3E/fk4QR9eL1fisbCYsmfMIzJsDwE94GfsvloU3npfRfWk+xH4IZxX3h2zuKU17vn3CMSNLYf6eR7SzQ593GgmBbms2/w5JpyLLFFwX60EFr4LhvlAJ/efew9EpAiBi9JhNrk2ABLdfvLTzLhuu6UOfm48x/rgP20SqY8ffftY+GgwPDLwpeKcCNMw8DGSzjJPfrIHzHdv5iUAK1n2Lg4kiS6hbRpIPDavDuk1K8DE/FsWm1cOeKCV6t/4HDRdexfKjpjxidCS2Zi3EeIkucLkzCpz/XKdzK2Oo+pAOb6jz5y4BE0ypqSO5eFNS2efFcdPO4P0ofVCsNwGPQnMaGekFhc+EuOfSRnpV181b/Po4OiEE5+3O4I2zROCN3w9ICd7JlcXGvGieMhqOM4FLIXrQtN0Bg149gZIrE/BNshrMSK/g3wf3U+4XCY4UWQWv1q4H2wnDmH8hDxzmHmXZmiXkeGMMNG25ysZ7K0Cm3w2H57qR+egskk6pg/GJcfRMxB6j3Dax5WkFkBd9hZn6vdCh2QnjmuUhqEAUN4kOQqPGI1qyt5Lm65pheZw0lGg3s8TgWRLe74Q3WYk/ia2nkEP1fMGoipP6p/OBJ5Jonq0KtP8OVndJ4j+TKp46byLcT5ZFuzGZcJh3cET6WVpZpoiFUmNgQ81UGPS6jsfUXKFuniT8tzMB9xeI4/6SheCz9jnUTFTEmctVIVtdjNuC6nHmrFrwabvM+lHjObZ3C+wK6OU1Uw5SRmAtFRzVg5yiZpim+QC9nC+g+zJGZS1Znp67hyKUKvlbxT8Ae2vEbaLw5Pwhmi5hBj5nb+KpNZ6Q5L+Tyzw96cakBtxnF8rSOWd5h788RErE89QjfbSnain3eqmxgo8wfdmeD19/trD1Mmt8vc0QHu+SgYJ7AyivsgusQhA6ww+hwfZlHNSYRgde78MxDjdgnMx3GD/BEs75SXNofzMe+5hM+z1seIt4Dr4LMuFZPwvoRcxDMJuzD/VvW0L8yVHQ/PUHd0rPZFy4l6bXbMCWehdyuxeMK2/kwdBbgjfFkjCpzx2NztRgtdwS/jhyLch2DlC6wUe+e34q31hvRz0J1Vh1VBgCmjOo3zaO+0Xf4Ywfjnj1XgbP9TKA031mkG4wGufPsQIdKYYTZXPZZeJffHY+h5xXrCftb/vw25cnsMd2HO1jBcwancxpyyaAe4AdN59cCuZLc/D1xd9oCfqwI2cvku9adL2XglqZbgDOU8GteTHVfopF3eYGeOofDc8vpPKV7r/wYn8kjjLxwgvG4fymZSxspmHYariD/5ytoBsrc7nMfRE9+ugMxaPSsTWykQVm1lDZDAaBnfd5Rrssvtpqx+9aMymrSQXzpjpzmIgUrVxhhB6/p9PxPBPYeNeY5iptRv0vWmwqsxHdYpLx8gVDntfQA6LXNfht/BhWPUxQ8GceRZ9ciBF/G/ic+HT+YlKFNQ8JUkM1OLZLlF57KpPevRFgu/Et7ja5BMcd16PuTHmq3yLMGzuE6dv7fBIQCcRdze54UE4RYpe6cK6QMUgp1KL2lt+0XGkEyraZoM7GDaQ+cgU8yziDs6+Zgay/Jg98SodTIfb0S6YNylWESMNsElU8bSLz/iT0cVDEF6mycHPGUS74vgP8G+PwS0wZxB42BAGrmVDqdZj6rh2EuMB+WrxdDu5saMI1L1fDeeEQrnojC2tnHKFfvSp0tiCadFpNYVHpQQheIwGbptzB6x8+4NW6ufBT0ZxbHjRxolwlfN3/EyaPWE3dH0xgTcE4cLJ8CS9mb8Lmn5ko5l8N69pd4VlpDD5SegHfvj3i9FnHUbZGGRTSDOiveCjOSUgitaFs3nJ+KVbMOojhhdP4yxcv6A0+BLqumiB1xBreWxpDveVsPpsGLO7eSHekAiE5JYedRt7klHZ5evlaB9R1LKC3+zasMr+KL54OwUyZRhj8K4zFeTd4Za4P7jGYxG8nGsO9sUZw4Y4iuby9R96HfeFwnj16rIhDy/qtZLtjLeysceJtL8aCcsBv9hjoZfzriGNmecHDU7e5LUwVDw3MoHMb2ujN1W90Ws0Ahv8rgCVf9pNT1C1I//CcVEIXY8mFIL7fZUCibe84+OwnflusDF9nh1NKgCk/WThIPdfOcPJ4Cex93EQNtl9pulciLrHShxurrSBOoQ+qbIjnTtuD993vUaL5P/LsSCC2fcRB5Q34vlYWlx8cCS2mreg5PAyZZ5JwTqsCFuqM4TA/d2gy1qT7iRFcurUPQ3P0QedJI22utOXY7Xn8wzwbxctb4Vo08mV9FXi/PoHk1GTgW4As5E0p512Swbh9vibniv2hDebpmDRyEFYpFqDrkr80N/0POMw3gckXMnn5ghRy3f4N/qhH47FCNfrXK0ulVea0y51oX5Iq/jhiAL6aEyikyRVO+yaxnU0f3E+yoYCYaey7oQ6TjLOg8e8YMPqrBtrypfDBLRuDo3+gjKEtKPyJp+k1sdg3WoC8elpgrqc3PuyUAUFXF37mXYz9D6Vw7JYM3BpuR6N37sAb04vh2uW3HGKlS6tuC8Dksr0YuaWbK5ZXwvWVwaRSacxuea74MOohyvUBn1/pgDpBCEqzznB8swXuU9Dm3C6CXYVbwF//Ngfpe9CfkyEg3b+b7HbrgHPZLV6aOZkspuqw6+JZ3P19PN/2f0wqT1RgSfIOVPCxhleW42FPTCOWC8iTXPBCbt36B0V7oyBsx3y+KPqb0h9voBdyMyDMVw5+7ciC5I3ZbOgZAV4W1qhuUYrHVYvRUuMqv643pFT/QrrlbQv2H6Zx+98MGJH5hvdqJlJ3x17SxXV42aMKQpN+YJu6HjmcEoH+hztZZmwOnVbMJP/2mZxmIwbjFmSDY5MzVWb2gvYVK+ydjHB0VCTe/F1J7j7GEDx+KdiJrsbmo96YqnINa19t4l/CJXTy6Aiou6QI89PP0KlnG6mpzAZePI3nG8cE8L9vWWjXZk3RIvfBcDzCeMHTGHU/gLe98qcLnzNRpew5R+XqsYzEXWgMy6CQqWIk9k4YLpdocUnQDBq1bR5JVonSarV0+rElmLsS2yB4qwQWl0bClhMToUynFK1zPTgxJ4ieu04io9hNsFZwKrwzr0WtaB+M3zSeRU2Vod+yHQVnRFLZ2RFscW8dfNvwj5xUnrBHUh/d/zgff/pJ4vPnCN2i3RRl4oLCs/ezZY0wiKw9jLENvvhLYSLejIvnRvkaGD/WFIxCOrD0tiFcAHFInfuaPn6dCG2ayXjE+xrtuKPNxn5ryfQTw8dlx0G+RopUNI7CmFovbJ30ig9lDNEqw0u4L/IfnYjKwFUvBUF28nTsUq+AVP/HNOv7T1qjVwcFOWXc5NmNFvuM8eH5YxS9yAwEJ4Wi7tYVqOgXSZfWDFGVWi+i5QArycZypPUSJo8lcGWhNoyb5wXVK2LJ+b8q/P3IEvpm9vPa7AegUduAT1eHgmaJAf68BjBx33cOS9nBtnvceWFxK++yGUVHipwo9MVxrE5LIY3bM0i6wRR+V3+EtQ56LHV7LQiu+gRF+c588aMEbJwtjN5z/ShZ/hnPNRWCG5Y7oXzmIDqVtvBCFudbks6QGJxJfp8LWNqgGjyxEI6Uj4CDSbfR63kpXkzSx2GNIawVr+cz0zfitcli4PfrAO+3U8dlZ+TgopATf/ngB8I97ayjYcOCLV8gvtWAbu5Yx/+kwzm+IgcH98jDq8JA8rbfxf4BtyF1dgV7/poO+J8uuXQtxg0/Glg8eiOLP58CJ4ecoGvoIpKRLngJTQKl2TdQbcduCHZPo937SnBG/GZ6e1oe1NVdYU+BDj59bQO+bu9pvPwLcjc3A4eh4+CvWEed2W2wMJZhjucBeLJ4HLnercTrfAm6nXVIc1kfj38gy52pynjwuCfe0hGAhAVqrGHog5W/PtGNlK286HYgWa7fgxoXL/NigXqcUJUGyzLEIfnoblZKaeGtFev5cGMkPjjnDs9rO9BW5jv+/vAc3rs+ouZDUrBPpQ8Oj/EioUFtPvR+MvcEiPF/5YVUFPkNnaWsIHnNTvq8wxaM837CuFgp2mxcS1/vanLtlxT0vOQBq9aasfzDM+h5XQl/NqhCv3E8bAv/hw23HlNUyk1Qc3/K+gcPU6qSG1qNM6S3JsrkfHosVOknse4jFzI6kAai77t4+eNy+HysFq9q7aeP5V/wov9LODmToTfzH5dnRrLitK8wbJpOHlvf8Cb5oxQ/5iKV+1Rh225fjk5QhvNqD7nDRwI3Vn/kNYUl7JjRhO/95rKKXC6drphEzl9tIHvbeDhRtpv/vdBnrdpyCEtawnsuhNCYzY/h7fvfKH8lC14u6qOMf9YwqduQP1YNkZ63JH4RPg1RbwLxiv4qXuD1hk8Lb4Jrvur0Zbk6xLw1BdX6IyRtu4yWn4rlQ1PscJWFMbasnYYPmjdQ4Y1RXH1aEpSFj/Pjq4nYK2TNMh2ePKD6CAtnhNDFz25w9uIptLsiQHoPBCB9Uh0W6/zkDt0aqhaex8d2TuLU2rnYfWwKte5oxdioFJLdZwwVsf5Y4upHe5w38Yftdlg0KoIsR+9D65JR8Lz7ECUKlpLY00ngc9+CNjS+A+dRJ/lC73WWlpdFt3pTltHRB9H2dIp9480bDgrCj/LJ0Hg/GMeVPqSXBy/B93wB3JZ1iTo9rqKH9TOYWhyHMiuMwH3DfvL/1UlBczNZqnwSLemfC4d+JsI+p1TueagNKdWu9MNAE8b1mpB352zqzRGGqVPvUYod4cyfP/n06yGSGdiDU28yO70aDTE/71HQk6c0OjaIDp5rI02bOEhKtIaAmck8v+UKWEyNhq1gDou3VsMCMea9es38urmYwgLL+ekYJ1jTpgGRMunUdWwHsyDA1z1juHnDaZT9r4V8DZzwWqYkd+f38qljy6Bc7xIdeHaPY321ICDkAknJZ/G9FmE6mF9CM1ubaUXCFO6enUL2v79zxV4bmJM9CYauKOAm/fP8t0gCQlafJJ3pmXzRVgzlymX4We1MHmiPwjxVcyitPAEvg+7zWPV3fDr9HzbM+UHD7fOpau81FDllja374yA7mCEzMAs6Vb5DkcYWbN9oS/Ex5vBh1WKKH3UVRiW9RjfZLDAeqQtS77fRgtK3GHFgIytlDrNtmSfN+OSJaktuwKKRs8H32wfqHdSArpE38O8YwHDbM/DqQDtu1bsP5rX5KLUpnM/JzuaIiDiMPzsWVBMUuD3VkuSH7FnjcQCtM8zhUeZT6V3AeX56VBRH3DeljFVT4PkGRy7YJYW5o73BZt1IzpV+BbKDKVRe6IbGu6+Bc+ly+PLOCF5ZO/KK0PlsVHUHqk/pYNlZS+gyEaTvQdXotWuQmw4V4Z0QIRjKFuO1EedYtVWNxSJ+0HmVUlgtpsmSPsUcv/A/Ct30Eo8Ua8D0NYcxQroUX2R+wCNvFdDiPzWU+M+HahvXoH3pZ9JQmsHi+cpgq5zHG3RO0KvGYsxL7OB1azro++zXNFtZA5cpzcCC3+2s80Yc8jaMpX3HvVjl0QA8ttmObmkrcNyxYTw0PxAMW6Pg2j0fftqhCRdOFpGvoSwYShrBA1N5Ct12BspNYyn65x7AEmdOPCXBqlXSINHlwk2nd2Pv8S0YdmQneL9bgcKtPiy6uQgG48/DEm9r8FPUh9Wd5iStvRyDq2Jxr+UBXBlkS5FLi/GlxEF8tfsU7Zi+Fha3qMKBBF0E3EgbbL6RoOV+mqbxFhd+SKV5T5tgrGoad8xPBYUsC9Aasxdm/Z1JZ8ZrkZ+5Gt8KkaZRSed59Bkh+lLvAXEds0GyVAIib3fCl1nHec2GEeAyUgcTnjpR9aA1BmYfxxbf9bwuKBGn5EvB9roGfvTiMK87HEzFdmG4U7Ya22/nUcKuCjYTyUGnG6thnbMcmFv+xIwb9axqHYIK91NpVbEsfmkogtRbR2Cqci63L10HGQ8E4excI4z4zxa07lpiVb0dRo+pxlVbx7Pzn7cYJn6CnHUryWSvFiQsmwDPnofTSr1BKPh9lX+H3MMzxdfhRYMpVQ7u4XfLS6FBTwLyOq6zitIiGNA2x8VmI2HRs9tkEa0HUm+6ydluORza/hsKjpmAz0kxCBh3kQX037PMx8m44/AH+O9jPAwuHoB2eTGKQAfMfzEaEnIVyGWEBa4pE8Ko/TshttEKLSS8+alRC0SYh7McSJJ5qzgcCzVD2y1BWONyF0TuiuHaIyo4lWajk0I+3VywGdTfC6D1mAlwlPWpc04F9tgZQq/YPRypFELjJOWoSn0X28qsRJp8hHMdEPJqn6BtoD7mZbWB91AmFNlmwVDZPz5UHINPTD7w9NaneNlSFYo3VMLglEc4ztwfLyy7xPZRr+nZ9CrWd//Crdda+J6VAby9JgM7Li3ADyY2sKyzmE9cK4Ui9XX0VXAxm7y0gpoXOrxdzJgTXEbC/rf7qay3l6p338LEW5NJ5esQv190Fm1WfqC2S9FwZls/JrvKQPbKMxB4rYHX618n3xsf6aliBlcuC0DFkSPpd8deMt5kjtKWCBsqd8O7nc/ILicCerRdoMdvAw67meOqhPOwUdIEfXvkUWmXGBgUnKVpyVOg989nvPzWn5Ka35DBjziMnt+BU8JeYfkDLShaZgJ3ul7QTJcDfNPqG+YtcuA15+6jT+c0ePH0Cm6qW40xDo14okge1K+8xOhZFqwTvZiC9u1HpVlRpHNCCO0z7Ujd5SJuea+MronWcGqjFTveOcEBK5VgU5ggaT35Dsd/ZNAf/2OU/CyUC95+p0hVAeid38POUgdwS0ko9pveApX8crqpPgHm+vyH+5/XU/PhhbByngzsNSrBAc0hXJhlRYYrGnlqTyUWuZdD7R4XlN0kSmZKlrjusQSU2IjA/cOH4IfiIzDf+48KhzNAYKQhPA4IRp4lCZEbJXhlI8HzyuV4zz2X46q76erdPdgt+xLc82qxLmAK2l6z4htvmvitmgn0to/li5eG0XbOY7ipIc5pc8OocpMv3cs/QXMHK9lQ8yXIiU4CUd8duDZ5K2V9QthicYUln1bhmH5jeNA6CyKf9tLBByMpM0UHzkWIoPMeM3JSmwDbXTLhyTNzdgzwgHItOwwp9sJMrQd47JU8yBfX89+t0lw+RgQfZhixg4MKqPdkstO3d9x7IghfXHqJ5vqyMO/SJHqiV0g9AT3k9G4mBwqHgMgOV/ribcwlVS7UEIhw9/Y4MLnlhG/KrPm3wERqVJyMy5oH0dlBjCZc3srHckdCbPUrcN8mC9diVoH2pwi2WeBK3qaF7NeVjiM/6sL82kQI1J+Cg+OmgvdkNXh9+iGWSJrR7fPusET0N7gr3oMVm5Zi5vuv7LZdiYdunqLfpZNhjUACKdo00yqD1XzGP5JwkRe13JLmsoC5cFFQmzNtfTGrUwE83ItI62s3j71nR1vkGrjdeA6v1K0FyShNMA3aw7vyD9LySnHo7JfHa8bTaXGxKpkLGJCEjzZf7euEzIfp7BzUwwmSYShhpAaLLJzI7rA47rO35/GKHziswJmvdjynC8tW4lgbC4iomM9xCjYgsvo7Rfw5wmerKumgO3CYvh0peG4CDetADOz4BBCsQDUDBP1Z2rh//C04/+wBOcs5U5fQKDw3249/qeZRtfVM/Kf+nGxkVKExZh4Xq66nxIjP0GotQxfnC0Oh6W8IHQ7C9oOCjL4nOXJgBAxqW5Ke8lU8sKkSDhhYso3+Z3xrPwbUVvlS9b2fPFVfBR4PSEHxnRr6ka/EcniIwvP1Mdf7AHRKP0Tvnmj8Ex+AZesecGzPJLi+0oOiLV3w4H0BMDJ+AZU2/iy17io8EMijUWu3o7/0MUpbqg8VE5U5JNAd3wdowjRdLZJpT+ODL4XJYNsV9P8xjR+XpaF7vBZMFFkITreNsFg0gtPVP5Lf2Xo4yuHk5FEBpgVH+L3OUXw8pAE+j53p49Z3NChbyKYDHvje4Bb+d2cav3vrB9nSz9He9RpHRJtAr7s2n9y9CgwGntGCpmrw+lTOb3ScYdN4MSylLfTPS4dilohAgrcGRi/7TY2FI8n0ZigESA+w8p7TiH8kMODDEH8bUAbPvglQ0nuZ7Toe4oIVe9lzhxO9MHVizbYYkg4bhpc+l7DeMYrUjUbD8S+z8f5aDVx+0Br0DJxpQZg0ukkMUpbyBlQ0sMfLJ16Q3y5daPpeyK3qTzij+grs836J+1aegWKNA7iSfEBwRxFmvdUDl9HjIdthGu13V+dznMSNuakwWvwB1dXqwV5HA9rWmgTxQz34Y7QGzFp6EosX3eHulng6nPGHjWI+0U/fyfRzdAaOuTkbX0hmwdh1VoDrHtBy8yQeDo4Ak+OrOf64Nb/+0wT4/BgEiT7jr2aVIHPVBpZWecK/tsXg4dDBc0wdQN1hD/WsmMo+Dnsx6fZKdsv4g6f1EC73VePy6haQUu3np5lraPrl23S/3ZGXZY0mLPXlSTLzoPauMMx0lcAPNzdhSWYyTru5DH7t/Aap6hfAeYYHrLt5k1FlK6T9ZwZFR3fy+kAr6E+v4aMG8/jY1Xvk1mhNCy/m0on6a/Q6sw0fP5sIp2fXcIViOyYpvIb+2+p8tuIdPA++A5/OubHewTqcefQDwV5JqLFYT/qpT7HifSHUXCjk6y2KoPk8nlqvLsEhzdmcD1m0c40czNtPsLXsLx088Bluqz/iWxXdpOkaS+6FwTDsnA1PXN7hXgFLuHJCl82bluGFZypo1N6PQ986+FdaGly9epw+/ygnuQ9JbPtxHFzZaom9fW9pr703NY8v4b6fMrxiZxrP29INRmN0eHNOH+q0KsOLR7/gR44i7dH0xKglZvjqSDycTZmNLgmDcO5iKL5Ydw2EPqtBmssMOjz5Lw7fDsbHAUcgLkicDT7Mo2Ode+hN4hNeGNLLYhGGkOL3BT+9CmYjhwZY9XUElDavBGe3kfB3+zK8t/wy1osRqJpNgO70PrwxfjGImNrjli1LUfTYQ67PAPgULUyGjxYy7jyGMnJW8GruLVyxyBQ9zAXAUHI+/ZjygFLeV1OwbiXeNjRlmeE+NuwXh+ktNlBw/xIKx9zhmvRYLv0tguEhtaTrPBJFWn9Bwb5Q2OfOcNf+AHH4ElqanAYWKRdxRbodFc2RIjNxWdD1vUKLl4vwrVozKFlSwpOLHkDLqrNQp2kFz8a4w8QTxyHPbh36q26AJfSZpvVYwfRAK44xGAbLxac44Fksj700lcbudgVt5z28I3QAKuWm0gtDc3B2fQr3befgf90KuO3+EIiPX4TjQrezqZUySv2aCFHRP/iK3ARY8EYK8t+l4uZV55Bnu9K1SwKgnttIa5Yboq6/BLkLvGdP0amguNMTFPVOc1/7L2wsiGYsvUYuQyLwuno7atqn8He/cjqZrwsVd6Ig6ZsZfTvVDLnRT2ie9mUIe4842UYdi7sleN25H7TgqAysfajG0tWp+ObDSjg7QwoOPLblyT3HcYl1D5S3dOJz0ZdsOagLwxpjufJ5MhhOzoP5C1fz1d1tmEry+Of+NT5yPYxomidPmWAEll+CYUWlHM14/ZvXrg0lg6abGC65iqtMJuO2p/kcdn4fHT0qAJ9bpTlZ1xJTlVvI+N446vovnDZaq7JujiZbtDSycNJkHKFuBB8KY8Bx7UrWDHWmebFhdFR4Pz/SzMaBvlkwrWklBa8nWhOlDIYXasjsXjX+MvqKN++Ox2W5jjjiURj+ue8M1jtOQ9+WGbR1jDjUp50kldEnoC3iC45YP4F0omdxx5IecLbXhL3/rQF8Ox/KtwnD06Sx8PmyGl66mQxzRqYTi/tB6ctSrLnvzIKPNnMkeNCkbTaQM2YIlyb9wtjJU+lG5DdyaziNmkOWvOd6Mhvc8AJ5WS1SOjQSNPuqKWtwDq+oHM/3uy7y3YoaVJIKRcmHR2FJ0xFcPt8ClA6OBsNLlrDPaTG9dimg7S8+8BKbSo7+4QSzfQL5ueMDlNxhjULzVcDLWxT2qs5iDQcBiDGcSzPSFnLpqzmo/ymUIkxzeK7BDOhTtYWwIzNIb6MMHI/JQdvOKiiMPU5tLIPV+4+BmesKWHBXHPv0pGG77TQ2e/YctOqzONPkP9hkmYEzNVRwSZEaG387TLrXKyEtEGHurzmslraHfq90QM1ER9Lpns95gomspLeJStJcWM5Figae6cDcqs/UbRCHvvvfkfacTA4La8TKoWh4Y+oG6P0d1651hEoba3CRyAdjp+2c0OSNe29EolCcFodNFcXAKepgmvOKzf8twpyhSfDFz5liFmdT+3pVfKrcAkL6ZpDzOpt/Dq2Eq0m/4ETRLlw5IAwisf3cPEIe/e+E4v2jV/hnwyXKb3oJny+Fc3tSIlzXGOSWJWbQa3OLt+kn05/cJPK8MYp2LDuOAoc20F6ZW/g425uEErvoZ58UzLINBN+TQSAel0iSCnoQ9O8NVt0bQ8+/rqCHO4LBp7wIlpywBYkgQxgYsY3TBMZzzMUEtFYRw4lnv4FyayEtFPrAuWarYaSGMkSPuoNrP7aizoavIHZjM1ys14bvXprg/0yXT0xKhthUedD4pQ/a+S/pce536BIpodjiYpoSt5ytnt3FdQueUUbfXXi7rJeCFcZB+4cbPO1VE4+NW8ZifhF011EO/Vc0cvdBARLeX4iZH9agdBrAWLOn9Fx3DHsEzkBL5Zt49FUovKj7gZ8L66hXKxmaPbZzb4YszL39l8V/LiOpUQ4YJ6dDjStCKHiDOZ38FwziL6ewT/kFTB+vDWaKQjQvYT7dmSHHGnIDvE3xKhwMfsevLZ9ywqhdWCWeTZN/ToHYkjf4WX0qrR51jfrEbtG00jmsJH4BtY9uRYmt7/Dj3UvoLSgDjqsssKgiGDa+EqPU8Y/oK16Be7s348npG+n5b4LXYWk45ageTHosRvlzN9NYwy44rjsNHjVKcWDnPArSm8E+foWkOLibYiIFwfm+Hjd8tsVz7cOQtOUThoXe5HP795DLGkd0utEBwtNT4OqzSSA79RT1LHKlzXL7OFvtEWppldONsn84ZbQ3qgS+4pP2d+FTiCa8T4mh5HBFHPWfA1fPRNR/5oIVFf+xs8xoXnbvHM8KdWGDB0qwwnEl/9KRxQKXu3j1ljEK72qDVcmr2e7rThr2y4GCGG3QCrcCTTPk+W6FdObBDdYevMJSRw/wz8T7NFzyAm8srMIn9lawQMEGJty8RZ0iS7F+5gNQBBV443WZVvx+yGuFnkLRxOUc2d9JuiI2cPL0a4yVVWed7hF4/FkgL9OcjtX3wunS6EiQnHmL8gftaPREYZAvu8sr40ph8TEFYHsbSLtrj9N1Z+K7aZPhe14w6O30Z3AQBuWLDzDU/jwtnemPYilPUEfjLizNu8KLH5einClBorsv1H82AfPh97QtwhyVHhxC89WqpOLuzRu/JHFfbhlIPNEG41fpVN84Ftb/q8f2XhfcMfiSum9P5P1qz6k16i/KJ87B9nOO9Oh6Cs9P0oGk0pmoHDGGOz06KUG2g+WOzODDX1Rgp74GzNq+meY7NVLXmEnQaS+AIT09fOPsXrCaswgOJ5RC7j/EvvpHtEJQmeSzd/OYcFG4sMAM8lZVgZF4PQfYfkK5/sVovXoXay+axnHzdpDevxws1peE9x0HsMv3DO+MqWWxxmCQMzSlrNtx9GnLNDgYOcSLVEeyxnOGE01zMXmWMp0+fBrCCjVhid9WdmvshygXMxbZPAd7Yv/D5mvykOH4CJacPA3DC0ZT2FxB7ssqg+YtovTxbAnUKUdzhrYRvnugDuHyhfTU1gjCIqOhV98RdVYOwieRERDmkkMiljKov+8aCunbwqB8GYVdcwThpD20fJYOO0v2w/D4PbAPj4Pl8/egMvI/kvopChe8T5C3yVjan7iNL77JxDAPS6qYlg9BBzaw75vdPOOYC24zGwXL3XZhtfBkWjt3N2SfyMNFV8Nwkb815NQeQ5lN21hsrDeEejJkrl/K2/VFYHqNPNza/RLTVnWAPFSw+q2DWKTig9Mm/ETDfzIgX3yT1PxfsGjCR07NtwO1gXRo61cH7Q2j6On82aA/ciRnLzQCYe1aLpdj6lhUj+6aZ+CBegz2nnHHya5RPEZhCfPRh/glQASkvWqp6/NOjEvppq3CDyhysi4mPP9JNVN+s+SvBFwo2kC/NabC7DU+HGC4DnoFvcmVdUHrjz6Xp58Fn6fzKXbtBT6gUAeP7FRAnQXxVHYhFNTv4LYV/TTxqARLPnPg5HQJsB5lAJ8IsL5XD+J1TrHKMzms2/mGrRcoUomxHxu9KaDaO2Ewbscv3puyCT0WKkCjNOLWJcEU7nMAPQ7tI/PuLNJo/o4GxRd56xcZcIvXwVNj5EE4PY3XuA+i7Nr7+GrXd9y1eYDq14rwZoXF7FD/Fh6REb5zUoQVP/X4XMFhpvmydKPQngUzH7J11SQokiiha0ULyWRCDam4EfTtm8h2mzzZM+gz7HkV938c2gc3EI6/gPHvsCKSlZ1kzxBCiFCUUVSaWgppS1tD5Fcks6UiiUpDKQohpVAoK5XRUAkNKol0z/++iuc853x425zDmLNaEwXKH3LOkjh0TqyjfLFxQFle+HHAFTsL3WnXtc90aNIrdp/qBlNmTOMRa+7CkoD3mPNPAs5aqeL+R3O4sOo2BMxzoczAYXgw4xdody3H9svWFCaIUL5LCqY0tXBAawOlvL5H0mfnscaFCnwx0pcCgqeTxIHXmCzxBvIkDeGi4SlUGahHf/VHNO5sGPxsVsa3k9bh35i5JHtTiOovHefmSQbQvTObWtdPBD3L1aDZnEt/D0zl/KcS0DPoyQdTAlDtni5NGwlw+L8sfldqTMn7JsLSVHfOTPWGUt3TYDV7Pmzz7yPh6gXo0yAKq1S9IcbckJbklXFLkTn8eLEP/lrl4to1Xhjd9pzmUCPMD5oAvwvFuKOunD9dlcA327yoyzYVfDfWYQLewsMVLhA3vw5nj7KFgQ9f+XvAObBRzoCQmI8QbZ5D3iyOIz8awhztmXjbzBCIRsGVQmX+87OUtpbnoorSGf4yT4K3D3/BwHFaaC1kDnJtjiQfJgtBSkbcaJhL9zYpwLfBTRx/RA6CXSI5zN2KQ23fwE2pP4SjAAKE9GH/J3MSuHMTpZu/kv2DiTRTowEnzFfg40+Y5HSiuDvBAAJdUuDBi+doeXgPHgn8xuLH1LghoZiGNxM8nt/Dik3S0KhiASPMatk11wySK93he3A/jJj0k7ocH0GT7S6Gjbnw8/1XtPhrDAf/eNC1fwdQz7Qc9IzzSH1zKhyKaYTiPT9YwPIH9x+SYf9CAzgiOwozXumhQuYFmjDyHLWWXyDb0GqY/voH3xRVozteiyFp9RjQdviOSqZXcF/fEnRR+0Pbd8uxuqg/Rcb3U1xtFE8ccYh/q4lBdcocOJOXDZm1nbj1v238xkuC82b0wZj9b/HYiCGY0VZF+qeV4WLfd86ZJskNUx/wjvgMXiz7iyvWGNOzlmiakTmfA36/5oA2O1C3PURf6lzhjYESn1p7kBvvC6C29UK8O1TDmwW1QKFcFV7EiENS8RYaSU60PPwrSU39xKs6emFRqxAc807gEX7W4FM3itr3qoB923mUE9iLHvkbaPuu5ewpWUCRxYkQau3F9W/Lqb9sOo2/ogvbtD/zZofztEPjP6qLAEhcf4fm6SZClLcqX3jtxAsEBOCxoznc9RpCnT0FtFtmNe+NdYTSY4HoeHIpiep9orqmZticpMuPxGRBeJQh+NyTQwXNASy9dQA18hrAk3zZ1G40n/NcjeGYyC+XaYCW9VHuLBjAdVcl8ZXmIXB/6UoXLpxh+1xH8rYLQrHfAHamCpAQe4hu/5kKkD+DjOu/wwvNL6QQPBeWKDoRljSjoLUJHtgmBOEj/aDyTRAX7P/OIi0amNvgCT17G1j0QxevWNMOUZvv8ctiEVCKDIfZCjvhyqzfWDBHEX5LZXHJv3bwcVJCsY22eO+NKNXe14GR4k589r4Jt+VvIG/hQbCeKA8TJgTxlYBBaM2PgJhLEZw4TQ2CawShaK4A/9zeQ90hnuCndRVffNhKwcZnwOzrET41ZzK+E9eGS/0ToataGvR8cmHJ7xB+a7ERrx9ay5ed+qnr1Hm28ZlM7d8R2sRuwqLz2ny2sI20Pc/DY1N7/KfsixOcwjjs9S443GdNwTUyYJX7ErbUyZLM1aWs2tYJyt++08XJhMt0p/LabZPIKCkQDouoQ7tqKvmMdIClcyV4uv9LIDEZmLFBlFv3viXz8/94Wv5LipIRhv42D/ybkMhukQJ04o8ZaeVPxrvne9hTxp51do4HMcEifHlgAlQtG8873j3g0YZFYB6tR7RFCQVvt2IcT+BfMWIw/nUDjgseAflwmB1+vaVpzidIEWMwZ2Eob+pL5n+TR9LOwU9cVj2P9aNlYYv4EIaOnkELo+24uCmIA+YsZN29W1m5M5WCvudx4xMVjEkfD7EqXaBgaktdfSd48Egxuu1aAYNUBFE+/vB6jS+teNqE1ZmCsDlsMrVO2ktxNfe4KmYzKQYcpPp3AXTL9RF5S+xm+1AHXnnUBFJeaiLM1MSN7qtg690NOPu5By/JW0CXwlX4/a0l4GaiBO8EteF6aTL+idbDjw+OoMqkLDxWVIhn7q/GMNt19ORyM7k+3Q0f38lCiNcgzBLcSn6zEmnTYSv2ldLAg41G1HpyFPyqcoQdTiLQaSoDDnuncqf+W94i8pE/Hj6G6x2XEgeJU8efckz1HY/qKhXoukIJzC+HYVdVH03P/cP47zI7V1qS5fFPMPRAmSs+PkF3sU7Y4UbgUHeHvC9OxsqqXfSksgJ2bDfjJTdj+JByCo67MJuDH2pxDo2BTaZBcDbxJj2c0YJXXJX4peIYip5qjVZpH/jeIuK9ludw9XwduJ+SCLukV8LX0DgYcD/JGc0qvHmRKlaZvKPEkdth37ME2CqNoLKqBbsjc2n40w8cY/OXd0TJUeLXBMgOlueihZ3kKyzC765bQqBDA+trypO8TjsPXnWAyyu76bTZU6g3NQFq/A+uKl/jA2dl4YhrFrZuToACyTJelWQAZn8cWdzIm6b61IP9MT1eIjEO1NP1oeNKEPxVFcSpUyvZecV2Lon9BHr/elBt31cWC0vC/mMeUJ9kDxNn57PE2CFov9qL6w+2s//03WQmosJav5RwwbGpWP14P90abwpr461A5NRE1v2jwh/f3IOsmrXs+uYJ54+twtn3SyBD/DaseTweYqrvsXOMJmwTC6Znx3N4q2QzfNrmTVvthXnulsNYPKMfvMbpgkBSKcqdlcKHrq8g76QPWVYo0o7P52Fw7kmaJp7D4c+1MGOPKWxzeA+FIe9YKPIfaR7xwt1XCrju6Q4QaSqgda6fWTYokHfOEYLfazxheOwnvGt+G2ePn4InRO5gWWkR+chdYJ0LgEeODpL5XHP4+U6TenOV8cjcqXg8Sh61nqpA2MMAzh0chX63btK2CBEwjdaHt4KV+FdUlrb8m4v3zwSgjHoS2sRkYqm7C7h5rKDCm7dwxIsxkHvRAgbOjsLcjK2Qmf6U+8uXoJ1aJWSojac9davozKoF5K4xDiZgNXq6p7KI5F2Iqp1Hhk4HsP2fDoedMcMtob9wb78XTqoSgfj/kmFawEx6V2qGutMIPGdmQVuZJkv9m0aqDVvwx4e1uKBdDDZfPEChm55A/Pw6HPQ6Dp0JvlBzrAUeb/2ESQ0NeGlNChyfaQOmGz/g3Nxski4v57TB85DrtxpUm6vZ/r4TX5IYIDEhc0z/MxGKynvg36Mp6DAjC+QOIApPUWMJRQ9e8u4ifx0VQe3X+jE+SRiuhHxm8QkVvOZkEpfPBJIye02Pr8qQUrYmPTlliL7qlazRoQZZyxsw92YN5L1uhICyeur8fZgFRzuT3+00Ln8VhMsVB9hDzhLUcCNsv7EJhAqeY87JCrwr4MMvH8zkIuFHPKT5HvMjpqLnXSUY1vehJ7X6KHbfhJyeTyX5ljrqCTAGJ62JxLF/8EpiKlXMHQlCJXLYVGPGYtEmPKQSDlFrblFrmROdPDIPojgUa1OWYFG4BSwdmofLHZThv7Cf7OkyjLcOzoHz1aPB5cxecu3WppsjXXAwSx7mgRVn2jlwwBwZENkRxD99M3h90EL8IrAKvkIz289dxQKFihCfnQlmrfNJ98pj5DtlUPNLiuyTtlN8dwcPazqTrUM4GibKw1iUgZaZw+h3+y/oP9zIcR/E+PZ7fZp0T4rezL2P6cePk2+GEVy++oZ+ePjC0t7NhIrKJHa5CkrMlvE+7X5+Pn8V/vPbjU0fBcEk8SElnJOj7wu38QdVDZBX7KBo+bOUa23Kc87FkrL9bDDst4YSs3CuCSvi2sIS/LonEasv6sG00hHg6nCHFPbOYvqpQEa3bUDs5yaU8C+itfXH4ZpRDc/IH+C/p1pwwfPVGGpaS++9LtA2KQG4FbEQ5nXaw/J/0fiZM2DHIQO6eaWGtj9ZQftn3EPxo0dYtEsCdGEWP7nRz8Vr5fn6xq3ceNWLGx87kFzNODZdu4yny9tT0FVl2O6xCBtNS1nt8ykS8b4OmwQPwOR7ynDkUSu/eJLPwmUMD/arw7Ix9tgVB/i02pkqo6UwZEsBS/fEUGD/bb6+sgIyi/Oxpo/g84oi6lkZwiS9Ac/JvIS1Un4cvrWCFAcQxm0vgF85W/niFx14tiIEd1mmQYT9dr7wppKKJ72i2B8iaCxehNufzyb5MWFYumUUzPjxhcaGNoGP42VUe7SRMn70sPbGAozb1EB7XGO5f+NpupluDm0f5Tlp9j+ObprJ8eZrsShWkqTfCEPwk04m4+t0d6winXyrDQauZ0GnMg0boqUo3i6ATU+5Q928aNYWu8/mF2YB1j5ny5OScKhFD6q0K1j95TL2fdIOrdszYMXdU3TqUCK/OdkOo48IceSq8fCvzpYOzpEFv0FPvFQahe//XgC7st98P02cvL26+OHCf6ivOwrcfl+A+K8yOFzym4RjbsH+S44oum0H1L1Vo5VHbVg50IUWLpCEclcL3pS9BU4XtELBXl8eenyRPw9chpxRsii0NQFFZglAI+nBk+zH6HplL9xpzMMqh8U0/nA/vF/aCTWBNnRs4DaqhDJNK1QBj6Uvwenccn6+xAzbd02CkN2euNdFCQ6pytHaPfWUMsoA771k8C5/AKN5PO0sHoZucztS7XhNMwtk8OI3AZbWceB3Led4w18TWKouhxf2TIHpigfR7MIJygg3xZ/HJOleQyo3ipbA58wn+FpWAoxTNvPiN8aweOwN7j+bBTlNk6G32RO7rQ6x91YxGhkUhaUzRUCnr5SqRhhgQaYxe4bvpThlS/A6r0j/3b/KXk3eWJ0jDdXXZWGK1SQ01daj9+eXwqDLVHZR9MBEpQSe67sFDg/Y8vsyaRhYYQuhXpbES33INGYJbV58Cqxq5VFv2SCv2e7PXuHG5LvkHu8tnwA3372g20sPYfJ4Oe7tN4P0r9dx0d7ttLDvIkRE7KPduafIeJo8CKR3wrgT/nS/+C5+Bits01kGhy1ug9vaGZx7WI/yHL5CUbwaHDnRhJmyTEHRq8HIuB6mwlrSlpvBLUJPOTY9l0NzH8NoZTl49rIRp1xwAoHbO9jftw9eFHSQf/04vjCjEJeO2gK9MRN57XVVmLqlnbA7hBeFiNNEgQCu/ZcIf6I+Y8udYbpmYYyt+WHoJDEeVuYq8YJ4Gxo6XYgB/tcp+OVldM84igUu70FJZhZtWBYJwTsQurQPwvqKZ/wqQh2OrrnNBqEfwbF7BT/IDacKZS/u7bJmP2dJcK5zwNlbZ1J09myK+KZDQ9dc0XZRP936dIE+Tw/H1gVvaU+GCYTFFsB4yWoemnYdvP/c5DSDuXRcQYrzSuawRv4juDcmGXc+lQYT16dk5HwRK0fPJYPF/+Cegg8k3MpkjSAlEBtay2riL+iDqzwk7ZtEF7uU6NjpkzhqgwTVHh7gRucP9GJrNRwI/gquIm9g3R2CJfL9aNT+HV83LYEPRgN478oQc8F0nrVrEfQ6jkP14QPQoGEGkTuV+XvtfVYUkGYVYxEymy8L19IPoMs1V3qv+Re3X5nKAg+l4e+1Q2S18jabai6Ff08qaa5AKDprRJGZRjv+arfD//bLY1WdClir3aax2zuxs/U9aGYN4tpfq2nARgEujSkEdyFGyU7C818YHgR1YSR4Qo2NOX7+VchnZy2HUZ8Ws+52pH6PWn78bS+4NytDu/1RrBrVjyUfu+jD1O/kLyRM57zWY4xDFIuJPkc1D202z9UBo7VSeOXgbjhwqBjuFV8nT7/vpFY1BC0FoSjJuyho2yCM1bcEvzWyrJ19Cn6rd/DBmzW82HA/5yn6ULaOLSicEIGaecwJiaoQ7dmDparZZLnZEi+dD6bWypvcXbwH4N5+0r+xndX+RsOjNh04MVwD5pXr2WpEAicfOgefLyjiqXWy2F7aByc2zsfTmlspWlgNBBe1YefBG2yZfozMzs/DAN1SihwQhbVG23FQWRFmqc4GFzlhkHLXxPFunqySm8tZDV9ZK9wCex7mopf6EhK0EIN1yYeoZQLB25m/0aLwE5xtikT740rkNWgKL3O16cm3nVy+HxjVstFOTAu+aHpi8eEJ4JUehZMd62HOliCSmtGNDRVb2GX+AjJz14byzbKQc3Ee5q6JQ6OHE3lFgjTtvhKGln1alDL9C2pcHYl56eE8/ackOLql0e77cWwsFALN2xZzfU4bPX/fRBu/BZLJn2tUd0oKV7gowwR1X1ztMZIW6UfAxsOnyXD0f5CgsZhkrjuSsnYo1f5K5BW+opCZYs5aOzaSV/RPjvfeCSu2HKIsMw+4aulIe8SXsOTeYbwpYw/GC77w4Oz16LjIH4u/LmXZwacgufUGFM66iue/XsL3R/fD0Cw5UP24ko+o3gBrj5N4sr4ev9sW8tlp0jwkuQQ+1A7A/lXTMWK1Cmh9W4YWzUac11pPP69dB/dfSnQqayfWLoqCM6VVYJInw8mRCjB/vRC+VxbH/rQ8uv1+LK1VusqHovphTOQlkLdXJYl3c6huogGs6ximVTKCaFznTZEmCrgoNpMjNkWz13oVNg6O4Xu6B2DyUX1Ic7Gid9sJi+VS4FjyWX57tocmjiyjcKs6eOxSjxLvwhjXaECFynZSPHIAfl+8i1sq/oOg6M8sceo2P+vLobzeXfz3UxdU7R4PM3TNaW6yBgRNKMA43Vgu3Lccr2Q5gsAkUahv68Gsw274vsoWUr/mQOt4HVybNMTOx71oRct/aB/wCHPK4jEz9zjnZRHbf5SFoNczafr1OOSvf1hyVQcbnfsMGwYFyHD0MhJtSIX3rZep344hcdMYnCXFMCytgWnPVpLRVWG8v8oHjHdPx2WXWhjPbGY9CwEwEsvF4O5nNOrYHiruVqOrze94rHwyrbtqCPvnGBDNKSdv/8nQrycEWvv3wIhn/3H+3wRsS7IkO8863P13BNt2D3Fiexx7/zSAtJZhWu+QRyID7fzhzRAkzhXnSRpT4FGfN2xpXcg0Yx0eSdMHy9F5GFL8FKwvaEPPwFtYsW8iYpgAtT4qBivJhzz+uCwV7BsPj+PswOTqdgiavJiP7zVB/cBOOlEkASZrlv+/QY1Sn8aHr0vCg/kfIK9tFtxeWI2auoN4S/swzPXsoOHYg7jqkgk5qEVh2QyG9S8uIAf9YpsNI+jz6iHoG66D5TGZVHZuF/gJWkLVncVYXDEa3l334qSga1iyKgqDtJ3xvctySjS1hZ0553lBnDmWaBpx/6ARTCQBvDgwBZPe1LNmpT29OOSJ8xQCuchwFFhpL4MeiVRQvjMWxAoMyMPOC+P3DHCzlRIP9j9EkwVfKCBNGfMNJvPX2A/oEywNEnWifGN+P6qtcWOKlcOHXmZ8dlISFF4Pp2NvF2OXYgXfCZOAgoNnKKBTFerPl8LctmdcsEgOylrmY/eOev7c400Hd7xnUV1xeDkngA71+VGhoRpvnLISNf/6Qr+tCWZaMNl89OKwnJf8KW4kiPi7YPuvPt77QJesCh5DVowPm2Vnk71iNK849BY8x+8C11cIi5Q1eaWYDKV6C+AmvyQE6Y/Q930n92gyLBdXRkkBNXr2nxB0mI/H5Q9mwLqjjO4910HB/RY/jZpHCk52kJc6m35XVnN2jwGsHJyAQ5nvwSjGl+/fSaLCDAfoy+wgX00HjnKK4yN5ehTQYQFPPynhkpJ//PuEPLiP10UFciO5KX+pKegnlyQ8A91VtWA6WgIOTKnA+uBteKn9HxqK/iZ99fXc9nYV9PXqQ1eRJ755jBiUaA8/9wTTs9uTEEbm4oPCJ2SrIwdvUxV4YWoQaFxyAN+/H+mJlT1Mb3BggwE3/vb3Jtycco1MW2LZv2wUPW8L4iK7CP4gXoG5q1RgfuknOL3uBZkv1sfZD0fDt3PToTj5MGqeVcITWfdQwv42ClbLgV5qM0+8UoaVqtms2WxD59OicU//e2h+bIWH+0/haZULYL3fDg6s2sgvAiexjbIZPFp1jFftyeZJe/J4v2UcbHr3k08eX8sz7wpB2/2jIHxdE4VeJvCcy4pYFVbDW9paadmyFhJvNOA7Is/xhr0ELPd9DZd2xrDgtGBSit9BpkfV0HX9W55Yfg6Kp3uzvZcJHTcAuBK5jV4dXcTZdrno8VgHKi60wmnZV7iiyxIy752juLe7OMVbDdadUIcfJ3xZ3UYL9MOfUciUMijsHeItJ/ppg9YIUP7WxQ3rZEDh2QSQCZBHAeUTLNxxG9TTEthRZJDVN+dgiChiQvw4avihC8GS01jWA/D77bPQukcWDx+dzfV6UWz49B8JCQrysdMSfG2VCayRqoS7DbdYdPJFFH63gqp7vMB7vhy9dIpE3isPok9HYJaUGZx1deSImFvw9XQVPupogqcP2vF5+Do8KTzIdbN6+O5MeRLJswC3e3awqXw8//CP5fBfRTjCsxQv6juyaXw/WhjHkGXUaK7XUAFzowp+s7aG5rZVkdyacOB/8Szs6057QhZSwWYTqF2Uj5vtJsPeVmGu7W6gwBUb4e/vTTAw9IV0aRcd/7wUXh+aRWAqzsqecvBo+UMurlbDpCONUPr3E45p/osjzJ5iXrsxqQzJ4MndD/izhCAE/3cdl1Smop/TDjj4fR0Vm0YSCwdRt1E+nn/oiPOjnNF5hDF8rZNjBw11Vix4yFMr3PH5bw3MmFRPtQNeaHGnDV3ax6NosjF83NNKP0LFMGCZN3f47IDGpZnoH5yPf/Wv83aRShAXNKMzu8bBjat96L1TnQM2ncBnC5rQ5cNS3r2plso2FPFiz2Ns+EweesdZwds9YfDOSIg+D1uzkKo9jHg8nZ9/O8ChezxBNlSaF6Sk8JULQrC2MAU2Xh3Lh44f4zPRc/DctxgYvrgPgj8fxBE6NZA0ZiKf2m0PJmeHeOyYYoCV3iT4bBl96d9G9M4IZ449hTcdL6DhiSR+9s0IFG/V082gRAoKvgXrl+4E+csr+MG28ZDifINe9lnzXnJHU7KGH54nack0S56dEcpfx1WzS5Qae761peDef/zt2z5Ich1L51AARlqvhgVDBXRq/HEqEzyLDmk/4Wu+Oqx2XsRN1it5p/Q5DI8zBYOGD9x4XZe3enVhYlcdO9wdhQeDb9NrhTvoNWUB76keCWabENa3e/KLhOPccLCMXjSvxHX3nvPGW4NQ9l8cec98B8X2XyFRRg7+LRrNUzq86Vy2Or+YKQxr5/WR1ffvkNP+AX8f6aJx9pY49Ngeyr9/gWDX7aSjLYyb9vXibM2xVJkYzMbf7Lh+uz10Hb/LL4MEYVG2KmY/1oWv5mto7tVeaptlyR/+dJFa6l1qFQ4E+PUa6t4aQMm4BP4xmEuRl+OouzYebZbrQUqRGhyEe6xwcjEYS29l6TptaLgyBfOkZFgkV5Ubt+7EE20unLzyEaz7dgVnL0yH3A1beZbkZFiwzxU0Iqr4RpAlHptuSs8VDlJCSBwld+mB3T1XavIZxa57NSH5yBfcLXOXhB194MvshzS97AaEzYqj1S9V4WCSBxvetoXJKtawX/QaqMVass/urzh+hz0NzOnkbyWnYe/0JuhRiuTn3b3UvXkyrDg9CgOWKHLzSXnwTnxDIX3KfH5tL8+bNQUalmvyTbdc6Fk6ES6OvsS/H6Zg5isD2rR6CWV89oKJpsK4o6UZ2tNcOKbpDO84y7DaOo82nI/DfM0fZNn4HbRUVnBJpwpJLJTgj9IR4KEUjvnLJGBFlARMH/eUFfdth2n3NXFdzFbcsWA0Ky9bBFr94hThXUEhb2XAdtVIXPj8CBW+tMcpB1JhS9RY/lNgwv6dFdy5RgCnRgey6SJl+Nxfy2MNSnHUHheWsAVWHJlJQ6Gx7KexHE841fHfnQ9RNs0GdvpOhuuOUtQi7ktrM1r5nkI8P15SCXO+9/L5i4tx0sN3sM9BGHQsXsH3W1qQUrOLOV0c9599iR73NHhS9Bay661H/pGIL6qEoCzKhk/E6ICUoC23P0jnqqgdnGWrxBK/fXDO+OV06/oI6JeZDIePjWbJHwr88J8h7ZctRTlhA57VNB9euIpxx+Aa2GLdR78kdKCxXRRGT19Niv/sacDWDQck72JDZBA9CNDElsYIzhbWpeVXDGBLnggsCHWjnBtqcCJ6Mhjle9HQga8YbWBKIrZHoCD6LP00mgitFq6gc9OH8j2TQc+5HocfC8KIwPt4ftRb0HG3JhlnXawN1IIrOT+h0eYNtLy/DRVB32HxrrdsZbIGI6fYk3erBM323MR2781A68FVEgx2Z2ePbv4p5Q1Sp07i3wUVNO5nMhZYbQHxgBeUmWQJp+zk2XZbLVjtSMfOC05gGdgD41p8UD1wAFW3+bCeVBkuXD4alpUfBPkXmWRt48qS8mfoRdE8dMsSZOE1z/HufX0Mf5yGQ97SYDhXiPQ3bmM9v3e0wWKYTnRd411O6TQxV4KPpW/ig1fHo4CpJGwLq4Dqx114edclcpLaDgp6i+jAkjQUedTJESbX4NOW57z+myEssXkKXPmGQqd50CtJB3pq1QLq93uxss6ex0rsRteq7fx6iy5I3imH+faEf/quoZ5gBXwJUWGTmiP8aksWKiZNhDXzM/jPZEuoG1dA+rNm0Vy9IjAKWUoX3hzg0O0vKXLLRPgs9wqOGOZi0xN7aBNKQfnhQ3zEMAdqZHaisa40uP/8TG8fhcA5/Rpe8cydf9mNBjGTKHj/fCOaHs8FcJ6KXdGRuGrUBth3Xg0rjorBhaVa1D1vFLzQm88PDqygdX+mwOo3zRgjnUdaWM0aG8wgLMIT16p6QV6sILxN7cV4v144emMMysqo4Is3m7B1Tzp8HFqEbabnYZaTAZ24agQb1qph1i0VTodY3lLbhvGl5YDiq8nklQjkTTPj8QJjSPSbKHSnS8KzjcvYcPpq/pXhTNsis9lUPwSHpjniGl8/Wts6hncfFQGYbM7xBi7waIcG6IasBMlPFzkjyIKTrArIdK0flrbMpaP+VsCWguQglAuNbvOgRO86vjryBz99Hc0tF2qwoTME7zkGwav9DDfbY0HrTwoZa4TDhiwt/u9ZKtxSF+Xld1ditOMfnH/wDLs9NQK3WMRnl6Rhg85VmrrKm8Y4JWCkgjJ8CU7iLNnn0O5mBr7BqqAedhAsny5nsbFV5LdYD55VebHJud84bP6Lt28tZb0FoWw52gL+KRjARJFTUFTYw7uGx1D+FH+yUt6JySeOsVLsMgi5Ow4/JxqAdboZdMi8wHDy5HlLE/C7gBJnRmylsm3RFBu4GN3UlSmtfDJUJLbRg5VOPFciALJ9DTBq4CaoQjqdeDiWb3Xps/e9SmjWnQDek4foQ64uusf2Q3LUGnD6c5zl7z3FGZt66ciV41jle4puF5jCcynC+5e7yf5ODXauDOfBbzVY7L8FRpz9i6H4AIsKzqGahRgYeKpQhvc06M8eAZ3Xc2DrIjXUclDi6REPKVVGlxY8baRnzcKgPv8W7J/xnG69e8GvRjZSqsUlmGtynufpjeayoOPQ0VQDwxka8CG6mhYMKmD541rM09wG/s1aMMfhCaO1DBssOA2v6ybR1b6RoPPfaeyUkUTBMeOgftorCjrtzjXfuvDkeoa2nnrO1HMHSYsJACuXYmBoIu9bpIIqdgY49eQwBM1YzHN3ZZNS82U4bfCCR5dbw8TDBfzgogR4/VaBWs9hHj70EcsUi+hTpgn0il+j9moNbHcZAVt7prLyuliYuXUnCX2ZS7VrXGDB6Vds3n0Bpl9Oo7QR3mjYaAqXr5biK9FHVBXvz6ntWtC4+C+c22QHq9O6OGaVMTq91+X+VTrwcVE8pI8/SwsziuDT2xXs4lhKtyzd4PLBd3h9wJc3W27H6T8nQO/xp6C91RF75D7ibl853tLghIc+XcARczsw2fYnqylrgsmLCfDQeCNu8IhDQ/mTsHK2Otr1mcK5h/ewLNuSv6qOw6Z1Fqi9Vw66fwWjU0AzXhiwxJkjbNDt8xlyv7wNwqQmgcbnuTRTZi5WKo2E73mitPmHLsbtmkD7dE5SR3UgQEk3GAZE88mQDzRqzXZcM3kcTJqaiarK+3DW5y/Q7LiJbsso4uKV8eTmdpfzL4ex/4lwuntDAwyOVaHCrSw6436Pvjh3Ut2FU9SzxphvWO7m7yG5PLDvBjZ8HAPzXdJoqdZ0ev3YlmVfy9Pt2AaoUwpl0bNeYP1mEpxxTIe4xYZQJT4XmkQ+QeXN/Zw7fzPHjFrFhr9LwELQnOeuXoKHMgLx0zhbuEdj+HncYTwl9QF9rRpIUusCW725xtmVZ2i3byL1FKexrzuCUO1meCi5k3f/2U+pi55ge88P9uk9C5Z0Bd5Ep1DExxR8ulcXFDtF0a58Do4hTTqVu5lfXXEE41UOEHgBQV8ilH0eFMLoG4JwTbkbjqtuQoUIKbi+czFXLX7MkP4E9E/F4sK0B7xt20yY3qENgWWKmJ2eQN4h2bCknHCr53lyX62IZzvWY8HOWrr7RJcj+7SgSHcIhdcsoVfz3fGDozP2LHqK5qW3qDfQh2zyZdg1uBAdRKSgpmMtLnAop6Dtavx5MIH0TC3g4gJ5qPj9F/d9+0bZP46SxihZcM7XQ3r9g/rea+PNnqU4UCrOG8Ne0oJ3gtQiakOWmTn8ttMSNny6x4O70sD0YiixwwQ43dEBykHRsMr/L+WezqH4VUrY3awMqZYdFPlnESTGKaDRIwMUWljL0dGOOOGjM+DybFSIq8JCUQ2oSrBHFZFFXHg4k72bFemtWTJkp52jtYP6ZFGQgtcTcmnOLyEw0peCQtk2aO1uA1NpebbWO0u3SwlHm5qSUn4J7atdB96CotBh3YZus23xxppWkr4lDxFmTzkpR5SX/xPiTsONEHUmAv2fisLHmxPhj78HZi1WIP3RL6nmcxMLTWgjE49CunzSjDJOhLDfKEvY0aNII2+m0YcOd4i7mE1Bm43506lwWPY9gV8Mzmaj/57Q7/6R8MG2EgxDptKUfy0grtwDic1ncfNuU0JjYdotfQkk/lvOL05NgAljI2nxuVO469UcvLMwA2ddDIaIjtUsvmk0LI0/j4/E1HGfmwRMSbwIvc0CNClmgL6pP6UJj0z5mcBIOmFyiDmpmS+Na+XEKcJwwvAg+u5XomdeDfx+wAkm7imnueND2CF/D2fG3uJtY/fCgl1yMMPyE7vf/0wJEYtQ9e4JdIxMAMt1TnhyzzC9TL4BtRcD8PgufVC8fBbG/kzjxzXzyGLiEEXMsCajDWM4Wek8Rv8NR/MdIZTyTxF2TpnEts/f8dbNq+DKja/ktEYIYoYr6DyKYtj8cFBHWb75TxpMu3MgVPg4hdp1g8dHI55l85Mu3z5J8Y+vc+xnQQg8FU4lLtKw4PsNrur6DVvmCHDqjSfsJKIOUbaP+LNNAQvN2MQF55BfdluA3O4XaLPvDMdfvkY3/vd+8735dpc7FzfJ4VbpuVQ9x4GWzjAHrfoHuDd7P+ika4B74xA06cghOyzBNIWXmOl3GZfIh9OBbfqw+MEi8HCIpYP/OXDbt9Xwbt1Ujt9ojgv1zoHMfGH8OTUQmvdNAsWcaxSuZk+a4qKwJewpnrRLRqPqEAxImUVK/laQMfkKHf6iAisN+6Aypx1UrO7i0Fh3dh3q5xW/tpCYVh89cfWGHxJL0CNHF3wkkB8t98K8X1r4R3QI584y5GPuyXBjmyksHj8ejc91c6CcFPjULCfrB+vRoD6LRyjPZPWpEmB20Rp2+Qxw+r9ZeOqyJM+zJSjuuMR1oQ54cTiEw19ZUtxlOVxp9ROS3YFrfA7DBVNXmOJqAPvDevHR6oW0qXw0znIYycNZ0SxdfQmD6ieCh9scDDK9hmd2aEH3xE2csmoHmyabcpFgPl7a9wUcZs6mqYfe091P8nwrpZOnREiAxPAR7lhlxc8P6MBW7W+oOHaQI3+NYLX2coxQGcE7Uwsx+KcujCoTxcRTiXjedxxb6zdA/eSJOGZRDzpPqqczAyPhTU0DnxaUAg/Z3fjdbgWl+8Ti1icveZSlDSTm5RNv2Mfdd3UxoFEKH6VpgO/bq+SzTIg2hzmippgMFTisBN9Lb3n5rhxebb0enFLnUNsDBVjqkMPuN9bgpfIc0lApI/2T5Xh/7xqwma+Lz8sjUbK8hN9MMQeTmDTsqpNnfU170unxI7UbCbS4yJ616udT0wchipi0jwJdJCFjngtdMXzEh6ZVIunGwuNF9bQpazo6H31Gp6b3At7ajudnaEOrRyRvKpnEHrljkTbvo/Oj3kDTiNeoc3saKlYh3tk8wOL7DSD3QQuU7LYG+6V5sLHAmvPG1NOPHe9w+c7LfO7vB8Y3fTgRR0L132YuyfrEJpGttP+8D/elzaEn+fUQ6JfL2as34pngqfi3VRB2+uxBq7xqtunaBHtbnrBwajp4BjvR/nBvKBc6CZGDLtiXaw6HqhVhx0VZMD1+CMIvjsHwFc/w1dp8ru/8zX7ep8H4aDqL/baD8x+DYVKqEzWNlOJMzQis3H0bJr/8Cr2dZ+n9ydWklD6LVzdKQmtwOH8T2Mfnpn2nnKyRIPRHBkOO/4TYQxbgniFFQjHJHLPcCPLcxlOrWznGX3yCRS3qaH8lBUvS0shmzEze83UkC37ZAGk3NGDo/lSYohFFZlNfYaKKByvuWUBNmpt4ls1LLvyTzUYV/4GvsgScvTsRbiQdpcBHeykrRZWSVh2DMqU96D/0lZLWllBssT3e07YASP8FV/cU8D3fx9ijdwYMk8bSrNptVJn+CuSj/ODj1clUm6wDXSvy8fAbV7ofuodnjj7K05u20iElGSiLmka5exaReUkSdZ1TBtPPITTX/TQfbmmBsad7KKjpEfRN0mTvS685S1ge39lIQE+XEjy26IKDlp9oqrMxj3EBDv6wlp4u+cBRyYOkL99LN18up0v1NvCnNJwm7ByLQ/cm0tH1Mvz1niomKIbRkRk6eCziN6QKWcC89Xbgll3F3rVRfFxvK3eGmINfahQqCrliyhJZ1Ixy4ppT6bj2jyUYaLpApeNM0s7aB56vpclOay90nJ+Hk8RUeYbHVDwSJswDhTJwV8WZy43y+ZeSKZwYsQ3o1EpY/b0YWhYrkGOoLIQMPsA/KZpQ75yB48dk4wTjXno6+I5GremFAyoradaCRLRo7UbtpQ70t1QK1rW/Jz8lL/CwreSaG39wab00dBwSh45T7fioxpJud2wgYd1xMPdXPHjKLUYF6SR6POYkHTyixi2wjEdEzwGdT9chc74EmkXowr2u3bxM1p8y3RKh6sxROMcjuFYkgkRCHTGs5Qy1cBkIrjaBvSlx3HZ4EdVay+MmYW20lXzPlL8BHD8X81L9Mtiz4QzONjMF0/nB/LZajK+tE6GXF7P5+dP/oM5FFI4JC7PTpF+wU/o1F4cSzLcrIy2taLyx7R12Z3njTdEn3DXdlPOnBrOfbCNvFDCi4zNtobGoGeKdj0LyrmxabyfJ60Q+wbWZx3Gg8xIeNZ0HhgeSwCRLHNbppnHV8lGcoCrHYfMiyEjVi9Wlf2GTcgvPGL2NwmpPseMsOXiXegztLcxIY+Q2dInYTrvuHyPJxSfwvV0CDBiVYr/vPUj3HAUV8w6wSxaD7Kw9NG9qEw4mfaMTg84c7HwT78/OgkNftlPGXwEYb7QAu57Io0RRO473sMDKghose5JC3Ws06Fh8Eh2UWsd+z8ShrKmJZGgAri5+TAd7nVn+RTKJSMtit9VoSl5jjsdjGAWMEfqP7aSK2Wdwq08b0rd4OP9lO/sGz2eX5HZ0ykthcZUvIGGgCSWVwvyfpQasThhFPVtWscGlI9xW/hp3x33GC73jaO7YTnhvpAG7LOshdcoJWLG4Fi7/S6HQRd6oamfLH4vWAnqqQ8fnNFx21gQOzdfF9KE7WFgYA8fqdnPtiY1kF1wDa8f6Q2zfDPS3kcKNluPB6uopUtbyg1WLpkFLYxqOU/4AtXu+UaRGM15ADx4utYHuN9IQe3oQxnxWoYr1ebB7rDp/CF3EMVIPqFXRDhrnLQeb7Bm4zYqgaU4f/n3kjKPahDj9dSN9KhDiM2M+U77oRrr2S5XWNffDf0NiYCUaR3drflPaMUcabS1Nw8+3cETTeTi79xX+OH0URVf9YHEhFfiWLY8zPXdA0btlMNfmDKYmrUIPN2XK2V4FaodbyOxgIK9R0YaN4x1p6rz3VFd0jg02J4Ok5190HmNDNdsN4VN3Amp7fGCdXhOInTiTxh7+SH98d9O6+69oc9ZqDtjxAqKMd6OFkTJu8qoAD0N1mHM7ihxldVhUdTLb5Yljq0wnz/jlQjdPvqUr8cWUvVie1v0ZCSrOVby47Ryl7TSEjr12ZO1eD60n79KxzitY5GhKC6YvgPeaUjDGM4vy+iPIK1MNci8voyS7Nnzu7IeVXgVUbytKHcFWeG6/NOQs74RdrxKp4elcVihfgxp1f9BA8j9q6JWBkrosVBcx5QQ9G+j6sZ5ic19QmWs2KB2No0vHQnnuaHcQVLnEDa3+VBV2mTsWKUNG7jkyi/HnW019kLByLfpELqavnzxYSaYX+1MDQTY/j++2CIBB038weHQW3/Fbgfd/jsZrb+7Q9h8qkGppwP5rrGnHxisw5D0C1EtseJZSKpaPDIGhlI3UlrkSp9U7U39JOf3YOJp7ekew8H1zyOMCLDxzkARe3+BLorb8xWMcyVZG87kFypjrU8FLAkdj9lKCCTNMIXuKM16+HYafKw2xUGYdfkq4zTfO2ULhNUHyV9yMCRNMoGZpME93mw09h79BZJM51ZofwmpYiSVPFjKZOcLbYz4wesAernsaUMONHp5mcpO+PH9IDVutOWxqHB+wc8IHrbOpTuskiKsagP2HDBT+1gB3J6TxtuuPcflgJJ497kLRj2v455lamLzNmz9NNIZH1vpQlHeYX0jqYkZ9NK1YjhD92h7LS0Kp0XcVfDsqTpmmlvC61hMsG4f4ZOl3tFwwGkaRLi1xXoHNC9ogxzYUVxumguBSe5i7cCLqzZcAU8HTlGM9CcNMjpDmlw2QsesnL76oBV7vL0J0pTJMe2/MwdJb4VlsGCz4sRdeDDMsHadHdycsALnNijRrwSk+msTwafpkOqvyEatzJFhhghNi3xaU2sB4+40CRuqNwVuHI3B7gTaMuxsCTrOLeH1FOwyrBuKKACfeEVvJHRl9rDzdjWaWt3PGujHwLT2a/ecZgLGSPruFp8CXS/ngs3s+vjGIoY9NLrj66DHcv0YHEoaD4WpcKUVscgfrouV8ud6Cdo61Yv2LX9jBLYTiH3yAOysNIGZFINef0YGQI8LoDlvgGr3AYyXidEexmtvum+PwjDKc3CsF5xWnwuHTofyp+h0+bJamkGRfvjPlCobptPKxt3IQeqAEFozXBNX9S0nltRR1Vv3iST3O2LtwMkk/vc4bdoriVXkzEtgaAaK71MB/nj7J/Kpgpa6r0PVuE/VLqPDHponUITgKOv/TwaYfRvxaShQqxFTxooczZmkzlGj9RrfeObygbQMbdBWR/FA0Wwh4UnLaZDiy8x+u65lDInKHSb7IiUbq70TRlbmcs3MKPph2jmMPruXoUAn4+t8tDpS8ihntZ+nDgymkFWiBX973QZiiBQSo9+GbbFGczpZgWHga9wwc5T7HYhwnOh6Pf1uDYtpprNehitJHvrBKcQ8YlalCwbI0PmhtysqFFpzSOBnnhMwHD6VUFlqmQEtexdGZFE8+lToCXl8Lo7D2MaSw9wSOCx9DsbH6WOKWxjlJNng0wA//itiRsqgdvDWyhF+b/5HeCCQJ/WRaa5zMYQ4L+L7Dd5jdtx/9vQDd96mCyMADNvTyg9j8p1R2OAoyr1ZidO12rNswDyrGqbF/rj/HrVaHuxPV0cBsCPVz9+OVYWeMMzeFwX4tMJq8Gua934PO8imcpCwCGuLH4FnhbfZdrMTivQewOn0IDsQq4N0dhE2JSzH9NJPvHx1Qoncwfu8NSHyehfIndNl9xyTK1I/n3j8h2NMnCb+V3Xh9iyLsM/4E+vcmUFTZdYhY6IIR34vAYIYepKab8pEdQaC+U4Ib3Exhkutl/mj1GmN7nvPQR0XKKkzhiKgEbtJ2x7FJw7jpuALFdAvD7BsK4PfWl6xiZ7HQoAXMujiVPbdswu4tHmh2yg6HlxzBFSpGENEQgYGmGjj0vZ2fy0tg5uUWaFx+mdv9x+DS7G+0J2sV7349Co7YiFAseuPtFCms8fGEidozUSvDlvYtvAg7/Z7ipt/K3D84FprbPelZqD36P/tIkdKBUDnUAqUjZvANretU27sQxf+MhN+SY8FmchZD3Rl+1JfGY5+fJLXGaewaqAjnlW+wg2QHl7w7iUaLZGH2dxHcIboX7LNW4vJAP+zOGIRNkRX022whmDfW0uPhtWBXKgz49jE1jbrFfeEXYF5sIa4OfcZPlWKg8FIGmjWfp+IJX2GJngi8fyDL64OUqLlRHG6J+OLS3hr6LvCdpy7qo4HHyTjZrhmWGepCR4UQcVE0hh/potrSdnKXL0CRtOuARfW4/4cuvPsvE5e+nQwJQUX/6zNahXijsdFbnLPvNd2Z851O3rzGIRFL2cAnFd5NmwghB57AMtHZ5HvrFZ++M4fzti6GjIwbMPxoHstvG4OlfzQRr+hCfm8XfTV3gWKHBr7e6IWCy8u4tMQdu+A6PnePgtK6cTSy3w7iK9ZR/Ol57L7bA++sG8dLk0X4vqAb+ra+w1/PzoF4yShodTABt9W98LclGabKWEKXqBqOOysLFvZ+yKJP+f6teprxNJF1DxhBxK5UXiEgymP8tHjvii3kGH8KB0olwDXGHYVvvkXXjyUopTQaZl0c4KcVCmAbHQKPV07AvCwJGKuiTp/Sh3FT3mS6YhXDW5eLQ6vOfdpd9h+7XpGAtYYvuPPNDRi57QGMeyuKJ9NMYIa6FX6TIfig3cspuaPJMXs/HVgH0KVwAdfsrUXVmkjuvzmJDmg/wobF1qD43glNVHLotJsCWX6o513PWqDn6FuSMltMoTvy0WeHLQp168C/Iz/ZcmkneV2vgNHtvfDvhwYFDDzHfBFVqtx2i+I2fIMpJQDZh7/wk8ci8Mp9CnSr98KaCjH6UdlD/WGjYKD4F6z5Ox/K18tBdYYKjbnXRKmP4lBsuygvUdTmjJ71HFjtg+ESgFs/Z1FwnSW0+F8EDzFxvPzKAhaOaccjWkehNfog7rwsC3LhlznrrSclVWuDQ583+fX5MD+7jfOrL9AnkQjsVN4F5oc3QNOjj+zbrU0aFzThR34xbfGTw9vHJtHWiHiOv/cZmosfw5ZpN8n+ozZ6tBazTacgBGeKcczGxVBZ/phCL56GsqQB+jr4FYZPFKFNsj7PzemF3Rr2UKd6Ft0fmOFGnSe8+/JBxLIvpNs0D8//DsHpG2LodMATTlpmCssTl4LPgnBwSguHf/LT+OSlcSC2wgxiBg/ASz1DmuGXjAdEFWHvw+M8Y3MxNY+/jr+bbtPASSPw+9cOU7R0YcYOL+rYp09S7iJwMOoRYlI1FrpV0FjRb/BFZhtZvQPqqqvCaZFP8HD6dhSlkXBnbQMuCvxCf/pHs8ZpdZjqKo/SIh9YVkELl112o23WcyHijSyYV/8D4yuK9E/uPTYLJuDdzxrwulMbYJEgx+QWkyBuYzs5hlS5Kj5SepG+HiJQkxVmz2V7sCWjHAPSzKnuTQBraSryCdNJwDELWThcliT3W8BkNTO2qzlP4HYEDqYrsMiId2T26xCa+hjDuTtfSNOolIZWbOB+kT1oGxcOLx7YwIbyOZD3y5I9bJahdpIEhE7KwSeRfzGz5AVF+l+gjOrJ3CTeTaEL+3CD71OgMX8ZhsUgc881mL5qiA/9H3H3oQiEogYA+B8iQkJWGYVkk2SPQlQSJSWVhqKoJJUOQqKElIYGiQZt0Y4GEqJEKmW1hJDRlHEf4z7Jd8+MvcTHwISbqyDCfBGu6x8NH5aOQpXV5VDiwnDqTiatva4GEQeq0HnhT5B/KwZTixfTkNp7cFsTwM75QnAnRgIOPbQD4fM9kNC1gp9tXw3tbx1ojeFD+qQpgW7Sr9k2IAGy60Xhs44+LNznB581X7DO1LOw8fJxiLuzDnV8N+DTMFFIc99E2700ILgmH2dVRpBkZye8GorEQ06beOG/8xzSd4UjxotwjZUGTT5sBNo/NwN8WoBjt7yDlM1JEFigTBsOJ/Pa3FrUvXcDeqeY4Y4QQziIivyj+C9d9ZXhX4fPk/WRYWw78x3GupSjf7I6VDj44m8zgsq/RiQebI37fUpppcAvkjAXAlODlTxZdTTIi0xgw+hiHvlLDxQcGtGW5DC0pREM72+hlcpeWCkwgq/1ngHZ80gfxK1pXKY+fP1kgNPiqvB0cTzo1pmiVlw/LVSfijG1q4hzD0KPwUM+l2sJdTCCpJ23wl6nrxCR8hsmGCfTeV9xDu9ugetPt2HtZmGatGAqLHYUoCk+pfgybgubqCtwo78Haq6pprPl0iAy1Q/2ryumtNcicCr7Bgn/Xkbu2irUxgK4rcSC7v1bhWda3vHV8d9I2cuTWF8ATnWls8pUE8y9N5lfYzfz3kKK1ejmNk8B9ta7jyc/RHHpx4mwee903j01mpffcURXwRHUtd4ORi3Zwc56Y+jtrVl09m8MJF0Vh4jFU9h43wx4M7gN1qxoxasx5ui0XYQPZlnSb8X9JOT1mBcssYR7N3W57rQE7en0wP2XUmDmA0U6WvKaLl3M5aXnpmPAJ0WsfmUKpfmLub15HigObGedmOeg+8gJr5geoulYy8IjdnGSVDCo3RoNItWzuEzkMfTfrIeca+qQtTYTjN+vJLMkZ5RLsUMnl3PcXKoCOytuk0J6DOXGjsLpBU1c7BrAQVtUSE/NA2tgM1pfSObVS02g6st1NPmewvEB9+nbKTc0Xf8PAwxb4eW2x1zbsZv9W4Xx9bAlKP53ihY+SebkpSEgc/kbb+pvwIkvg9lYtgm3zXoEo1zt4U7MFKg3boazoW5YHzwf9e8ewc6JC+n7YR+oWN4JWoISNKcgiWfumQInDzuz0IZC0Fe5R1K6xXDjZxmtVFCjzqAkOGvfB41iJfT1vTxc6xPnq+cOQ++hICr5M4hdk6N4+2MHECzYCiXix/n8OT++riQJJ5pbMHpkCy1+E02DvX/5xLUoSHiQSevDKlipYT5O1AokKz0DKJhUgbd9XOmH0Qjoq0EKtp1FoYeMeDD4LOTZHKcA3790JkodzMc6UFadC5cMvKTQXY74IiwLkrrXwZUPd9Gvah8u6orBuZHW8O3EYXTI0ud/2wsgpT+PRzYl881fI7GnASilShDWXXjEK5vGQvCFE+Ay/jXPmRTA85zT4KGqOPorp5KOcxWuy3DGaqM9rD1N9f/m/8p/6cDlWXZk+0eA6h6n8q47L9n4ZBo7vT1O00Vdaah1NfpoaYGYfyt67JXDr90LuH17F7T7/Ecf8BA8WWSHqe2pmPxrgMpLCTTFGngoRhenz5NBCc27qPpLHhd5tENm1xFq2P6VIk8IY3OQEuiMT4XaPWL0IquZ376dCAWnLnDKnClQ9HUOTlQNwoj6B1hwaATsF1ejzPebqXB+DgzJT8Nl+mU0seUiuji+ZPU1WTjz4laeaDESagc06c6vOjD+lgWuXv1wtHgXxWwLhIV53nS7aQlIOMTD8XFqMHbfepQI6aXHqrJ0Q7SMG0Q+0EjpxzTjfA2HJs/B+mwDOtUpC3XDYigS0UWB35bCohkV4B0tSplRr8j9axkFemXyg/SF9KAEoXGpKvxwfYcjBgVRq7KMOuW38F2by7TnZglu/fgG1MUfQ4OVKvREJ+AKm076qusKU3zewrdLyym6wo2XvdHEmRNc+NmcCj5fBnDyyl/0H/eTP00uwWdrM0D36lJKHmjgceqL4FnCcX744hKt368J6mt1wFxDlhZXalBl+EFW/tdOBz7OBrFbyfx96kyQ/GIOS1/IQdGry9iveh/3si8tiy/ADf914n3nQt5TtR7fzy1jabWFeLdYEnTOx7Fr3iyUUYtHy3EAyo90qb82BcpfbsCTMzaSdkADLE8xB9uIT1goOA/mH/jDH7vSaYlUAJxquQDZqaNRaLUPJFc4gUecJtjEvYS8c6N4b+cbWCFkyuXLvuOAwRyYtT2dK58U4Y5qGYweYQBdfVU4A21wj0w5mIQf5k8RD1A6fgzs3N1DEm1HUFAXIG2DITyalQM3SkJgqcltlnIX4fWm+6j24Sy6c0cFeyIa+HdlGhWNmwZmv8vRVEOP/0tK5Vl1J+HI74dUJiaKu1aOANeF37Dg7zI6EqQOdcGXqCZxGsSv84SYPHVsOBBEY88vQ4maSXzybwPlr/vDd9sFob3rDT475MX5mqFsfsefrNSdOHV5JElLHuGKO8Hs0nGR/O11QHx1NmqfnQQrDjOfd7Ig+eQptIl1SWV/C4ocPsHvT5jzqwJJkJWchscfHQP6YkNDit9RX3AcH+vx423fT3Lm58P44YAbCQxJQpC7Bos6BbDQpVpo9xmEPK80cGz4SLs9JuOI53ow6kcfx62UhBgjIzjtfINhzWxeKnActYvm0sSHkvTrmDlYLqmHFQpvIO8ewOrYAVDdN5c1bmeD64q7mLF+mGZZjOcX45M4LnwRhff08qQeBHvXkTid1emjthz1RMjjO2N1ei5bDPbfT5Nh7CpcaaBLD1zMYfFtfbww4AOrTzyBrvhuUOg7weJuq+H6uSbwXrCRjHZa8uExCvDVxpHOb9mA115WcVteO783qaQtExdR/4QFdOCpHOp0pHL/y5Hw7lEi/2otZkgwhLcLpPDRHH12fnQSZ8T50Jtl1hBu3A6lr2XBfbY5+x+9gTanhPj9hFEsj3uxPqKOCoub2bfPlF3dlqBwiyGcrI2BO0YSdIT9UEtalBuTC+j2pf2wYk4YFbSN5FIRIp8iZcAwglGzA7hqoAR0Yh5B3h9ZkFMvphBZAd6UFwQa8yXYykwcDMX98Nh0Fdb+byoMa82CVzXz6fnQRggdXks2Wo5csbyavD5YwHLvAAwePYoPOSfCAwkNWPLKmRWhmzweinLElzH0xOYMms+Thyev0/HFc386O6OadOPssOREKx861Ahp9+z5b9YTuGHvTo++T4X3Cpuw2qUTVvYEkl+5AN39akM7y7bR4Lw9NKUnFFSEPPlAiSKszD6Pjfum8iqbILbJeAodvz9jRPBf6hm+SIqV/Sx6/ztUBk2DGhNLbtydjtdvyWDbyiBqDT7EmcJz8FfqNXJPmsxrry/i3XulgF0G8di4HL7/WZ4kC/NwmnA8Kv8UBsORXqg//zlNTQqEayuMoenCX1iXKEAOGRW8OH8D6l7o5dNO33hfiTUrKSZytHE2fX/NEHxqCR18sogf1RnTK0M98nu1F7IpA5MdprPri9WUJB6A33YowCfpN7BgoTJktVyBjpJYbhjMI9dgEXB48BgSJWX42Q9rNrmmCC4tkjg9bifmRCbRW3Mhbk06Qbce3oGBJaNxqCAVzgechf7ZuqDzIYf7J/yjiNRA8J19lipszvCzOeeoRUSFNhyypQeKtqwkLA12RdvJdpkLLS3ZS6VPJvHEBYLgfPkgHn4ZgcVjhOHYlsN8q8UAtrbIo+vX07hu415qsOjge6/SqeNtHN8YE0QPhn6grF4lLFtpDJEeU+ja6kGSa5hG0St2wY4VV7BA6QcfcVlCEj7+8Nq7BgYWyMN0xfOw+rUa85WjEHlhHVyCTlqRfYMMmiTRP8+TR3fm0zMZc1g8lMYpip5kGywJkiODsaW7BZ+OaoCDM07gjUQhfJ15gkRr5KDrzmj2G/+SsqcD2SoaU8tEC5YdMYI8//zC9Cgr7vb9D4XeakGhihxsybfCK3XS6P2pAOaunM/SOmfx64hrlCwgiUtv29PrdAt4NWM+fBMa4HpNSRg+OwQXwsx4UZQY7stdDa8qGin+1VpeZCoMARrp2H3DlZdvOMqztZfBsmX7YMaMXSAfsYrWj3qOo+JXQ5G5DBisec1ZBX/w2XJhFAiMBQP1ubT3aRnFPjDBnMpquvR5FESpTABfF0nK9q+An+MOk7aMEYqqusOUqjmwcVkyCxc9p1HquSz/Tw/GJ18BdV/gjM/GfE9QnK/NP0pbI9uh/oAxX25qY2mxEJKqNIG1cV9A/Xsb1d+3hlm6TSyW2oc5D/MgYEYp5yvK8QsXc9riaQx1oYn0Ui2QM8dd47yTtVAuuQR3mzuhS3orqKyxYH/rR6SfOxY8xRbghsEaWi9iBPVfVrBahx5Uy3+hZ/lZ5D98lm/gRAzTYlj/tZP9lhiSiYY/Wso10GytFCjwNoH8cXsp9NJk/PzRAM1fiMKjTWYoV3aNTid/IN1F88Fppzvek3oIPz+vpJe3l8K9jnaQfKkF6/72ouWFjzSqpZpic8JhzJGbnHvcFnxKTlH5xwzUcLtBynUjwW74Gl90vAS/oxOoyK8QVywbhJUXj5CCJMCOPwn0o6CEv96aAsY20pT10hBWLLjIZuIt/He9Ogd1d4BAYQneuPsHTvcbg+iKEWCeuBzsF0/Hk8dPovsCHRZ79Y9iui9hbfsMqn92Gs4FnsXdpgYQXdZHYdEd7B5bAKUeHpDU2A55dhowc89HsCuu4WdjR5B85WiAQX9eM0YTFI2O0YcwAe6cpwSFq4RQbnUZdH8MYMfDnhh6QxNM3ORB6tkzmn9dDP8lO0BxmQR6yC5FuwoRDlrmC/NUl+GT0crwwmYEnjmkTe0bV6B+gyCXGUyEIbe70K5dRg92d+OXb9dJ67cN7DPxxLjgOLaTukACFEozC27iks+iuBkrWEjnBhYflsLQ76NgS/0UPO65Gjc+e0jn+j7jx0AXBiVhlFZaQx0OF+nqJmsMNleA3/E9UPk0gd9F+9OarS/41NnbOKRbCQKXI9nbXZqT//Vxndo0eH/tHDdXDGP3HnmyWHkSy5Zl4+LvL3nvvnH8ff128NlZy7fGTILXAQK4qX4y5TmNJy9xM3Q98Ivrvs/FfVIlkKYgy9uc2uCD2ETIdr0KBaZEj1OMcMkJW5g8XYc8P3jhpoZiEksTpHm6tWy4QxemlElTiGE16BVkwVr7YpR4tY+k0mzQsW8W+wRtJfjmzw2BDLZn/gO3c86wUOchOdqfZP3xpWiUr4B3lG7BhhA/NLNpxncjCdaEG7DZzApetGs5tuauYP5ygX6uuYmZp1op8ogWPm4bS/3qU+D2jC+osaoTFVYBCSbM5eD8HlK6nAbRz3Lp7bU6SBowIw19Q7j2/QN1JN+nSdufkkC9Db06IIkns9s461ImHwleB88u3sbx902hx0ic3ksN0anUP9x8fDtIyt9AoS1+SJMUaIrqKnjcmYUa1cowvC4UYc8JnBrgC1rnZGmXvg2nNF2Ff3cieNfabfj+71H0HW8BHuiD50NVSa6/CDJt0/G6ZBUP3CrEvxzEzgu80PzYBvqXrgBODa+x4Wc9F23s5c8xeay9MAScz29B7xBT1rTwR1/fH7x1IcN1p7dwx1OXTv03kxPer+SVYrFg0rGdWla5AybV8M3bJeB8Rx3e6ZVyr0Uf7VnaRt20j34VbObN6rkUfT+YNe5txSMuSvjynw34iPaDOxBeE+yATxKlZBMwD8vSIrBPowHcM9T52/xAPvHPAuRn/wEPi/dU1qjFRk/Ogc0WPUxrXgq3Hg+QSshcfuIuR6OVrWBNlD1tS5uNMVEBfLbhMHm4SfJh//MktXgjqljswawhc5QebwRzohR494nj5PBiGxzLWIejVn7HPwPaYPVoPlz/O4ezwy5hvb0aCMWa4ol5D+BDuRkGLXSELUaRaLg3DMsXTKUk3dWQVD2VP6aPgpsiYTjOfBjPOlqykKIOF1aZ8mGVjXx/SArMQiyxbFs1dYRMBPO+DhIJOE2qKj4QGz8XTMM6qOv1QRBcupecB3y5aJIozhsUgCWRwzjhgwYqZLnh7toS6vowFT/6m0FKXif4aVXTjTELoP29MLzPHosl2vrUpLOdZ61YRnWG1lzQWE86DsXwatUQi2WuQ90mITCB1aTd9pn/ZmfTBtN4lDhyjienOZLR0hbsdRhk4dnX4UyGIZSfVoeHK37i71XenH66BaMEPDgmoAh35WqTd+xovvk2iDabKICXrgP/fLcXhpe8o4z90zEhWAWrvsvCIk0bvqP2kap+K7OIqgXsN9jD0lHXKVg7lP6r0eWjecvxU/BL9AnciK5pyCEW53nnH1PYIrUPDpXGQ2xNCjh3VXP6Vx3e2T+HclR0+EHdeggXrePvW5VA5+5r2OlVCJ1zj+Axlwfk4n8SRGzi+PP+w7C69xWMkVPAahaCr0HGZLPlJyZ42ROPyaAfMnfw1zlDXKxuw1fuTWYlhT5uHW0IL2KEMDq/CT0qJkI+IzSHFHKf1Fk89UKV3s8rAV+FOSw0SxtqldSptnwXGHVOQqW0xdR09wVtz0in+QvO4JFre0EbrXFvlDzs9ymDwZbNqCg9hYS3lvFts0YObneFYJ0WTrgfyYVFEbBVZzykp5yjSxKLWNPuJjsnO5KTdzWPDQki4QeGnJGRh/dPzAbnaePg3abd4CwpAFkzU3iujx7vuV1KWz7OIa3xaWSzfiFbbesm/0YCy60ApPKaApKSILbWEF79cMTG+Sk8tUuHXKuKWfCnNS5OHgOpCem84JEPC6w+zCnGOyE91w1/Z46jU7IP8M2vHdiqfIB8+hDgnRyHKJeim4obf3sgzHWlf3FZRg6OlXdC75WNZB69kArl1MFKwgaj26Wh+fgIvlO1k+z032KZuxaKO1WT0NEhljNQoI5hOch19UQMnUHaZ2Zg4s5R7P/rGHbJzOaAdE2YWKAEf+rMYd5NTbjbK4UTlKo4UEIdn22uwrQT2aT0+jV7j/2KD8QaqPmCJ13cOBGmnxNj0eaxNNpOhx3Vitg2y5fa5rjShBOBkBuuBkYa8vhASQuSlg7AnrHLKQDKeOjXOZZwiqTNM/bDlmopdkhZz1e+OJDhRmUQzOpEu5QTNLYpE4RnLcFHIjV8YqcN7UyooyTf8dC32A8MlPRgz6mLvL5tNPQblVNYeC1d/6wA3sMyOPanGYt2rOI3GE5HOkWg6t4/XptXijNfTmWl/Vl4tj+ZNF9Eoem757hrzGHm5lQeuX4a9D13wT4ncZb8qg63XsuSWnww/XqQibtbd8GhdA8KuGtNYqIaEPgxjcY4b6M9eVWYbPyO846F8aO530Gt+ChsWydPeasWoeQ6Kzg0/xflhI/kvLyFtFTrFXl25FBybi6cWPqUJBfn4IOQubxJ2xRE9fvw88pa2hHzkPwOt/KCIVdYPv0zVk6P4MGrjrA2dB6tcySYb60Ldv+Vop7seLruugFC9nXAskmmdK32KL79EcOHcnKoIEMVzFMt8P77P/Bf2DOaNOIgjPKRJnASpDbfOI5rmU8apZ64dPloyHo7D+PEnoDUrtW8LegKHlp7HmcYOOMoAQvKnS0HhT+Y6m8IwP7eAXI/HceLFxRCT1g7jN3UTi9f2JIbX6EFkxM5YYcLOekDaDR/4ypJVwhcN47vFJyiwaj7pH/BlCN12qBgnh88LXrONrcUIe5CNb0VFqAzn39Bg2YR793hB6MVeqCtexf4SjbAjU6kTQeUocjqAIa8b4bmtF4WSZ8IFpmfeHVwILqMVOSGrJtUPlsQ4+4Lwdx/09l0iQZnH17Kqxfewac19uiSLI3P1PTYakEUR+6Ro203R8OP3FF093AB7hz0BWkTfaoP0oUxvw/j9/DL/GNfPp03CgGl5VPgU/ldOjq7h7tVV8DUwQkc2Pycm1+KYY7TB34xz5jMteThnoYmeO2LoRlLI+Cr12TQn9kJUuuRTcJn4cyEUu48tAp8SlNYIcwa4rcuo8CNAvhMQBO+PqzjKXNf8XGnTSRt9pquh1fwjvB1aKotA+GLu/C97RT00LjMPpN3o4JMFM38Fo19fcLQp+8IDS/tKXGxNjjlWaKyyQ/8Z5GP+QvySGO5H+0K9MUP9jdQ6sxNurLuAsjGWsGero3MoTNBafx2XJv9nsbZSGDIJgO+EJdEdfKbacaKbSC/ajLEC84g4aPL6dIYQBn3aBooz+Pgtn1kfojR2/Ud1P3MInENI1jd+ZULxgTjhpKNqN1Yhn/fZ6JV5CUYsb2SmmXiKdxmLp8ZGAnb2//hx9JUWG06ig3T3GjsaCGuucgYWDiK//b9RysCBbnAzQxEurex8PnvsLFHDoybTlHSs2C23JHAY6R+gX/hFnxm1E63NVWgfMU0mKFhjsYT3pHf7q8cnvGC88cfIdnMhTAY7INTDX9gpKImaAinwb5LE3nI/wo/lL2LlxXEUTv1MY+tFmJbryLOubWSJMVU4d9aH5BNeApG5clcezMZB7XCoXDbeJgbd4Qf/j4H30esg/VfLOHai/GUfjwL7LuCaOBdG+Uvz4GckqM4uOAY7l0TifE7vfDwEgPI8SrhZyIbwb1TGspWW2Cq9Swc+3sXGfmEYqTfeL43EAGvjqnAXdURYPLdjTwEj/KE5gc4/pIbd+w/iBstrmHSOuKVZx+w4mqA7XZXSMfvFlxODEdjLScQiznLkWLv6IjyRc6b0URnb6niYJc8zJ/mzGfvFoPT8GeO2e2EjomKsF4J8Pr2YOjNmUfd6MSva63h/Vlr8M95TvYtj8gk/DtusUwCTwkBuLD2A1tefc2Cd1NZ1UQEvDcHU333MLkkFtGzoBkgIzmOGzfPx44hOQy4bolKaWowv08VNk00gbvRchC0pxcwtJalfXRJJek/VCrTpkO7UnjyJXGa8dUMRniPRuPRt+jT7P2QQH8pxiMeomu/4s7hNDz/bAOOvp5GaU8ngFquBy1Z6URrf6fQTxqBcnVF9KNgGxcIPcVoqzk4pbwCa4UE4RIWw6U1FVQ6sZkHFqVAvFQdm4pL86fcch6alIJnDtnh4/1qcOqbA7wq6+fthv7w8EwU/kpQRD/vTJjUrQhNG6RYbMwn/lyhCq1Xpdl9yzoYOlEJ5m42aNtiDRvslDB3xQ++5RuPE6068Ua7EZxQeAAxii+g+h+y7zNZPKGpxKrr4/DD7nh8YatJSZ4yOE1rGnhmPuAB7/Uk9qONrpo10W5ZPR6MTmPLR6FgvfsVyUhkUESoGnyzFwTH+7JQ2/SWuusqIMbmOe96WIoSfR54JLAdBkY4kPcMCXA7rMe+vB2N9UsxxCoDX8WPgSXn+nhSWiELakvBp/H72PeXCGgUHeHFlXUcWxRLysan2b5lAN496AaNA2t4xnk7vtazEESareDzwA2OL/mDgqf8uasjDF0SyjDOzhd9FhfQYpsIdIpSI5FtaiCxxB9kZj9G8ahHaBXViouPquFHh/kohp9Zxuc6Pn85g+asVIdZQrdJvyufXCS1YUmeIGx+1cAzjYIx/E8fhCm/h72vrOlljiHYfgFK7JDiyq1P2eL+IMrbhpPo91RwS79FE2qf85utO7ikXwQuz6qjXndbUv6lBGuDsjlOXo73nRoAnK/J+QfrSSZJAm+rSkHD3+MY6a4MC9CV755F/jSkBZO3SuFvDTOyN9hCG27+Q5wuDs63k/nVog4c2X2Ez6iugIIZbfym7CXPX74FVvE0fNYcDu+yzWBHtRqWnZAigU+LQchsBFmnp5LHaGU0NbqOEVWf+WTGLFw7Qxk+Zolg9stBliz8QmWnHGBDFbDA6UU0PfE3lwkassvSGgiUMARvTWN8078LgtPi0KbGAlZ4JFAmnoeYn1LUfFKEJ30PIA9xORi+bgsfkxzxQ9YeflfQi7mnc1F80zSK6ImgXZuvg8XtnzCrWRt8VzjgcrmfHKOjjS7OSvxDxASNDnTTiKownqfnhZ4ft9DYTSpwur8GrcsVMU+nmLZpZaPzBhUWq63lkjoPLDC+g0/awnChuyjIejfwtzWTKeWFFC3olYUd87PBqH8/LYvNgGXh58A0ZxQOGMlD+/Oj3Hw6E1aPbsYVxc7gYLacZy1cjIVv8qhZvxRiEwpx2S1NwJcPad+YxeRbOwvPjk7nDzcnQt3jaHR/W4ImoZvQYF4tOd9UhkS3hXjTVIguZZnhiuIP/K/RntR6l4LPBEkoeOLIk478hYObR8Lne28pQDAVzoY9hQVzsvHoc0dql7bF8jMjyLSxC7RP7+SYH5YQMvYWCFqep/gaX8xKkAWzG7U0tuUhP3i3EuI6jOCpgjaV+OqDSNN0nD48CVpq32GHtzVe3N4DT57JgmT7Asico4Tz6npBYcgaTtvfRUWp5bT4Zz/88hii2kl/6dOJETSmdj6lLW6ADT9vYf+VceDiXUT6a7bCwJNCTBXYSYJq8Zxi9JlH1E6nvju3oVMmg/u6CaKP9dLNc0N0oOQCbfG8AKlj5dje4ic/fSXGEgrnue/6Ge7KsoT2ypmssekHDucOYc/qyyRma0sfhr5wcTjjnwNWmJajD37imtCe00tJG/+D2dZPKOuRELd3evP51DrMDG5nnek7wSQA8IWLLNhe3MZ6HrngPCUETkp8YI2o1zAvwA+djuxBmWgLFhl7BN7+Nw1UNAzQeFoX3VE5ScWOx2jRh2ZY89qTWvZ9os9+mThuyiTkLfKgrNVAAspFPCbIFc752OKDv2tw5pJBStogDMpjD6Dvj7m4yR3Br8wKTQNmotuIel4aGQMO0mvB/3EdOrR589x3IrSoJg/mxCuBdYUAP1I/AkLXXMCtaQEvl/HBu9VfYHq+ON544Uo/64bhcgXAlCsF3LR3FX7PuszlGdJ0UC8Orp/5AJdtvKFw9nNY4laMjbni4ChcS264hD+ES8FgUTWJK3/CzT/yUahPDRTfBZD0SFOsUkXIPfaWLKxXwqyQXBYvXM4Osos4atI4LMiuweta+ni2pYzmPLCBTvdSemK/FvcLWrFcgChcOduF55aPwbyVAgx1VzFoaC/IeyCoxiZiYeg49u08CCdDNrH60SN8c1woLruZTpvbzmD36wt4wkcO5qifITXXafBFLoM7H40G3tpGUy8FcfZSIpXezVz5+Dlh3ghwcBqLolq/yc12PWXcOQ/jtIRg+YIWKDPSwjLJx/xC2oQszwEs/uPOiefT6XKXBbJ6APWMvAiebbbYGlxG28bLkFCHMj59LAQ/9mtThW41PS4JxGjZIdQPXoPviuRARCqJRFp2kF3Ma8y5PhbKFSrYLc+VLgZaYkLTUc6Q7KE7IYl84UsX110uAf0jdnxPhODnivto8aGTFrbPJM+KuXTEvRF6ah6h7f11bBnzCTI0VtLAOElISe6A8CURJN3qBcO1wxQg+hIvZzbQlZZguqElxscO98Bd/bGwpf8Jq2b84zt3lmH6egkSn2lJ8Uf1WGW7CP8XL0XysXW4Vl8BBFrdKS3QlFcUScGZlfcgrCwLz/BpaB2xl+eu+k0an4ewyFUXLn6VoU6tAxSSPBsuS2qS5aRykhYrhuuNt/Fp6Wb4PpwOtQYI2jZCdLnejk0LVWHNzDRavy2d2tW08bTOa85fuhEc7eqw6ilCrPgMnlYxHgtKs3Ht86UwoKlHgRsfksSVELJTTuLpmS8xb8gMBMqaYEptAvpkGtIhyxFQ53Cea2+qUNF8exStkGPJjdXovZJhjPpClHtfQ2H+2+hoUjlIah9Dj4a93P76PYYdrCW7kl8kPkISKh9v5ZiDlzESlqGk9QdcEJ0Gf7uPwfybZXyuugi/JgzypHWToHJiN3mve4124Z48ec9T0hCsoyemayi7qphieqQ4tEaCNCzUIHGTApduWo++RU+gOtcNrDoGySviL5gZyWFHliPsXJiHHiL6sMF2EeZUlaNp3SdOvOdBtgdcyNBJjzOtI6G9Tow0e3+Af5EKPPdWxMpIpoW2DezpTxitsBVrdI9ywJwa2DdiBlcWKdN/q4zAQUsZg/YK858Z61E7dTsGX76FF6YvA4vZ2jCrdBikT09F508qoKjfwY+iAiD98iN+L6CNoxa4s7DPA6xdVI1lahJkfigfe/ZMhIuLvPHfkwGe4Ud8SsEaetN28q7YY2T+ews2lBby6RtmPHOQ4GiSLupPDmdpnwb4MvYuNw4+pj3jU+n9pQVsU7EGPz1PIbOniiB6cSld7RaD/a9d4K3yRygqnEnDIVvxhyJga+QbNJyvzgv/TYPvQyfoUMsFvvvZkFKVUtlOQQ2+1hrSRen7OKMxmePthXC/qAZ8mV9IK39IAt0yARhzBx2vBkLh22c4yeUILfPv4Q3J40F1rRY8PreSDz6+y99vqWH4uDD21NEk07x6qv+8k9dWW9KkTg2c9ksfaP80irFeSUY3Bdl440pWsDQijVBHHHf5MBa7ylKc9WpUlZ8GNj4hWCMsBJZHdbH34zOoN11Ff2Q+4a1v21jgexsVrjXBXbs1ACIdaX1bMB5YksfunY0cF3KTU9iVbeS+4v5ZOVh+oxu1xo2CiJ4e3LppM1z1UqDUpQk4MruWfgs4UvC/VSDrmc8fsqVR9rgQpHopUrFzJ7W2O/Nb7TPgfn80LV9tDPt2atMez+9wot4HQxeawCeVLAjyWkK957x4bJg9bQytI+WQWh4p2QbVXqJccCWWQ1+rwznfhdwbfhRbLo7k5SXWuF/HBIt7R7LEyLcUbTfMg+3rcZnSaCgX06ZHB/7S1YzxIGUsRFkKUuRbvARk6yXYNE8ZmkcG4i+rSfDgihQZPevn9muf8L8/r2GpSz7+/b2HBPftpROJ3bgqPAjTH4hCfJgp/rdrAVa9LEGv1s/sum0IhjXfs5fPSZrzSgD/rHsPWfXK8K/GHark7OB6917a7tHDRg9/UlTsS0zx62IZpXtYozuMLvEm0KR8iN3/3iKnHztw6pI3cHmvADlcfEN7nuxgm5d3UcZCjjOuSkFsVBRuWmQE27U+cI/7U/patQdlM4QpsO4DKTaKYf+DNCr2loDr+lVoW7qX+qx3UUngQSj+Ikdb8wd55/F/eKRoMuUOTKVeA2EIP3ePJmUe4qyzWlw/KAtVuoO4aKgQu7a1w9LHTnCpoZDT/RkOnhuNp6Km05fJ43n3rGY8NdmFvAf/srmbC8qXzqOuwhAMVbaG1AgRHtKz52MnTlDXBDUIdN2M0541k/FgDv23q5+WnRzFm+drg83nSHTubcPFs2/B+gOn4e8GEZhmHYlbbgax7cAENtE+y6lE8GaHPdVFfoLF6z6RxH+JnDZOn2pO/WatGGEK9dhBdnoK+PGbLFhZ7GbXq3eh+91MnLgjHp9Ll3CCsx0t77kPZUEv+Ut2LG7p04Xe6QL8/YQGLH3xjhT9dcBwrjBtTG7G39JB8N/3NDilcpCK3CVgU8cj6C4SYXSOZOXUcKrNnoi5Ywfx6DpxmlL9mz03FXCtiDHsdrzCV9YX4pv8bHzkPIcrv6rS35pZ8KdwGX1Q9yWRiPdY+FAJJr63gruLzuE1vAwi26v5it8x3BJRQ6pHF8EfPy0I1guG0BgtuH4yBlSuj6P8LVf57dGLmPM7hgQn69NWhXYSlpmKKTNVuH3aWOhT/84l8/aip2ICBuu3c9hwJak6boTEuOdwIkONLQ+s4EPZurDm0yE4ZPWI1poNYfykFr4vpEJ9M/N5kd0uODd+DVtpnsa4rxPAeu1O3mN5mZSt+/lqWRdk2ETTpRrAvy3/ML4hBC13rqC1/gxnrl/FybOv8Gk3Daru1qDRhxQgZBrTgKcQzkk5wKOFR9O7tWNB598rNvbUBCuV37RcHunJiTYsuG2AFZPvg9Gr9XAMADS3G0GTdgeuP2jF8xf30chxn7Gi+yN9zL/EWzwd+bB0Ko58dxr/zFaFy9rZbFadTiONP8Ha/vW4V34zh0yuxieLdtKF735w2yOMn76xhAazNmre4wsaC9/jGU9PfDEpjMacfkbyKdtJKKGFo+VSUO+PIAiK+JPq3VE85/RqMP2Zwn9/7GH1+k948mo0PX+Whrc03anQYwQ4Kt2lIMmf/GW1FV4zleO2h/ak5XyMvgTZkU98MrBuI/dYq8Fd7XK64p0F+45vhexbppDoU4l+N0bxlXVEMRtGsommKnxQE4NCNRfwD5vOE84Dh06UBv81fnj930E+GrqKPmfPZ/9t2RiyWxA+tv6AVVek2HjqErpxZxYu/pZGx+Kno+j81fwk9D68GzudKkfZwAEV5MilNlimO5OSK0pZYm8Rn/+qhDXrC2EgwwPuXbqEw08tYSlL8kKBdhCvrqepax0gaPMIjJaz4qVrNeBkYit6rOqilyOnQlG3E2ZsbIGh6wawyGo263X9A5utB9n10DoYX34ZJGU8+eZCK6gJvk8ZIjFcPCMFopbE8De7dZgjlwGxEfZ0YsZNzNUrAuVyK9C5Hwyj/kpRkutovDtRGbX6d8OuuEya3OTJ4Y2TuV1vFOy3IUge3kKiiYd5smAMH7UN56yraVD+050nnU2DOb5jofaRIQVeNodEDVV6F+zA+snDrOGtgEU+hjRy8lbo+5ANBc+qQO/nRTQ6pgYhBsq8+akbt9kl8w+HHfw9divnhjdT+OpH6FBpzZcfraD2CeJg+2w17gq1YOfZuei84ivPOfkFHlSbcI14Ek3rOgu1c5q5IUUWChfZkGlGFofG/OVViiOhWaoNLkV+xntNmbxBygHeTjjJO5W14F1DB1YfFsDK2sV8M38T+uQvxehvFfxnQwLI1E6GM0tDQD5EGcrTd+N/B57wOuGxMGpLAiccU8bYjRPIzCuYHEOO4b6J/jRjlDGY974hA7FaHqv7CRsbMqnQQwhu/F2C6rdccdqxeJ5i+ZAWaiiA9jFbONn9mQs+tkDFr+Xk6ZlIG190UdTOYrw9Zy6WvR3BGT4WEJYxCSs2ZvIrfVFc+LuFR8VeYKUbJXSlbxwenzoGZEM+8tkeI3jec5Ht7ryBaplLOELgLDqcAK51300KScP4Rj+JN7n14lV/U0jU9qJKQR1UMUD8s1UWAwbT+UD3YQgy+85VuQ5gMGc8vf1IoDOtmp89Wozfl7rDSKdckMIx/G+NCCcpfeBpJytZae07+O+PPNze+hQOFTTh+d2NZLDFj3Wb4ujInlmsf/YwnqHd9PgvsKmUEcwzL8fI0ck4ZsMWnP59Pz8OSKJ7c7PxwDtLWJ7dD4cqxnGznDRkaWdQrLgSHZ5QzgZP4qhIZyJ+vJXGT9MzKFVgC4QkrKWb4hog8eMFftHaSvMi5NF6QBgFk9dBvZM2tx2ZifyjiRe5WsKsM1Lwan0Br0+wo0mV4+hUVA9+vKTLz3MLUeTYWP79pQwuiR7EiWkIBkYXuf26K8T6ZqLY5PskF+0B3Q390NegQHodt2iD41RWq5sKt2PlMF3tFRqXb2KWfkdSb3XgT5Y4Nv6JphCPO7yrchE9X2oDSQ2zyT36Iby0+UGFqdf4pJkf/Ik04bQHu2FjwCw0LqzAA/aGoF24A4Pe3cGasyrUaFlLW2/40egJZ7HwhgHkNEzDvsg0ds7RgsOLVLDCeTrfnxhDNbvvYmtKIexTUqM21yZSdj8HKivqqKBiFGQe1AbvD+K0ObuIEjJNePu2RNzR7sPRbxPRx1GC9T89gufnVUA84x0e9H9M9b51oDAchk+SjDB9538YtuwZzDvbhI6zNTFQYBJc8VhENW4SDO+cSWfNL1gSVYFNpm1soBtFlVFfyVz1ESvdNQIon4zCwg48Zt9J8HjQh2ceW9Dm6DKaKmFA/5Wooe0GFyjvNIH1UR1QnpVOp/wyyE0sHnqzjpNS2ky4NuY09mvaYlXCL3qxXxFCcDfnXalh1syGZRLGEGWoCbukd5P61GOQVniT51ypoFk2Y2Hygx0wtisUrt5q5Tvnfal8VCAbaE+DY3XNqO1tCWpWXXTNTALspS5zmkwRpFq20JXJAyS/5R+Jv8hnK5XjsNJTHFQSBanOdwwMG7xEwU2DHHk/Fh4NH+PrZVOwzcMELm3rwvRzc8lEMZ5UDmnDvB1r8MUOaTyyq5Rkl7jTEd1Wrjj/kANFi1BqvxbtWBCPsXvMIG5jIUV+fgJ9NjbcF1lKOwW3UHOuMGTaf4C09brsfuky7pymDL/Xr0HVjffpQUw9CEQcZ/1bfmAUKMlW5fdhaspYaN6+mqddnwJWgdd576ixaJefQMUWrTjm4HXWd/OAnV92s/6TK9A1xYbGHpIHyYcjqUDtOkrO7YcnItV4cYcSXOktBeFTQewg/w0UV5pQ0G4Z6D6ohRdDpsDXqmjW3maBLZ/aUL+ng1Pz77KSmyhtuySNCS1GsCbkF+zOWYYmZ8z5+JHTsHeSF8/3nkpxwTVwY2QlrOgZwE09k6Gjch4r6T6HPeffwdQnqZBTeROjwvJ4vOESvOf0iBbunoNadmOgTHAr5X+UxcH0JPxethpESjVRRTMeDTsEKfqcHKbkzMPEUANw3/eR76SUok5AH785OxPMzgrRXQ1Z3uGaD7VVerDm6EWQvKkAp/zeonfOTlTceRDOqz0Cv0sq1La5AFpCX4POmtnwOzGWx1SpAg/4kv/WD7hELhHV3u0H065QjGw9QoUzf7H+7hV4Ni4WZLzEoE6zlTfpBcG2iGVwsGIqicS/heExWyF88jrMQUXQDNKFKtSD6rBJkLv9INWZNLPEBCl6eG8ntDrPx/MbhehiVCoPzjmHGyREoCTTGA1CEaZAGKjYbgORTyGgonUBNvXsoaKGIbjsPw6XfTWHCNvrePWTAt1ZuYlsPMfx741DHD2mke68X06Gg3ehYuY5qHhiAEWjLtN9MzkefoHwvNiIz503QI+Ee3B05TqctmsHt4f9wmIPdVD4tQK6x93DobIvvFV+DIqVHCBlvRPw46EDHTsZyeEnXvF5T2O47RlH1vt0+b8LMZDheobvuyTSDu835N9oiHTwAYYN1JJ1qyQs9JICxxAvWGV1Hj+HGHOUykjO+orcUC/E+73ewOTls6lk4QRo1e2GRZfM4KN5PPgvewYW9pW0qPM27Xj/kuZ5XYGJOyNQy1AEdupJgf2XQmx7k89OT45D6tEOXp3oAJ/v58JxMV2yXnsRlBarw6ScUKo3auSfLd08NbsfA/LtQW1eGljffc69pQ9hX3M6is+VBgvJqRie+pAvvCwDVcOP3GOewZKHV6PRdje0SL1LO8sHYIa7FGwQ+UKN2unwQTueVlr14c7ObTS3YDUv3zUfmj38yF7yC25WEIRZ4fVgH6pFO+89IediTWg/sgULH7vRlIL3EL5TEvRTmmmRhSYszRQGYbDghMw/WLF7DvWaqlJ+axFezrpKjeNb4eWme1xVZQY2zvUoOuEX6SWG8zU9Ga5/EAXLewpoW6AZ1jv/I2GpPjL+bAPZx46y/O3l0FA+hpQi+tClUx5CWqPAyTIdY5+bYc7qGByQFwbr2r3gl+aP5gmuPMXUDydHm4JaowVE7VxIYcnVtOySCZ+tMgIZ02bcfu8dOddVUMPih9A29TSc/unJC9NdSPj9Apou7oD/vdeDBeNyeIPIFQ7fcJQF0sPpn/gqtlvxiHLsbpOOWTXLy43DMz8mQ6eeGguWD2LTwtfUd+A3XlldCLPEB8EqqILNe3Jx6fw0XNwxDl7m9dLedx+hbyCIT7wZgsSnZdxvv4wCpOPI9r9c6FxTzDOErEHfyof9W86z39vTbHPAkRtNDTh9wTFUPFqAHydJoZ5EGJzLV4Cwi2G8Zs8I2qcWjUVh4RjXMBcu/Gil/1r9eR7aYu+CQTiUrAZ/d/hSmUYT1KW0cv0kW4qU94SP99z4rrE3FNx4gReGdDlWTAE2VE7AR90PoFBvNmbvEwK1z3PQ8O0BuN24Bbb/aWKVW2/BdqEBGFU74c2YcLx1zpyTBf8jsExFKd88XBtRS8NPJ2Ovnxb/dFGBYyql5HrOlN9PcQO9U3K8w3skLajvxx/V97Dn/Qo+evoelk0YAx7bOniR+VHoXeyCdlcVSFjSlRWFFFC1RoRfLYvGafdfQqCeHizyug2xfx7y4JzZXB+tgsV94exqkY0yM4RwzHJvkr00G1J09OFfnjgUhyjgn8ELtKN4NC5z6+d9ketB37qPNyHCqIY6iA6xAcWfH7jJxJX0NkzBxhdJfPqLMIJDA/RtrSDBmEwYmLcFLcJFwUuzFmqXvGEDvQP8600FfqJGaBNMRO22b9j7Ro/3d7ziZxOnwcSw+6Rnn0vC+m/w+dV4dgg9y/fD5rJXvzt4dYjBfdE+9Js7CXSOGvOAdDxdPOACJod6cPbVWXj/ihpMqoiC/26pY3vra/5yXB+mjPsIo1wfU37uOKzXz+QNZ67gYe1RfKVLjcZfnMF+ftu5rmkKtD6cy00r3OnI6GF+G28KNQcW8FWhV5zdu5IdZYfRoOkpXv0rA+puNWz37DtIfd7LszNicOUPDZAL3Muf702BhULWcCH2OB92tIRM+3Sw/+FBe55qsSOG4vbbP+mUuR2GowhaynzjrMNrsTncArq9HhAuN8fLbu9huvVxiDmTxUP7n7GXciCuu2jJ1dIzyX47w+0v+0hUrouS6RIlak6i87enQJyOPp8cKqWEitu42qwCmp/rwo9Th7liXC4ob9UigRw5mjF9JmZcEsCWikG6tVeKZD1ekk6OFQykuHBx9UUQksynmoF/cEY/GQtVFkNUhD0PqVlw4rVg8D1qDjdtPiJa7IGiKWG8tkuBXtk/ROezKXj8YzpdvLOc2cabYmMV4KS5JOz6epHHC23la24zeNv2v6Tk/o+irSfw38VVtHhDK0xx1oIto5vIe5MSz1ozxKWVcXClUw1E9IborZcoposcxAlt3rTSSxR+isaj0lMdOLlfgvv+PKPM1k3ssb2OW8R/UdHDNJqsXgzzHMzg2bQseuHhS/3aMhzzYwc0S+9Bmfrt5OBris7bI2HJ6Q7IE2NY0mrFnccqOWDUJoxY4snf+pTIx8Sevm9uYunXCHEJm8j6lwA0jr7JF/LseVmnKH/8mIxVvW9xn94O2ux6G6VnjoKpp1/DuWv68HWrJ888t5dfqKjihz219L7xCKz7uo08msNZdscqvJb/ExbET4G/EdLsmt7Ck/+UMaquoFm60jh4zILnTxwBju8HIDitEK5PmQw5ioEwvP8sTmm8xwXD0uB/XQRj38/h9u4U+vTNh34fV+d7wUYgEL2OXb81oLz4XrKY3077CqpQtO80vuMe8FzsxAYbekjpuQSM5ue4P6ICZwx4QVTDPg5aNYZslubS3reH8YylOz35JU9YJwfPe75CX48KeDrFEE0bhXRHGvMMPsP6NbfgZlMHFt7/gQ8+6sAls0X0udQA/+n3gYOkBrkXKZO6fx1d0A4E5YRfWL/lHErDWKiYkElyNrK0LtGR3999wiEy0TB+3wxa1nyP1CxToKNoNd/XV4Ztmi85JnE6Sa0yR+UbyTh7tSVcF5nK63uteeFWgDdeMRgpJgl/c5dQvtsn2NC+GG2K7Ek7WI/21DfDzxOCkG1jzlf3LcflPXrgnHKadzl2gP6fHZxqPhWPFIlitlwej6hK4Elv17HTgX/Q1ysJa9+4Iz89RiJLmqEpZhcuvExw+MAHGjfwiNPdrVDt/CJ6fUkaRuYexT2Pk2GoP49Ds2ezaKwXbJ0fjZXCO8FmUSSXjbHgtR1qYLAkipXGvIbaKRuwtEQJlJs7YfBnOWFgCraH+VJQ0AkKFTGCd0dWskS/L779I4nPsrzRz38+iaVe4s+Kk3DKI1M6+eI+LgxVAP/1a+lE+huesC6UzNOHSD9iGTkr+3JL9WaWWXOYMi3s2PerAKjvb+ahVSPoW5MSeQTexdrMfpzeshpsOhWpajJBu2MwCvuMhpszouC0ym6eN+IdfbsXzqfjmiHMUZEn+beD8wEdavwfcfehEIKiBgD4H9pbpL23NCRNRRJCQ0ZENlHKKCFklZCSWSKkISXJaipkpqRQSE5Gu6QUJXUf4z7JZxxN9TcMQVDFn04cf4L9q/ZBwB4vPiLrCgE+D+l2piqZ3b8PLTOG0GwCg1mpKTTEXAZ3TVkutLYk53EunHfACFQaTnDHy0ZcS+Wg808WPg9Hg/FW5kX5BrTdxxcPj3yFZYMxaGMUyJ0nn9HlXTL08aQZWI13IKeW5bQt9TqIHAwnF1Ut9HvzC/5yL4r2vkfxo+4cOEoQpFvT+Vu8Msjm5vPkkkc0eokoX8zZhlopc7D2ej7Osb/Np2VHwYygY9yT4sf3H04gBT037DjdAzZyi3jH5nBYUPccYfct/gdmMBTqjHcie+HqoAHKn5WAjLLV1Gu0jma92s2iz5/hpLSN0JwzCpTiPXjf1dE4IN6GWSvzeNXjsfDhixynSZ9Bn98r2DM/HBye60L5+nLeYxzFqTEbqDR1OesfPQajyufDf+PGkJ77DUq/+QrUlprB7ewgUtryCS79UKLQ7F6Ys1KXnkdbwa76MLYz8IbBswEQoy4Kjlc+84TsTdR5xI6Xxz2Fm7N8uG1xIk/rL0cJw7uwQDIR97Xagtd7WV6s8RIK0s5BwPEO6D32HrV9XCn+12Mwva9FqQKJ5FmqBv9ed8BQgAbc2r4PYn6EYb2IAT8Xm0KabQa8d7wcbfZTp4Dx9jCnVgadBY9DcKkE7xR6jAG5I4mql6Kw4WJ8oOVA5g/TQDgOoVLmAARZzuaKfWc5I+0+pBWP5srYLqq8E4lZJun4+cxbCPnuAKuXusGyVmm6oLOE3jc/5GVu42DSB2HUYw3cG/iTb0ZNYqfdDtBtsIdrX6+lxPk6/PPKF5p2s5Bzsx7DsPxGCrjbDAkejhDbqA+Pz+2ksf0OHFKBNC5Fg+I+38N9WumsUFgNPYrf+PHFQHj43Q5U3/fBUYdKhpU/YNLzCNgq944MLH7hjVl3wfnlG9RQ1Obnsgy52b7YHuaP2YeQ2iz7se7DbVr4N5g3C+5km/YPEKSUDd9TNWHVSCs+0T6XL5y9Stv05eHkQwVM/jIJsrrqoT9Rmk2ixtBisUmAnYVosS8VlP67AhcMe+i36gRsi+6GjpI4kJ2wHnOWOnNRhRJEiJzEM3N+4uFxlzC7OwUkxy2Hfcd0KWLvdf4clsw9gY8hL1YfAA+QsqceeOekoFhSK6W8a0Ytjzi62jCRfgSLYv6WjRRQYg2HWndx8rJ9IPCxhmeKDPKjn010dt40akiSpbFSn9jjUhPd/SAMJdMMuKtjM6gs6Ce93nNUb7sQu6WH2djXHGUzFoJ7yHyy8B4BGrsnYouPH79dZcfrjfXpulcuzdMRg9L6o5i0xYHUJ42nWTEaIJ5QTc4hKdR+ej9P25LGUv4hfM/6ALm8O8Ptm7owJP8MR81VhVXjpoDRzTC66hOJ5Z07MEHUjIWtW3nb6kuY0GPOwtO+celZe0hZXcSiMeIoVZsGYHKO7x3wwBsjemmjYDs93LUH6gePcUCyCoQnNoJ19jcKPnwFfreG0MuDH1in+C7NLanC/YrlMNiczCmmAvDtsivtPSAEA57G2DjlB3w6qcK7lNtIX9KMrYIuYG3jPZIPloSosXfxm/w1undfky//GYfn5YVYcB3D6cbTlNURj5U5Z+npR3NQXqCCc8YvZLE10fC+yIQ/XptHfTnKfErjE9/cVsc5Hlk4uHMs7Ha25tsX5mH0JwvutZvP37oNMeCHMXauUIO8F53svPAEa/2zAqOWFXw4LoZ/t+hDz7bNINJRjZ6lb/naQUMckSiLqhWX6dIRddgdvYjGJZ8isz0JXPClj2Xu9lLgZVW4btHAG33yYPNFF+ACIdgy0YmLbz/jVVleFLnDgQ4sPYr6hyej35q9rF99HTo9JcF1khF4fl6Dy8KjSWCXNkwmoE9vbsCldXU48Yss5VpIwojPK/D8fTXI9VzIWoYNPC7Rlfft/A7mu+6zk9Q92tc1EXQ9VpL7oCjuiZWBZU7MphcWQdeKS3x+7kkc564Px38uhe+mEWiU1gb53WsxK3Uk1OXlwk6Zasjvk2VZyV4cc/oD6edqQcb7fTzUARiWbgFecxE23VGEyxuvg2dMGDtrfoLNuyPx4Lp7oJWvgB03F0Lr5noa93UCfPU7gIPq02BJWjpdvOnI1dleHCC8m3WvJVOW/yyosr7IxzbJwev+GD5ncRzmTX2Bzeb/oF3BCrsCznNP7CV4racES5c30/IKe7j5L5HbVDLRepUpZK23B4WSM6hRvBDerA6jgJ2W3N4jDoo5NrDCah/HvPzLDSGFuPu9HQ5nP+W2+cDTqyS5xqkCR/dMxUFfBrPNuVhovQ0WL+mlTQulSVlcnvQD9OCsngS4KFVB4Ky5kDJmFCSoDcGA5SgoglJKvf6ZDx24CLf234Wd37vgrHEouN4SZElbE6jevx9lc/tAZroIpJx1psjPjzgm5iM/JTdWS59BWXHL4eWC0fBnXxyXvh0DUXQKR6ZtY3sHVYr+vR6Cpyzi7EcdvFdkChbK68KMqAQ489GGbc9shTV9axDmfoQr1135XeVYsFU8yT+/KuM0WTOwn/MSl9tNhFA/G9y2vYz0LVZA2qwhVrEvxtN1e7jBZQj0NoqDa4kYxxithCd3yqhKzYiqNRZzu85StJuqw6vK1kJD12SaMVodPOpXckp+JD3eU4u/Ha/htCvdoLkzlNLyk7F3cw49Chtm231ioGB7F/dlB+P47RdxzYlSUn2dSb3Pp8E1J3MwFhWiswMG/MRQFyw//QMbRQWwnxdNXT7G1KaggUaXt1PYxECeuU0C/cu8+UrTCPjHiihP+mAf9AbbzpqCYlkDar8357drpsOBlHo2lvgCvfN0Ya1AFY/TeE0wWRmtP1hQ014vGordAnOK57O4/nUQOlsJ50aogsWTWrps/Zw3au7H5vYadr/+D7J3p7DaSwW8vD+Xw0KzaGsaQLj0e3xctBwentgIjzOn8IgkFzh4ZwkOlpRCRuJ0dFLz4OAVCuCZ/IFcx8vgwoexsD6tnXLqRqH2gCjHnZkK89zk8Zq/Excra8NXMz1UVz7Ldx0P0aUfO3DI/BAMWnfQlGMR8HRrIpx5pwx7jwnDbncvNqpawYufZOHJ/pW8NrEI8/7+Ybmld8BV8RydVd/D73eMhDMex+Bq5RDLlqoiJS1DeZOFYB0czsol47jrlBL+PvMEuVMXVktWk17pO648JMZ/l/xkK2kTWlR8jnLN/yOr8YZ0q14DvG6NgHUBxnTLR4H+O9QDXf2H6bCGCt+pa6GP65U4UvA1V+MY+rNHC/561GPznn+Qv7OSx+SEgNqQFWY6KpHvvP3c8O0oHLj6l+1vakPngUhSNpOB35lPyGS9Pv+oScfZK70xyGiAov8UYfVPR5AWE4N3Ep9gmcRX9p/hz7eybfGR5kT2u3IbThbNwpi45eBmcpcKQs0g1EidhL4FwZska341TxXP2VnAE+FBDFfrhbo5f3GiQALdPqYLy+L+Ypd9MS+dGQsoug4vGjzB/PwOvrbanp8HvSeF1lmU2zMCPpt9gAVBk9A42h+FslL4hrk1n+0kdpxUx6k670DhahLkPpUDy4gNWHijj6dJToa1irfZ5YElmLx/SwtDzEGup5f9/pvKGzrNIXy/Nqz0eQuasutIrC4fpHRyKCpQl88EnYX7glPx5HAffYkDCNwhQc+dP4Dpsze48MBIrKpcz7KjRtFCvX04vHspD96XoncuBBlBypjbacShUnvpdMYZHngwgEtW25Papnl468E4vt4wjW6mmYDB+yj6vCGQ1jx7jf0DM+iZ6y5yHNBgAbmj2O9TgIL6UqizcByIZczEwHgpfuxvB+3eP7DGGkgs9DreUd1LxXuSUGV4M/o7M+Sci6N5KmsgYJcZH+tdAcPaniTj9QAsf0yk827DvFpmPqXjaKjb/ZR+zVPgmhmjyNpcgg5nAQVHJvMsGwUe+JnNkvWX8G/dePBakIRhdZs5KPoAnZslgMpTQlF+3gIQ3RAOh4veg3O2JC3MsAH5uCTOLlYBx6uPsKS2ga50toDeMmSntyPBdfUguZzPwZujEcY+a6VrG9xogcsfFC4cj5FXiAMWjYYcKUHSlzsDKR8ms0asMYSoufLCwgU4NuUgLRAcpHXO8RzoHYmdR6P58dUYWDDDjGKeKMDZDwBnxfpRN06C18+chA5VJ+hNTDVghxn43Y/FF0c2Id6Th5roY/wt7hev8uilIoMSqtjTgGP1AqlBSImOdq4ibbsdeMLcCLYM2tKcbVn4uEcb41L9WHjkb7Ib64ljLWtx9rYNvFT+IU+rtYB5Rg/w1eJobLwozGOc2sk99xyv6k7n57pbcObGSLYa2sQvUqRhXs05kh+eDlOjCUSrA/mGwEL0rlpEkavX4b1HErBxyTJK6BKDsxPV+cmwHbnfsQO370KoN/Mg7r9lwQdGCLCGiz4Xv8vi8uvCsFxxJTWGzmVHp69g8tsF474sAKc+T2KvAl646D7srQiCzmZNeBp+kqyP6oJg9GeM3BnJBScnwXWPwzBvZjCmJ9ny0eok+hHJMJj7myOmymL6iDugeroFlC0JS5bOw/L5CbxK4yIfyl4NutFy4FupRFublFij2h9t23LwvFQhJGXFg80XJvMzRyhoexC6W2rADsMCfBkmzjoikSzeFwUdcw9wRXgFzbx8CDsiTLDomRjPXaAJsXVxtNLrGKsOiXLIgTFUdyOSQnIjWWp1JT74Nxk8l/dTj7I+3PTWgfN7m2GtZTUnaPeyYbgcdEYFk1yfNT1yjufnG6fAjnOj4NCxqRi2Q4lC635ztKsVtX47gRcH+mn8gT48m9kF40wUYNs2Hfhn/I1Ut7+iyvrt4Cv4Dnaq5aNPqys+D7iJZl5ikPkuDf2u2EP3iNs0YlYbtVmF0mzvEtJk5Od7xDkzXJJk0ZcPqAfBgkIxqN0+RG9ffwPBv0GYcVUDzlQ7gay6MkWMHglm4h+g27UODp4QgPO7RXnl7kMYnJXDY8/7wlR9OzwqfgzvDXths/gNfF4bD6+sjCFYsRkfGxvxBb3b6LkyA+Pyz8EI60xclXEPJeXGs51oKWD5CKgNVaA1JSLsvl2aPrV48qmgv3zcwBCPJg+x8TUnnnw3ibTvjAaJuctAz0aEvw7PQpeGIJQPzEG3ljPcqp6FDw/p0c4ptrBjrgqYPM3E6D9rcLJGF2wpFCK96BuYVLAEHuz+D4LPH4a5NX9RY6s9/JeSQ5+7ZvOJL3F01NeDnnt14qkBNQqNkeIX9cIgsFsIOwIMoDd2FyybXwczRKXw8vL3lHhXg64bJ7LNnlh2WzmP/O8voJx9tjBvkTvKbAyCkquHwejLa8raMJdjTTTRM30BbHao5Ps798L2GHOwi8vFv44jWH/lOvpbtAXvcx9/WqzHCWlDmPTWhSWLE2BWmSn8urgMQ+wNYItlHF7pWcTNYd7876k7G7+W4l2N1ozu9Vijog0h6Uvot9YM+DMzio66x+Okms9kv7eMG+e/ZJ1gJN+UUXz7mhS0Fp3H/ftXUsXpXfjQoR3s+mbgVO9dJJPeB/LyU/GuSirM15WBh0tCsNjjKTz3W03liTu5L7oFFwWX8fEWN/S8qAXLr5+mW6IaMPmgMzxOu49j13/hyj5NUnkri4ObV+Pui1Nxk6YYHZURxRsCYvDVtRdvrYyklfMPkfVXB3j9w4rHup5iS8vb/Gt5KfkoP6QN5ywgbiCB73+WxqHp+6HjUzTa7w8H1VQ/Xkmn6VGmG6+YlYBlNuPg0LohnLPyGGa9TKZDCoYQl6DMqcO3Waz9CmRvMiQj93u4t8kAWuSJzKVqKCF+Akzzngwr487CvJIs7JewhjVvDDkxXgNHlZjBVuU6TK505GunWkm9fJDcVKRJ2uw98U81rF9RiO+Sk9AW1WBNrTwKVn6ha6su0EPDuXywpYeofwHC6XPkl/6A3O7LsdYbMQj81o1V9x+DsaAbhMnPwuLnqbC/dD0bP90Hz9oD0GLZbJRzsYQve8xIfEwezf1RRn+DpXFjmylvc3TkgQxvlnOUIF8vYzQtGwl7t3xh44wHMObybLiZvRXc5DfDu899bCjeTQKSHTCt4zNvOiUEbW7ptLu2k4e2zIa0a/28de4kUNFppznqcjwoWkmHpl7FviFRaC37xbfDPQAL29l41yyYXhjCWjpSvOtANY/zdCXzxzXgehfAIewyFBd/5q/fTuL2H1/ILnA0LdU5Awd2BNCEJA3yn9lH103EQdPTBKfuH+IG3QdsdU0Tzo+fzOo77oGKux1dOGvKTmLfKFHTDnbhLwh5doOvty2EZdqavFHuCj/3V2DzE7eocfYd6ivox006yqB2/jNeunmNFOpu8hebKrKZmQpy56PAeZYqXu27zeMW+1H8BjGwTUtFgUu16NtdibZVgXBg3kYYkHXH1BclJHQ5D5J/iIHKX1vQmNEOSW8N6cO7c2QvNBX/7j6L5wM6+VOMB/Tu/Qbt7xk05HUg3ek81rgYQrGxHVqlLiWZlbG89fNTPL27n3ascKFAVzMumisO3vdz2LelkXtrimDzYVmIHm7i5d3BcFg0A/RXBNDZ2HywW68AZ2atxv0uI/Bwmy1KNbtA1exqOiLhS9NO9+Kgjz5dLjzGlvIEWaqx/DENqPJsCm4Z8KUV44Vx5cT5dHWzEU1Xno2Z16ZDYb02dE98RJ62GpT3Zx9r4xceL/kP3GZcRq9xCjgmxRmNEjdiV/IoeNCpBL2OnpyRFouHCuZixpspfCF/Fx5teovPTkcC5xN8mI3QL/WSxftsOCJjFtRozuHtKln4s0YNPx4/BbJLfsOJuvko5CEB4ydeQr0x+ujgaQYtCzo5zus/ULq0D1/4m9FzrQFccMcEr7dbwGmB42y1PJRCTtymWn9F9KpUQ9nGzzAyWY9PzWnnPcnf0NReFKR27GFHq/0YnzuGSndVQ8j9HTi/14xgvTAY8TjaGBOM77QQSk5mYtWNeJql5wS7zl3nSf4hOETObMBXsCxuI9hlaFBgx0QQnfgWN0+Yje6PutBPzgF9VhVTRFsAH9BdAEG/bfiB1Q9QcxMAaSsJtBKeSmHBHvgjfQ/lFO7A8O0PuOOGKwoV7qHpgvH83kAQPqYwfU3Zw/q69rjvyWdQbNjMjl9msNmNYhz//AFm2qxmzSsCILPFAYK+/6aPCQNsK/kdW9d5kJ7YHlLVEkapxJsoNfwK9g9YQHKEIT5VEWJRyxYeFZEP2xIKYfIpK5w74w43znuMfLIBV8QiNGYshnPGOzmgrxzbI4z529EQdqrNgIWXMunGAhty8D9Gy42NINFWgsKc7WjH3kcs/XYu/dyRyA1jzSHTJJkWyX/g+/qaePq1CBSG/sLlBfnofMcZa18vwJLYxRS5PB+9d2dysc5NzFa6SWbvEY4nvILxi79ik5wXt0zS5mC7IsyMLICb+2W5wqyP45rL4EmhOSytGQu32tfRqDN/8J1HOu6e3s47xiNKRrhC8jQZLjGfwXtPakDaLiOMvnyJwmYqkrL2Enobmkjl55VJY81EdLiwkbKkk0guUhDy8+djR90i9g/ajzemiVGfWjt0GX9gNhag92k+NHKiAIWHicOVR08hKbmEHjeVgeJVBqEGNdxuFw55BTOgWVCCF6pH8Bx5AuPbEjRpZDyRbxenhqeixwh5tjy7A6/pteJ67VbCy06kNUsHJrrJ8+WlPmy1ohnvLAWMel7JwqZz0PXYEOYfNqZwtS+QXKQEKVLpbBZxhmpsFTn810l0GhpDi/LWUtjXAuoq7kN65oICCiqwLHUnlAVtwklRzyDSxILVTjJMe6CMW70tqKLFARzzKzk8bhLMH1uDZy9fgeW9X0Au4TUN3PBnr4fOUMcX8WrDJThlL0v+umPgQPpsarFzR4VnjfTPcwY73/1G2aGXSOClB19hY/gvrgeCnwlAuYIGN0nspy9PQyDIq59uyS/m/uJeOuOwjCymBrNe5Qs8bG4MsS/iyNVvEZTWpKNL+iaUmuvPbx8v41ThaFxX/IbU51yDqI0iMK/kJyXIaoCEQTPenRNNjSG3eZXaMIddtqA5FhUUNmhLMkmTYPfd77SoJIKlnwTTwWcnYbSHDacfroaLdoTdx+U4sD6S7U6qQ9ZuNR6cuBpm8losO2MOi7/Hs/WFd7hEXhNWz/Rj0bCV/N86AYhrD6DC7Sl4OTmbPih8pvUV4Wg2wwiU15lBmq0GPnZsJ8Hz6nCnzxgbDjZAauV5dtzVDbHjlUBcxZRXSN3EY2k1VPwujOw1deGG6UYuMRDnxfQAGzP+wPyiszDPWgR7RfMhw28+fdz0FswEx4Kray/15gnwioHnwMumssd0UZBZfwC+nZHFuxFpEBayEQtqRkOi+WjIrxQHYRMV0vhUQT9c/anVaQHopv7HPdsd+U/5LnA7YQyzXyTANstSftPtSiajz+ID4Rq8frKB5YvFUfXvL/44rhK0klXgcfA/unP8E42Nvw0j3gjBS8GTWDXbhqrP2JHTjbPklupBliqi4Dd9MS72CEKN2nj0zBHDRTND4cFrdzh8240mL7Kn1b3ryTtMBU74BMKltlBqe90FuoH5sDt9K0tEv4XZsyIwcvl0Li6KYPUIabiUqYnzI59B4++1MG7ZW67a+Rwr7z7CztRicn16H3eF54HobWGIcJiNf9c+o0OWrSCd7on3jq9mJeuRaGk5gLc7bHDnuomctU4ZnpzqwDMhKfC5ah+rGH4HoUhhdrfrwjPrK+BDfyaekJKA+TsEYP6GRTTprSw+edNJP/ZdhSeKE2jCuqnUrrsCdrhG8TzzMNautIfl1edZxLsbfmbdh5eGLrzmvAttCxOBe3PqOfHDY04S2I+xZxCaRNQ52JOYy7eSnlYNHo2JICncD+Lb1PhmzDC+fqnNY7c6gMy3XOqTKycZ1xmw2kiPPI7P41t9BnhBSoq0fZpx1kAPl5zSh6vXwkm7bw2M6ncjqaxFvHXlNHhltJduTf9CyZ3vqPHLc4zyt4Kmvq0kvXss3w1rRpE1/TDiYRTtHp9BU2vL4HvBQtR7uRdSZgjBZc1RaDVpkJ2ntZPN8zL6r/MeBbvOQNtJOpA+Nhpr47Th4BtN2HK7AVWvjoLa5H54WGWK7vL69LVkAz6wegTegYp0zzaM/27Wh3/V2tixeBBGT5sP4PSHdvoLQHvjNp5XFgrt59SwZtdjtMoeC8rlr+lE5yOu8Ukju5UKNPDwJigFhtCEPSdQ+qkLumXcoKOVDJYtzXBZdi5O6LWCU13ZZCPA/O6gHVRZP4Gt6hNp/br72LpcHaosYtFx1BTaK2FLY1QCeO5EbzxxZS7tlxSifxUfKSJ0An7XkYTTd5/Sqa6ZsM90DKo/nUzHly3m7pHAMmc82ds+ijZNV0fHNZPA1+EWlvz2wuM3ltG4a9Vw60EM7K39gkt+m9F59xTUWP+HtX+OhPCjvvzTxAaX/87i1SeE4JAR4PRrCnT/3FROU5sMdfru/DbGDnbk3cX711ZQq3IvN48w5O8HSzFqkT9FOCxEW+vl/D3JGCXKR8ObXwup9LEq5gokwJbOMyR3UoxiaodBW/gmvFTJoGT/ZkzdLQBqM19wlIMbqE/p4UwNEchbHkevZC1ht2g/1a5p5p4TS1HsgTWMtlyEmyISAcsfgmDSYlY/acgqU83AZep6sHB5BgWQRadM9KDN4AveFLCjPMFtPOxUjAffpkK97HfMOHENjoS2ooPoRHh7B+BDuTwHqcyil3tyeJeyEeT9yoUpqSE0WfstjtpzkSZ5XyJvNYZlc7bABd/pOHn4LeT+CACBpHSoU49AbfWdVHf5PTwVUKOHQaawqi2DT5+X5xs628HYSQILbeI5c0sfrT7TxTZSM2CpqCJ3/xwJweN76YjmMVh6pJsSfZpw2p7HSAMMLhbhNDVsGXe/VEPld0rwtc6NJ86dDWMO3mPLZdNoxfNC8lCNJYmcAky785aMd/jDx6/mcDfqLMfELYVAZym2W3OOvOU24JKtVvTl0TG8XGvISu+96E0BQaHNWnxRWQovQ+R4bm0bHi67iRXlzrQ7ZiXJxWvTo8treHebPvTMkQPtkju4ZNYpfmHYBd6Z8+lSgwqKpZSQ2RkjnlhrSc/uy4K76iDUjxOH02ap/PXuMOz9KYe3xr+Et6pv4KnhW5Ly+0qllrJwcq0m5ygdwlUdwmCy/htvuLOFHFbshyexumxllwPZfq/AycAavj0bpskjZlPz6dtobKyJr1dZs0e3BOWNLWenzvEgM16exzUawfIrziQ0/QvMllZk32h/iF/1mbNfruR6I3PQtvem4uaNODBdB7LqpqJKQyN+uOBNaf4DtMmtmXRNf1Nm2QR4GroXs4/doZ0vtADmO2KAgSGHVpXy8sH/WHFXFN1UWoHZO/9x1V8J/H3Qhk0cNOHLYWmquNGDYptr+WHCc3YM3QKbnm+kh7SAZykqQtTBWhxxXhvmyipSvowqbqMvMHGCLm14WorctgFKvHVQRtgXlBetg1N5ujDQ08MeGXa4S+gPXpg9xM1ogQ0nbiHlV9K/WXac6WJLUkcmwOnKQEy7ZYt9zdv5znJ1TtUVxjmp5mSyIIYtf8VipVUlyziNgLZ1LqRQMJrW+BdR2/QbpHwkj5xFLlB1mCfGlGynxSEv0TfZAhRm7KKjUaHYeVUZdrTVw9W2YJL4vJUbV4XCY5FC/LheAI+/l4bdB4xxwZA+l6mE8lhLb7CpEMK09CFYM9WBMg3H457TV6Bomw0cmfEKd0X641O/ZjB5mAzCdstp3Kk23jBzP6W2DuMnP18OkpMCjYpHeJxPo6JgIcaZRNOK0LkofmgyLJbOwZmvmI6zAY7SlIf40hjsKQrgjfUfASvE4WjSWXDwruS+f5b0Qk0XvqU4wYsfxiA27xni95NwefYkfrhrGpp6avG59CLcHUU87YEHVZtYYan1CNC7W8dFh3Txvo0nKtStQMM3+6FXsQ2LR+dynZo6b515GtPmCMO4tmBea5gBKj+0qXJpHvudu4XHdB/BUGomu1cfJiGNZlLOMoIRbmIkabAevfp7SebaDrZUWYzTNl/D6xPs+KivEOjcCQKN2Algev4nj97uCeLlF+HGwD5SkfgFX/Y3cmTkXlgPlRhVI4PFvnbgUnsKpmUGEyXUwsWL9Zj+oJ29gsMoRFsSgl2B0obl0PirNcjesEWxFzdhvmQgTJ59G9KOhnBSlRZIeG9F6/UM+r++UOYWCwgXWsILdNVo4Vlz2FHUBhVBm6jlzxAfNfWk15d14OHoH+R6UApG5xXx3KPq9KlYn+X6P/GiqctwoHALPhsTDJt+HuMpowEfCUqDrpsYfXtUCw6V0vj6agBPV6qi/7aOBImbbWD2eDVO2XwXBN3sIPyuC/nNzoDsuyHUHXYA7x28xtVHQ/lI2jsssge0troOavH2kCxTyXrZAhgamYkLDKtos1cxqjbeAG2HWtzU9AlvJv0BqS49mCU6BmITvaBsczhUxA7g8tM5nP1Pgy+/XsqVHeMxVa8ajisrgV/mNdS4rwrB75zI0vwijwpv4Xm7toBnXQQ7N+rz5jYxfFXpALGnrHiKyi/QHR7mpNe+1LX4H5m8SIfjOnVUWHwA+cJW2HhOGoJP/iLN+5XctOotOkuegKYoR2yXGYXhkol40FUd4+cEsp2kLHy6+5orMgQ4/nMnTn51ltak1MO+w6fx4DEBOHktmQXaXPnROFmQE+4iiXVvMEv4L17uv4POZ86g7+oPPOn9bNI4I8EdJvo8VkYVllTcQZPue+w0+iRLwnlS+RtCgqmNnL7Bhstv3yHVL6ORdsmB3PspkHzoIU8OD6LH0sY0Y/ZqKErzwFGDDby96hXPnrUWM9+qglxwIcmAGhnFLePLgTdYOiGcHmhE8vE/pvD9aASd1zAFeyFReL5fga4Gp6Ht2Qxa7jaFDZ2tYaycFk+eU4UqfxfCuIHFnPXSDCL2H+ANpxax/dUY+pW4CdYKL+EM25f0QvoJmB/6SidkHWjhr/EQovoJ5QzXw7ZvLtA28AXMju2hV+LRaFy2GYOXvqGPj97hhN82ILtOlc5k6LDLn/Vc4aMGlusmkteNGLg+uRbdWv7RAxVt+hYuBWE7f4P9vm5cd/gjm9U6UnZROr8+PpIOCIrB5acncdN9CZ762xBGbJ8Fj+f0o2tlOysNz6YCnXQolHnF/ffDICzlFP8dM5fiNhpBUUM9Ve+Rp83ZPhx+Qxz1x+7FzxFaWLHjIkDPLv5dvxNenbKFyQeu8/jrSWxfps3zOhtxc74zP/R8QeozPHHBiGxen6PB9/8BpDUBrz3xlJ4XzkZlFS089u05K3z0QO/GROi+t5Zjt06nMb4m8Mk5gh/0nQUly1BeeKQSUPsqlN5r4qbCfOwpWIDhr7NZRVcKLrUH0ofNqZjX6soqO9R41dRmql85niocSnCzvCMNRCsDnzOFGB6iC4udYL/8aZzc4AdBpfEYGuqM1l+secGRC3BeJB/SE2XgxyQTXL/tI5mL15HnjlTed2oHS3w/TqMqyiBx3GKcNzsEHbuUQVdkOu/dYYzq/z6DqEMl9ssJ4VfznfBQ5xf/2O1G/hfnk8rvsXCzYRpptk8lj49CdDJuIZvOq6WmjYWQM/spVEbuhKTVPRjzUwQO7BlHqrnCrHHnP5i33h4TvJdRzqAW2G7thIK99ixX5snaexgM1FX4jukmCBR8QwqyFyi47DAJmotCZ6kttVpUQfGcddwnKAm5B5/j2XGxuCpPkf7ufM6baqV42oA3bp2cgWoi+eRf9IJj/tjAD8thVJ9xj6EROSfCFA0K3GDKnlKoXL6JTI/OxMYZG3GLpy18rBSluSsc+LaHBueHBKDPUhGQOP0cPU4KcFVxBHxaX8k7XUXg0UAXz1y9geq8F8GXrStwTPEWOlaQi88qh/HrgdOcMy2d6qwBtm4J5OJje1j5QC/ShdOUrBTFlmHl9G6nH0zV3ox9dhe5eqEJtDQvg4teTii9dgd1eMhTpG4iaO/fghMD3Sgi8QNJCy+i1YsmQdaYDs5d9xlLy3PgsF4LX4+qoo0WWbz4hD2INz2gIYst7KQpBHXW6dA0XA52dxdSGE6nK647QctYm88F78Kj6q6o3STHHxPGw9dWO+y3m8dCAzmYSNfIO9+e52duRb8L7uQzuxiGCw5DfCPBIqyh1hpVtPR6Aetl3nLI1Cxes53gxosFvEdUnrW31NFglRGESmWS+lF19Bj2wg9H/4P8LS084C4BR+OmQexacVzx3YYTSiTgTus1NPtPArYsleGV74TRW1kMYxw/YmxpFqVuD+KEAhcwcLYG94FzLPS1AySnhrDk5TdkGhGP+5Iu0LFFrpg8fTlG2dzj4XZ9WPnGniyEI0A38xbXPvkBrypfkv8ZG5LXWQTPTl6AvBd36D87SYi9YkcP895B9+Qd/C+2CpWWuLDJwmcQYJCMf7we0fpDe7g0Whv+pLbwocF8fGrRgusyYkjFZRcJ1zfTQ+90hE8TaUNABZ5vHg9fB46DwX/ytKLDAGp+I/z5E8GGsZ/I32U1C38xp2G1ClyYIwJCgQdpx4Js+LC9AAsuTaCHcxKxYs553L12N4a2KLLlEh1ec1Aa2kKOcX/rVlq1w5EyhmN4V+wqFPxSx8kn2vn8pV9o2a4PQRcVIOW7C/Y6VINmDpLoI2fQefmaEubOQO/Ti3lN+mWo2LyU+5bbQvPL+bBUzwRDpVXh8Fpg8b+/qLYjk4RbBbDh9iDe3vue4i8S1G+Zz9fDpKDN8AUsLJHg7Y9mQLH2Rv4nFIMCw1tZI04SRuuLgeNGa/j6wwge7HtHx2M8ue6bEf7UvwjPm16R7wg33jncgFMCVaD3+yk8ctcGtJYms4F4I3VcqWB9q9/0qUoQHz2egle+mfPjUg04M/YkKa8I4/j4cJYRMqGPEg0wTewh9H0rZLUt+iDdeB4ywg3hSqs+m5+LwqUZl/hjpDAHHhziojHfaObgKzrRo4c/dN6wULQIJOxfAf/tL8SUbWJ0Om8Dr28pJIvDD1ihow8dEkW4aXErRUXZQHd0C9eKaPELdxMQUF0JDSfD+e25w9BEB0D3qAzKv+6jXTJC0La5B6tqD8LxA/MosWE74ORyNjjbATMrbMnB+hNHlo+Dwq2jQWwgkcPnrsM9S22pTV0Dg3cm4pU6PyqwvEs7v6Zy1Lrp5HPdFKbcNmE/ufs8130NpK29Bld3ydHgy724w8USDcq2w1D/bTj9cASsnNDEXjfGUJpqKi3z/4L62SF0XJfQ2N2M/D0e0Z0CfTQssodc+ecoPP0nStu4Q+D5VHpU/4Lyz5VD57rjLO30GNbsug5toaKgIi/KWnmWuKa+l17ky6FPtRjvvKiNY+wC+EmyJ3baHAflTYbw0tyXRXS2o1S0H5xNUMApH40haXQTSD0b5IqKVGy/GM+3tulBydQ9+OZXN72mCpA60QGGf8Uhd3USLZqiRZ+qGUtk/+EWBRmYtKgDpvnegfaPAxQ26w3qnUwgmScXeKDCCl6MjcK+VD30M7QAvxF63Kc5B6LuTOEnF4UYpGbwQssuaplcC4dXqsCi2Q9obKE0XBvnxuc+3+VpXh6QJ+IDtc/2gb3gSpYZ1cOP0Y8P3t6PCVWKMHu3F8v3nsJv360hQtcKHokvID+R2ZA5VpIjvSTgSrU6jNggB2l+7fis6wOt2mLATpkTQbNzCpctmQiTl3ykM7fj6Y+YCyjPU4SOAUeOaPAjvedLoX1bN7cGV2JyliYeDGvAcyqfsa75D3xYLgiqoZLsLFAEfzL0KEb6M3ZVvaDHepkYpdWIN64cwSvZb3lwliTk/adM1ZIuYNL6BJ89P07L+iVA6GkBV2ik4zGDKvzv+no4skAGZKyD6Erpdb5W08iF/43EESdXwFjfl2Czx5nECl9xlkUTGF2wh5C3K1nJz45GvNpPN5/9o3KXJJq7wwgL95yD7o4pXHC1gJJyzEHUyhxX5tXDphUroa2mik95JeGtI/YoNxABo7bV8bXjPqgVowRus2vB5/V52HhpLF4d+geffkbyjA9RpOVYxYn7NrBajiKIO1iCiQdBZ7klfhWYAp0Dv/lOnDfYvxWklalBGGp6gAZqr/G86wBdVUs4pi6XEodbyNnnEAWVPyTt9k389OhB/HRxP704kY4uPQqwvjcLfHwu8KqHPaiffhQKV6uQ46n/eJyrDfTsL8J1LvGouAJB5c8/LN4oxeWLjHE8/eJLP5PR/Zsn3ap5QJ9PjKab+RvAvGoSbO49g+J+IhDrdovhexKu2XwDBZs3016Pe6wWGUMvtUbSZjttmGi6km/dNYbOBHf+HKeMHwudYHRMNDu7boSQyGx8anUPf163B1+r7+BlMAq2FjRy0ShFGqvUzTL5O9j7iS39rUe896QWf3yygKIrnTwo6clbh9Th/HoxeJg8kZ3VOyEh+g8431hAIweN+ISQEfgqTYcO7xj0fhlP1ipGLHnGCqIGD/LhtG76PXcIu7Z9ouo/8jDO1Z5PvQ7Aa18+k5eBOJ94bMwZ6WdoTIcjdo3cATXHVUDz7wgYeUgJGlwPUtiWJZDlNJ6tf4dz3fZR9Ckln6IXh/KyP/dgT+EYUOtaTbCxnKdOPML1Fv2wfbiE/CJ+oqxaH9z5T4Fnzbelky9kwMp3HX+Uek2vxt/AVc2r+eOuHvo3+Q/eeDqCVJ0e0I/BOeBYqAkaUk4QLkygqmDBi4cM0SHME4Qe5BEI6UKdgidOexlIG3LNwHCkMa4KeIwBD0dAzF5tvF/kBAEhJ3iVXRCMyRuBwVqLMc9BA0xENvMeHQM+9ieXZ5jfo0n2oVyWMoxn5x/h2F0NUFrnjJqBY0Fj736U/FICRaY/+L+ci+Bb+Jb27MhkB4EuOnV9kMqK/tGoOwpwtUSK0biLZHtP4O7Lb3if0FksCfgMU51UadvpBTDplTTvKRkDY1tt0LnnKet31dJJmTIC2ft8ZLoBbNhbDnm/28Bj+hheu3c8hM9uBzQdz7pxjyktazbdmBbHp1gPT9oSiwTtZJ9LuZyA8jC09ia2jojGAikjPsaHIP6MIAb1i+Nse0Gc89YDHulZc2qpA0yoeQTr37azfs9eNlF+gE+9VsHLA/lYLmNHUv3W6OKuhjXRQqB3xwUr5eJA0+UxGHsM4+KiGRywNRObUo/zv7S3vCZ0H/rmqsGifxfg5lRbWNubQe+xiSQ0J1DQWmXozXIkLdEfYLj9DN5SnQR+p1zZyKsI6ypf0K/DrnT5WD1e/TMXqsdv5mZvf6j7NYUfJ9vBSLepuPPQZiq9fY+DNxvT308B2HTIhMPOneORSxpwh8p+in1pAB2XBWFCgRUljPrDgtXz4GrVFqx/P5/tfT+Tvf9ahsMhaO5kA7clTnJyYBjsn5EI8VcKUVZ5OvxKWAvawck42c4Dc3EX+9mZwDlXKzBy1odf3tIwocaZ/QyvgWXoLbx1dz7YsgiMLzCDnecNYLTrKtr05j+QeLWCOjuvUOjV4zyqgPnC+FtccnKAB7x3sv1TM+jSmoO9l+9T0wtbWFIgjmVGYyj10m0su5QBUo8Okbq0CxjYK4Nkqxh6i8zF+lGGHLw2kmYFzKHHyU/Z2Goa9/kEoVmsDDaryMCk74rw0no6WJo8xPXzHCA5uQY1vwrh/fpntNw1BXD9P/5pZQtdUR+ZDgVh3fJGjvmxiMFIikRPefIL9RfcUOeGL5baQdqQJUz+6I76q1PQZ7CEPk/voWHlSKipTef4lovwKCkbD3Z/xUn+42Cw4AluWjeLtDqcedfWZpZoW85iNuH0fMJUetL0iMcEXoW5YVogejoNOsUbcadcMj5xjKYjGkew1XYbCU72g01XVsCxyHDouK0Nkhes8aH0Z76b4A9hGbmkGNAE0y9+pt9DEiR5Yxy8T3xEyt9MQNtMh7OPvKNYfUOSPvSHS60cMahyHI2Y2A4Pl9+CDAzh25HS8NNuGVedzScT82dcbj2ZsG8RRfi/gKXTzuM6pWl862o8mZwyh7nPK6G19Du/jumnSfJGbGZiAAed/+NpKemgc+QvZjWlwdID6vA+u41Ueq7zjc5ICg4uRtNSHz43ezQUOZ+liB4r7t5Qg+t3a0LUzhaq2HSPcM4yEMxZgZP9p2CtzAsamn6XcnfmgF52J6SnjYTD1S+hrfky5igeQtt8DZSuEuFVMcP0bnAjj6/cAH0XPsGhHBkokx+BhSKuJH5+MY/gdg7N246ZqUD6O76jzfk1rOL+j1pX6UD7k3Is6lRCbxVlbNpQz5PPL8X433sw72AP8ccB+N25D3WeOkDExlOsJHCS40/0sU9tN7snL0dNgd88KyIcVm+aAYvk16H0eTX4orIPqtW2QsiW8/Dj9zlUCGmGJx4aJLjCkbRabWh7QiQsumYMP95ns4+qEp1rGQVrtFWhXGSAFy8SYhe73RBX4kZyrUdZ/uYE+Pv4JgjNXkt3bl6Auj9vaPKsAlJIWAc13Rdobp8EjF7pi7KvRoGO3wsa6g1Cg5QMvmyfy3Z6qdS2RxrTGov45t1oyOqaDv+9VIIybzfs3zeEL6IXwMLWGXBPUxNTAhUh22Y6pd9G7k09irUnJ8GrpAo80vAE+xUV0aQ5lh9IyXHT9TbUq8/n8um97Kv5kw/5TYA7n9RR+ZwfacxMx3iTdBC+1A7N/dm00nQB5we/5WuPUrBOZwIIad/lzMRGtio2p1i1jViU2IQ+OofRUesbRlQ4cP/fxzDxuCSI9W2nS/1lMDpBA8Y+cuTpdqrw+qIR/Mm5Ckvj1pLIgwj+5SoI1vX6MGFmE3vdPYjVijnstPU0T0lfxtE92aCq0YCa+47gTVUNeHN5HaY9PwZ2yXV4fGQQFW39Cb8q5vFtmwMolvQOX9wrp6pWC4h+nQJXD7rgs6KdlGPexC8PlUHUJAPqszoNIbeNaMvEf+xvrgWlYws45GMCTKwM59hYffBxj4TQTxI4r+MWRWes43FNApDzxB5qTiiQomgt3Dxbw3l3wlA4fw2pXA2BW6VjqKcuELdJnoC7ZeqwYcEcCFzsxDXOs8DazAIkLyWScMgO2rI0DiyCnkHL2lk8f545fF9ZBsN/lPE/bRFa6fOHr3x7RBniNyHG+xMOCTxDD9s3GFSqCOWV2zAjzBlHT2ikUwvPwsRdXTj6cihVOf3g/m9H8MbMafSqQg0OKxFrhEZAxL9cSumXRwGRI/zV/SrnqVuSTIs1GmqW0Y2k8SCx+DW6b41CUdW1VLHzLrjOnwFyO+sp6DbiSdtMuneG6fQ0IXhyLw23b/jGU2avYqPV7iBisQzuL9nKHkE/odFlMTz5XQ2ZQXZg03kOnpbsxeLn1XDJ7iJ8L2WYDbkQ3zUaZAY1UYBuwytDJciL6OJ2X3+6+fI4dirm0iO/DLgk7o5GL96DrIokmZb/gHuLTWCxoBOvjb/Fym15+O/7AzwUcZVr2zfy2Iy3MGtyLjZkjWGVKXJQYTUF3zxq5S11Idzp0oCare2sVGSP8pneEC9+nw6O2IpSukYgLWKDX/668tPbLTRm/ys2N1GEOx86aV7NcSouzOQuX1lqcVYDiNvKvxefwlPLdKA26zGqFvtS8B4jOGb7nqodJvGMKF8oc9YFz8XOlLjvOytVa3DUCGMYXLKMlgXr0hK7LK7Y30xLtFfj/V5rWLSxmKoHMjDVVA/PtmticksSjXhtiiE4GeYdiMWbMopcEGb+f/N/k0470F/hGTzp3yE2uODFBlfVQXwagWjtLGi8XoKa2YP0ZMYouBfRjuFS66hZYRstWqsGNWMn4bEgAa4N8YE/Fa8hzp8IREbCZLkPFKLags6bf0NLdzdFlx6Fz2bTcXVhE1rf88V921ZR5BYb8NfrhoB3p0Ht7UWqyCvF+aeVyN1mNXdk/iO5vx/gdzLThkYJaHygBGlT3Xi8xFHou+EK+jdukk8wcX+4NG56uRG/b0rhWzGKMGq9J3W5x4L3pLskfSsU3Tr0+cPyOjC9ao+yDu9pnFAY2FeLws/d5yF98CEbJdjg7Pd9aBovSwZ3JdCnUA9+vRWlNYY3OEZEG3adM6Wnqtl0MLcX4yOV6apfJZj+9MfsM3n4e0YHK1YXsOhRC3ifOROETzlBWbcjd7fa07u112njrzF8qb6JFm6eCkkvj+CVSVoQomfGEiVN2FQlw+9b2/nVyjq69TQPJX6aw0StY2T5LAFX9o2H9RP2w4dJImR6Zyq/CVgGahEr+KPBIOTm9sH0bE1c3uGD06RFYOQYczhqOArkfZtxV0sdSj/7wutWzAQh5aWsY3mHNXYEcOAzUfCZWUAnRohQxthQbFgZAAe2LuCKxg1sXl0OO7snsKxiMbs5K4PolOXU7f+IExtPcWB7AqeP20pLRlbw8YWunB9wnLYs+EBLV8jBFk1TeCIegllv8vjTgyCO/bsbF+0eT69Caunhuj38t+UmLH5tCiUNg3hO8Rq3d5tzieMlyHe1Z6fda3G/uQEp7ijn/BQLkrWRg+xqe7YYMYPeHv8A939I8qoxx6HRpBQk1frx3LMg8lh4B89ly8DU6ElUvqAB1uYxj9t8GV7VxpB4TimmXXsBa6SG8PYYe/JTMAE5HQVe0+5LAkkDVOBznpcsDATfkVrw9e9zinvtCJXF5qjvIwlrNOUwiRzAIuk4Kd9ZAKeOR8HkGVZ8zTme3U/o48k0K/66agzMeh9IR+YOkf3qRfhqnx1LX+6Hnq/d9HL8RfSbaw8t8w7gqwoj+HqwDU6L+MGyzU2ko1LKmvJeaND/nGoEizHx8wkwTIzlpHAduPdaHqqcp8PcS9U0MNYC799LgUkpwuQ1dBUeF41G5/mHWCrIDEJkVEnzTyxGJ/6mVYccYIaXNaZ/rKOd1VtYUI9B4Fo6OBsrwVrdeuyZugvWxD7lK4+HseZ/BMAHIBAIFADQP4xIKiIrQklkZITMkhBJCg2llChFQkoSSSiaJG0VikSkLk2UQoUWSiGpFFJCRrnn+QckfcQh7dVz9C9fAmciPWhmoBncz1tGhaGSfKL7Ag2+/gujl1pAsIMy/Av24PZsQcqRLMQV69RhZcwYMrvaS+/Nr1HDnSYayN+ALm82UlLOThgwC8LjhR9pftAEWCMXy1tn5AKZ2kOp/RAYTHtKE3PWU4/OLZSqmMyXL07CXYMj4GmzHuy02QVHNtfwvbJvPL3Glr5tPghhN2qgaiAQZls380CgBsyOTmYjcUk8P+8Z6YtFQ4XkQRYbK4qjDn6H1dGGbDbNEhJuGsCVokZWPv6HJiz9iv1V8zjhrjeGJL/hzTtKUVVNCZfv38SVgupw2NKYft4thqETT6DdNQs2HVmJ3p03aZHvNg5MkccowzUo1GIJf+6XYsMGQxSSt0f+LsrxW6fQDcclOKfhFC/WvspRzRNwurQclFs8IL0pBtDeMxq/f36CsipqZD+pgY99bwGvWQok4CFMsZPlwXxHG1/RUga3oteQuzgdhiJ90Ve+goNk/GCv9QksiA3gjj4FiNr4gCUdftIqywXk+t8NFOxxgxdHpoBZ8B34cTcCHz60gBUHhaDvyhi6oh1GcS9fU3WOIC0s/0fqlTm0t+Ydr7m1EM8sFOYdkuPBevVyWiu9lMwvbeIBldngUDmLM/wnQbSmMdl5Z8Gfr+F0edpYWCstgWfm9GJkcSj4W3mSachSLMoL4XPqM6Hg6Ci0jfkFh2ebQoDuDr6muJ6iopeBj/cdXLDOHcqrv+PWHgvaGvsHU8NTwXmbPpyI3U5DClN5p88Av9xgzD4NGVAYEg6Vv2bgnY23uTk1kTXr9eD4ktNwNLyHgka1U7d+OL+s3QHCgv0of62VPu2R4s1lPTipXhF+qOmB5pFJsFLqHwwWMYUE/+Y3oZa0UfcWJGSOwJ2ZHZyfNBI2AIJSynPaM9+ffrz8R23pIahfvworZN5ilfgs7s75Sf0dgnDV4CItMCnBD67L2Un0AkyNd6HNL3M4Y7IeV0nPpYajC2CDhzJUTtVjj+X1LJ/yF9o3SeKLszU0uH8TvKlMpv5nx+FC0kk4qygCFX9c6dDhVLLcM4zvYi/g2O3icLPLgYOzq8kvXZH+FbnDKSVVaIowJ5f98XD+TwKf7vfGxe3iKHO8A1qmn+VphSXUHOtK1pHq8KE/FR+UfYMv75zozeAqbpmTCT+8y7lnUzeZ9Vvx0MvlUNOjC9cv1nK/rAMdja4mgbZ29j9TxLIjl6C5cgg8kSvmRQWL0CrJDMqdCijhoxTtz0zjw39r6XhtF453+YinPL6BYIEmnCkV4upt0+G2jQ9K2Syjlh+ruL7MGoSO2IDRrzB69XkL9emPR2nHFN6mJw11XxpZ/4gzw+VQvty3DNNziOxMDalhhBuuFejFPO10fHdWCTTc+rAnUQyutB/CxFBZNJ5+DdO7itny5Ta+8V8a7lvtzV9jVUDt6XbY+fIDyURaQ1JZN9y6kcC/tH7hy4xueFHeR/lKX9hUWAOeOFZiTc1Ljl2QjD8Ob6fdNZOw/bgJX1rZxP/ujeHHe1fj8UYBePXtH3l6G9GctfZoVz0C8oqBf+l344uSNnIXC8ApYc/5RS+Diawb9jnv55mvL5Ml3ke533/40oYEyJp9DqKq97PR0xZcetQM4PwA1Q30Q5jnUVw3Uo37jx0i+VIDqE+Rxl+eDpQ1sJVX/gaQ9LbD46rAO4ud+e3HkWh6Ox7apl3nfLHfPGKDAU/vqoVWcXNYpx7CVgdiaYxKNmlE7GbZ5/akedMXrMoyaLXiYwppVYDWRmMYPrMERz6vxj4TC/zg3MFZUWc5/5c1fC/9yV7F/1BytDM8AnX4FzzEcKMHjl/czWoBh6Bo007ySDGGi6EnsMDFlz2rCrBwpwiU63bB8/nVqNSynJu+KmLdpvUg8q4TB5Sz0dbADH4t+MC/KiaCQWcmuKqLkXR1CAqnS+CFLnOMenaXJ6d857oHFSClJQE9owUg3rEYcmzWgcMjGeBTSej9LgLzBxVAXHgVvdz/AivTiURBHlT/PEThvU9w8bt1OOGKGiVGDdBcWeJ0eV1YVLKA987oA70cdXh7/wjNvPUM1hrshrWCfeSwLg8N/0Zyj+0eCs4P5du0n4yXTAaLngMcJGGA43q8uZ5teOYjHXqmEMXhY1X43p0A2B6ggSNjRsHxNika7HbnhSY1OHIgmV3CP+GBA3to5r0/tCMylq7t2YWiujqQfew9Dt+SZakAeTheWkxHDwmiulc5aVTPp2fXcuGz2EvSH6EInYV3IWfpWnp87yNWeubAx2VpbPWsCA4trABPq/NsUlLJv5UlYWPyIbZT/wd5B40hoWosSbnP54accvSv2QiyS7UZrWrQ1V8S8haVYXWeE3Q4+8FPiQS4d8uPe/0UIHCHIp0xtaAra0dCsupYGOmWQvumNKOmigFEOPjAnsVymPqugdXthdEex5Jf2GrQvQxQ1FxJt44voCXezVxfMgg/o+Rxxf0+VudsNEpywJo9pXDOVAX+Kq7mba/fwMG6/XS3Yh6emTKWCkrtgV+7c9o5Q26+Y0mFryaC75kEvKgzlbJTCRtUf4HC1GyeOVuYY98ugsv1N2lO8hy64y0Jfqmb8IS9JoSr/iUbi6koskwCL5y/RH+LypnuT4SahbFsli0Bz08ocvwlHdJ8+ZTXXXkAMi+mwb1aZ7ztnIRu4rnwZUAG97yYAbEBaykZ3/HVxFKy9LJC/VVAq73a8YvTSAwfOQu0Fk8m90ZRsH70g5+2zCWJWcfZYuMBfiA0AUKEFajg3nrYuEMVNZ9coclL9WG2/XPOSx6D3hse8hlTR/BQS0R1w06C7jQW+OGBf0sdKF5MGy5eFKX140fxyOmv8NFuAzCes4lrsq244+B9FvzvNE7etIXuvjWH6R1r2Ev6JEX8VOeBkijc+99KrE3aTXsuAV+fqUKj1VTIx5dBOCaBE3q3QUnRdSzqDoDzOpU0YcJx2Gq2AK1X6tHroevopGgJ1T/cuOxqI5Ub+tFt+WEaHrzHJyMlaPJcN5b7tIKna2jganGAx12Z+Lv1Dks0joazqWcgbdx43iT4he7lluCiKGP2F+iC5C5h2PnmDZT4K+OzKjUI3tyOVY/u0eKk/Wh8Whz7aq+hsHAmVHwH2DSiAX4qHePRu/bxsm0FLFmzA58/X8WnRKPoj9At8gsch2/KJOBA2yPeOfobf3nXhR1NW/BxagwGdh0jH+N1+KZeDt6dKSfjeHPQkkSQa0hF2wkjQUzZEO3asuFSQwzIpRymf2+rMad7Kq1/Og50BjLox5Qv7OboAeVtXuzcNwVje/fjqy015C4bQMO1zeTTbQZqN8zI9+kBvDkoyusN28Fm3RcIERjLvCMXDIw+QMfwU1RImAFOkfrwdN8O7os5QiZ708HxczwFFcXxhhVtUH7rLCav/URK9QZwX8CTl8y6Su+nCKJr5xrSeapPjxJbWX35Iv4zSg6mnyzH9e3TYNfBAI6e9ZF3SU/jhxJKWDEzGdwznDghbilciHai9gpXeqY1Bhpf6WCi8SOQLtXg/fLZ4JP9Dpu/dsCjaxpo4lzMhXknKcV2HBxfZYWDOwxg7sfbEHNTkCakmtNYE3FcnDIPR3n4Y/iD/fRk2wRwClmK+j8ec8d5UxIRj8JrL+fAin/nuCDqF0/zmcep6qOp5akZtKWocxy8Au+eRP5RN0w+DqPQZlYlr1Ab5JuPEAL9CvFF5ig48FyU/l7fTr2+4Xw6J4oDjU5AeJwfCsh9R2ntr2DWuY3UNwtAf+ZZPJgxEvME1/OVm0FUWZGJvTv9aXj6Lhxnr0BNNc/x74A2nL2phbcvfgLh8zoQ87wCdbZ8QHIYx5eCp/Ha/CC2r+3Fgn5LWB6pxvfjc7kvZzLlCPhRjmgG611wgEN2lvhtyn0uCNHAcfLi8NhvCbx+Gk8SZ0/BWa/veGBjEwfqn+LUr7tR68wgpi84AYnNiqCX8h5Deo158yVdiNNrQWe5MlDcdhCfJP6C9c9i4WYDY9kvVTjhLo+Pcy/j2L4RWFzXSb/PJLNXXhMoPVbkb9XbeETcewxStgAPuRwKkEin6zsOoPay3fzlxW6UnTGGG6oy6M/NH7Rmrgx1XVKB2llH4YdJLi8TtKU/ozphTbAu/am2pznJ+3nw2WWs8lahsAB9yBvUYbNv+SA6cwumjxTkMU9e80ozd5q1VobKa1aRp0oWuIdMB1X/KniotYfktuhxoVke/BJ8xfJjXckw9Dm6xT6haKFidp44FQ471PGdjjYo0RAl+/pyNrvgCEqHrsLMMn+yMM0jW2FLChZUheUpVnytSBMb7mpReVkPrKhMw4iNJRAlvRa+LPQBC59N3CeiB4pSG1itLoeO7DsER3Td+PZxa7DKmEIfv53A6kd3qGvxSnI6rQaHJvnxUZlwLo8QhCUesXCqzRbPCLtwPzjC9VtxbD64iZf7z4Dar8Yc4HGFdroNg83RFdy9OQqLF3VzTNwKdlp/mRdFR2FUgAzEjfIE8egBXF1tCHlfDDh6vjWOqPpC1e2nsOmNMz/59gEMxEZDteoPSjQ3BtemGJTTnIYFsxHTXt4m+dSlHNw3DHoC+TTTQQ2iJtrhE09Fsv5+i6a5buP4beV4KnuAnva6kPiEs9D2fBObP1KBq1V/0dFNlvuKJ+OAjTB+PvuPv1z0gEVPzXBc8HQSmRGHj86KgFrZCY5LYP4xy5PVzunQQqcmeHFxmOfuC4Yz7+tpWDwN1y0zhv90vVFkw0nu2vYPxrzzxjclMzl1+k2UiU+k1cIqsPWxPIYLmUL5AlvUVg7DHpiBui8uo06tMj98NQiPb+TC85/17L7yDi6fogvhxla8xU6dvk1UAo8RtpQ2+h5907oDZuPloFXsIZqO8QI5/1GgNl+SddJP4ZU3D3ioqRZN94hAXedXdHmnhg05R+nnqHr4Y6QMwSWaqO0wHxf5uPHoyzpol+fHY5zG0LWpmTBgu5J2zbkOrxMFQGSEBWQ7OOBB6T407l9Lzd55uHvqHkwvTufySyH4dft8CL8mB/d0EzF3lD26rxREJSrnWZ7bSSekn8Om3qea4Q1Uv/kFWt2WB1OLAtTf3swXVeaxeMITEJQbzwkqQZiqbod/ku3h8ihpeC03AT66vcLM71+x7YwcSRR9pkdGelwjs4rfH8ogXC/GkfNkYUb2VLB3OomJT0Op/cc6yF+WQdus9lGd1Xn+t3w87z9wCgqUpvCFoWkw8sEK+NXaik5LemkwRwfcyheQYvRutl03nc/8NuHTD/1JQVoBpr6aRZvuJ7LeaGWsk/Klmx8YBCQX4vXyBHqduR4K3wvgOTFlmF7VzRI3D+OByBru3yoB54LluGusE6hpyuKDe0kUu6YJHkZagr+SE099N4WuNmXxWrNwEtCbhne7C6Fgqgmtp3fo+nQfvL6uCz1RIeQtYAzPtmTwmaSlfEVdmL4nTWDzbRUUY5BFLxZvx/9MpkDoR2+OWlnMG04K8rgnGfRj/ET+6VtEad0d3JTVhyuHF9Dtsglg1WDCVq62tEOimK+GtkOG93mcFZiIoWvsuVzOmBdPfwCz/rOArTmSbN/aRmGey+DoCRMY/asK9qUFcFWKAYd/sodlX0eRXcBYuDljPc98F4ej86Ix6GIhXWw+g9Kl7zk0dwLI2o/DkC4lWFArDndrTXlJniw0fpPgw4Vp9GrfdTzk4sQ3VHLA8bgIHU1NZOnp06CJXtAW5RbyTZuCr2/8ww8ZqlziYc5iC2eyTo0QwddMgHW6YBW0HhoXVIOO2iDHBD2jFts61twXQb6zFwHkvUNHcxEWHikAzen76MvyLeArNBL9F6nysdw63GAUhK2ie+j6jcV0zT0SAgMAxm2zgPa0SNaLnYTfv/vAuPsbeKqhEPXmfSVl+TY8q7YfUmcbgu/jCF5a0AGdGwdwbkkz6f+aCwVHG1C57hsJvH8KOb+1+KanEfyRWcvdCQV4w/cmap8uhHT5YBzfo4a+s1/B0aCPEDkxhXW8dOD+koNsuSqOJTznYfGq6bTiZQmCxk+sCNoBywfGcMjWJlj9XAamlWXQxr+BODyjkkOUw2Cjrw8XSQyQ0qrpZNEey28UH+PsCH2YfXgAboQNsrp3MslrF7JT03M+eT0aVys1QuRhaRgRch1i5wnAooNLQG2tKGaGPqSc9bfo9vY61g+u57dLitF3SjXOUrhEG3z0YNaz7dwp9hES2vbi1Zg2PNsmBNsPmrDMRXewcnbjzQIlcM9ODO7e6gIxy9t4sPU3XJufRHtM0njhgt34pvkH6jlOw+4lS3n+DlMQOhwB4x4gVK9UIcej/Xy3tQptTt6BRaofKWHVFJj79DdqyE6CDzqS/CVBkmnZRK40O0tjv9xE5wcH6MCeRXCyfhOb1wbRcOIkOHeznl2tBWHvCzmMs1vFL/7NZtsfQRjwuZ6UPbT5VooIBljqwtMOcyjw+8Fb/pTS7KI8npPRAFJ6a8F/bjVOqj8PUta3URiVwWHdGD7/5gJ8fjYe7rouZJ2AqzxeJgbErA+j6ONHIBZpz/tHi4GXhhBuGo4gEDqHNw6MpAF1f9qcLc9lr/5ylU02Pi9s51EpgmBSuZYsevbAt8qZEPe5Cw9ufYedL56z6d7fWDapEbziLsExVwH4It2FYl4eFCORxNcPToWRoa2guv8bPynsoC57VZpVZkd7fMdDsoUBHG3fDIGLREB5yQvOFdkKqwfj6K1wMWS3viWjm80g8lkEzBZfoaTkWKIP1yk7+QF/HRvPz6PPUUyGLxzZFkDVAYf4mtxo2GOxHQ/GJ/LXO46UsugGWYntpc/ShTi8bA6ct9ImG/+JUO4gCBXf7Djjzzrc+GonL18SDaGuklzeJEsSd5LJRyoO3zuWo9d2gsTNS3DiKWtY4PyLPgy1slRWJ14yS8e42AWMgl/h88XX3GAlBBYthSSTpMPvTbQpYN1leOhhAqfDk3Fiegel1hJv1Ejn+LE6cLxpAaHpXLR9NprlV8RRSvU4iIoa4izp03y2Q5Pufd1GLROF4Lm1CRxULeR3Ww6A1Iz3kH68EE37S6EycgyW7pJlIVtdbG0bBcYrO9DmyFJ4kKuLvs2r4T/3em5fOBXn1ntAX3Y47uydRlM9J8KbdQW4eOYLnOJcBUpnJ9D7/WYg/XkfWckcReHFf6laYhMtEJkK1gY5vDJ7DIUrXaEn7QngVD+Tas2vUpJ3CPqvjSdX9ULYed4Sdgiegrn6l+Fz4xu6vnkl1j7fzn2Ck1nnvh89/OAETms0IGivPgxmz+YFL86D4CdBlO18CCHFG6l3ST69/B0Pui8taVfnUojsA1g1Nxri9S6S1dz3nH3iPi7+t5mWZfyHgXMyqfrgAboadA1CoyXg1GsnUpuXT+ZjPkNDUgw2RkfxBDJlG5FD7HE0lkOTWmn0ZGGwMi5COcdaUlsWRiJwkQUXHWHV6HCCUecgKHgNyotOBrcWJfj7O491CjxZpu423DP1g26XCXg+K5RX/ncUHezCUFdJj0T/mIH/qduwFSzhYoAKPG1qYoEdkrDnSjWM1syEXeqnwdU5Afb90INYnyt0oGY5Kie/g9WtCtAxI55kSQrOKI6kng8/aWleBXo2j4LytKNgOS6b35b6o4KeDRhpfae44H54NmgN9efy2aunnZJPG0Kc8Ea+PniGFW8ZY278THx92Q4PrO+n7c6+ZPV4LIYKzIbM+QxRN4Rop0EMRuQdpogNLfzi3kRMnHmXLcJE8ITKHpw4QwneZVuAWakePh+8Tbvn6ZP2iEH8fjoEZm2/Sza/T8Os8B1oProUjROFwTqpBUHRBy3+PeMep1SIDh8J44NPY1uaPO+QG4cBadMAOvUgLL+Gj2zeAj+y1vF5GgeaWVlYXeKJhWlWtGTVNXrE1bj6phw47YyipAk36LZDCYyek4exsZfRo20RjWjT5TT9BySnK8JTNLRgu5Q0XtO+xzUZn1jV9T/4Pk+a4KkGagzNp7lK1jxCWY5VTKUgIKURGvam0z1dEb524iBYcjvMEyyExRmh6BK2hl3uKrBJgzF4er+FW7H7aVnPYjRavIj228jTznl7wdxwFNjU2vAXxw+8/bEAvJv5nB+WOJLByOcUZqgFkzsL4IC1DG4JuwvTphfRWJlKWDJDEHIjcrhHvxDd1CRg9NRMPKUUhxW3q/hy80kKeVUKhUEWNGm9GOjmXsNgx32QLVgKRyQu8NPJx+C2QQWeu+bEOUmfQFTOC6Wum8Eh11yuDlhHQjkPQNflAtmuzSBp3T70tFiIffuycPkKLdorKwqF60Kgad548IskLHG24K1xPrB8xHr4fTmOSI/wQWwL7ElXhhu9jlzvxFw8PYFztqiReSbBWIEP6PDnAyvk7gAX8xQIzZOBnge/uGP1FEp9dAcbt4riSTVpMkrop263W2Ata0rePefQOns8ZGibc35WLk+uRjrQ8x7ybeqh7vZrXrniJPQomGGGqQP4vQfQWF+Hk0Ysh5EHFVFqZzP1q4exzJ638OnIQp7U0kphDc+hTl8Z5Kp34skLo8C5Qgp+2t4gk0WLqWjHLr6UaYPfFq6AccvuYkW/MlQ1yqL78Fs2mXSZDy/LQJ3zv7jbJJ0yc/spK0kO9z/6xvo/deHlw0Danf8W56S95WzPCxAb4MMOpp20s/8+Lcv9hMsL7/PShrGgk74G4/TOU6Z/Jd+TeYTT35ZjU00UXW2oJ+96H+xYp027Z04HzUflcH5lAo3ddhx85JrZY0waxP5s587FcXhD7TuuCzrEEDwDLBS9Yd6QOoJkGEimvuHJwubgb/yPK8eL8JfvmmRk9A7n3BaHRTLDNIUWwtWItfCl5wOXbT7Dgpsf8zTd+7j17VzQ/2mF85LUQNHrDkvIO4L6CX0QzT+CW559BInQhzhlRz9rik/lSQlLoN3OCI6OM8MR032xArXRYm4c3PeWwvQkOSpUKUY9TR+uq/SHtZ+0wNypFiM9pPHormP4S0+Z//XXobi6PthsDefxN9L52/5bYOMmCSVa8vRwtQd9mpdA8eYerFq8B7pCJuDUQzGoqvWPD3dIU0W3HOwNzIeho1n0qFaMHut+oof5qzlr2VE84BCOjT/s4fqeLpw9URg0/m7hbRFLIMLYCl0uK+CZXVF0+ukQGtbbYkTAR3pjO5/NL5hBg2YXbd43Fgql79AUysTh9fZgWvyAtuW+Y5/0M1QQaEM3nujD3fjNNDhnDZ7LXwVxO6/SzDlGON7sJx7q3UALG5tg8OkSWKg9DfJu18LtRCO8FhtPv34Ww4q91RxRWETK+7/wtOQT7OJ/HJ7nKEOCWy67NgdDqqc2XHrbAV4R6aDnKY/3J06Ed3cD6PlUQzq/UwCMpvZChrIKH05rornnAjjiVwraaZymut6zuEXrMst91IGxLgTmq37T6oG7oNZZgjnfJ/G+Y0fZbawU1BgeoJVjszCsPAtmT5YDVxUPuFBpBK22Y8Aw1p3eTfDCuRYrIL/QgMZ5tvL8gr0QPlkbKuV2QBWnQ8WJSBg2isHKqkxyKFdj+fkqNPP8XQi+/xZiq0bBzXYfch4ZixtfNPKSkFfws/IpSk5vppALj3Df+mps+vWNZ3xTg+DnorB/oiu9Mj9I25PF0HfwD7R8F4Pmgo2k12sGWkZB+M97HFy+aUWPbZzwSKkXRUeNRcWQFHDxaQHjRlHAokHcbZdFn3V1wLprIci2pNP44WbOODySZVO+Q/uIOVCmewfc4qOR2hZiaJEsdMWks/zpJJJ4fJuMG9r5xobPYCb5kYqbx0DpyWxa+aqJtwSPhF0nPUla3gyFX/vj2eXfcfOJzbD2txg/7vxHI+LTuaxGG/RsxcDcMoKaVS7QvvNJpK0yC1f+WYAlmqFcf92L7ZQL4UBcGqRs1QLTjd9A+lcrlfl547xHvjTw1xorvsRT2YomLJyuBytuzwQF8xGgmW/KtdfvQY+uGa0O3AfyrkIg8NgT/RzV+XcL0cSITGwqMISyCyqY0VYHn/EfZvlpkoB3OhS/dec1qp95o2cVRFn04c5WYdiy8RKW4hWW0HUhzzfq8L7HFA5zA5kIWfDnAS3oD87kfYcNYLT1G3K3DoeQySK4vbwUz4/Spo3r2iko9Dffau7gqXfcwebPeLjlpobjUwtYcOoZOPTqM5e/UGax4h/gKleIYi/1+GnqCbYOUIBFLzP4q1sQREyai8NjH/OZTwJwximWb6bGkb/9Sk5xDOVvlQQnCs+zVMQgqtl00mhFUdZYEcXtT07y2YfC2LDlBXU8aID6iYawpjsV8/4GgWqtASQt3o7L5nVAUGgyKu52wjVljXjoghgXJk6AQ7OHyHb+Wt6SnYKFMk68Kl8cpWdW48c1NpT4+B8mrzqJXC4A7slOcOhOJzeujYE98U7wptGW93XOg1t2d7j07UmcpC2Dckeng9mTd+ik+5km9ExCu05duvQnFh2giS8FPIQvoI2q7TYEqSKw6Ig1WeAlEBl5i68IvsV0CXO8v0US3sruo47Juph4MwuHTmnBvZ5DPKTfiNfz34LTjIOgluWGd6ZtxXKrIFTI94Iffw1wnbMU1JTK0plkc7DPXkI7jwvjj1eNpGe3GR6HVYPrUClqpb3hQy5y0H3ClPzHzKJTyxbRaOcWcLBPpidzd0O19EqO7Qe60l0BZvOMIKKmBay+XgHRvosg0p6L27fO4uFOa9ju24IBp/xw9YlfvNCAIUBKmf4sD4RDT92hdMVtzpqzgWceS4P9faH8Q+40jZX6yzVfAb7ln+Kbqx9yp7IYT3t4nfr6EtEnWIYu+x/C6/ktODbMkvcNWkC3twtpvFyLq4eXoyX/4lG0ELQyT4DH6igY9VuPclbW4I2KyfApQgZ0XcbxoxdJ5PZxJOqNMYbGcUKUttISQpQXwcLX+WhzwwgC7AUxfu0PbJqWhukhi0FswxsW8r9Ms0u3wMPPn8k39AL8uSgKq+KdUfXcWbwSsw9KAtRo1OKVbBwxyD+f3UGDp4qUdK6R5u/TBce429C0oZXeL/oKOjljKefkIVqZOhfWuIqA7EMrfjg0CDMOSUDAfjlYqVGH5+8uxME5FbBmLUKTkzKp3Fdlr9Ya6Dh0BSUNACDQH02SDsGhEZWIJ9tpqUgiB5YO44nubloaMAhd86Jw0iaCetdwDC3ZCmULptHMuvdYPjqHTYxt0HnNOc4o1oTkk/9RcvgkuH4kAy+d74REPX2Or7ajHxl53DI/FuSXHEXNZ6/BCLJ4IGQGiFSWQclSP/ALXcVlgrls+EQHZjh34OKpMmQod5RCfVbQg39T4ETaeTrSkYv9JS5c0byF9Hk7zH19kAKFiew7c+hcRjELrxGFRTaSUGUZTc1Xb4LUd8JzQX5ocToKtjqpYCYHY4xMHry/PQqKNxaCe2067teKwimLP7F4vC5srt1O48xr2J83UGLSCzZ+LwtHdm2nN6Lz8IeCMgt+OA9ZFRp8cdI+7pi6kUz3GbL6b2uMOCkIq/wmkPIUMzaBfdyfGQURJU1ccN+Vpcp08M78eGg4FI9rHsuC2rh+CDbfjTXtM1hX7gAa39kFaj7yuPVEJP98qYkTfV+zrJMI1NytgfEWu/FLxFUWPBwDSoq5sGFyDup0T6fW/a+wg97i7zEjYHGnE/3MjMdXJybyjNkD/PNBBWu+ecgOJ9ejWeoPnFZrwvuXGkPU8XiWvh/GfbdvclrHL+rd7YC13X083XwDhK07wSfH3iAfX1l4sCsNVr1qRPnIOTzUFkFHru/Dd5Mr0WJgKc6eNpbGZqdi7m6ECz73eBiVKW78Fpp+ZDnstDxJ8eNjWPp+Ar1+5gFNNZGs62cIy5VdoGXKR7CR8sG3a1N5wpw5fKAiBz7+08T748uw6Zw9hnmagPYDXfg2PgTvLLGk9eqy6C0UBN9yWtD3jgUs2PmK+vkJJjqrQ/ZfAXa908JJc0PYoeIY/B1jANZua/mOTwVcS6+moNw/IO0nAds+aHLK1Av08+0EeOVdTPOGg6DZ+gt6L11PBqcFYNyxeZznKAWd7j4wJHaARu2ZwlPHt4J2zAMImdxJzr3VMGX6Gpx134AeyAmD4xQlqBfrY6+hUti6O4XTfnVyyPdPIPlRCNwtXGjfhrtgYKcPTSvT0aPqAVVnqMBpRwW8/i+cvHNdcOGsETir4zXurd8A6vc1QFbQBr003CB+XhAYm8WTvNRf2uS+gx/c6qJny92ofewtHHtZG240VfKBLwO0vqOfj/lpQtWbdohOyMNZmq+wWGw82F3yZVNBBdj324seaaZww7Y0vOF4DH0kKyDmmTvl5YuT1mkfrMisw4XF8pDzwJ1EFmVzlOATkD12i3/bMh6c+AjTpctxztkg8pz6GW+PGwkz0o2g6LQljVKdTNvd7kHaxlgSKCrjL3el4d+Wl+AYJYBC10aDRmcQCh0QgrqN63HgDPJ7tS8k4+7LwQWGPOpgOknUhPOfC3rw5mgN/T5RzI8/76Ub6qK4ry2YbleHUpZ7DDiPnkU7T5+hBeIzwDRVA7fkd/Ha47v4/aVLfOpcKc1fbcufl11Ci+Rl1HnhDidqaUN7exL2ejzm0WmHYe/XaJyusRvtcmw441UK517NIu1bI9AmTgFKXBLAWDWY5Z43cfo8b+gdXsDrbE+jx85Bvtz6jtffTMSrFmNg1o5CSMtXh5qotRxccgwkoh0h850MTXywCSfmxVLlzrWspqQIVVZ2uFdUnNsXNGFjVRKsziwhEYNzoGA2xOV4Hz3UA6BbSAkCnJNg5omLLGdoCp9/JsKYJZt5ntlV/N6aQCt6Ddhl2yZe+NEQ9CoDoKrICWJMPejhrEss7DmV6sxXU8jAId7bn04N529CyrFxsD/rLJ3YYgwxCzfw9rxe+O/PDs5Ps+Dx0QOkMcoRHdqPcGKqEJy9OkArR+aC/rEudrxyA+8NiPGyIXeaexXYdL0PbJk5l5XspeDymzucO+wJbTO3kIWHK8VEOdHHpH/U3HudZlU7Y0JWJRj904Kzdlcw/k81Pqrzot117nS99jsNTW7DZZscaPPKkXCk5T415wmB7IcGtL0hhctVs+C7jwnLmM/Cykw/DhEQBcWuJDbNCKCUveNg/MBJ2mU4mlu7toFtlxuXZbbhTdlDKKC+lSLEo/GcQSDa/icHE4zeQoG1Ips0bsVQ8zek9C4EMvP1OGl+KWq4OpF+uTsErtKFy+6akPPbjxbGJNNC+Vwokv7Hc4Wuoqx2E/TWWJBClzwuDx4Fp53UUSx5FPoKLcKDVr3Ql5jPPa/beLZDF9mPe4E/VfPYwlcR3pcHo/Y/IVat2QlGP214QFIdsmg+q1p705RxaWTqvxmUHcyg5GcZTVlhhwtPP6RzJe3gbfqe8xZGwFGbr/jq0HXqrFaBKvFpMC5OlMEyg/aOX4XPvg/ALKNeeCTljsNajtRiG0ICZU30fPZIKPt2GZ0K5sOt5BiyCAvnfy5VJO5rQcvEFdDdoAX6U3bDmCwL8J2whxZPNscnl1LJ6GgVHfI+jaY+20Fp7lhsnNgGi+QO07gDQjD4Up7nLS3lDvsHnKxjiacOf2SZtCd0Iy0RbPIjodm8ltb06oLtEW2ak7oPNISy6Rau4fb8WaDXupWiffbi7SkD/Oe4N0QqSsJIQTm8fbGGk54O8ektrnyuVwVsxy1jyVoPXmftRC1eD9DW3gg2f4+AxdKd/F3nAPropUDfmwWgUXEUStf8xl6ZY9AeGgDFD+TBdMtk2th2lAMMA+BQ0GLY8fA0mvZZcZ+WB1kfngWuHQ64om0y3J+xDgpbgsG2tZIKjbdQU8gGdm+r56v/7rJ/whj42PCbJ1SPAZ02E5D2tOPwL3409eUk7hpYjNdmKrKsmQVFykzlwsw1JJSlDgn5z2hhqg65CD+nm7++0pXnjzHodjxKPP4KUamemBS7i4uGtMA6wweeBB+kyYHG0HpdnwYS1+Fw91bUrx7Lx3Z7w3/KCnxeTRKSPlrBAtEuGDr5l6KK1Un0izSLPLwAvTJeiCan4O3fJJhxF6BOwJgfjkvhnXnGVL7BlP6YKGNyjgLERHylZQfmg8/+MNIPEYLftrHoiEnYJ96Gz3gULvNtQa2fe7jYrB7e6JniMecGVKklCDYYghkjolh8zE5IExQm6WhRqmy7yb8+pWDBxjb4pL4JAt+qgEG7OzktCMUM32GYdH4E5cb0cOqrIJ5huIReyx/mZ2AE2zIMYLK8HzV3zOElA27YNX4yHgjwhMvnl9NC/QUg/jEVUxxOgeSCibCiqp2ejvrE9R5IZZuH4dxIR77uJ4T9H6bi+FJNzM8EDB4YA9t+eFO0RCBsWjcd7upuII1JdjzJcjUVR++n+bt+o+bND6A91RDE1hfQ/qY4qhohTUvDWnHfn894M8IURz/6x8/cMmnp6b1YcEgHkgIroTf9AN5618NesedgV0szSlqP5azt12C1ejm6LlGFHdHGkLfjKnp0NdFQVgquqg4D+2ct+DFjG7gs8aATV/rZ/540SOydBG3OCyB4tAZWno7h3xk6tFzSl8ymH4JIuUweHy6ORe5zQbUMIGviFxZKmoX2w9tw7unVnNH0ldxHFqLW8WeUudmdINyGbylOA3GPSwgZkXj560Z8+ncWt8V/JPEASXy0mzn26jVcPVkAtYNF4e9OIwiZNJuzxkUCP61nLdHvfKaugNMlImDqLStcrq6N3eOU4G3efTbOR2zwSGeh2AjOV8rBEa2f6evfCbymP54+mx/k7bISUD69Ay54XkCrByGoWOAMh8dY0pXhBl4/Yil1R3jBlu9XeHDnDDjnV4X+/gI4vLmUq+LHwp3AdVwINmwZFw2R09tY+xOh/U5pGCiyonjXt/yq8Dnv8qnChy9e8RiDZTx1zx50vTMN/iW78/d5SnC9PpJ9HlnAvnkEu2uzqUqzAopkjeHSlSn85cUEEhbRZ+/E0XChzoBu12lTh7MyLZYOJD0jOfzv1D56mi/Jt7Vng6mfI+scUQeR+19xL7wgl/wqzFp7k3NevCYDlb1c81uOUy7W4eSPvyktRQdGjM7kGxstSSNlASYoqMHv9Y64ctVl+mu4GLIvL+XkuWm400YL9j7LwZef/tF9KxGy3+UNg/s1Qar0Gm1a5oLfFY3JwTGM70dPgfmBV3m39zxUODaLdtfJYHOaLAe9eUOHU3To8D4lehOzmNIbVWFkTCMUNjdQWqY6l/lXoYTiVfh0Zzf99QzA96+O46qgLhpqVYIVdlNxwcw6XOahDjdaU3lNyw36IqxNW5228dX0ZA4SiOXAh6rguqiBb70Sh42ih7Ewfi2NMAqkW9tvYd/u5agy4iyWX+jle0uV4aB0D+e+EGPDx3pU6LIcI2LH8/h2eRSLSSNdXWfWFTgD+nNGwsdbRSQ5QOjQWwB+9Us4/kYGnpe6yrNfl0Dc2Tj89d9yjOgwgQFrD9S5WEUKN56SpMZVXqESh1v8gVYMGvHPExnoPrGM0UYJpts9Z5OBGJwfvovqvdTw88uLLO5eAFXXZSD8hjw0++vxxOUMiy5b4xzDdF4scISqxffg37gYdApeQ/42E/GJ+14adNFFv79mID0lgWzrz1F7x0SUqLrJVxbKsWCxO5uKDMKbr2/J1OsIfLMxhFfYD/q7fdFX8Q4f/HgPw4O3QeC3PtocLsY63xNhhmUmPXxsDE/sB8hGuoQS30fReslv9Mv3C0fK5PCqsOk0e2IpCQc489YfJnDuryhEr3tD5pfqQGChG5REzSJpTW+umX8UHsSaQq2PPS7KnAI/1t/k2sSLPDXUE9+fVmCziP3QmJvE9fMqaFemLQ1PO4IVp2fCRskv/LNXgjMVHHChuzk7R2lCi3QMHD9oh09CL5Pa76V8wEsMCjUIgxRT6KrdOq558JB/luTxgPZh/vncCZOu2WODnChfENGGNU+3cukGOciv7aKZo2pwz8Vwbr0UAyd0lqJadiqHmO2ncuOJsO/dHz4TlwGL2+ew4Wdharyowx0V72iv/B2ImXGZcjJ14dOzMfD8oC7vCjfkyBG5uDa5HNece0n1TbthyTs5mvW5iA9f+w7y21Xgn/pl7lsUSVd/IHn8JtR58QLQqwGtNxmBh9MAvzpnB22O0pDpcphmugzCR7ticrs/kQRWBHFKYjx+upQL8cFrcEW1C6kcsoDSS6awS+0zFK2YiC2xRyHBejLWpjuyr9pbXLwxgdXNy1n7vAysPyLJYYUv8WL0B1RwPcEr/ttNblLradW2dKheuJF0DW+S/Q9VOG9tQyEXM1H6ugN8SJ9PQqFnqOnbUbKeqkINHzyprC8Ca0zGwMV9MhSV70s7vrxEW39TEB85h582HkQxlfmc0HsVt464RAtztGBUowwdb1zMGbfFQXGpNd0pK+KywAyUmHOZuqKXsYbcBBB1mARG4eHQr10HEuNBYIaTOH9Y1gqthW0wsvM/rr0XDaEX/tKnhOlwK7Acr1Yqg5R5DDg9XEXP7O5BbO5C0FcWp8yzNXDLWYI3LGDwWysB1qGW7DJUy0mVs8H23hP+GLwfotSM+O7SBggevEIiO8fBurPv4JTCCJyZ9Yi/H77ACRZNmBNdCntmpHLJHBfSyl3BRZJG0PPrH2mv0IOvhseJ4lewolsbzswoppJ50/i9+y62XDMEsj81oU7fiWZ0rqW2sBCosv8PKhK6sWWlL1nXFmN3fyR+qragMEcTOHykmha/Eceun/F06cgQxEYG4oHg6xgZeBHMm7eDSqMztDaqgubAM7LRsMYDXS446ulzLg17QFO6L8BxGSU6kBTHxtd6eFuWENzpOcVLBl2Ih1JIbWogpgi5kuuLIK79cwAu6QaxnVQofoyzAKl15ST4SIS8jp2jqvR7JL/fH+dpPgWLb8Iw0r6f224XsvtFCXjbvINGOgsiB7yB1lYjuOtcRz4nK3FVpBsnr1PlEeEyeMxCCuwWTqG4udaw3jCMqlR12NRSg98XlqClYiIcn9PBCXeH8EKKAqQtVaDD5qO55/FNcO0/BXK/E8Cy9zuff+pGenN/UmSTPbruVgCj/JU07YU+dVrLkpPeQlwdkoXntaTQfKk4Lq+7ThVhh/DlXj1oj+iDptoAqvtxAuYbFkCy8HZe+fIHXNaMxFyXXahns4cOnjOEe7blJLf6MJV3ysHEU6952og+WrQmAoo2XqORF4b5lKMra2epg0mgG8/8+pvsFL3QSW0Y7vfPhKxpsbCjQoGXT1flU6JH0FHEEsbqJZKr11n4EbCVm0yUqHHHc7obdAA2Zywmf6OjJDJ3Hnk5acCui8/4isAJiphvwoWzF9DJs17k5XSMp8+rI/89n0Dx3mI4pGYM213mgl/4Bx7t+I6e6nfCh7Gb4GSZABielOY7Amv4x4FPpOg6AVpdA6izLg1eC/mQr0MDLry2hPu2+UG8SwF8sm1mwVV+pKutA1tjekhuhCYcq/3NMZWV5PSvHJx3bOH81GAqaN9NV43e4ddSIUgr+gJ6W/bw7mffqefpPS6wHmYV/XaKsf4P11tl86iH17lIwxgOSd2DjtyzJHHeh/9bakDfV5bxf/bL4U7ARF69egyumL0MXxYqQsuS+6DwbJCPj9wGK0Z+xjHpdaxXXwhqGvdwZsVL0NDYTlWnpSAwdwgar1/HGPWDrCrggCODXrHzPFcm1eW8WOQbrXqli9nespA3UZEd2iZib6cjZQTexjPLTvN+lIQYuysg/k4DLysALRefArft4vlSeBgd85RD9wJLGHu7CDfMsWKVAD14YpQH7l8OQKe0CCgbbYSnexLQsXg5NORfBqeHNZSud51+fJKjrvGKWHc1l4V81MD74RienK0KD2R+4qrp5qTwaiP8yujH7q3GXOpzDee96sOo86pwN3UJZO9Whb252SA9ZRdoJcbAarundDRcg5WmXGK35Jv0dcJMeGSynhed1ATz+bJUUpLCo/4agV3wJ85VeMWbEo9y10RtLL5uDL/rTXHSsD0eDWrA9NBMyPg5E9x2e8H483dhxdmvdFNKnGirNMR8PEwXVy1mO+HPcEb6It494AHTX5aCuWQ0tOxZB2vWTwT+NBraeQI6VDVhf18rwwsZeCtdxEorLlC5xBxOuXWWh/yn4uAlFZibacSsFMlfPyZyXbgPtJs6cWjEQ/Cd/B865u+CaQ2B/O2GEew8bwzl12ZxbJoGLdaSxZflATA7Zx0OFzSw5VAdGYtGs0u/Evg/a0Fz60J68qQMl3Vvwy+vD9LqlHrOMnsNKu0X4fXREF49bRp0GK1jx6cnaWpoItzuFYE08WpovDiEE1uIdxhcZT/NURw8PBUeqnqTQVMk1hmV0JWmQgr7ZAjNelXgJ/WJvFQ7+ZtfI/ZYG8AFPz1+3L0Rb263RKOLoXjTRJJF1i8Cr4tjsSxkFI7+spHVu8fC85V7uUrZmubJCOK92iwskZeAJ/JBAL4leER/O0i6aZOjuDxEzhKljc1NpH+1EHIglQ6LTsB13dK8YVEKSsfVY9qOI7BEUwtWnoyAtZLv+WWeDh+MDIQp+9bC3dzNeOdDIlzs7Sbbkfqgo20E0pYTENcmw743Fnj00g7W8okE3S2eXBkihK1OcSxzYTtcGDEKdtvKk/v2JTxb5Ri7KwTDstnVPCFdEfZlynGj0Qqqf3sE+nqMoafMg+cVi+GXagFae/Qs/PdoJsc/a8HF/TX8+OovnqIeRrqmItDVuoev613BaglvvrpLkc6N64OgMfJ8xmIFWHX/Zbvifo6bIg+LG49TbFAfFi8NBd9da+m8ux/fvaDFF8o64fer3ThGdBxYf5YGLycz6D1UhhHzkrH8uzxcLtgOC0RWwYR5+WibvxI9PhwhqVcEaVVjcM/DSew1wQzLP7dgfU0s9D2MoJzYbey4qhveeWhSyH8WMPfoB/rj7YOy4rH0dUgHPiw6iPfvJuFkqQockvgA5XiN5nWawoevevitchx3WHlh5aIZ5L1mGa8Zp8s26g4cVqWETU77KTtfGwyjQun3AznavyeTVHM8yWfCHXZVHwcqLydA0JgCLHm7H42ejIDyIE8yP3QOGhKuUGbqPX4/xYSWvXCF80/76fBCe8z7ZMVzlyjB6MMfMVH/IRz066Tfo5XwnHsil2qW0d0UewymTHKpr0YxIXnYK34fO3+LYPrG+eT2VpRN7rnCktFCcCryJYRZZVJO12gGZWE4L9JLgzFa3D1tKxQZtvOzsA7a0nGStE5bQbCsJwp4Z0KKKELpf4/g1OYruGFOLp4xv0WVr/NRp2ERL3sZytJKNRBQkol390nAvJlqdHbdIThy4SvbGouRXmoPys24CqduvGLNB/nkldSKZ9ZpgSu9hLPPjlK5xUGuv7OR4J8C1TjpQzWXkrptFP9YGEhHEiQgVv4F9PynwYvOCMPdZcq8jsqp/aAS/7ANhN0NnryhXxAW+liAdctu9LOMh0UDbbzqLLGYYgIVZa3nGIU1oCcxGhskPSBwgzFsT++nopJ2/ie2Hgzkl/JJw2V841Quhk47gQazJPiU0S70fSgAvV3N6BStA5rbVmGhVjb+3d7M+renQ0eRLses/sSWnxr4m5UQ9CesBrv+E/z4VA91JC7F7oGjVJZXA2unDtG2+jIKbAuHmpxJMLb0JCaZHoZmOWfQ+fYVDTU+8qcLQ1g4Kphmnr0BEYmv8Ha5BryuKSCLIkFWM1xPI+atQOv3wWj+KwF/VutydNcgiyp54oR4Mfgk0USFz3Vx6/MhcIFQfr9fkb4Hr8P5Ds6wJiSMPwSaUnSoJrTcsuZx81X56uj56HVDEn8G1uAO2Qjq9aqFUilTuvGiFi4XEIQXZsP6zw+48949mi/ZDmEnK+HE9xnUKulGfTuqqDTqLGmoWsDopBFMS6eB6Dgzih5zB7UmR1HJnXoeljGA71usaU7QEEus0wOj/4m7D4UQFDUAwP9IO6M9aKc0VJqKUkhEoYSMlCKjpGwRaYgGOjIzKlREhCQrlXZGKqIhigoVqYi6j3Gf5BNU4lWJ8+iI/Qz+u/8TGHe5UMFzcQq1dIHmBmf4dOQGe7w0hblOCJPlQjlEzRav99whcxstnPOfEbgJneN4Yy36c+Qvum8QhQBRH1rqLMNbPudhXFIqGG6SQul/6hyWc5zebHmKs4oPsOJ8c7CqL4O+pM80kD+TPhyN5DOdKjR9CUFp2WHqvmiJDvop+EHOAFJURNlGMAK6zh/l7wWubFecgBUOlmxqMpHHO94nyxN6OO6kNFTFx/OC6e9B68J4Cpm0BlQmCdMRxYX0wfcNbhGMhKLVOaCspw05jdLc/UYNXQLbSAEv4rmWAm599IrUz9jgxpzH0LDChhP9x8EmbUMqrXvKmiesaLdiH5cN9GP7plOQoukAyoHHUe7GZZr1XQ9SDTdg/tZsWLt3B3WM/gIL7SXhsuR9jH3wjiU3V4JQeA6df6gOK38cgHKDXIj5lsd+aUZ4oAdgttBxmJ6zGSy2TiWpl6IkUzUGZEpeo4dNFvv2zsbmU+ocH/cZj208xhUpOmyWVMALtYNYa8RU2C5vSTVrVUm+Jh6uxAC2F+bAnam2yH0j4B2H0aD2Uo7M1oJj+udhUclsrntWTW7q8fjlWgL5X19K36c5g3rnXih5JI1fT1lC329HLHkSjAJTCqg9qRgu/F5F90+1Qpj+cr57uAqTH9fwizQd0Dt4iXOXb6Lq1SXcISkAVtFuOIuLUWlfCdcLD4Cm0Sw8rSMEQWKivOjqclB3XUh768MhVHYWS68Kgcov0thgOx229a/g+TOFwW92FKdd0IDWh7YYd1kZ/ENCqcxUAQ+PisP0Bb9ZJnIMzZ9jDmLPPXCltCa4a6/nLZu+ccOwK4gnr6dZ9S8odedbOFM3E94KKUKZ3i66FbgYbnhVwModFvR2XAI42+mR2bI8+nWpB1TiM2DXBm04eCAHPKXswGTiLUr6s4xGFV3l1Yoh9OHkOJp2OoOj+jayTd8YaMw1B6dXZbh2+XyMiTsHrnqnYbt3EP1TrOGIohAuPRhC5ndtQQaWwQl5Y/x88h7ZFjiBnflt/H26hVPBh/rtpFilQIRLDyuB6J2p8HdDHX+raCYl33h8LejG3klNHPPwFNwfeAp2uX2Q22wIpjJZPGd1Oq8tCoB1UrfRZngrSUzr4c/6k+Doj0Xw1GoGjF9iA/aD49nHXw/00iJ55NxGEFprTfOejufVxuXgKTyGTgRfp6VLCG4Yx4L1oqdcWHMM9bfIQb+DOBgcfoxHOl7h+lo/qpabDzq1snDoWCm9fmAPL53n8eclKvghS5PzBi7DvBsB+DA4DFXyjPiNvBkkOC+F2VnHIXzoA07e/BngcBRFatmT5kYG/bxAvOmeDyMKxGG9RBb7RbTTvyXJsDbKjTYumovv7TXp0GJxsJF8DL9fT4N1TRJwoncGGMjoUOOv6/jIsJVShm/wujFIGkPuFLYmAI1eWqPb85Eg9yqQnh/8jE1HLwJ2irOWeAH3x03n0GuvcUZCDJ1tMYCTkdawMDMAz/2to9trzsDU13rkMWwDdpeD4PjqSSh86iW24gauEBWGh5q6+FbAHk4Fz8Lwgyr4zbGdVqxgkMmTQi7wgJbwCzCtUw7uONZCwrtK/KveBtVZHZR9eAw5bZ4J9yLGUcWLQDRZX4rD1y1BxSSOBd/nwg67U8iuBrzdzo2K98XgDitn7v7Xg4uTQzg0H2DVKkKB+qP4tN6OBy96UvV9cxCOCcXFGofZfbcDFG1og5z3k+H45bVovGUU3n9xnk6phuC2IQkulVGDuuDVPKOxiQI2eGJwhAgE/HyE6/Zq8K1EL5w8vIRaTEeQ2WyigHv9tHDuH+zX2AEbC0aDmksZrlveAPqnbEl18mvu8TWFh9UevP65E9co7sZ5vpMouXYsnA3QheshXzBh8Vi+/bANRBelQcuEjcxl+mCVGsSTevVAoF8JvH2c6HXhbFqc/IaCdXrg5e0MdHERhunnd1DtkAomCLygVd4AWqPm4fGwcHb1Hc2jfrWQkaQERa1Mpqaxo3HP5/N8a3Qs1m4RAhOzrXzm9lfa4xNAy+ye0rzHgWy35Q6/2+CHoW2JaFZxjNWaLaH8405+oaqKy3T3UZq2JNkZbsRJx+/gtlEDkLvMC5YuXc1vU8fDhLZojHw4Elr0TrCqxQz4tHMQSsPEcdNIGdQcNRtCXbXZ8Lw0nJUZprIli/lTfggKnN1M0xQ+w82kYlxy9Rw6XPbHoWmtODddBUorTmOhxBZY7OXBBme2wn8rcihhjCc/9XGn8aOSsbKCYPMoRWg3j8UvJyTR80gw59hPQ4midby5aRt3H4nF1xMb+JK7CB1P0oa3Pda4qDcKHK37MbG0GRVPttEPiRqSeH8WwHM0mnyYCuWChuBpVcejBndxy/3VdHhGKa7Olubo7lc0SWE+VnS40MHo4yyZLwbic59g27NlpOfiB5N7xmD3bid6EfsHFr3VwUVu1/nXvji+0qAN2u5f8cuaT/RTN5c8Wl6CuJcWGj8zpLBfKRy2chlXTdRHGVstiO/q51e7MqlVQBiui5WzabYZZmvMoMejN3GQQT9Hd6xnS3GCUU4bIHvkAaqavh3DQkvgnN80mjs/hxZ5F7NhTxMsOj5EmWf1IeJvD9gpXyax2A7oK3yBQbNCad35U7TB0h0CV++EtHluGN5rAf5pxlw9RwebcgZw3aSnMPuzCCYZHmSlTmVa/0WFy598okvWirA5Sg+du42po6sFblR4wO10M3KdOAeGnfPwXGAljsjQ4SEFBKn99/CJkBCbHfPm8V8jYaZ3JDQt8iTV85c4bmMLLE0NZdGTuhDZ3w6f/T0oo80SXl4uwburTEDSSBLlFRzY7YU59NT08OomUdDT+sEHRfLA98R0aN7XwcOPMuFx2QYQ3OiPrhEtpP+1BLfUM7wxliafeeW8260JRCbV4bfFLTT5kRRb+j5iybt90CbkwBq/xGFEWCroHOnn3bmpaDPrFtZu9qAtO75Dvst8HCd1lwQF+8HdfyKk36imRUumwLOADNKvEUDX2gwyqg+Hnk2R9On3PijIjmLaagjVnXNhVe9HjA8cpHqTGC47LwyGfWkYc8IbJfZeBfWFWiC92AYer8lEm1oZTMyLgp5xZ/lgUDNnxqxD8S86cOnaPNo8ez9qNYrDkJQJzxwnT3b+l8E7pAL/uJpQj85OSFuiD0smq0IlXYGo8imgPPcvnOz+QRPcBljjvAXnPXyENgkFPB86+OJaA1K6vgsswByuys2AO3+yaNSGTta+JU5Fb+N4193DFNCrhMruKqQR/ZReSJvD9yhZ/LT9Cc+pu8O2czJ5cvEXmhqYCvm6HrC/eyprfpjKHXOEIfrrX3q3BVB6bzRtvBVMGY2Z9FxXBa7e6sJ5DQ58r7Sa+g+KQuqxMzj91TEKOS5AijZBsKl3J/uvyQIjoRd8UWwqqMkV40PrMXDquQLc6mplj1n74PH2ePSeMRaKRSpI5vBUumqwgkLE5DjzoCwsdlxN6W65uPOuB0V8SOddW8VQ470WqvWascGvYLwZ+IifhBvBcEo6f2gJR42FqVgzNId/F76kgJNi3HjvIJppFvJDpTuYoG8ASQvyeHmiL6+P0YUfob1g45/L9kejKGrPZVg/XgSbZbJA+IIMrPSw54XCn9jgsTBF/tVh5xJzHJpjQiYNJ9EieClNyTuIX+/Jw4GhQmoZEIMuC28ud3VkqCFeeVIQvCyPU9gnA8oqn8JfDmjDQi1Hygv8yQo7tGDajeXotmE6CxgW0eEeBz69+TpJr14NigfHQr/zflDL/wBeLUb0zE+H3vZ+wYPxu/D6KzO2PZzF4w/9QMETMqBesZoMZ92CCOFmVrs/FbufW9FDWU/qDxJiPbVMUDwggZ/UtSBl+TVWmR/L17oXwoBTBJW6f4FjT9fQ4pXSbF3RCuF3+sHnvRq0sxLU3DbG61kE46/087sfarBnnADNn3uV35UPw9BHVTCcOgKq6QR6DV9H1p8Cc+wP0fKkGLz0/QitLmuDsw71KG7tTQl91jBq/iIU1sqg+3s3UoWqM5wcugFH32VgSegoHlFUCq/WlNKJRYKQsGQBz3x+Huol3cljsBOb87tAeGQQbNnVBkWh3jzxSz17xk6AmJMhKL9sA5dubaS6hZYou1QbtV2e8Zw96axwXpHWFmTTWlNreJkYAgtzmSr1hclyXzKbZD7Bj39FuDftMUrqWnGOrwB6bhOHvK0uuOHcMRgVX4rFqTnovL+aTkSNxAVmQbTb7iCJ22hzUpQYZA060IVpsXzSNYylhINBL3odWS1TIN+NybhWahLb7bBjA9MpMFNAk+f6zkL9j1ehOUqGpB4f5NV/5uOenWVg1zuIq4ZcQM1IAC7UKtO3BxZoN3Cazmt10/qr+0lh7j2U+BqGHxyIH2d2sNsNfTCy7IIjlwXQJLKZJHQ+ctTYCH62fSL1bLaDT43ZfHxMAh7bowhbj8Th3m0VSF7vULXGHh+r3EHnlW0QPOIHnhcN4z57B/x8UxN2t8jAwQPXONIaqEryFEZXRPBa3zEUvHATasy4SKe9iknw3Eg4qWrIZ8cVs6FhN37jw3isaS+cX90AEqY78W2RMr1MFwPLyJEwaVwprE1fhNPid6LVnH2sPGIOi+W8Yuuj+kBr5pLfk3uYsdwQZMwms37GAHgGSdFA7zy8PZBESa0mpP75Jiy41UFK6wwB0m0g48k/7iwTYEuxk/Tet5cidi6kVeGd3OBYyLe2O0KV1Wn+NkUVLtZWUVmQHymGFuCfwUHw0dvCWyWOoXbBGJCM/cPzDnzjl17jobPoPg3+nADnBz3xtfVo9v/Thb1vTnO5nCvX1OVjA0yl1D5DmHrhNBl11aLEVj2QXx7MHq+D8P49bRJZORe92q3p18tO9HxvDiP+3cXAR7ZQcdgOPkwcQfuiXoHZmnSi2k1kft4ILl0UwMEOIXga0kBXDx3C9drubNCuTaZKz/FfSSUVFu+EmPI8+B6mjOUTTUCieQWUx0iQ/H0F3N75Fb5NG2KPdTogqBqFov4/uOuxPU6RkoSq8+exqzGHm56cgZibB7GoypBWh/lg4jZXCk/ph1P+LWzXrA0GphWM101Q584byM+Uwkbna3DX4BVn7nLnvLmTMV36GE721YM1+6IgO3k/fKe5YCtWSiFxryHwuTEUbFSlV3bLsV3EkMhvAvwVLqMQs8sMg4AfH+lw38R7fFW2lBveeOIphf/A+PhohnmKYFZnSae1rtDB+j0457ECHzmzh1Y+Y/ovUZyLEu3g0NByaniuBeNuqOERlylwIvgbTHe8A+8VXpCS/2j8npmF44/G86mVf0lZ3Ayaf13n9bum8JKyMjJIeQZdzyXQRrQdj/1S4ZvJMpCnXIT6UgSSl1zpgVEkH1WRYe0/5fyo7xjkLu7EWNszfOGXGzZ0xbNRDYHeu+0A4Tux8ZEber3bSn8mX8NRU1+QtOZ4rL0zC/w14lHAyBq0vDzw+ukMCH93gtUetMHktN0cFFvGvj8kobJkMhdOfQV9g0ag72UABZX9/EhCmT9Onch35y6lwpxMvjvvKxuZG8KXXUWwvYGg+esGyvRx5f/WitLE3QZ89cMuEvhVhMGTxxO71aBZ1j+uG5SF3MXOqLhxPLuflEW5gky2fi0EG1b6cFx0EanPG4s6h95z9g11KBr7D39ZvCI/gQtY77kTteqWw7qs9VR9/Se33FxFGUfv0LM+hgIbA7wS9oFWujfyt+Qe3uzlyl49s/GBWCxEnKzAatWNWKUgBIO7omm7ky5Gv6qkNNutdNpsCs399wVkQ9rg51k3lPg5SP/WGMGh+ELM65Rg1fsH+E3fHFw94x7RntW8+1MlbKrYBd1/C7lMSQys79pis7Qch5kLYfpjT/7a6ghHyvpBtKCTbmrpkt4HbZ7xRB8+XAjnSalK2CI4CwKmf2VppVAueHiKCndfoX0vTkFvkjgHrJWAzSUzQTilmBetNYYCK3PSerQA7iscoj83EePKO3HPgtnQddscHhKQutBqWvMgGBtDFqJ56w72TPaFFSMOwtgZ8ZhqPoqX/NMF5RgByiiayrInjaDz5w0Iu3cWU4u8cTv84a3ND+BGvh7tUTcBtX+avNlJD2umPqKR+wXwTrEpVoyug8/XS0CpTpElfq2lJcutQSdsPM9f/Q3mfD7DjXuN2XLfTJhuEkcrZXbBgFIumH4TYzKwBPXihbToIYNYaTbMd/xFR97folnf1jL1Ercob8ekyixaelkantvn0P5tXhj7dAH9UxfHI9wDpio3+aJiFE3L6IU9vf0Q0SUAvfbLuFrvBwgdmQsl2rV8/M12+C9lPpRuPwMfb6+GPS2j+aHhWBAfzqWt/8RApHotn+xeS+cCKuFK0wu21c3mSg0DmFJqSbJ/dWHXlVdQN+EXh5uG4YDkIfSzzuRXbY+5+3QQzzo+hiPG7odt3mYQO/8Gs/85zu+/A8cCT+BXiTe0epIlaJzbDJFBM7jW6TuUCFmBbKAALx5ZT/pPT9Gx5QNAz7vRqMycK91M8Z32BfAJTOTPEsKwpOYtXlUeBOU4gPqhDbQvth6E9WxBPWg0TRntgG5BW9jbQBGkLz6nCPdtOE69DjLfqtHSOckc3vKXHieK8c/XtjxxQhYWsQTUSZfA1leGtBT74O3vBLhrGQNF9q/gwIxJINhlQdOHt7DSVSPo9pBCj93zWbarl3fLpeET/Rcw8L2IxSUq0CHSgbPF/EE43gTy9iVjohnRfkc9jr92HRz722hWyQ9IPSvMLx/IU3WKC9kvFobGRD1c+es1r2q9SBvXefCmoIvUO9qeHa8b4MXBX/TFqhts0wzA3j6TzuwaiW3ZxVAZLEnFczX5g246Lmu5w3Yv5fD97788cr4WnFozBfcfi6TY8xEkEeBLNsNt0HAgk/94fkMlZXscIVAIehOkIeJNK6389RF0DWei0hZHjL+wmp+prqVnF3pgxKbLZPnRFPdVjQUf4Ruo//YuhP0Zhrlu3vh+vDGp+WzGzpVe1FRljY/sjrLPAgHYM+MNxDhXQUWFHW78dgWGjptgndNorvBShcZ7/vCp1g0jt4tAKi/FlpHOVLpfgC0eZbFPygc6JC7HQRHZYBqzj4JMfbluky3cXPyBHIM8QdfgO7j9jQKvVYhHrUX45useNvBrolXjD7K/rBHkHN+F0fIVcL5GjiVmBoPXCTXU/PWL/2xxI+V3h3DhMik4/UEEsk460a5iIU7//Jvk/JrooHUrOd98A1Yj9tBkCREUTU2Gu15TwdmiBIZHOuHTC9I07U8DlgT8hOGTp0Fv/zVEzQ044Wkk7bklDDJHHvKXadJsOLMHfLWsaSt+oomxtXjfs48KHYsp3I/5nKQAGG4w5jaJVnAsfUG3tyig8OdZsEU6n/5pn4UdX7eByVxJHGUyDs5+l2ExbGZ+7AJfFb7hJ0FxlPzjig2J+1hJfTLbBLzku0cswWy5OuqXZlNG0ivYPPiDt5IVm6jqsNtCGfiWOwId/oVSvKM1lAUpg72WPx22yudRPvOxO6SDQrY8BSm1Ofj2eAP8vjiKZkRog2tcOoVOz4CWSyfg3boIzDi3DlS9t5L75QGo+zOdUpffJ0fxSSA/Voamr0xHnQNXQfDLClSedwak5S7jjjP22C4xmktgG7c/0YQDab4ob+bADvcKoHfrTR49y5h+un5GybYoGu82jqdaO4Go8EQY+6GSD3Yl8oxMJRK+n8vigiswJ385/bQyI25p45dHXtPHdZqQEn6N7zxbAdK5smz8ivFhcCLsKHxIH4or8cbATd4vkwH987Sgo/wkD157ze8dhlDKPAZOm1mAnfB8ll0Yj3EfZ+LtlgvovlMeutfuwuwmP0x3nkE/bCdAY3A+zAqOoUnH++Gh5Su8Jd5BLq8M4Fu1O/xcVMqNbgt5lf0REthUwGNz1OGe4CEcERMH8p+r8L8aW3g3Mxxkz8TT/ohPFK0yldpSJvGa2tmYnh+MRgtn8coJgfz5N0PWxTBS8Kqm7BsLYF6ALDiJBuOijE949T9pWiwtjJyfDgd+WIKCdAFJZe7mgOwfNLVYFL8srAC9yRXw/YsNrTC9w4WNQvAkSwdqA70xc1QJC64V5D771zx8ahr3RZhSVl0Vyqp8guOrkkD2uTh0LnbBePUeFJEdwIuHnqPjU2Uc+7UFLO7K4Jzcmfj871+aUGsICd75PDFmAW6+vRn0/qSDkbgdjRFTgYf9Hvw69QptSrjO81gIFCPa8UW+Gl4ePoiGsmUgl50FjntMeZZXCF4+aoLXTAqwR2wqzLb2xzfHjVF4fzoFPnrFS+o78diqKxDn9wtkNZNxn9ZhfJNnDFvPfqT1247ih7xWkihRgZn343n62RO0++xhTpPPwsM2x6hGTBCM3nvAxzJbPBP+BfaNTsaoDYGk1vCEy71KoeH9et5YNhoktphBxg4zuJuQyEfVPqB/Ux4+EkvEB71X2ep+E56cHQQdj01wioYFhKfcxzqJueS7NBza1Koh+EokYIwtPa5vw9O37/Cajisk3SYL0SoypHxMETqXxfOfmXtBQPoKOPvb0GeXM9AaeZ4vH9kL/2IVIEpLAEaIRfEif1kosV+P8WZlsKGtGS/mpMCDq4Ls4PwfyXjZQtiGmWTg7gAhNB4mBV3kihPj8O2SRn7SuAvWXMqgQ19D2W2SCphri9NWIxGMbZDHjAwF0BQfjVX/+aKcfyLYOSRw2JX5vO+1Ggxcv4VShYOo7lHKfoaNFBjXQCFrMuiE/T8Q8hLiix2fIPS6GbT4/ASVj9vYaY0zOJ0dZNk4c7QcNZ4kjm8G2/bTVN4dj/9yJWBZWyV1Lg7mV1pzyEHmCvv13IKMec2cZ54Mmit0KWTqa+z8oQTpm+JAWeQwxquXkVJBGbQYfSOLqs+w6vgMisdyyDv5nsVjZaCpIAykX/exgJsLNM64xNZ3Anj1UA36bfCFOfAEV0wRwGEzTbhUmURGc0ZgeYYdHI0LoE1Xd+Cr7T/h1+sU0hdbBSeHQrH+uDDcrH+K06VVUT+kjgIG3vDDpctJb+YQC/77Ctfu5MGJ5D6Y72oCFv3+kGc2BJ7Dr3HOX2dyrl/Ks8WUOTvqFhx3Nae9R9bRGacJ8Lx5LtstyObjAQf55zF7ejdGk7s/ePM6laP0YNJ1+NNqwJ++joXSZ6/x3WYbXn4tjmd6TUfT97L8ucQA+v8ocs4/MQ7SDaHqUkGIWN1C2+XC2XPxT5x2S5Msvi7F9Nr5OCvlOd4LuA3Vmd043EQwwa2CTTzW4p7psljUvpiNVDJhiegTrlGTYieZdhph9YtvTpMF9Wum5OKyiWZsz+d3iuMxYrEwBb/ZA32OJzFm9hJyeqpPVz3MYfv5N5Ay7wRunL4fl7sbwv5Rb1lbx4n0/iskt4AU+mefik1FhvBYYiU2HIoGl2mN8HKCHc0MCaZxK1vxZMpOcPayho2eH+Gk/ARwIh9uCCmGWaLjeMw3a7aatJ09FYZ4zqph+jseyexLFa94qwznBydC3LMw7KjbTz//LeP0E0jrrkaC7oh1qPtyJGakP4FSNxO4k+pIw0/z8SZ8wrQFWeDQ00ONy0ygK1ERM/4YspnyRpxdaAP+fQHwa/YXvJFcATP8MnnbARe4172Mvwh8ockxQTTw6yBt+GMNmy5Jo9Iea/wV6wHtEdux//5muKP/EV7tiYZuDUV+5xyA3a4ETy8fgSElZ6r9IY9HIrLpSPFTbIgbi+316bTzy3eIXDkdzSbKQeai6ZD+URNXuwpj7oJ6UNeJQJGaFJrXlgRl/4JQY7wLmQQA2Gz9C45LT0Cp1XNQ7ukm48YoWNj4nBZkn4ajGpsgu3QBH9KWgJuKUfg54DRKXM2BPc/WwIquGFipkw3V3+bT5v2PeDCgAwc2KcOdQwfwyjdxuue8i6oC+2jgswfbYz5+MU2jxo5hHH0hip0EAcTGvsBdlxmdbv5gp91fYa66AxpbLaVDFq9I7Uo3vHizhtU9ZSDsjiX4K57giVnDVJaaQ9N120El5SGJqKjDvHUvaKdZHuivAwj+95CEpK5D8Zy3KOQTQGn3izim+gFKhWvyx5lKlKDXB27qGvDbYTPtFvvCvpUP+dRoNZ5H4rBB4A6UJ2tQ9aVevrJoGreLmMLpUz6YdxrRKecJWmklQHpUHN9dkcm32xxwy65reLZlBEXJGMMyl/Vc8l8eRh35i1aLuqElVAnn9LWj3YWVePzdDzAXWoPyvwWh5etxHHd5N6bu2ALRF304Y5w0pFrN4rlpvbDQzIciYmL4la8kJK5MoRETIil3yhNeMXIEKaypYjeDOpxvK0r/Wq9y6M35vGq5CWw/G8veWmfh4MIV+K0whasGVChw1wo42/Kdpwf2kaF0FUy4aATLbdTps2YOiJ7tw/3PfnDSPCWO2hEPLsukaIHnJuwZKuKGgLFw4M9HTIBaeLPTkSZeGQtfJx1Cb0NpMik+yqn/GVJR6GO6+G0CKFr84n2mwWRwYxtMbMjAKRvz6GGNNE9/Ls8fbZU4cHkqaUtaQmDGb+h6/ZWuN5Zh+/tRGFBrhRx2gjSNjtFBAYTD2YfBPEAW1jRuhJhlUXTmZgnF9Q1ymuQnmPNElY8dE+FBC3PYVJ7OSal64Bi6Ff3eZ1CR5W9e6TISBqfO5oUz16Cuig2lqIdxW18TjhytCivHeOCPlil4oOseLb9+GgfVRfjpm+3U+rgGFgUf4C/PNWBOrh7UGI5Fhy1N9G+PFn/PN+ejXt9JZsdl3m8gBzqCvth2+iIHGYyFzWnrWLm+FFXEu2ifmwjeIA120p/C53u34LT1W3BQ2Yes9K0ht/odphVNoO9xiRS5fSvJdcThW1dHfDcqhRU1A+iUnxHOlLOC6akTwCvpL5SMf84ZxYH0xvQdiO6+BkFLhfjIQBdpBWyChBQLWBTeiF1BOmxrHIJeyo44suQ5fur4ybOkv0DKgBSNe29GtxzkocvzJci/a8ATvYHUFhsNMlc6oTDgAS4bPIVv3G+B4HkbrtEXhHt61yjVVYVb3jwjx5KHpFI6G/X85tPyq6eptDUAxd9qsfS9KVCRt5hHzO6AMePyYdq4MmrKfY8b3+6C1ztU+aVIOe+6dQ9ilxrC7Zx6bsqThXHCd8jgwjoMintIS7OZu1uW8nqhRfD4XhakjgVY2jALVeQj8MJxYfSbIQWR61dCYa0wiU0JZanfqaz41gh0XljD7oz1dNe/DdXvebPKgyY2GWOPYrvP8rodkkDrHrC4kTtsmqQEUQ6epJzBwB+v8fHG5aAQ786jcm6BQuA7GtV3n/4N7aczwVPAoGsAAupVQFYglWeHWZOZzFRa5fuNTu9YCZmLyyE1IpfMky3BvSieDu85ArMFkzh0Yy6JH1/BlTv3kNm0F3D+oAZ7j3lGCasmQeOIYQpxPQf7mhsp8/12NnKZDMa34snPdzn5Dk6HgdYcdNqsBDPiUyHzYyTPLfjNI61yyTEqk7LUzWhmXDdpTX0Ae+ZuxiPhFjD7qiaU6ZvT7Qe/WCjDjG0mm5FxuwbcELsJa8a3wtTYBVAZoQIH0m7wue9rYfTrQng34QoKyG2Hs2cvcefv2yC1Xx5fwXq8qG4JRk/vwvorG8ktNRLv2fqBRfQZ9gnM4pq+R7Tb8DdKGZbAsj+jYFNXFI6aEsWXCv9Avkg7jO5ErJefSKUrVfhM3BQyt7oEH6xGglSPMQ2OcuTlq49Bplcf/5MVg+pZb9Dk0iYoTU7k4Vv3aUuXFORXWUKV5nHaY0p41G8eXTrfgTH2TNctABZ9tQPh8xq8RlwCtqq+opcUArrN2XDXcDKIL2in+bPOgRwIsvHuFGz2E8WuVgXwtbDmWi9PKN3hylHRsyHrTgzsmNaLHYuGcbWVBo59b8QrlUfD6QMfuGHSJJh+IJJaNxzliPVMTS/DuWygkR0b++i/cyPxd6gUSL5jPBX2FLZkxZOzmxONmlFCIpYfoFtSiX1bFkN8/3cwNZ8I6oWCzA3F7Dwnm0q3inGJ2QMIE77Pe/dpUH6sLM1O0KUjFRLgPGc6P1DMwhjZAaqzyIYEGkFb/nRTy8uZ7PekgztER+DcA5NhyrUrXJc1Ffa1t6PV4Wrw9V4IRzoT8fdDR5ofbMLHymNQ/q4JaP6MxuoSP9bN0qJPhx5QSX819xcspKCPu1h30Sp2fLEYxmySh5zJkhgaMpk8pe9CfeUtuiM3FQ52q3CRtSK0DmvyzjOG5BtpA6PcStnOaD3ynjVsUZfCIaJveWXDTzY69IgHDs6g6vPq/NII4FV3MoceT6bUFa108YQOT43cw2NePyEeFKIiIxMs2FSDsf1jYLaHPLbOnMzuWwdBpDkV8y3iSG7xItp4vwlzs31Bu9SW0o1Hwh7fGvhjup0qDH5A6+jzdDLpNj7S3I6Blj0UlvSQher+I6+XI+FwzTjUK2jiKq12uLkPyN7pDo3ZF4ePHwyhjMYZvLh0ElV+NoEGwclw2jiZu64vA/MZb/DWor30Ru4KlHi+hM2d9uB8vIwc3qmAQ1sLwL176D3uFJjfnwej1iyCMKVWrug7xefli8izOQv3TbYCl8E0LHs1g46JWUHQ2RPc/NqB6gNy6M2tYBj33yPyXrWRnxWKww7Rl/x1lCz3jrbFUJO9dC1mmKxuiMJ63QW08NJSMD5zGHP9paFbvYviVHxgyRx/7gy4DHuNg2lcxE+UE9pGeSJncd26iyAiqA9PRY6yY+JlmPZiFc2QqmH1S6fIbtlPThv8itbCyIMCSby+Sh8enToGjZ676EHEOWhathekQh7hmnrio5PaucZuHq1tyYQNJAJhTb7gYj1AZx7Mg7h8U57oEchOIiaotOMPXdqhSOkvM+FMsA1U/HbnvH5XiJdrp3HnvvPppy+o+MQOvhJtSru+VLKTdwrtO8Qg8KITFS96QGfpNGirRJY6Jwwb+pfBmmFBPJRjRKXm8ZR1VgGu8Cw+0/4fLzwkiiPLp5NvjytIug3C8uFHnFY5GXsPj0bzjwDtzptx5QRN0N58FB5ab8cChXg+L6+Hdx3CqVRoOwqovecqrQnwylEdhSTUyCr5LU2fVcP+ryVYtHwce+/s4wMZFiRzLZE3danBm7YJvKE8ii5ev0E7ex7Do3Vnudm4DF7f/YWfZP+BTb04D50zh1Ox83nR1xV8Ok4KNjZX0JkFHiA9u5K0ezpguW0iZke1YaHeBNj48wEuylsAngmb6cavvbg94Tt0R2fD63UP8O+hPBCq24Ffn6jAt/wl+D4nnW+ff4x1I67xxvgWLp6nTyX1E8H1ah0WGiXBAdHRUNUwB+bdzOVsvX4+ru6Is2dNpNvvokn1lDFUqepD2N7rKPTGCA5uaaKrcf9YKUwU9oSfwVc/tuHMJ+qcYBBPOqoF6BGrjw6LdcBaQo3V1u3hcrel1NYry1LWE8hsuQWO6fHGi6kTEDsj8fxOTQiZYY2ZB+Wh01uah6vKoHVFINukL+Grtzzw6IoSho1M+25LgvKMPL66uREu31zKb3RicP6bFMr/LQfDraos2lvITU+XoXqiIXyddgsm7jAjx5n7IFzWniJ3LiC1R6tQPaeEOl+b0+X2fKpYZwj3ljnww3PfuNVcCo83qGBo7RqUdNPCqoXxEHpHjGpkdnHHAgFwtlpDTg3dsHFAGC5HR+P8Ymf675Uf3jlciCe5j4RyA0mmWxfqDxfhvpgiOLPlN/quuk0fO3Jhg4gO/ddXhbvtF8HFw5p0aYkpuM0yA7PScF6a2kQFfsQbzMbj2JAHNBgyhDseviG/gv28Y4MwZC93pLJ4fRK4P4Y/375DT3aVsEtEA7+7/B+3WYzEexvsuP6NBDjPE4P4lT48f20HOsnLkv/7Nfh6ZzH2XtOmiYHPKOpYLDYfVwAROUHSOiIMa1TqQPnlUkrvqKOWdQvxr8kGbuy6hBE6KTTawAh07M/x+4AxWJeijLtWRLPStAJo9AqgKDlh7LMZpjO1t3ln8BTwMvOAsYlm+ExtOskd2MQ5Xkv4Ga/iCb+aoKSxkLxuxfH6IGv4eywFV4sK0DGH2XQpcQUXZMWBs/wRqLvxkq1txmLjUgMwzJWB3PIaKFLJJDXPGpTd3cICWf9hoo0PqH9/w48ET3HwvQCaVyMFxr45kJQkQ7paW9jscjdVNO+HC6dm0d69prQ3H8BhXgNjnDKE3/WjMeeP47JV66ln0iSIubuBKur2cvW2JbQ3rpe6y5Op86o6nPgZiDtGpPGHs14o5T+TThUlQ/W4XDowwZg+uavirshyjBbXgM9KF3j37LWkt2QCtZ/ehyLXhdleYiRryN9ktasDoKpdDWLXzEHWOQcflpYSzWkmmzX5+O5sBVZJXIP9yt4YPHc6GVSq45rjk+HBk5VUIacPt1cr45dtjlwuJICfRspDpNpE2DJiHL9dowKlHhPhonAn71fMgWt9nuR2JRl09/Xib62raHO3Arfe68H5yZtQvFUIgou24bzgElxtvIc9X7axy+h+THJbDOPeJ4FYtCNN7neFO4+MYXLRL8ycuJwuVz2GpEFVPC4xHi5v3wpvLm2FpYYb+NaZjfz4iQgcnFxPHyd4Umi+Hj9WVES3egH6m1/Ho22eouK5UHzFjzH62gg4MZzAN6Y50/mEpbi2fi+JJS9GyZPVENf8AnfImKObugJZFTFYyc8De/2vcMt+Jugl2OH6pkkgajcJOya/x5JvU5hO/WX3h7rQPFWLeuTseZT+Y/i9+iBeS15Af6bMwvrfADM+quCn8hU49aoZvA4+RFcnanNsyCqSS+7AlG0RtMZMg6OOHWSfw6XsLbkZh40VQbhoOpq9PMhuxg9xo88aDN5ZS096FpLYk1iI7V5GKqmBaO85AcpP9/P4YyaIQ3952spD9FO+AGNt8jBqgSJKVI1Dz/Ja7FxlAb6NlbDi11+el8IUff4zrL/2DVKSf5DPHDm0+u8ueBZaoHWwKYw0iMbRWybSRuuPcCNBCiZGHEaBUHPO1Y1B2wYNONn6kXsjbSAubTd5HrhNM47I4RO30/CZdqGjXB9l72hgoYWLaF/NCs7LV4bfYS846F0pZT86AC9WW4L62WhcdecWzsxJx/sJw/xghQ23CiqCRnoNG1nNgHsLnvOa6Atk1zXAls/3YPHnLFZrUoTW9sXwYooC+I8MAmWcwR8aImn3eHu2/NnNTmPSYGtfANTN3YIK4fvxsqIiqKVHo1/RVtqh8Q17dVfTUK43e2+/BUub67Dj3x/sm21Ivav0IV27kJXW5MIYm3fwfO8Sjt6+BU7/GIfqR5bzC/1P1PN9Gr34Kw+iDSvROyQHJtyswfJRV3hgkR5VftEjz6MJ/ORlA1mu2g5RmtrAmkI0YsVivpw4gqpqHShRroTVNmfChJuXOXfkTPQIuAXdw4Kw2KGPxnka0+Trfiz4TwBO7g/HvgN7yW3MXJhcvQ2CNmyD2yL6oCq4H96PrQDrzI0wxvI8zFzngAOXpfBczi1ucp9Go49uoaxqbWg0lIddf9JIYeAgh+wW5REhI9B+ZA+/H/MT9v18ChFfnDFNbRwoJh7Asu9v0C4mGsNdhOFfoStTcyyqVkZyjJQeVb3YCverRsK+uf3o9NKPnwQL4M/YCJpO03BnyBIobV/L6/82UnxrGqVFACg8DGEZ1z6eVzkRc1YJAZt78L+jGnj69zbsr41Au9mBIBYsCLs9dpJQvwztVzoFyd+tsbpqOz6bUwsmq+rY5bwUJ69Io3UjR8Lh569AZaw8Hh89FgLc/WC8YBZ2/ZHmhSFFtDkhlXwU7di3SBJKDJp4raA3GC+Yx3mj5vNX1ZtQmqaL6d23YfffKE6UVQbXWmNoDboC6Rf+ov7OJC7qew289Teq9j2h77uHuOWZEL8wTmJRW30IfB1Mc1MDSO9BFR39MAGnv7OFz4JDeLNhGK8MfoEtv6PxSs8k8LGSwtsnArEsSpOPXrLA4KVJcNUqFXR0ZoDv6Fh8fMAOHssZg71eBy+sd4SXCy9Ap6QN1Wdm450nRmTqXchBCmOxc48F3FytAdvvi8Ifz2sUjZe5ZuVofn2vlAcv3WXD2O2wf2sV/JUcwmm6Y/9v/u81WRGcxZegp34kprSLUPyE9TT2YiOtrXDnqTaxkKz7DKFKDARP7KEMiTCS6h5HU3cL8ZhvpRD6dTtKtJjh5/s1NHXNaowaJwYWIxrA5N9S9JuWzYW61dwz/x6IHtsB4Rdu8qQZcvior59mvzaAhJMnUSpxB6q5/+Pfvfuw4ncPqn+0oC9dDxltr+PWM9cx32YC5A1l8a76CtpyRQbqXUbDc0ckF/oNZy7pwtuGtTD/hBZ6NkyFqLOuOCt7IQ7M+UPLz+7iAON5GJSzAMTXH8BasSoYfmtOoXu0odLdlGeon+Pp/v40+tdE8mzQBw2nTKgpMMB5ibvh8vwFWOJrAdU7hNCkqIyF9YtQsTsNMzVdUcHQm/490YTE3S9AYNVXSG6yAby7BExvL0OJuwP0zqqAlVw3wJyQMDyqMZPGC/WgZ7k4Br4ygLS191mzwJo1r/4HezVywWn8cXg024JzJcuoefdP+upTwCs95OBz2isSu7OfZm0sxl2ZitxnrcZfdwiQ2wp/OKqqQocnLmSeLA5xS+6gja0AduaFQrrldjhveYlf+WqC1jwv3LFoNZ9MUwAlA4bNlZtAe6cGyUw8geFTlpPDHUuKMSzEwyuWUbytO51WK0HZT+qwztUZM/0kSX3nFKyaGsGrDC7wksuvOPVABm1XW8NCUSsoP1cPLsm34l8fNXbW/QdXU90pLnwHmKs44dWVx8A+SAojUj0oeaUIbGxeittWhOHs+mzM267HgV7jsWNBD9v9EsI2Nxl0v9wHQVGq8PigKBXdkecRstG0Z3IxZU7PgElKrZi9tBgGv3zBA1UxOKZaErwrw/CpmxVo1DIvufAXhesMeMfDGLjzLJ1OZ92iDq90fqIgD+pXp5L7w22cvroDcm18sdDQkGx1TfHYJDEwW/AMnfQEeGONODh0JVH2WQ96uzYITHzuQ9wL5qR9suRx4DJ8vFkE3z+J8KgsOXB9K0M7l4SStuoKum8WjnJJwphaeoMqii9Q68w2knGZAZY39CHVswAt77/G6faT0e+NAOZMdMMpT4/hJH19WnxvAaS323HsJBFQV83DgV9jcOjKOPCccoc7y2bxvTM9eGXidBiKqcFN+nZ8pEIYTi93h13/lXL0DXlS37Ob4pbVsmDAJdh5WIhuHV/A+skHecheEKSMnSg6xQKexCVw+8ARKDFbAaerpPBcwWP2Wt+OeetT6YSBNLx4XczXYm5y7refNGh9jiZu2YM3rFpwaepvahVJxAiXveggKwlNe2rRT0aBkkQYnOkRV6YrQOXsSPSYfRd3lo7n5TvFYYW5MEgcS8DmRcFUI5QKy78E8jPzMqgu98WfGrpQMfswXB/hz8nzRaEjTAJ+bdXkZmFk7/QmWrN/Ii94egD3bfSFvQXrOK86ADfMUYAlM5dzmNIAGP7VZDzZimeyb4NryyCKXzenpJg8epu8FFyu6cPO/gl8GL+TesZS/LUzGo0jXsGhoemoM38uz29NhzMzikgn1AwOpr3njdYPGQW8gdqRhZO+c6TXOjQMTeIV33JopdNDPuQA0FogQyn1rZQ5+xk/lVKmFU8SWWeuJQ8GN1PCQDF3Z8zGD61m8Dnak7cF6rOk/TMSWRSDEXkH0OSmO0eKC7Je+Hms3Z0LhkKK4NSzCurENeh+2lMaDFsLJ3khC5vcRP+5deyRMo1HdIwBh1gFGHPegdzC9NDmVzGZX5hH4RHRqCGpTtaSjTTgswuqZXLJN3MSTE2ug94Fp/DdjnRW3DKL/rZ0wfcx40A4+SOLiZyCZJ1HoPOdIMJFGoecxkDEXSk8t8Mda068oPeihbS+JY8n33wJW2/noZePDiy+bwTJMUb41PIWWXy3xfGO7vin7wbaHd4HAVb7INcvBQ7rmoPLUCC6bPbnEKt++rT4PFgeHoHRMqOBl3RDuI0hlJ3ogGc9auCx1ZV/pifiAfyMt3uKaUJID1afXoiJNi/JYNNllBhzDR7fUYEf/sOwTLaUSkbJQ2/rD9r2bjWbXyqgH97DLJtQghuGpFD9jA5oyd+jLk1ZHqvWi2+lCtHSx41lysXQIVsWm7cmkHhLO+77ownKrvtpQ5EJ3859h23vOnGMgB2eOl3OzxdGUujzMhaJTOLaVEnozZKF59aVkPh1OhaUxvLTAQ3e3PgXNC4soU2czl97/CAh1wpmlUtDlVYTVdto0VXPJhxODuArv0ehfsg7cE95T9WuOjz0ZgIIvruMHebfqHvffCweaQqfJ94Az+hwTjatp4T9j1l7/DL4vY3AXf8j/U3bhRWSw9jcfZQ/Vp6BkqNybDEmANtq+lk15zO1vwEQN56DzwSKQV7qBG8ZWkLTEsRh0KGBrq6dRDWLn/KkrRl8+pgJSMz5j5/YRJPG01Fc2TQW58qupnTPLJh7QRXTgx6z3CF/kK23geDwEI5TW8Kpcet5QEsdZoufZ/sZ87D8twEcWdHJp7KS0GhQEBzeAkWPjsSKU86w3NCeji1K4W2mj9lL3BIDT61GW5NQUgENsO6cy09c7rNF23q4f3ctnfzPklyzf/P0kkUs47UJLsqEcF+0NhzeO4Ru5U74N1wXLL6Yw6SXZqDiJQ7Ogp8obn0slg4I0WUZAzhjn4E/Y+NpxuANUI1+SA3F6zBC1I7zxlbi1YBUuGgUidKkCYvLtkCWhycqr4zCgHY58vI05SNdLpAY30I++w+BxVlj9H0H8N9yd5AavELhurs5Ymw2nlXuB5PTphja8wgEfOSoWvogGSpNgI6tRJZ7l6LdhToUSNnJXzUFcE+rMV+IyaVKTwUOOnqajy2whLiwfHLxuMJ7hwzhuslRXuFugOV9/uT2aDq/HGwgLStj9PlhBF1PRGlxoz2Nse3k/gYBenTkJSza/QgnZg3zDPXDNPSonBwMNEEt/wVhrim9mPiBrn8bB7dtV+HhfFW66VGIN7++JcEzJ6g4SRPC6yditXIhv7rgze7/uXDlih6+cN+b/ytogv2zM7BpXwIrmylC8d7NvL79K3uPdcFxSb/hyzI38LTxQEFpYzAdjCIFi2BSLlQHC3thVtOt5d9L4zFzQAGlmrZxsd4b/Pt1kD32xJKP0WQW7DeAkZeiSC5XBMzMguld0wigKFH2053DuQpfqShTBM3DtnLrtnEwuf4EONi2k+prPbIQeMe7jENhXWozX5spxfntnziqrQ7rNjA4jTDlhnB34sP/kafEArCc8YoOpy7F5IBfmDbeFpTPLqEXRtowSX8jnVU+yJN3FEOV3zL+GdnDVq+FoHnWATAf3wIvTl3kG41m4CHtSNNCVDlw7xkoytOHz87rWHnCa2q4P0y/jkwjzRelvPDeaNgi5sq9Rxxh+JYvUW0HvZfXo5FROhi0+xoWpblyp/U9tvs8CmoNWili/GOa/sST7yqcoHWJ6/mkfyUtCPCBsweDaZmXFij5TIJvu35DWiGQm7YLn2gIxJW9VrxAzZ79JvtS13Fbuu1vTXNAHRSgCA2L/kCUjy5/711It9/tBvR5gIriodh7ayTs3z+HV0ZpAPk5g5JxNd8M2oXpvyUJaodIZMFujq28STdOubHdiiD6+80Izm0P4l8DMWS7So36HjSytOoyUMhdixs8LvDVz4EwIesDK2sbQZdpPi8uTaZno/4jf0Uf3mSXxf7nqtBZch3pX7jA8lFz0UNnJJBaF4pdKMW5BX84ueIuLZypT8/Lp8Ia6/3gnVPGCaIPuVZ0NOwblOC729bwo3FN6HhqN1aY5ZH5OltyyRxEv0Xb0MB7GsiNNIXdEV/4+cgxvFc0CNO6XGG28RS2rtXCkf8jAD4AQkCgAID+UdKQdkqlUtHUUGkiRIkKRYRIyYyuaEhlhBQRJbtJGSFKRhqkRIOUaFBRChElIvf6UoCWXeD/Hm3k6jYtkH2wD7+8jieFMAl46a/DsovjKTPQkFw3eeJh1dGwzzyZVV5NguX3TWjzpmSS/KvDSSmD6HjsOdzoHAfNDeeo8LI7NhS7gNQ+Izjf0AV4t5Cv17iRVtwwjskWJYHwNdQ6OQmD9n5HmT+XIWycNgyqPmW9XGESHiqFh++VeY3DZxptdgtb7m8B92hfiLx9GrFqNMwVv0LkYgPi7X9x2yMzzkupYc8+V1gW2co21dPxre47ctgrCOX2G+jqmQ5svO0HKwyredfhNN6kywR3v8CXx+tgzo4k2tOpD0uVLWCn+FHwlzqEnriepm3owcm1frRM5wls7TxOc8OtKHX9CKg0cSZNugN7ZXr4accsMHkdBtSYx9qG93FDuxwGur4COVtZeO7BdMvpMIj8EAU5UW8esViIbXX7OHfuB7QsXsJKsyTo4GkTmLs7hr3zV/P+zkYYIXIHBt9tpXONhfB29yFqtMmCZ+KddOOTPvi1GrLpqB5Y/EQWQ73Gc/yTM3hppSJb3flESgFVkHpGkP/aCMEKjdeoFrwB9V3/8FuNDJbdEwh5q7LI7ro4Nc9awB75x1B4wAxkYi5B6BnCQ/rLeLtsJqdc9cK67hKqb93H/ZLuOErhMjZrGUKUZha0vf2OaZ2r6ID5NRL49wgk5I6y2MINUC+/nj7Nk+etX9WhYsISWNLux3GXY/BFrj3dSQfs3SYKsryF79X3UfShqTTopwEqBcE879NmqEmKpTC7J/CR9OFynw/Mj5nN4dbZLDdCBqXXWcKn6l46onQFF7SOxIKINFw2YjHXWl2lwKPvWHxTBd6Rl+RPJ0RAILkaoxviOH3WZzScWUWjSqOg9GoMnPviB7nH1rB43nw8flwPCrrWc94sbRbeZ02iyrPAYWUC5jn9wwv5KvBV8TF3+pyFVzWq4FoQQSuOHaf2mgPkPOsK5+jac6J5KvrIFrJvwzxqdzOns9+0oVCwiU1yj9GcnhucMFqAC62csL98DD2YZYGhg97sILIZ95gJw4NZSbDE4TzUfLuH5VIr4NlTU5I8v5++P5iAy++1wZeeLXBbUAQ2fumArZuInASrQf6XEr3ZeQ3z3+uhybAq3XtYDckn58FOE3nYtwCwEBQpU24VyR4y5BcW37g/KYU0xzrj0sRurvryCB91K4PDwUJeMzGeC+atxMOf63FRxkt+O1oQdK7rwwo1E7BJdoVVx61g98QwXvqhnecsTuMptZL4s/krRlw7jqmJ/eB2MAaXizfBw5niIC8iSQtXlaCBegcEBSbjDXbjba+3k8LBIsbNMyh1dTmvbtYGG6vvsFkzg8xO/aUEl6O4fvAb7e2vgNn7kjC2PRuGh4ew5KcQaHt+pICni7k3NoVKRqjz6O0ZXOnhjK6tYXA9qQWDIr9C6AwteKT5i7flOYDBpCSQ/FoLfqv64eHBc/hhuQhcFLhNjy+MREEdLZA+MwMbr+0mQ+G/dEv6Fj/8F8/in1zx8iJL1th3m6WDm2DtMVtQcthA/OgWJl44Syfnp/GtufX0vucfpwlp4CnxpTze7R7ti1SGyPw+0jf9zP4/DsPcH6KgLS3M33UvgqxlJaZMyiUjyzpe89EQ4mQXsJuZGh2t3Q4/r8ymX8vLqaWsARtyllHpuEVc6GYIM7ePgBDBa1TaMZne6TajfUw4bsYcMvOeyd8LluHAjXn43WIzqidrgVffSWwT/MM7o1agc8k34JwRbNQdzYd/udIl1R6w7Rdi1hwF35es5aDnWSx5VZOrspfxJdVlNKSmTR5rjDH0syUZNxZA+G8p8AppoCS/K2T17wssDFlLh/gwTPJ+wmJ+/Wyoo8+qc8zhXoYxLFFJxPFbJsCknX9ZSC+eHqrOhO3Ob1HXbj3d7Xcn5fo/cFuIYMl0VU6MS4dHklNIe6YbyjrvB4m7+zDNwY52PgZ6JvCTNXImg47rdfKdOR6FJUfza/sL+CKnA73NH3Ks8gAOOhyjGZOu4OLxk6G7fxcIPHrH6QcHSdHkOTnETGCJT1mYMycADpuvgPvaZ0FtI8Ktsnzym/sEu7pk4P2kED5k+AHV7N9wS9YWEtqsjM5BoXwsXRt6jPZiXGInF7yYDc9FCjko/DJd9LsPh7xLePZqBZC7Y4cPfWyg8lkiuhXL89ngZDAxP0bJByogVOsqzruagPWTknleaTSvVLSAH3MuQpnfMyr/3QpzYkPYa89OVrriAZs7j+LR9c14WLWSWs9NgGGL75Qy7ySNrFOgIouNkHh5A2uM6QbhHTtpj8gjHnmuliKfiMBfsXbQW6BLZ9MiacSndl5r+Q2/u++HL57LYEDnC8nFFRDGWINb4gRKy4rnwT897Fk0ki9fDeFFr3fhzBMmPCM1De8HVsNYU1HYl3+eV/UE8H6t33SiUQ2V5/ziE3uWc2ROFtdKa9PmyQfZ/tAIGAhcif8pGIB3w3qc4D8fox/NxLpz8uTD19Hl3ybw/veB39aaAG1cjF9uPIFypWY6fjUbZJfEYYuIDv9rKeHGNneue+UPOXPHwKNiYXQsOMLnzEroXUga0IU82lN3Hm5n5vOAjwkKyI2gSUusQOuXAu4HG7byS6FrxX9x0/ubHG75ENOUgcU9POCHezpKFhrA2eXiUOjsjt4Lg1G0tw2Wdb0ju8btcK8mjN+XF6Pnt1wY/1YDGj6cJ7fRw9T+thMu/XjJPzJGgNZuf7bXt+Upa/djVKYkVIdIw46vUfh7bz3J9j2jcMUhOqOxnDfqv8GiHaG4Y7c71XfKQHj+aPhjdxbTdx8DkSXVEGJuyu2xKjQyvQlH9qrDi2vxUCn4hCrnCoJM4XLUfPEU3L/qovkxZfSa8RNmpUzi6ydOU85bSzrwywf8CtUh++tl6HTxYs2weDA4dJYM1Y3hakQyYJgM9tyyhAnb7ejJAUEYY1ZBTeces4NYMfRfPwMlN+ZgzN4r2JE/liRclLGsKIw3fWN4PTcCG+MF+aVuJV4dx/DWQIpnqUXRZDiM29QE6Jfvan6lbAQ6SR2ocegFjF4xCewaOqGvcIgGo87DobH3YewhEXw/Q5yttylB7fn9PCbmA8ZWddFIYRHMul7MP/4lwa/sVRB5dAjy5F1Q9Yc1nPw0FWZ5PgYL3eno92Ai7kndwM2xJ+Go2Dd8f00NYP5onhUvB6uVpsKl/9JZvWgp5ms9hV/Ccui/1JcCBAT4pYg39mzIxZd9FrDa6greOv+JP4AVHtzjAGHb5uIOHXt+usCNWg4+hvldDLO+qkKj2yKcdEOBtzq8w+/zxTlBoYJOdQ/D4rzr5JhswDMjRmLSJ1k439tNRR9vcMrnRJq77R1f2LKSjv9+Rx/GK8K7lXVUr/yKU/oUAe12woX9fuxhcwn/XnQmn18NvL0/Am7L38QEydO0VTwUveOtIG1yHsLCQDjp+JBOfprBI8Mq4F9gJKUWDLBV6VL4ZSpJKxKVwcpQkvtjfcEjMor6DqjzUtnZeOTVHVSfqIwKqrJ0N6CKp95Xhpkpj6FMOJv/e7AaRZMlCRTf4rE0LVKv3ohh4dEUV21Oi6oUoVhhkEu1/Cji7jDUbRWBu1aXYWTtdHiUqQlqqz7AwOMZbKA9Evx17lKOtCVXFwuA2YpD+HpZI+S8l4WpA02cU+SNajPVsPCzNux1qANjy3hSGr6PxrsOwJoFibwnKJXu9FrCh8PG2KbmCbE6tpAS380ZN9PB7HcY68Tm0P6rBSy0+Rl5O0ez2BYh3G4mA8Fh2iAkP4JiVV/jtH8JiB6BJDhtB/mFzyH90BAwzLjIJ77+wvIFauDjZULYWIRaV4d5y7GDMNrLEfc8t4c9S0v5+f507Gofy6tuToKZ1gyJwUIkuMga0p/1YDs0sKuzPY68dp4du7P4iXIxDg3ZQNsWJ15n7kXazpcx89UOKq0I4ej9+6hNX4ml5hlQ+iVltCmRAYHx6+B3exwOFY7jhKdOrP1YlBO9rrG+kyIG9vawmFYcWLupgsIcUdIdv4gfb12Dzw+bo+3z1TgiWg2nVpnjcr15uPTFEj7WKQG6Z9/i1by5uDOygFqEJ+OjJF+OtRAHm0V7qOHFM/g8Iww104XAaGE1vnIZorWBe3Fo+VSyWDkazgjtxFXbMrDo7ix0w7uwrF8PHhs1cUDXTj6/rI3kZxqQ1zVfrrl7mgaaHsPF+Wmk8mIIV9bbgCSvQodpM3Hxm910P1cSxy4qYsWFwjh22QX64pBNHybLgPlBJYh/pcQNpZXQ3tKOBc4idP2ZHSl8tcLO1uewf+sRPNizDScaiMCDwzF0LCMT/zzypbwsfz6t84Vmr6lgy8OdaLx7FN/eIs4rz02E4JMy5DG8mJ8r7yX7R61sdf0R5nZcBGPPWWige5QmaV4j3ckIR5a6YOcpazjQEoVnP3TDJBlFlFIShuDOElwz3REc8oUparMVfNqlRjfvXeK5TobgV/ka7/nWYa7AHDIVroGk3/3wfV0irhu0hh77Xax7IJZyf1aAxpVvdDCR8Ub5Ldz3R5hv6TbT53969BiMYdtIY5wyzxg2pU6gi/LKuLWwD/+srCJbz34qnhcA/oufUscOZUiVL6bOT6HUY3qBIwMjuEirmOVlNsHTgh30nFyhKaKXrlpJga3kNa6dEozvJq6Aw5PvQtjJj/Cl/ABf+joHhi4fp/kLRbk2zgTKCuPB3j+fdx5egskPp4KkqAg3uahQSbM53VFURoe6P7x9hAHMa0hne/FQ3nHbmcpbL7B+8AH4N2TAbidL+UCLBIuezKCB2RIQUfsPhGwcWKbyHsofbESvSf1saz8Br3asgYx8O6zc+4eMYlTB0XwJSy54B3l1UXQ5JRriBdyhbMNzrqyowN4Af/xZNZIJJsP9ZKAyeTdOnCXH7X+JB49sI5fD/+js6kJq3hRB01pP4vhLcqDxMp21o5Qwe7kp79rgz6m/X9KqeYa49VU/h83NIZWcWPJIEIADRwdppUIjXA8zBOeaT/x5uhSmVP7Cwenfed4xUaiQLOKOHC0o3dLDKlGyeLLGlDS94jB28ClWbwuBUS/tYUqBBo2ru4+Ft/XBzkCY4wozOGdjDgfphEDulRm4dHkoDz3JwH3HNDBnVTudTxaAnaMAHv8wgBC3e3RjzRI+eGs8piqOwTdbf+DgkwYc0DAi4f9UwMy4miY++g4jkptp8wpLfJxnCp879dhudxCEvblHi0QWonuTDGh8yaHD9/IhY+4z2mMpBaWnUmjF+BCY/qYNXg7XQnrOH/iXag7BPgrwZ/Me6lkoTgvqMljpYBDPfZ3PhZcz8dO4ejjxUgLObbICg1ARwE4N9jr0Bj8urqPyC1H8SfkYLfVugn3dArQoYAv/nWcG7orWLCZSBoeqG8CNrmLxhkWU+OASOdsfw6ezzOmO5kpoPW8Km6PNIMqyHRRkLTCVRkK0kTDKNfayb/tKMHM/hJ+1onhcyXhYfseO40y2wLHpbnSrNx5KSiaQhsVLvDrvM406YE8pXu1UtUMXrsZl8RUzI2je2EXJz3tg2To/rh5sIRcFJ9RKOEDh+lfx4zllsHnRgLpOM1krPJNP9K4n6QOfeXLsTxyYmg5VG5pJ7qQ9n7AdC38Ux6HelImgvP0XzJkgREWXs8FquA4aZkxkl4CTtNrmFI6IlodvZdfY+ug9dtUdQrOjgbRaaSN3JC7g82dfs299Cr5yj4Jft0xAccQDPLRIBP9L2syXukNJ89Ig3fEW5vakBbT3ZCUnRFjA1QAEwctyXPDGHc9VlsHHrBZMqorhbd8d4OBxS5wZ6EBr3kjB+mAR+M/oFjurR1DVuv2UXHsVw11WgrzAanyma8mjUon/q5Tg8+6q0NP5D3R1KnFfwXEoMgzgVv9kTktaD2reySD3fTR2BVmRpoEChOyZi7E1auD/0Bu7b27lMqNHLHA2HbamRcG5qAT2aQoke2cpyICdXNG7nLYv/sDNHzdCxOMaWutgCR8UR4DXy810PesUk6EqnPIVoKQ+X3KqyOYRpa6QH34Tq3wzeL5OBtQktMCFt5tgsocpuPiuhbPLXXDvjW8koT8GffUkSGr9ctB0LEL7n8HgNriAm3UB2sy6uaM8jyOfTKLtesPQe3gt3jPzh8xv3ri89x07eK3BCykKMMpGkMf/zKG391u48ZsTC1+RhHO90znE6SI15IXhHfUWoGhDkFbTgNlrq3HPKUmoT8zlsyutsGdNHnYX+2OxyhlOMRZFhxVK8Et3PIuHRsA2Y2W4tPAmWW5eCvvfjsfa82W46ZkAeDzP5gQzhpyUAu6yPcV7Bk+AmcUVThc+xlezmyDUYQvGHH8CldUuNPGwGrR1RdDzTxno5ubFxh9ecfzdeTQWGjnfUBK7lrjC0o5j0BQwFr4keNCntE7q8l2FF+xk6PTHf9S87TV8NRfkU2lurB//DkvdR0PitgE0r3vJ+R5G8F1zBngsToHW+bp4PGgyHY3XoQdBDyhjpiB0SqgBXFXhn7U/uX1LOGc/MmBI/0J5zqlQVeYMM74OQN9dAej5Oo3HvA/huMr11NIwTJ0tk2nan1rQy7yO15xPgKa2DdrfkwZjvym0VtyHzZcIQ3E6wL9hRz58ZAEV29+CMze3YpO/Byd6CIDH57WYMvUl5US9YmsRN1zpEobipmUoPuYkPNuWxhpJG7lgHkBhTDqbGk4krXdOXLUkFhY/6sHAGQWsGLCcCzIC+ULZZFT9bAM6D2/w9aKpdGVFBGw81YTbqmJ5SHYivzlURFIpomAylINGbyaC1KhBsN5hjS7R0SDg6gkdc3eAekYzzbQRhutBU0Ba8wGeNjEFj7Ez8O2hChSrf4DqPwIw7/sYuDrxConXvaPhJTHw2MwM1q0hGGx3ox+rZ6DGnS6as6CE5VK+0kYDedwtc4i25PfTUd8leDp1LByxeUyR+p6kEDJEV8a/JqGWidAyzR8E5srQSduFUCe/h+GcIkx9Gwklh5NBe68YfsJOrPn9nc7/q6LGD5vY52012H/djp/sraE1O5uTVijDo6xpoFY6gkvWTiH/j6PxeUsgBdbVsHraJiydwDC1VJgu3LLAAMcQuqV8GNIXHgb/mHUk6fUN/surIr9wWY6bpAkr9SQpI+AiG6WLYeCoAdTcq0kl3f28XeUexfiu48Hth0DvthDobjbCRf4KaLX/Flx5IQ9N1c1ovrUOLHaPA60/RBnlZjTHeDxUb5KBp6834v3Y16gtdwwTYTU7rUY8c28r9y4YwjE/xUDkrxBc7HrKws/PoPW6JFj/nzhtFKrBS2/M6HJkOS9NV0NpyXocEy4M64dT+LxGP60XMKCE3h2oIv4dA2J7WazQCP9OvYf/9fRSubw5FJ3TpKX6gSh4NAsPi3bCgVG7yFJEGPa9t6XZQzrYkxzNzTM04ICPCVsPDcJqwXYwmjFAyVrWOHXcJrSNkeCzFfH0ZfoEeiinBldzC/iAVgaJ7lXGDxefYZLYXHiTbgqpazQwQDMR1/w4w3HrtGEguB/fd0+DfJqN2xVPYu+EJ1DS34N6Rfl8kM+wamwoGk8xgYn6FdCy0Rw/mzzmZ8+fQ6PEMSrMDqauhCsQtXsXnPuznKRUx8D6igbK9p1L6ftfwfbjkSj/25rLX3zE6M2tFPhUDAp0t4DyIkXIcSjCqHwlsH6mj+8CX6JyVRBeGTLkg7tS4NrpqVie4wAZmybAEZ8xJHp8FbwdJYDf7sfh0ROT6JjRHFi4OhNiwQpfG67nyCtTYOyuXRSVNhamd86ni8XZnHGlFrcVLMf/Ju0iPccX8FBSAWPabEDMVBkl5p9E3Snp1KbuzW5j5+FPGgJ/sVz8PgXBrdKeVPeMhmHLdio/cZ5/FU9BnRW5LPoulwWP76bmb/4gneqA8f1P8U+ZGqxtNQaYdQqkxaK5ep0kmD3ayVtbR1KI3X2oXeHJDf1XOHr9WDiyxxmbt5xk98CvNOKWPbqKi4OX11/Utg6mtrFm6OnQxgZHEYY3+nPKtr04rXoNvbwSxIvf6NPF4VraGu5IOR6juHTfcpBLEILFy67xqQdXyFHZBS43r+BpH52pvnMDjlnF9C1iAWcp3uBbhtawr3o6/CkaBav11OiKfgUPF7ZD2fB+kFLbwQVlK7DybhtldYvBoX2b8Oi6vyzv6w2Ony/Ax31H+Pjo5VA6PxaNJV5yhHUgzdQliJ16i82U3oKf70I0dt8KiYapYBO1lGtGZ0CJ+imYpz8CtwsJgI+APE1LzqfYIWEY9jkEy11H4L8ZW8H9pz9YhtrR0La/VLRQFQblbrNh2gbItn6MGnvnQvzKETS0UghXnfkAmtGXYW99G+Z2KMDOisUgNbeGPoba0o+021yZmUP7Nv7m+VNGk3VPAPPhEzT+qwVczE2hqyXXqHj1Qjolc59DQpIhJvU7T7v2h0JmXeF9ls9ZWFIejPPyWBz+0HSlW7D2+UO8NvYmZyU408WOIljo58mBN0TI0EEOfjnI4K1nJ1Hg13n8rfgABX3quP6TDf5cUMwu02dTeNw2FDokAN63zOjxliw2bHSD0LUXsSaui9x2avM1/TaUeWSPp7au5VMeCPK7q0nzcgSUr1OBIpFkbF5CcHrdSXS9t5G3C5zAvaGubDlWCbZaTcMXDjXg3PYVvXJ3w+cX9Rxk7UY9T4Dtb25HjTRnypAThklpPeTABpwMPvDnhSpKV1nA69khcFH4P7ph0wg+s8fC0p/jIE5pK88V2E2XsxaBpeBh+pK5h3T3LID7l5NQISOebL4vBz9nPXi4rB1sVX+g4Zw22CRmzjObBCg3sYMCVFxhnG0eiz5MoSYRa1g2OQpTe/xR6dxSXvWqErKsvuBmiS5yH5EH9n+Pg8ATJ+5vlYOf1s7QdNgMCqddo1fpobA0Th/FJyzHdfqTya74Op74T58il0jCzhR1zNszh5qe7UZP1Z38CDwxyvgNFk5ZSo//TiAvfyWm68pwdrcNvBx9HvMMT5Lu7PNwJcCJnk0fjzP1FVHeXYq8V7qBpbkBDPfOpE15jyjrsyxfVg/iw7vnweZv1aiUEkYtL1+y+am3nFEsCEVbyqFRaCYvtR+gg44PoFRPH9Mym0D8/QTaVlRHK6ozYFucGrhK/octpgtQ4vdSKhVdDvvEtvDHSea4sPMD/snfyYk/00j4mwxAZTvIepbDjQQHFPdNpZ9OoSBpEED+2T004VkZdYrcQ7UaeXj9LQpuH8yio0lzqTbsETV9Ok4zDgySypFBWvPWE7/ourCpjTC8+n6M4v+sx5M1yiDbeBY+ddbhHWkdzn2vwPFRTlRoEQNz10+AXQoW2JT+E7rroyC4aiEaXdnCc/vvgt9NH7KdV0F2lVn4a9AEzG/rcs6MONafLcsdT9PAqjoBTfvCIPxkKKyyAhwQ28YT7itB75Ip/KtGimtPtUHEy6tkpTyJh8Za0jeXKJh1sxVP1P1HdMYYLip1gR6u491Z47HFN4BNX7nhaxVvrJ9rSouWTMQps6/xklZLuCSix/6GTWg2WIDPn1vT5y9fsCemkL2jQjny63Pc6FVFzWK6UPt+PRU4raYs87NIz0q5+vRZKqwvx7f19yhHrw20WR4NEwRgmfAAShWvg7NzHHHn+f/wg4U0rPAYC4pXNVBUqBzlz0WRyKAVNFv94pFjLmNMwnc6L7EeR1UV8qOsDWB4cC24Xm/gGqFVNLXUALrXPIENX37RM6Mqqv8xg28X6OCuJ0/x9oU4PBr/G79amLGusigcd+qCuTqX+XDradzSmwel8u7YNNWF5k0l7Hzmie/FbMEqUAjuyJmQeq8yhtpJYYpcAQzNkIChiMscHmSFzpvuwciiW+Aoow4hitfhmd1i9KqZAUrzhCFT/BkLK+rD7LpPzHdEYOZtb3KayMDLHeitfANWhc/EORCDb7UOgs/63bRl5BUIgFBStH/FVyIlIVz7HtjWXKTfn25QYqAR3d0nim/eNvHWwqms7HuMO4YMoOGiIjS/voWaulkUMdkXI29O5oUrtvKGecXgkz4JxGpDcdzW8RR1WQ82xozD4NA8gi8n2Lcml1+99sYMO1HUvbgMzngu553Oq+FJqAb0XOjHnTJ/We+5JGS+ucOSl/IhwlwEc5eLgejhrdC66hgkq8hBjs4YGN1jTEZhW6jO+gHdgyD6fH4Tesn64MbOUbB5TDon/daHh5J9nCv4CmyzPLH9hh5cefmP6uk4uB+LxDVxrVAS+INaS2Tgs20s7HnsgUJ5KhxdvJE6N8ZjS9tB7LoHWKr8gLLcnWD1TCF4NLKb/uTNpmPHX8Dne5NA3qKDpB83wnexv+xWqsrlMaMwecgIzm+ejfcVWjmkfgcJ9V+EVG91eP04jUdk7gT5F3W4dtp6mL7cCu7o3Ae/PFWM1/2Ism8fU+KaxTTjeg0fN66kb5WT6fzraCglMeiPucX/AgbwkVQ0lWx8zWcXONCK2Me48mMeRZiE0SkRO2xYrwVLolv51rI+LHHuRvVj23HQD6n+lRntnJSAW97sJVXrIxw3WxXGdv6mszfv8MeRaeQ4cyx3ac9BNI2BM9tCODCqmIpfe6LGflGQ+p0A0x7pwolJSZBmOYIcm2tge/JGTN7vzKN31HOsrCaM0tMHj5T5pPzfaig+Hget3SOYLH7ggGIuuTrbQM8oKxw4o4Jm4ZbQ1vMCYhcAZU17i74Z5dD59Rvrbe4ip3nJELZADs7tL+WPW2zBrduS5421JC5Xxj2XDKDOvBY1jAfA8fVqaNd4yhry88lQRgTk/t5n969t8ODAGVqraoUPpZYBu4+m0Jv1UOtaBnpN9zn74nhIvrmFHmjr0oTrFZzeOoVWr9aCDYnKGJYtg29ylVn4yw12OycL5zu2woHgIT7eoIkPJ+9Fz/6ntPT0JGi0d2EXOTG6+8kZLfPlQb4unfNOFqHu1lLu7e/jN80v4Ns9X9w6+ha2OsrxFOlSDnmuButSn7LNjhdk1ytAAWNv0gj1h5T7XgslHlRAjKsmnNj/AnsXmcCSY7k0U3gRPRzhC/mv/Tn/7BQGMzVIm6ZAH7y/UU6/LbsaqIPs3/8gpFWSc8t+c4LODmzSZlqV2QcYYIJDP5MYdjzHcg89GGWhjnJXZrKzgAPUZVajSfp1Dns3GuHRQyhSmEd1J+tpxmdb8FmhihvyS3FsQBtqNfdTY7QKXbLIpeArByG7IxzX6M1AvqAM60qKwESwCWLu5sBNpz+gaHiWqgQfo03+KRD+JM9vdKdz3xwRqE/qgPr/ZuKiMbkk5ejF816IUWOFOG0z8KE7vhk4sm0Si5hbQOV0KzQKuM8iH+9QU0QrB3xzQxWfYXp9aDN+rp6JtwpmUpclwHmX7bgpTpfzd0XCln+fccYrorTwsxQsdJxvae0CowNKFCkqDJ/G/6aFRb2gXL2NA2Q0aW+YKAjbRiM4dYHjoR0g82kjfnDXhej2cpjyux11iyfS/oR2dK5MIcfPy8EhaCl+T5XldIVYFKtXgTLexT90JcG41ZdaPRfi1PEjyNluMTgl3scf3c/p0euVeOCHNHR9j2XjmWtxeJoJna7azw0zLvDOd7Pp7LI7dEAgHqadXk22Vw1g0it5NIqdgW9+J4BP9ngofRcDCoWI74/kwBf3dqyY4gIBgjJwXe0MmsWu4/9aLaEtR5ka9gjSien+ePVwHvsYX+KP2zohd9VEeJkbA+06cmTj6MM99xtglGs6uZiP5/IRW2BQvIxYMJPSrBhM7xqinvdVDJ+RhhxWg6uGxlCl/SM22b0Rcgo1WE0umepHi8IPb13+lXkNPhUnsm28Iz5VdkbUCkR3MQO8cCQYx7k0crumIdxeVEiBLUvgm/M2fPv+Api9Ws+by5JB/u5Y0Hlqh8uytnDNDUloS7Kkn2894dPRAViz6gvvut8HbR/bcd21kdQQYs5yM97iN7URcLFfGNbbK3FeySt+aFFIsd4KsNRfDaqnTMCmrKUUWV6PU4bkoOTPbxAsHI1TdI7CyHv3ISu+BlZkRvDk4Ung/LoZI5QW8DgBaZC8bsPLC5rw1Q4r+LV6DkgFbIRNigshIfsc3q9ohttjRFHzqCKsVvsFKaWzOOPcf9iyMg/CX/TjGOFnvC5kK7u+WILHxxuxTMoYMBZ/BudLV+EirzT0sreHwT96ZBqxjCt2NYKuQB4Z1ixFPSFLcFiWwa4TJeDZRBcu14nC43WCdOr0arr2SAnOnxXC0Nd5+EhXENJmBKNCxhJqtI2gy5MyoS3nCzTnSLKNhDqlmnehkHEEPtVSAY8lF3BD/TCWn6qFHcEV7BziSsYFv1Eno5FGNFWihcJBFLuvD/Hjs2D3jUS4cXQbPXbqhznla9n2qRguEk/hLX4VGJ3ey4efjQWJsCCSSn0AmWs66JvuCdYcVYZ9C5O49W4MtWd1oHamL0rdkIObj6XB4mceHHdyRRUpE4rP/8Um50Io/8IbXCX5m44+SiKlbboweDUS3m14iN2NuWyaagWnl8mjwOwW+mT5i5XiXuK0ikK4ma8KnZ2W9IX16GSpNYXJbiD5fA04Hr0a0m+mc/LsN7BWdRHHjzOAmZLefEJ8HH+31+WW/cvQ/UMPSb9ZBKP+FcKJoIs4JqCabzhaQvMkSXJoLaOM93VgfD2B9C+/Quv2G7D01yac+OY0DjcgLVikA4cGy3Dt+zUYdbwPv07s5v86vpPqQAtLj9yA84ZV8bD6Rvh5dhRUq90GiTuRtH/9bAQtN9R/fw/2eUWT2XXiDeMPsuJQKU9vMYGa4Dds3yeJItOe0LGeBGqXMsGCrokURMpk1X4G0bIIjj7WhhNqAYjzdMCobiude/+GFv2twOJzZjA8LEDrRa5j0pqDkFCoA49TM3CAFGjFrGG0GduIM8a0wYJrLTxKQBn3dWaCyKRC9KkcDfEpldzGadyZbwyHu+/AkWWbWezCDnypfpINjZ9xTPJn/CooAF0CElCracu3fsXiLJUizBIZgIdWP3CN1gK+9DIHf69bSEeWToUP4u85SbYWk93H0rE7DTzHJgXOVy3E36kVHHN2GFWeZuPdxdLw7vQJCG7vx6CRuzlD0Y8neq/FN+d+QoXITPRLEWCTmlAon6UIJ5y8+PaHUB5bexRkT32j1avqYGtcN2+7uwO7Kp5itYQKnRw9BVYbGeOk/IMcL95KZpsPUeuCHoq07+ZNN97xyMpMvhj0AkauUISI2yUk++4LTUzVJK/vEylE7w+Ni7JAbwsx0iqtR6/aRBivIAvvOxivdRdRiIkslIssxGn5YTxxtAvfrxaG4yiPHeUf2fOSItgeFeOxoIxFj17BtJNnUPmpART2LoaWAWL788044nQDpmobwrCQOfd9usTtrtIc9zoTJ1cFUKvlSbQWP0Yl0pX8ZsCb+u0Ils85xdvfjeOL1hkwecQYPt4Xx03HHLGv8B31TX7Fs00lWGaMDmzcWAslyuuob1E4FLz1g8U/3Nl98Sg02buWjpW4AXvaYXugLOxZq0B1QjtpjaEYWgmFQ7+PB01xmYXJmtK4WfAzqH0xR8FSAXipLkLRlcfguvhs3LiukkWjvnLJmbn445gZr09LpFGLDrGYmABYW6iQgFIiPYnS4SNp+wheXqArcz6Qw4k+lJPRJizKh4AUCyhR3I8HutNIRnErPe3fzKkmnRys7gej1GpQXvcUHKyM4DnWpnD/FsGAhhFbjfwHO1LO8p94Mb7pJ8kH7Fpgj/A0cKl7Au/nGkLnkWpYUdNPgnKifCnoDqiI9OKmk9shVKQfRBviqbbTBMq+A0xYmcrrdedTsnocnR4CUC7MwLyPkTz/4SX2ez0ZdHVWc5vYVKg1sWX9XAuSuLMEz2ndJh+h8aS/SADkpiRz2ZtmtDZ4xhoN6vA1eB4/mzhEv10FQSNBm4KPq4LkNVEco3UWf1a005Ro4OSxxhB07yjk+YWy8G9TENimgFUDZdA97wr9zf4J5jun4v7qILYoVYdzYYno0jaCEivjofbGEvxncIcnj3PBer948LSLgJufBODyRV2Iy7QDXO1MeokB9EFziHRlD5F5UBh5jm1E9+44eHDCDIvvTwVhGV9qcttPD9Wn89mFj2H32dVg5voHsv/bj5r1u2iRTzm7JdpA/ey11KfQQWlr39PokFD4sFMVpxbtpUm9PbhwrxF1TQjHX3/FYe9TIbod+oUlalbxgZH7MHryZt5w0w7vlC6lus/1UBxYhEkVWqC3Q5S9vpuSpdsGXJi0li5omvOVZQdx1NW5UB0yF+I2ydCbGilYufU9XTh/CnMfdMHzyk5+b9kFElPEaNaaJBhuq4GsQnFwC5CCHxE25LvsPkeqn6aVb8vI78Y/NIp/wk8C03HzqKl0oOEAePRrwrDeERzWC+aJegUokTHMoTjA93NiebrsOGw/b44JUWI4KGIL21ofoOBfb0qfH8vF8oGk1X2XndaKotuWCGh/v5Fz7q5hg1xz8Nkegxoij8GoIAF+oifki89nm902fD3SmC5fV+QfO/fA0T5jCNi0EgPt40EwmdjtYyV6zPIl0cp9fFR6N92tGUC1iB/QfGoK7E4rJP8xvegx1oC1pvbx9j2XObhRm9PXJoKJuB2YLgwgR2szEHOegAuXHmbbny95/bHN6OhwEV8/nY0LzWehMX7m8sl/YdVmLcjZ4U8PTm8Cz62a0FT7kT/kXqX6iPXstDSMX9x8y22OH7BwngZMWGRKmSNOMW6ppihtV5ozbSRe6OxG9TQnUB7xhIxUDGjtbQano024I/sy277LpyWVN3FL8SfW/GbMSzr2wQmztazknsES7Xqg4+fJW7fF4IsYdag9jXT4zGs6GrwT7y56iHsrpXGF3UxuqxWFG1r2OPxuKRcoGlHTjBlgdOU/OvifG3z4IA7e1uuxKVqT1ucbwG8nb5qntY+yV8bSioZ79OMk0a/aZJwytAaWHOtBsSOnoDJbEdRjEsjk+1cs2bwVK3OXQmp4NyidCIGAS9NRpsaF5o+u4N13bGBS5EESXl1Aa3YWw4Tz1pzWn0+uUyN5uYsm3Sw9hwm/Kqlimi3kbF8PixynosDxNTzWOhLsJ3fxtNsikK3xBE688qHH/pu5T5chNXcH3tIaoLdKjjglq4C2j5aGHaPH8Jbmp5jWLEO/IlKobbQRDLzYAKvdoknYvQjgaCqUCx5k61BNfPzuIL0QUqOIna2osEIcun9toAktQXT21lhwEg2gxlaEZZ5x7Hiykib/KcDoSsZ5LxVBhLzZvfUP1/f5kJTqcwxp6qMCv28cLyNOTk6TQGbWHhD7OhoM/fawkfMG6OpBOO0xmr/OUYI19xqp9MBlmKf1GIRty8GzdCycz/sJT4Pm0JEGCZ4i/w2ajc3hDBjDnBPS4HnnNJq0I3dbjoB5K/qwuSCblx4r5VqbdNqpqE/muh8oJk4PRA+0k4WxBBQeQnjT4UCOpxNg0vdAuF9mA6FfBtB/tyjuWtNLuak+fOqwJfs4CsBH36Wwy6mNdy5GcvWsgs4T66G8fjFvOWtFN5MsechFizUyVWH2ILBaqjOZ+ZzDxN0ueG/oMG4r2MGi/d404nA0FQsY8EMJZcAlThgD4fxeqh8TlPy445AcWn2KY+8lQzj3yyZYMTWdbybrwH/VLfD+4x/G1jCMHk7m2oV65Lp4BpUsXcxNIn6st9sLrneJQr5PDUd5ZUDvwzqyxB5YHKVLmRHF2DJ6A6x/PQ4zjUO5K8wAvP+lgWuTEGdr+fKr8F9ssPIpRThvRvMV2fDikhFVjGqGE6ETYeXzB3BJfSp0vBjJixsESXN2AyL9Zt0LB3DVeFc+NVMdvQwswF6wBb7fkYGH1xfxH4tTvNHCFl47aMLZMi04eNGcCyZkkkfdVJj8pJRvxj7BN7n/8PZsS7yrZgfiET50ZK87t5THwoNDBXT6uDEkJBhCQdtubNvfBIIvW6mvMh5ypwtghmstLfpdBs+r+qjKYjJ0mYSQjskAHo0O5aD3ajxbqZjbuxtwV1UuTHCeRZtqgkhMwBps9MdjoE03KsU2werMG6x4ifBhSxD9GzrFOnVFPHHqbb43bAx710rDwNgWKO2q5JN2K/HvvmBq2Lwc5S/1YYrpSyrbaMFqQ4ogVLyY3FdrYMwDT/6ou5cbLt7F8z968ciTKZBua8VhaiboKqQAfqWx9OPuJfKSrEFpNxWaMEOFY24/w1niHzimqQZfaTlBx3YreKxRQUUaspCgfgQsi6t4/nhzLn7qyD/yYnnCiKv06HgUT5gvC+X7UrmxxQi/fviAtnpSGKW4gHo0P4BXbD9ujxmiBUoW4CkmB/P/LGGh4NV4T2AUzp+ij57TMsFpx3FWcrZF7Y++9LMxgKUrDaDGIRZ8FjXQ6AO7sXz3M644lIAvLEex258z/H5KA/T6eJEWCIC491m6MXMcy826ykWXSvFK/CC0H2lm37THfH6CC4zcsA7fgBV86vSC+UO1UHJjB/54EQFST0z5ZtopSD+/hDfkvKKjue1sm64PnkafafhhM/e/y0bPhwug5Olfvv0xGKd1/MOFR5JJvWIUXyw3gA2zltKZae+5ITOJS8tUaM5XBVxgWcUf/tTAzcFSOP01DkJaRsL5v4/BMSgc5Sb1w6byAn4/ZwJvet9Idsn9JPSwBYcOWqPnFE247bGMpgucguPJHbRVV5wdwluhYEkJvDVPJbEsCWj2igSVTCl4GZPI6rukaWjBfgp/W0LrF71CyTdNIPHyG+tPrcUfgm+56Z0tiMS94mSVdlriG0F/pXdSsrcvZvhORKuZHpAS4kWCVYuhR18PnhpW00vTYBDmO5gmmY4Cc3/S3GPpFOS2GfyjfkKVmx62fbOCEVu6WXxmIe3aGIALdn+AqIUJ+PSOOeQeFYXrfcN0LcuOoo6IwtmAPzyneTGc0NgGZ40UOehjEavu08L6Az5gf9cSC5M62DxyEgwdv40HQ+JpnPIAjTs9Dr5s6ufT06VgZ8wNOPdiJ8w2IfIpFANK6sMpy/7xnKsu3GeXDRc0S1hXWxVat56iS6l/8IxgL6+VHgXXxhPo63XA+J9VMMlbhCa+aaZ+kQeIAVtAKfUwHCpwAtVx2nDZ8BxIHegBu9pFaHfLHr488cISmALRI07jtI318CPUnHyfMQjV91DTU190qTiBRSN9MPyoLjUq/sMECW2+YfYGbslb4gMPK+j0XwzlY/9DCd8M+NGpSH2fPSlxvC9WYzxOa7Wm3W0xoL1MEF4FmaDavFn46kcQip7x4fuXDqDHykwQkdTj8K3WUFPcgDbatjBRyB2KZ9pieMR6LLlxB9q8dODBqG/4x7OR/wtwwuduqrxbxQJ0P+3HFAlzXFzcw3lh2YzrfpJrYD0fl6pg05YNbBPrylaPLCHx2mbs0P9I69NKuKJ1JFwvUOH3FyfShI8qvCE4GDbYBOE6R2OoiTnDVnHBNL4rkHvKiumvZR8oBUixh7ge9nYaQHPQay5aaQrxaVIwY+F9VnEZwMKf9/C03CAWxKmxqOVtnry9E12zt0P3GguIUAwn6Shl2lL2iq/+MwGrOUzHhMJw8vtRWDS8jDt+d9HPIGk4K1PA9UOa2Nh+CpuUDvCsN98h84gR9W0u4CjHLjrdf4cTO+VgzIA311k5kpoc8axXU1nfqBBVyu6iaYYZ3QRBvnFnDv27YQQv7YZpZXU91U1Wg8yoCh4z6Mk6sdEgmuHKfmLHMPKBBG27IAFrLjhCt0cSRTnXc1qvGl55voG9Px7gf7dF4LV+PJzPVIYl00WgSGw5D97Zje8yXHip1HTy76rE+EgxbjtczuHfv8LH6lCW75eD/YFrODD0D+xpcyUZ+9NolVCPf0M9wDRTkpY9FeCpK6z4cpQAdDjepkKfWezgLYnm0wXY4LQL3RwfioHaq3ixWCrf7H0Bo14aQW5CFJhML+d7s0qgb8I0mLX6Ixc1CtFi729cbj0VVuyQwsz5ZnB/9F7OLrOj32cW0I5HdRCmrY85OgHwOm+Ypg4+w9FDEyl25hiYtusgUbwtK9ol4rynpri5WJA9+Ab/W/sX9J+m4rezepz1wQw2zdCjnTnEeLqGNDt/UHnaIj6RPYVaPw9C0zVZbFsVRTvkBGB12mnwN2whXwd/KklqQoVodV4VMoEvLW5Fi6Xv0cbpPgxvMYRJpdd5pOBrbDx9gsL3qELZl5fw+6A0i1ldpW8DBfDlSTmRkjrsMl8Cvfv8edftSSBSJoGHxK9QbORIOKIjjzcE4rE2TR3nrZ0AwR5pHKoyyD66+jyy1RoUGnxh6sYwstECKPs8kk96iEKaig7MMjXkewsa0URRB2yfrSUrN2nuytWEbu01bKVTT7fOL4GPqQjxZ8zpz7LLZHRAjcTCu3i+hjM62M/CAal1pB2hD+8Cm2HE33Eg8M8WisWscfOEKFwYUAcn9O/Tt669KBepTPUz/kHLxXwqVNSBJX8u0D0RbUgxS+IfKhuhZc41qJ94lC4pr4SDi6VhQ1Mzr1o4FZzySqh8ngvttrVCoT++OBimgKbLt8Oyczm4lM9z7+cArDsoAvKL12HH4+l4J96NjwZdgptlyMIDJ1Fj6kxeFxQMtV/2gL7daPiz7QyEJT3FsSdq2G/ZPhKPzQKTmXNRe88NDq/LhHWfP3FrtjDEmvTCtFVJxO2bIFlhD63eaE3bu49wU1UIxfRuhr0i0yl59GhoHHOFDVs/keyVZlwnPReGtzhS++Us7L78k5rGHELZsAAcKjCDo5/MsbvEF9bvH4INgfbQ0i4GMVfHYsZpPVb07wOr0z2UOl0LsrR/gu3Iuzx+/nsKCL7EQaIu5F6WwfHrL1JCkSNxZRAUTlIBo5xeKNO3Z6sXRTCm6wa8++DBB2dk04FHgqTc0s7HowNRfIMVjBSbwM/aXOHlejH47406bVGYxzdHr2DxJ/GoryPNA+vu4o09AMqZ38C9MBfOfj/Fd/qXwsNdxRQ524Dc1CeihIEYrQr9DvldZpC//SUf//gFnu+7ih57ttM0v+307Ecxzc/YgRPTPkO33jBZyIyE2KNbqeLZK147bxY01Bxho2oR7nD/i1HP59CYgjlYpJAFrnoGcMG0FGb3vYZGt4v4bUsbfz+sBrpWB3HB7wp0GWfLqmG1cExfFoIfuVJzSibrh3mS5LccFDwRB/rj2kCyxIKq4Sf8x1dZ+8A4qHm0DFwDHnDazS3o2+RJwa636dRFAUjYFQM/W6VhS+p79hG2heT6ubx0hRFE+ldBxYE+mPliEjrqOIPlDkMMPxDNkV82kOJWU4hufEOCV/6hrvhYuiJ8js+abGd2X472j/5BhutLlDkzH/uFVSA7/zav8pCFn3tVsS7REmz8f8MbmVsY1fMfXpp/C1PX2NPiHiX4OaeIuwrD6GbRMjr9NQJfKtfgSfVMunq4i6IPx5JlxTYUkdaAjJdeWJdQBj9UXkPswHW6vrSMT1y4xO+v7MMugV767hbFATAKTt6X413BUnBL+iWcslaDkbU3cfmYu2S//BuLrRzgkz8NQDVrJAS6RuGsIx2geTcRlpVO42m2y2Hv026QKtuEA3ab4fisEzD9uhX4q+RS0+yRtDVyLeHjR9CZ7Yvngt6zp/59tvMRR/eeWvidZA7Rd2yxfflhyu37Dq+nBoFjfyOekXlDO40+YcKCGpD+dIGCXQxgbVc6VxySY9PvAmx23Bd8JQX5QtULfC02n2Xu3WMr5SqynmINkx8OYIdJCJ/8t4ofaJfSF1tT0ouowuzL67HpcgX6Xr7HP45PhPKrkbzfZDz9a2/guWKOeCAoFvMENyEO3+LJ9WZYv1iLPmmOhSkd3djebIpvMs9RY7QQ9v+ygRUnmC9pzmfuXUmT10yg3n8GsMHCGJyK7eFEhQTHZd7FZ1Py+WJDIitP9CbzvhBWmyiPkiFWUKhizZNnf6af/xN3H4pAKGoAgP9BtkhGRmZIiswSGVkV7aWIhISolJGGojIykiIp2lQKKQ0NaUgRp0ESUUkhpFKK7mPcJ/meNoHb9+m8oUOdBruqSVexj07tmMpCN2/hDysZKPJezwWZNzFkSxgrXpShk6518N9pQbx/UQRubpbAVulKKG0dB55KT/Hg7SIYHI4Ai7AYWPB+JeqaTCMlqyS+9+IlPrsfyfFq2jBifBP0XhrC9Rsy6IFuBLgrLQc5kZ94tDMTfO9dwJKsPq49MAJsU25S/BFjsk3KojWWMZQSKoqVqp30qx14rrk4NJ/xx9JWMzCycgOz6xcp+OYUNFn+jj/E/WITOM1vOuRB5nM1slMtH+xWgnIogZPCbVCsp4Jzbnzi+zflccwhb5i28Cdt1Kpl4SkWXGdhBMpmj7liykswcYzGqnNa2KtzkdSn+nFWfDw8OlSPIfs9YflYSzAROw4vGn3YpmoQ9Y9I8rJaHVh7vpSDw16xQ5sbiyYGYdmPKZDhLsjlcespo/AfryoU47D6G2xVO5vU1nwgx813IMvflt3vKsKCgRjolfvK1ob5vHDwOPocl8b2no/c9v4smr7UAlmlM5RwZxwo131Bs0hXxIFGGnlnFp1xFqP7ml+huvkPR1uZ4ztVZw69rQPhZ6PIbu00vhVeTGvm69H8WmueaHebPodU0+cdcuQ8KRbVm4wBRStxQfEHfrD7EE3IMIe9f/uxJr6FZpu+gUvLiBbsOANrNEZB751OZs8amtZsjQH3DuLy+dKwGOphvI46N71sgEOdaZRcOQZq37VD1IHZ5LrqDMn0G7HIgneQ+/U9B+qLoIA5krf5brxjMgFe/jkApvttYUOzAk3N9EU5+SHefq8cvH0W8zHLj3B4Zyy8mzARwjXm4cz6a/Qg7wCEzbkP82RuckKIK5jVFcO36D9gVRiMd4rkYExkIl/9fpiWe2iCzMBK0hwBNEu3Etsr53NiSSuMuCjGPYHakOX4jb8WivNe1Rtsdk+edK9qoYzRURL6YUUl6rGQ613EfRO0QFFiNBU6O9N6X4a46OvUvVqVd0vbYkHUJBBNKMXVfhZs+3kCpEiksb+nOn4tOE/+F5VI8Isoxc3u5aV1iJVzjTHRbSo16OiAu9oIGLz1BzJWfkBIv08KfTn47a0wVExahKI9hfh6kzQNdmhCSMh9lDFKwxJYxesuTsYwj9NYdPYSbc0MoFclqyhnaDHVrbeApUPmfLWoFLdruOGkseEgeNKdhztqoc7MiZ6GWuLwp+3UqjoVrsvFgOyfeEitmoPdMqagPi4XJJ20SC7/K4R9OkOzhts500AdHvak8+k0H/w59g4b18ewi905WKyYTM8vyEPq30o6KimBlmNUoMhxgK3vDuO1Dbq42LyUs71S+fHcE3TywlTYX51E+n02fCpbGRIba0FgRwsJWGmgtEAj3LHLpckxn3DNFRv+d84bp9wq5vQDU8FHxJ7SxtRRzpaVbLGsEbu6M5mmC9HYKevAQ28Opp1ZiY8/TQTD/d3cEP6T7KPVuTTtHLZ5ucDUha30d3AYxT/Ik96jWnS9bggio7/CKfGD1K2Ux4aiRtCndYK75jSB5WpjrljSi/mJebjLaRLUMWLFuSu8xtAW3s17hJ3xB+Blci30as9EjcC7nHghm6oey0DSpGyykirGCV4e0PD0F5iMiAPFY0o8VlETDg2XU7D8TYiYKQdXJAQw9sBp7D5zk1OVv6Jt/iDVe/2CDVHnOKjLDntd51K0sznIl2phUo8HrX7fh6kPd6JeswAfu/odn88ciXmuGfTRu4XffNGC7PPvYO5NUc6XaqBDyUew0/cHrviqTJKfrGjBW0cUcD8DnRLaIPj5GflM8yf7YS143OeBSnm2dOROFV/LfAhlMsvw6OJ9YPpADnIWW+Cu5Uv4UV0on74YzDFt38hs3ARoOn0BrSfNY6nkY/BtsyBsmBJH/VeHaXjPSP6hbsd/2034YrUldfhvgbcrZ3JDuyvH5hBsjjgNtnbFFLfoGx5teYipsv1k/+gBmRp1s2efE8W8/cujJQCefhfj7M0hsK9sNu5cNJtOlU6iYxX7IDn/Plxzvgt73SvxpIMhmNsYobqcG9tkJkLXqmP096QTOniJwvdLCfjhlyjZrZhMv88gzHiRhl0F98FSOYfXrJWEX4p1oKMly7UVmfBj4ghOum1HBUUCMPenJM+Ifs/mlqI0PzkAZXtT8UX0M5QOa2HNdiG6c2sxbVGYAvhFhI82X0fpoQqWPv2CSj8nwuTP8Zgf2I2RQ5sw0LGbrTfLwpoT4Vg28RSMdpGCccE/4Pepr3DzuDZuXfETnXoScdrESpwWPAa+OTTzgNc2XJc2jEGpkuh7TIHO20+jql+7UC57Kf54+QeuvpKEti938LfDNjDxfMSnxuzGsNfhBE1RdOdeN76NTUD3zwvR9KAgZH5fwGV7ZtMEgzRedMaMpc5Yw4RFtbjJtpkDNy9An/QmPrxKB+Z4CUHx8o0wU/QXDUQFwuQ3IjxqXRKaWDRDo5wybvHcQHPFdcGxwp4P3K+G3mNWVN4di8f3d1GCmx1Jjz7LUz6bUrLCah6snQprxa9zcOUwD7cUQ2neFQiQ+cDf9txGHRyBkx+mU+bOhfRipzCcCW1CpSXPaXn5SLQaVc0Nb3+R/Kdovu5WQ5Lpl6A1+z+cUmwNgg+aWeqxFhnprAeHNk3c9uQWHlavxtP/3LjwyAWO3aFE6api8LNPH00Kz9NI0ZV01S+YI26YUocNwdDk2eD6KQNSLWZywX1NKDG9Qkk/KsDT5wqfCFYF6x8pNFe2l26qCPL4sfJ8d58e/y6XhqHSWDq45i3pXfzIBmqNUHn5NC3ebUIVMcZ05K4u2uY6wzVbMzAPBVSk1exW/g6DlGZQgwLyn60VVDh9G0z2MQG3PEvKIiOQ71SjQmdT7lASpTqzmfC0XZJPJryhWWkLSP/8MojO/MbLzylB1ApREpB1pEJbW84+5YGSZ6KwZsMtcF53CG445mFi8izSeqUFJ59fgud9c+jCzXFwYEMI3ktBnjVLEPZ5bMfrVdtxt5M7rq9Rg32PD0PcLREK2m/Py2YlcUjnXZQZns51t4IpqtmQ9ylKYObYEXBt4jNc6y7O3ku8WbsgD+/cBjx3rYKfWwqwm3sr+8VfB1VXBTjqNR7vp0+nKW1FIJAVzss715Geyhg+9gYx/5k5BZ0WB1s/HQjtb4WzF89j6FEbDCNXHv62CDypHLytAb+sC0JfjXf4ono8yN/8y6L+SbTh0kYseXMfD0jMpwjR9yyjaAeyO76Rl/MUvHFZH3yDH5CNdBvaSDrCfMG/uMzMlR4clOPE/wa4/kITzwmMB6Pt6pB/bytIBbzmX9eDKcJMlwI+laDb/RnQL7YR1M2OItRI8qfTZqCe6wZzF27EbVN2UvWFZXgsspQlxgvhpI3ZMPVfOZfFbKAzTqPh5bYJ7DPUzmH9eThZ4jz92HgODRSPs5JOP/eaP2fnAxkwu0gI0k2E+IMI8fhOeSx09ObX/fLww1kGNp/uJzP5RFyZ2wbH5WVA7r02NV0Q4T+GA3j2fA75pkznBb/n8MRrSbw0sJHy1VeS6xsRuGR1H6wNJKHeTwU+SIxglYOveEPDcnrnsgeS+s6A/2FxnKqgCWvr63HzCyO0fO0NUp8Xor+9K1c4+PKTgwE4+tIhXNv0mZOlxoCoeSma597BOV376MB7NTycZQQzXw2gyZ8VrBWsggqhW+lvpQR8TtlK7T0auPJgO5aZuZJamBy3316IinJl/HJPKooG5aPBVoYwekKL754EyaUn6OC2deA00pKOpSyhBWZ7SM98KwUsdyHtT1KgfUGIm0e7Q36XNX57YAeCo7s4xkQXt/x4QV3bvuJBOAlLi6bAqtJZrHNiA+bYjuPd69rB+uALSgiVoJGGxfhL/zRe3oqY8FQYKsJk8O7La/DhxR64eM4UbO2FsGxcGP4W3UY3FsbApvwI3mc1GuYKv4FR0nsBny7Cio4weiX8kG1sqnDPgRF8/W0Yuoqoo9weRXh+ZQsfdDhHo+PSaePyzXxh0B3kXxXyqp/uWCupDZP+ZuEGz1GQ0qBEg6cGcX/zPGprCYA1/yTgjchhDB1rTO9ds0H2li9LPx0LPwaNSe7tWH7y+Av6GzvhBzEBGqlYC97ja8j/0U96n7EKCveKwf7yOFa48pG0VVzQdWk1JUzsABuvF+wauI/t1+ez8y9tGDSRhmehkvxjtSelqb5CZYEePtJcxcIBZ7C+U5JGvliPHrJmsCxXEPKlZrFvlTsdHF+GPdZPyNW9h+bl1OAy8zQ+tfIUJMUnUojDVJiTaIb/NI6DTJ0zbhq9DYX/dsA7P+S7ibfoSaMdJbUm4o8uLRj2LKTy/tHgZtgLZ7uyUXjdRfSxseNmG4L3imPozBNpthRUgb6wcDo7MQrmxI7FjFGbcfOrM/jEfAWpVLdjwsoMnDrdghQ9NSCS7PlkqjGqjrfkZYmzKP3KZFzv7QTf7Z5TgdQgWx4sYPcSSzAaH8ruCmPIvWk+m98Iw97ID7A4IptWHSzD2hcrWC8wF36t0YZv9QoctLYVKv2zcA2PAtGkdaASfA3Lzrejsf8g7zrgRtaLrMF+tBs1e6+FxX6rMWmpF5pHX8Z9SSlgvssPT69cDc92SvDI25ZwZkomfpH+hx6FIdx0OJsKNyErDz6FRXlM0TgADllNtMNfFwozO+nO2k+4R3QVOz7UZ6OU6aQxZMn/JZZyteY8WPfyARu/mgybHseheZcPxHw5DA/hKh2ZZIJLkmXw0OkOaBFsoulXUlhCyghCF74HHX1hFslB+pm2gA3jsyn34khw6nRif7s8dNuwkf6sEYd5J45zt/5echubxuZe7yB5oz2ed3gM32/b8gWLKlJ2ewcLJ1iDQZg4NISIwATsZp/LXjh2eizJjTlH87w+4bZ96fjzVABHZlhCXccakpxeT3Wxe8kvwZr+PN6GVwZFaEjgD2R7ymGjTB+FrpwI44wqsTVrGhzs/488vrTxEw1FqJ/aQo++PKK5K6q5/loyzDlhDTOO1/P6c5F8yzkbVydn4IYD3TgtyYF2p0fxsr8F6NFrRzJXNeDjZQ1Q2JMGD7a0sGXpTLwpOg37TtTCqFWX2fymGri0uYLvLlPIFejEE6YjKXFJIO7dspIXHBSBL9qpFLYyCGxV46HlXxZmbTWHrmtO+NGjliOeTAM93XQ6K9eNVUdqMKnACe2kF+PP3H+0skAYIKmD0qu7UTc0nwzwE7l4r6XRQzlgfWQ0r9vXCP+9tqMbJspQs2MMuuctInedPnZQ2UNdPnvotug6Tm88S2LTRCHRrxecxphAnF81RW/8zvEPguA+i2FO93JKGMjmjmVfKFj1Iu6b/QF/GeqB7nFF1gsuh9S3HyjA7DAIp6agueUAvNbfTTcyNXn1ypX886kESEb+puPC/XRS/xvO2BBImyq2kNbeAZKvKqB1E6o5fnEROG0WBNHgCP7xQhOSBm3hheE1MHsujNLbezD3QTTdamrj9wt38oQmSegagWRwXATnd5jSOH1ndn/TQB2HVvHkPV/Z4rwxHbOfhrjcFO76fcCKkkayF6/BmmQr+vJdgc6Ge7HPjxYYFkxkxZxQWPVUHqapP6QPLREscPAG+YdXkHCAKhx0eE38Q5qyjkeD4f0MNlQRAA2FcG64HYiOskuwau0heKAQzA0bFXjv/Ms8cu90FDJ4xbqbR4DsFmX+F4u8+NJEmvNkDn87rgL2NaFsdy+d+n+PAdnXZfxziiUox8hTrv8S3l42kdVm+sKcWA1w/5BPMqeD2aAhFWedF8Hoscagv/Mh9c6Qgslhirxx6Vf4tvUiuGW50IUAdeg+KwaFQ2Z0e95oqFS9QflRp1kzvA5zxm6A3wm+VHrOHgyU76Pm/giSeJkMzdGj4WriExrRW8/nfa5A3HxBcFL25vqjo2m5kDPYNvjD084M1FZTgkOR3ewclU0SCpFgNiOKjhk/o5FVkrB3aCHc+prAlUVBNDVFC6wd0shptSMH2PdT8ftbsCfqMxjZv+I9iWEYP7+eS8cZguVGfYjIdaVFfzr4yvZZYOewm9Z+DMUDp7bT+CM6HJNynJ6VPuK1VrLQ8Ww3T3/9Haa46ZKdZi1mPVjE/RWG/GHHQvgtex08C47CqZhpULBiAJaNGYdyz91gvm42JD/pAYFZk2hFpj+473jLYUrxvO+ZNegGDpPlpWno5vQbaxtqQM+jCteYXcREeyDPm8Vc2HkOz5yVAic+SVWdv7njpxnLzuuFgVp1ODvHhSS2vODBAV/cnLaUpb5OBcWoJeh0Wx2bF23lt//l0J5Zc9m4+SwYgg/PnZRJ9fKAk7MYnJaJ8iKtIXzq50y7r5li1y4hstiowvbblNjzej3+LZai1upp0P7Kl2+VvoTUNFEeMj+IMRq+NLNrIV9YtAQ9pCNYPjCBF7WMBrXoSBSLvMSLDibyaVEz3PFpHxeHW3D9bU88sXc8RlY3w5pmPXCLbsKQsXtB33kGP+Rmrp+MnLHAGeWWbWfhHTYQsYewNUgH9neXUEm9P7n6IL5fmY0ZbeYk79fKPe6lmP3yEgtod4JxqzZc+OoF5Z55UN4WQymFS3hCdjiOvxsNN0M/4Q+5yZywphrH75kCvZ9X0tr7jnChUg2vGp3juOD9mP9MCQQaO4AF1tOxxc+hY5YqzLAypENpdvxkdAPvbRSD9/IWGNG0lyLn1MGGWF2yenmTc2NEILt3Ha/UsWFBAwfwrzDDVXo/wTvHgv/8zAbhloNY8bMRlMSM4WiZOfHuHhhXshy+/XQF1+/byUBkEHyyF5IeJVHqcldcZmYNZ5X84c6CkfRZfQJOIkFWDVTBh6NEQcBqPP033YJL/nSzVNdIMBVchzLzy3nobg2uKBakHHkt+jJHk0sidlK2XBykpveg/fpREHJImBz238WT+0OooL+DFq7aCgXXNCF9mx1qXfqCyyTf4pUfKvA65hze2JjHq5QmoW/PTriV9ArFmyNh56/pvMX0N5TbLabNEVowLNZK6nKZcP3vfR4qSMWlVQXktCUWXeKbYeT5uSCVloSvxJWhfugN1O0QIsH9pqjhshpCX4fRllk98Ha/ID/Qc8ExlZe5Z+lo2LspBp0Ngvj+UjXcK/MAIyxW8v3+Vki/5IOuEuXk912DSudrgOM/S1o8OR2DLquQjfwXitvayNdjH3DZ1ufwOqOC+zRGsNV2hDfbs9Bq4h/+T9YBfwlnsIPkMfh4VJQ2z1nG0ycs5PqQddx0whSEOqu4pW0ce1db8sc/nmiftBukmyJgcN0h0rucjePv6uLYZIKChM/wuc4Ft81M48d3HKlxxxIw0bsLd8ab4cIXhjgm6Av0S4yFGYlJvOPVRZ69QhwRCnFrUCxvabkC2deV+LXcR7hV9oWriyVhjEsSb497zF/tHuNIWsyzXkfjLs/FUPspD1Oe/qNUiV2wsVcKJkrtBs1IV9oZ/JVrjVRhVM1Usmzy42mnFqH8yRA2OJrKWysYJig2oNqPH6wwRZT13aT5cE8Pb/lzFgvHdpGMdhZ80n3GjjoMk3bF0pnsZpI9cwhm2ehy8sl6rNG1RdP2m9zh+Yu23hrJjlFaMGmlAP2eFYcdzqPheUAWSuUFw3+ZJ7h+zifaLWbGn9Ea1fabQ/D727zKPIvtk16T+ud9ILwglM88PcGW62bQx9YSvn1MCsWT9SHq8HGeerYFY1q0SdxoAFrmXMXkNctZX7yN3r29Rosal/PTywQZaua8YsAXhmz0eL7BEyzpe4yPJDdw8NJsXDXfi6Jc1Gm0J4FPqBWtT40Aqd5x8NfsKvxScqewnV9ht+kezP00FQJStvN3SS0wjX2JLbYBtOTSGIx1mMH5txdS3yEF/hidRb0GllCvvBFcXxjBoW9fIM7Pl5TMH+FLmVFQqWXOgiNTmN1WQMq2FEyOvQpXY8fCCv8GLD1cBr7We2jCkArcPXwMeyM+wJs5O+FrYRd6NBRhTIAIHCq4gyGPLrKuoh8U5y6hT68OgOfRDP75vh4ehB4GL42TfOSvDgy1jIN9M1TB+GAXX523ibQmRXPKnPdUvCeHH2g+wLQxZeA1IAmvbyVTUl4vh6Rv4ZoUS0pKyafrxu+woleLxslX0ocv5+mGP0G7UzpejZiB35apc7REC7yMyqKGx3fRiqspvMkKXkVZwurNY0HPcxlMXXUSqsdYUPWmLfCucDOh1BIa0zGMJ/5TYVh7i17VyENTrSyE6fqg3eQi/vFOiWQiyoiG3tMnN1FeYO7HvdnD+OyqIKhdIbKeL80nhkeQKvbimvxSKnKOgn14Ho1T9cj7dwu/nCQCeteXslCrJ8q+FaWT8sL8SamUKsP/UIOSOKafy8HlXavRR9kaDDKaQEDEDeadD6D8/CMo+t0PfSq3wVDZaxRT3EZvj1qRrJ0RfLtgBXIv9Mlr9QuwEIykftUxaDryBRWEq0H2vVDqVethwxdmsGuxPJ36PQVUTj+Ed/23Ie7CCIy9LEOyOe9o/8hkCNxwhiueCQNaV6Lr73RYZ23LG21ScNOfrbA5+iU/zZLC4cCrXFoeDTZ/TeEvLAfnVQpYeEsIq8r7UOOKH/vyFtygVkRn/9SS7p4a+rxABnTEfVH4cyGZz38P9fbBWDFpIXVYW/HxeDFsWNCKx7euhmkqxvBzrDmpVfVR3+9yPuQyiYdulJJhYSiH6ITRhdpWsHo6Hrw1p8Lmp0O85NsIXPbHhcRcR+FTwQHoNFbFrT2xbLK3gjwehNFgmiJ09seTVL0Vz3t+D9/+dYLL3W2cvGMXvr3dSy8KVmG4rztPEdUEJ8fDdFwplE/0haNB7FmoDdxPIqf3YYmNF43zPkVH3p5CvTRxmKnwgy4WynGtviTHucvzhgFrmi0WR/2L67my5TQJ7/lBgyvloUhyMSprfqCo4kfU4z4fKi/fon+/19OKJ7+pyPUTR7XshKFQY7hm9g6Mm2+CzJtPUBubzYozZoBJmBB210hzqcZYPjAphZ/uFADPU4chu/kNX70vCIafd3LvuC5UhmAq9ruEW5vqIO28PZ6qkYI453n8q92KM0fZYEmPD7smnsP1BbPIUXsBD/QdRcfiB/Rj+lhont0JsEwK5jRPQBvXmdRStZsTdw3wokM6nLs/k2vvPeB8MYKr73xwzp7PdKslGTUeVLLjq1U03K8KDhPd+axVBpoqXAPZFBPwk76CK6XS0TRFjm6ZyWHdlr3sXr6TEt8kUdobWThTwLjDTBkSVoeitrUoPwk/yBvvAXrc/ohiszzR5XYBrLxXx0Hb33PCfjW4enYTnFgUy1reshiY+J2KD/5kpX+P4c+VpzBVXoDib7lg5aIR8GnWEjId8ICrIUxeuYUs7SvH4UI65D51AZctGsc7d7zDVUGScHpbITdUScOHoG8YfHc1HvBbSw6TBehR2RKOc04l5+rzYD9aCH5evUIGX115jtE8eFdmgf6zBWhFlwWEoDpe/ppB+blimHBZGBysjMjvXiWAwzpOG5Rl+7aLTIN6bCdYwO9c33LZ6iNk3c0wvtqNapse0eLs5dBWcBlTVf/j1KcEtpUJbD7SCeMLTTHQWwvOztOAw153sd1xCzhvHUWN+7V5gWMIeHuZg8HiVPQda8elxQi2is0UfU0Wl4l+5xtchHr378Pnx1JkscUajv4dhj1143DMKg2QtMvAxN3HWbu6klefdoP5z2JZ76sUX53gAGgiy2cDR+D2teIQuGktdb4Upp3hEuA38gJmbyqi6bHZnNM1j7WcjAju/KA7nRqw9GgIblS7RC3XV2LMyI8cEN8EX2qGofF2GR28LwlflliSQr0liKSH88yMIczrKoAPQevZcGsmPrk7kcuMU8B3uSN0rriCDz9qw9oLPuBlo0B+x7Rp579hzCxrg11No/nHp3RWE/oC/7wK6eEoYTh4+gMZaOpCR+sV+DZzBF4OOwgvdM+C6uTfZJP4Hc/9MuLCt6Pg4HFXMjNr4q7hefT8nSc6qP6FwvUp0G9YDwdsVoHntGSSS1WFgLwZ5BzsxKk5RShtuxJkNw2AfXs5/ldzgUDvKh5eNJNMS2QhMDgDNxueZNnHO8C37hqrxrvB7owJ9PC/PP7bPoUcrIJYb6YkFAY95eBdS7FxQhJle61mmQWNfMJaCLfL5qLQkhD2PryB5wWOg5YtgVCprs6NB9thhGIlTbjyiwLGAZnedEUvx7lkIBjFxrtHgrHxXpj8xZDTcmZS5fS3XJVrg69Fn9Lsi7d53ZFT1OWSwwW21tCaf5i3qp6n2s/nwMw2hKrG24OZaizdLjeijKhoqnHTY6+eScA20dStMpNGLajFpOXmpLrnDGkaRJJ7VRrEJybDFisdXnhJHsLdQ/Dzwiqs0PJG/Yh4mFXCJJglCw6rxpA9q8OEjUn05rsODJkmYsnhl3RU9wRUvXImMdd1rPx+N9+OLuQA17MgEByDUZMnwUc9X1q79CDf7DUhk/N7WWDTCOgUWIYK0ivJVOQ7Ray7Dc8mSMIv2wqOmGrNsvONYY9nOn2smkveX36xnIwkjeqSwCPVqvh3mSCot9twZoUdTsk0pvNXs6Ho8Q9+KXYTrPYRthp5gdzyIjj5SQnuXC3B0xIf6fqRTNz/NJM2uc+HjEPDvM++GcOONGDam0yStTMHgepPmCAbSK/HO3D0qPfw1jkPVJSjKOTfaS7eFEV1PkE4+8MkiLVFmFDkh/HLailsfgrdy9TBs4NNXL7OjcO/iKPZS20ulhaAKTNa4fDzRHib10+b4rpx+glV2jucQ1suVdLz3H3gLy7A/Uba0Hl6FikahdOb+VMwR0iLfiZpUH5iBrz83oqGKl00dZ8RXWNZcB+9Ht1V30KSDdGmeydwt8Izumtyirqd3pHlyGlQlruaym20YZw5s4f5P+p4MotfvTjJmfsDoMcuifYc9SS1U/U0W8MJ+xcSaH8N5XTvYHhlfw8NY9dT0WZn+h6QynOqw2EjT+SgdabwL3MSdKW9o+hcOaqxEGXFezkYKagK728dAqumi7xGdjO153bgpVFGEFZXjxeKj9DhM4vpX6Qr2mk8JqEEWfoz1ovqA5FVx+TBbzVT+LpPAYLFb8PX5Jk8sPc3uUU2c8IPCZ737SDW56pS68XFGH7bCtRLN9N03VE0sFSbInM/8reR5tzTIc3bLjmTv4AQ0sQU1k2aDhP/NAKvn0Enai3IrEscnP+sREHPjfT1TAXNm1/Ol2znU+3jsWAw7z2EROhxRPZbHPP8N1zOHcT7MvtwSZEjm9pu4Qc95VxVowd7hBCvzvBE2YiHlLp1DVt6y8ABdxU+q/4UarrF2W6pCN2stQTxeTcgreoTlt0Zh35ahagqtY4cgmvgqK0FpV6ewI31v/mvz3hYd8cetjy8hKIHIvnnhJf8TK6NhTYawqkKPdw76xTfX9tKnk0CcPnyKB73opzSrj2DnXe72e1GOY+XL2E2Os/7W7Lh/jx/9haVhfDsIxy/9BTVpWyFYtUmCCztxvLvw9jeksQu9WoUIHQRY8bpwqZhVZSUzof45T5YrPeCbkw4BgurHqIsnMQK4W1053E0pf/Vhb2i4Si8I4ypxIfNHRPwhkMbJjyX4kPqAdBxZyKuN3FnVyVLGLckCIVso6G0XQ56+r9geV49nD5VB1b9afTueggbbRpFtx6Ogqg13nj4wwJaHCXF0d8c6L81xTBfdCn6LZmOQeGjOMTkHdfMNodJ3XboMiOMlO+Fk0J9JT/tqaUzE2N4RqcvdjTXYP3oJHA214bru8eh/ObvaNk7Bn8+64DWsYd45YU+hL5UTBhrQ1EFsvhtkiJEZ//glnNH6OqXefx4WS9ZyZlCnewsXJT/Ag8rBbPKo0F4esYAIuWjOGaCB/xIm8QnSwbg1uAh8JIKJceZIXjqXxdMXrUMPvQJQDmK0XmRi6QR/4xH/o7jb4O/iW6dx95Z11m4TJOb5m3g+3+MYO7jleBU4gSLNS/wn8hMXuiVQku+PqfzMlp0VGMibM35CDqPATaNO4Z/JVxQNmQEVwhK4TbR/aRTdhNvXo7mvljAiC0xvOSEBLi/FoItDSOh4WcjKJa1oMqiTs7cFIpnqg/wl1J/3mUQCNkS1vDMawC0nOLhgv0MzJt5jO0ctkDJ3ycw9Uw8tbMsNS50IJfvkmAWWs7X4qajp14cl9/sw0lR+9G9ajtKPZyAqpbbeHxwB7oFi0N32wFwWNWKDZ+P0Y26/zA2/C25PHTlabHl/DvqNR27+ZDv3TOA5w+rKGS6Hi4Omo3S1eb0Wu0DBPnvodcrgqlPYx/LrAqikTXjYVTXbPoT8x92BAbh3V8G+N+5IVwxeycOFgWDklM8hjh+Ib8TMhA1W4CObtPkk4LuoL0zHsOzOzAi4zSMkHxIbVM9SKypGmrHGsAWOTFW9VrNqXcOUerG2bx20j76u7yan94SxY/jqtnL1A3e5MiCgm0WHx/w590bk/HD63O0UwvhgloW//3rx4efxkFN/lh4LWIK27wmwtH8p/xx+XGQe6BBfy7l4gXpRbhxzHcQUfbkO2dXwJ8CC5B+o0CdRjfgdnEuXSmdC6rGrfwj5jJ9WuEBLc2K4Ce2g9fkykBk+AlaPXkpn734lh73tuET71bss7Bkxeu7MO3CCthY6kOPnuuC8McG6J5nwi9eP4HAi44c9nEcLYxI4Q9OGRwdu4buB6mB9t/J0Kf9Dv22/Sbd8x0YLvSMbtR20tvGMPxxRpjc/gvlmHMTafTLSeAXdZ19Z4ijm0cqRKa/4Gh4Qx3FBbRq82noE1WmjrTPOM/FECo29FDal0R6pC/Gg0anYcOrkZBvKo9Dp45TecgQNKguoZ1lI8GvRxAuLt2E8kVCfEM4kccnraXQAD9e+UkHN5oV8VV3UxpYogyT9WbA1oEanHD2NjXN/wh7/Gt44usYTtwkBbYHt6CgwnwqeCIBry844GWrN1B8uJTnfbxJs6ae5VyDary1v4Iltw5DrVQ3efQLQFbMdFQtjwUJDwIJk834sSGNhzdoQXfWbCgpz6RjfRvwzioVmCZSw/X//rLIkYNoF5XADx5+BpEEa0jokoPJvQHcltzGUxK0Qd2hm5pcQuGbrTYsHbJEVw9hqhCYCLvv6vIiFz28Pm8fqJtNAeOJcRwW+ZYkYxNw+uZI2uUxmbanvMKXR+8hKvVhzORr6CFjBpsLduEaBX0u0ppNQbtOQ96SVfzn2jQeFeBJuwx7IKVBEpJ6VcHz3HtWM2vlKWtecvUJCTiSPw6H3j3DBZ2zOOjEZG61VOZuD30YEN0Epj9Fea36H9x/dAxur2qHoZxguLvWFy6Yi8GL/SdhRoksbHPMxgcSUqx4wByy+lJQxn0DbvdW4Ai3ETDhejG8uGkH7lf0oKrLjMpjjlGb/mVYNSYOZgc/4flzNOEI+0L6MT1MfQU4vFIJlD/X0/t9ObDztwyuHpkKMtsK6KymHu+bbAHLZP6AsxegwcD/jf+FugoNLi6WomkoCMb639FP7Aaah4oQLXCCo7XP0Xp4OZXsVIG2g8n8dWoBjU2NA898VT7a1Qe3f0zmqU4GqJNoy3I7BKH1jTq8abyAu4Y94MVOcfLJN8LuDUasGTQIjy4mgmGjPXpuSYMt6ybDYy8H3vg0HE4ZLebjipUUX2ZDzeaJKOqbRX0BcZgwYAaDXw3gabI8Cs0wYJ2PtjAc9wBGwSNc/245JNt5wMZN6/jeNG94lDMW2k634vtOEdS6WI0n8oOo/cxYCKi24MK3iMmPvlNcvypPC1WDwMCbSFXC3KpyF2r1fKHuxg0o276LHC9/ZL2EYV4dEEMzewzBxMgC9dZ9w57Vp2HXjxvgujCNZp3Xg3Cb9Sy2+gPNDniEfvVGoHT5OAQlruFL9xdh6jcnzFhQSMMjWrlt/Qd8M/ocvE7KgN8fAVwCD8D8XhXov6lPan1Z/MrhLrSXrocMIzeek+xB50+Fg+qECeDzL5juabhQ+lMnHPXICbxm34Xv9QnsJLyMJmXn8cEQA8psNAV+D1Speoht6mPR4NUqaK8bwbsWMu1+58LmV7JxyeAY7po0GaaVx4L2ZmceEXYQHnd8IJuPKjQ+TZxj9a/whjpgt9QY0BhQgW79v3S5wgEE9v/jsn8hrNzeSkNfX2DPnJV8e3U3npo7kytNzODRrAe0WmY2dSX/Jm2xn+i1agLW6I9AV8Xz9ER/BWSlhEG3uzFIHUPStJ6LQ2sX8Qy3O/AjbC6GF1SSGc5il1BZNB3rhy/0dGHZrxB4WaGNw88ucoN+C10wW0qFmr3UsW0Eu94Zpl9+CqC0Vw/ubxXmkSbFaK48E1wWpPE/XQWA/noI0jzFfsP+OHyqAjUyJEDgL2PMn2w+6uyAi/d1gvQtFc6tU8YL2weh5XERdcb+xqpzgvDs/D9cGnqYjm0ew8nXF5FzxC7Uq+7n+EVzSfGzBzq7xIC6LMOWdQZ4RWsRusgugEslCbDeciR/+z3ALTcOYPPLDaQcH0+Z2oKQbrEP1VJug5W1CdddusnZD8/xzDwfqF1SAaUzRPH0b2XwN9QCnxW70OKFBjw4vRs3acTh9dIU4C8VLPL1LcYsvgLHQu3p40UNWBU4k69t/IQXgiTYXSeH1Jaeo71ZIyh+bhf6Z24lh+yx5GChBuL24/HsU1fOd5nF3/TqufhFOe2Ca/ByVwp80z/OaxwLcNyAPkzNvk55o9KpSnUM5X6RhucBK1BsZh+JNPrDGOnd3PtJhPId9KEoZz/uGn0LezdO5wOPsyBgSjO/rPkO5bHf0WVXDwa+nYWW4xTBKlqG/nNTAs+IJ5B8JhBaR/ryvperOSUiAWcOPmK9diU2+WIAeyqWssGSQ/hM4REtcqmnVm0Pqm15wkstxsKT78gPBqpQWVUCfp5aS5nSs1HrrwQI6XRQwss0elhhQNN07qPRVzVsX1SM8UfHwiQ6wE2R9ti3/CDXDTXygTpNyCtcS3OfX0Pnd640d4MzZN8wghuJPui8yJ/mHbbn5a1aaDvpJaU+0YY1Pfp8SqmCro0zg/tSE2DvYApENixAy0hNOCSbi0LzvanAMIQPiObQvk8qrPSxDRbaI+wT/MnHFZ+BWo4/77Nww922Q3wqrR82vRAGi/EZuODcZzIJl4WFiTto/q9eDt22isd36sCguyznX59NoaMkWC9vAQs4+lDZWUXwa/AikcNqvH1Yj465h2LI+4msf9IZzhoylsWe4NiHE7Dx7gjI82lDkyOGqKZ8jM+PTcP9c1NJ88NdcGwbhp6YB7BaSxoHGxHWTgnAgKMFdMHEg68q1+LDzGZ4NTSfshoiab/7CGx/1s/nhwgiKlazwgYRMvwhwTcDTeGxrgc+UZlFI31/UnZwHNbtXsSXpgK0esTRmOkzYP1KJbx8Zj6onCiiD2t3UECzAb26rQ5qmXPwfI0oHAk5DHnGryDlpzuuHNME220a2Xm2He7bUAYth7aR4N1oUFebDJ9XqNEaKwFa3zeMW7aPxn7DJyD0vo6c60JxXtB/tHo807YIbRiet5zihBVoZ+Fv6i0ayV8W7iSvjjMcKWuLgeqWpP6gDpuuaEH2uFc8Oug3/J1UiPXTxPG3nzfrq/WiuZ0hym+upNHrV+ATRR2wNp/HQkuM2WHST7S0uIHF0VnQ6d+JwoekybPmBhxQKaenlyaDaqUNrtEoozHXG/iqZwfax1iySqs5as8mXHltH1/3FmXnt9Oga7wMzGnXBL3eRtSx8CAri1oKfmCJc4cP8l/3Qf6mdoCc8kXg+lx/vCSpj0utdcF/sgL2qauTRcYijp24BZyjlvDo0fJc+9IYSioOE+powDuN6Wi0PRWLyt/RkQZBmFg/lvt2nONT9Bjd/wpDn0shxbm1836Nh7TOwRlrpjwnGa9ZdMBhDBeWS8KIzYr06pMhTC2aTwJhHnBUrhwlA5qouUkV122eRicORdDvwh6u2hfPsctGwZIv++DEtR4y2bkLA/TzaG6JOirc3k/jn0XRrNvr4VLfDbo5XgimrikE7c7dOC3eGWVvL8fqq1a8Zv9n2h54g2s3ycLepmP8QXMqJAZOJcdQB1YVk6f6oSAmtSBOPyLMLl02cKj7E17+foXjVHQhYa8/7Xhii3PPGcOHAXOOEm6E2usHMPnaMR5bFMaLt35mFS0tKJpgwg8THkKOex6KrHAGqQN7yOy2MoyvKYWaBGlQT+qk0OXycPm0K0wc54G7juSit1AGfzz5DxrXLoIH92shIFAPtt1+g7tyER6LLcPxsrHcuL8eTzYlkJvLThpwSCSB1GO8wloS9UCf74wShT2B7nj9vQ6qZUTj2gNlIDK+lmxcakBr6i7YTnmkIRtC/gZy0Jm3isHiNTq1RvNVJBx1PA4OjXYkr8m6dEZ7Pzp+CcGaPnlYlpYB779tpZhOA3g6dxFmKO/gye8TKX6lB8r9mk/L91njqvoxcERjOZUsvU+yKeawaWIlG8eHY/Cf32jZMJuKfgWhVMlO1C0aAcd2vaLgRVPZRXeIxs9Zx6UC3/Dx+mv8y1mIrofIwrLeXJ5uoAvxXto4nGQGmmGaePTSG+xQF+Xke4+w3T4DrkwMAjPdq3To71jYnBTLBSVnycwvDt9Gy7KGVxwWTTKm/qX19DpWmtbfF+bMz2rguFCPXHZog65ENgluu4NHOrdT8tordGZXND21HUbZ9QbYWzkFKgplSLFAlQ2zIvHDrz9cabEVNp6ugWllLbxpnwh8tw8C1TyAO0tus8qxD5zf9hnLTeK4Qu0q7G37RRPv5uAe6dXwUqkB7oSKgt+TJRxyoQRLhb1wqFKC7vn9Ibe0DWxispg6pdWwacVIDnTTh8lTLfBx7z8qc3jKqjfno8iCJg5N2MtKxsnkOriBna+N5GONEuCldBI70RBCj32GWyO/4LPVP3lM00c4fDQdviQb01f9rRi7XwUqik/iUFI1+zz4jRFKS7gw9xv/OjOFVJU6QEoO6fWLaPivYQqoZkaCtWc1Ba+5wn3fV5Lkoig82+7F/5VJ8w4JF96o8ARFDk0FRZe9FGvszZtWT0TxDdqs2PgLRLp30iyzqfDguhBMnbKAP4Zbwy+dJFrXvgndiurgarMj+EbtwPmpAKn5dTip+RErqV3k6CvWcCHsCDeJKXPaDm/0P/cShl47gazjUzjdb0NOk5TBWFYdkssswDChje4Hn4Vpu57j+6g+tqkLxW1V9+lvmQHZvJwEfUL30GUzwX39u5x37hqNOPKQmw5tAN2hkfjc/j7rvY6Atyeq2U3+J1aqGcDWg3K0Xno7axieoOzzIhD3Ipim2nhAuf5x/LhCCmWmKaDPKFX4ves9zxSYx8est1GLoSlff5jJ9+IfYfCCHOqNngEbxSdyk5EAjM45ygX3l7KMdwnruC5htVnmKN9WD1IjgzBO4j8uu3iKFCeKgMzGPmww/Ed2oVY0MfY7ZWjEsvHAaza8PJ0uqGhgvwDwzaIxkOU+SN/sNlGSrBObXzvAcZ62PK1Pje/Z3SRJPI6O+xxAd6w0HDq0BLIyQ+h8viEfHGWEN3SSUC3yCkgWLKTWwXwI+OABJje0wBEiKfjPS85zdCbFkj8A1xOxPa4AB3f1Y/s8A1yR2IE1N83gocdmqA1fi7MVm+ga+WGpbx1Jeh7AqNXpeKCwCOsuimKelgUkRKvwNg9zdD0oTr56erhynS91+Gwg+8TDnGc/Gbwt1nLT9tGw5Lo7y3a3kXJKFl879BqzEzKo5kojT2pz4OaFxSg1MZtqNk8HL5dbVDjrLgeVvYea2XZke0KPJii54hWJMDz8yR2V6y9R6wtduGr1Aksyt4DjC8LOv/e4YOAjzAxMgaG+j5CMJeBpu4icFo6G8pPPUeKaMJR3zGb7lGow7MnA9buJK5P86b1OFgXVm4OdgSUIm89EnwWyoHa6DbsrbuPR1G1QtbAXVq2xQekx4ujfMRpzNcdB9mA/VB0Vp03iV9D9njQbKDdS+Dw1RndBNHwziKf+yfDWHhU42/6Ar2cLsnJKOry8xSDbswaif1fBhlOLaL/0Er7j28TGOeLQ9n0+dnnOYdEJ1qCdNkC/m7J4hcwLOP5SF12ldXm1zmTaJaAGNr/6wUpdleQdxfDYoYukKWVLSzptOeZ6B/8M3sZT9sjzljB56AgIpEt6tTzb4RmWdn0gz8WRvPX9T3y4TBOvxruBz4RnNCZFH9bvv0ALxX5CxdFADgwNp96o9dCb30gDt7dTU10zL0i/wndiJ0FOqhO/tRpAmXpLWJFdzksMTKB7lyf4KgST0Phi9HYf5mMycmC62xOi8jV54gQPvlolgLUD4vh8ehlHvvMj/z4/8B1ViA65shBy5xiO7TIgl89x/Pn7Nnocvon2tH/kqpDL4LtmEm12loXit7JgLrEQ7meNp+DRylRodgt+yC2DPduPU5FsD3rnbMB1DwSZg4wgykoPFq7wYJWQGziw5AAc/yhBPZ+/osi2eHj4LoQydwZwtoMSqPc2k51OBOjoTQPzB0+wdHQ8TBr9nYxOjudY25+4xLqEO7ZZQKuqMnb4h/Ce/Cl0flkJxwkaQcGAKd7NFKe60MM04dpc6rynA9k5Kym4YAh1ztnR2fcdvDb3FryJWA+ub3UpRnskLC4L4c7LFrBn8hl+frcNJrsnU5lmJZvm7II/mmH0+t4KdrnYTmdjZWGOrxkEjHrLU8WOclbeNCq5NIXXaWVS3TV3lpnvxK3u++FS9DSYIyoOwYcS6ahcLe0rzoaCnnbStbIk1bwHmFjfiqcajPBOXR62VJmCcu5/bHU8mC4IjaanX8ywyu8vXJo/luiyOGzqeogzpjpz4m152NJxjUsGJcgqpp77H/XClo1TaKrZBnr0YwV/m/4bXslehXVCMuAS+YbeCfyD518nwLmktVx+Moe+hY/jtNN/6evOBbByaBk2LlSDedOb2a3/DX3yncT2UvfQ4s47Whl+GCuL9nLIFFMKdJ2JtmaScHL5RDy7qpo2XYyiI8kx+OPNSt66xYombphLgfscUUH1ItvFE3yfcpo+Kx4F3cVDcF2jGKOLA3hI4wjZOSnAb5eXtHn9WVjrrQLXysu5T72Jd4lK0YjdCpgv042P5OtRR70NZcapMt6bz0q7FMEv/A5tz1zClTJVIL0ynDfVzaXyn+/xvW4YHHFezQUpq2nolDC8bxDjhs0LsTokBQtsgmh39TsK682Fyeu3gt7DGnjT/YXebZkO6aXLUbelgczrq/lx3GY81uZBpvIn4NlDVzw+/xuOKK4BTQkxGK1/n+rqpVDM7S7ljdAE2+8J3LB5MZyKkgTT5Gm05dd8GrlRGGqepZPGpl+keLiIpNQewrwRIzhSyAAkT2xC6BjEyrc3wNKF4UGqDIjHbWa/jzpsvKqd1p5WxdvFmvR2YR64r/Ui0egI+GYrACPTt5KtRxmPTxfnW2b5tEDkHs2cHM/jHxexzbgobP5BMDdyOkxxEsOZYoNUqH4dk+3P0vgT23DF9LlkU6sNCYs+oe2V/XxHyAjSZLr47OwQbk7TYDlrAVBL3ostbz9Tu1kkrDuZyB/1Ovllgg7UtRzj9v5TNEKinzeZ7ce9N+aAyX/mMNvSmI4JIA61p/EbTTWofFbPEWKPedMPAXyyIghmWzajj08gdlM0Lvi3FS8/y8HdJqIQqDMCb1dMRw2qBlHDF/hd5hL/xR+0MfUwyh9fC7P0h9ktURhCLDv5h2wQp39AeivymJRSgqjw7Rje9VEBSixl8ML8xSSghdAU/BNagh/iUPNdXpYozQv/vsbmrOOMOt5g71IEs0oUqCFNHEYpZ0JHuCTc7Iqm6nmCVGB2nqZG7gYnAReU19bAqGxBorARcE72L8f1X4KWbSlYEiqM8bM28g14z6X3vmHD2PHopPOIlZ8pwmPPnbRTvRF8D7uBmF0Ip/vUgOZaOa41/AU01pz9/8ehfXADwagBAH5HyF4hysgWkpmIRMoILUQaStmlNL9oKJUVoaFUZiKlJSVUFGkoJaGiNJUWCkndc+7/eNz/4uX1ArDQehOOk82kpw4VKDZcj0uWyJOdgiU9/28Brck4BvFGN7H6qiX83KmHj7My+VyWF2ifC+EFRxIhTn8LY+ZY3PZoJVZf9sdybSVQDdGDIEMbTBmywOcaK/ljAECd9Xn4muFISXX9UGoTwJvVtaDbOB/pgAJMfTKVTnek446Dt8BpVwPZW16DFoVF/M15JhtMEoSJktNgfHYeDVUlsET2ND48T5vEq57wvlV2qCPtxJpLB2DlM2sQ+iTGZzTKYfudAtw09xoE/g2CC0bbaJvWPE7vGqTra+3pQ6IlBFd1k7J7DCSbJkKKeg96vlwO8rl/0LvEHs9ut0IRy6l8JHISBKsbss2eXLqq/gf3Gr3G4PylaJX9GVtCbKD7egapv+ihyTdNYNquNrBxqIZlSn/AuDsI0f88pnzKgXWlrfj54k9ep6YK/m7WMKKhhBTu/saxTW6UHnEYw14rQe2HYlzz+iQpdH6DwJvCEC88EnLkJsDWg884TSoEs+pXoulUUyIjcRT9nIilIZ6YMuIQay21AJeDIyHLxZBk42NQykITDSx9YWRpP4XMDQafolAYWrITdk0fD4pSjtA3tA26ffZwh+dVNF8jj+f9dqDZyVcYX+oCUn9T2OqKKijWeeCFd5+p4Od28qp/BdYuBvgqN49aZe9wg3cLgmAd54qOAW5vgITVKtB8ZYB3fPdCxbPm4D9OlecIl3GA+2H2rMqlLXFqkHFMDc80haL7uib4rmENCgfl6dpNcQ4dk0H6+eUor32KS0KFwYjX0LrqdigdGUPi9oFU+iyKCjuLeLFoLJ1LDqD5Gu85UXcSOO6ZCsFf/PCiz0/aO+UJbBHdy7VmU3Blwz+4Ofo+tLjcoNtSchCytR5/1q6hl2P0cN6OhTxOyAZKJ5lgdK4+65geReOJ1+Ce00hIvTcf5uXeALExv1jtwQ8aNdhGln+LeVVtMOqrRfDRq9EkO1MedirMIDWJJi6O3wc57tcoL1EAaWcrb+kZpiPy4py2Ux6Wf9QDjfGusO7+B249ZMsLjaZBr+830t1ZA4M/tsBlCUv0lTGmGeumwN/Vc0EwOxZ3ChuAkooxNTtp0xuzv3RGbzNjTycnNZpg0A8ElcczodbMkaKcL2CMqR6+vFRNqrNcYILtfVJYlUNSXVk4eFoPNBY7opZYH11vnIcLJZuh2s0S20OvkkJIEX0eXUjqJZ145Zsl/FdzlpR2L6eW4Wp0npBIjgFb0O/XNZ50UQgO6oiAeJIxJqoQbHK/xs52J7izrYRue30FN5nfJLRdmcSOF5GH1mLY+C0KBt6Jgf+yTfj+VRsvOHyR/117QdZptbCwLxDfFTrjznl20G2cgtstzGDfoVqUUsxktZHt3HYnicbd30lfAy9D3uUCuG2Wyn4PtfFY3BjwjVMgq/kVWPDiF2sX6ZB14X4UQ3dsqupmc/3jPOPzfnaV0YOEy1Mo/P4JMD/fBbMnx4Nk0A8gizZ6/XQGHJgignNyEuBF3lToPRLMB54vhssfLWlIcw4m9u6kazv28l9/Jxxebs6Wg2q4ZPEYeCwFcPljPMy45I8vRLex0fmllGHrDT1pubDveCe5ebqzaf4UKFj7Eze6jYZ+Kwc8buxBOWbp5H50kLx7JSG+upUnZK3Fkwu04N+fq/zIt4OCpy/khO5JcFW0mTuW/oIjzeE49YIPt/m8QV+XUXAkXRI2T6jDLw5b+cSRBzxBfhEcyV8OM17qgr2OJJQtO8CNlSNhWcVZaPvUBdGvY+FJoyVvs3/O7V/XwvTGHdj/Yz1mq+uz42RFKPY/DxjQAqPVBehm8Rl6o2rO71sMUUsng5aKXwCfNUJ0eqYVWGd/x5ysAH6hW85e3xx4IGQcz9gaDtLvc9gi6w/JXliLF7YbQVHCKFqc3Ex5nq7olPKAWvSL+ZvbdX5YLMRrQgf4hx/jjC0ToVfqPC47+o5szq0BpcPzMaLIAUKSb9HSencY9kjGvGvhsMbTGrx8TsC+XaeYo9/zLPOHWKIozXNilsMRq2OgE3oYpvRKg9xOJTC3OYyeW57Ds31raceFGLDp+4XXJF9A/ItZ8P2uNiwyloWXapoQEzAD0u0zsfJmBJQa9PP+2NNQcucA3n5/iatMnsFRIhT6MQGC133mej8xCjmeCuUx7ryws5iXatVwltg7nN4+iT+FfAUYqQEurdG8/PIf7hxzHdo6ReC20R3WTdcg/8lDoBe1HgMTdsOBnyPAJn8RZz2ppsXy5+nLMxucN6zDF2XaSPfdOC78sRRrlGPI6Oo4ELbfy6ZJTrS34gbL3nEAwQ+ueCYwBr3n7sFNVtPQJ/4jKeSbgKmjBUn2R6HbExdoac7Dv2+boDTACy7pfuCn2jYct/IGfR4WhFCFGIw5U4FlI7bicrkU/NgvhkWjx0NwTDI5Ob1mu+8JeL5SFs6NVMRxtxdymE4JPa+bTsdmj+eysmc08rcDazsdgaKA05ShqgumtsmQsOgUvj7VD+/VBlFwtDooJDjiuuyxEJ1Zz2UfKvGZgxxsM5tECzvKsSBGBCsz5+PEFz60Js2IQ12bKSSoDVvnf0S7OBHIC1TA3L236N5hXfzxS5wPmCSy+OIwvvggH5oX18CEk4KgnjASmh+OhF9TLHmcRjENkhosNYvm03WP+X3ED8zo0sTCuzH88qMORCw7jRpPH0DW8w5467KO/fE7X9BNoZGPNtANHVEw2H6Y1BVloGlZMKZ4teDlDydJK3A7eR2/ATN3+vGmLmfQ+R7IYwzc4IDLZOiu18TVJhqw6eYPVlTOpEKvCMYQfQ7eLMgnfn2lJzeVcPIyAXj9I5/EhXU4plQb3hvkcEXKRFSX300tux6Th/wyfD/gDg8dpeBpzC28+k0f3m4bDT1jQrF643mqGZtIBSrrcUX5Spri/IVtTo4A4c+L+XPzAIPlHWwb3Qd+VERif8bhmvYUiDv6iNv+mwsLDFXg+95HEDHvAAg5WvF4+W3Y+cofVOc/QMMoLzS8vIu8Hubwm/AJUDV4heUK3EjZt5OnHA9CUxUxvvR7Fww7f2Ej5Xx+/6GaJu2fAkcVa1hs5w489nEz37J+Rr8rLTnh8BC7lO+GPU/+Qw1zhC0LzSA26CXWjrrK+6994M3jg5Cbylm9yRoeTqnAuCulXGY4FeSkhUGk/zPe2oysnvMUbo1cT9eSy8D84iu0KV/J4pZKVLdWEPOUrMDb7QaFn5fC25NF4LdsAedfCUDhgmXU/n4QTcymQ+PrP9hcYQgaqUaY3b0ejne1Yurc3XDotgTlbYunDv82btjURHmwnbIeacAuOg/eckZY0dcGL71tQHt2IWr058KVVf8wvWou37GdzDIlI2Dkg1qcidVk9y0Hw2M2UuAWORDsEyOL+n0IXXG0InsT0AITEJ6kznvk3Pnn93DIrYnHvYvvcr/2et5V2QeOh4cwXeMQXXIZCwHvTPGrYRxUfb6Fk5N9wcbVFqRd3VB75BdSX/2Jqp+8xi8WBG2eCmjf8RSHcCXK6FVA8eELbDfVnSO1JsGn0pN8qKabfJ3koKVegFr691DeiHc4adsKnKz2hO6FrgWtT2bcM7cbF+Mp8JuvAVnjndF1oiNfNVGDO6s+YvT0majzuBlrwhqwXMaQJWUfwYbLwuCcCLBwlgWLq9qDTkM3DwXqI565QErnxrJBxzAJPRtDapIW8PnbIc6ZnYczs9rhpnI9yl2zIItLCzFL6hpNeB8IDwzz8FqNOhR8yKNN6/+jTtO5ZH2yEg8vysLotCMocyISdFx8+c/Ut1CQLwvdM2N5+EAOjvx6kw12XAI990fk09GK8YZTycA4kN/3InKaKqzZGYVO7/9DSL5Mp36/I9/6Cdw1wgFq9yZBctth+DRrO8y/rQaB17ew3f4ZWLLdG+5FnsBP2ULg6OUKfXudoOW+B+u2PqHNaiqQ76HOF71jaXVaOMupG9BJr0GeNNaKZ42bA0/SrOn2927OvyAFiqkOfGL9Y7wtPw1ivJgux8/Ca3LnONKDWSksAc/KLgdj27HwYrANokRP4LHE6WS0PpTyd95CM1NtfhZ7keOmPOd1KwzoiqMR6J62A+0f4yBf6yj1h6Vhe/IPyv4xn0YU2NCz+8EgYrEQFQeVobjDhC0ChxBnSFHwnr+sNvs+291rAM/nxcCWGlQx6TTNmKwGV5YIkoBCE3asE6QQJ20Ij3gEQ+NSaGJWKmk37Md9HdXEx2xhasYeChqpjYHCcvTncDjZzd3HO49I45T0UzzW/S+a1gTjiP1S8HJPGcoVG9H8waMckqcCjSJeqPb7Oe5qK0WZ3bbo1OeLYy6Ig928FLZVcIAiXAYFZ9ejz2ApO4rm8MmBIgjKd8LBW+toxmhp6Gj/CetuP2XF4DrcfqWKf+asIqEbZvRqMJxXPnoLqROIWzJN4OPRQBTx7mGFwmzyWh2LzUkML8Sy8FfeLBz7256qT2+DwLljoebPVeqUuoinA8rpilMxTHI5wJVFYZynV4bTVunBiJp2UPKyAp8tF+nuzT2YdzmBNuw7w8NL7+DnxT8gePkAv0kdhcrPppHjbUmgvNPcuOY2u0yvhTWhAXg1cjUWHEBYti0bay5VYoRWL0X8mgpZATP46b2ZVKnuwZrRpzH2sB2qaOjxp4G73PBpHMyOWkeLSAO8JCaA/Nzp5F06SE16F7i2bJDEVDVg2+R6GBt9nfxCf8OjCiMYKMiDOcFW8N+lk/z44jO28p7HYhenw7iwLzz8pZSeJC6EC391QLdmGrxTa8RlG7fgseZwFr77mY51Loa1mQr8oHId/1t+Co0bDEFry3lMvWECejeS8OS2lei734YPXvpIW2Q2oXtUKaWP+4f6HbLge2YCzI3fTYvdLHDR5zCUL9TCEb27qF9+DpT1F+CczgPsfMcaNHZ8AW3LTtj/wYfszK6AgJUZTr5zgAr/2cCrX4XcvPsXvexQhstZ2yheP5MPnrlGbeBOh1I7+FlkD3m7VoKemAsvcBDARxsnQs3dB7Qm8zhHOyzlSyWKPH+lENrGduKbcuK07v1cYmbPhjd1Yc9/18HuPwHY+3IEFLtV0H2RGoyXIzp4Yhq/jVejzcG59HemMrzu2kQ/P5zC6kOaIHlpB/htDORFWxFG4GgeavwL/X82cNMCZfCd9ginLWxnaScZnjt/Ni/yyoe3tabo+bcFnsz9SlnPe3jKWimo+HQKV4pPwxU5hnAxVoy09vdz1coXqHS6G/IF9/OLw0G4H4VhysAFbk1QRfXJu/DLllT8smga2VUdwvfvL6C55h5e97OQCmYpg7+3FN1fI4AZuzMw69M4Ti3rJxvtarry4xU2dD2klp4tqD15LBQmNJN6izwVfvSh8DFDfKrfD84NGLC6fCdedCzFt4f6aXiMCYQNu1KURzHlCzSAg4YQum84jn8nJVNT9mUuT9NkRdMBTGoeBUtH18PMy33c6SoCdyti4O+jvSA78jcvLHPiO7OPcK7JAopdSDA3fwDe9dfS44ZsKtNVpvMPW2jyu0zYN06B7T9ch9SLY+loowBIlpqyzsck1v4UxwNvZnJTzS+4l5lOE7+eouXTZ6J2uhFuDVWFBIcklHlVhGv93KF373w++mErts1/hIe7v7LtXTF20HsOWx0soGHJYraJDsLYjbvor2UbhseNB89nlXDz9WZ6qG+Ert7hGFJnACf8yuB+xGwYrsnA5lotPrLYn9wyLdjux0d2Cu3HX5rZ/P2HDdT+q4Wp0wtYzKQH2zprcVVxL+uqPYL/Oqpp+o4tILbsKRvXK4DGTRG6GrEZ7XQaOUspmQ40u3NHSQZmrq+BOginf/sv8IJ2GTjnvoMd5O3Q3PAwiaTJkiYZoNTyWpxRfgec3E34ROk7gpdCsFPpMUUNttKUH7c5wMQB14h6UuVEd77+bAKu+Myo2rSA/ZYYgMq60bC7MI8fhafztpVB6FmYgaH/zYAsqd30z3gV+K5NJ9N3tiCr0sUTrQDxpgz47hxNC5S2ku3sc3hM3AUl9pSynR/RkR3G4OngBzUzKzl4qhScffiIk2Vf464999gse+n/LbNwSTuphFjA3DXHqE5VEI7tHoOhDiEodm0xZ7bZ8vIPafDK8jgHXF5DUlctQLO4Ai4qTKLYrmi8rhqFtzZ8gQ/acfDY8hE9PRgElvFVmPrSGNJFvejhjBN8UdMDzmx5CfxFCQvUj7FMYj6M7/UBo4FZ9D1cBm6E6rLYpwG4r/2DOrXWs9pgHv6eHoENDWeh+1YhpuwYxlutCH1j/+BpNWVMa/EE0XfJtNNCHOOUkZ/NXwMRZa08IdGRVOV1wXf3LEg9+4hqr7nQgsFJcODKbSpyccHA7rWov6QIx3meAoOLauBHa1Gh8SeO3v4NVsdZ0eo917Dp4gWavl0MIoeO45VMc44LFYeMzKWgIJVHNlX64Nn9ETqDwzCl8hreOtgDGfpBoN6qiuvcbGH+ltXU73AairWPwKvgaIx0joPb3iqQey8GbkTFsXFqJx0JVIKjbzJAPOcntK1bTns/t0O7wBJ6db+CxT9aY6bSW6h5cA9EhARBICCWBlVMUTlqIYfOTiV78sHfgjfhtq0gxU9R4MpVH/j0TG0Q2foTcyfMwBohPaopFIb+KU08+8cVcGo/yWHjMyh382rM/qwAh1p/YPp2OzhovQ2ri4r5rWchHVt3Fq8YnuPp+4I4R2wUCAXJg2h1Im94c46nmqfjdQ8j+nBdGEcv08Xkb3EYkagA9i9fwV0pG+iOrIDtQ8b4cXwk7H30jx6pf8AEnfVUJbiXihe6kr3/U94/RwQUZaU5U2ctHXvhSWR3C+pPeHNZ6zvemf+QnLIjSHmcH7+YZwQD5h+hbqIpBD214ZVruuFKRgfdl1zEc3LdWFZggOYNWvK9rHFQtOYnxPaYYt7dToDn70Ha4B0r5fuDfKEgxV27CIrNW/HqWxXIX97BGSGv4KdmEbrsb0HLM6P4ncs/Tr4hgOF3GujRvx/QWiMOqdHDcO+BBS7X0KN1G+LpQMR7SsydAzUy87F5RSyFWn2h3Em6kKnVB1HFxvi45xLMNvnDV3+0soqdAkytvE6TLBUpb2YGzJ0jCZZJu/HAvY90u2UYJ1lvZNXqPPh58wTLeTuz7wFRvBnQxfGVcrDUOR41DOt5id032l8XTmuuaVNQxlL47pUH9XW5YPryGUv9GQECLmWUcrwAt40JhLB3o/mSZhLE7vuJu893cOj2Ev7P3BYGb8vBiYg+PnrTn70Vs2F74G24fUwVf3lfIIGjFZS3xoH7z7/B4ZGi8HfOGuKJdfQ4eRvbHROCqPXrcGFMNW2Rfspr2vfgf77TIOikFXxbaYzHXqmD8h4zFgy1p5fWRrxsSIGkpAtobvxL2ObfiyuOiYLwz+/4q9aaaU4mCM9ZSCpbVHjsEQGun9aJ66waaE78S2gbowYSNc/Y9cdcLhTLoYbDd2jvvC28TmMRmuN/4Kb1kbK+jcDepSMgy/cEZdwKAtnzV/Gc5XtaNica/noyxQ9mo8ia/eiiVgTJm/RBzVwEnHMrqNjxO0f/V06vlYx5W6Mfl7QrYupxXax3eQfTf4hBldd3+DzLEtbv84WX/87QDPdFuH8gB0rWemNzoC7MffeR7p9WAaU/XhSRLEIjp8uBltAJzvyWCgrv7zHFf+Yfe4N55qV1VJhDYBQYgGFTtmD7xWQQzj9D4vHKaFVpBWPvbed3zYp0XEqSksYz+Lku4bNq3ZDhVwyDY5ooslwX7izowy/7tnD8u6Oo9Uudt24FaNB15k0Vg+gz5yIkNXux+C5P9Dcu5JG0m848bAeFhcvx7bKJ8Prfe9id3EmGtTJUWGBFZSlu6No4B0XTw2CexgswM1OgDnd50MlYgGO126lK9j2pvqkiV91mVJLuxM1v1DFxwIZ/fQni+f8kYcNwCi1q0eIJx85w1iwbjDw1EoXWGtIseVXc9+kva7XX8opgTRA8Jc8BHSvx1HJF6MvI5cNOidzyeC8fCdqBRxPl6PJdLQ4WVIMHy5zpWugZKG/J48ork/CGkTVOv2cF3knPqPDcA/771IATjcwhzeI6vjf3B+vXrXgO4yH3rCSuXHMflETEOWnlWQ7tFuf7ihpgXRaGPvabYPLYAjST8sGXcxZj2owVnBk3AVMs9bjF4QI0SY6D3MlA40JH8Y+wdBz0m4obQlPwpP1YfPLrCMxwBj7o/Zc+F08CUQ8TzPbzIw/NVXxMbwmFySyEUKs1vCouF+bv8CHf3B5+bq4MK5zX81K/HziUfZC2xOwnCWVLrCjoxn1udync/Re8nisLZ3aKQ9e4fq7qlMdIEYAtmkFc2nUbcrsy8dLycFSa2cOxAnvZv3AKlIttxe/FAlQjswN/jXMASeUeNF59Acv7/bho0WkwmfYEc1IARDYq8izxeThF4R+mJc0GMf0bMLV/PtTIR5FmdiP5Ou/iGH8pWM9CcDPLjDOWlqPgFRuQVBAljyftFLJWjcdaycI5IwlqPCUJYpEa0O06xIIjXuDVhy/grcoVSvy3nCMWTCD59dIkMaGdMp5pwm/NDeBx7w0KWBmhc1AQV1jnYvkbe3ii4Y0FL/Xp66VP9OysFOR3FdAhxc80Ll2afO9dIZ2BmWicUADpPZshuPw+dX6SheKN4tCY0ErKcz+jd9drGrXzOfbv+4RHxv+ma+7PKGddB70sTQPLXlGwaj8KMb7dLBM6A/5pytGS7GWkv9GQi2xcsWZMKmikLoJXPgZw86QBKQi30NPVdbBk71gYva+CZ3v08Y1ZYRR0dgE5FDVhNmmDW0oa35olT7YZknT33S0oeJ6G5vdv8YlcTbQdncAOadUYL20ObRYiZGrnDXWrjkBbbx+tDcyFpwO/QGF7LxlLXGVtz6PYcFYBklwJEq7u5Utx9/h6sQmqSy9noaUPcMqTZbTwaSxIVMSQfrgw+LzupWgnbRJQ8cY9o0JYfUM7Ven2kar3VhiZV8KRikagrSwGUAHkuT6JA57awQGxMRjR+whlW/rJv+UGVOzNpolz7lN3nSpYKZxkDZsc1n3/iitLj2HizATQnXmUDrY9o9CO5VS55xy7ONvAbLFcnvk2AFu6LWCa8ld4FXgLoi5qkveiKliZs4Z3hWlgZJMaCPn38q70Z/y9aAUftr/NPRd+0+P0WeRb/RdM5+RD7pPL9POwNQiqLiXlJfepqdadx/S2gcQOBbp0qYNCCh35p/ViPvD8NF1IHwsvnK/jFf9T/F+IBgtYjKVphXtwzu4JLKXmxJ9W2fAOtz4QWGYNbf2TuTQxmoaip7JRQR3c7tHlhwV3ceb2czjwuI6+ibwDxUAluBWyB4Ns94PNpOnsZLsL1HLPoprkc9R4roKWz21pxGp7vNOjDMeOfIFT2YIkJCyEkzeuY/Hy8yTRuYG2SfhA2fESNvhYSbn3zaBmRji1NkVh2o47+GpgLYcptGOF5T8SvjWKW86tAZl9GyFzUBVyfdqR6t7jik16sHQoB+fKzOfxkoM4o7GAH0x/AVqfU7DCxhAiE+eyy8zfeDrRgb/Md+DeZmP+XtUA57+sha3a92HbyRUwc7UCFLbpsvCYXCiXXgopRhYcK/ASPvdp0eNrJmhj0U6r3ySDzxVRWFxiBoHzbCF6kykH/FAhtyl3eGdtAdp56fHllwW4T0WQ5HN0QKG4H53ygaxcpPllSAPo93nRU6kr2FFyFUtdv5Gf7nP4KKMBeadkQNbtNl7c4UMGvlYcvEATdOSK4PvcWHrln4n+Zg2Qn6MJf0f7UckePfpnFQh+myp5nOxX9rfzhLq91Zzm2A9nSp9j/IgRkLg3AQu2FFKOWigcUpxFifGtNOWbAGB6Kutd3Qrtb3PR/NRYaM78ig+1N/AXlwlc/P0NHTSxBC0ZfYw40g4Sfz7DJRE3ii+wgOtHDuP1q9JkNC0cY659gwCwpw0qlRx78TzrRExBN8c4Wr1GFYSDq8D4UyovnPeEv00rxKUbBzF7kzVf76rHs5UdMH7ld5jTOgn+dHWB1okW9H9pgrt89CnbZzt+VzzEOVsfwIv+MHQfasM5LpIgMCISX5RsQ6/5AvxuXTVP/WtBHXfG05izCFNRhkw35YG7gzS0Oa7lSTM38WIxVygcuoWKhW8h+oMU/zZ7T60ywrDE7QNcXa4P0cu6ULrvEoj0bgKft0WcEp2Or51MWaS2Edd6VZDC55+cMdkSDsItnJYqBCO7S3jSTz06bydPBfLeeGPqbFpT1MojstbyYx89OLJ2C6aOrIJWkzv4zW8byV/YhjPPqUPAzSRUUnFG4zVSMMtODVY4TwCtnjp2OefDx20FeObH91zrVQYNDkbsZTkPlee38rkEPfASaMUHwdM4vNWO7dOLwaDsKriom0KRYjQrgALvk5PhSYZq8KOrCXs2LKNqGU9OjboOv9Wv8y7hVrJ9sBE+TFjHjQVbeecjHUgO9uegBkt4pZTEeyyugNFqRRJunkfnps1HY8tO3pTnSdqfp0J9RzbZDryEEbre9OJAPpeVyPKBuPnQElMDC0WtUGvcRvCci7Dk3m0+0jySBzx66XTLKnpe34iThHvhYLUcrSkr5Cc79ehwkS10rDqLNbEjQGV8OeeWX+K7q9Ip9estqpLLpBtqIyA2V5PlNE0g8mg75rvYU+NtLdpUPZ6bOhpBpuIT7pTpxVtjteFgYicnqRtAi953WmTzCsP7NElDVIfeG52ngYadINU4yBMbV8OrvedZoksOtNzSQGTBNAoMrEL76TPYNhbAcfAyz/BeQ42B0pyVnYB5zwUhPjcSDjyL5hfX3Fh6JdAiERGytpoBphve0/KimfBtdwQ+MxEF7a4umjY1Ho613od/pd04IXwGnCxowJpz7nS3aRSW1SsjrBKGFw3a1PAiBx5tM8CrK1Pp6JTL3BtWQUG3h0g5qoLrYz7w4kwzqJ+zibNT1pP0iP/Yz1yeot9ugeZvMWzkc44C1Tawbq8lL/AVAPnpW2j67GPw6WQX9xtcprevi6BB3o2NdUaSk4U3Scat5B//LEDVYiMOtu4gr1vBfMw2lY6dmU8qJxTwSIAQJ8+ORPG5qdgsZA4udz9j9V0pfFUnyX/EpMll71s8uX4y5WyspUOSiqB3vBA+iI2GNfP3kvhYedi0VJfNIy3x1sUniFrn8N+RsaDw4SD5y4XBlT5RsFl+mMUkrrLhoh7UyHxObe8bqXDBJXBYsBuyCvew4yI9cq40h7OyvdA9LwwfTOhnGY+zvPh5Ow1eegJxH2L4yLv92BnXBgknJ8DvBaYwPvMlnh3aBCWrE9FPP5BMHA/Rxify5CBljM5PL2GasghIW2bScMNqaNMZptHWitBtqkVPyRxnHOumV5V7sHD2OdggIQSBpWFs0JzHYWavYIO+B0uOTcZeZyNaqeFLrgmt/HBgJNn424JZhB6mCudjpqcH+y89wP0BtZwwR5RnRC7l+/YdpPH6IG/0VIbUuYO8fJ4VDc5oALF7j8FzTzvkzx9DRZ67Ic1riDZGdEBJjyxUVV2gA1G5rDhiKS+ZbgIh78ZT6q/5ZBG1l1ZuGMDjI/7A3eva4BbhjIb2t9C2+zmYJFlz0zwTbNadg5VfVNDxcwLePX4Pl+0Qg7G1O2m0jxnMmCmGOxQnkHuWMF1ZMYwuj7ypUtqRnxrV44UpDMufd8IdDzm8Gb+awooXk/TBzXjirDz80zdg45giHkhK4RtPLeCy2T2Wzf0Kh5ssoEnjBs3Nmcn3I9Pg6Zyd3OHxEbbpm8D5qzYgan0ZpqsuIHouTnKG1rB/mh4qVE5jCZ9vsKvTC28nvafTy4RgxOADSonxYLWuBzC0XotNkmWoOzqaDx3VZ/GGKFB+OwYOvgWY278LH1ieI/z2nvri+/CNwXPue5XIH6y1IV1SEbMXXySVQ5bwdLMEn54ZRpIrazC3dyoeLZtAa6tF8cpRB3ipqseP3q/ixHpzOGu6DUw2LYbUu1V4vHAMRFwIx6MnelFE0Bd0r7rjpGU9vNlPAxzHbOWA8xLkc70KL6VaY1jQQ7jz6SPsaDiOO8zjQdZgMW2u0ITMPkOuWlPPTY1tsEP5EUweMQQPR45A19ovqHezGFOSZ/CxDRJQtbMNxrWPgnHP7bD05E4031SAIH2ddiwagUbnvKg3bw9N9lSFhLZUPB36jEVG9cBw0jpOXXUHJq2sR6NRP+lDqxoYFTrA4z2msGTEJxaQQnZ/IwdHn1jgfgsGCUEd6Kzspx2uFdgivpo0PcRh77RTPHqaLm+vHgPCG91Yc4oeGHvu5gjHl/QzPgr1Ng7itJXy8HnNL36YvgKkG+8TZEaj4011uHTsEZZfHM8JhxpZSagSVn6UgMjYYVI4mgca5keoYuRBFLG5yQmzo/j8taP448wu1n0ayn8X64HLIyvcOb4aInpewfsPR2mURjGsW++E7eov0MMjGC5WfuGS5/Kw37gdP12zYPlfN+lViQX8GumN4YXd+HHsCj7/TYj/W3ie521UBMMNk+mkVgy0O53ipBP6qOb+H5k7n4ap3QGQrv+Jv07fRTId2rCgrBmFjwXCiwNZpJPkwTe8f8C8qGUcseEADBQuBevpViiAE2HGglU8pkkWnxnPxjbD8Sx9LYMDsuZR52glMDJ6xBO7T3JGsApYTTpJq3crYID3YnKfPhcD9j7gJvkESBrxHd103vDeOfbk8EkNRqY/5gl9l+Hd8HY2nPOdEkyns2XDXRpYNRES3Gdx2WM3fP7aCBY79FDtYxP6qv+LnCv/cHKZIZ1U2EPpR39AruIXTI2cyLtKRWEUFpNzkT8EG+3Grq2KnPVPDndJfKVVjlfxWocD+HS3kWaqHswbHw1PlS9w8rVDZLYshcjUAIUHS8Gl+Q4ebValQqnrvDtKDRyH4vkA1tGNxlXAhkfxe+8g73XcSBfqP1Gi7D4I2bweDzgJgFf5PvIvlSCPr6lQXtEFsy6+g0rvVbTp0k3IWavLbXdOUWDjWJi4+xpfT2xgvxlPsWWrAt6N7eSk5EC4lnQBP+m18fMcRX6mYQJbp/zEwldnWHnwPnit9EHIOI3VOSp8WNMV9tuasUrtD942TRa028VZ/nYXbFu/AUblG4KQSCgUKwTQJeN8+tRjR6u2DJKP9URQ9LvJ8ektNPz6LI28UQ9Oh+TAfOVatFwrj642JiidpEAjBKyg86cBCpkthsFFyfiz2RT91hly0IZN9DD5Pzo/Q4J+CR4CX1srWDPyDx3taKKIC6qg7ORO1etCcPmBUXjsUTQkN6fwvkvC8KtMGShjJ36qNEILoZUcGzEK3e1yYHZgHVz/8g6E/m2mWzFCODRNDu6UpJBRzD/6bmrB+lmhXBYaglvDo+lj6yNWfbKcPjaHkPJKNZhvo4qhE7TwxSM3aMtvhEeOEhyVEgXzYsZzzZcKHJJrgVK5iXDMupR17y9BewMVqO17SkdH/eVXelfg2+FE8nnyDE62FaH9NFk4IW8GPapaPG1nL7cv1Kdfz79Q60JXHnMxDkJ857CK8Ts4pcHQ6LWQhbpLaU3/LuxTbKe1nRNBeFI6FZkOcsn9V7Bo1AYQKJODPdVnocK2nfYJTYZFfeOhaXwnnTL6D85tXkObzHrx2TsdLj1BkFd2C8fJpuKKIBEc4TWEUw+P5tLkH+RmXUiZ4ZsgUtyOFxuOhCMHn7LQJnteH+zG2V+bufnVM9I7cBTCnDayn44bGZWOQVdrhr1D06gkfjo/aa/AF3ZVMPbdNtr4zpIUWydizdol/Ft8FNQOKEPEibs0r34kWg4fwN85x+n58SGU3GaEHodPUr5rOmrL+PNj0fEg9uIf7PMJpMk909D4xnV6ue8ebPfZhWW5kSjWZc6zpI2hJ80U/KJ0wd96PCyTmkpdtlo0vFoLhzv+A8czuSD6RZotxat5/gdT8Lc/g2s/PIX2dytYzygFTpi08/HKRB4ZcA+dzynx+Q0VED5PGTQMraBZ6DlndQdx8tgh7lt0BUNCvtFik8mwGQqw/d0PrEsRh0AZKRJ7Ioy1wU+gvvwQNoqtpfgxZ+jDpIUscLGOjix7AeGLdeDC2w3QJlwG80US8GXuSVRqrccllREodjcYp01oIKHhWJa+ZQThDo9ol6sUjtnRCYKjj8Hp9VH8XMkCk19NpXI4yKaByVTzxhLyVWfgp3lh8DD0IF0K1SehxtMgdVqb2nYkkpWkBsnuOgqlp1UgeHog7p42naorK/DDzceUVb8KMuX3gOvsR9SUuAuj689AYJ04bDsxhRXHbsbJLX5I23zg96nNYGOwASrEn3BCeSwGXzpHxwdl4YnTWNCWE8erZT50ZnEupexqw7RhOZpta85vBLZCQV4m2cuMgpm2iezhp8Ct5yV406xbkCyaj7O2TOF7aauoRs6LVyl74vsJ6rDI2R3XmdbzlzW9VBA9muR09sGnFf94dexGeHA+heOr/uIyBUvIdEvhvMlz6PPfR/jNdxo76q7ms8/N8ZzwHhYf1QHqX82heudoyFxXAdqnvnKk3VaeIW5M5z974n0JIbgnvAycrvfAv3VFfOT+ePA9vwrXWk3n83XG9KhTFOLbb5L4oXnkaG3Mh7fr8bCyL3/1MoCPh1Zzpmcnbp4wEoa9nnG64zH0v+gP+VeWk/Jda/wb5YbVn1Rg7JlGXjpuGWpMfQmr1PaTr+89jAxYCiN1tlLM+FCMDXnGuiMMQGBqCb/V2A87/g2h9MRKyBkVxEH2K2m/zGJSbHHFGGdj3t1hAK8Kpflk7Cw4VVyAP7cUc/KSOLA1GOCpo6vIUeszPEzL5up9k8ADQiB91UF2n7GeBfcbYIJtGhluGKK84T9g8qYSS+4Yw4F6Y2jTfUbd+3vAz18UTxkP8M2S2TAr2xee0RWW7lTEmZ2toOmCsOytPHSMGYBYg0E0enEMJg4YUe12If5S1E8qXyuhTbWBhBMRVpRtAb0mVVj56RB4RNqQrMl4yEzT44wDx3H0qIk4p34MOUyfBN7716D4t3j6tPMNn/EqxL0R1fzfzgrMNsjA3w4G9EfGjRPSrKB8hDjmvE0izZ6b+K06CxMaZamlKAgSz/xEC6cQmp6xGuw/i8IJE1c6uPMF9kelcLr3TciK2AQb7gjwm9NW5LrTmx7GqsIECVUQTXzIezab41SrnxD96yUuUdwJzzrv8Z5/jhT5WwAsPg5yxU9VmHHcC8/dF+RgU0O+YRVI6SpvWOZgDW9WZ4hXOwce80R5+IAyvBq9i2M9Bql3hBMuGP8Yj2qKwS6BSVh40p++Hkqgb0qINlc14VF5KTXGtcLtO7vJOW0pLcqUwJKTp3jTbkWqVzuL19xf0Z0khHJdAT4msRnqeo3offEQWFMTH/pTRbIXdemP2woKTomlWcdFQeHIUjRTU0LJsI14rT2BR0+aStYP3HlDyy54PTWG5/Ub0Qs9AwgXk+K/7QWgrjwVpowW4TfX5MlDJ4zf35vB+2YeZGfQgQ+HJWBanTm4Btzi5sDVhKV9lCojCA2FdRArWQAvlH+ShJ4YLtCRgZfHrvLxX1XYsm4Vql9/hK+/PMTPTyTgeeYsLskaw8bjI6j7E4AJHOH982+T27kYkLQVQPmQRRRpb8WqOI43+8nD3/Qu/HWY4e2Y0RSitgAcx7TAaXsV/C87AV48uYi/izP4XvlfjNtUjlXiqlCSnw76tQp0Z4EiZTWFYF3RNv7iUMeVchWYtOcLsnwJO9/Uh9DLyVgw0I46EsI0Zn4R9l8Ywb2WVryx3gzyIpOpJywS/6kIwp0UWzYUvMVLx73jw4tzOOeMG1x9vheeSJuRi5kzbF08GoylJ8D+Xx0c1aAPti/KUXzmW5i4MJtTxHbR1ldyUDlqJfXOVSQxHw3YfPQgfB5xil62nuftfk9xofJDOlG2lIYi2yFLbyOuqvOCmi5RqKtshHAIwgoYh+bTH/KzmNXwV14c5DrngFLWSTjucZUcL1vAhfVT8MPiqSDlG4Puvbp89kMD6Vz7izuKzvDFmnwKeHkK1ZxFYEFSIRg0/IcTv3/Asz/H4Fv1PN75vQQz8rP47QRpmnu7gH6KE6zY9Ritx+tBluwBeiz/lf78rMT1SyaQhbscjjUSJ7OvhhBdLwELxVZCmostuU58wq/C/uCmiJ/Y41zO4qqFfMnqCLVHpGO/8mjY7r0PVR1recnR3RhheY3dHvylPbaT0UHWln8L/8amPhesTZOA8qZsWGPihdXN88EhwJ3ql1/kLtdHGOqnBeFX37L1r9Xw95wZBNBL8JFoxdAzp+DO2EXopOTFX8vaKPrWHLzp4IFWnpNxpT5C3PFZHC5xB97csSf73yqcYCaBcX9qcEvsFtbK6QX5MZ78d7Up+IUuwLq2ClSrHECvltvgoNNONluO48XHQ9j7311warnPmqcFofG6Hfx0XwDVn2Ngc7A0bgoT4h6PFNA3SmJPVSUQ2SoLMx/LwNaLEZhk9g7qJAzxZsYovrfzGkh1ORFUraGaskb0CIiE90aKIGlsjoEhXVi3YRalqR+hOxpBJDq/kU93v8Yfv/NByS6eVCdNhACZLIgYNZ7TZf5gRmYAf+3Zjgp6NVR7LQg635vy8CgZvBIqAb8kbtNwUBu8/veA04xcuXDxCygrDqPjPW1oLjPABnZZeNNYCULcjUnX5xmI9RYSHv6PS0oCaJ7oP3bwb8AzB07SwuUevGrzWJh8PhZOtd1n8ekfcWB1BT528kO9o8PweP4GfD5Gi/J6J/H2BcYgsGIZ+iwV4uiyOo56eRwkn37gHt3ZvBG9edljfS52voYHHo2BvkInTv2ykQaWrqFJ3aIcofOdr1fY0WHPsSB0dzfqnH9LO8U0ASWWccfQVg4bcZ0M1jeii4gMhuw+R0Mv9aHStZIKZi3h2PkId91H85K+TPqnvBYvPMzmxW/zWbVpJ/w9kckdgWXUOKoLwjZqQvGpLph+DuHrKn2Ys/kmtDz9Q+VSckTPN5FSUgwna3TDk7tqoMRzIHx5Mr60cKOXEu+w79gUPna4lP4bJU+JrcP42Xk7egqYQOuKfZi4ooxb6iRhtswREpaMg2efNfly8AP4WeFISb4a2O82FQZ05qHO0hv8PWU5BqxXgDngCI/709hz9S2cVqPPnb5ieHOvDaQNh0FEwQTYN82ISoPc4eHjs/R6ewCYn21FNdtdsHd1Mu5xUoS29AaqXNZB+oJHOMJvMykEnaG6pg14IWGYzUOcqadXE0Q2KcCfmiXgGz2KLFXPo6RXHztYXcLhAx3ce8EVKdKIw6Lb4O4VAShIFCKOzyPJvv2o+fkLsc5BXvVrH33X2g8aP0fx7FqCE4ungF5kP2dvXI8VYR14U/4vqEVsJre6csCqZJarjIRlAkdhe4USbFnSDRnLUjHbNgGcn4rTzGXKFNKlDIJi9eRoksT6s8/gimRtuKNaBH1WW1h1pSVPtC/BiiMz4W5POc767cKfV93h9Kq7MGK2GKx/6U4vPtwmu4oovDD3BvTctsZDfSE4EJ8NyqHy5LNxORbtZUhaX4VP5j4GnVRzcHy6jrYP3+DzGlkYGJFNJp3TUXDefEwqUwFP32h8kNKJvzyn4vkD33hySxf2GYXyx7hByPv5nv6Ma0GsGQ1ex5rYO1Yfzgz30rdjr7ioezrMN2hCoz22oFQ3jGK1RjDP2Bh8XU0wX/sopvsm8YP0Io60r+EJat9BkK6h7U0hNNuRDgM1KiA07EY1czZCpU0cnPl0D73PhJDakq3U80GYfdcvgeM5vxFKtMF/yRIMfnMfHvy2QCvnRdSkdw03+WagSYYCXppjiUJNZigTrA9JM2fTiozZXPlvEegU20COeDHuWOeMJxVXwhTZcTzBZSk7eirDonUbeayIMPm+fULdN4Nh6vaD7Da/ldCvEoIll0NAiB0d3agN/67fg6qH79hg3hZoD13BA97n0Vj9NrjI1XD37GYo6dgKK88SKDbp4cCms1j9IQfPZQqS1MAmzlXTBtV7sVRqkYbfZKrRY6QK3DcThVVykVDyN4Wu39anud9VYcwTY9hRUwP169Qx/vRpbjcXhJ/zbWHPBTk+KPCPts00460V47mo+xxMkvpElXnraJ3tWnhSZAtrL20DlcMB6Dx9kK7UKqNkXypPthrg4b2AwbvO0/iLgxxwUgtGzfOHRj6GnzfMI91dW+DypQ9w5tYTXrH+LF1uGYkHZxI8zxeB0raphJEXsCa8H9sGc9Du9UWysJsFosP36JKCEmZWfqTNnRZw0II448sRWLdVhlt2j8euoAE6OkWRTZzvYT3t43lRuTi50gZqLQ/AxNsX6HavBkzkSTxJ5TjPa1zJDmtfUP4cK1gSXkS7TmkCzi3gIXd7RukD+GTxZKq1ek1ZWc/RJmgq6iU38shgGVyhaAN/BGaA9ccJfHWHNlnXVMHknRv4o+w/2vBiD404+As8hH+QTxFCXKM9hI9rwF0mIfTIrYqv6KeSQ4sxTK/QJONRvWgyZy3wH3FIeP8FvrtOxYVkyJhSylVtsWR3P47MZIpweMYBsn8cT1vttaGqq5AkZr5G8XFrYfLbUJzsvwEOy3ah1qlx/L1vD47Vvwx/qgAi9r3htCo16rzRDSUxvyjLJQgVA2bhg9s2qK4nCbcM3UjH1hh6FF7BhsKLPNm9AN1+WaH9yxtwuN+DBOM/QIh6G4WOfIWfvBgaso5A5dN7kDBXj8T6vpHW9AIu3jefvh4Qg1W2LSQ37gROiZsAoy0yQb1jBC5WseW4u5tBLLaLjS7aguxwHiebN6NfeAL7e4wB0YWHuSjgAZab9kEx7OJIFebsR8b84Z4JHM5LwWn7jCnS1RASoAb/XqxghYBczDqfivrbnbk8s4JenfmJJvuicdE+5iJlYbjiPoqg3JgEegA8PLfyr0V+YLjoJzutDWF5hUqqWyqOWrUIpsYxfPvxaBgh7Urft8hy/aNx1LFOgm3HjWebk7kY398JDtUIDu0KCLXlFOU3luynzCP/FSFkeKcTwlseEDg68XvDyRh1Tgmm9D6GzJPKZPlgD8KORVQnGEtSzUmsfNgPcNZl7rfcR7RzKvw7owMrbhfzuNPdWFGViRNr7dFbaQjU14+hzTFybPkzDxzSxOC+2guuezqe1C/IcqjOcxYNTMS17utwdtl6knW4BF8n/kT943Jw69Qt2PFxLH1/6AJzS28xnkzDHVGlfHPoAjU7z6LHw9Zks1YL/Ho8WbNEh/V3f2WTcUPwa+YdeHPvD00Y1IV1v8xRd7cIJt9juKF+l9PcXsK5i1/wxITPFCbaCmmT3PHufwe5SFwVrmmEcv1zgshBTdC+Eoqne6NI/2gcJsgnsUfUfXDVfABLosfCpbRpHCUuB7b1GjDrVzBvDQ+jpXsOQXb6FF4baQvq7wa4Kfcr+HjGYflnM8g6aEMmETLouj0DPb4/xInRMnBVVxqitAXBqz4JRNOiucXKHLbGLcFInStwesk+TJmWDEIB3fC3PwAShxaQ4mrg2ZKf6UCIFvwpOEhOi//Db3KXENqO8Jg4TQpX2ICXIq7D5D1hFFiwGWwvm4LZVFM2FlDDPS4RHNW4mWyj3mHK4gBwDszmGV9O88PoQlDv14ErV29A9BdV6OkYBMv4Jtq0p5jHn/OiG8eaSMWkk+u36VC0iCEYbI+Do4rnUP3FArrfL8mXG93A/FAaSy49hVYHfWC1ehaaNGvA4b8HaNHZTNQIO48Zxer02tASxspKsFzcAKj9WQhPJr7EkosKULGhmdowDK7McMJ+aWme/m0e19TepFmLpsApxTqMC1dnrS4deApbWaFTDMa/jwODgpXk17WIhIJmsmD+BX63KRWOTc+nosOmgKFfwHu1LjqNk4Cw19tRZM5IlC8ORRBfj04nlOBspSbk1JhDYvlWlm9upjBZH1AxfQFNakpw5n/E3YdCCIoaAOB/tDWpNK0W0V5UikjJqBCREZKIhIymFpLs0lGoKDsRRVZDaSqKREkJLTKiHfcx7pN89U9J5rwR7jyUz2ZQgbMt5SErwg8N9+fx8ahYFDkyiQ6dn8d+bz5gVfR+vurYz6sH6rH+owAYFTXDwFwh+re2lN9UtMOyHfkwODEJagZsaOhWGNdMTcfYk5ogX/SdFWeHwLP5B+HFD39+vdCNLzjp4sFyO2zdGIAfGj7xRzdLUKkdhDX3fVnJq45GhjFb1K6BRwvKQe3eVPKjdsiXzINXH7UgsCSZh2I2wVyFFXBJWIj9ihfT1DkdcEnoDi7NWot7fe6jXrU69LQ68Zf9JuT30RFDxAIhsmUhxvbepeH2s+x3djwb2JniCmkZCBq0hYJCObDc7g/lcmNhrI8APh0VR0871sK4yZbkJe5Ph43kIL+nm3/HJmL0Hl2wWNuIvi8GOeVwARkOn6PRhTE086AI3nexgpg3VnDqpSyEq2hB1JpKdBg7mafNdOHPkQLsKrQJbWpdWTtUCJSCH4DqXi+cV29PbRlvWTDaDpyUPoGcwmMUXq5FSVeyQThcHLSPmeK0qmZU8xpkG/E3aPjYEvU00ihC6TN0NZ+FusHLeC5mDDSM/4yzcv9gV3MpVcu4Q42rPBwxeMJ08hgP+umR5MwkSisxh9UfJoGbUCS3H03jnhBTlC7oxIy/ftSXIYeV28/hwS1a6BoNML7GFPI7PpGkwkZolfhMG+5cYM+fx/HE7mw6cKoXbpWpgeK+KTA+1Q0fjM2Be2824a5zlXz8zRRKUn3Pn4Q/w58ufdhRZ07Pf06HiRLqfHvKexLs38P71TU5qvIheYSdQ/uHjzkkZgxETLgKvgoGcJ4zYabCHo7cuo21I79jmtt+2Pq2BIS0Ssj9SSO1HXTE/15NhFrHKNgULkH2H1TJQTWV9tRv41rJLnxm3I9dHp95pM1IsjQ0AJF5knRGxpn6TLaiqLw7dDQrYpZmFQbWHeRFh2/A39BaEM1WhLNPTTm/eDUsyxKG58v64Gf3cl6t0YCmKbF0LWMfPnJMoAu/rOBKTQgOmYuwzyJnEKxUhO260pC/0ooLZo/FuBF1bDFdgvyKrcH+8C5Ut2DSbpiOHT1mvHp8FIcOWhGMCIZJLz1hp00Hno5AGBQXAxMHR1Jcq8Pz+uuhYu1P7k+egB3wEw6t9kRzvYccVysB1n5H6I7kC+hRW4czRN1hh8gqEjv4A1b/tIdjh1RI9II8unuKwTW9m/SmpRKVTuiRzbpvtFXoMnf77YVFDfLoWeAEpzwr4XaJIshW+tONzvn8Av7D6uoJ/DvyNzQ+ZspSuwvjO44SLq8iDxsREFxrTiXpKjDOfQrH2v9HsblHQHSvHW+XVOJ6xR6wju+DnKnmYGKxnHanmmHEka+oqesM1Udz4Px5IEPHH9Qknc5tLU9ArX8iiHXsoCM3A0moWJRGJk2jusbt7NF2jJwzrXj1qxTYfTCJVn9XBtmAPN7fuhv7G73Y/WgYK429gQ3+alB1wQPXtPxAiVXdVHFACaR6ztGk9Q2c7aLJKRcCKUTICKL8DuDm8eswR2AHuVxuwMszhUFg1jALNo6hPpExeKV4CnmsVsGxzemkVHaFen3r6e3JPopvGgN/ZKXJcFAJbY1mwCd9Y6xzb4N+vXI6ZfSPIlPSqWKPNe9PMYKQnhBO2DOblusncij54qSWJpz+RwIucw56/FLAGAUp+vFbB/yfleA8pwK22pgMal7mMGrXC6wI3MCd4xpY29+azzivRc0AE6g/tp0fFCwmz5OtmGgzHee2a+GRwUz0yc6hnCOL0PO7FRp/mQZz0mJJ98RGWOCQjjr5G1nhsQN4Hwqg1Ydk4eft25Tj842DZSbAwydhbN8wBmz0N4Nr6hacYOWFLrt1cK1gI+7orKZb+8SgtlAS5F+IUdTnvXC0vB61QxN5mYMA3iodpij3PN43SZ2iGoNw7koTEPsoww5PX3CnpjoVZT1g87vVOFqhDU/aNtOvjVL0atVXajtrDvMeK8DC/ld479N1zHS15NN5qbAm6D9+W/OBdAotOFAnBg7ljoS7fxKp69dduFfkD/vMhPjy+QoIWFxFleMF0N0zkht7TuCAqwzobjtKKyrVaXLGaOzu3Mi+awRw1omnIJx8h9OftkPSjCNknsFg1LuJYhII3S+1QIJcA4SlynGqrT0ZOQTT/dfvYXXucviaqg9rzdRhXAgTzvqKyQJ2qNB6jC/vG0sfniylhRU1PMn2AF6/bw1ru3eygLI9PA7cCxHPOyg3uo3O7XfjpY9W8wW1GF4ZuwCsp02DxwX7YYRxMwrVKNDr5hGob3QE/pwOx57tR/nZWTfcH28ABpcnQO6Zp9QqNQdW7TpCRZYrKSptL4oFbML3qxJgqetMziiJIu0MHYBDp6jpRz0W02tU8bPkVfOb8XBTP8nfNeKmqgq+H3KAb96Vh2nNymiTaItjh74hxrpy4CJN+BN2mntVxME8oA8s4jNQaKsY/Mz5gyFjjXA1SMGMrVK4bzAEvzQPUWqqOLdcP4eguRRU7I1gelASeJ3rQkufcHipXYgnBbeSSsBE6NjryL/HdOOJpckk620Cd+dLcpPNK86feBbXeciRuLQQdr2TxPvzZoPng3sYMvcsLgmyAPl/TbDm9D+626VNYhPDweFBIy7zm4Z/qypIUssMOvrn4DnBKVC69QrcOBPHTpq/QFQM+dCXEdg+MAfGHo3GJL2FWCJ3E/b/UYBRCa/gfHcolMc4QMiOXrrm4UpZLeGkvymKFPWHsXmUJAR8sYKgfVdQLNuPBlRD+HPTNpjYp0QTlizDGCkj7PO4zt4mP2isgQV0f1lFGePleXXOL3RwiiLl4hp+rppK4oZ99KZRCDNvRbDNDl2wKP7N/wJG8/tZ2iBuVs0iE2V4sfF2SnOK4X9HSznCOxpmXleEsKUuuCXhJucsvs8ui1dhSaceudzcjGe6Z7HW4WGq39wIflMmww4JNfLcRHD3yQAJZQ+Qx7yD8PbrDyh/NxkOjcjFwXHJnHJ6DMhtXcn9bgtprYgXWwfs5Nm+ezjRw41drqvwn+MhJDyvk755C8GWm9vxxmQFHvEpCX+necCG21/wr+Y9alYv54SUVGqLv0J7JHTggvgq9JD4Bge+b2I5wUWweksKz+hwptNWvij3+ACXjt4OAvuloXqLJyy3aoM7I45DyV97uipnD8efTOGROtLYM1eFrqbOgr+x1mC5+wce2xXKO5zPwM+qe2jbLgGpms0kOcof9kTZ4au8ZmjvEAGxB3f493UhOPZ8KyR87cOmRHNKsb2NPk9+0cfxraDqMBYdSoWg/OhVsmg2Z4PAJJh2YJDWqp5mmjqSTg5txRGTJ2PGj1E8+GIMeCSNw7WqEbghw51mXbgClf7vaAH1cfP686jYHkkJbofYc4I2rPpWjht3aNL2wxvINOIStUiGw/rX32CrfwuGnZLgCOvzNL/KAg76NFIK3oHQ78F8ZKEsjzSqoayVPyC66hcuWPGSv7vvomUu42Chei4nB5+g7KUOEGo1hTzXJVHXrvV4LKsdXp74iRcmaXNDpR7ME1uEquK+8Cr9FNnpjWEXzRisijIlgahl8Gh+CEUo7KG5VQQthq481+Q26Yx/jweiZ5LuKRvaVSdFFyJOgtsDA9xxI5G8v5nCnMdz6WOjOFX6DaDYxwj8dt+GIHsOnm3oAKl/Vehr34ABHtrgkbOM1q9UQ8fBRMoJOUxDp3t55dexLKz4ANdetoJ6l3nQ8UEAYvTyWD9iLbjqzoeAh/fJ0OwXvfwdSy6quWhk2wOln4O44QHCiBv59H2pAhR8+Mgh0XZgk/WHzqzrZeNTapw96SbOONTJ8jge/tteSwoe4Tgk4kKmty9RmUYPr9qcB0+Vt8HSDxJcGRIPZqwNFx2s8OyqJMjPrICVrwJJXyUaBmkTf2zYRmepkVpXqsDGthHQM6mOk3Q7OdzhAbYNFOE+wUncd/sDdelf5PCeHnCdcQIq5qvAG3lT6Lk7jT6sC6DAXEswO/gNfM/thYgN0/HVnT76eqcECyynw7KdZ0j/bhVUj5mE+8IacKLPF1655T1LNaVhxh4NahiW4rs6CjDh4CNY0PoXxv++Q9fNFEGZzuFMVid8/AwjFXNg5vZZ/G20BBRtb2AlHwkqXveWn0V30rEFc3iPpAV+GTyIt0NXYFzKCAyyMIW/dRU8uO4K9GpswnP9f3FdnxV3JB3HZeIKXBKcyIel6ujin6lwPMGV0s9NhOYbyrTaOR/aj/zjpsly/DPei3cpzoPkKDksO0TQIJpMxdrlWOe5mVZvHoTdQ+mcflqQJ/m1wECOPddZxMPlBANwXjqKSns1ITQ8iX9HtOCHXwI09DCdg+2EwfCGG0ntWw/DegJwzW8bnzqbD4PdtmQ15RdG5ZhT7O0XpLr/Eugbd/HxWi2ITpKARofpWBMZjs7jiH1WnOKIRRro57YLKx6m0IFb7bS/tQEybqvDpEIvDHc6BY/TVDE1Wh22OObQldt3cfbiDNza+ZWsUiaih5UIKJtX8vRJeeg9vIxVPT/RptNTeaPjEVoseoKNN2nwtaTVsC1fFJZk6WH8Khn+KtbJKb+8+JhHAo5UWs67PT1xY3MP92S+waEiXUjTu04zUl5DePo82L7AmftSJ2O6jwWVbwzHjustYPZ2K1+2lITZYY507mg5PPgohHG9f8hQ9T+oVS+jZ6HW9GOxJEXFFnLNR3MQ8VDFNc65YLtMH/weRKLeXgkYL5+FxrKakH+6BX1FPPi8AsGC0yE8+/sUOtVtAat2CFN5XzJcMyyhxgsdpFKwhEUVyyhHXwMevazAF5NHkT+tpkwtR5Ltn0rrtzDpVFuyvbA4KZaqkLaYPOya5ou50TNI6fNp3np1FK0IE4JHx9NAbZkeJp+9w0v7V2HiOw1YtGcW2F+8R+GtQzDnXSZllElgkGgJ9h4xhaKAIZJzd6dZJ0whPe8KuJAQ1ZneQ4mjC6lX1IH7582BgC9xkBX4mFtG9FHpKEl4b+1LPQVncalzFM6/UIXaeXZwS6EMXvUU05Vn9vB861vMXjISgsd480aPI6T05gsfn2GBH5Vt0UpjP8jgdND89hmlhcX4ha0GHJiUydPzftHjuaMp5NUW7K5qROs7WvTE14tdxvpTpPoCSEoTBc+eVdA9KQVuaWpxufQ9POqazZ/rp/DJl6qw6Xcs5x3oAtdsJThRUMb1zrPosaM+fhzeTgPyNdT17Ti/8pIEKftFJCJ7g4tDpsLYc42QpjEd3nR7k8SiCox0TcJSH3foKJpBJXIv+fK4UNTJmA5Kc56jckAYBRx9icHT7lDj5ulwIOU79e26xnpXz/DOP8ak/E0JREq+cvw/aVr3Rpm/rXckX8OFPMLgE05VyqKFf9dD2Bek4WXicDwyFN+0+fKWoRpYbXESzjUvhJrnF8h+qwae8bsJB3cbo8RoUfgy6RR+KFfBOJID/5CbZP3ajxK/NkCx4TmqaH6HuwyT4d9kNQgvLWdoPI8wsxHVSvQ5vf0VXb0QBx+/fsbvyyzJWPMkrN2rAH/trFlnhR322HXBLtTHgt5mnpH9hQ7HxaJG6Ff4Y6jFoTI6sMRKCbaJvyE6X0n+1r9J8Lk5z4o8z4FR79kg+SF7ZC5n2ZmCcKC3gCXkNsGiKUdZbYIA6H47SC895+DmNx85bu1obEuVg1EC1mDQ9gUvLevBMXV7oftHH25VlsZmj0wWTuhHhbfFFDlxGY28xdAn8x2eVfngIXcfnrpCl8RyVHh7jyR0v12HTT5r6HK1MFuRHgRN1eJ4tyl0JNeRfYSUsNzJktQWm1N33TH8E4N8eGwm/J45Hs6faINDAkbQuuYdZlp84FFjLWk5HAHlDFlcvGwcLfnujRoDsnDbYielzXHnoqnOMPNDIr74FwzDzWGc4fURVSPyqdf/KifwZGiK/03apUNgcGot6UiEcubDHtpz4icoz1+B8ZPK4fLcWXDH1BQ841J5Rr4YTN8TiecO/AIT4YXkufUzbtg9E9/rxmFM12VcN1EA9pErr/7VBQ94NBmBNt4odkTlIA2qVgsmo2eF1BUPaPMOQaMhEKKGhFFcYDQts5pCjgPd4PBOk6cNnKHadAcaM+40jo+bBiO1n1LjgX5+bJfBPtLJaCr4DsYrnmBh0flYYbkZZ74VgpXb5UHOwYDbF/lhF5dSmUUAHFk2hnRlA3h8pRGMPfYWkm+V0ob1lmDe7Q812rLQ9WE7Hbtnh8Euv+m/0UZ480U3PtAfx7Fhz+h6rSJ88i7B+MIRVOs7CpSWLMOwMMJlDVXw30cbHNhSTpvX6MOtSnHYaPOIex5a49STxlwS3AGjz0eCQeBbTiwZJpcLk0lwVj4knpYF0x9GrJg3DvwVWnm+2CdYvr8eXYO0UeXDdLo0rw53qZfRLcMxUL+/nAv+foIL6aaYYG4PDonBlJlngEqduawu/IVvvzmNWhOFwd72L/vLFMAh74dYdisJDcPvwDmBe+Dltx2Djk6gnzvdkX9MAleva7RyYwMOjyhBYfkyAsM6GCyLpGt3gnj2A2Y9v+2YnSoBhcalmJH8l/yGPHif4HraO2EEGroo49bbkbD8UCe1Jm+iVw9FwNnCnPvv7YXhxFaSntKBGaJj2NPdmRtfuPGOqoX4rPg91HrJgsKGR2zx8BLXrVYEk5uXoeHEPvZw66fveqsh71kLhX+JwW0XTWDv8E08mp7PysFjYNTafeyWtpOWbjMn7eJ++kM21FnXAM2iivBr/zNIWn8MM93TabhoFNYoi5L2Uxd4+OEtDt0YT/HCD+hGmC4cHutGf8Jd8MfOJ/j7ghbPuHGEpISesvfHIswLn0U1r2w4MkEKimUOYePbPHa4moLHiz7TaJtkvlYaQioS/4HlQjUqeKtNvsJSMGpGDo9YMB9eOgXAM9MkSvFLgy4FR+rSDOCemGY6ZabCAfsFYaPVKo7ekUsp79ZjjEgSXBU6DW+3FGD9+XuoonODYsd4UbEGgHueJs4UEqX7i1pJ7vsB/Hd6IVVlD/Dfe6U8es4qiFUpQSNJAbDp+cFnd5TRVX9n6r18BC9Ez6LSOHOsSFTEov4KuP6qmxvdGPj4RLpZnAjW9YuJ57zjkxIOdCu/FO7eP0I3DFt4lY08FVoLwb4HH2DAJImWa4fT3xXj6G3Pe/iXPEhbl5iQuEwBPnJsA+EgLdBWV4RHh29SxeJdcNO7Choi46mgfzsesn8O2cbTAfek8tw6KXD+epmN/Lth9n+r8LyTLyY//8tD62NASsuFam0+Y/JZJzx7QgSCwvIhps4ascWFCh7q4pqu3bDf4xnOyh0AUzlpfpcdTaGzNYGtiM31TdAzpQre10mj6vf16C2zkrpPxrLumnn8POIpf/42AVIO9rK07FKar7yGrH2eQ+tiPQjoaaV6/7nQYtoJC/I/0vXdU6H+mio6mNjx1Cnz0EI2EZw1nKHnzFe4XFRCc/9cwZb82xA3LAAft4wk4yN3QCq6CobTNvJrhVS8MxLYfmEuHqgIJvOzHvjyqAR0OxO61x9j/c1T+dflk7T+01HQSf2C6Xc66W1rPt3ZVYYmdkqgTfepbGEGFZiGwkDvAZA46QpiJo+4VD2ZBk/lofPDVupyl4LZpQMUpuPBm4fTWUFQEOfcsqXhVFN49HohPbj9F/1sRHjFmYlgtTKWVK/1Uu0kH1gqI4PP117Dbp2nUCg+inaXruMrpWEwJd8ahO+Y4ZOzG2heZDS+clTCCdMSaXf1biiQEcI7N/ug9qYRGz1TgclJ8Zj+9TJoFY7jLemES8zzIMQrnue7XOdfVYthjUsfyVWpQdkrHzb4eZ+KghV5xYLxYLGynXcdfkDF9xp41sBCcpQRx9CvAhBVto4dxjP/sI3G59YaGL90iL1Fc/jZ4iNkNdWSX0gnwo2hKbDkSDP4jfPlc5nq5Bg+hpL2LSWnl1Vs4LCYjlaLgO3Ka/TfDAM4UqhIQ8uXUIT+WZz61JaV06dC1ofvvEWrkAfi7Oj48TTIOCoIfV+yeMlIcRzd94gah1/yE7uJ9G/bAFkeqOXxmstg3dJ5NC0dwKagH6dRGznEb6M5o0aw4Y5ojv/7jo+sHILFyuW8f40U/BU1hPKHdVy20ZHDP5/Drv924uS53nTkoiRre1/CC6onof9aCqyy1IBxHzfS29wHuE7JA6rdhsHkWj6aVZXyl13HaF1WDTmZOoPld3E4uvorP+Ft9B9E0M/kCPglvQUU9PXhu8NXvpQlAfZnruNacWvonPyTVtzwxKoF0bCh4Co9ZjHY66CDe83Kae75G0zt2iR8YzJMtSYefDCGrNgfNtTNhlSJvVi+byS4S7aSdH4ZeK0+TDvkJCBKWQNH2ZuRW5Y+uQQchm/ryvjUfg8M/aXNGXmXafQ/gDWvCXq2G9G+yx84e4w1dfZkw1V5QyoJkGbNUe58TcOQp27/A5k3tUEIHtK61lI2e2yJTw5+BcE18+hilRbNqiHyDNqGTyVWkOpHdVg98w/v3HIUS7+a0r27lRDichtdl97CgJHLYLFLH03pl+KDrzVBM8mKo6SvUotrASp13ab9Z+3g6j4hGDXblP+UT8Nm+aWY80gEus1mwAf5txi/voXidxyFdVsKqVx6KSxXX8kHLH/j3JAJEOWsCcdX24PrkB1vrxiim/7tuNi/lx1N08jmqhWdbS+juDQ7NrFWgOtbwkHynj6Gp32gb07Xcf21ZPrv3Ul6L5wCZk6jaPCxGrau0YUxX53wpt1VsikQBsmOQhy8OwI2zUqG7PY73PHzLP2sEcOuJISTgxfxYdEsMrr8H/xSasPnw4Ncx76olToRHu4vwAWuBqxuNw2+Cfph7JkULk1S4I0bi2FJvjtLmpnR9H2q+NUvF6xstfFVrAQUyi7n/V1RULd1L6wy9oXJMxz4RWUWTk9bzBd7D0Njdgbc6hOHOFkrOnRzLfddeU9PBVrIb20nLhKRJotRy9m5IJJD7fpQw8cC7ui+RrdQM54Re4YkRH/zx/RupAW57JDymB8kOlLsWBViVTFo8tbiJZf/omBmL6spq7DUPj3OUq6D2/kN9MO2DeJGLMSf4xQhv+cZ9kvdZFGxXVzfuwl1VOPIvn4t1+eY8ft38uQsG0/b/unBf6EL6IfBbb79GtBg6QDflqmiLxuFMEm7BBa9OMtKJ/P5lLgFNNVNw5XBvZjsvAJbst+x7cwnGO9Tgcu97/I6wfu4wV0HB84ZQvRxHYz7XknyDjU80XURp/+KA5GlE0i20xuzAkVQ4NN/HP5RBjpyzGm03Rma5L4e9ydW4cecVO5JKia5nVlY6Z+CrZGfyd9JFWZlHuI7qWZYncLo8FwDZSf8JHP7jbC1xAR3H9ICifqTMHGZCoxLC8Jr/9nywQo/TGivI9epERwWvwWdVhTywqjPvFa+hbb7qsLD5l14TeQZW0Yo0bT1n/HS43426NHiuvNJFPe5HXe6S1LNWHOY3j6SdIud8WfXQUDfLFixcisKyLpjTLMWNqclsU7oTdj20BjcjQ/imntHoKzxEN87cwb/fqzDzOYITJX7B+8uNWDKJ3n8vF8NlgxP4H2tZ1neFunmYXdW32xLwmWxaDTGD40qpMDDMRw/JKtAp44sqNU3Q3baDz6VXAf2FAjbVtfw3rJsuN/vwUIXR9AkmRFgnvQWvu+YzJvUN9Ab314ykNWiwjuXWaonHv/bK8unhBzg6IA6bJ8WyGGLx1Pg6vX89mUM7PtUTK7y0/nEwRLuEbiEzf4Z6H1HBprqW6BxmxysrNQjkXApWM25rLhWiit9imhw6yAeWL+SlgeNh31OXRD1tgbueoynK2+MeYqkJ2RfHMFq/jtpxbwPKB82ihegIty4+AiSHq5D1dhteOjLbHy4PJUGszyxMP4+NRvm0dLONN69UgxOOSxnx08XoWaNL5jmjgQ7q8eEMsN0b/wwa/T7crCLLjeumAzTtvhBsVwETf46iiZ9PcXrN+XzmKDNsOGaNNt/+Ii1g+LsN3UkfNj4lKZdnMv05zFMcGmn2ueSUGGlB6n7kqnRLhjGpg9DU7AoLHO0BREJO7jS4krj3UW4Y+Yiul/7CgOfpINw2md4v0SEI3tMQc2mlBwig2DL/NFwb+xqshY8D5XSdvTjrC3ptd7hyfGLWXijKOxM/IHymw5hVcEX+uNrhRtOn0W3JcaQldFD++tt+ELQY36KKjBvxxMaubadpNUNeeT+E+AjMhpObshC8TR9fCJ2gTq13rLgbGNYYe5EbVua6VFzNm2IC+WzH4fx8E5P9j92mGYecWBzQR2892w0fJ7NfGr2DmpaPoPO1S2jJpP5UKcxH94nbAbBqc8gSKuGymeZwUPhXvwsqwM3rRdg2MA30ijxp4sGbTS/uQiC8lr54W5TstBhMJDbh1+0DmK+2ApMX20H1lP0cMGIXtoyphBu5DaCyJ5iVg/VAvmgEqgsj6T51XZ4yVAdTZ5PxBq53VCzUh67V/TTmvpn/LTEADxfGuNOyxxsqhlF5suE0VJsD6Y8fYEya8aC6OReOie2gp4/MgCbvg6qulIDNT2tXLvpOW0LBBgjH84TD+egJhbRjpKDXOhlBIaq9eDkEU4L3iazl245y6T4QQIIYNSMOO4u38Eyall0T1kMMgp7IN1DANPGrOMFmwxg3KF8ONgbjet/lpLTlb0U55EJNwNGQ0LqIug/7MEbdQ1pgdQGPvxzOc5vnM8bpzxh+HAYHBrsUfK+ObR3PwavxfJU72ZM+Q8OgrHFSZpc/BOKvCLJx0UYPV48g87PoyDx+xJ65daMWlZ9mAR9oBETDyOUT3JCphl6ngtlqdYc/FMi+X/zf+ceNwQBVyE+dewiFhw2g87BLaSVa0sTp41DrWZXMHxXjHZhCnBAKwjEHhfwEociiP7BcEPmHQl+KYXoQVV4FOoPrbOL4Y/cGHj/7hmwyRIIuBUALm+Pou/i9yQ08JFs9Vs5RN8IT7i8BYMSWRBqfkypyZa4NvgMuMc54u3EAGjrFOQ3SoUkqPoHBTfG0GpdXbAfIYLjKmRJWnMbbitbCWueO6BeqClENCnjrczTLK7qSBf9NGHFs2Gsz9lMQiqTUEXLiz+saiLnu0vpTJYNvZ+WAsLXhUhCWx0+Kp2hoCI9CozQxLW7l1L7flO4474Nwu09SEduFRv+rISDwQRtbQWkMMuLLmfnYdd3oGmvOvjHphW0xWIN3TbL5vj25TTf3RIc1MvxqrsDRGjvIhPNDXBBxIMrOvWhpF2LO19vZqn5sVgnPg1yWh7Brh/ZMOAXyX6izjhnwmNSet8OpdpSdOCcBHSsrefmLoSV3Z2oeeoYqqmKgvn9cfA0/yU53I8HY6Pv/Ko7nYwDZPjqdhNwOZiKR5VaYdO4k/BgWyIfHIigpvfWTJnluP36NVCoCMfvZXogO+EuegQd5gtrN+PCtqnoETwC8lLyacSiThSOegmPh5phtOp4eGW+Cab8l8L3TSaT8pW77N1zHkJaTPDC1R+w484MTsydz2+TTOFy82c4usAKfnlcp1Ua66nzQB36zd0P4tu0qHHOdSy3TWXNIwxCgQJwW0qJ5km24nC6LGqo3OcDqmY017Oa1tT/g0Pdw5hhR3BT/ifINuzHy9nOkBm9i9/rf8GlI55CzdcwePqqmGq+f4Hr2YJgI7cB2uMLaMYnLZpUfozGX7nKVIa4y6cB7w+dx9ACN7ylbQlBZ2whcsZ/eHFbFp0TSoLRa8PZdmI2bJilyb9WfQZ0iKSZMePhdd4o/G02gi2+JVHKjjg+FrcI9s4FnBgszkBiVF+0CV7KSUEIV9KTMYvw18gE/KKlz0WLTqP5j1uA6fNhfMBLXBX9gTc1qMC4afvwY/lYtEgawfPXyJDsVF1c+eI2qZRmYc6NaDr3S53rmszgv199eMK5gEd8loPOgPXoM+op7FwQQfNKDbDUbi/uuRxE7hbjITZmM4hYb2Hfhnqcu/MTufwohYaiCdyuUMcPVMOoVCkdffqE4NUsd4gddZWc/FQhI7KcXVeYw81CT2rQkOB7CW1k1vyWtapkIai+Dzr8L/G0Da6Ucv4dHGzRQHmxONp/whYvrTsOR46Vw+hTclCZG4h27t/wpdMMunRxChhUXqU6NX2qtQ6HdXOH6W/gBFKbrwXyUSNAu7kI7dr20s47+TjzmSw4uuXBbrvREFxwAhbp7abjbkawZ6EPHw3/xqZRTnjfX5TWJBhDlsYkXv3HBgdmxOE5nSq4OTQRjCZKs3SgKqf3m8D0G1X05P1EZt5H5okKZNm3Ho4qCNENSVlQjl0B7tZJPH2+IMbfteHy5KscdKKFfugdoJJzbmiRvJBHRk2BPc8FOcO4mJ7sKqELYmPxi+1kSC2qhgWbVfHTB1+oGH+dJu4fDyJ+PvzQ5A89euzJ8XHXaZNNJSnuPk6iTdE48vJr/p59moUdpsN/IV1806qVnHSUKWvXUYpRfkk9JzShM+ASCFwYxQJqC9C3VR/S6Df43rXFeAFt+PPnMx7JHKKbN/7yvcP/MGxQC0NmLAP4OAamtHngxvxueLFWjnbsngVPDRP5xbZ2KGxwgSoRNXIzmYKrFowAz99FVJ1ez01ejRwtWgEe2zMx2L0LMs6HY5r9StKIzWfrN9NhbNVlvLY7A8Kqb0HHT0n+++UPpt8botB1e8lWA9lhxU6ufS8LJVcDUU/LgLozrNH5VTgrr07C5+/2cWljEn2UM4fBm76o8WIyXHxpjwOWc+Dd90dUu8aBs75fY0t5cWjxmwedGRcxQbWaJjwVBp/EHxScZ0bzw0/xhZov7JBwC7uuN8DoggTQCLrNxnulYbBQCipZEzr+puCq48vYNTKKPA2ecN2i6ZSoVkvyAtdI79cyXKpvAeuvTeGxMbN54em1eGLTPB7+WQ7qA/+wd9sW3ixiDz+qs3jXijEgYuBDu0fMoYfrQvnc90zO+F3CTwuewErfUGzwnc5WOy9R2WJxEJGyQnXvYhCb6khdHjq4750ChizeD57h0/jQmwRuWd4B6oOWoJJ8kV5M1YEZc6r4S9wj/rvmAPzp2wyaBZpsL1MGY7eFsF7aBCgQreVZmZqwOMGJ9Rrm4aF//8A9w43qKwXAo3kvtLy8At4GktBQFQhb9etZbbY8St19QKq3dWl1xXouEc+hkWLZGBAmgektirDk/UjsVDWjxZZFGJbWTU3vBPDYeg1S1XyOT3dsR+muPTj5pTacHqzHw7aVaNrlQjrHZtOe7kB4kfyanXgIHkyMpB/hu7BQVwSmnAom04JuLtqUBd2x7zirOwNvXmpnNd4Ii75msOTyXlhYgWBp/J7FPk8HtdBGbtO+ApprYzF0szPIfPZm7b2/2NZJCev/swJasATv/noM5leqwMj/KJVXGtF6by+OWdQNIwt9UW+PO2mG6sGy3HQ0yxlm60JxXCmZjB2+5zjyqj2sHHwLsfOrsDw2gVddNwe3AQuqCZ6EUz89gZQKOfh3Uox+jvTmDfiZ+03uwc7ff+hXlhxE7pDj6UGPwfhbPtctjAaQnUWWn2XI4G8DbNtTiftO9eAJK2O431sHFzJO487u1+A6U5BEFkihuXEfTLd5S8OZYax23hxDa5VB1q4U3MLaUEH/C3Yn94CR3wA6alnyuUw73Hb4GuRXxvL7ZmnIu5TPgkYCVF6aitskenBJ6EdeECOBr9t+0JyKJLL/NMC5VyfC0fxIShlegj01Z2BJoCj1iafhcXHinxfq8FiADaV0F3HGumnw6X4r+TYuAPUxAyjrW4tPwlph6rl68qyxpgMeHSS68jPZzxSCNeo13JL+j+/MvMxeA3JgcCKMEuv9ULM9HEQiNtB641cUI2AG5i/e4sEIP3y5r4MddDRozU5pcCgMoz01VvAkLhGnlgoyiQtCatAoinNL5Oq1Byi+PB9+/cglW1NTdE6YwlF/PkHW1nAcNVMAsnVcKW/hPzRXvAWmXWksXaJLvx4ugr8JBF+c87BK1xHyr6vB1lsaFDypidtTfSDxjBclnNvNLT7WZCHUydXTK+BmbzR+2qwNzbuSOaXjPVk4l4HnquuoV7SRhKQM8e+x9fRFV4csR6qwyYkRsFGlmj7u0YYzx/rZ89sc3mNgiwrBbdxeZg62p5pgzkNXODTHBFKqNmPcWW+Yua4GTOwXolrUKco/Vo4OV1rhfc40VB+/i+zqpUG7Yz3ktDWhiJwbGZe/IfE6PTrorAfnxjhQqVM2BcgJwY3/JGGVmCEEug7Cx4QCuBQdx0YTWslowRCse62MIq3zefcHSUoTFwShtCI0PfKXtR4tZ+Xbb+Hn1SAUXPwewsKMaXWaLC2JMofTtRqwZd5RnmQtiBmObZSsW0gR+sfR8KIdzLCvgrzqgzArKxeeu1tBdPUmOnDqCwWXT+GXnnPw0PEjJCLpRHc+p8J50xJYNUqMbpWbw9diL5Ab3AOb/jrgpKsPWXb/D/7XpQYiH0TRsugnwujPkGShD+2H/1FkRCNEJdnCZdE7vPDea/4aWYm6QlPp11A6LJPShXHJYyFktCfOLbaFDeVtMFd+IThn1YGU7Cw8+ayLH385Sp6vN5HylglQ65nB62bf5gX7DOnLYieAQzoY+VcYxaT7eOi+B87eWsm6DvqQ7fIXVey84MfWYTI/m0UpkxA2CCzng957IcfzPdxbt4Ky3A2gXzOXLF7fgvdjsjC2fxPXmGrQuaBs/LpVjv9WOmJGShd95skQWrSGReeZ4fhPPWTsHsL1ji/g05eXoNYtzuJ1ivQz8yvODZIE2Sm6INvtTA2dknykp5wyMpWg87Qh9jSXgsrObzj+WR8N3pwC0np6EPjWk77quFL2Sy/K2nuK+yYo4MmWg1gj+Q2sm9xgs6sy/IxeSUdcJnKngzd3eCuR/QZpOjuhFz5O2cBeD9PZ55A3zWjVh/X7roFPVR7+nf8P2maL4oCvDVy8d4wjzsljutEV3qtuBKAIsNlpOQxm3+QK4ZUY+7oejFfm8+1PeWQ9eBw7/1WieZgOTC+WgUcLl0Du3QRa9GcB/apW5oGsl2T+PphnPpuL17PCyGrxDahdrgPOI7Zx0P0WTLoxjS50V8Pesl72kz1OE6a+QNuQK9D9Rxx+mE2Bfb9us80xF+w7MQeUa17jd9vr2JkG0BlVC9/faVDdq7UwfZ0wVA3thic5l9kybi2MnTiJ7J8Bq25YSRImC7CszgULOwbAQF8GDjiV8Yk75XjlRgfVbl9Fcy6LwEq9GJizIQJfl41Gu4yHoK0jCgc32dPeki4qvxtITa5lHDB8lk6ukMa0w5P5tLc2Dm39hvNMzcDm33nasdyAxHLng9y7OupvdwLlzg44ZjaJReIrecXoz1T1SQfENOtI6PpZzBBMYZvrx2FAUAmbBKdyZuwH+BHkBfrGthztJQSRQ6dp7fIGuKB4CQLiqzA2YhtoRbag7Ic4DK03xXd7grBq2ApejzfA0twZ6KZxkzv3xZJp3AheP9sIRe89od+HZ+LHv8o8eFsEsj6dp9u+HvSoU4888iR5ttl8uqj/BPIej+LlRsGgFnYQrZZqQUj/AjAVuY0bvQPx9JVslu8V58Saf0g1a+DB9++UYZTDEhEScEn4K5xe0AyL/jsEC2XEaPTOPdyZ1MIbzGw5LE4BR2okU2XVRMhPesPVdbKsd0afetxDWe34LW7adwnOlZyCmbfO8hpZfWQlQYifKocJJyPhq/0QH/O7xnfvHcb98yzoXtUSnFDey65drXwyfRxM1riHzsffQ8yfdpYpTKDJcldp85P/YPknxOpXYpyflAhdkpPgVMdm0r3oCgdCleD4DVMom+4IX0MnkWqlOnbvP09tYZfoU8kk+J6phJGhImhxMA39inV51gMD8jnqAC6vqyD1WA2dNY/mVwKW4N+Wy9fl1+Kzp9mI49pYdc8iTjUoI5M3AzwvxBOecjWE/9UHktbBD+/OgULIIAdzAfTOGY16C9uxWroZ9+UQqvrvxT+pgnBjjRGeeBBH81x+ssBGBZqWHAgnDa1R98FO8B2RxvPFdWhOoS44LS3GmEkSsHLHO9yilAzjo3ZQYs1bXFFwF1MtBLnNfAH+W6ANTR8WoeSxSLbxnU8lb+9wm3ALH6neCDGzy5nnn+Rvxa3UXTYOzj51AsXF38hgyUkQzCzCxKJiiii6g1GuK3BY/wNuG7an9NsToVzBGpecDsOjE1bjwcZbtCn9Pfj1TsVtIY441iePdBtlsFpSFnJVXvDrp5vo584J5OFXhj8+aaOc4V5Uv5LLQWMfgGXcLxrXPhkeFZ5lo8hmGD3uACiJ7qYp6wrhsEQ4SuS+5phDwygv1IGKYqbQ37EAXn9NoVlP1+IZtW2ge82Uzp0oRLun40A90gt25DlQzmNxUJ1Qg1lCubyl6SebGPSQqWQNaejfhte7syCMJ9D+I4q8L0cG7G7FU/r7b6hUJw1n8u3pWXguR51RR79lO/HS/C64VDsDa53EoSFmAnsdW8xBr95RBImQQsMf2nx7A2i9bKNFKSmkFfMATw9qQeT6t/ivfQMs7l9Eyzt7eftjXTw1cjRuPV0C85ymstYTpGAdaegSGMUJJy/x+s1FeCXUk28biNPZUXV83SkBXkkvJvWnwTT703gweh2JvY8LqHFfH4z/foW0HmaR6rdAMrWazvc2meDtIz788eNI2DBvG6vYRePOqCyUspyP1komkCPbjVZdO2jaYAat7k3A9FtSYBM7hc/u8qZacQVItlmKs0684x/f7/Ii80s445A2bDLZCeO3iMOD1O+U570Ujf/Es4/zDkgMiAEpy14sAzvyEzJFgXlujK6akD15DS20GU+OQwE8c8MsKGzW4ImWmyDz+wpwvPiakhXKuDxOCKIddpJ4zl1uOF8Nkw5mgHC/KNTGPEeXYHPwuOPCBdU7uTGDYWe4P/ud+QojFhL7uavjrtDP+K/SATdWq1PKlAvQdcYMjtWqwPXpNZSkth2uxsXQ0OJeEo/yw8DL+9i3mjj61lFonHEAiv5OhPfy09HCfzbF/ROEEQm2fLN4BbS+jeEKS2d6eHks7pGVoN65E+DtjHL2MctG44y1INGkzB2jI8Hn/g1eMdadcMxHnupazN6FRvDvUxXMO3sDL5gHw4fJ/dxnYoNjLz0jh+AmPGpohFvK4mBSoCaMf6xP/ePWg5pEP29cUgVzTyjT1u8NYJKahX15CvzG+xg8TLWC07lDUDRBGd/dzSCznYI0M60XO6sMObjdDW1MlvGbv8241F0Elt+5gLLNb3BNhwpdHxSmU10z+dw1YXTd5cMJh//BqfRPrPBFEsakjMK7W37jokDAlwlW/Gn+WTT9uoZKG1+QwsVydN31Dxcr64PspG/oLzyHg9wMcKKZN93/1EuLTguyQulz0lDPBUd9b3wBCvD0RwnKpclj1MsQ3io6Fj4n/YVr6Z0Y7NDHVYHBMGaPJmSEGcJswTgumnUbV6snklzfAfhGY2HSQD0oPUVcp7YMFEb85uIsA1AcPEI77l7ACfHV6BWOcPS/j9DzdhvcMHmHUsf/QkdNIccrmwEfP42n/TdCTYsjKsqVYsTNTDyQOIGecRXYHnDkOVkqmBSvDn7SXfBB/QMrdH7EPw8XwBy9CIo59R3m7++iJ3diyGboGih4C4Hd6jDWi0A8nuoDoZoJcLA5gdaVzeHO1c84cMwTumCxjDIWasLnbQ28MaOeww7OowCPQV49NwgSX48DqY5wuF+tRz7z5vDvemFQ4p/Yt90Ujwdsgo1mr9lA4SHIjHvI3vOH8FHFLJxx5gBc+DEWJPY5cdWRebzAupuqR5/gJltzvnytmyd92waWby6Cc4cTVs+aDmXTX5Gr7BacG+xChnNccGpoEC9fN5oSpnjg6Zl/sF9LljcJj4Sik0PU6ioLSQbT+NiBX7AdbHl4Qy2K1K3iA5FbIHvGOFjuqg73D9/l4LwBqKhz537hRtKKHcJiyVEUpruFZj66SzPPtcKaVZNB/swg/8tYQpuFTsAlyT141VmGzMec5CMG5dTq9JsnrPeg4DAD2K39EMe+eojPK36ziqk0zF7oT/J5faz1XZTrfRNIZ9xdxiZjqFPawm2mJRiz8A8FxM1Ab6taGH1mMt8L1OGnknns1rAbrdqmQP3UM5AAVdRzvJtcvjZhz95FVKHylHw9V3NfnC35ae6gpiVjoSDNjVqP9LGDcymGG8/Gmhcbuet6Ig0ZjMKrihdIfVYb4gkDKP0vCXc+UCL/T7IUc2khCsvLgGn0bJx6ZxbV6qWxjkoh3dJUhFTz17DlUTJVzJeAdNvFpCo3wFvGLMJfY6Qpq2crzNnYDGteAOgXDZDrrhB4mZsPYUuDqGmMNyWV3oMh060QqhcI46olqHylKsw0fkUni83hqk8yLQl5Tl6OjyBK6RFcrHQiPxkjUHz7lW9+MgK59x/YMk4QZ47sxJF96TBxvzhkJrlhgY0nzwwgLrnqwjKv5WFSxQOeZ/qcB280kYfKIWzIHeBxB2Kw2SsNZihMYy+rIsqaoQuCDqEI0gH89kk8qc5OoBd+CL9tDcGrqZVPPLEF7a5ifLpLEPTmeyJ+jqdxN19jYugbvCtgRK+Tx2CuvRv5ib2H2os/KG2CCdzwUuP1035AQW8WHRMwBH2nXziy5S12XRqFN17NwaWXz0OT4RSYF3cTMoOaQSHxHw0HbeWIMiM88b0Cj3QP4MwsWfKL72FXc2HoOCCP9m57sWWBME8//IRCrvwC58nyZKHXD3XhNgQ/rKg6UwHEe8Px8hJDjs2bg8dS/vIJvY0krDWH1M6/QZOhGKpbV4jG+/ThdY8EKU6ZAY25AXRwOcC8v820sKmWNCxDKLEiE80WqrPTFxkQCHQBc/F94DzbFr6N7IWJmMfvHW7jVHcpupgzDWJmpOPt1xJwf9Z9Dpj7EFfk5fD1iFlsfegMfnGIJhHnn3wppoZ/m+/ChtkAhQuHsfb+Wb6+9yieE1Ili08FfEz8BI598Ax39l2l8xEeOH63BbRtlEcThUnovd8dDvy7AjXn5als83iuVP7CAm5FeDFxH5s/14N1Xso8Iv0m/5z9FZ8GiuNOo5loatsDBZWj4JdMCZ4+7AczHhDExGzhzR1yIGTny6G7NtCYDTI0WvozN917yJ/mNYIwl6DlBhm4eNkCToYSdw71oXz3KHZf0QlpSY/B1qAd/MVfcSvk8JrCseA4dwNeT5rFri2PySEkFRZNiEDzVWdxzcoErLFdy/dLi/n0EkHQ3jWBZu8/Dz4uq0k5VoWXtv3jjgWxXOI6Hadf6eSKaxGobKYJDdITqCJzFUyd2sSbdaSpdcV7DO9QBDfx73htOAY8nITJc4oGnB53gfutAEPfn+cRYdH023oHn+fDpOi9B7R/J8Lzj9/pv4AxIGo1yINDn8DxdzFN12/EhzNDybMji9vmCWFKqT4P2hWTS60cnF/bg5sfHiJFRyX2ue6MWzXcOU72LvuH1LGGghu2THqEa/xFwL/xFVyc9oXWSY3C200/2WfROmrW0sT6EQt587xWNL0mj/sLFUHQzp9bJxwCUdMVTLO2Q967OTBd6C1oOutSXZMrtF6q4geB2rBEIhNv5Fxl5XJ3HK33gdosNuKMjE5QFIrhF+vPcYv3ctDI0wKx5CYceekAKkzJJgUvGT5+7QQNfdPAzvzXOJLFqD0Eca29HgwlfsVtp2eh8fk/fL9dDsycZ+D8gUb0r4jjcV5zULdXEFJWakKh4Wl2mDKJUx5F0XHTN2ggUMS73VOpNaoVx42uxRGTL0L+cmG4U9IJ7WIBkLnmBAle78ak/yJomoko5F7YQF22eiRyLQ1Cs+Thpk8h2O8ORkFJG9jeIc0uxhGUJ1mNu6eu4zdrndHbcgt8Wy4P7bn/4bflcRS9/w0mfu2niTrt/GzpdVbzDcVEIzOKnnEXTs+XAPL4Ag//RwB8AISAQAEA/aOtNK3SLu0t7WSUUaKoiIyISoOM0tAgUURERqGQ0BmRUBqSPUJJSqWkIpUkItzzWc96h9eztKUCHMkGfrBzP7oNb+XWjKV0bftFVCFjWCAcCYZxp3C97BuaUJHLz5aG449SaRAT66bTr9fQ1U0+8GaePgztVqHmcWOwcmEr2jos47LsQLSQFmTrbVro3PWJFIwb6c9JAXj08jDkWM6Gxx/9edvBHrrxdya2XgAM2T3MSrn78Deb8fj9+iBRD3xTcS33dpay1Gwfuq9rS88OMA8f/sofR8/Hv+vG4wYRTYhrrkD7oO0s9fAUtX7eBlXZ7/lSyjMa69yK497f4CeNYRh6whA61L/Ag959/NhTmGVGzuQ1HIZj5CIw7L84uK33GnsHrsBIUWkQjMzlhE3JvCA0lL5GDaNWcDqWxBzjuIgnJLlcH5YXCeHF1AmgI+MBK3wb6e+Pw6A7Mpe9j+9huTFXSCAli/6EVZOezGc6sMAaBuMl8GGSAJ26co7CYm7TxEcdNODwHfblRLLvTQGM9n7J78tUIGP3eLg+wxtKNH7ASO9BLrKup6+fhVnP6g/0pIfQcYPTbNc9FhbeD6aJM8RB7MFFnvQxigpFWihWTwqmlY3mFn1Tsqn4ycHGWrBSsJaFTn7H0ZqaeG1wAmS/vArK/6Too+BFPty9HaSP6+Pk86qwKWMnq9jcJN+hJLCYO4Zq5B6hoF8keNu+wbZOX/QIf8b7fWzB1DIHJPJO4SWrXBAM+Y7zpxSRGQ7QrU9GtOWjIjZ+eoUKktJgvFKEvmy8RK6emZz5RxAcnUXpw58IkhC9Q7xPirycz1LGeAHQudmFD41e8J2kLbz21xTadDKEXpqv4t9BLpQZ2c+rVZy5eFAY3NMieV1jNsXeC6MlfmPox7GJFG1jQGs/JPMZ+Qj+uF6KX4QIQWNuEGfu6sXEdmmUzKxkn9G5IGa4lOxCNuKFuktscmoAvWeIgXdzNSVfm0u+zT0ga+lOYWZaZByaQM4GC0Dk/QWa2beTE/ysAO+J8fyxidxsZUEr52+lcfmj4M7tPdTkJMrj3FPxdZU8OoyRhSHRMFRvLoL43bYEjRvhx5MSEDa0gyPTO+CK6RNeVByHO6IV4MHpRbyw7DZb7FVmmb6LbOX1HOqODVN7fB4bVdtCR3IiNPYpwpT0rbgygRj81OnmjNMUruOLW+5+xIpGJ/SUMWTBo3MxfJkw+J4rhbwtY1j73xC875nHmSL9tOhlAFydIcEL779D3Z8WfH+LCehppqHWpVZ4vDIR32puZ6eGDIwNzgNxv35caTwGsrdJke4CBOfhYNZ5kkNpSbnwwRLJP9McK6zGsc/sXjTsV4Xh8D0UnD0CUrrkWPrUHZ6TkMoBZj5sX2mAP4wz4HG6Cb/5MoXyWzugNV4SFn0IY/WM12DzVhPHFnzlyPQgPJt9DfTqrmOnzkg02WjArzQsYMP6WD5pLwd3LmxCV4MA+Df1LgQLNtKNSEWKqXgFbalxFF4mAmImezjk0B5w01Jh0clZLOxjCmL7vWmDhz8+sHpObj+20MefI2CVahv9Sg2lhce9OOVwCl+ecpwfUBDtvl7BfrZ9bKqcC9KdxrB0lxaJH2onVystHhmsS9dE71Hebg+qV5qBG41t6GnOOWqeKANziz0AjyTQqh1JJL/tBSQuNsfPfft4X0cBWJiPxCylfxSyYRJM7nTmauuR/FbbEV6OICxR/Mw3L09Bj+o6zA8Iwb9HbFFpnhbEt4fRiouL4NjbON4z2Qey102FL6bIlh2DYPTvJcUXBNKmZ1pg2NmMshOe8NmMRDKyS6B/tU9pw8BitpOfCT8qb+Bkv25Y0qgJActuY1JoJx0t+oVOlwPBubgTMk6n07Xd9ZyZWowqAwcxxVsfpGar0PoUIV5ms4Dcur0w5koSJLnbkEJZDlduFwHXDCdurzGDe+WmMOPhWZry9RmMzVjDyuV7SUJyCW/raya0/0GbRBfiNAl7qH7wB40OdeD0MTkgJ6cLItbP4Oy5e1hkaUcioRoYZBcPzfcEwaX0O+bu9OIfY8O4NKmfJhnbwNe/ymTsugaVXYzATvsbBtRoQbByOt+8bcXf//Xy7cfH4cjOBzxcdpEcR29lGfFmXBmlxeVvlGGL1CfOzsuGpIeXWKGd0XSROWcqypLs+U9UenYj1WrbgKC6NsxeZAe2ezPIa30X6R/NxBPR5cSfj0DyRADXN6Y4eEOBi/OsoPrXZbi0cgv1NpjiNn9Xzms+hE7BiiAnOgA9JkVokbgAVmxWgIJEedBybsX/lrWjfpgrxzbo4rS0W9wX+QqfZffDJ8N3/OPuKNBa8geevimDrXsz2WG3HVfv0Mc0t5MwrCjLI+4W8auN+0EqQw88zuRx/a0NrN5xnJ2kbkDU6Ln4EWfxGtHVrDz8kwVsP9O3lQS/MzzQbsEozBaMpc2RmrxtcRpebTtH4euWQJB1L9/U+g/yi+QgsdqLFoz5Dfn7N8C/n3LwNWQCuVSV4iHVZj4jLUuht+6CtZcGTKUwOlwjxLPZj5LyRvAGdqbzU19wkOpKuNS8AXY3bMOWLF346Ylk/scXs2QfkJsCwZoaBwj49YNT5D7TJQ1HFMiZh4tHTACtectBdnEd11X+5lG9nZy7N53tb9TCtwFf2vbGCXolx9PDOjm4q3KNz73xQ1uez+sMQjhk8Vt+N9IUOpKNodn7J3ekidDlPmU4IreC/vRPg3cqN+nsfKArbco844Qw/w4Rh7s9LhD/+gO/LZCDxD3XYaSEFGruf8/aOblU6R7D+W7+WODTxNhWzGWJphwyYAVpoVeoK+gXaykcwKyIw9h2NoE6uQ3Sw4Jg1oxIfqf6iapjbGCevAlnV+3GpVVqdH2dHyyTLYaB3FU4e7Q+Sr5PppyQXKiUNYM3W42xbfQm5C0ZuGdcDp/3i4JNG3TpUG0iPBVZgTIFKXhJTwX+hPaDw5QQOu95AsfoSmFpqTYceZFMxhntdL4+iueXT4IX3gJwQL+I0r8YYpbaJIxJGcvPKq8B2Qaglkk0h4w9D1ePGKH4HEGo0j0NzXZpvLKuAVw1U+GUQix6RPmSjmQ5iE4rwrQvv8Fytz3EDcvhaoEB3mh+F6PPFGJcqRKllCfQfr8zGOiVCNdHnaatfULQtSmQd3xuR+NOY4odK02lPkL8+ed4unn1A6ywPwuFR51J5/FY2LFRkVuij2PbBhe0uRrFHyXdGdcdgsNpo+HSNeAT+bX00cAe/sBx8JxehfZjSshlizfM1GzB3pk7wXBMBbUsykeVIGf8t1oHBub6cs1/PWi3MgMfL6mleZ/7cJ2EIj3o+IxjyBTV9pdxmDiD1GcB3ng9DdJ6ttDy7AOQnwfgkPyLEt8m0igbY3b2dgbFh4oQtCaZblzppnDjC/x2my9Vpp/j3rmf4O2YIBxtbIY6v96DbrEBqNV/BWPp7Zww9jtJ64nhyCcicDVSBS+5h7OY6H9o3vAUt0ebgMPR+bg28gdVJN6FtnNO0JhQwD3Bd0nygRinxjzhMXvGkMtrKdgd68GX7yhhz4Ye0grLouaDSiCifJ62nl5D5vG30aGgB8rWyUJHwBfORCdqCt/Lk4yC6aP+FOpVusvP953lp0Ll4FDyjfPVrMF/RQ2V3KjinAeeOOqaJozRDOSo4WasCO2nsrHrofNuE+XomkBF9i/+pKzJR/+eo7GGaZRm1Ytaa/IxTeUxCglPw5kzgvitA0DexJUstNoTs7zusGXWRJoSNZeK+17Q9s7xHD/xOI+UO8QptgCf/a7Cv0lfYfk9Vfxm0A4jXujwrfgLRB7CVJG2CbdPzsE7wqaQrXQPXv9aDzHfEzAloJhybCbjDreL9DhtEy92yqLSzDb4uFkYRogvxK8CTznSSYcvj+7A1SJxLFyYQK2LAsHi8HdUNbhJqbO0YLagJ7nubcP0bfL8zKYICxruUfF8FXStj6GXOQAA2yiizhJq+6pwdsgwy13fToM1peTYFkYJOvZQ9ecmahdmgML16RQtKgqX7ULp+6Mf/DrFE3MfamHmYCRdT1PnO8LxJHmiifWlHOjnz5EwWVeOhfojWCO0EirWZ8HKt4Mgv3IlPTB5jnci3OBR23XcaaIP8uJL2fHrCXTQdWTz3HyoHMjHjp2qaDPcQEKOK1ncNIcHTWygfNodKn8WDeM8XVFlwn2s+baAjzxwgFTxxTj9iSBZGopCzgcLiLIeArF2EdzSMw2NVQsg96Q/rz1iBLWywWwybgfNenyX3p9Wg9oeEZoxaRV5tdiSieZz0Fz7lh/MsuMV/JPzdjnA5SIn2L/NAk6tjcB7So4QGXAOF705SZqEXPTyFr27s4YLaSr7Xh+AJawFQxNV4NOeYopxnsVLvNuopHgp1dQtQc1WEVLLcuYZQgswwH0EtM6OIiGn5+x2Igey0svQ4/o/aPB+hb8u/MBM0zCOniANZlu1QFXzGJ4ftwMm+nix3h8RVppWBpeS9+B+11I0teuDl/t+wqx3QqDz4g3Pv25OH9+00szqTMrfoIKmPxdzsNlU6jn7AP+9XM2+d3SgWegvQPUm7F+YR/dCntFNJwk0WugKZz5mEFgokbyaMa7rUQNhmQF4O/0qLDP0oAeDN8EvwQirHRtBc2k3G+28BuceToHfuvbwatMvdN58mbVEVfmBtCU9OS8BBz5soPEfGBcHJfFBDTU6+FYBYm6FspNsOEy5IMbjTsziOKnzWLy0m/Je+nD4g1hIfzRE2Y9k4cGpGrL2mEEG5sFQc+MepK3KwqZ7E9ni1AHoTNJn7eqxDKskoW3RahqbEUb1QV3439pWvJbUQDHnu3m6qD7VSpxkhUu54BkzCe6XL2afFkU4qT4OH1T3gU3FanKL24rtEdfx2pg7MFXgHS4SGwf7fSpA5N55Xil9BRQyJ0Hrx4WwftUvdvG4wTESxTg5eydE+E6CNpUocBixFQ+dO4jj79fhBmNnCKndSScn7qVLXEUDg1EobW0KZzZOwNHrx0ON6Uc8MC4MhB+ZY1jKTZQ5NZdnKonRhq8dHHN4DOzzzMMZnc8wKfc+SLEA5p5fBUsvKvFOI3UqPSoCXR0TubxGETYclYWz25IhQrgOu5yc4J3lX0722gGp+01oasIN7otQZ+trsjCv2AOmvNsHYaNe07FZZXxqzU8OUEyGa935/OeFNzwVLOXkf+Nhac5Ber4JIV/1DycsRU62vw/nyleg8vtnpCt0l/19x8LW2+Lg8d4X5RO3wqW+TJzWMosXROzh88uqMWHYHQ0ETDFaqglEDwlBXM9HGpE0B1WuGbOJ4GN4G/8Ny0+J8N2cFAjKn8cqGmNByGsi8A5l+O9LB+atk+PVLk9Y/3EvpOedheUTBSDkfhhfXJZMGoIi0BG0it+8nIWdG+9zmnAeHehpg0NZ6dS64h61z9GnAFjNJwfM4dCHB4Tdt3F1oShcVMvnSkl9PC75Cy/Gl/Lh+wV4ko+jI0nD0a92eOdoKV8fU4rbzySiofhGFHj3CW4MhHKcWy119d+m4rejYVHsb7zwoowOjgngU6GzKbJwEnDlPeyPl2M93w+cmKcOP9oMoCxFAjfmVVDeq3Ie/6mZPqy34T20iWKj5SFkewUclnoCAiwII/vCeXHtRt7VGYGztT1okYI8B87eCpGdN2C5SSAL3r+KIrN0AY/VcecEfypfG4w/En/BtZ5EetpWh6vWNfCSlXqwaesu8t7L0DJPgAd2HKGOS/54e95/EDZLjHSX/IaVd9/iLq8GTHe8wJZ9NvDlRjd5tmTSgwpx0vHrYIPeBbzt8Gp+JK0G0yyn0L/euWAwYAeGU6fihfQmyC1MAqNpTPLOo+DzEmHyfPgKjSkD117XAtlGexC8tIGOeVrSUOVyaK66iuphh6jsmyt73dOG5vfH0eiIBo73NISZB1t5lnotnG/rxKhty0lnkTFlzfpLq1WWgtb0CLK78xATNqnCzieL6Xu/HYlZiXGdUQAH+9+mSxeUYLjhBcX1CqPRunw84KML3hsvU8AedV67y5er4SAFHnlHF6PHoa1TF5p3u+Ku5qvketAc1F5oAPW44/aBqfRb/Q5Z5QKXL/6EY6vOQ8o0wF1r89Hz5UhwlZQEi/i31OajDPdt2oALHVEjrIW7J8mh3ZwQNG55yO9P60KQ/0paGitFxS6nKHSLIUffLMYnZfuod34a7boyzHckH0LbIkNYE1fP1w6GwNnSKNL84oUJHr+hWdALKWgyZfVOhm+n/GGa3mQ4kFdN92Oi8ajyC5r0IoNuwgMy/nkAbYvWcuf0M6y+dB9e61eBV6cm4XC7FyX9e8BznG1w+65MKLvZBnlf5sLE0iD+sHoF1dB4yNCWgORFZ2CBzla42DUbhq7MwK/hyEXd/8Aq1h3tRx9BKzEzKEgWpIATGRAQaQWScqbwQ1ePH6ZmwogvnjCu6CRUlthB8C8twJPtFHi9Gm0iTLFdqw9KrkriZ3ddODS3AMK338D3XZr4ZJIiDO0NA1WbHly/4T8e1jGAx6NEsHCHJezmFEwQ/Y8b7ePwg4cAJGwK4b8Hqlg1Vh7VCh/heRVVlL98nM7leWPtiotQqdlO9Y4GMH73Otg6YTyPsYziUdMyePTlJva7vgp9pLvRQM+MVoZupzoZA5i+fiYfbQrivtIavvy9BXxNt8PyhGLYlKmLUxR2gvfSOLBIEYBV/Ytpd5A38DMFvjHnFx8XWw/h00dy2dr1KCM0CcIO1aGTpBGsVNSgeqVertUPYnWNSRwnZEG39g7CND8nsrwxEssXLMQ+NwKxazvYRTidnT230HEzN0j2/wFWDn6cPC+QwPEBqPbvQcl5irBYLgsnRM5CR+tX3GreQ7WtP2mvfhWtP6RPblWh8HqyNE02lYfroTPpZrEEGbtNAgfVOs5YYcAFdvNwuDILD4TlgPiG3RR9SRz+xDnQ3dk/IFG9kKpHCUC2w3e+4lIOZMRo0mLBDi/EscbCFo5IpfOH8Hp+obgKR5zdAeO6ZrHi7zAqrjEkpZZ7RNEXoHG3IWz5E8iap3rYuPA+hyhZU1bwY8ieFwhrL8bx4+HtoPlwLlodUwTvZybYtH4bDKQsxdZ2E5jm0A6LbwWBmKcfxMZFwKt3s8D6rhQ8HDGd3Vc1stRRA7goHMu/HHUgRDoFuhY184tFWvzcPQ88V6hD56kKFsRWdDffC2AgQ9N8XtDEWGGuWpWKZXk+2Pk8lTQejQJlPyfSrIjkVvc7gJnVFC53nxoeZ6DDSU9adNoLbzVaou+XMdDkvJQbuy7S763mdGubJKQdXQL3I8diy4I3uL+mgO3b12D2Slk48iidQsKKMFT4Os89U0hL1lvSvBZt+pL9mxZIjYIaB1sOG6sI12RHwR+rYe7qd8J1epvAZVE0lo3yIOtL+3nIdTcUXvSgamtbMJp3H/pGNpNlaTiu7nahy5Xq5BS7llbqKGPiQg2yN3gEhld0QWvObp607SM9VJpF/XtDaE+VAEywTie38gH4OsaFT/84h+3aI6F3xTfWeHYHH78awJUFXdjvPg7/pezjjTdb0PF1OwxNc6PWeZqg+3YlteUJQdpnQ9rp8BoeZu8g10fOPH7hZdQaHwuu3T9Y7bIaXK1Fip3+mr7+mk7d04txeM4FdnfTJ4EJb+DlWRlSn/kFbKvGgkJmIGyVkkDUlQPLvk0cP+zPzpHHUSfUGcO7ktl6+26q9pSFnVNMaHz+WAju0uezO+6Dk04ifLfOI91BFY40Zrq35iAdfaUJvalvsDLOg44t9WDfzniWHN+IB3rncnlUIB6bHULF1v1QMU0YNjQ+Y2cFW9o4x5wPqxZS6V0VqnU/jM75SWSa4MJ36mLwuqs6/Ff2nVx1denPlUoaqfmRW684g/xcQXiWOoh2Wb3k7XqIcyztoddHjGSqpWjzzQHeNCWZpw4PsExtAWSVXobyqD0g80sQg89JQfz6Gq4wb4EZOzvhktBGfFQgQH/Wa3FQbyx/jVtD8YeWw/pCCZD7pkB272Nh78N2qng2gbeMFGa9h850Pb+TEqxH82zZVDKK1YNwx9/w7OMw5PqdA/sjV0jtUxuve1+Nd78AUas1vh0Ood4UOZgrKws3zo4n8zBrlP0SyfoO2zF1rDK/M5Kh/M49MGmMHWYHjID/OqwoZ+o9ClTIoaHIWDC+rEq/hQ6Qn+8O+uOwg599mQpdg8rwri0d3DVGYm1NIR5NvcWz9gfDoucmXPG9mTekXuPLJl1wzBrBPL2cBwq/ss3CaNy6ZitWf3xFV9Z+BZWmmfh+zgGI07kGLRXqMHvZIno19QMqivVjSXoJlzqNJpWHTSDep46+E4O462wR1RxQgF8m6nBv41p0tW6FvVxOk+o1efm4agreH8Hbj4yj3dfE6EC/Fnw7UY4NAfXkQx/YtfAldGEI05kTeGVoBVyJ/UbJag1o+pbB4pEjvFMUpLzP/0GRRxMN+Jzj4o0WVPLFkFucHtHPkyk4pkEWpKbPYJ9937ninD3eC/iDlzxv80idsRC4bDbq+Y2CpIaPvGyLHpgsc4OGHH9acGUytwca8Z5LVyjCLIr3+Txi2VkXeG1kEewVN4AYpT7arBIKCwNXknvZX5YQjGWHs9motjqB5Ef8ID/BF1R63QyCXb6w42JJCp1bj0l1NfT94292uWjGQzbLKO9mCEP9BZz/XAmcPK3RyfY37ayU4I1/loKR0iZY+yYeJZ0j4aSBAix62c6HUm3AOe4gTOnswEW+IpDb24Vy8zLYTmQmvur4zF3S9/kNTeV5W8dCxTRfOp36gF6eqia3R6tQbWAlRkXtAW/fE/D9TBQiXYC54uOgrvoyRWVVgUxwO525Jgfv1p6jfVNPYobIMro3vAZ+W47DIfHRMAW+kJHPQ1yjUsCnBoZx1kQ7GF7yHk7dfYj+B7fjktlKUK0qAZNXRXPyodWktn8/XtVU4gmRA5Rg5c3aob9AtE6Xuhoec+ZqK7ippMQCY/bx+iOzabJEIzgcWsiqObLQUJMLkk2h8PjbHZzsPglemJ3j9KrLVFDpDAZQjhdiN4Nv23f+HGiHH3+d42UzhvHGKCX4JSMI8UHqlLn/Kypb3cdNWQ8peZMXvt/RREtry4DVd9NuqcmQUmrN56ZO5ZgrJdjWf4Z05o7gY67PIabTHSs1w2FQVZL237OHopsKeHWVK6tFbeX5R75w4sW3NEt9LAVkh8If/5l8Zu0YuvxPHG4uqWPV9hfkJzMakqc70du4M3BmnT2Fv95CZTufUFbJL1QeJQCvG7LIY28/thf20asvGrxe8CkGXVzACxXfQHdaDmmIzWd9GR14pdJDx1K8cdVZWZ4x7h9/+vgG/go3gJ5XJq7acgiM1/hC62YLwCP5KPHCEJfN3M8OFi9QyNmPJ9m6wmByIE6Ym0Jy9nrcNGwHOsKmVP/2Fm9Lno72y8x5XOhBqvNcQl09H+jWmX7cKnKdPtMkKHy+nyxNq3lKygQYVT4Z8q69poGDqrS7YRF/LzFipTmJfOK9FVgKW2BE1yyKG2dF7QWivEbfmrIll7JEvTJcb37DoW+7eFKLFRTLbUDJiyI0fn4B/u6zY+VcBwotX0u3F5yAOs08DJpiDg5LhWBndgB37N0N4R2qXHfhAN89kQqOx+T5gqMESiT4cm6SPiWOFwOZNiFKeOQN3uNvUK6wJx7UzsKo6zZsXyABkw1TCAKP0j49eViVOJ/VRgWwcNteDgscYsUaGbaKnkGbrW7z98QjcHnVB6gys4ZznepUpOPE2ptuotj86/Dv5W6adrUK/iVaU/nSUFhx8zZ3RkyAPAUrTPjSTU/uPYD7ibNAbtdq/qdbDfXKueAq8YkOjegly0/K8NHdlzBcm0wkj/Bv+7FUWB6Bsl1fseOEIuce+0FSwb9x1CEDkBr2At1bd3l8ZyDkiijzkV02uPChIp8yWw6ek0/BfeN8ujbLCspOr+bm2Nsw61AZ2evnc59gPUgt9KRssY3QEXwaR/l7csAyAYjq3wxWHgRKV10hmSbjm6k/2Kx/Mp993MTZ5d2UPaEYFm1SAt9N89FqaDTPgNEk7XWbj5uvpH2qGXBp7UbY7NjKZS3t1NE4ElY2lUPxJFc+6GfLXRNs6VSvK/mMHQ8Gr/Vwq0Q2BkIYvOxWhVpRbzSbcRyuF5xgoSPtsPhRHJlenc/pr6zA4nkEv9RRwZ3b5UH7zj5IS06i1HEueEDpCQ0s98UFiyXoQetuOLjyE+kInYI7ewzh0Zg98CPoKJZrxVF9oT3uL16J7bnhLN+eCE4C3vB26V5SdJQDp7K/cHZADj8ZiYD2k7fY6rke3584B0sKgqkwZBg3qv1hh0EJ+Ki3ET5XTaDyrkI+nx4KdeLzQDCF4ZL1XCybeg99IlpQ86UUbJnmTqeDWvg/hzt88dhq0IxQhq4vQqR1rwS7tefCicALuC8d4cxpbz734j6KmO6lhV0tXGKxDhaX+MGCJhuy1nwFg8/j8ZSrKgy5CFJk+3FWXZEIF5oc+UqjPy6xdcE052iWeG9NzZfPM0Yj6PdvYKGpc3mmbiQ80b8KSeptMHdnMIj8vQQRf89y0ORn+FPHFnqeu6Fx9W94F+HE3nKZuHjpDriWZAzVn47g41HXaeKHjyhbNRGmrtTiunUjeMO1TO7puUFNTVq452Q8Hp/kwCbfR6DRpGb6tk4JcnCIrOyV0OXRKo461Y4lcyJZKNqcq3M2wx3f8Xy2/i3u2aoOyW6ikGp4lp3yYzhriQJc2zYJmgfXsErVbPCzD8XKOVV0QlEYcu9WUdEIT9x8rJFi07Wo3uAtnq5rgft/VsO8bwLg5i8D7CgOfkmHua5hDzifDCT7DFmqVN1MI8Ons3dcHOx89wPqUuvh5WEZECpMxUblI3BrQiGe99nCOjJzMc1/FHSOyqRRgdIYttgTroQDGKlP4qLBBJQ8cg2Ptazll5/j+d9yed7j/ZQC9eLxa+sMOJImA2cM7oL012AWm3qNS769puBzv3F8bw3vPGoPvcfv4LT2Blj9WhsedomwnE8cuOqc5BGzR/C7Y5G012ssNEdex3kP5OjjsSaMqTKDKTct6N3vlyR3KJI/vNRFSt9IN5Yeo0jbGFb5IAY3DjykBm8tMPoWT+Lr1oDStGU4HZ/DoGkb3k7qgglWu2C27GvubWmh56gDk41e8PHg93jy2xl6ayiMFR1+3F+1HbZ5uaDassVwqzGMLMVkoN7CjQrPnoY7r91gkoUnmg06g2BhKV3RyIPAxQoYdC+ZFZZbgFqOMpyYbkIuNjlcbjfAO3yO4beKA3D070n8FmnDI+8jHKpRA/8njpyaNg+HXLaSW2UT/HkaB3dd3/FX280UK74WFUs8oGy2HLhYR3CB+3nyFY3DGxp2KIRRYGdRz3Gb38ASiZ2o8jobK8sVIcxoGF9cGaSNf4vorq0zGg/HoPHaCpaY+A/IMI79R6uAeqAxSB80gpsPcqBtmh//WqfHydm7QMPrBQS9eYJ75/zF27nRUFisDaOq9UnqnDIvOXQQQtKNMalADV/PdITNvtNQ+/5JPLFLE0rsJMEwoIm+pa2nAPv7XDTTif8uVqPMQQnoES9gzQencfseVU64oAmi/ZUQKmsN4pFXcYP4XFrm0AuT74bD33M2dKngMi5fbModSpIw43MYjhgfxMkiGRTVH0N5ByL50MTpcPLOMkqqT8aG6TNp/koheHVNi3iLKU14LMmqpYdoZH87ry7y5wH9n0xjh6B18WqSeqkCBRsD2VDtE/33oAhGj6qmzOg32FzvhSWF78DvxWu8E1dLHe068FQuD9aJObF4VQP/nDOE4/+7ywtbUjm9fj3svd6OkjVjSEt1LIw4sgV3WibTrqev+MGGI7AGxXid4nfoOSfMZgolMGWXPG8StodJD6bR4jm32D/AgMxsu/GvTAQoOCzmsUrpbKimSvvb/UC2VAhqU1L5TvZ2OlycwbXaG3lo0AE+ZlrgCsMGqBcbiQmPeynokigcV5aFXUKn2GtxGLQIPUaBn3rw5342mNQMwdWBEvBbdob1Kxj8vszAryKlfFI5gH27WzDX/ApuhKX4SEaQk/0Z5cX8GT7KwK8LT+jpKE3GU9rwu7EX7s/QwF17lOAuFUPtkReY+swYNasBdrpd5uVbH1Dd68VwL6UXXm22hKXT9tPpuE84eN+SZ03OpnWhk0Ai5gYKn2mgXx6K9ObAfTR5so04+xNEGQSQ/PM0+jHiJRYW2cHEP51oanINdzXak45gJW1/KIOyOpKI8c1wvmCQu5PWQUiVItwW/827Cxywsn8tTNId4lPvNsDDsI9cUiHBdivdsUPqLxxcOBmy7CZyfVUFHrXZyn3xS3Dqph4MkC5Am/YdaPYkHM8uJSqr1IBjs83IPGcWX9uTSqJr6sHNfznOHRqG96pbQXRGHlhkxUFRqww8LfpEAgOxtFpLhUQ65rPL+xcQdGs0Sh2aRG/XVPGB/Au4dJUS/HncRGZ309DJfDTjyUNkoX4Dt089zEmLm1lvtTVa7NuEKyepwvAeN+xsiMDUVx6wweYLXUv5R/uWlnPij8t4XvAV2fYQm31Qg8lLd0N5fyVPMX0L4rfvw7InNzn/uQlOr19Nr7RGsoj0NJiXYwQut9Zi0fGv7HlFC1T1/eD8REvozhjm9llm1OItj8PuBfzupw5oefzEiKGJVB9yFQuqz0LNlhrY6bgcn8nuQZ2SRFIalsNLI9RgZOETWB2zgMz6LqPoxaW48Lc2zutZxqvDXElitBS+mrsO3RJHwPMEPcj/DNAveA6UZ6+jnLL9ZH87HLzdzElBfBsYZp6H2fEikPepDI9t2YW79CvZxUgIm4uX01w7AfI2cqKqNXF49W0RWlcrwsLrqez60hYU2zfBlG02FHE0l/XS9NFNnqk+/Sc0zLrNhqlKUPOfP+YdcOT1RQ/xfUoxSkk7sszwDLpkYk1GLXdg8g8z+vBKED7tc+DhrHsorN7I0+v+UusoUYjtXsZP8mowqWwxLPOXJ693NrAm6DtcPNxCF+bsJ6mmNpyXVIAqfvU0GPQc4m4dJNHcYuDn4mDfvgX3JISj7G8bwHUJ5FFwA927pXCH/Ceq3X0JHX944tk5Y0BfXpI7nQs4XPkevfskiCIi6Twn6gycfXSBou8GwqK2C9ysqg0aYnNZ+/hjnrDPjfSOz+KDE1JJPcuJYzY8hUGah4faDHChDsC303ok6lnEj0KXs/wVK5A4Oor+OBbitGvlsF69lX95qMKJKgtYE94I7SoHWOt1J+rvSWLp2UC4pQx3Srag541oenVzBl/p0gXr4i0Yn9VF7YUrqG/aTrr1xw5LrxzAoUxrWvskAO48u00Bv6ShYew3lDrSAa8vFeDZ3aUg/e4LTd+ygJoULqPPomY++KURTkSbgcsZwHPHj2N89U6WCWjE1f7eXJFykooSd1Pz6xl8croBF70dC1sfDMFxlz5w1U4g14Wz4XhgP+z9MxFluz6j+ptfVHBmmMcAw8ZNLVijNJqboA5OXWnCdx0fSM/tGZ/KWITznrZC8MQYep1hCidspenb+FoY55KOfr4pnDT6MlifCqdv+3eB1Y4WNlJ6TGtWSYPWhUd0/nUyxb+aC3O/t+Ai++Uk51BHB412gcbNW7zu5Bfe7GoE+bFOOFlgNqyJn0VLxzxi2S+76eLCGJD1KOXoW7r0dII7nZ8zDrRO1bOLkiG9/BNAMc82Q4TEdE57fpyC8gwgheVYfOZRinAA+FmlTzd/mVFobyi81X3BNXgZSnwiYdBKDkeYFILr7KcomW0LRuoWUPh2ELz1vmDzLA+Qi/sPLz1VwnEDJrjT5jJMU/8GD9MITM5o0bhDs+Du8afQEWoBc52K8YJ/Gwse+kUxKXZcGLWTMppMwLZxA1x9L4yrve1xSlMU7Ep7AAEXc0C8zA3eDSLfHVfD/RaCMMZwCy4NOYT5ZstQnabSqs4reKBLjyNFDtIdxz5qb9TF1HPy8MYDELul6O/5t1z0TR61rOZh9+JhevvFHrdK+vGLgVTuPC4J90KG+OjkHtCzSOS0Eeb0O3sN9U2ZzJnPlkDdtKv4aXsmVbUpwZRvw5B6tBRFUiLIYHU4vH+mz0fa9mJtlAyFr9Fl9zglvq2A0BriSUEbr3CvwR+In1BCE2+9Iu2q9dAL39CXxpD0aSH+ecoW6obm8ebR4zDRRJcC8TOkWaRw6+dybJ9YjJIgiU2bzqOD2GhoefIepY3P8ZMjlZzkLI0LFSag8QkNevMmCtqlhkk9YTyp/bAGTtlIUmd7uGz1Xr645THlZC7D/G/fIak5ma88iUDhvkdoEK4GOof/UpVIA3UML6e00C7ur70D0jr2FPN7B1WNroD9E7xAVU8P1jVPpMji89AyqI+CDib4++NmjKiIhqhRIyh+pzjHe2vxxZuGoH5jGvzY78azk0Th9AxtDPjxHH31t3LLVw+4/XA+rf3iQOcfK0G7rzI2RG9D3/GlLDF5F7+uqKKsCfdo86iPZFr8lVZ0XIGiNns4OnsPN8z5ir2Kmlie7UVDl0tRofUq7/P1wDcS3jBv5Qg23WsMN9Y30cSscOJsIXjj/Bn3KSei9LIM6rNzoTMqWbxb5xfKfbcCv6BwTow8yvLf81lIfjKszw4Hr6ejeUldNpdFn8GY9c/xt5oA5JYu4ZJPe/jNTx1mAx9KupfErwt0eEucN0fCCF5lqosxVQYQe+gTevhk44ITx3DLu12053Y7mDlrYJ/mShgzqZsWTtZgS18hKCyphUHDQuxa24cRp9eA+J8ujIiYirZ0Fo0KJ1Ltc+DuVm24v6eOZTXGU9/RRp4Rns3PHdTwb+9vOlunC0ltQmD/+RGelhkHl+1iqVXmFWzJTyalX8akt3U6RA15slr3HEiS8kCzlM1QGmEBP2New32BIpDW3wBGfQM4bWMePJ+aCJbT1bBinxgF9+mCna8CXBHI4/cyfuQi9BoyDXZBocot3DFFGUbHSLBIhShNUt2NGckmUBOmCMv+zcRpn9fxo/fp1NoVCc1amjDy63P4vv0Cd/4cB/+8xUBw1TBuH3Ecbj97hMterID8hfNh6M8QiYRuJ52pwdjAgmxvMArkrFt5+Mkp7N5QThzfyxoR9ui3yosEJy0FucXO/K33NA4NjAefNwK487gM2Xw4zf9CD6KYTD7c8PWhWLcnnKunDWvcc3go1gYePvrGj87m0i7cT8VXYqHnSxxnZOqAl00w2BgYwY/TwpxYNwr2nNeHw+uUeMPUd/BkcBDNKJkN/wrQT0FnmP9pPZQ722P0HFHwd/7B98Ych4WBnfi86TrfOCfFodeDKeizGuxfAuxyIZFUSlVBxrIXLOqyIe1JEB3ME0DxoH24Cpbi+AuvWLlpBW3U20vTi4xAY912vt/0BzFqLufITqbjh2Rgj/UR8Ap4g7mPksl6pCgEpGjAL1tjyFrqRG2z5SChfg/ubmDyUlXmMDN/Tpjeja12ySQprA4nnmzALyZ7eOYoTRQfmgb/zVsDoRP/cO6fEh77VAAUKl5yWYI+FMoGUlnJMWj6dYIXffjI6xdvYfapYY+tJuhqugXOVXTB6goxeAsd4L+3DyIqhCnT/DOWLJ2K8dAAzdsb+MOIZkyTEeOYpvGwtXYf36uexym3MqnKJp9u5L2graufc3hMB/vU2dPY/Fz0rrEH48hObBAP4JQdsqxj7YqD8yKxJ1AZgm1m4ouzI8hipDlctbSC0AWatO9FPr356I8msvqc1t1Kls/e0A3vbJCceIuyXtthcL0A3AseDbFfboJB+geMLl6DE/6MwotmwliSNQY+N65FV6mzeHaPLAS3TuYz+zWh4X4ymOtEkITsS/yXMh1c+qvZan0JxCWGQbSeFrwt9UajT+Og5BHxjiQbPBCQDn4xW2HkuBKW/xVF1z90Y1mbPfyrnQrrDuyGTuVl3DJ5HJHgHdZZkYQTzvtxx8krVGoViD8bpWDG6Vd0YtYDuhYznuM076OgQg0ECjvTs7EK3HJxL04Ur+B/atKg4HoZlEZPxQcHEij0eAedLNkMHY9OUOAaQ36goM7N/ZsgtAeg6lAUT983hvQ1TCByUzbsPHKfDk5aS0Ml+ykl2h126cmRzkQlmGiowQay7dRytBwV98vjYmkf/B4yHy/JXOYL64J5u8g7PiIgCp9+fIL4n6PQifVY7p479HudRjcnK55udwc3xMVxbVsLH9mnCxVTZsHzNEfcrq8PXZVFPG9yKsbUVUIaZHKt40aerrkWZL/JQpaYBGl+LsJtmZ/ojMVD7M/cRHk5texrspA1p2vDet1AOpmuAvOTz1Bz/RT62jAGauLfo8KTQbQM3QKXKx/jv1p5agovgt/SCMuVp/A/0fXkXyfGilueU8POGOx3EEHntSYsfiyaP+JM6g03gzfuT9HXn+GiwG1UtXVAWT9Zjr6vSZbXNfn1bVda9UsO9z0yB2X3Es768wNAJxUbRi3BkOMmMKS9F96HhpBkaR92rHsGvat1weZULGfsb+DsY0J0KsYeS1cP0q1JBhziuIDHe50k/5C5fE9hBKybfYZM5hCPVy7Agz7RlGJRxAt2W1LrSndYu2oijojRohf7J0BO9wj8fMERlaM9ccn2k1R87xVN1fXBVzOLON0iiVRijtGiIFX4N9zFjilv4eUcV74cep/7vM/DiqK7tMQ+mD5ee8BHl4yDjlwByH/zBZz712Bb0C7+eU+FZSPV+clpCTqS+QQlNO/Sws4CHD1zFJzbn4D5USdBdqsi92+/AdviVkBzwGbcZ3UYB5rDcHtdGr9stITT2hO447co8+BE6FtZzIkthSgu3Mi9Hv4g1XOY9s+aAvE3rUHILAyvNs5k55QwnrmlFqdfc+AJogegT7kX5Mda4k/TYBK+bwhzBMzhyYghmJktzQtlBUCjv4+yp93HV9HP6fG0+bCi+yJFfTeAZIWJ5H8sCf7U6sIlfVUaun6Oavye8VwzJbpWsImnNQfw+xI1qP94EBL7W+jKn6uUW3iYp2nHs23nDF6uc5Dlq6xpyvOTqPNFDtwXf4LlNuVw7ZwAmOxrRJ9zJ2BKN5Hh60F011SieK/NrCsA0HhxHbQV/IUVxpEwWukinDsgBmoj18LXZClQ27eHNevOUGXgaAgbtxk+LTTFoEIx/B6XRaqD8TwmJRIsR5vDvRnpVF7rxJsdhaCweD0mbK+Csqtj2fm0FezN6aTJuIvLHANJ27mZon82Y2ePJezo+A7fTjjh7nuPcVWjLnc9SyONNWEQ+LKCjS8Ykof2P15VMArG/VnLG+O/0ZnEbHJXf0KVEr/wd20+G2aEwOjLVigbGgB39k6Er3MPkeyDXBiRqEb3xhzGuuUaVBx5D3OHP9H3pE5wSwojBblxcCgzg8db70WLXOLFlnthnPc8+ihzBTNUCil1gwm6vnpOOqPUYcXDt9hnI8jrtxVQKVmT9pr/0HR1GFqfzGfZyRfp6Men9K5CFz4ZttK+hu9cLe5Di2yHccHChRCTexnNfJQwxCoZrZJUyX+kGSjoL+GGtHm8+HwkJUY/Y8XTx2iDcicmSvryk4YWer86iryqJ4CW2U+U+TcXp/mtxWW74lnvXDD4LpgAGn/D6FJMJSp8jwL7VFF4Pe8ABjQ2Y49EEOZPdcBbsxP4VXEcPV8Tz5YVsVBfqIENisZQazcHKz1/8KbpXSg1KxtTPUWpXTKXEmvr+UahD978+pw8l4yBHbWF5JK4Fj8EHqb3ywbo240u2j90BwfLP/CECAF4uv8ufhywhBOj+tHYYxMI3mhiF6k32Nr2k3cW/kdZ9g4EKUHgpTqZpk+UAutnX9lhXAePXPAbA6sKaL55AJ5RMcCKngAIkDzIlzQP42ULDbgeng5HP/mj+5yzpF9QgHuPiGH46gb2G1XBhr/P4YriaDAaZIiZ00Y715xhj/luEG8+iTdAJ1zGEj40wRPn2r/mfZfFeBuKgbv3fBpb24IRO4Z4ZpkxvZiaA/9ql9Kqz64UJ2wLuz0W03DRSGg6Uwc6GYWsHt7K0uazcL95OMyt1MIYDUdYf2k1JiQq42SyBK+c9/ik5iSsHnsGKheJ4xu9ChIdHwcDWUjZrgdQTf4IJBjZwPV8FzgZNo4Nn2mS7FcRyt45DRrDB2iMgzLECrexnt4WWrBHGArO6DO4uDMmHOP1hS246NIjvHZDFDYqqsGYGhO2OVvOzW8NQG/peBYI/YNzGhTpYKEyRzTb8ozYfNLf+oi0zDT5qqgbKk6QBCsb5NKBWjxwow8qb5TT2POt7HJci2W/JsDIXdcgf58EFjsZwlxXdUrDVtSLr2KxLY7gOmjFUVVnwOXXHDBrjKAv6xLAK9QchgpV4MWKEjAUmYAvrraTs7Q2t1n3UkjsO3q+RZJcJM+RzorxYCk0m+4ZXAE6IQZq/0WQ2qNZVH4nkzacsUTXeeUw99dEnN1iDi+8VEg7O4RD7UbjswVjcHq+IrXd+oci0jUs3XkFDtnVk4mqGUywT+LzR1VJSsIIVb/k8exlAXy5fhmfPOaDgksqMfGyPG8TE4fZt+T4ovlvMNFq5C6P9/g1yJAOjkD8vu0vScRI0NpiLf62SwzCKptxdFQjZJxcQWue68G37jpqW5DNa002kOTAOJ75fCYrh0hAt2UGGmy6iTcze7jx0RawFr5OKcrnUPfjInCRbsWpwZE09b06FLoIwPBhJXB8ArTqyVVqkD/M7396gpC+KOX19mPxtjlY66QEl7Ydx2GHR/hzWzLbV12kfJOf4NbqDTtcGrE7Ug7mO2bQghoDWPh6LzZNi8d5CXm0fckLrt87yFHNx+l1cCKbXV1Iz19OAqVSRXAeGYuWf8dSjZoJvz3py41hEfy6UIeCnk2h+p/rIJpSMSlFHGJ/WHNHyFeKPOHEFsbKpN8zAypcf6N4QjmurujkdzuXQ+NMFbDNn8O1U13hr7sTfvOvpB2jndA9p4nuFO7nF/mT+eU/D37/fQK0zknHA9/Gw9KMPvSWM+eDHt00lPiVvkYqkquENu/eEwP/qSvAad8JXJ21kv+smAFPrWVJWPk/yn3Zw83LHoHjphf0ZYkLpgwbQmX1e7zw31de8SWahMXOc7OnI74OOYiVr4Q5eOwvlJ/qjjc/msLeiaswacNUSn/2lgrtNMDiqBJPeWYCkXMTMWTWSywJ68ZxC9Qg2lAc0qRiycV4E2yq0oCp9pWw5VYwdZ0tI98NevwuZwFpKGjCM+1uWO81jhSttrPUiFrQGL5KT/e/ZvWLO/BtYjv+1/ONSycqwjOrzRRVsYXDqss4KjICFgTPoEX6CayHu8BN/Tz9jrDGnnJ5EGj8zoola1H78yClyJdxv28bueb/RLucs5R/7CsanVzGP7QE4aa5LNUemgR+u9XQvbwOBm9oYP6RMlod1UrhG6/jF+MT6HrIAh6V9PP8fVloGrwe1W1qefDbWzh+8RU1CU9Bwalx+M9xK3tdNYAsoQfkP3IaH46dj6/cBMBWU5R7labDB99UShtVz6P722n+CDtYK6MO4zJW8JrMbpz3VIK+KZpS6MvD4HbtO+f6lOCWzh+cKysKQ5+cqUcuAJqyPEg7SIBbNFPY/WwszJA35LKW3fBgpCitahgHF2XTcLPtRvQ748/le/35qegk/GyP1FF9Brwl43h3NJHMZHl4U/wSmnesJPORVhDtJsLxte+g9dpOXFm9idyeToHqgYVYp6IOqtPX4Y8TyximlOPMdxspde4oSN1bTK+8yqHtQSoVbHSkQWMxGJSew4faD9MXqQhUahLBT9vs+J7LQkofKQAWI11J4Fs94WMrUL4+klfu6KRXdvWw60Q4Dbk+hMH2H5Rl14xhO+7Dj/RdVGlrADV4lNdJGtJcX2OWsFDgAwLaIDJqGW9ZZMmPR1rSDpOnLB0rBus7e8jD9CZ5xhehZuF1wDk2YOV0kAwfzgef/4m7D4UQFDUAwP8oigZpaChNmtqbQlZ2lFSUOk1UCJUklFHIKkoKLQmZlVEJLaGMUAllRGkglVLuY9wn+SSGOHjdR/KeIggKGY5U5ONFjzdG8Jm4M/Cg3gNPVSrADQkbLHDQh4Ou/TxwUxxOZCO5jajmpMMS/Ex1HBVKSvFwQjAvsruEPR4JtC0gn5fcUIHKO0O0qoBha7M6Xn5XC3U/muhN90Q80R8B0YuN8HOIEr2I0oaN7u3UqipJA/bPucBRmoQWTKeYU1dJLUMJdguvxf8K1CA5byKItejAo01FpCB+mqSafPhR2yuqy5bBxw2hHPUgB5RlLtCT9+OgZsl9HtuzFOo0FCBmWjCeurKFl1x9hS5vDqCAfw1OdHpJ9XPNoPRoHi6ROoD5eTfhzOFJmJUTxc+dU3nf08/wTGcnh+8zgspnopAzZTSm7u5iy85qUlovD0clJ9OdHUbw9rwh241yQ8mdD9CrRxQMbTxQR+QgyL+Ow0uK7zHqwkxs3n8Cqg4zGp0MpqNZhmjVbQN1IQMk2nKLT13djP128fxVQoD+eP2l+N9B1HXkHTbar6L0x1JAmupk51/ForpNWFZrS9vdh7DP9Dx8bdpDex8MoHboLC4dawkL+jRZW3oGfC4zheAjFTx913988Pd71G5swbsbCjnxgxWsuzEBppq95V87GmixsTfo2GtAgc1NzI5eROe9CrHv0UboSMpCn9WqEGu/mwSM5XBl9waw2Ic87+k1mma5g+scB6DjZx+q/tcJO7P14d6Li5ieORZCi1tguvUdEO9x5WF/P7ip3gBPFBLx10RXtJpLkJqsw8NH/uDLL/3QOuUynLqqifbFajT19mvs9rrPPP072iwUhfKvG0hh/2uImpdLPQnfoPuXHS/ANfTsQCb8uVdDCk6yvEJxLEi5B0Pkqm8ke90PfdZWU0pJBSVsUKGd9dvoy9kxlO09hj6YykNSoT9Z/2qGCEdBOmC4HfofbcZAu3ycEzIIoz+Jsc2I6aQ/ciJYBWYDxPXCjHmXaWfNTDhwMg2czO3R8loOh45Ywx4986hSyQx6YBKt6a8H4wI1En+TwJkeSaDcN4O/fIygOdbXYHPiTtofqAKb4leimKYtdRdtw+rJ2hQVdphmtm+CwVRpiB9VQAXDX6HohiI4qO3jasdy9J/lxkOZn/nNWE/sllYl9011ODJ6PtwbQGBvXch7rY0vNilDyUMnyHmzmXb/fU3x0eYkYXeAU3+7ULNlAl+OEwf3f9lsKNzAY6p8wLXIFobbzHGywiI2efUckk5EcPWvJNL4NhHGtGmi8OqHuP3zNU6+UQa67xZz+kpxHGj/CMdcq+GxeD11lVnCs7ZpbJ5eAj2tU7j9RBQdSJPDhH3phEEF1NcYjH1XF8J9B1WwnRXJ0nMyWb9wJB84+gB3W5fRse12VLzMDYLKNGDqs3yY/kQBvmS4U83aqeyjE893F9/B7Vv/kevkeTSj8wi+UokGQVlvPH5cFrYmjIRYESfs8kgipVuuuMxcjn1XuePA1HX4YdCAW11tEJ6IwqNSM9ro2Uxe1jfxWuYZ7Pu1D4Ml51BQWQ7ViCxHnTH3qObDSJB4PAv9sxvp5o2dNPb1H14jYkQ3Ws2huS2URTvXQOb1VBTKHA9dhlOApr6D+8E7QP3FFsApnVBkepkW3L8BK7otcdz8GMpLGgVrArN4yu4rtFFwFN+T20xPr76hNhdnkj/aBRGGtrRHuZQ1nM0g/E4E++7fy0E6a6n31jZ6p5DHYm0XSMX5Mc4WWAarutRo+O9USLgylfV22cH8L53wUM4JzO5+gkUutjh0aSy/W/kVt2vvwQnSOvAc6khX15zmrbtBqQ4O5Gc6l62s9bAzZz/N67hCLZXn6Me0cTDeNxSVk31RfWM1HU89RQ7eIyD3RxFuy0mmq/3X2HjmBtixfSRU9QTiNbVpuEl1AqcqnOZf75bxn5oINl3jgLHHhmBCpRUcfW8ID5JfUmepCbm3acNoYU28OekMNL1NxvB6FfxQeYlzonNwy1lJWLrRBDbPWkSCRYZk+1mZXAzX4b45sigm40uBrotp1TsBMh2tAhoj+iB6zGGWl+7EZRPGwCOncWAhXcnPpbpZ82UaLRz6D5Q9RsOdf+pwQzqQxh4dyUJv35HwB1n463yS93cL8/K6DP6x7B06+5vB5oAXYFsxE6QaImFvB1JFdAwNP5pPNbIBvMHFh1Td31DvTStINYjjZ1vz0WmXPxTXauKG8k2s5VVAA7vlIO9UInp7zsELS8ZC5+hoXhrbhsESunSqJYqvl5bQ8vyVKK9XhGnzBOF3w1c8q45QctyZGiyMQdFwE/0bWYv5KQFUM1oOnJQ6+fts5KOh9vA32BSKFoynbllvuvt0K2zr7aDWvgr00w9kUfN62Fb7iLbIbqExI8wgZX4535Tzo9e2T+H8sy88sXoHZ+gKgterfzgjNJ5GREgTG9vAZjktCIwpooLwV+w/+jS+bdDG22ZXQHuOJy/su88tbkhf7onBf2+60SmmiGJvmnKrdAKriowFvYcFpDPLET53rsOx3QvoWM8EGFX/lmxeAIhFdMGqHcLQfHIMP3/SQKkFLfDA9DhOfX+NEjys4VQE0Jqb7yGl3AcEda35a74eKy9ewYdfbMfZp+Vx/vVyviRhA26KM0Do/CPW2/SM9D/chntL3lPs5WxeH7qQzumEwIn0ZnI31gWhsRWEKibse+wjTex+CSoX39G6zKuweWErrJmvSmrmC6nx5VQIf5xJM2834tTcnSB29R7r2AjDVGcLaj67A65J96JZihSrz5cG08KdXKK/jxoW9/DPD9kwuvg/Lvm3kxdsjOVHx4gPn04DJRUb2Ko0mSQ2fiDe5MmBIlVwOimaj5/3Ij+/lVzWZ4ZLKxw5s3IqJA19IV/9Rt4gfYb/RN3kFWtS0dJXnZJXtIGBYRIf6J/FkeMmQrLuAt59sJoSVDXp1czdGGHpimOLHPiE7ixesnYrHO6zhYQputBpuQYFG01g80kbnny8hgMeF+C13Zth9O2FXNoSz+XefugeoQtDmsJ87UI5Zu/bRAeLf+Ppy0vQ5fQEPBnkQCvUXfBu+i2+e9ocHIKn426zqWxsqIzPzX15p94H3vZfBsvsvI66jlVwYmEH3LU0gA0f0+Dmg398+s8W9DQkNt5+ELb37sfXOa/wn2QQfHJoAk9PEXC88AFLxD3Q/tow3bvrwhcmPAC7fbIg0ubB+PwN980aTzvNlOBuVyBozzKDB72RcE1nP5CQPWevPAEXQ06jUGAeXmpr4lHyAiD17gdMd0+CL6vPgemkEhCd5cNZ4XlY+DEaguaOwlarYjAynAjzpKqw9XAuOLaJoLlBGexYugT9bI+gycUQunfbGqxsoul4ljwIx9+l/R2xPHVzO/03GEyB74Vhb+8snB1cybcFZFjpkDFkbJ4ESyaZgr59NwSnCMJbl0/8/IQ7Ba/2hTTtWfDGLp4slgCUxAqB19tBrPWcRAUD9Vh+dy4rHj6Nbe+votmBULaTdCO5KZNo8K04rPm0AFQ3vsbZzum020yISw5ZsMnKetzRXUVfGojGPDHlw7+0oDjwOiqeSgDd0c9p2RhZihzvCqKP9KGt9x8ZlDuAaNYiNPtjDT+VuzCt7y7X7DOmOcvvUerqPXRwVBklDr1B9P8HI/XeoHC0OmxVucbiqvHwdd8l9L55mh9eGIvKk46iaqQQOOfdgG7xKlKbMhWcqk/iavspdMzpL94Zp8jBO55h3io70mINFlooj0JPEgC+2oCUZi4ZHp8JH7RGcbqGNeJtBzYK6+Lr/g0QqqJJbR2X2DFfAgZwBf5uvQp798bRTRl/Mv3+ChQif5FJzjMQyruBk10N2G0cwBX7cto68TMcCA6mFXUakN+uBPvUaqBrsTfskWyCuTNLceM+FQif/o1cHMfAxxs5HFLmyvKvVTko5AhlFpWwwa9Imh9mDGGCwqCntQTv4B54V54A5bNNQb5yOXREd3JkVRRkrFTHNbIqOKtvHDw2TyCNnipobdxMGzTXY/YudzJt6IaupbfpwMdnVNlzmoXUBeGV2Wh0fqELtqekwW3LLFj9KpE+r1CB96Ei3FiRgssctlCMogE4hASCxrA1lI9Q54SwXpp84x4KGy+Eh4ZuZKQahVJbGqkhfyyMv1gHN76NxqQ4NUirVscRS9S4vvwvmV8ypouaW3h16lwOPWACrfPrQb+3F+tmm5N6uzFr9C6AActhPLw/A2KUZCjYXpEto6Shad04DB8wJcsZK1FFcjMvepIGh2W84OmocrB6rUiVjxTJcJcwXL1ZyhJve3ndIk98onsH88pi6egoWfpq5g8ufxP5Vrg4BEdbQOTwNU6/X4EC2w6C4UlXTFm9C/+7cAc7fj3jaIUOSLV8AcEgCdpXXtPQGitWjVyG9mPfYd4jA96v4YwJIi7Y+GQ2C0/eimWOUyD+uQyNlytDq3YHyNo0jrQyAnHfu1S+qGnHt117yW/6I7pYYwyhm+PpbcEQ9Ql8pZG7Z3JMXDH5f8/DDYlHMWv/L6rzzaFXNsrg6fyVqq2L0HeHP+WkiGJ01ip43ZIPiXkOmOnhTpmH7/PXg9Kg7Xsf1FSycZmhJW9IVaCe+gFWEk2nPpHF/PbkCfhmB7RHzBJ0wgCc345g6/NbaVNkFcVsL2RVwWrWuvcZf83Tg5OFR0CyWxvG1kWz0KcSvv/feXy2soiqYw/hs2dxEJXlx9M/HEWbm3eQ9ptAhP4FXlzjyM/19pGCpxsdvGyEP+8kwWi3MaCrAIxNIWgvOBK2qHtCyk5gqZP/saDEPKw/+oU2URf/uzENL6t+pj+GZ1np0khYLJRM4tsDwe16N+0zjKXvi2NgqkwBn3iznSzyk/BG2XGQvjEKJriJwH2vRSw8+x/X+Bnj6R2PIdI+B8suSWDc/Vm0aFsTlewygrrJMSCfugn2/j3LbwRbqPDmcyhR/M0SQn6oLdTAn89uQAevyTB4v4EvlBbQwshmXqk8BQ5ExbD/FV1W1zSDtU5G8PDKFzi6Vh0UkiOheXAUe6dNh8prc/hH8Eo+JDcDdtwqpX/r/sGgjSrUBarBmxPqfMLyDxakdPJXhZvgpbUHziseZt2HmyBpcyC2j51GE+VFYOqfrRg0PRhFnETZ/0EkbP7diUM/3XCw35X9083gYOI4+Hd9MqgqxUL2iA10f9ohunilCR3iLUCgdDFMEV1MkoWPecXbeC41EIcjXZc5Neo31QuGcUTeZuh21WNLqUGU9HJFv03PaJ+VG20Zrwf9C/6BtI0talmc4x0FcyjiLKDOWEEKeX4JpGe+grKpg0z3NeDM6legtS0A/0bNhvyDiaBtsgENMmJJonk8DAT6wBxRREm1ETD1yTLuNGvEB3eOkMhMX27oK+FdtX3oFX8RlROes9ne9zg+Tx9aLziBSN0Nbhs/h0/2HwB7+3607xTAb8e+072aW+Qq/QXKXhIsXXiYAuunobHKeDI4OInnORTDyNK76JuyCfeqJ2KX7WI4eIugX8oKTu34hY3qubRrhDhWygRgQnM1yhz7RoouGTSrToyqNUwhdliT/7Z+pXf5fyhrpAjY/oqGWwlbYQIpcZSePh/6YE7yRiNhbsZq6B5uwYFWWRD+2c8LbrTDxKdH4PoUeTh8sBDq/hrwvPGW4HeyA3RSh9jfeQ7HbxKBMaHt4PPJE+Qc92PnrSB8uek0G41Th/8SgCfKH4FbF+5D3L1CVpwxD8UCBklwwAtfiU4lhdVZnBSmB19aOnlVC2LcMTFMHqrDtSeaeKjnAs94rAH/cnJYUSeWHgWrw3qTu5zbdhiUy03oys9+XPVRiv+b9xTnyxZAiSGzddVliCcxUIuJwciZP7kjJp7WG5yCrT9WUJrxFay1XU1vso/B5fd2IDTbCNbsjgCLcb8pOGgRNHzPxhqdOj7e74LflM5RsK0HPO2NpAkvZGHIx5Duz+8Fwdh6KPdejJqUxgliKfBMwp5q+Sn4ObyBIgt9ELX2hsnvvNBpfzar5FbDtTP3SEB7G2+M2EtdL6XJeIUWOs60AjGngzTeFrGzTxXGxBeCQMBygAA7nEI/WGJyJNX+XY3CulNB8IE2HY27iMKj/Nl6zXXy9k7llFnXwVpEhz8c3cvWK77wYIwaBB1BXNNfi6t7Zel5iwMdK7sCd8mJRG4Vo6X7ORo45cabpwtB3FExDAhdTvAyBqKfzuR6pTB4KKuKDh+I7zgPgvJMO4yTIeg1CoWVhx+BfvtGPmLVh/KrBEDctQALVJEn3XuMGdn6tL5JBV709PJel0wY2v+cBIpcsMc8HEY9lEDZC7/IY6iRjgoMQwlow6JztZwsO4GVXXeBW6UiB7Rtx7dOSXzruR6kB75nbalWmpkuAN/LZOnevBE0/dVqVJQ7R+vXaOMp2wQYF2HKU9ryIEZsIx5OngADXo3UtmobzHF347GLFrLk5xRsKNLF3sOlWKz8i4b+5NCXyaKwJnUEbZ+Tj9JBnuie2IlzhH5Tib0Kzlr8BLelN8Nl9VwaSBgHyfe2obWWCtaaqeCxwGi0efOJLiPBE1VPXHsim29Vx4JXqBasEIyAtrmteGymF7T/dcVR+3Xour8Me57ZxULHmjDyxnS6G6ID06M60NMgg5ZPTqVQjXt4RPggy1hGQX1oPm0M2ADSS8dAf5EgjFpkxpFqa2FRaTRHbf6CiouMKMijircWtWPJJx107BkmwRXmMLLtJ1O2MS1UMkDhvz1kF+8OwYY7eFOuFopvmADxRZHQu3ICGM9g+rTel5/kWdH9djvseHEbJqzKpPEO+1nIYAqaht/l7i2iYHH+KzoV1sJnkXuon98JF1S6aJFqCJwq+QxrO2tJ/rgfOVtZwaNVTyB+bDsqh03hN/HFWLS9iXoH6mDNrk18RF+QCuNns1PNCPjzYZg/vOrEwNG/aW4J09LfW0B93nteuyAAun5chV1SxXxbRxXCmofYepwmcshLdAorwuM56azz/QK7HvtMPe0HUPfBNXAOsIJTohdA93EI/gyUBke7Eri8+wv9qVaBP7decfSxMRC+/A1cP6ILL1Pvwxe76dyvJoJXsz6SkXg77gnaSbHVseCwKQ9PpSxH3z1i8Ov7Oe7l7fhU1g+GF0xCP9EP+OLvD8qcJMRP3v3msy6TYaKFOsQbi/EE3IlihZo0NrwdXLZuR6HBXlYMCYG8v/fRY+IPFGgShET1OAxyOQ8pbl7QOv8Oqtk10btxK3nTxF7eslKaJ/WfpmxhYzBOWAk3Lm+Fx0OBNGnwP36wpBb2XTeFLY+TUCBxMm9fHYh7nazh8L1ENPunREvjfHGLkzSK9/7kymN7SF25F94O7KGJG0Xx12cZGGVZRA/W9qNVrytl6PVQs2UMnSxYjhPbH8PhyntYv/cjplcKg1nIDpL4MBMOvPHCtUH7ea5wGb6XjcT760SwymiYm9SqcL2UGeSPmsKlH0/zzTlZsFzVmG4J1OL5qcVs5fYOUuYdxb8ym0hi1wh47dqPNiIhvPPyJTx1+zS8XhMBncO1mBKxHnaPfYWagiu4NkIIxr58j5oTt5PTw3reU1ICKc1eOPZ0DSwcKKT62dN5dd0pzlo/Grw2dZDtNQ82VC+kaZuRo/7MgJHprjRvtSiFznJEbaM/YHpiPGQIm3DcqhvwTf4O9OxIgcqa16jttJDD/yRwfMV3njK5ABdLT4EJUtdo1fr9cI3a6UuSLxWtSeXxLh85dtQTjizOg/DrO+jBEwkonGmC6V3VYDVVltpQE4Tm3OMrsYNkFXEBZ3bloOeCLfit3hrchQ1plb040Ts/dp+TR3aWQGXpsaiiuAh+PtBGpR0/IWe5EIycp0YXzomQ4ikvNLE4SuuNG+jeUQmqjVaHkKEq3BQQRwqe4yFcWhl8lcVQ96MbhY2JQ0mvHwRp7Zj76Bn9Vn6Ic3se4foWIdi/r5KW10Tggaj7IBB8DmUOKZBxgQ/PN6rCOTsP4ie7YPrxVgs8A6fg62+SUHtlCU2IK+S0fS6k27yJHUOKyEf5JVe6LqfJR23A3E6Ywqab0W+zN+AwdJtKG+aBrdAh1A06TXm6fmw2KZd99FRgONkSE1/WYPbP7RxwOoHvboukmmUhUCuxBP1QgC8bqbNwizZ0FkfAlvW32U/9Kh/duh/m77qOwm5ivKEtBRoDhjg+/geYHRSEPY5DcH16K3/4ehC8pgXTrhtX0eRDBpz+to/ePTWgO+WzKT7I6v/m/5ZfaeaOdgO8q+uB1RPP4KMvjKfkS+ie6Wsar7kWGx9rYtaQJQgl6LBPTiX//C6JoulX6eWhKpzkHINmErng2ubPz/u84OAZIxi9Pow9l78Ds/OKdOZzC7lXx+HHmQmctSIJbp3fA0Wf3pBkpA5Ey84l/YQHYGfnRped1als0UY0+m8MLtn8iwRCQijA5icuHjEFvvWocX3XbVwcq0IBuh00K7+drNcbkew3NxKe0Qq7HK9A9OeJ4KZbgQJr82ivbDRMm7AYyiT0YbHPRWgMrATT3BySd44Gp8fK4JY+AlqylHH67HTw/P0Ev1V4o6zxEu49ncclSa282X0OhO+dBlumCJPnzX4Kj44Fp55r1BmcBEtWR+D0q9KsVa0EZRdf88+DqrDVUp/PV6phooUyDNbYkXe2IfHLaJq0Qove9/dzedh1PL5CH4pN6+HB6jto2fKTrKzf8yV3b/5VZkrqF37xg7zx8Gu3LEsWmMHS0Bqyr7CnZp8ZKDrNAMO9HsI3K1EQbAzAFuvxYPS6ADUqtGCTvhs06fdBoHgVGuckcUbfLlr5bQZO9jKGkv/yMNJmLc6cYwGW5zSobLU/Wxr85v3pxdAqsBpCbDbS0vn7+Et/NdYufEENwpbgtSIbnpvfx0TjO3i3ZxASv9mDhVYX3pklBydyd4GTsRkfHyUKpfUP6KNLOTcnHSS7uefxovwOLg1VRJ3L5nhtwSC3lI7G5bsUQDZIjEa9HwZP/3+YrPsZw2uXQYpfLvUbvQXPV1swIFYaI9sQjkrmw8RPIng2KJ7j54wh+dAafv0smdLlzcDwiC1XFWhi8aZxYOx8nnRcfcF9QImGntxF5ep3kOiH5DDFFF0XDYKM6zqONFCGwJiNEHezB1N3dJGk8Dp+aXuIT1TXQsvjkThv1SCZbCoFi5yRsFT3DLto7KZZiwXp3Iy1MOhSBVfQBL9tvc/S067iopsaPHemKIzV/ISiCjFwp9uaxKMf8Z66LTDT3YReHd8JbyWOYM/Fpzh7ljg4hHQifkhneviNNxoFo5gpwYBLNq2USeB7LiUUkenFj1tHQPq8fIjf9QInyybCZ2VLDn0ohyt5Ksw75ovPbi+l0w+a4JoigbRcES1MXAIDZs/w6prlvFgnDxddHku/Fj9hbesOHAMT6aWOABwVdGY+doH8ny6GwrB80v80lQUW7MUrLUvok4YynH5VAXu9x0BKgglo9LvAh6HD5Co1Cq0m5MA6xXKq3zueXRUmwOtH2li3bgSEPBYgx62v0OFhJ4pckOSLRsWgUdVEWdvS2Hbsb5o5ugGW60vDvqY/5P53DeUHtELFpzLUSleEGrxEhlkV4LzVl7eVTOCHCkIwNv4aTL60mAaWuxIo1mK+qAbPf9UPM1+9BOfkYzzDMYUSjlmBZqAnml9u4CPrvNEAxlC9oy2KtAZT9tp6vjNtNsxe4w0jw5RAw+w4vtm8E3S3HuVCOWM8dfIBfN5wEu7l91HOVmSP/k4eVywHM3b04b8Vk8iyLQdNbltRbK8JDD19RiPPz+XI4TFUVvsQVMZPgUcFduh1Nwu1BaJ49RQX6HMpgpaD3Rw01RNVDU5Dz85/cMxJHn6ulOaKtib88raP1dI60E77Jc1dvZC9qmNYa+MykKo2Qd1nwrDFt5Vfpk7kCT+OY3bpEjpVEo2+yid5ocI77m58RZ51plhdYArTC96DQ+koCA7qgua9q6jj7FOu3u4NdhPCQTzdBL9P6GLZIGV4qzcHV61yhNr/HlPpRgfI++8mX8bHlD8sAKrVjST8J4seuk8CuYGnuD/8CBxr2gThMz/i4STk0SOAbUzsOXyzBkbLB9AoSwG4dzEBwqW1KLHzAR2TeclO96rZr1mcPXwXw6MaGaRbO7BqkQnkHW5k38YUrFxvQt4muhza3IcizVuxSGgmmKqrgMzoIKgq1wSjIsQdtsm4b8YwdI/eBlfzv/MzVV/+6lHFazQ2k+aRNTwkLgd9zwrw0n5nXuRRit0TtmHiQUc8svAa3ZaW5YF5UXDmym849lQaXg/eQpkvznj4rCHfWvERfjYdY7uwEzDP1ZjdXkzk9YNGoK6gB8NlXWDw7w6cE1ajqLfveY7iEX52ZSldm6nPX5/0QvBwHdk0ScIC7yz0H+OHL+d7oFniKa6Mt0XN6R95WNwD0+4LcM3XfJry2BrKIiSp7qsK3Lk7mpdeKCOnOB2wPXAKyl0Oc2kvc8DZw7RceSI0DZrwbJVe/nPSgx36BPlssA/d0ttKaRuVeCEFkpz/Lio6JwhhOf5UYSsIa8PWolTNPugiGxzseInHbRvYRMMD5pYt4w0VBCGp//DRTQMgdVMSub+KDS41Y8EsQE1hHWyethpPnRjGaf9NAa3Rb+jfwC6wEiunKX7fcVSvIK687IxFf1dCRJMTr+nMxcqR5vCm0ZMf5oeDungCS6oUQV7GfdhqYAdzSyeC4/MhEKuXQftVqpC8woE2P7xNPReSMf3yMAgHH4ZNmoE8ce5LWCGkT8UJB/CvmSC4RUmjcv8KimjIo9GZcaTnZAm5AtPhUJ4q1O1+Aoc3zwTZe3pQI/0CdnQFgI67N2cO7OPdDzfjhlo9srK2wIAT5zi5ypSOTZSGU52F+KffE7UjlWnQ0h0KxbPhkVElLp2+nLZPLKDMY5V467QAlAwnUsAFoOfmDjBQeoz3/wil3PMT6MvzOvYVfM0bkv+R+QZVSHOXoSXP9EHglhPJ3eljcY9s+j11NX2TnUGPdNQ49tZXqF6jBhmeHlxvuBUiajbTnMVPeczYJNix8AMFXG6jzP8USVQ8lmy26sEIv79sWkocb/EHZzUXIoxT5ovpqZDj1QxaEcdx/aEPlDDPCjyDZtHxsGzoD+jmc3fN8YW4Gs/cfZtmlx3HJ+8C+OvXQXoqqw+7I55S0eAfOO5tBF0KqbT33Rzoy9SEMZMy8P5AAGu9MqJVjy3BdaoJVx8ThgStFyS2YyJ9zyjin6E/YZ9yGc8WnsIHY/VRNwshsFQKdhXUkWHeY154wBgHhxfA/DMppGpYScL2e3Bd/xJuXDwFvFrXkOH2Oiyyr8W6Rd9Rr3OINmqGsbKPPoSoH0Dhigp0rjcBix1NpLZpHs6cNQpO65tBdoce4v4kcLdfC8ErkkhwjyV69xvBCP6GcTtNQVs8BaaF3mKj6YHo59EO/1bfoZOLZ8GnhFE4sYXAE6xZ99MSsPkiRv7v3/D5yCt04LkBwhh/cCi6CR/GDsCHE/JQseQb3Ne2p4pSLQzuaGHdnhgMvVWGJcFb0P9KOUj3DsGFwilwyOImSWkEskZyDUUPN5D5wWpSmy0HfWvPM0c5QyXehiV9gjBvfAN+O+/J2numwTMHRf4i58RGbvtpmeIJ7BLbC2FTlHiynTlcGlrFRqWduEyyiPZ77CWFG3d51UASPtJIgsCIVnRRmst+Y2Qhd7sbvXFwBm2raoja3QJSTsro6r8A/8Z2cdPKHLKIk2J7v0nQ5GMGnrkhrLBvNuW/UqJv2g140eUxz8lTJM0WD4gQ3M4+a2RB5FM3ryy6y+g/lU2fC0Ob6V/e/eMDvav7zdujSnHp73d0bZ0KTClPQPdbxnj1nTNrb/mP1zqUY1FkPxlWKdEuXQna7L8MqjongwmZsP7oLez3UQhX1A/C2sNqtO3Lb3py+z/Yod5DlZ2FKCuqDNZ/x4F1jBl7zLGhj1/u8a9mWdznEkWTA1LpapYl9NyKwe+zLKC1WI0OjTlLFfSRR5vXQFTtH0j2NIIZpnfYonyAisMtuFtzBEh4iPLlqEBc5R6Gmy6JQZmfOUn0v6PD/QgaV5tB+0g9704YCT3rVsOlF/fZIruTtkU+5bimAlptZ81Sfe3wfJ4/ZYZUgJu9ICxNKqH9lzuhKb4Q99zxQ8+3IThf7AZXP9iGcVb28O/KchI3NYZu46Xw2vErX9T9wXLyG6nvUSO0fpaC1PHW5JYqQ8tXPcWrfkqwy+8gqnRX0K2HQbj8gCn9e1KNshdz4UPUUdpofRzjlP0hd6YarHULYzmTP5iTNgHkTt+DBbWM5vPd+azpe/670JLEhYop5roUJJvn0dn2KFw3ZjGatV/B0kRVSuq4wN0P10Pj/ce49Ptr9qmfCrZVq8Fc+QcWvqhludrx3Jw2A/doVHHM4xZMaheChA/HobxQD3y7L+I4H2NaYenE3w+VQKNWJlc1A7StkuGP+ICKRmpiT/AIyNEyZ61t92HelEpIKrrBo6Ou0IONSuBZ68pdl9bQZbW9NNBHACLTQEX2J76dcRlSKvvh7uECTPs0G+WD57KysTn7OwXiOTtFWNZYzJdfjualZonwKaubuvJP0bepefgvZBPMbhgJW1aK0BpbebA/UAkP1EV5bfc3knGMI0v/qzh2lTK9sZAExwxTEJqzCn/kT4RPcyZQptxI9i3XQvfjk2FReiYW/PKHNTc04PMjCR496ji7xBmB9+7f/NzpHtV3DeC+kfn4x2E6X7HdBhcnVMJ8jb0k/6MMBIKFIXpPE6VdX0E+twahXeIDlS/ZC9EhBrBtQwneWjXMFakmOGmlLKgVHKO1gzM4w1kaNMqvY1BJO4y66skOoTJYie9RwriMd16Wh1CpAyD+fTePCCtAiyFvqr25GS/u+gKPlkqwxplTdLZsK3tpaoH2hlQ4v+IQnfI14EUf/2FRSz2VDf/FzroX7NtkQ8q9R9lnrw40/OikX78P4ctPvVRhfx7eK5zDy9N+o633Mp6qmUjfyhrZ49MkyE32g09Zifhm90OSMPYHteF7tO5zMysWbKf9o1rITOExxIwcCYoilehx6iRoHFHlr12/QK5kHsYuuc7TeDHZsTEn21WAn80IKHYDFpHrAdm5tRxzTIFCXb9xfaYYaEiFwDqLftYVuIsvV02Aq2FXKTn3K0u/OEhZY38SeIwlhX976fPGYYj+z5a7JD6Bi70gfAsNJ7mf+yFHZCM7ylRDjW0zjLKtoYNRv+G7cQAbiMTS1O8SYHaKIft9CLo4ymOQihXtC7/Ok7Ut4Il2MVikvSUVd2M6a48QPMUFbFZdBJuJbfxQ/jNN/yJPzhHj0CDKhzIbZ+K/QwNgUCoPt/Q04K/5ZXT4fhB856+gly8EyO1qAlzN10TbohJyP3KMj1powGGK4Z9ywdTjpsol7xzgaUkBBClfgSiZC5S2to5GdN+EBQ0WYOg+BGnfpXhw6UEo/pNITxRVSLfsIJ9VNIRzA+O4qmMCv/wtC/InSljgQTZJ7P5F5+ztoG2zCjr9CWe10Qsh481VLgi+xyeFpMDSI5hk4stg6+cBxqW3ME1lA7Tb9tBJuIy/O9w5t+cuPEtUhhsx+eA5dAv+Slyj6VWXaYL/CqSsftKpq4BDhj5U8WkLCG0zh/dfY+jBhCoumqbJggekqPdIBZ2PEiY18QVcOH0CReZ+Z9m/RvAw9TcnPhMh95VB3H8iB+UuNrN8iBjfyPEg90duFO3UAWnnp0HX0kJY5pMMGXF/OelbGPnMP8mj0h7zfr8gMFV7R19WXmPjKGPoNlqD5m9F6K5bPdsJAGT2q6Kt91rc1aBHspebQG/HW75dA7DAMR2/ZF4liWe90KyygLSUfVBEYwd+WBbOH3ZfA9VQH5gnbgA1Sefw7gslDj8SyEN79Wiy+F+s/CTO/nbrOAdF4EdWFAZcFIB17+LAWscHV26vZTv53Zw4vhz6z7hTkNwjqBLOBBUogZNCZrDrmhFeLXbBxfsFKKBYEfIq6lEy8i8M+FlAdYgOG8/wwpE9U+HlUgMet8cZTn08w0G5M2HQt5QjAxypa2Q0ZcZOgIA/s0j9/TTwfVUIP+dv5qSNKuC4pJrCLUNhdXE82Bh0kPLne1hVZAyHK0xgb3QSuRiG8+i6Iao6exsEwqIwt8masvZL8sXr7Thr/TFsuiAHQ0MJEExHUOLpEMCeWvh6/TJrbnyHRpZDcE2ihb6abcTw98aQZugKjwZf8UkTKRBN0EW936/Af7cqJudHUrnHFfg56hdIXAD4ddUclv73HGL2X8XE/9pxr7Emhj0Ow9Rt+nhl8QFu/F2LOyKkYHXSNj7jXk+JDi0cf+El5C4WhTEvEjihfw56vh3Ds3zFUAvlQWvPSio+tAG2T94NT2ua4NkZD55ifBa2pCpAv50auGaG8qOHo0D8fhb/0fLg8C1BkNLuA1rSwxz7roEObIriu/IqLKT4hSM2TQO5vlS4aFaP+otn8bFgG4jILGSPFnESf3YSdNtiuFL+PV7W1Iak9HJosqmiyw/v45ZJCuT6+Ry/KvChrVbbwUJDmM+2TmabtzIgYZSDcn4auO5MLrj0RfPDVUVoo7kcX44v4BEFgtx2wpv9QwxAVtgZvZd84aeHbrLlgTbc03gZq098gtonI3FW8UXK8UY4aDAeLqy6iOJ0HkNSGNPcz9DciLvUtSwXpM5856EWIe5ozaO/u5XhuuVUFhN9zSc8Lajlog/a/FyH9xvO4vg3RG93aoF+6zRqypSC4OI17GaWju2eR2ifSCPu2DeWpisfxHnnqlDBPJqqLozl0UYIzz/fwDznz+h/VwG+LQDsx2hYW+FD+9Umo/vk+bBhhw51OUwGVDrG0SJ+HG4WwVUK+eDy8QsOPw2miSau7LV4CI8YnScDtZFg2J+M8kfm8Ko2IRrGubRO1gUf6l4h07Fb6dz+ZJzfXgHe3WMg0eUvZTg8Jb3J0mQo4AszlweR+MHJdHpSJQVqGoLatRU844sq3JgbR/9WJrKmjS0e2mrDujQD52RugAvxC2jfmz9wYdY8HmUmCnZnHWnpaQuM0beGfHET/u9XLfkKe4DC0/EcfGIW5unrYU2pNlT+sON7DjGw9/wQrXtbxodl7CHgsTT+Vh3Pdjku0IQFOPm2KfzpXkCOb4Jo+fhJoDyxgc1+peH+A9ZQu+wn1Y/ywo4V/2hwUAsO9Ozj7lG/8Uj2Rq6L8CO/rhSyv3mQmgxc0EfUluIa5UntlS7kFj+A7N0POXbPS3CX/A9cbIXJWNyCDrSFcLHvAESUfuDkp3rwYvZxrO2/ir2GEZDc28uRF+Lx3Hg1vGB0DXR3B/LClnK8qjoeejovgMheNW4RHMDXuyJYwHA7zT4tTKQUTXZ3p9CJ7ChokLQEY/tnsEKph45NRkxusUHDU8fBcu0pdK8/SOtLN9K9qR/5n4E4RJ2bSzMf64Oz8he6k34Qis1leNbtZhp4HEV5GUsh32ARBwaIgOP8i9CnokeK61LJ5iHhzuhd9NRqPmdM2oRy08pgxUQFyi1RAxgbx6/cjuO1zgyUuPoHlksXcFK6M2oXTWXLW78hq+Aie7lowj6PeXikJYOCCm0gKsIO9rYpgvqW+zRicz3unD6ORQ8YkfcOU7BZNIY1w1/ghsJDpDDSHupWxVJGLEL5DgS1jI24PPoTJ1eogMvXFvjUeZPyH5ziGRKymPkkixsc6/mVyh6cc7ST24eXk/h6S5gw0QjvZy+CZ69s4VuBF0meQfi+qAIsakPYfNc/Otc7DvTGicPpvz+p7IEAjLirwAJn+6lJJg9EQ9dBZu5Rim8JxRFJTdzy1QLqPE7yxvb5IPvqAe4MToKN4h/w4otJICvznrI3xJNWfC59n28KBj/8Mb84hmMuiIOq8FZS9n3Cyg52lKKoz8FPeklh5xbYqa0E8aXx2LvIiI4kdMAbGx2UTDPAPo1ILv+4lz6VLIBzY47B3nAFmHO1H8IE/OHrkSqa9O4Mfm6Sww0L2mlBkib/0tFhebdKmtgnAYeunud1Qrf45dpwKlIKpC0Rx6mt9Djv0tTB7t6rdGv7bAh7MA3ObLkKJ7cPc6F6MtzJtoQPQtY0r30hbOpqwfmqGQxRb+isoQLcctKjE+P72C5VCiuiQ6B+hhJ02TyA21U1tMtggA8c6YGKJIBdSTpk9TAFrr2+Ah0UQEdO3UWHZ2243VSX5sW8hMlyHZSbawoR6Qr0dk0d7JkZxkHWA9AQnoZorME9BYGoV3qd1p2+C3MbDcCyrhf9Gj9DaFYHD4Qt4xWHslEvNJmKxFbDk6DRuDVGAV7GmsJcq9eQ7yrODo89KTpEkRaWV+Gmi2fR5U4n3v2pwbGYSM2SijD+6UI2+joB+8vd0bIxDyse9uMxmx4s1PgNcZqqNDY3HkxWTgO3U+Pxbo8ZNhWWspVTMv1ufQ0hvRvQpWQunXFWwgChAfxoYQiZDb4wPVMKjyak4IB8FSuay9AZlfeo3ngcViWEo9NwDx1Jl4aK8aEg67mcpU5Owo6U4zDx3HbI1SOKKdSncRISKFzezx1bACIUhSHw6Huo70gBLbGnUKf9i9YpjCbLT1H40mw1rTU7wQnXEVxnPONcgw145O9yGjfJiLZ+WQydphOg48x9vrHuEr8cZ48myaPh7I6brBXnyHCgldMa7vDOfy50afZRlOnYjXXPsqG3OhJTfNRAS9sMnMTWUocQQWPBCX5UXUxpvbep/eYZThT6S0/vdILNUy24ty4TvV9q0pD+Qnj4ew4Y/ZrDR+7Ek2hKBS3VYBCLec8wbAMS+pMx9IAGtmn4YkbweXrkvBndW5OYg66DyERRNpc9B3RhJIyfHgxqo49wXPl1Hnf0ABxa58qnhNeg9J3R9KLLkzPfbSGlZAmIORFHsV3f4NGVUm5V/0dB0WJk99GJEh/GQYW3BjaqaKF5jTKcm6aMEn5vsVrchx7q94HYhg9kmBVAuWsqsG+RCqXfDITUbSPBRzSc1h+SwWs+n7lDTQgHaqfRqfG6HLnPmHwvbodJqxfD3S16cHjnRVxqK4EjKm6z471I6Fh0ES5pmkBPSCu5VJrDk4xl2C9sAWraW+hR1GycVR5DN1TmkPfDbyz5s5hTHkyGqJCzFJdlgJPSJkDd9GESP7yDrYJbIDtnIc1Z0Qoj/9xnn3xjXjUgxtYdE2D/GD3wgW242mgXepnag5COPpVFzsTBo5WsO+o83z5Xgl8/NXH5rSkQ6xbEWQG7eKphJt5+JAOAI/B31XoU6ftOKm0lLJyRxWkFlnA2NhzF9qVCef1sthmMwDST0dhjl0t0pYT2FAFeT62nk6OtYb2AGRVbRlNzy0nsmtYK/YkjaG+rF15ieXj0qJk7jY+T7B0NuHF5B4s8LIJzfUqwNVWJj7QO8vi5tbhAJYUyLHLgtIMfSOUow5j2EHhgZI+n/54hS4XRFFBwElXvFmFj4Qbwe/cbfMf/wdZXCnDyXSK3tz2j0lvlfFRYlYbXG0JM4kcoWHIcb1QLQfpWI1izVR8sdWpAOqiNdrs1cm8p0IoFulR3Zi5Fp3hjuuxN7rI6iDOrR8DyNxZgrpIHsWMtOfaeA8YFusCI3CgqW2oF2T7CnH7wPFVenwTD8r940e9p8DaxGF6GCYHSonZKSYxA7+G5/H1qEG22nkLNnVqglVOIHbKqsGb6btjW2sinJvZifpQ7778YwrlpdWiRJYB2RQBmLr7YPCMXzgvbQHhqDL4UH+L4ybq8f5M9OoQYwa4sd/o2TgEatY1hfNQ+9PfTx6YXs2iRpD4EKEzCH7muOFvlN6apnEZLD0XIfnMe32w/CdpztfiAtDH9TVjCi0/Px02Bg7i86zGYDHUyrlaAsCtGjNEjsdXHCgtND8MTOXsy/2UOf+dMg4o1O+iD3yU8JCUGA74PMe6qOcp3P2bvi8asmquFP3bm4NMSQWxQr2Gr74Z0YMJI0No3nVYYdlPNzp182OMiqKz/yxb65VBUeowWr3KHQbNmeiamBJOkhGDLdw0+5P8VcwurqGuCAG3e7E3TehvwmXc7F3ucgNKvJnBqXj4HBpqxV/xMmJYpRE7au0F18Vc8OGkkyromwcj8BJb4IgAKh3vJ+UwczRZcTlcOr4VVw0Oc5nsZ+u4fgYnCjrhBbAYrzbOBFSY7+IGuID1yNsIxxj004X0npXpJ8mHJPfzbKYj3HO/AnT/0QFvDjLqSomgoTQd2CaryKb3L+DjvB+2VGEkaWg+hdu09brmiAY6p07kk1oPl3srBugWr8cHcRJ7ZvJVe+6kzzfiLs5YeBjVLMZhjGsLvtUPweeEqSr5wi/BVFm3hdm4+0wIpqz7ApVknULrBGmwPKGFYtybvmR4AzvM8oXmMGh8o2cNqK55D5mVL6Cxs4Z86Y+FQwzlcMu8MPLqTQDOPynLQ5nxcIG7N0y774ry6WeSw5Ak1BehC98FwuOsxB0sHj7JAL8HPoqUUJnKChXat5qlKGfxC0QmeP9eFUPc89H0xBUanrSDRJSu4y+YhmWsXYtSbbHRec4O+9G2le/vFIfxcAkuYWILd4hk46dlVCl+uSllh0jjzrxp/zwrE3ad7cG2YAhTL5NKRHYJg/TMTQ7+eoMyYLRSWpU4LtdzpjMl+mrokA33v64G0ZBO8kmlhjZcBsLF7DF7R3YiN5q9AZlw8dX9xwvQhPZI9JgvrO67yP7kzdEf3D9rtDOEWE3GedGAPlW4JQ6mNWqy4fhqlXlcBoc5TdCbdFh7c8afxyXKUvMqVgsuvw4NxzyHX8CtrRgXjyhBBkHRYCm2F83Fpsjfpv+3H2Vck+EbnSP4qo04RObH8pXiI66pNwLTQHEsk+1ByxgUUW6PDnrcdYbk74U9hN1z8+wQ/cisB1xCAdqc4CJjtAo1jx8BR4w102kEG18xN52k2xbwqYADuuz+GccqaEPHjGjs/iKSkm8NwaNphXDLKEks9d9GG3qWgq/0PMg6Ng2NndOFH1k/2F08DhVepELH9IT2zkySrl+F4MtuNJKWy4f78BjhuLQe7UsW4ZtsgfmuWh/Nbzehi5EMwPjFE595+B7G5GXRMZBb1XSOYozfAo/ZI0dH8Tzz2uDdnl1lRnzHxoLAXRr8lONX3BcyOK8OOvKlk0jobnoanouirXBSdfhNMhPNY8rwiOdjK0QytF2R8Sx9y6u5j2K2f+PLBeo5VOswKa6P41HYHkpgkitnzlSHooyE/i9SFq5u8qGiMN6abDYKD5xN89SKZ9+z5wKEJ+2lERwqLzDvJVouV4dfCCB4Ik6E5tr6o2jQXfhk+wW+6bSS/4g2s6P8E11TqScFHDSR1zTno9Tk6s0wKbOwDQOZhGEiuc+U8vwxsEhPF1swNON/HFKZ9GkGfm+vomXMn1uuZ0qu0P3BAMY4qMo5DWFkYnwi7SXIHRsAN9b38rU+SN3+X5QO/tvI/VXuc7NfB2/LqwPP1NtxiJwQ39knBmRUPMPE/aT4aspoUwy5Tc8E0+BmsxLwwim9Pf8Xz7kVz0RoJ+JReDue/t4Lb20PcGTgJ3n/4yEuLb8GSIGe2muVPGRqbINPOAoRc1+N57Rra/joU1cRaWF8nnw++2AUUmETvJv7FzqRoFjprDQlClfh4rhos+TSa7J6uxe/OGexmFspCy2p4s2sU3vM/gy6bVSBM/R+vXvYALi3aAAVHN/B79oXkoQr+PuiIo2Nv4Qb1TfR0li4Yu/lBxvByLv52gHYWGKDUNOIwT3domL4YU3zqMWllHaYqioNyXBgccYzHV3u/gmi7K61R7YFvb8p4Y8VTXjvJEW0PGVPGLXmY8CKebHzX8dSUt5Aml0Kr0zJo19Rt7GL7ETsUhkHRqp5OP9GGzd0faILiXSxZ2EAzBcQpT+Mo5kS+5CcrWyjwuznlO3+Gv6OUwOb+dHS4K8W7B1o5OQugRsgCw85NpIiycyhcegSKN2yFhDnm0BKzm1KEPHiEbBNf+h8B8AEQAgIFAPSP9lBKS9qlaElDS4OEjJKRLVIkKW2SUlEkEklG4RRNCZGRlQpNSnZWSEmSQqV7Z01htKcGXqgQpyNbFuKbaCtOe1HKRbEIknXLsdN5Bq3dPIdf3e+lHLW9kJDsB2+PLiR37RNU+2YAFw3KwOCsUNx6bjVvPJ1LSuOlYNvkneiUcp7715eBQVUm7hLQhL0aurD5zxDoCbui6PAzcpx/Byu+ZuPRscvJRHABl317QlOeZlO0vCQIayxB/w8XYbxzMOm82E86Cg8oae108P10Fg1dVpHbcAx/3aoBD6cocu+0JrRtLATHo2E8/5ovvD8WBCGHdtPx7hpUPi1LYt2ycFRJky1/ZrBzSTZ2jfnEWcKGmCi5nGw0i0lDZSuEZNtz/IAA5Lc7ktjmCGpbfQADvET493ykoshWvFY4EZ3DCa4d8kS3cGm4WXKUSoLv41IHB3wScpzLq3phxwZb1rr4Ba7OCYH84UheES8Lt429SFounw8nWmHDqj/gPeoI/TT8R8JtybwnsAUbRvSxT9EIuJirTylbTlNq7lt6eMcM3aKO47Htw2Anq0RnI7pxY/UuyBNQA+1tIbxHzhKm3ywm34UEQ+UfcURZINynOfjR8RU3NbdzkeUY2BdRCFx2HePbLtLA7q/YMCeL/zn/R8UhSeSZmE39M6wpsWwcHF5tCA/UD8HeVXmkHekIG12PY86B/1BF1BuOh6nj8uJseFWlBE6aC1jwv0JyWZgEhQv/kdoSV7LdtJa8f6WQ43NxfJY0B4J3GcGCsQLUFeTMj55Y8GibJq6904xvnxux1+UYyFa7yqKlZSwfw5C4QhbrJz+EA09n8oExeWzRmQr/SWZAw/FGEOhv5z83H3NfhT0ElOjQkqtdfLLXGXr91LGklvDiSUEIflhJDvIpeO1XOI0zMQA9fRE0PZ7N5Q31eGChEV3efpC3dF9k6Q4dWn7hKZa9SScbTwZpswDSlPiD2V9UMdLCm9187rBG02MIEvrNT/N/wkDoZjyzQxYuS/YBXP9O59/cwqgnV/lXzlHwyB7Daw5u5lmDBRwfFw5jpuoDfcxGpaU9eOe8Er0tMcc8RzGYIKbMwcvESL9yF7REz4OTi6VAJyUSu4wzsDdJDigugTI99KFmxiEckV/B9Z4xKBwcxTsX6YPE76WwJectjRgeg7u+dJNJaSQ715tQo8I0Oi/QDslFodRxUwguW6zDpXox/K89FM8N91BpeD8b7N0C2ccmwKJbShwamMb/HAxhxeuHlDuzFoeXXaFxy+s45s162B+YDrdLCtG+UZtmTy/gdYd1wOuoCpxa4spVfXNAud+G5CrnQm9ZFL++sIz7Y4bwptF9DFhuDrXZW7ly7lW6oz4OVzne4EwzF57Qr4EWi6RA41wzyiwqI8/zeiCwbA5cmm5HV49/5vVZqvhO/Aw8q5vKbQIiuHiVJV8wnUJPLutCdcUVxvvG0OaaBbX39pDIqivorXgTx3MseJ+OgpVpd+hQuBBwjS0pmFvAvA/tPF70CUe9FOWUUA0QPfeD1J3OsOaTWXRsgjVsOHKeBL5bgkS3Kimml2OPyQy6m+uH9QaFPHfJQ7o49RR+djYHm+1CfM/nJxScDGdH1x5qcL/NdWeMoPHNHRyQaOD3Pq9YxUofIr7XknXoax4IdKYdV5K56IItOvtW0+KeXNq7YQvoSTrg8tlG8KOmGkfrXufws7+4S8yOinkmyVbuwJ9l0dh3RQWmiZ2ElCo5wPZILhvqguv7LLgoOhjkrF/xZ6sg3L/4B2wX1YKIS2Mhc7YxzP3US6kTFKFi4g/W0MtE/19nMPJvMx9L8AHzJgnYXfSFJieowpvQTbCY3sKscVsoUjgH9ld+wfsNvyCxWJgWzplEqzYthftfzWCC3h/qtHTEqveC/NItmFbsFqLvUo3gdcwRs7cYUXV3AEeF6IDwFuCPlxT4sP4vqN2aAP8t7YNto1VoRf5EbP9oAfl5SnR4lB60Dc/jP3W7ybe2hwXnOtPpS7r49fxKkv94Fw853cZZ3oak5aMEKqa2WNHzHsoVpkNXlTQeE+sCn93V/F5FD7IshFFkyAUGSybAV6EQXnx8mNy+F3OfoCWb/LKlqNh8kOy7Qp6riqHyRDblOEvChYH3OHgrHJfsrgAU64PBi+PpYZgNvRlrR0+S/qFQO9PucgF4eEiJtpdrsNFzoGWZ83CfsTpNFXbCR+m9qFTXQf/9ssOnZxEuuOzGVU7/Ye3XAFQf0IFOg00cKinAn2Rfg+Kqy7jIZjIIGtiCdZQCPd4px9u6hengvB2sU5bLD7/0o8yiy/TA7wyFHqrmjZaKQInmmJq4AW5lPmQ1jV/0Z1YjmL/zh3Sjcv6nT3x0VjAreiqD8UkfXG//C2v2RXLL0w4wjHrHvR1J/Kglm66dsmBvMTVuEREGyyRN6AnYBlKeSvjT5zxfuZsGMfdEsVO8GSVvPsF8eWuUj1KG3LGzcbbeQQ7uLEL96w605GYxNjxcwwUT71H4+Vr+F7ECZhpJwd8mG3wTlkLvTizmGUv3kJOoGO3dPIm+32PI++EO28v/cvlWddD+tIwH3TPhnPlN+HR8Bl66uxtP54dQ6I118GxwNtlc6IdCFwGgqAwQz96JVtk3wKezBTq8pnPmeVfoSR4L8+5/4tFNf6Fi50Twvr0Rf7Ia1n/4waHKnji9tR4ufC3i33LHwC1lLzevjaOv4xXhx8EcuuXXi8OLAynj8kS63LqTmp6ksWi0A805/x84ZHmy/Hgx0Bt3gWK/HGMXy1KskdRFmetH8e2jleSnnkE3ZEMx6k4dn1MEEBB+DzHFyDY/z7BJwhXYdCkcjs2bCJGTK2Gs2CpYJ/MBFmlLwUWZq9CiXk/W02tQc89RvHgwDelOBV9bdAdNBy7inOR/FH7FCh4vVeLdx/upbMtS8m/aSV77N/L0MeWwMzIVqduIJ97aAxbLreFh/1/uOVlK31Pd2cRjNNsrvmHzhCuYN8oUvtg5ceOUVqYtkyDeyg7t035Dbbovqbi9px/BUXTyqg8fc37ACXdiaZL8fFrVow7hrwrw/ovzeHX8F5afvJm0N8xF9zkKkJ2dzHNdptPpyLVsMyQF56SdqX+kMItZNLAmrSXNB2N4fugKzpq7AdVqN1KX2yPe6GUAorXroe+aM+x978QLfozGUeby6P0oCsafi8Yz4yP4woEzlNZmDBgXgh3F6ynZZAcESTXCqA3ubOESRC+uamGT1kuc/CGLZP00IS5uG+42jcIETRdKmOaMveZZbCKRD5vfDeLYqVfB+JEXKXeowothSSzXLwOjGxWUiSL8d/pfSFG9D4HDKXCobw61TdoBOrIjwLvoIzdsvYI7fv3HKcuuwpSqAgi8tpGnW0zAvbkiMN1fHX616MDiOIDMG0dI1G0b+sQYcs7Cl7zgvSJXWeTjKc1iTPp7kHSTLeCHzgXC5Ej0ME2DoRx7kNW6BwvFH8OXhSPAUf0EFYf2wfQSJQgtPQYBu4T4Va8eZaq+49TIaaT1sZDln4RS0NRPLHo9E9dlyML4A2O41d8Iyf0FR0lqcp6OF3xrEIb6nk801ek5+RgHoN8dOcjduB1kpBIp6mg5G7YMgGxFLVjrtvDBY55Y0z+NHuz8TP6BxjCqaTV//b0AvomcpOHRO8D/tQC3FtiTmXQFqaxrxQ61LZTzegw8yVfE4Z4MvPj4KXtWmsCUffMhfGE4OAa68e7ulVx4fiSsipGABIU4fHN1Is0wnE9CdX5YISNPTUv1+eiau3x8gw7dXrMcq1skoKjhPg5YeXBMdRGHjrwEi/9pYHGeE88/fwtWKvviEWFLNnG1gY7WebTi3jsWP5fB0W65zEOrSVlFG+QmamCs/3p6FHeFrpqagNC/LKrw3oKjVWVZ6r4ul/9ZAEMhNny5EniB8EQMjviJ7fqjwKpjFJ/YqUaPR6oR7lPgYyiITY7tPHjvKoW417KURzif/jUJpD2QbVOf8osPzrAhZDUbH9NHnSn34PZsR/jyA+lPRBCagj1cQWv+GvmRhWPPo0vpBMjXkcHGuBq4saOUe/bZUNz8YD7/XAsU7u9i05Wh9HUu05kyf+7JycTMQwr0j2Jx9blwFndOoBWBgnDuxEO6pvWWmp+8AeGfZVQybEfxTSPoSJEyBarMoYsxtzBNFaDtsSJ/Sc6Ew/8mQYvlGdrUt5nX7FgCTQ+EyFx/P6a+mkLPt6lC6KdkWKs+AYe83WBFx0E+G2ZDcTeC2evkV1Yb7qaIcAU41TAKMvVdKeTcYth1dCmu077FZ5dbk+WyEn738B4umLkIkiN+YNMVLbg/NYUDX3+G6e/HkMPEU7B8nTEXTc+l9V7htDhUjzL2/kIB0ADBOSF4ZO8fdo4yZ/neTsoZFweoYAYTzrfA9esz8U/yJp69WQp0vSZxzZz9aHH6PQnsPIsW+fX8UMKYV6T/gb6DPfSq8QaIXLGDWe5JGD3qIEoUhOCxH+Z4unwXbJwuADc1HsGXLZrov8Ma0+YSdOuVQl7hNVgX95j6N2myjn4Wit9ypMX77qFYzwfyEf8BHmAFL8ZdhRkFi3liQQnLS2rSvEl98Ox7GAxfKgTXg5/Q74UZn1ihB+o7b5CR7R221ezj+/sq8XhxIDSHZqLPyGScfDOGZnZG490gKbhePh8tw6xJanUK3JOsoOU73vLPwd0Y4PWML11Xh/zhQU79rgWLp1ZhdoI6lm3byoWuUmwtMhafXxLl6qQ2ODhhBdZ/OcePvqkASzRhcHwsHLv3iCw+LCUvAQPoLVgIckIO8Gv8KhYzjeGbgnpwLj2Aa0+8RdPfOZSbOQyLH7znCK962D56J200EKDJy9fzp4ey4NLykr5PacapKbfhvVA+bOs6B9fjjLB81WF86nOOxUfpkK0ggfnSQpT7T5oDwoLJ8HkX2t3RpGkdKVDn4Q+vKn/Alju/6PCAELy7copNxBo4VSWEjbI34N6hYey9XY1J87WZH4ZwWvdIFI2RhLd+p1CgcJDsSvfDRqGxMBftMKrTnuSaXXj7Uw8QaR0mjQhZaHA4Cjc/v+OkBC9yGXTHn4nW1OQxGrJsnqJWYxnr3Xcj7fVj4NrW7dQWdJTOuTqCUcgTfmqrRpvNTuPy9f30atctVgvRpvR7IuDqeJGyTheDz0g3Hlr3jvodLlF79EpQardnibXuXHWliLb4WYGyjyhlFVRRangfHX1Xj3eKaynmzifuGLrBzTqB+KRYkAvadGHKl8s8TuAjj2p/zYPzuniZsCtIVwVi/ElPbtTsB/92TVTKEoV2dmTdE0JoXhPFaccHyeP0WVx9ZxYmpW7nA7Pu0KIxfznu5Eg4H34eHh7fgVvlAmH9jtv4++ovvrejAZNstoCTgAx8jciE1xWKUGlxg66W+sPE95V0ceJ6/v1UgXYbjCQjBR0qaJrDbZauNPm2FKg6N2LnsUJ87P0fmbbH0yo24bFmB0BY8wgKd5xmi9pXOMPXHAxNWmnCDUSjSefZ+6ErX7BVxas7m1FW1A5/7ZSCiLVvcXULgtF0CTreNB3v8i+sbW0mc5e5/MW7kl/udKAM3zqSGboJfyz0QOisPUo4jsAJp8bi5dinMHjWHmM0lakstZdvBk1lgwXnWWXGePC2ioC1t7OgW3cm+QzvoSNiu/BGcg6NzkiHD1ebYP2D9zxnixJErdPEo2Z6qH1LHW8ZzGef6HdcNSeTR1kX8ofOM3hq1Q/WVkKQLqnFjrhWXHvoGC6s6YGgf6sx4PIJ2nTEAIWCN7PRnxNYJywAfnnVkB0oCG+ixoH+tm8g3LiKisKd0ORiF4/cFAjtz7PAfYoRJK6ORH37PBbp/8NDuvv4U1kb93h7o82duzR8/i6OfxMH3/cow2qvMDBvaMez/5lgweOd8Ehbn9cIXQLzjdMx/WYvfmm6CDXVAhAZ00F7u6bA6l2f+d+IrSjS0EZ7Fv+H88PqQY2s0Hy9AC7S0Yblr16yn68myw8fovjR/vyp8TzkdQVgjqEeHo+8xjdfy+HwCmPIcxMgWWVRtnMt5PU5MVT/JYLao1QpUjILXL6OoMYlwjTjiiaExonT1oQh1F0SjS8OmaG44wvw7m/AkKBy2LrEHGIPKdJSDR2Y2jIA+U6rScTDhBMuacDWxDQu+NFHndqjyHhfFU2w3A1nREbBz5x+9s+oBB/HYLqY8BkvKapigaI7OU2qxWnLlSnoeDh3+I2FCRJVfNG1lT7YV2HY6hkctXseFgukgUejF3Xu8UKhCF909NSDqYsMMEXwETdyEerZI8bYhYD1dAmu9bXhyRuyaVDhAK64rQ/VWWX0BmxoVXMwBXZ38JMFV1CWbCDo3QrafdYTadlqDF2gBzvlF0C/txYqx1XD4vuTUK6yhxtMIrH0RRxW1S5lcfOXYKYuBJMPusOFqq1kZ1LO8xf/4g+JTqxVVkf73iiQ1dfLGLTvEB4sM4Hl/xnhjOq9NCy0BuuML7PpsjMofmgJdVzZgrHCZ6j7uS2uey4Mz/Y6k3KNGiaOXoyZJTW464oc2XSpQs9Ncaps/cG7K0todZUOVKadhjJVDZy4cx40NL+g31HRmOMeyMH26yH4Wjx2/5HhSi0FELiQByuqX9LNNV+hziCPljgyyjjuRL/E03hsyVc+G12Ne2TNoDVJFV983oa3OmeSducgJKlY01+dmRQZ+p4D7PrIfvQjWqVjCq8+ROFnzVv4veMPHOzV5WcqF7n7RCV+OPacB553QHntJr7yVx4k7Gz40upJ3Ce5EERr/flySi5/lpwB+WZV0DJVB9+enQgdKA7/qJRPu4tTps81cs68zJGLAnncQBE9s1sH9mk3sPvzEbyebQH/Np8CN41R5C6aj0udBWDuTncoyvjNGtSHXQZApVn7edSpcRDTtgczr6/iD6o6KNJsTi5l6jinKoO2HDEj7X93OX98DLw9YQOKHeZgJTdAjqeukeuKVNw/zwguTmolF31At8WNPKtAmcLjrOGn+BiWvTIH16yv5zR14KIucdATNYVYuzUYLpPPjy1b4UqBGfRmK4BipSVp7NjI41UFeaNgG82710Hn/jsHjdv6+OnwWhJIkgPvrvEoqX2Gdo5hNHDaDfPsS2Gp7UewuCjIdybK0JK3SuT/VxJSrp2nlKkr2W/RbEqvr4Lne8v5o+l26BY2h66qYMpsU+IhSXXwcI+h8Zuv4C8NfxRyqWfdD7f4rGoOcVcWGU46ztJGQTQ3hGC45ycv1hSFlKWzIWvSR3q0oxBmm8nRYvHfIO6ZTNbZU3BXigCkFp7hFMEAbrkzGiSWvoaYV80kMt6e5slGsp1COfRe+YMdb0WhKseJh5MjUM/rMjg9d4PFyVK87c93nLvuFsxr3s51hWf5aJwy9Gkuw7zHBRSfuwHHTWEK/3eS5/ldpyQXQQoTPQwNezajc70d1M7r4hSzEWwofxCaW/Lw68ATaCjIAqfSLTzstQXa9Yzov+/jYNVISVIYaIbZLw/AzaQ9OE96Muqm10B+2W267anFHgcu0vll1uA3N563fu2j0kP9eAxqKMxsOvk9z+enNmuxmGRQ+ekcHiMiDj16kji8+R82/b2F2aKO7GqrDfa9xO4+zfS2NZ6+CgWBs4YaCB/7gA5FTynjSDcm7hGh/h/bKKTHniT3LiP1fS849GkBlyfIwBJTIdy14QgE7o0m6zsL6au3I86vKkJF63c4HLeEfvTYwHpXW/hx4xfsNRJnq9HTQHawE6573ednkAXhYeXwLi+JRF6O4k965jBOYzU3q8Wx/EQN7P23B89prIF7RQFQc2MWlcV+gLEW3lBwTR42dKXyw+aR1B+kS45WY6FT0gUv6myB2UkrYL2vH5q99OSIXyLQpudJE9IItwcXkcOOnXjfqJiaFZ5B+wlLalytiSswAnsXSYPVEnme4Dkat88cif+qrrKh00POEn1MB1rd6Nk9d+rR6ofnp7RAXmmAd7n70kllFaaTnbygVB1PvFiJN++eYbGB0bxs4CPPf2MAPgPScFupFCcITYH/BnRZU38Qdh72ozDXAZ5ptwXHXXhJO+xEoOXkS55o8QOkFdXofXA9KN76SUOPLjHEB8J8nM02XqogONIE8sYKYNnIJlhbu5G7ehLw3Ytocj71ni4kaMC4fevJNrCO7MgANBc8otWK96A7TQOnn/aDnD3ynP5iBJgUPKNN2wOwrNGFqlIlQLPLCVeFNPHVlAe8LWEeaY9/SD6C8Wx0rB427Y6FETv+Qv8qUWh6Eokq37LQ8zFizYFwUsoJoJ+Havh0oCTNMN3HK7rNefupUfDrWjGvCR+PP3LESDzmC1lHxtGeFH+SEmmgX/vfYeJJHbQbZMhzMsDQwb/oVetKx4NTcHOpEvTeuMX7T/bD79XJMPqFIiTnq0CowU2a6TST9i+t4z3CC+nvpgFUcFXjju9GHKK+kiqerqRtSxQg879Wrp91nTe3J5HTrWh8bzIPmzyuwFEhMTynXQoO0c9g5zNzEBmzg4oOTILqFSP5+FUROPnxIjQKjMZvI3pxUu5MDit4zmNf6UG5pwul/u4iqV2pYCY+HfdftqEQd3c6NcoVTL02UNL5Lbgy3Ar+s3oKM3fvYkw7xDdbBslf05Xv+i9HjYCTuFB+FlQO1NKZlQwL/w4DDjwhj5dbcX9lBoSIb6bxUrvogacsRX8awV7XHPkrKYLdf4Y4ccs7uuPsAWMdM7E0eJDvly4BOtlGTQ9aWb9Rjq+5KYOyzVoIKlhPAXPN6cyzVHJ9/ZZanCu46JcKT34Qhy250/H+XXOYcjeexpT4cMDLzVweN5k2fknG05NTKNfQhPcdD8HHNmZQJysMbuviOa3BFYV7CZrH27Ltxjbu+F2DzirprMbSUDGmiheWioLfzC9wPOEDGFZUUIncdhhV6YnPdv3Fl0vtoUv0It5MKaNHk2XAa/kSXi81DZ/IGvES1VZ+VfKbnpiGc7qHNXWeLYfsjH+csssIpizbhGqmP+mxzwv8OmjJhosOgoWiFc8UmUaRk8X4scYgv/GVgW8bd8Ps5ky6HH4c7ZV2g4x8Ib14rwkLZkpiqF48pjVYQGK1Cbw3EWQx0TiIf3oIbqiX4g//E7BPmVkxpA9bV92ji3rlePKTLry7acXqOpG8TPc4D+3pxsXPH2PNuNU4VmEpLv9jzZMl/bEATCEWhJAUK3HuvwE0X3OdvgsP4ybjX/gtzYGd1cZz0u0BkGsXgB2xU+GIoyH7FApgfYM9j7y8mAMuO/NQeyx0vneA5FeJpHd/FBg5iIPW65GwfWcPO9/VQaf+h3hZNAFiM/I4uVeepHaEYOBEQbi0bhXvu+kNMsW/eWNOFoTVpYLC3pms6PYXnmrKsoFkLGXvE4Lf3w9Q5qkEfuJlyN9/95H/9gNQN+IPLliXgg/nN8K4GnGYlKoIwWKCuKjTHD4v/gmfRdx4dfBh+q7cgHrpGyhiswNVpvbATzVbaCj/wOtLTlKZVyNtLHpFCt+Xc4bPC+jvMOPFe6by2ZfZ9KdGDuwkY8BR0x/sFc7R87mq/G7dThIasQiXfgnmfuexqL4qFCVGmsMGifE4oBJD70pn0ayxtXT8xBrY/+8ojFOLp/ACT+j0vMEyuTagpCpA6btluXSuI+u3WZGFgyHOu7ua9abGw0NPF9xzKZG/2evBIq/VZDE3iKaN2gaNX2xh2o9RUNJ9ga81EQz75FH4ZDeoPCsKd1SDoVDckgUFd8ITw2mw5nA19e8xYfndH7F8Uy1f3zGOK3gktK0I4JTSARj2+Q/M50uimONCPhpylG7cDkKBi74gWHKBS4KFQHtRNTi+d2QjdUcyvb2axaWfQ9X8ZVw/+hGeLTJlPpKPZ1N1YO8iXXy1rga+/3qAFkGjWKs8hvbukQRr+zgat/YjLd3dR9cuiYGnaC9E/XpHo4qn8jTnIDbbKsrlcB1Fw2Q4OvAgWt5xoD36RiD23g7OrvmD6ufMwT6jDS7I23DMH3mq6xlFBp0yuFU6jbZPVYPY4UwYaq7kUKth4JJZ8OKIKZsuOwrmrn5UYEXYVF+Ay9tFYFvpMjxRtwcjjy+lVcqqbPnrLaXsJNY+swkKbj8hnR3LqKpqDJw8NohPX8ZQxdgjuKrmA0gcmwKT1p2kuKRdmJsSy57e78FZbDzcXbEUbrqHwI+ao5S6YQl0axyk8x0p0K37CtfAZ1R3TuAFb80AF2nh2t8j8dxjCzDqiSSVTz9BcHY4tTyzhlE2m+jjfxc4OE8Dyhq+4ZnScZjaMhvbR2iRevcFPCDqi//JLkPjmg8gtUeDhjQkILzpNy4VnAQ9yy3Roq8RrvkE0S37dpJU1MRT/Waw81UeWSUbgumwPj6Y2ILPeupQYvgRXOrWhwVb3+C+lhZ4u70ZipLu4ZoSeRh3PJZ3Je6mbTeDAXZL4oqFj/mQajImJciyQeha3lfFtDVeCe7GyuB/ts2YYhQBUeX5eF6xHTe27aQlygPw4eg6JLlsMtqiDCdiReGLwile4ldIidUnIUF1KvWWN0PY7DN0fXgP7B1rhvFPNCBRVRtKY/agYNEsnJ2fxrmSL/Ckzl9Q/L6I0oxbcIzqZBweLwdPD3yBtKE1vOTMSs7U34h9l214wHgZ/5n/nUL3zMPix4w+jxFO+D0mqV2H6IJLKsVrlfN1rWEOurWJr4Y10/JGKyoL3QTSecLwqUeAPryVxB2nF0HVR3V+tuEA17pNAdG1C7nd4wj87c9luYPykJSvgxdtjHiSiRFPD18Cj9IS2HbyKF78/T777Iihbbc1cN2gMgiML6VXcwQxRCWJ8l2AvCUGQXFFAmx/NZq1BnRpRfljnq9lCyXKIXBGTwv9RC9Cz94a+G/DXTyipMFWLr8pqXIZ1T1y4s1V0uAcGwkbVoWTdME/qJ4mAz+7BLnihytumeHGMKGfF28eIN1eTVil7MqbxplA3b1DsDm6lCeZJOOUAQd8M60cxrp/ZOfMTnD4xPDsYwDk1fTB5axOjJ9pDH+GDvLnxb4QGCzL2wV0YZOhHR37Nxo8vSqpNUcWaqwDUeWhKDvtnYwa0+exgV0qf1axJy//Icr7IADjF3vzkedDYDeZYWvHJZ589xDvULiGpB/NVese47vgSpztIw31U5inThyAt5X+oFc3in2flrJXlzn8wQZ6a/ADrZR8+JO2ITRY+GCadS3tEvakd9dU4ZSCNPwwXoSNe6sh+nMnJF+LJ7/CSVBX9htnSNTRSVN3GH01ilRszXH0zGN0WMIW30Z7sp+HCZe+VIQVZXZ87e0HmDjjI5zx20CGaiFQE7mTBItNaOZpcfi0Uhy8nbRg1r3RGLHtCZueFIQt30NQRDYTIz71AX8+y9szorl46kF6660DprFjOff+O+4LX0Bk+xdm24/jlLwFIBeWBvu2dsP2gsk4Ypo53BCMx/SpadSc3s4b9yngc98oHhhjAy9j40njoQ8XzvMhhdMToHiuJG4UmkHj89zQ2rgSTrmuIUnZC6SpPAJLSq3w55wLdFGXoKhtEhcJzAX55lXwqsyffc/eZAWlEIxQe83aYfLgklgAxjUCsCBFjbz22MPo/O2kMlMeP99LoZFeG6Ay4zHj1xf8Kesw7p+rBXu1TOD6DkWeJCXCR5df4baUVrIRNMSg50dwUf0SlhQ8RnNn2sOokgEuMZelkJeBUH7XBbz8jvKbjJXcJXKdHYrDcVFAGVns0gctSU34eFCKhHpH8M1AX9ZIjMHCXkleEnWaZh/IolFqMbQnzgy+9ZqTr9oiWieszt/OFsHm0fP58m5p3HivAvVCMjB6eRH7dsvB/tYqNlPtR4OZZzBgrDB9cHTgYKsLoGo8yG/WNlCnSy40XreF+af2wMc3o9ghoAYTJj8Hjn7LpQfVqT7iBB3c7wCDviGsskMDWnwiUd5yET3zLYD1ng00rDybxldWkem+EFpZWMJRR96Ah7YFzCm7gF1/Cc4lVhN+fcSfTU/B19tXSH9UJiQPHSKpawc4cp0CyK5OYD0lQ5R/JAmn46P46YcapGux/FolnOqerKXWwkdwPmssZJ3shtg/OrQqOhCDmgx5xEQV9AZPgiWtmDq/CgwvmdPWXxpQsKyJHxqncuECG5RYY877zRfwt9s+1DDTBnq79pHr05P49bcpxI5+D0Pd+9jxfDtL1VyGjw/iSXHeB3h1Eljg3jJ48WITeATYwd2e3ZS0twqC1lygbGiHlnmCFNewEx4c7GeDoJV4p92ctgTbwxT7Xqq5b8OSVyzYcW40XP3VRa9TdNGmVR4g9TgJTfoF236NgrDxL/n2nzA67OgMji9uYbL0Fkgx2g/C+85xjvt83FQ3h9Z4jwAX12/0ceAsdNdfwsHWdxxzPBVVI/7DlvFWkFqynUpkdqFXnRaIb/wEUcX6pBeUjl/PNZJ8Tyx0nghlj4vi2O96gA87nIUNfjpwIice+9ckkE+xKd+Ly4RD84xIyMYPbrUQuj9dA7sHjkFLoAQcfOdP74Mi6P5wOvOCKTxp6Tk0kdGia6sm4ddd26l2gga7fzKFMc5FmPTrJK6xM8QpKYmkZHKK8rKHUb4K8Uv4bTRCpDHv9IHS36OR2xjqHo5HIZdETLrVzvmdUWSc48W5T1T5vtQG9hMRgmv9V+h54i8eZXcUbKVc8OBnUShX/kujDaXAZ9VvLC/KQ/kJxqDn+5m2yGawgowP9EYtoI/THWFDbRO1/AsGkfLXOD1RlmLWMIifzSDrpA4wuVVL4yw7aOvUMBA06cXSddE48q82fl4+hmq3KkHVTm3cfNMWTfarwLhtHWhY+wzzi+ZC+vQ/mKBSDBv0zuKfZ9JwM0WCxiu746UVl/HI9gg2iH7OTkUpfGDHfog4MB8+fLTAwm96sOP9Trql7Qyvr1dQoAfQi+RJIFEbRIHBS/HqzwBcmfUJnAtHguv6dBoK76Tryhs5RPY3aXiMgG6x2fBh3iU6X3uKRiw9BYu0jKA+9SD9Gb+Ebs8ZJsH3x3m+swznbrfn4lsC4LNOgTZu7cdJly1B5mEa7KkP4Q4bWbBvW447X+rSwBVvSjqsRmZpnVAwaIpeR8RhMOgf+amXovGBQ2yqE8gnh2exr64oCkq542Y7ZXj3NRfzw81hfJ4vvZCaCYuK6rHcrgeXpQtzyfe99PnPLlgR1sP+z5uh0NMAJqUc4dKYtaCm3cMfRrvz5a2LyOFyIz1x7ca0Ubbwt/sv7rOaCPF16hA/9i/9fGaBWko5sGl3H7DWNdyf7QorvJ+ArvF1fiwgBvUh0XTNVRAUguXQ3SmZbxSrs/ZcEUr8Hgrfh0fCk3OmpDBrPAy8e0bnNUbzu1MNlD/UxI1SmWwVr06Bs2S41f4wXt64ioKWCcCcRTug2I0x84Itb+x1QcUFp2Bhy2b2eKDLxpyOjz+sxkd+ArDl+lt8UGMKeofF8LrfT1q0ajYGtPpj97M+mpiVAf0qMWikpAFvRceQTqQGXi8w5YQ7cym6YAZExuXyh7EXOMGikHzbgkE0QA5GHBXhmvVjMPnXYzo84SBoTfHmbe5T2G/5CVRVNsfSLR9J4pYiKI8P4QS3adgg8pynzG0i2duSdCRLny53ric9gXre9n0q/bOcCCaqR2Dp1kSeMfkIi20UpbIwKxCRyQGx7314fdFMaluTiM2KalBpaAJPBs+S781mnGwzEoLbJXlm2R1Kq8/FLKt6ltAQoWgPG5CRvUXxRSN5q/luvLH/C8U0WEGUszfURDSizvyl/OxRODTrqMCYzA34t2M6OMSFoPSnmZhoJgp0pItsfOQx99NECC2LIYlTBrD1dApdODqBgy7cIJVYFax86A6bqgVo4YxIXLwsFX/Hu5BBEIKB6Elw01jNX4fOwhT1JfDhtgzA1SYanGfOpWZf4Fu2AaxYrgGKfy/yy0RnUPrSi+2JavRygS0ciQzhxyX9TGuOwzklCV62aBLIyj6jSSP6YfneBpLbqoSX3SbB3/VnMKA4k9Wa3uMrs0dQvkobgte9ww0WQvB12mjUDH4GVQlv+eLzlfDgpThOVutmxbmufGukFdzJG4SMDEdWvX8Kpnp4YGHQKpCKOIArzoXjxCf6IHh2FryeqAJfDe5BhlM/1PgO8YpgIV4vvgHbfKZxzMgmyMzNwL1p3fijWBZGTFnI86qWg43hGRSuP4D/ypfig/jtHLnyB08w+gqam/XxcoAdLP2WBZWbrmL4RiPc83kX9i1MpVjlWNoesZWHS4WwoUaDS1frQli0O0Qp6XNaegmU+OpRsqYINXQdYcWiENx1TBcqb8zBrmxLsFz6kpLdv4Px30Pw70EKhGgO4cnru/iEhhlod+hQRUEUHZotC5ELY7gqcQTmp16kp5mSXFV4j6Mdv1P1ZBF6VnQRT7WGoWmhLPi+vEbHTK5S26FnIJRlDf6ZBuBT8Q9TxG7QtmZ56nuqw6s87UE2+DKVu9wGweeq4P4sDjaVaeGOgDjuLnqIBxWMUfKPAbSkCcEtHV/+VOdPRutDIKTGntwXzyCJV9s4/fJhnFg2ipxDoiDCYjQ4DwRggfZC6DycQfaZ0nT5oj95n3wA99u0OevNU+7N2kq/vAi29dtAUW06j01/R1e/VXCv4WF+uP0fTZ5xCpX+vMBg5yOcvXMifEgfD4+if/D3imRWCRaAzFw3WhofiieC2yHwwBt+v3Y0521keL3GlzwyhzG4zp2rVfsw00gF3Wyz0XjxBlD0fUtigu1wcJU8fO0TpI6cMFaM38afc9oxJusrDlx8yFs9kL3xJL2behfu3TaFzpufoWL+dr4XnQ2HxFUobLM/Lpr9kp8uBuiLMKTqL68w4qY0TH6iy1O2quO0RjncseYsaG34Dk89dPDB+GS++1GSoo6Zw4zNquA6dhgOpM1gwzgD2nrnG5RxLAu5Z9MOKS0Y1tzIfa3reNhVHqwCX5PUb1GuMPzDvVcFQFmximWX6vOb1c20781qfPWikF5UmMFsizuY7W5E5w9W0HsTYfhmOR4lxK5hR1oS9IlqQOscEcQ5UhD9rhBVHMI4aKcqG0cJcUDFPromMJV3nv5HjQcr8f25Mv6QaA3Jqj/5T4ofCTtMRKM0HeyKSYDlk5vILUoZOxz96a3yeggXHAduR/zA0ruVasXt0Cv1KXbEXeKwVTP4eKMlfTXxIPV0TThkZgR5/YKUE7WY6nKFsdAzl0M09cDcXwx9v1wEj4bjmF8yjzXTRKD4cQppPcrAoXmmFLN6NoZFfcH74xUQ0l9gjtlInO2Sj2pxAvBwbxQOb3KD5Mgsytu3GBznPmaJ92spba00tZXNJLfQEhieYQy+2x7z/ihlXhm7hnH0f7RIZxMXaT8lkZWTQEr4IL2wc+TdFbYQtmMCjBl3HDQX3GTHB3fQstSQpygdwmXtSrjpehW2210mJ0tDiOhsB9M3s+l8dAge6jjARgtfsdO643Rk2Qvy/uhLUoE5OO6qHry63gNbTYb48J73fCViBGfq9fOGt9fh2SMlbG0ey4sV3mJbizrM+qbLn6Km0b+M+eCgE09Lg87wn0g5PpJ0C7vTHNms9iIMLNMADcvnvGq1NR5970gbeSLFR33D6Wdnsfe0WRQ2JpFjfu+gWDVtyI4RJa/ZOpRr/pMTJz/FXd0HeXhaCyxquQtKekdp059/pDt6FLR33UaDsAiyzJTmeucsuBi2DF8siIbb/qVwuGUzbXqeRrWCurAvsREe7BcmryeH0cHzDu4u/MS3D9/B3DVNqBTwBXqmBJO7GoBEUjhYDtag41VFSoi6QNdHvIT6iO3Y71fOy/vdSci3HBdEqoFn2yl6NWgJXT4llHBPiEdqarPECxNYoK5JrXOHcb1NPC0HAQjRrIa1ytL4IzuAph5pQc26GswzDGT9RR5wftEmehVaxTurbOC3qhHXByST9ZISvBvURuP2DfCBI5N4zXUxvq1wHGss81B+2Ax+yu2CuwpPeGljB8cZVLPYTG8KtMojt2ux4DbTnjeUnufwW6JwNUGHr9T/xGFlCZIqWcfTS7vA9sIXKGy0pU2nt7CtnRStW6ME1bOcKPqEMA/NXAn7+9ZRzIGVuG7KNBxxNgeGrkrD0Qhz5o12sM9OmleUfqB8h8e8fl4tjXwVgR57dsMeLRk4IJiEuh6H0HJoEtxx+gJJO6whKnwIX2w9iyP8nqGhShPOu9cOFf4tUBrizz7fJ4JCzwo0dvDAXqnnVLhejSYl/aCEQ9co6Gg5a7ET9xWPg3u/xGDj6NtUE/mNoMWKrzbMRYP+InqTcp56vnliemUGyN1Nwn2NEhBWtQ3W+zjyhsz1YCU2m8ykd/CfLE2UnEQ88xxTxN/fIDNZAb5Ne8bfBkTous4oeCF/AjYXh1Hj62Ly/70LLeu6ycnbEo8O60FrxQT+ltkCy6f0cetfPd6Sq41K337TWr0Y6Fozhw50VrPx1bHQZVnBJV36oDXuB5RuN8Q7KISOi5BXTYuibS0pENg1kfSi5aBweitSlzGrr5WlCxnuGPYjFdrunMCte3QIzlwGB/aCwSFxcNU6BWkFivC2M5h1LWfi3+Qh1pceoKlWcSSz4BuZps+ndcMm0FYYgfNb7dj4+3gs3ZaO5+1i0SR3NeUPOsHY/G+0S3MK3q8XAI2kQrxVfIV8Ezrg46Yijh2hSZY5S8nCzZOsXvwFb93VtM1IHEa3+tO1S8Y4Qf0hhsr9Q9+If2iUfBwXVmrjyOaXNP7OS3I6LAti0yxZe/txOjKljyhElBN7POiw2Cl4aHkOd8pepyA9J3rSJAg/JBey6LkcSK+7Q69jpnBqTAO5zhcFpzIRah6xj+/UetKXiomwXL6X9mV8wgXlCeAZdp0DwoZpxdS94Bo5H9+PLOWsGh9cHi0Ccp12OEUrGe6JiLGSwmPa/eUWGX1RgNzOlaxTqIvVFgHsricBSioDVDTPmfa4BoOM2RSQ+jOHPwj00/Hk5fDAxBtDRPN4xL4JYFimB04rMnBi2kH6t0+WFUfbkUB+O36fvhBe53wCcSsbCMjVhNV71uOkwkLu2qyA9kVutFbuI203iGGPIITkyHNQ83sEbMizgpacl/zimit83bIN+78P8M3P58Dq8Afc+fEB656th3XmdWz6WgtC1As5aH4WV3oZwTj3V+Q2vYI2Xn4OCwLSeGPzOVbbcpuT16uBULw+HlB7hfJjoumlRDldrn7NOg2zgG6Jw97KubDiwwro/SAHe6ZX4amTuehRd5bP/beQlFcJwW3rB1T57iddlP1Hvj1n4Kq1EAz5rgMl8TeU5fQS6iSs0bG2mJNjBJku7KaZRRr0rDEShkXHQWmCNGjGr6He9HaeIvuIzFS2sVfXXU5tGsRg+WZcFFDD+dnK8DL0Hbl8ngpL29Uo9uJKeCiuA7aiHSCsNY3CuwsJrpjjdFFRKDbWRN8bK6HIVYP2HU7koqJbbDBjG5WOySI90d/wRKcS7ncgTN0wmkJS09nhx3iSkTGAo8ObcWuHORTNLmZeowXq+kn4t20cHFtRQHb3srB6bCsXWkfgjl2/wPj5VBqjl84ROx7g/gnDpDt3ItiWDYGK3gz0mvwV3199QzOHrOHd0HgI6LrE1qlLQFvtIMjf0gSx+C0gX3sSXrp3UuRgOVboNrCC2G1yf92GP+dp4ZRxI9Fhrz7MHJeDItPM4IxOKxZV53HDtP/4n3MetGWe4ckx+lg8w4gMPMfBgsAYLHw7FnUW9sOuQUO4fSsarU0r2CTwF2qMOwwt+qmUnzwK+r7oUnXXLBR+MgrjNjbgo861OL3VAqu95TDjzweqnRgMj2fbgfWuU/xL7BvNeuYLoy7P5uvzqvHB6WzKcrmEo3TtKdRSkPqvW0NBiTGErE+Hzuk1LD17Idfv6MDST1Xgue4qp8Q+pF02y/i93QQwcq3jfe43aHTQBhi++w5c3HtBbk0sbHngD53ePfTWuAPEbHXgUMkgbtS6Db4zJmO6STiGLJ6Hze6riZq34rHT32ml2S683jQajBq6yPbSIXpZsZE+FxRx9c/NqK2ZAi9lMjm1YTdtX+lL0seMoWL2IGcMEpyjSxBevYzMG50oUauc9w2+wBfHbeFtRgjYPbaBk94jcHZdOEU+/AvVOuWoSzPojlQT7pt0gOZvcsEpTQHcpaoIspEXyL90CQTtNuMNik8oyjIHZe+u4LVl6dxntpyfq+TCmnpD2O/zHP6+9GULAnwrLQN/JT+Q5StHNku5A36eIqw3Yznts7aEX68iIGz3M9gqdwxefrXBs5HhmNxjCZ2rV9OdxHgS+OlPl4/LwqMxV3i1mjTO0HsEB6NLaPayZxBddxpSM6/iw6rX1GgUAkm1atBsJ0XT1jnQy7xyEqnTpXeDV8FqyVy88mENLT84FS3HfgPL52Lwqm8H+buWUW/DZq5vOAx6hufgZEEvnN0pxQe/34JOuSrERBMQfj8NtQdPQ35dPsfaHKdRE8MxZ9l9fv2lEVXdpmD6uddctZtgXVcvVT+5heE5z9H81G16ZvAXfwo14QrZFNSY5UC5q+cTrzQDjb2xLGl2juNVl7PKQzeUt73Pj4oV+Uj7bBzy7KQ5d2/AogQpeFI8EQxj9uC2kxd4xK4N0PD8D8bwJFrw5Afrpc+CPUvkqM5UFjbN3U/XI9XoyrJPnPHsBKq99qOyDYIoeuIsXfhhCp6W10hitAp0vNlLSxK9MO23KH53f4hpOQWkfWQAvAM98InhOewa2MpLXKygaeYIrJViSGUX/tXNvDWgiI3cv2OrhTzuLDzDbplHWV3bHDolFsHn5o1wYtMGEJwkDY/Sfah3ay9JnljDG5yc0WDyFVA6ZQKn4sww691YPKc0BlyG+mjLBitc6S6CCRti2TO2gfTv9bO4ixS42chjgvoBeh8ajZHlinzUMQv/WI1Dn5tpmOVpBwPHK/DWR0N4ubKSnqgpwmwPTbwf7gnv3GshKmEpxMik4wjhBjD2M8eEn7ZwTuIDqYXlYrvDMVqwMZK/D5+EPmEZFLkzl4/7ZGHhwloyjpcEHWUJrt9/mZ/vPYP3trVi0ogL+NtoFMrp1NMybV/wsJtBB/1lYFD8G29eMwtG7QA4/qkGWtWa2cH/OUhpT6CBIUcu6n4GEn6m4JD/gMd9taLg5qdgO9+flMwewCnJDnw414oO7Deg+wvfULOBGOQV28PoMeNxWqwNSYf+4TbbPGovlKYZy9rwqVwljjDMwOg9gnC08AS72r0Bz/MBICRVx2/sAc4qlOEnt0fc7PCOzywDXOGrDuUP16KmtDMMPfDkag8dzB9cT5v9U+DI5zOwen4LZdw7yrcirIDrkygVI3HTYUFIfOuPj13uwYrQpzC2dTdcSsmgkmNhPOmxGTw97YZbTvjh04pLaPfJn8wyvlJbVxNayJnhDFMjlMx1wcXTlOB+SS2XxD/npIN2FKmdy9ednFj+ZTdeWpZM1bojsE1xBN0oGQnOOQ4kvOctJGbb8rIXW8HwZir9F3qEeO5t1LoVgf8a8llmkCCzcAoXlreTzLhkiDJQoGfLJpDj3+8091QxG/9t5NZycf79ayRIX3lDs7a0cfirNoxTceWCrFC48D4Wv22vp5ysSIqPXQ47qhXhXtcBvN1hA4YhZ9AvPx4G1izgx2nbMWPNBYqTDALNC4NQslIBTp7QwSelnmBrnM+fH/mxrL8BdIcUgUBUHDwWK+eLS6Ug87QMWM13oT8zXXBxWAYtn9/L2sYl4JB4Hc7m9fOu3118pLSU8udrQ8DjdAx5a48ms7ro9L7f+PjWF5qi2YEf6l+Q9+shsjn4AwPe20BO9BYsP9PAP1VNsZQlORdzqVEpEj1VgyBxSiutuzodLhrog0vaZHgtsgqme2SCjuY2Xp1tQQIHElg6BKAgIAyt/Kt4db4QuP+0RvNxY0mkKISvvXPDwFwrerBwGX+3s6aeCwvRdMR/WPDWFHROfKaH/lehQCuZSmSOQ/X+s+Ae+YjixZ/w9E/naUQxo8//xN2HNhAO3wDg37BnSiHZZEaSUYSkSNG0GoRKGnaJitBSQolKQyFpaJoJlURSRGhS9E97IWXUd853E+99POc8UdPAw8UeXoQc5cCvpRzgZAp2xj/YZZ4vLFMr4dkK7zGx7DQKyhmC+Nqb8CV0Cm1fMYteCDhT3dpI9tu/Hkac0kbDV7J4V3Yu/T5hASv/lOK171J8VuY9tyX2Uvrd1XD9gDvECu+A95XGNHuCAry/YQzP03Jp0ulanne4By8tb8H951bBoyZl/h4mj5Oc7Vnk0T0c8W4CDFhexiWpPjRgbUwCRYoU0NfAtY7VuO3TfEbpMXTw0jO4GGwAQm5DYPw6FXfFJoCdfT/ktW3ljXNmweFDSiSWXAGyv7Xh9UU1sK90xy2aB6k7qB1nn1oGjoKiJGL1CZzc9oNr0CSMnS8OovOmgcjyJdj0cBrVn0uFS5lX2NXDi/w1TDDrlixFDG0h5xuHsPGOJXye38Liqgs4NfECZR+pBe8NkrzI+QxPmK2EYrJjQe2RNP+6AHBisSa2Kl2mYx4/4dlybZ5Ft2BW8XJUrK7h/cINeFIkBbV+j4HGMldSsH8JY22G0WX2VQjuNoK4/IkkZC4D+odz2f7oBY7WmgLzupzxj8E+SHgyDz3FBTHd/yUcGDONYoK+UebKg7z4rQSNVtSEAFk7bvLqoqjmf7jlrS6dO1XNA2YN5DB/CXpLfgWlRC/4rW4ETs/d0GFpJa/5cww8bsxlKbccvLXZEdbKVlP+fzfwo6kB9dxWgE5fFRzR/IAvCM/lY8HC8KIlGywjJ6KbdwfH1vSR7ww9mLp1PGTaONMLdV2qijSEN4HLoLZ7BaS66/HZjYiNHXVoZpiNkVst4b5/Bn+YcRseCRrjwqJZIHFQjkqWLoQ986toQbQZXBg2wot/VWFe9kkKq3oOJecdaIqvL0xYPQy+5T68+MESOi7jDxe0wzni/USoeR7Hb1vtcdTG2+TGpjx+dzQ4dj3FCMNCLHn4FtvOz+DfW2TBbrIk/NUr5QsRv/Hn0m1wx0cSz0V709NmGQoZd4VejVuFU86IQUWVJ02Kc0aea8b7PWdCZFU4Gwk5ohg20bh5P3DxdzlcoSgM/p4FcMA5gUrNT1Ge307IyJMmvynuWN4cjDM/GdKVw/bodNMKrGIYfBK+U92CEmjfGQCn+vMo1fovzPLphCW9XpD00Z9/1SrCgP5mdIkwo0czYulnyG46FHKP5LtG4cst38nKpwhMrv+hVAsJOFr/CNrmvKL5o+XwfMdDeJm8GgvPCeHB/4YhTH85fpddT8vICgyM99GmshWso7cT96gtpFgvHxSumAjBbXV8yhbpoW0DGr0iKL+RC48Si7DqdxJbig5TzbZtHM2CmG3ZAK8Lj7DaeHVci+PAMWwJvw3yxkbbWZByZgJdc/8D+zTc4X3GXV50Thqt5TdQtNB4ePxkHvmFi5Fiyl24+egpLpGrxDkHGjDp4VSeZjQF5j1IA10UhTNFFznb8CN4/Z4Fi7ZfhAaV6dBQMgDTtZzh98cTPHy1lWOPmcPWsTVwsUGR5kR+x4VFGjDfzQYFpb/AhEeZlHu0EzpqN9EDaSHw9JWiwuAz8PdQG8f4P6ThekWcK3gNlPZMhLjUXFxkfw1X+yM0ZPfi087zMM1vCVwZpUmyS9+i/ulKVkruo9N/BTHihwAZPxCA3sqx5Gb/HR4JB8LX8SJc9TITHq825RztF6Az5i/vDb4KYq1y8Dl+NSjkTKX0k6/4ves3HpP3hTq8X5LwhWC0tvlJygGJ9E9tCuzuUoHujbVwwMCHkx2SoOD0XM6qugBO8W+o2l+QF7ju48MJCrAFnmCh9CBt2n4XQ0WKeGvQO4oYdYtkSwQAAnzgc95fKrUQhT6LLbTyXzMsfy6Mw9fiqUVQn1ecTSfj+mRWCwnBxfYeVB+vAaG6YXgjAvDfmx4O2zMLdUfux27HNxyuvx/XNYqQ1VEZdjC1ADu1X2DrEcqOfpb8+8dqerSulp9SJqxUegcV4ldZMb4L3spIwHlFMZT0S8Gw7VnolyALHeengtTR/0BhUgcPxe3kDXaHMP6xMMwNSULdT9UwpN6OyX5r6UuDKb3UryeB6E1sVPATortHo/8zcRDVPUGRKu/5otw+/P7VlpqlWiFcO4h3Ld1C94qPg8m1pZTYrgLei+T5D4yCxe4pvFavHCyDlnJVqSRoxgfw15xkXocPaVWPCvhU9YK1wGmSXukHEbJPwa7jIjVsnsldY4I4r6oeBBdqwK5GTeiuLSXlqgF8VjQVkm1WovS+41DmLoyl66aAkuIhni3kwfcPS4FO3Soy/hcA8TvFeJdVIn869oytdWZxxNYdnLhngEx8F/AmKR3YO2hLgbcm85t3NfhV4gtWC/mzQMM3XlHqBir9hahv7A+FHWagUi4NnboqeBo2kl7Dbb5SfYqsGuax3K5Gbn9pzm/r8+mXmySEniXKSfaDZWm5nKrvjRpfvlHdnYe0o36YzcbI01XdXijq1obrV0wo72Af5UdvAJ8XVyBDOpuXr7/Pm3M9YcDJHRJuSKLveC0of6wEIrlP0epnFP/xruMkrRHwzGos//QNAZ8rOWwb/Rm+39CDnOcZGLzuKAxdv0odM17hgS3bWTNkPc/bFEElXodh9wkDqGufBjNoPwtmzMF9xhJo98IA9p8uhb03zGDY9iPs8xpiV8cyPLzHEkb9/o5CmX+h9ls090W7QZVeCcYIb8e0npd8sswHYyUW8XJPgoRt3Xhmqja9jWikFK92HmP2EGOLr8PTm7FkGYEgoR7OUWayEK1aBNJPztIG22/wdb8EvNIKhJy//eC+KpKUNEaSyOE3MGmyKJimZJPiyvdUVFGDNkOu0KYshBpaUhz/u4Wrti4G0grlNmMt0AoIgb2jx0HKPXv86nEP9kqJ8Ozl63Gc/RsM9zxDfV+70LVYCUYMpnNXkyweLUmBUKnVVDQjiU5kHOALk75hzc0C+nU0FX5+s4ZiwV90tEUV+nNC8VD4O0hYMgk/e1aTpPsZvvr5ED5Pc+GZddNg4SxFwGPXSWhaKWWK5fO+nevhxl0dSOuTZr+SPj4/ow3GhUqC9tvHuGa1CN1rucuLtqnQnjWLKSHMFYZKQiHiyR0QkwsF4d/qYHxmN8dKPuO0rAy+JqiL9anr0E1+FNefzSLz0uNkWRyF678ynAsK5q7r4RgbHANr3b3A4XUyD807BZ5bF3NmeTxLK27AJbZjIOvkPIiZ7Ucz/jymeLuLvFriMe9wZ6x/bYfmsplYuGoJzhk1GdZGxEBJWyo8KCjExZK/sW6zOBZFF7DIhFQUSJGmLnFvShdWh2ytfNwlL8prJ4ey70AkJnbmo0v0Os59o0Xxydvhkk0OJXgIQ0JKF5SIOmPamXKcl+8Bbmda6L8ds1G6d4AXbAdsGi0IRps0IapkHuYK/KagSFE4ZZZLGxYeoA7zMIqSqePzBa6QIDJAVj0K4FVcjz7vppGK5UwWPGvKk2O0SSC7gApC7tFuTz+SqbjOSb+nQuWGXlhV+hbWlxjjqeReynnoQpYdD3FTXwurOLtAz2ERHJOuBlUpXynEYgqQbzs80jQDt2p3EN3qwn2GXtzf4YCyVo2cIGkB/hr5MHTjAOdGbmCDM+e5cXoJ5Vc/oxdVdzhhjDLqPboOg5oyMLMpn1SzWnGl9zvQLU3krViB8iX64KRbDkI7l5OHZTZtVSCY/XYpZ1tYgPNyRXiusJuCkipYuHMnt71tgqsjG2jHu7HUXaYFOW7r+OytFtjy+CTW9L2Fuw9Gw/5Wf5RvG0Eq6oEkJ7YLF9fKQnqaOoW8+ElKTjepd2M3Jiy+h1K75Wif421u+xQMInVz8WqUEEx9k4hWVEvB4rd4TNI+VlGdAhGxwiButRjdX/6Ex0WRHBJMcNolGeya1Flr5gteLTpMkcvr4fp4b27QRzpQsgqWCyzDC6HW0GnwhsT90zHnzTYaIfWdd/cJUt3SeThbuY1qRU9A2Stf1I4TgG3Ou+FY+wbO13yI1zTrOXzdXJC190UTqxyeL3UCzRe+w7sFwrDrGJKmqSXu3XmCtSYbsvuCclgRK43m2w0h6bwtphySpJma4tC7ei81CXRSzuow9tr5H60tKqGdve3w5/JN8PjVSbnhXyF8kQSMDmijyVGT0f/Ed/xiUco2q9dg5/gCaIob4KkR8qzir0CnD1jDjzUL+OUrhAmbm2l/UT0svtgKZuX7+NPkfurY0EM7lx7loO/qIOXRhXFLndiq1IH13iOJ+JvjnZcnaMbNJLyjc58UnwaSV9AEWN56DJe4aeLDEdmUoCsJHydkouvSeo4dms+f66NwU9lh8s4VAl2DDqQP39HQSA3/fQ1hWewmm991JNjwj05/KYDO2MfkZCsKAd++U806eYqaF8J98w3pheQI3Pa4EP2XrUe5gTnUHr4MxukQrKk7Am+9frBwsS3Ind3Jmm1J7LWlkVc9qiGD/zbxwfRx/KJaB7QbJKjGcSltejmLttmOwo3X+yk/MBVffzXBcYlXQc63mF+OF4INuctgfc0y9LOyoN0Vl/iBvhyb22VgdsFiHhA5i4Z+pmz/VwDKRv/l6/p36E+cA/Q4h9Kq0ccgsvsFKzx9jhVd0TRy0nu+2qEFik57YabecfL5dIxCVFr56RtFbHVoh7Dw6diVlM1rbT6w5j89WCXUAtKpgjx2kh5VebfApkxx+u26lHbfukr5C2IgX8OcV11mmOA7k0WiN6L+86d4u2EX+1a9gwOyARibMQsblJ7w96HrtOucNASqfmHtgxq0PLkezfJkKD7NDi4c7WCfOeNYolERzw884MRkQVD2ng1Wvwyh8NcLGI43A5l513hLWzPsD60BgU+LsG9ePwxm6cLRu/c41OsQNMvq8gTHbpRdN4tyzrWw741J8CJmIfaPO0YrivTAeaM7XRIZAzLVc/H3zI8weaw/am5Vo5sGhThybgO16MXwTzcduKdSQFvNPch9sBVcpKv4X+BNqvWJh48BC0Bn4CMO6s6k9sXKcLlXlRw3ikLWXmPK3Qo8Tbsaw62O8xG4wB6SU8D0zmyqNFYDpYmXaXPRNu7fpUKJIYM0JzQMXq/9hxtOXKT/yjfTl7PrYcRXEdj9p4J31TZRYPMr/pU3g39XvASVS908sruVHULeUPOuPPj3yxw6Nm7kte2n4V2NJnYuPkxzfjyliX7TGK5HoITaeR49womX/bCAjMt+6DN7C7pGH4LLx8bT2jcDYND3mp/sGU/a89+C5D6G9t6xILroLSyY+pbf3Y/lwItH+FSSGVguNoCC0C34X50/BIbbYZiaADh6joRin4WYFxBK/y4Fo8GLeDSoKMHj/zGNHW3JqzwUSX2ZEtyamktCuqdIxlwCq1sA5rwbwSNPhkHRYD/mfTHi1k1t9MFTHAq3t9DA4z3kadLJGbbhvHL/W852zoJFdh/49lwHdFtTDnOdNEDIpZcmjVPGh/N6QXR+G274dxT3Rubi17mu1Lf+Ijis+sc715rB2VfZNEOgHP66r8fMtS5QN/YFdaitJ5X8YY6O6kEziUv4JdkSygJM4JupIoz+0EwlRxJBoccRPxvOw5qUUdwO1fT7wVzy8tT7n/2/VuO1IG37Cyo7Z0LHw97h5dphOL81iDPtX0HUxTX0V0oStfP1YTjRi54fPUgLDAJx4kNFXPFxEk+GAkyWeIpiz15y33ZTNLGZCkVHfPj5uolY8eEz9ssNwdqwZTD+pypsTJrC8R0qJKP2Gx60TgSvj3fhcJsafaFX8Oz1Z/Bxe48/pF0JZxzmTct72FN4IX81YhBQmYwja8bTFeFXNPDFDMvf3qDocw/w7fe5HL8oj7piIyjntiGc2T8FfgVH0gXlj/DgcCgZ1ebCjHe1kJpkTiaGAYCW2yChUByUDR7Tv1fvwH7MO+rSr+Y36x+xY8AW+lQjzWV2A3DfRBmmVtuAwZZWmLRlK1d9L8DOGGmW/fMMN6vbQfHd/ZA5IhFPd62iouuK0BCeR17+7njnjjEsclcnZ89xoP6gGkcoBfKZW8twnecjiBlEkPi4ED5M6MSoK4txc/89+pdjzuHBdyEjQAx8c4jd+lfhnuvqcKpbFadY/AL/RWV41esXuBSrcjP70lGZBBYb/o4KQtUYliUD3+9cJOPpgyxZaQtCLR/pm+d9WLD0G/UMCPCYKWfB9tE6Sv9lBUvkR0GK+2yaU7kNj4SrcruBFg26vOaCRCNSvm6P/+Qngd3aEdCmHw91OhPQpPgrfN03ifeUb6DM1DDMtR+PA9NcyVhPEb2mmAO5y7DPy0PgcuQKaRb0k6L4NTi4cANIRr5HP9cwLP/0GiTLBEBAKQ2kc2MpemQxLP/vE5zJseZ9Iq9oZsUo2OqgTFPjmBzKNUFsjz4vClRgRdkeGuMtQbRzJSwtEKB2MX8IWPIQdnw8Rx90REDf9wJWjl0CZjeOYai3LmZYd/BeqY2wW8SLAgySuK/5Dxm+YShRDOalnxNh9YrvYHRkC+j/10z3O+K4q28UBQvM47rTpWRYMBJ2lm5GsYhvqPhzEZu2B/FT5Sx621QL7/+OpFU5y/mD80dMnDsCMgwreGWjC3X/1QKpKiMuv2SP4grRfCL5PLYZLsBTxe/o1tWp0Fn6EtbJfGbHDm1abGFP6LmfOkSKwOJWMUdYrCRfs38o2T0CerI+4i9Ra5Apq6amD278/bI0jv4rxM9mjMOH1WIgsrWUbpQZwKoRyvR3aSDPE/sIY6sP0t8Hu7lzuSpfSFRE+9lf8OrL0bShfBw031xDr6MC8cI1K5w2zhNkv3hg/NAdONMUygUT5/AsTxv4Fa0KpcHd/H5KOyeL7eSWSiW6ojQCs7/O5ZPl6bjAqZRF9+3EknUaICbbSKv1Imn60mQa++UojjzdBZOHZkLndjmuX3qDvbrdOeORDHxVnw2WgUth5OFdeChCj3uzD5C17y101e3lWxn+GBMYjIeq5EDSuoB2uX2grqdj4USsJDxePkTD8mtg3Kgazsq6w5N892CT2WRo9PZB7q/Go5VHcPcxBghoYpeJ3+iJdwI8OTkT7i86xWtNLUFilhO5dG4hzR0VrIQ7SO5cAV+Z/BWe1JzjmFAr2hzoi5JvJoBHmCP15uex7a9+LjtOFBz0D0T17+JT8Q/o6t1OqpM+Y4YmwfH+o5Be/QNXbRlLRVVP6fMsaZAY+IHm+rq4b0klXh67E4Tei0HfUALbpb2GhYscyKHqMix2y8T/Jl7GrlcRNCJMGcLl/PD+JyGQCPXjqV0B4GG0B85svAQ3RTXxy8+N4JNpj4HXpGjb7jwOOqIL4aL16Dx2Ld4/8BF6F9qgudhGcjLQhH8ml9i6+RUJLQ0iuUEJMK2P5KAXN/FyRhz9TqmHjC8SfG70Gwp5IgnDbVYQ0qXPQqdGQlrXZ9KYL0Ni5+RwZ3gp3KcOaBHwoa/VRPJjhqFjx346la0EqWmltKafMXd5KChfsqUE+05QGnyBGk4mlOeZwYfMMvHJYQno6f0BShfFuMTAjmotBfnHYC0tqWjBvNZr1JIhjA5zRtB7a0UIzf5Cl07kY2bkMsyiELK9HA2+49LQ2jaeo3oLaP7dmQyp5qAgNIfOp3rS8lYXGPYUgx+F6ynpUxaUhH3lslW1kKB3lQd2msJwrA+IhRezqVwi550zhYPXFSDN7iaH2j2CBZnptG10M8d4iIGHgzqaPnkBBjZ20KVuiCd2rKbSpI0w4pkgbLNLRnryidJTEd5M1KWDNqU0wqMXbT1nQtUfb1zZpcZFa/Wh+GMaiHW9oyODDE8HUujQt23gHypL515645DROdRSfYb6teeoNESRaqwm8mwvTYhxVqLvRz9QV897yM25ze9+NJP6DR04O0seEkfZcGZgAK5bqwL7pooAr74Er6Tm8K0PkdRCV/CgjzkXpcXxLnKDXl9f+APmUCs8Cqf+fszVIh/xdbEFed+ZwQMdSzl8QRGduWHDLqdLcKoewI+0n7izeh5E6QlTy+bbsEUjEzaVN9L0yR4gpiQLzbYneb2NACTm/uXpuu/YIe4NKc7cS4MuB/lrThE239UDm6CTICYZiS6vp4BP03747FyO8/Xe8OagFbRYaB8+lJAAnzczcFrLKNJVN4A14npQcMIZwovm4tBCFbzpYkz9E5NpQ+MirDN9C1+T91GYYBaNvy4DZQeiKPTKB9wXeIhHnq2FJBsR3BiczcZ+L3GSzSV6cX6Qx3WOhq2esbh5qyPYHwxF9/G76dSRXVhqG4cvbI/wynG/cE1OI9/7Pg3CF2nyseVz6eezXlorNYTLYBvtvKhG6pP7IST8OKePuUPxrTJwU7ic/HU+oPyoZTC9sIIiJxeD4udTPPK7HLzWVgbBlF3krGYDPfvfwLTR8eC6nPgvXcawir+g1bgSWywdqCoyj+PtFvKTSAMQ3/CdB/bfYhcHBZh5K51fW2hih1IaH/j4EOVr1bkwSIUTkuRBwGYr9btMY97TDhpn28hY7ys8OHgQLNcupLnwCIdSbfGu9jR4mHGBzNWtOK2nFXYsPUN/An/wmsYBOLu5l3dcaMSan64kryEN7RF/2Fy8EljpIbY8u4oN6UMwInCQN728y+u3XeSzY+pZxm8M7Cm5AePgJFSJCfPctxdw0yltsPe1x/VVnrQxV5GqDB6B+EMp6HrwneaN0+ai5ybcs+sTqKd8hgjhCzygcJeO2xqDVHEmyt8RgGTh5bS3cw8bjZHhbZVEO/abQ9jiXSS6uh7nLhXGOWsU+eDhyVAfNw+3xd0F+bOOqCp7lQzOjgWl4G9kZbKFtL/kgKrjJXZK1YWqK6XQ8HIxPQuwhumvHnNZcSR8D7kJBkUuaDXNnBdKmtBIUQm4ke3Otbb6rJ0fDNc8Z2Pl62WsfOg02brPg4jp3nBn8B6Pmm8KZVLhdFKjh4QKRUHh/irU6Z/HSq1Mixd+55SuAHRqqeaYkYIg/uUoKI3qogkVQ/C94D2OFDCGcV2KMN/mDji8u0fNRg1U+VQa5rgfwwu/Kjl78DtUxQ+Ax/3tcELhGcw4l00ZJUIw93oHHyjXh1i3/fzcPgiy1Z3pxNBz2u/1l+ZHHqW09fdo2aEwjqo5SbrNxjA1NQzqgl9A+gML0rT35V/1/9D59UeYY5wBx+I1SXTRTjJ9Kg6B2zLZ/FkvaHAXfvETIZnYapwtvY5qS5Mw8Ecw1AuL8vyZo6F1+R+4K/cAbN9KkH3YbXqYrYOtkm9R0OIuLt8RBntdx9MiBYb1Pvc5b/kaeKV9D28fvk1G44OxO1OblaUS0TVfDxTzXKE/Rg3kl//HC6+UQ4bYL1bRM4G5EUjCup9owcZgyjbTxDPjI6CqRhhOvbrPhaFt9N2hnxa5fcTRDvPAwVESg+OvYpv+XDgzuxEPhmuB/IS7XG4qyuwzRPM1nuLBDcpgfc0LfT28oMFwBSwM+MEfykaAyzKCO71GdFz4Ee52/I/LVfOg/VI4rTjmD7BfET7sEKOuB8awXmk3/m2+hz9bpuM8qR+4kx35lXk328y/w9uNTTB0mz6fSjIEr/mmNHqbBMxo24khygLcXXcfAj2e4RbTcDjjehVVpLaTeMJEaNZPZv/Rr/n9kTooLnjNn5/Y8nBxKrtfiMCXMwvJf2gTz1Y3BPd4CXBtWASNqp10h0XoRWMadv7yhwjJLP6yTw0UJlylBGszOH9GnruGREjLaDQ9EhskNbFiNh53EfhvIOyu/sfahVMprn4kNAweprvXVtFe//u4z2MSTWuQReeNM3D6VSC9TZvRslKIasaYQPqcIRLTGM83/y0Em3ndmKaWzyf/e8rOI++x9y8tqLQypopLqmDxbwf5TDWHxKM2tHjyfTo4Vo3bPGxBcc9G/rIrgIX1V/D7RDVod/Tj1r7PFLFxC6x16UPNoBs0TccVto2bztfvP6YUj9Nsc0wW/BtHI7pWAUbroaOhI+iuXw1yp635UlsNHJFvwmSd3/DroBEk94Rjo/ZHLE3bwUpH+tHl6AmIXr0B8imGDHpu0/OKaIyJUIIl9XdooP/Y/5u5oNUX8PO9feSzP4cFN9zj/PBMSLefQJ3NI+H3jTzSS4iA/dHB2B7kjK2KQ3hoWgvckJnFjl3voSbDA/vSR0DKygCuHL4A7XwBAmI9YXp2Mtw0W4lu+SJQtdQBLBULoX26BZxt8mfNba/YMtAMK9uPYE6tEGk8WwahsYXU/OUIjHQPBgNLIygukeVnu9aggHA+6zS8p+2yf+jCVS+q/OUD9w28aMyIFVT4QhFWyFzk3U/GU/SCC1zWN5Enbz6CJ4pe4oa2QTS6kEJDvUGYOVkHRrUPsUNQBbh0bIReV3dIclgPdOovv46zw/WvD/GU8R9xbcc0sLbdjr331nD0wae0+0827PYToJh7Jex4OZrKsg/h3PwQKvGwhsuzbFGwwIKGD3/lznRnKD15huesW0lSUzzB6fg90Hokx9dmGcCSFA0WVDvDC6xOwvjQSogQ3opPlj+glyfUUchwAxZJ+XDRsBJkV3/mzzuVSS0rkMK9ZMm6I4ffvTfF4F8L4XdZAtN8fZTLV4e3ezbzy+8FIDZBHpITrqOtThA2/fKHxT3faI+RC03cQzRV0QgsZKtYe9F42mojQ1VXhEmq4jM8+G2BI6b8oKw5V2jrAXuSWTYO+k94kLQMQH/mY9rlkYJbaidi3KphnOqbAH9tHdFz6BwnTRKFK2t1eNTG/3gw7CB+iXhNrR/0WNrxIexWFQED/Te4vSUA85ZKQhcuQ6Nb73DfupuU6VBJFHqKpge/4Lx3K6jSfSH5VUzn+3kykKo5kbLtw9A3xAYF105E96BCunT2PaZ4/kenfQ6i+rz5dHWpBFidOM1VGUu5snAn/3f8Iij/V0M5kxVZTbgCugwUQD8jDp61q8BS1zScoDEMv2Z+oI3TgyjlZR86fb3IWVVp6J/+GYVzr0HI/nFQaNIBoXsy4KvpBuz/kweWR5bRwajJWDwtlV5DP6Q5RqCAtz40GppT4dz5MPBBEIb1cqjLu5mffNbl+I3Its83cEO8E+33NIJU+fUg+deVo9xy0PJiHQzvWAlVJXvQYV0eWp2fCxJNnjj2gBl8frULJwe74x1pWXQS0iKnV6cwdosQvRnliLJREWwWMhHTLqvA4KEkTLEegY3rT9Mji914J1abXslPhKvJQ/Rt/RM6cBz51Ct5OHNeAU4cF4NT+0RAwPQyaXRLceDD8xzXdRu19/1HFZI+xCaGEB69mSVTazl4th6nCRlQotk0nD3wH9PsFrqvN5tmdX3ET70i0GVpgysN7XG7SiuOPn2Itn6ZhWbNLjxjwVn6McMe5n/6CxdOqEOsnCVIjahjOdcUWnv7ETatlEXJrUq4VGUs1xz6hI+KhvAjmYPgA03oEa+mKRMS+V92Fe+4ocv/lOXAul4D64UsqFXaGvf9ZNDLvcSWt6pg7KXb9PWMGv9y0ybZ3q8UFmnKi/euIXX359x4gUDu6SD8TB/gnqMavPeHKlmlT0e39RfIz9ME54dtZxO1kSyjPQk2Kg3iWD8PHm98He8besODpV14yP4dW97ezzf1jfCTTwFdjLQCAVVjbO7TxR8Jy9AXo7mlpgRkLubDB6GtVCDWjy2r08D94hS4KdyEKUmGHFD7E/amtHPIe02YNORMtv1tdK/UjM4vPAV2KqqQddaYqtemkugWD9rst5EdWkN5Ff6Byn5lzlS1hZpv18ngpglIig1iZns9fjRawar1wbxp/yaYo58LyZYvYfHtZHbJOUJ7JwuC4Mi/tHJZDPzLi2OZl/JkFOHJu57JQN/sLxiY9IaExB9z/DZ9eBpcjGo7FqFNuDrGJY0Eq1Rl+Bx0Hj+d/oI6Ch/JpdyEvzpLQK3HLdCrjMMtnMpRNfLkW5TLv1dVoLXAdD5v9IEcu2LJaKI5CMJoyBnoA5UzmSxi8Y5atqwkxautqJkhQJ9oDp77dh0UtUfBynOp/KdpL10a3Mt6urehLH83veneQTs3qpH07Qo4fGANpChYw9LB2azk+Q1PdK7muepK9FDbjsommnO0ryFZfRLGXnZkpfVSEOJTS9Wvn7NX2wCGXLbmAanP8GnBOjQTSsKW4So6ss4QNg1Lwv2KF2gr3EJJ636AxCl9fLm5jxpkH2Fg+nbevnMpiPe4486J4vB0fRUUTtsHwUUyFNF8gWKereCrTm94t9hNqr9DtOrDdfJbKADi7lf4jtMAux+dBWtzRCh1vAOxuzf5D0rQwarPqPDvDwS4ysDlXcTBnoM0MvYHlRgUgf5Uad70o4HX3fvM6jv10Ln6NCgunwhzTp6mVwKquPSTHJQXnMP+hgU8yxtw9v1MuPxNnL7H/cJk18lwe8IaaqMWrGu24oPucTxc+IOOl2ph9mk/OuOuRjncjXEqorA98BgqWDSBKlTQsWd5XOMUgsmpiuj28hh4qj4FVdU8KJs/BS7XWKDo8Vu8MfUHndVdhwsiVKDpyQxO4iwa417PcxIk8HOdCbBiNIx7FQ5JgRGs1CsPNvnHMCrpKu81b6XwtHDocv6JSbGCEHpXFBwjNXiHtz/8lJOizFnDpBPgBNW54sQOnzg98D9qni4CmR15HJvpBUWdjuSfu4ncj5rxa40GEH/4iUMik/mweyZWWUlC2J1jfHFpEtT/nkAZ83L4sZ4lGpvIQ7VuB+7fW8K37f0x6bcAyMakoMqOJXhkiwbb5AoSX3HCBosYKpsmDQPTPlHW9qXgnj4aalQyKHajOibK+vO1B1K0T9qej3tq4tCo7dx/3pbkI9Uhabw+/FiRAW77F6GTSAEed3zDzXECfGnvap6YvQL61v7jE0KXcY6gFszWOQJdFQ18TX4uvh1tzVPvmZPL41CuywmA0G+KuLZpNvv76MOSJ9pUc2UAe3514uOXHTzZsh3j7wfya68sGrb7CT4H1DD5oBAINSug22I9nHTKABLM4kDgySsIODmXV/cC7s5dT7F3tODN2RHQEgrsHzWGdab9B8sitTGx9Cl296lC5ZWd+KxTC2+ruGFMgjR0xwXz8VfFFLPeEfekRdHJ2gYsLy3CZRfvY2jUbqBbYaT/YiRMddiPkysnUE6BJqbMPUDm8YP4UfMxG/icowbzIXIXGaIJogZwQbCAF039BsHbbkDHWSmYaTuAJ/fdpdOfA2n05yp0vixAl3MUQDxhDScOncYpy5eh8clBin2uySfvTIJiHw9aP+0FvNy9Fs+ukISFMdKsOxwLO1b+gjtqczBINIe/VvmCTb4caihnsG/1GXLJZHCJkOB5GSFwWYSocvRzUBouJn/ZDhARL4MPlY20tXYyVPWKweexxB7PRuGe0pPwSOYdKFWWwET9RRA3wJztFkOzEnXI6LcyfN+bw+fO9fGv2m9Q/tiB7gztoY8TZsKV+d6YUvObXbqTOaZFDmQfSJCuiizXR0fBwPcb0CZTj+fKY2iNtCVoPjiDIwoMQbN9HOyenoM1JwagOmwhNyxcjt+ylUi/Tp87Xm3mO4Im0LfBjhvGWMCUHxPxiFgfRUw/wbERS9nDdgmurLtMJ3Ri6LJtGB3T2IWp/XqQ8m0yp8zoptDuVST4Mp0EtDZCetlENjSU5m73YxiecRzkP2rB9QnD1O5czcltL9Dvyhwaq21BnRt6WWSrLJx0ec6LBOQgTW0iNK/9SdF79tC98yH0SXUjBy93gdv+qnhdNYVcdevJ73ojjboxEQZEPtE+4zYex5X4pWwc/1I+xq+rRlOf0C2+f34bf5q2iiZcM4E5gg9xaV0NOYxfzFGSHXzWxwcEA96Dr9do+iKygwXE17D2fQVYPS+O09vucJ4RouavfCrryaIXTcboLesC5nqPQfaEK/2zQzC58RrGuE0hETsj9nucAGvt3dg6t4ZSV36E37oDZFiuj9oZgjAh6xpe6Y2CEON88J9+Hh2qdSDCZQtsn6YMIiI93BORhOkTzWBi3jB8PZPA9nekqXf+IRJ2VqOdIanoe0qHju7fiv0TJ3H8VmtYI74YGvuj4MGUvSRssY9m7ZxH60U2oP8uY2qr8IMXRRK4IU4LHJcm4JTJDvhgazAssujkr8pRbLY1D2wXATQ/tyZbs58UHmwElxuMuaBHn9dJLgLVujtww9yYY5bPQNUCe8ga1qOZf/V4vMJUEFGt4pFLG+GStzBZv7tNU8M+kINJNKyLeUXl49vRQ0SXA55MgnFTBFH+WxOsOeCBAUtC4KG/OAfEZ+NcxUxw311EC78gGRnrQt6CRpyyNo1THuiztl8bLAtZy5HS38hmYD7MLbPDC6Ur4KuHNdSJZJP0ge3wxm8NNwt9ItEYL+wVdQf3+OWwSTESR24/A7OMReH4rjsYHnKZYDARZ2zcROPTn/CDh7Z0YnAeXjxlRcf/OTO+GA1tRvfhYexsFjHVh+SzW9jGoQzwqAnlOobhzMN/6PNfxq+vx0P36jJUqSD6NrgAls7XoDVy+bT12CPY9Gc5iSTYoNX2HFavHw9fHhM4nJQg8Sf3abBkAay2K+X5w9d5+o46HJ+kBI1BYuAcbAXZp5eApMZunn1gDFW9f85nDYQpqgfo8kQXkh3U5KgNhShrORbO7MoEw+ofZJGC1LpXEAYqpCFPVoHiPk0Hpf0WNHnSHBLJJFh42ZHsPPfjIZto8FCbxeNMreGAynwuMLhJEZ0itHJeNXr8E4S7W85z2w8TdFe8QlPtSsFnSTh6brlLHxfc5svWP5E2CLF/oRXU/HjNQ54nSG7bOtJSPEzPpltQqEU2NqsSFTU54MBoH4DnIwDVumjPhBRUvpYFR25YwNfvS2nuUSHUcm+AbZfk+EeqLKzeSBDkOgOiv3jzqSfEgyvF2dZVCwP+TIbiA1943aEKGN5hydqHrcGz8SOJxojQpIZJHGE4H25GP+E8mzLKO+lPMwfdMKvdB+4WKEFWlgzrzK/GYuvR2Kmrin0XvTHJLxR/bn8GK4za2VMvmGYtEoYsnkF2Mavg4vlcbl8giF5mY6nAtRc9CvP4qvN7envfkEqWTIY0+WtcPfIu7Lq4D86GFJBydxs7x+zjrtMI6fna6DRiNQjFKkGPzGMScPMFBdNqjF/WSut/zsBEwXLqmOjLg5t2QVV6A3fOEAU3x4Wc8K2QppWak9v4s2h0JpXXHszBc2+m4VCqO0Vo3YCjdiNg5vQmnO26nWpK6/DIBwm43CHKWnIGqLhJiULnBtEoiZsYtXEqLGz1oto+N1pZbE3G70XxtPRmqNELZPnz0Vh04yp23VxCizdMAme1bTBaMoKdMveheE0/zXJJxUNGavBpIBqaTkqh06JaLItRgPdv//DJ5YPksHELGa7tp5mtJ/CuwH0ojyqFS8MSsGiGO6hE28CcOBdsPXUUzukM8D/b+bzIswJ1P2Sy14xzkOjoDKJtovjjqQ28XSULj74G4cyVIpzuH84lA29B99x5LMw6BEFdiWiuF84yDxEeuWfxPvundG9OGEicZ3g29iXcFDeCbUV5HGoTwLvHf0RjDxGo7ZaH0JiZGBL0kT1LGojyWtm0/SG9XXYZaiz/Qfz+HdhnYQ7+33eiTeIBPnc9m+b2lGCjqCbC+DYo9XxELz0Jir3S4Xa4JsSNaIX7C6fz3GpzyDAJo4Y9uyBxnBpW3AqHBiV5vGU6gcOaJsD7nXVwPbyBW/Y4QfzyAu753swrjqTRVfd6KPyzGddFTOfwHlG4VSaM6gdGQcIjB0qIb+Wrlo08VlYcVtjbcGXEProxopwTRpqCeZQv2AWdogdTzrOekw+7K/SB9Z1dYJmVgZ4mbaBz+hWWPbeBmuEpUCC1BZLP74HoX03UckWdKtxccfP4fDranUjb8q3x1S6E22c8wX/cMB4WKoNLoTJ8tsSCE1dPxKt5GVTaMwHDFhxh789mkOkmz4FdieChdYo7Er+Bdk4E/JcHFGL2EW57HmbXqm98Z4QC1K2LRI/2UtLovoTB31vh0lQHDHBNIE8ZfT7geJziw39jW5MRrBAZRaY//6Hk1y24zf0fbn19inIKH+K5OE2o1TUiI7tcHjkoBYkFUXQj1gnPKOvzC//3oFe5B3RE4tDzhSPvDnyBdfERkKynB9LZ63CaszgsmK0Cb7d/Q5GIEjhwbA7pxT/lX8M3SfyWPpokCUNCRzPkVKjiFz0tzijIpWZJZ9oePYf6tbM47ogAXV2njtbHlaGww4+S5edg+q57dCvrKdawLzXdLADjlyK8Y10c3in/SRdcTCCy7TB7K2ty2pVo2j9dGWcffgy2u+4iy/biAtlS3mrdzlNFBGHdovt8ZnwfmPu0I9VuJa97zjh8owpumJtR1OsO7LtVxj4Z06BySBkNXGfx0QllrB7djX/mFfOsFmssWbiQ8wNUSchfh4qGVKDcXBt/yXqB+OdDWJJ6jpSfqGO23FHw3hsOe5ePwZqayTh5nQ5sM/VEV/NllOtfR0scj0LKvRoM6tWkE1vPw7/NhvBKeBrvl9eDqNZtRDkz8FD3PTjWMwuiVJ5hu/YY8pk9GaRU7eBb6B7QXj0ONjz9iyqqW3h4pzql2bSQbU0ZRlsrw92nnXzyWgYoTJwGBiPlQCfCjGfOeMuGzcasanmLrq6IBPv9wvQ3WIejlznShPN/eFhRBCJd1vBZQ4bk936cs/A4tK04T2/PibFKaQ4OLNpOv3IHWGT0GLBcI8vnNwxBqE009R8wYcm+btC/Uog9H/uw0SCLPp54hXUWU0FQ8x2n3sinvvX+pPSynuab/qXV92/jpxuaIC7ozNFNO0H/hRTcDf4P3pUWoo9FD3S1xVDIH23SPyFMnsXX6cYHSUiYO55mtorAaL9cNLr7mjYWtVKqTCQOjc+j0Yp76NB9I7i56SeOl9ODz3IGYBWYjPq4hgud/ThLrQID70Vg2I8geqYaTnu3eaLGnjjcfM8IRphvp7pCDYjoj2ML1zHYU7oPO28/4b8wDiOOP6c1jwbRv1IPtP7Lo8bce3RM+DUXho6CU4uFKeqZOEWExVJBmBC+KH9Fujkq8BktoUapkVd8NaZom1bAQ02spz0IzeeW0LpkTUj5aUUlb21gQNCLIneNYN/gKZSpEs+KjW787EoKF28ZxRaTXnKQQiOdltUFt9ozMOJLD0e1j6dnBkR7n9XT1upgHOGJtKCymbwtJOH6REXQzIgklTJHPl00CZYesufLnv/o9JdrmFc8hiUHBnnVZj9sLhsD99+sgj8751PIDFd2DDnEeRb6FLvNiN5V1/BHEzFWyYiGneMt4LbJcfx+xATErMNoZ3ETaAULwu5PDhD+6x/cmpXFBpsmUeZaK1hg+RduaQ7yxRQ7rnzsCYenFWBBmg+aXD9LG3220mKbV7C0exooFKzCrPA8uqM0Bg+kq+Ff2Xi2FhJjlzGZZL7Ikxct64KKBD2YpjeAQT1xfLJgOsTf9mUnw1w6cS6XwytSYQSNYt0Jhewkpwuio57i/vRcEOh3wGuaxuwXZsUhukRoeQOu/j7KroLFtPquCaR1dsD6Yyk4bjuwZMQZCvZw4MJMOyieHIIZn1ajjcgIFEkXhooQpDHai0j8sjBnWCrzXnDEn02TMLYkm37vTIG22A64hBPApmAZ7jXOBtPnM0lk1Q9+0rCIL752o+IJD2nlMwPedv0FhwRoQOR/+nyssxPDjaPoXIMebh/woalrXXGM9SrI1flJlb+NqFBwEgSGNeDuIDXWyCjCVQ3vSHxhJ0zVfcRFuw/yNaUcbCsWhGseBrCt6xsfob14bZE0znGahGVTi3ik03E6BJvZRa8KU0dFwCRldegWl4SFOk/xrJs2NJ4/wtmHFpCwNcLMl9dp6h89DjNJ5XQfZSgvrkGV4HI40DKfH34wwSv720kBP0Nl8CQ6r/sPGx+k06wiUXgco0nfRMLo7LzPMGQxEZQDrHF+92W44uQM5pO92Dz9OKzuZPi5vQU+bBPl1ZnncX7KLaht28yV0cvp4YRR1L1blkSshAAdBCD/9hIo3NHPM8NUyLcmny/deYppFgm82DKSH69KZBtLcfSKHAFhi35TsVg/25mch/g0cQi+dhXfnfXnzMu7qFP9JtXckwdpeYSajcHwStEDvr1cQcESGpxceZhbPTTx4kQpmjzPCb98mwjXxMXhTuo1Gvq0hiyfKEL52XkgcC4Ja2e+42W7ZWmvlQHH59WiSb0oLDt8hcp19tP3CVZw5pkqGDyqQ/f9lqh1txYWJw1z/5HpoCQ5Dp6u+wDC13OptWcuPH9+A88W/OHfq8NIkHWps6ONbk5/RDcSzcFdspxn15vir6xt2C4yhD/n25PjJRd+qWqANhk+LKOtwR+DjcBUVIteV0ugQJsih57zZq3FziBc85j3ihyAFRpX6PWLNKqYbgpe/4aorMwZL0Q4w9x6E8if5cq+ZifpjEYAXjx4CMV+lgKvGQdZ6yLw0F09TFHo4OHhYGx0EgbFKQn8c4QXPmy2oBaNVDJtUYfgCx+4zNgJdxksZPh7h8t7n1DniSbUWHySbt9OweuhDeAQIgVeH2IgUSEblrzZzZvF99KFMn928mmneXEuXF8zGryXZ+Nhz8nwdp8OetScg1Wz5tJTP3N+Nf0M5HaXcc3YTt5ZcxWvqMWR8i5r+NHnSBW5K1F9ihlpClxg76+h/O7TbLq73J4UzcpwjNsZWl6nCMc7teGb+V2wHLhMh6cl0Mm0RtqpHUOGIy/ArcBEqvPez5eWaEDwwBt8k7Odp74ZDW+nN3Gh0R5uUjcgB0dxlKj/Dya6uEGNzxSIt9Mn4/uL8X1gMgzU2nGKcCBlO2bBqDk6vMfLDFXFkqFCQQ6uyMri9pATeMyljX88OY8J2U/oheJmOHH1Llw3msSWJ/OgKX4KUGM2vy6NYZ/DnezWshgjxqSDl1QNxMz5S0JvSsA+fRl4KivCzehOPu53D9Or6vHlaFOMYEdsHyuJlVOTaChUChJGy6JOlwoUz02kw94B9GWeASTv2YtSKyUxumEKb8+aTo3FfhwpUcY6Y3RBK3QjfYpJRIeVb6DhrBbEuWwHa6cKVt1aB1cTfpD9GWnSnq0Ozy1L2C3AlPbqIu21/QEWkTY0sFmQ37szaa0t5fqxX6jCywwWjNpMf3b+wsY5RH9uX6CLo/ZCpv1tuD7qMc++boLd8Zfx+V9lKNroDA7Z3ajSkwD+i0dBXI8KSB1Mx/pp83ld/zmWMzvB0/sMYMwIXRB1EsFnKjL4vCuU70nuQNNRpnhU4yTFHLzC42ZIUUjfOPAfnsLeD1qIjq/B86mC3PUsn+PWKGD4mm6aeXUeartV06edpjDyxlT4dzkD9+b9oZStuuDTsZEfXVxOVVETQKfcEAJjv8NIhSnwq7QfGvfv4tELxuK04G+8YhJi23gpEH8VhK/0svFz2jTIF7CAee6rUH/bTbBfNB88lTpI/2Qfp3gJQ2q/OujeuMWKZzfAZ3GCsrI1rPJMgab8NcVZ4QpYF7+B2p3XQfAWTTZ0Q37xYRlqG0yGCbLV2Gn2jNtMNnKPvzfoxe9FnWFxOmIYQt57qsnCUAq07CfAb2sVWr11Md4a+sPvW29CwOXd/OPRWKhTO0X5cIPEdNVQ6qIerJ37gY6+vMN6Bd9A6rgUqpx6DHYNX/lh5yUYWRQEV9TjYeQkhFO+vejhRbyhpooX/JDiPYHveHpaLJwvsiBT05P8zksZSmVHgZOFLvXucaBETSs4+FOZDy4k1PlhTNH7hkHioif55reS/HpJiHy8DlcvWMf/FqzjlGsZVGsejFu8ReH7kn8kbvcbtKaPgudy6vBPbD0Eap5m26e1qJGE0FyOPMNAk6WrOig1Sgab1gfxa0tFmHEuGcT0N5Lou000uzWQTmxv5ciLWizp/xkd1D/RkUFdcAqaAt+fnKPCJ/n4QKqRN3yzAPGF4ng0ajtbrD1AjVGLsClwH/n+mQCzizJpwF4bRDptaPm/VNT1VEbvZ8EQ/38EwAdACAgUANA/SmnRVFKaooVKO6koGrRLkcwKURJCkZLKFommrBCpSCiiSUnJiYrMIhkNMnNv0j82uK3DUpGTMbDaEjK/3cUvNU9xf5Efte7q5cQ/L/Hvu/9oSZ0/9O7/ifNcelGl3xxKyq2go6iVqpuns8jWC7izaCnlOGyB3BpF6DsqCW71c7m9CWHX6nj++PIqNiYWgkvuU2ydL0pPF5ziiP3dSG+fkoisHpvoAMQufAXVmsmQH2PFomLvMW38WMi9GEHuFrLwo2grxxl3QORhNVis1EkNJQ7s3LCXryfNYtNywHMfX2Bt3hqaqfOJj9wfQ/vsR0CjQgmu/h3KgiY+/P57GN1pH8C8iwMooRyPx/4IUKqEO8mJC8DC+b6k4PqAVl1+xNr1y9ERVqJTrxD2lgbBn/kTSUt/LJk/F4D1i+LQr0uI191UIH3DERAmoMNxAuux8+UvGqOUheMXFOPhubKwwG4JtKu4wvP17XRn63w8c+UhZ5Xv5JmGt8HPpAuW9u/lQ7/GwlNlMUqWPcIPs91JvW8QZXQXQ4jIH5jl+ojPS46GLz6H4EeGNJgtuQ53vt6nYkdxnD36MQYqzGb7z0j1+YYQeNsCjm77A9HfR8MsxZ/kJe4JOglroUNeld9qXEDN+0+5p9uNM5PWkoH1Ih5TNwrw+FuoHi6h+37vwUHmIUb2OdA1eQMQEXrGtS8PUb66CGXdE4PxuYq0asE8+DeQxLdHt8P+yf/Adt15OPznNVjWG4Dk6YUQvkoSXt/zQsPOmaD9y4b623WhVkcHFd+dA5kUBTqXrEiq2bowJnEyuEbE0oUQP3jkK8bP6yex5yhXyEz+QOJtd1EvtB3ceyuheZwyVHtlw7lKI3JMDOUbTbdg27lEfOd3EwrWavPD92Op6skU+tysC1YT48Dv53XO+iIGa13lqODCW6p9mYFU3kJ7JdJZXOMER6TrwyKDL6D94BBJeSyntzcy8F+jBf76UAQRHfOgrsmWOv5loeNsWbjwUwFmzQznuMuJNLlLmW+7B0CukTUPLh+B858UsK9cJA3dUoKo2y3wUPkrHN1xB7XiTNl8vRL+ce3kTxdEaKHHfv584wWvFZcFQ81FsLj+DGdVj0ZvqTN496AoX97rzq8+NXKltwvIrF4CVjf04FP/F1had4Y9tQrA/VY2n7oVDjKmSH3m62DbgQMQEfKPp9+ZDvRfD4V47sPF8sd5Ordj9SIvWnjkI+1wW8rLw4Uw4tt8GjVRDEadXsRq3Qv5p3okDO4fjZmGRnjIKJ1Pe63G+aLK9Fa4B+ewMCx9bE1qGTbcUyAGDaL1tO6IHC3xryHtsRPw/G41MHwSS2/TjMEyoB/02jeD7Y7nUJJ4hF6/2A0eXEQXbDJYxS8OvPJbeIOuDjSvvksOXc7Y5rUUp/2WoqoiYQi3q6Wwy3ZUeOkFWfwUhHWztUDk7D4sTdnIJ1+NxZvUihFv/6P4P1bcsK8fRm4cZE/hTnTzUgB1h3tsJXSZPv46SkvWLkTt/ffI4083qYvb0lD0XtLJNYagai3Ys3ctXXh8mINFokBj5QCY/XLFjklrIHikPHiZbEH78Gqy6RaFDW2zOTi+F/XkhlDgpREOqS+mEx63Yd6VSXB74D5LvHtBCmdl4UfqOjDKfYwOObd46nIx8IvzI7lAVao3vY8vjo7GaZtm8/e708Gh8SnZS6lC2uZVcLp1CiXrSuCmhyd4x9gEuuZfzsER9hz2SQBmyAXS1wB33uySAKRvwsaNOrTVl6nspBuczP9Ij4wq4Ey0FZy8UUHvJmbi16OVnN/5l8tuStK95hdkHzeDskqzeIXCAXywRRCqNkxnj2En7CupA0ebhyCXV0HTtAIgNWQWHXU34cjimZCdKAdCqvVUolEAXKXO+a0T4YD0eJ5UV0Ylk4MRl65hx5MCvDpfBbLLd5H/Wmt6afoB9nql4e09C6jqbRnnnnJDwX/fIGZjJMxdLQwTpmSx4MiV8NvpOsi/yYMmo3G8WUqPk4I8uG2oE0UFNtNIA20Y45JB/b1ZoBZwAK++zyU4q4VOzbNZXieX/8ScYdO4eNzwTwsuq04ExSP3oeuFN85ZN4UdKgA+/SjkDps+/C8vGLf//spWxZLw4YkWjXN6xzXnc1B74SyyP2JOu7YmUU9FPnVsmkXxV2Qx28YKqgyTYOagOMesX0Zlvq5Y++EU5PrPIPNTJ+BH0ioc9S6H9Wv04aHWLvbIKwH/H4F4t2c/JwZmovl/2zF4qzTWLbrJq/amo5KkCpS759Po6nF0+Ew37dowxIEBZWxEISD4fS53rpCgNIskWhkkAAJOjbg9PJHzRsxlly8uNDXQFcpvKPNXa0saeVITTippomieBMTeaoKdxX9wZpkcViU18aauSTzeqQmtrYb42qOx0JqZg6fbJMFiYTwFdYpgwKY2ls37iLXS1Wx/7iA2eqpDoJc9XLqUQnGlpuD/7z5IF+ujkOowvKmYiZJiSlRrtwW2/fcXajWu80NxE/pwQAX0DZUJX4vRhxQ1TIrIAFnwpjcu6fwoIZ6czezg4MYb+OqoBjQ+awXDY02oODmNJtyq5c0mI8m4x5QWC0lRRIASuAZ4k+0DYYjXSqDnPyrwQf0ier91NDd4acLieSo4R1KPPJbNpE2f1/BKHSkIz5FDs/YkqL72B79ItYHK0kq+N7qfJpwWwLB1a3mr7w1aNGwC+5p2YtL2iRRxeDOaJ9Sz6sNc2LvIiFYUrSfDcQiDWj+467UGFEybQaX3ynli33YYsXUqSu/6icI5Mij/KA4zXb+hrYYWPdAThUMqzuT43YG/3H9IUUNjSOXlV/zPYTmmlYRyvs0wuRzvgS1DitBQtRmq1kyDptIP5KX+gy2uiMAowx4orbCC6pSr9NW7m45ESMC5cXfgh8JjKrihT2/j91G2QhwVVZ9Bs8gubLC054Vxk1kmVhDixJLxni7xT+kumiYbDPoGH0Dw5khsNmygZbUHaU1aMS3KEIHzVxp4whVH3J6YCPLXK7loeyHnilez0asXJL2vGM7fZ87dbAxLHhlS9fqv9DB1BevtewJznt5GlwWrcKfaMsitugr3Nco5crwCxFWsgDnrPlLRlqv0SdoJ5irc5OtpLRScU8ymkQHsVzUPPorKQUOyBs3WLGJbv72YUTsSyOYONUun89ilmtxy4xuXp8xnfx8TEBBaDU51+Xjm+zW48cuPCqtF+UbSL06QW4peF29ytoUVOh+YAF4Vq3HDQ0Ewu7KUTeoN6fHjD+gUfhACj/6F2rZseHymiq/MmgDHlk5Cv2RXfPGrhQ3MRCFb/zGd+eZHRv9ZYq57FItgLMapWQE0ZGO9kTA8f/CQE6ab4uR4caqf4wRbh1by3tIzpJKpCdHh02BFpgobLZtKeyTeYt3maOy3XU8PjrXBnQlzeMJwMGP7IUiMmAhntybT2okfMP/JZk6YIYtzXz3jOBSH4wE9dMJPg4Jv+8GlAB3I37cGRhxshhv62jhHvQ8NYw7RSm0NUnCV5PsbKzCtRAuj3grAH2FdfuywlLOjjWHo0mMu6Msn160xbFl+H6e+jkTlZhVMvysMedtM4ZR1Hs2qXwHGxY7sswZwgehzWulzBVJe+0JwRQGmfDGDj+afIPNDAm/4lwr9W//C3vIwfhUeiK0f8vFQfShu6NDm5gIT8BcXop6q5WRjv4VO5fuh0dRJvHOBLX9OPMX6mlvB2/UBiahYgrWgBa9oX45RWVZUHiZPUniIBsxGoFHMD/zxPAS7/Px4h6g4XG95ht2T1ej9hjncssIZfQpFwGtZDYg+PciCmtd5THowOcTKwKZ5q1n9kiVVP6vG+PMN1HdOilUOK5JKiDVlh1Sy4M9PlCk+GSL276fCKTfgTlsC/Pn0Ci//QLRYH0wBs72pS/YBnpJOwns+xtD7xoun3fyBfmGe9NV7GdwanEnB17/x3qPzMWpKNtgm1lKanAREm8egY+cQLjYSBOeRpRBy4COef+PKkWFGcCMhAY8IjqX+RyNgTkwublgfxQsdb5HjtR/cPLcUtm3R4Amqy1Gwdiy7nNXB7ZcVoN9yNk4zWItPjrrzuiNbWMhkNAd3bsRXZhfg29fv8ClFEYYcdEFX4xcXnvZk0QJlUE5cxY1TRuOrolE0w/oq9eaH4XeLGk51Hwe3N32mQk9brnb8zGtGErx5MhKCz5TSWfvJsHPND4oc+Ypn/ZIGRxtN6P1dTJHTJWh0SQce7wilENfJUHzmNP19MRt6BLSgON4S3IdFIDW+FDSVT9OXW0Wc82ka+xdsxUejZLl19S0q910Krq/MwNMrA3KD4/HDFSMyKDLnDwJrMOF7AbxMX0e3oxtx9IQ11DJJFjzX+eOOzcxa03/A02nnqC7yKsmFrmTDgEn4e0sSGJ6sxwqRcZC57yBfWnyYWttccH1FBY1tHMaRh0bBvw+H4M+KIbiOkZznIgv2otWkoSlJ4bWfoD1Gh3p2FNOtkjvUFhOMm8kNZ28wxsMlclCd7oHT9GKhe9RBvCdZBkFVfzjo+xu0Hf2Pb45QZuOWwxAiOwJu12yEEv85VCQvwPKNR3HTny3QmlnDIydMh1TTIGyjGDTO0wd86M17norARLlUtFggRGJHWtDW0B9Oab0l05kNNLA7AC7cNIB3W3QoDGZgUfc0fGRtzwGDG2nEkfPoXP6ZS9skMVf0Jz5aJQ5xuzxge+ZjunHEGM6cGQc/eqJxT+tLMI2dQClPf2DaOjFUtxwPoVnTwelfD866t5aCxQ5B/jpnnnrUmHTvLUDx1qkkOM6Cu6NkoEj0CzcJX8PgojKui38EydfOwYo5U6ExpBomH9Xm6c9Pw4stehAW1MyPg3T5svBxXBVSjuPl9qPisjVcOsKIku8mwtaWTfy60RQcfhvR3wVm5H7mECQemstp5hZUck0I5PwesIr5KDqJdSSeJguO62rwZeYVNhO0hhvHruMI8Th8MwswZ8wEWlS1izwP1lNjnjDoK4djf9tFOGu8np3jNGlZhAzJvzRFVE4nSx6JsVlhdLZ5FOi3KZHIaXnYFbGQq/tPk9gkewzrusOTdDbzV/mvKNSjTuU98nApuJ/G7n4C21ZWo9zD/fSIhHjPr3/4ZPk/MLWWhEzd47TEThJWyKthnfg4fGQ9k2w9j+Aa8zZ0XCnB2qcl+E7vWny+T4Dak8VgSKCERyXJo+a8el49zRUloh7hfTFhmt/gintPP+AZb3bDrW8Iz0P/4KDHGdiVf5xPXGjj7uw/aL11LUtk/IQVan6Yu9IK9ArlIHNVIKs9VSPzzGMo2a3PIxc54wosAe/FtRxaE4r7trvBvlvKMLqRYJ6IBbXFzIIet42gcXUhX/6vjBy6NtLdeVrw92Qw3opg+Ceohkob3OCo6nka7VNHAuMjcEptEZYKDaK64yxwfnMArVgewgza0NrSARKXf2ffSEM4FV3Om4t/c8hnL16mMYeSVjfi+SMMdnsOU6jMSFr2poFqTWx47xRfbO2bhW2uOuz4ez+HiEXw1XYBeGRaBOXHd+B28SDSzwvh5u0HYEByJifYj2KXxtmcnrMHZpkLQZ3iBXx/f4DH/r4Hoza0s+TxMtRxz8GWgUxoCb7H5iOFuLdYEWr7S3j8M2GMzv1HC67EYIT2B3j79y7uzBaka3fU2HVSPz3/OR2yCgC8Sp/yigeCNGwXQ0/1D9G7Hds5Iz0Z/gYuxuWp39lnrhjIKa0B2whn7LLMxGl+i0HiRz5pVRpxtkEmztuaRg2flcH+lhjMLM7kFIkfdGzpJhacvRFW5gug+MgC8DTWYWerONqo+YArQB6EtW6S8vtz+LrHnWLK37Or0WiyONeD8drPWGm8A5fdzYB7Tfqg5aDM22dmk9N9OZzkPUBXP8hRj+55agr/xQ1+6XTd2Y5nWIlC1Y9W/Fs5CkuvD7Kg01MK22ZDsUu+gvCpN1By0JPDLjpjnPhU2JQdQv1Xe9H5bxjLbVgPE/4lQMWBydA29hx/n5JOFvuC0VLaBJ5dX89p0r6EvTd53/x2tnn8kPzOlrKg4gHS7ujiqzNfspbhWJg6JwZGj+nB0unD3GNwG+/NW0s7ldfyxbCXdHBzGO6sVWKXc6MgvEkH9hcpQ/OMXPQdM8R/Fm3l5IfCoF6bQAlxS2msqBSrZ1nCu9n5OGmCDD7uMOb50x3ZYNVnTJ6STuNeHeCbPX5U0fWR0l5ZgdiW59BxQ4r+HvKAAxK7aJ3GCDgdlEx5M07hT/UmvKh4Eq6JicJw7xZcYh1Cj65Jw4WnYzHIfw6JHcrjI8+YvjwUx3wdL44/PgX2eRZBb50NDb5bghYxC/lo+mls82c0VdfHlLtpmCvyEoajFeDgSlWy+JeH8tIB+Lx7JPpMqGP0e0yq0f9hQcwVNn8hDZoZwqDSoASSoia047IrXOiwhEnjdDlvvQacWOeJB7JfsHfrM9jdPxnSln6B5HFvsHPXWPQe1GafI4owPK6UTDYs4ycuj+B0yFNo2DYRdN5KQ9eEJFwt8Y3l/qnDT7VWPKn3FDMlMvDtdGm2qu+F09oC0LtCDIUDInifwCv+6yRMB2ar4uayYhK5bUXSbZ/ohlE+ZshPAfvJ2RSn6IofdurAXo9ffHnQmb81LoG4ggNs/usgvxyQRu+JYlDk+IMm/NvFQ0l/yOMKoJDjNvx6OBP3eo7B06NusVrZQzZbNgpeTsiBGv0cDNs+BuxuzQOb10vYrsYMBv51wuChflrmMAWr7BWhKuEZXdaaB+s3KUO94AxqdosijW2+oOA5SLoGO7AzvpsqEuUgabYEbE9VZa3vZzgiMoRukjFsaIwGW5XdvKtBBktWduOqqcLQWlJNC0JvcOSk75wZaQW3vwMPRWRwxfQmzsrzw5wdcqylOhlWNJfTF7NyDE0QI9WvSqhYcxdtbexh1u1OPP9wFvor9XNjpS5EHr4EIcrupLZyAg2+dcYUu4lY3xsOCelBtCX8KQu7P8CueRZg0ShGC6/EM9qk0vuuWNIyMcYjB2s5KaQJ/+sIh+1Cz3DwowlUHOiF7+JOcI6uwcL55zlxfSzIn2jBO2dMoK+lm2MmatHwTjVwTm1GvS1XeQDDULTpNbX5z6Zd0vPh4vOdsMr0CRalfIPVR6zh9J5bLL7mHu2dexBqeu+T3BsPMqtahu2xIzh+uyk7f71GcmAFi870Y33xYnr/bzJbYzWXS//mQxBAfwqW4aJrn9hxbCT7qqmBXXYPR/25hkNZ9pDa2QrL8Sy6PSuFzFdikBj1lA6I3MD6HVoQEP8aGo55Y9HSEIT3BpBs7A6bj3mQbYgZ9659AW1pHvD6mgG0+13B4UmxtNyzllzHn4fP001QPHE5ux92BxFzHxDv6oIBS0v4bXoWtr8d4qD6D+SgGcgrM05ixuL3BEnh/MxcAdLXhpN/pgEc3uaInslbQN6uBCNyV6G7Thp6Fv8FtWdW5FxHIHmjhM7bycLjd/eoIHeI95Q60xOtS4BicyniwkcUK9vGOonrUY5j8L8iPWi7PxZobTqnHdeBBJ8YUGj/SmNGzoXdJ2eBlcsvPFu8CAdOjAQFmoC/Szpg9FwXeix3khy//eRd3oVsuiSPS6plYMfDCmhlPegTqyb3PaLcPqQEs7Qvwx3fS+SZmsKFZ/9xVYYb33jixK3XLMBu5ySer7yX5aqSOONAFFXPjaPoaR/J+FIzZh2QY92UEO6XnQKbYsfA5uNe0BMSwc99uvmThCOczw5Cs9o2Umj7QguzuzEOdGFD/EwY1x5NZ46f43SLh/C7awSL/9qHz/NKMGrLfpB89RM1jstD58r7fPqxI3UeP0lzTk6huH4ZalQtwp8LY3CJqQuZfZLAgPVWUKWRSp/LYlDsXg+fFnqG5bJLeeupnVitswAF4CZsn38Z1y3ShCsdbfyktAZqagZp7jVnchocQfPG3cedq8Jokvdf/FsehC/7hWFHrC1MdLHFCBcRCuzzwFP1DPfWz4KIAURPiZ38216JLfaNg4j+HLK7oIB6CfLUsdmP3x2Wp1tmhwktZnJ6+i8eud4UdqRKgqbDV5zW8pm9dZ5x0KLZ1K90BY2yDpL8h9PcOSWNBgU+c9YLfbjaPg5nOtbQOo2PONHyHsz2bYAOdaCqiFCOV5pLx7K/U7W+NkSiFkaOtcGaV+tA4PAYNHTXh7Uqmth47iWEPfQACpMhm6tT4UnOf7R8rRt9fWsKEgnJ7CdbSwe7klBkYRe+XOvCHpfiKWixDERuboDPTUG8I1MQE6wEebDBkizvN7H95F7+WnwHjgldwLYKfVhieR0aB3L5ztxbuFLPFxetSsMNz2M51NcPeIQgWnrXoF+vAWR1FODlc1K0c0U4PDJrQSUBBxIf1Ue2k1v4nv8xbF4kAY9XGkGUjBEaBzzhS48+o1dTDkpNGwEaSqakNxzMV9W8adfhSTQ53AB68AC35hjw4J3ftK4qg6L0f/BErqCVB9fAuXktKPCUechAAJwf+dMp7QDyse/ARxp7cbdYG9Q6f+TtKrJkKnCQX1XWUc9ONdjtV0uaN35AbHolrzYJR880S574oIaMNI2g+bECdLVn4DRFQfCpU4QHMxfQsfGToaU3jNeGLAIjARnWLltANztd6OzupbR2WAycTafi8uQrKNE8G9uX7OYrt//jFiM7zNL24cG/QWS/8RfZrBeCT9fGcN+cE7xqwJckju+AlJornKPbDp4zv+Foj7+wLmkmTNhoCMs1zqNK8gmUwh7acVAMOreowbt1TMUPbCBPNY1U5Ifw0FQh+Pd8HC2aoQRyPVMpb+Up8F6SD1PXtYJJgCJefv0d5Wef4wwrAXg+fQkaaewg+BsLss43QXCkHqyaepCeez+CsOFRlPXmDriHjoGI18JQefknhp0whpjUXvY1G2T+WEdSsqnwxfsKcu12+iiiBrFXd7GDxQIWl7XkprhE+np3Bde5vYWgyl7uSK3jb9GGfKfOGjbpbsC029awYLoUKDXew8gTVqiw8C8tCp6Oq3/tBzfxMkx3lIau3ZV8s8ub8guj4fdydXQxkcOVtWaom9HE//y2UXeVD3VKmcOwjwl9a+nmSYc/QpeBHKRLefHH+x5smrAHg/ecAueiE5hSMQYsd3fx+ihr0pmZSGKNS2GjhSx6jlzDH74I4JC7Kq455cOmY+ThqlQ30r8Qcm/wYJcFwcjCbuT5ygLmlHlg/cPLmKKkhCrzJkBu5Xi6eVqQJse30WjUY3H7ApSI+onT5QvJ5PRhuOnA5J2oCmMKdwC0G2Ca/yC45UmyWsNaLLgO1H16DCxU1EP/iA+8+9U4eJO9mrp/dJF3qQ17r50K89Ur4a10NDX8MoOlX46g1s9M+CkEEO3iw8K/XuBllVOQ7vwcfu/I5ScpI/mlXTyttBOGqEsuoKY4DSa+3gDzRxZDu48AL1yeCGl1KlgRuJ5lY+fiXaUSnu99D6s1dCE7fhK79GvDnQV/ecy4GfByqjHf2hzIY833QE5pOnnZ2rNXEIN09w28t3g0mo19BK9uBZDWvExKlRIGj8VZWPg4m3WFTtPaIhPoPH+SBFakYPu8G6jz4hLtXSTETyTmoeUKbfogdImUOorQIGgStN3JxTWO0birYAMn1Oqgz6lWygoQZEr2ovgX/uS2LBEFl+jBzJQgCjg8CzIzIrl4/GPumnUGjcdVQplTCmwzPoIeecGwIkgPVJ450cbKSH4YKQ1Ki6fQHF6L1g1uNHdqDg+NaiTh/3aRf6omvD1wlMokr8KFwmaYsHkCZu4qoL/Se0hzoQ0Z7rpMc+9MoMJ1FnAuyJruKD/BnKv1FGgbwuErJ9GRjlimbaJ8s04PPBPjKKTYCNy2SzOHniH/dGOeUfuF7Gy/UnRvK373OsgrlP5jg4lbyCRdA3TU92GJ2m7c8eAr3QttYfcsR5RvDwaZpQk81KvKU7zUYXbQZNio8oUPlsaRtvpnvpJ1kDRS18L9H+LwofEs7SjSY4Uf52nM3VEwX8ODZk/ZxsKHttAnu3j+7d4I3QelqMkqBJW9X1JCoB2+e2gJXYL9XFyVCOtjo3nxkSm0ZMM/ljtynqesKeT7DoV480gnHAozgT0j7oLt3QQ40z+PTD2fk/zBEOp5/5JPP7hPl5x7YLTiYTQ9OQ1KN8tzqZEjTtqDECrTg8WzBUnCPhBN68xw1fostFF/hw+dVUAiT5oaSkrhle5uUnvyH5ZttcVLTvVwtnIXarwFsLDoY89chENtNXj2ziM+9XI5i0e9pX7xOyxcDXR9cw5oC9vyhvZQ+KoyCTru6dOEU8dxNfxDja17+EvHYfp77QGwbBJ8WL6Itp2ZjeGvRsD21mV0tnQxnLWdhQOpRVhR8JFz85zoVpsQxnSN47mZoyBHTxNaa17zho/WfPH6VNo7eTkXdY3EW6FppLTtHlU9iINPd8XY3ssE7FpvQH2sLaxs2Ior1r7CBT9/wbiqVbypcivuHxnM7zY4UNhmRSg1v0FWzVfgr2Ujeq42wVmdnfC1Zj7Yjx8Gx+9G4O6kCqUrzGD39Qg690Ea3ddncfNRBdpZXcMa+SegQOYZ3I4NxTlb17NbsiSMFOiiRF9T3HBXmFLmTsPArNOw0OIOiBZ85rLAj+CZYMPyj6TgUugAx7s6s5DuFdq84iqfEa/CB8cec1v+YVTZqwZbcpbxi1PSkL2sDV20DkBlvTmuzF9Dn6VvwWUhFypsy+WpP+exnYYd901Uh5srluN/Rn3kjwexYOJ7pqZgPLa8B53e3gOZzhr67iTMVbrjwHW1LOz7uIyyruxh31tvqPHeedpUsY9Eutx5iossuiz8yxuWS0CM/DGsWrMVJvgOcsvrHFq8fRns2TSTCzvykRe0oEO/By4pEIaqK/v5xwZnljXNQNXNTtR1YgNN8NhNt+b8JO9nm2jldm0wTZ4OY2uTaWa6PA5tmENnNS+yuWgz9/dawfEvmqBYDLQ79jxtXz8CxvfpU137YRzOmUeLKwThlekaPPp2GaS0rCO5rnX4zGUnDP41hRE/N9PKggi+f+YUGVQcpQkRcjim8gqb5q3B9IpUeHO9Fk7vkgb1OyY0s3cCxfl7kv3tUBQb9wFPOFrShiXPSTKrDARrkklyqz7M+zCDfqgug5CYY7Tw8nHalfKAXauXgEJVD7V8swPLRTbo76kBx9ymc2hyFrpo70E9oS+gVnkOv0XuptAZb8FmlhQ8C6mjFl8h+P5uPI1ekQjj/9Vhp3MlLLC7xlcDerh54354NXMu1952ILnD6hD1pxvyHgiCKZzkST+3gPnPcPLM2Yk1aeJ449l6mrL3FU+YOhFE0zxJzMCNKveWQXFVHrR4d4OobRl1Rr+CXbYz8JrjcfgyRwwcbunz4aZu8LjpjL+eGbOh8iwoWhkAbWpuRDe+kYpUOg3lmIO7uiiEPw7gq1/XcOFeFxy/ehE4qDvQQOEmvNORAHfnPWdrc3M47r4KzApWktDdBhr9eSWILjUCl/CNNLosmuoyWiAtQhLo6WRIEMjCk9PM6fPR6fzobzBXOymyRuN7LosayS+UBmmq8iEM2mgAeG8nr4uII5HMTtjxIgG2HSjEdbqF/Nw6madcFOT7G9/A6iptiPjzmiPOjqAF65dTlXwTBy4tptTjHVRqeIkHzgaxwwk1uHtfEK7ffcaWv/6j3IFFPClRAAd1gVZMCIA46Yt4bP0wjyEtSA+eCuWVw/x3ZwR+MTSBHm9PTqxJZ7ltG9mqyYmjk8Pobb4JTujXAdFpUZAlMAF9lknTuR1rqUN4Nf6tLsJxXQ2Uc7wSdS2fsrCAFFQqK1HElgrUtsrjOZJp/Hgh4zzvdnqfPhJvOl6GKHMVODQwHt5figTxWYX478lUrgozYt1sdb79PZF/vDzBvfWz6L6zA/ub6cH2eVfxltNYCF7cxmurSmllgSU/zpiHj50C4Le5DRn9MYHvuxTA/0EutI8qQiXhd7zT4ABIl88GxQhhCPTZTXfX/cTQizMxqVMOZKq/89c5GnAttZXiKzIgcK4e/l14EzfMS+EXvy7CcbF4Cn01DVYOL4d1LY/Yd7EN2hT38AJFA0BPOy4XOES/9+2E12klvHjvJDgeMh3mpnhDR0E9mG+MgxvhmfRCQRHMll4i4daVGNu0jYUui8Bdn+kQ+8QP2we/0nSfKD6SbMv7DRO5Iy+Ax2VNxVUnN0HGQSmIqS3ksvM+eKw5ka/O9QMBjT+g/GIJt66cReZhx/lq2n68dUIX2hNmg5xCARQ22/Oe8iau2FEOVte2gPYtCzgwywGMxUrBS0oV3JX8qXu2ODkEfwPhOT3cJK6GN1Xi8IbdKJq+ZR5WX77Bj3qsYa5bGY+Z54/fTlXQgFE/Fv4QAo1xjJduvWaNA15w2LsMznmbwaIxO/H10QIe2FqJDy7uxN5PV+DnrIvQPPYTKqdG84Gc+fD7kyAUuerw43VXUcV3E/c37MVjs4fxSek38Fk8H29emMHiLncpq3wsmGlvhu2r5OjozXIIUKtAfc8EipqrDDLzheGrzU7QElYAt+OKICaix6dWXIS11jlwbNl2GKO8DhTm2mCB3m9YZtbMG+ykYOupqfDQ9CItiN7KWePOY4G1AnwdbwI9MSm8WXsKRt95DCsuloNIkglMfCgDqx8a8wbBeux27OOBgE1EIyswzKOHa4smc9t6H1q1xxLmCryArCUzaP0MJ7Z48oKKjG1I/E8SyH7XoUSpEijrCeIv2ZNheUsXpRd+A/fUcvCUEKCAaHnQsZgCRg9HQ9znzfzC2AKfvhgPx05uoRtnZFDtpyz5ZYfxGN1JCLI+aPsuCA+6uGPGxhdc7i8N9vEFoPXvMTv6N7F6QyNJXd7Lqm77+ZDvTDi26R1udFGAV6elIDB/IRwVmEh2XfIUWAKIOtPIcvA0vRM9QA1hujwqYxF+VpGCcVuKqTROCtT79qNl0n2Q77PBYkV1qm0rx7FhhSSZtRHbGmXgl2UZ7NN8z6PEk0F5QzKW3+2hyII0sP19ihw/D3FpxwM6ccYclH19cSeNxMOv1FlVQABsDW1pcug8GF4wTJP2GZDwxB205b0FRPz5QuW3A2jIRhbrFv2HNdN92WbOEfLvmkpWZxrp08I33BFrBO0mrnw1NIr+O6OLTdqX8dORJhilxej8dQZ92T+a4EgtRn2QhfpxL1BujhF+PZ6MH0pu8ccn69E6bYAvxUnByeyJeDf3IehfMYKZq3TIVHcG2ob+xi6Hs9h+1g66JBl3RN7jmvlbsDU6g6aBFszab85fNiXSbp9EdDVYCtJ/LHjXiUJa3N3NIn25YNJpzWPG6MIp93h62GvEDu1ybCD0hb/NcaNp1VdYY8dJGj+9DzRttMHjggRcuN5HYG3JlTNd6LfhMfqmYQq/tETRM6KCFmTUw1iDAS54NQnSlwnhcH833ZR1h31T3SH3jC3I1eaR33viIIFcMP37ka0/GILOgyjqDVXC3xpTsCUzApYvbmWzcTfp+I8JdCDCh/pONkDgnVEwJS6ddG0aMK0lCxJPFHGutS0fzzVm+wdRfFO2kTfIN2Fhsxr89C9ktdfy8GbXZHAYmUcvT0XzZqGtfPvgDLoeZQ/yvoO4R08VxjlephYjCW55sRTerRFl8L7GkvvP4caHefjupwDL9tVRSa8CaI1YA6ZGuVislEy6gvLwe9NROt25BKtm76PmkH4uvupCp2bqgl7yWtbT/cKb6BrlKS7Dh5UVpKFnjZ5hlvwp6jypdKTBtd/68HZImpr0DWn8by8efXoTbwtVo/In3rQxTI7v7VHHvBuecEJzHGzsTieXEbtAhZ3QrWM/8PFWtJl7j1pGfQOZMnc0KPmDVc+lYXiiJq/qMKN43yp4EfUGk3UywXdTNSzRHoG5CdtZcds8/u4mDdJRgpTYacINar+g/sZFTNK0A/G1Odg17y15L7vHi4LfUf5Veej684rTsly5zu45dJfIcHv7Vyp0O4uXP5Vh7osg2r6/gsWbp4JI4k22UZxL2jVd1DZXCb562HCv+WR0GZeD36MrWKzWmUJEFeHueF1If7AHUnVrkU82UpbjL4p93EhndkzAiXV9dF1jND25pwOjxj0DlMhDxcddpJG2lFTlnMhpmTZLTtwPkiGbISTclmrF1ECh1I82FOYDVtrzR+ksXLNPFffam8Gi/xbSdC9HnPUlEW/36MPlRYrYqxNNk/oPUNLppdhcMIY9h334OX9ktQYhDnd1ZdV0E+hol4GVW2Lwkckd8rplBGsVyujR1UCY6rcW9d6f4YDhTywiqQ19Pzzo5Ahvdl+gwAKkjFMyE9El4AwuCT9Cs3fawuWzNjTabDqslDeitJoyPhwfCfdnWEDpaR04cFma1Ob8YWllb16xSx+MzirAPr0ivLl/BV/RT4Xai5YwJrMaL6zfBXqvS/nJK1d+/nQVXjtlDINtr/DFtnAkJynqn/uTHLdrcMC54xQyZhbO2NCAtTtDWKpZDDqEvYn+tdChkF5a1WxAXTUq0Nq6Anq29rLpTFN6v9aJE28rQuqrOrJcBZh20JTnbd2JLsExbBClzc9HRtO1ab4Y67aPslP1YIVBON5Qb8OeiD2UJF+B6eGnkfZegAtBCmD4WxG3NeXQ5etmkOW2ikuv2UC+mi24FbrDyX/n+HNwFlzyzsP37+yw5WwAvD4hAhl+Z/ho51FylomAiMc9eLO+lXOd9GGxVC7Z1C+Hl3mH8ffGkXBy7icqUDDGd+47OVurG4x1zfBVTjgtdd1B04XO4cpvU+lPvAIcX76Pzq47DuPPpeLnc/74Ybse/l1aCNKvGvlghgDFrn6Auldl4OR9H8wMfUvRGEv9AeK05awozRcrpVnfQ7GKPLiy/gPZOY+CqphlMHH6Rej4LUBSKn186up8FitcwcObX4Bf2WUUmJ4DLsUIPkkG+L4+gEyTv4BIpBP/HPMPOrN6WfNHEE1zv4bf8g7AoTWTYMqBFbyiAsh43Qo+mJJLPJQPwuFBkOquzqrCa1i+9TkJHpWB4cm/4MMdZ5RZuRkeubZwxNxarAiZDx+nTWCBRZd4gbESrnGxgmP9R+Hx1Uzq6rKG+AfbYF6sD7iNvQdBSd9on/lKnuq8F+JUhWG42RJsx4ji3u9N7DtoDAmFB3jcmw5YOq8Jt8AJXFHxH/f16sIFswc0ZYwKO2SuhhNLZoNz9Fu42OOGg3H3MDAjmix+7Of0VxPAs2kAnvw6iLvhM0PJInqRWAQXxr0myagutlr8iJKemUG6uBKMNu3jXPFPOFDI7GzlTI/z5VFitCKkaYawpE8de75shvQRY2BUTB76Vn7mA39judp3mLbtVGPdG8e5WrefdU/9owU/ZXhGqiCEuwKsk5wE5rlWOO1+JWm6S5D7dwGe26nDN+MLyPZXJr5eIwSWIy/ymr8itOUPsMvATFTfGsHLh0ZwPq7h2j2vOU/tFbmSOaRmfETL8VL8IHYTDFmOpYvbzdFmhClTxjEW6RVlJZkmeJkiDOVvL0FAZztqaobBQNJJWDblH9jnH+ClNq18wi4Lz04NoufdBnBa/ibvXeJM1a178ZDlMy6VigPBFd9RtdwQGusuUIj8S07apQY7NSNw6uAXWr13J6YW6IDhLkOaH/kWX6bcYIWfH2mzZz57iRtDctNqdF/jA03bf7F+bQz+1NDhWYKHSdBXhQ8ZqvLRPwM44aw5uEWowFCqKqjVSbL3Eheuj1+JVse8uN1DjUcFZrKKsgPUuKjAv5XKKFFZgqcsm6HUeBnNOe3MMa+vwG4TXVbJ3o2FGXtQwMkQ7PkOlv70xe7BVTBncicV31wHbu2/MDKhC/nJDOT7fVgxRwhaBRCO5guz/MSZrLomhKcbreVjUWfx+ogajG0biwsmxlPLAoa/ZvGwc3IzkM8ZGlqXSQmOknTnoBAce1bClFjDFSsb6Icqg6l8Gwh1t+KiSbXYrO9LMto3wBSe0ejLp8gpYgmEyj2lyhZhWJ3XTz7352PUWw1073yJWSqvKOBHGI49rsdJBn+5MLsX/7MwhCfThVFkigsER5tz2CpNtPI1QphwG4W6FmN/ymquG26BQkt9uLpuCYwK6kONja/46UlNKpKyAnVbO94f/JGnX+6CD0c3oug1BKONhVTUcR1zUJtnqD0jx/QyjBwfg7nFFjx+RwxGWkfR2H4zWFrTgVIeCjC+s5tGe+ziOUazIWBRAvo7nef404q0NL2GkqonwpPR5lgmIM+tQfVwou0K7G9dRdoTzeCZWh9+HNcBx/2/kb+jMkzr2o33xkymzQG2PNmjlGVf6lHw58ls36BHm9yLIaNuMU4N0IZYe08++SWBtjqEY7Lyb16a4wM7wseyavArnIqvUW/mQ9LaORI+S9uj0l9N1kgwBc2hXyy57wO9/DcdZ2IR9/k/opqhR3zkrCZcnWULyfnK9CfhFNx7cAYtT8TxhoY0hh/PWPSoNw5utwN3Q0NYlroUXPtOwvHD4dj4OAPnB9tAStI/dlayh93mtjTnhTy/3GkKimPdQLE4mg/1HIbk5adRzekFX1wgyoaJm6DUN5E2XLbE+SLyMGL8BbQ/L4CzB+TBdfEbHPWfFc7rGuJvPSlo0bydz1gNoH66HkwuWsRBl99R8wwx/hX2GHbsGAl+aR0wt1oer98LxTmPvsDi1RYQsW8JLRZcAMaNutSyfxnECG7B3J8L6WLLVBRW3QjRT8dDR8VouBkshAurbrNjnyH6vhehjhymwcnNeEn3PSwb8QmE8mWoIm86BL8+RqLp56DKthwlA3fD79KJmBfxEuSdPPCtzjVqsSjiVUPT4Ih7ORTIioLS2n52XWaHO8ZPhwqTPeiyjHHd4Xp4uGcPaHiYwadxFWhxLZGV8/ZD6N/L2HW3mGdeM+QJO0diwvAzdjysR7o3tOBhwT6+/novZh8Khyd2WXi/+BInX2njnMofnGF/HBd4pWDECnm4tPwnBgdGktb7idT8WAw/b5KniZXrsCTzDi45eYQOBVrhTntVWBE5npcktMD4pDs417CWlR6V85tIQx63Uoe99bwxbasW/7dfHbZ9t4bq81uonfaiSIo+LvGQgWsOWSBUbcYr2pyoo7mdFvSLwY64faQ5cQNVRo/E4qEPKO/RjOvGLIZOX3G++LmVSwwtKUthDPRcP0vXPFNQeZQRm27/wsM+E2FtUC42xd4BbY8YyPd8iFPGaoJa8wdM9RXnhgcXed6Uy6Sd8pAlZqvS0ZA1WLRYDNdeVsQHkmOh3XM5mZ+ZDd0pPRjp4k+BM7JIxMYN5tQ/5zllz3DnLylY7q4EqX4X+KtzFIDyF/DIPURJMi28OyoC3n5YhZtzPrOqRSadbZ8KRzPL2ebCONi7TQFinm6ErxuO8eOPi+BGwxr8Yp6JhVFtHPPHGI4MhqL3UBzYW8+mK4fMIC3MAu/d2MT2i//xrb/91LbKmRO05aHhjS0NTFyN/n2PyF5xNteqlODhfQ9wdONm/JdcxsKXpMBghxyM1emmc8/3wfVDDZRdkY2farXZwvITRjrL0W71RBS4PcQ/RyiB6xEtGhDwBPNREZyf0QLD9U0cr6kIratD6OSdWXhljzX56wvCf3wNEmNsSNX0Icot7WLb0kr8l9ILz89MJfUALbYvkUVVTWn4HqzA4/8kss+nGq4pXYgiLwZQKHA6L5xaRW8kJHCuSCRV+KpB35R0KOlWJON6a5rXaAKBhnFkPSkAFFvmwqUQOfBTdYKzwxZgGx0GQqO6yenAYUw5GIqGG1Vg1rNHdGPFN6xr9+BXn31pEGWgKtKJryfeAuutNTwtZyksE1kOMelqWJRxiE9EiXFheCI8V5WExLc/WepdHqSkXCHHkZW8XaefPs3I4xJZWYyfsRp+z6wHi0gVMLt+Ht9lHaf0v7K4XrIQbY910VDBYS7ZN4e0i4Z544U7XPVxLBglZxJ+P0udJ2swPXguzUs7R3DpD6GNDJroPqX885V0sEYJ7r9tw5dpVeSn/RaWzH9Lft/60T/qETf8EcbUJbshorGJndsVoCnpEDUWVFDRgAB5HV5IH+7ugNWgTi4qZ6lt1ASi4hYOnaQPMT0b8JpRMmhtUoa1dX78aLcYJBY7Ql7ACU6U10S/gye4+4I87HoTTpp7JTA/sp2i9nrxk0mOaOKwj6zfncPkr1akOGWY5W8YQPDuh7xV8hgsjkmkyutHILKpiWLG2KNpwxg4NA8h6qo2jna3BPCuZpEMQRTNkqYj4jp0/+paahysgJqzZ7k7ejSUPAmCGQECILXnDrnqnOTfTudQTGcXb7dZiBmP3VhK7BY+uidEPbfSoKlYDuZnKtGFCZNZtaEMbMfm8M4OQ3IKOoZ+hV/owJNh6ry1h5/7y4KHcyBIZN/k2N2bSPG9OWYfv4xqJ2bgtogi3vr3B0U/SCG2RshqGiaDdz0QHpZBB7+fQYXKClq3bTo9zXyDKaLRrHnCA9z2ScPifVIsvvkjLju3BdviE+FN/2oOvP4cNqWuwt5Z36CzbhL5Fo+GSVPOQ9boHyxw3gBtlQLAp9aFWgJKILV8PGY3H8eu66GoFqoJZa+9aLbaIXTK74UHNZL0tGk0umnY8MiZ13DNSVM+3rkKJp4BKHSfjZvuv6baHX9Z5ewJ/jviMdWWn4fK0nvUOc4VpI9tY61pQvAwJhd9uiTIy14Go2e9wfFx8qw0VotPFXtilLoYSNdthBMnR4PFlAus8vwKBniYUVXJaQjdDLT/giL/yFLE8B1j2MdtHiV1I/xQ+cCBk3MxNmIjbciWBOGe13imczHJHXhBS38Fkp3ef3z5lgi8vRiBlW92AqVKkEy1A3wdPZkF32mQ+pASGF4bwgdfo+h+jyA8vdDADna72G3UcZARHyCHD79QV0+AdYbTaLyTFxnHlvAbPW1oUAjG2BQX3O7oR8d8yqhweBAnT71HgU6h2Dp7N2Srz8MrUnIQl6gK+p2lJPb0JDx5+RavBJpw5O7HnHjxPE5Tvk+qHyTgtRGCpu0BPnb2IPzVG0cHKhbjIslY6MkYIKX1VjzphCB/cFVCw6UT4VbeVvqv+T6Pa31NqeVO9EbJi6vTX4CIcyEkUhrLuy9BlQhT8KpU5z2+0nQrfD9YZ3wEC6W/0Hy4Ar0H1KGFBUDH9z2uuKgGHRfcOClEDe4dqEJa400ah+pQYUsohkkaY+zM6WC9cCrNawO4ejkdEma1Q9pNb15u9xTTLKsg9/5HnLs7im8pBfCG5s9g7cQwqugCTUmy4xyhUNq/+zxczXjNA/P94G7MZRDvLMSPy5eyTdxEcNbcRrprUzD+hBU8MUV4Z4moP5SGu7SIe265oLDfFNS9Jgvat2eB05ORUDfKjDraLTDOeD8cyd5IwrIRMOLFUSqZmUEygVpwdkcXb8t+SGXXHsOiQAd+mXiCMq078dzvUgyo3Ad6p8ToyNORIN07BNikB3Z73uMV7x+wy+cxFiQuxrCNgbQsNwj2QjGOMhSHn72qvOGBHurcjOBYr9UwH334YOBZmJqqzjKDRrxv8BKMHTsKRgsvhr494tCV1Ae91btx1fJYXrB5JeeKdqGXZhA+SY/DvgYJqHsbxI0nLXHGxiFwKFsNT08bw58tYiS7qx0k9jzEVKVzMFJNFJQ013HB1gyI2boIf317C3jqHIsNvsU9n/UwY8Qgb9glAIv7ETw6J4G/wng+ungLv5i5g1Mej8IBiUJ+ojgDydiFoie+gTcPRGH6yp28w+ER7OqTxfGBERyzfQ/A73Bcv/U8npbt4kPnhlmsUwOmxHmiQsxZPlBvQzp7d0PxXF3Wb2T2RwdKNQrlvHlOlDjeDAxOp8PL1bfJ9twEaOoJYDSwQzelY3h49x+APwJ8OHmAz1uLQ4XXbvziI89P718E5b4pdEZ7AF+lqtK+p32o0nYX9kca4295MYgpuMjmBTmw0P8cittKQXFdGNsOyPN/PUogd2UW9Z/bR+WWWuCwv4D+FR2Dg/8Tdx+KQChqAID/IUS2jEhmIZFKSYgSCZX2ktLSMRpklIpUlIyMqBBJFDKSJEkiDamMqJA0UTSQUrmPcZ/km/gT2h6p4e3MT7xo2zLcXryGhEosgP4dBu9DSqAUsp+nueykZfNd+PS7/Zz7bRZlirzlV4maYHIvnG42iODKXm34UuzPyo7z6XjqRaw+lwKbDC6RmuF9tFvsS3VVZbz52wCX35oGMZ+qae7LATpVl8ozzw/ylYM9fOXISY5qPgamDY6gdykUrG4Lgcq2DNTEXJaNWMmpU67T+dCfQOkvcJqNBex4fgE6XX1gSa4xHDHvBIddV8j8+B0e3dqPWkdmw9v9haQZFo03E+pplO98lPGWA11vU1wlWUajFdeQv7M1dV1aBId71chifx2PTHyMycpBPDpmFvzQKqPYo3OxoU0Bwv++otm5BH9PuvPMBB8QazCGHo+vkGwnAy2j19Iyy0Mw16MT3s5bAkdRBpKjxGF8zh3YFR9AMUN7eOsZAjlrJbY0z2Fz6+cwGadQYHAlJdx/zx2T3Uhpuh4c1z7Astcng5RIDDRqavGe99KgffsaXQxewxsd4uF3TjiOm5OGNR7eME1JDOYOP6Ak5RR+aTPIWy7+ornmtlhyZyeC+wx4Ex8AJyz/I3chVXgwQpBKkl/Bbb7EOn7z+YawHLp8GmT/jC/QVvuSpk06TOuldeBBUh0EbPxOzjufAbauIImsHn7x0Zv7LhGJfvYmny+p5J0kC9HZcfhkTzAPJrymZW23ubovH+smbceOad00YaooVEnN556eCSB5yhNGVX0ET3V3TMlxguP1uVA99yI26b/Ay1HZfPzWRgqKk4be7GoQezgSPUe0UILrA9SqlwMv99O4V34DFvgsoIzJKeAaMhGyxv3gBZu2sOv1bp6aPA41M02op/M6Ppi7gH8UVFO39DdM95ADdbkZNCLSmQ9memKhwVN2t3lBiRLF6NZqgHbZ9jxlbixfTJ8CnlLReDvegF2SH9LUCSb0zK4cHweWwJ93jTQy+TB9ELWGklXC8ONWOHVe9eO/QeEca1GBdqd+o0psFAZOS4b82At4cVcrjX08FTb8GsKzn09i5X+yUNn3HOSDruGoyttwb7ERbAk4gQLmGuT8WR5krt6i/1ILsPB0OLgpC9Gw8HiUftKJlz2d2MJSns9e1uJGdUUYLvcHoRNCYKIgSGtEgliyz4lvLHDlX71auLFWkG+43aBYYzUocImh66cq8O3y/aj+1ZLX3YunVQN76azwRxyHv6F92hAbjhGECBlbwFsroPC1L9scmwtuE7/QhVPTIP/uBEh/4opbZ7wGg1IBsJk4Hq2ybWD8fU0edy6LX426Rx2/YsFYfx541s4GfG1FI+oNwCryAO5qyWexh4cxdpcDhJ8zJvPbeSQq+RHsoAfFprlBtzUCXPoHbetTYa3vDrgR4YatL5ewzCDwplIdWvPoOS+pn4Z7OzUge8QOjA44RQtnI4lGjKZh8TWwOnk/5t6dTHcmFtPiUa3QmiwM2r71JHwqCZuvTkD/nxuhxPEEq1AUTyzvoMudE/lbpzvNsZKFpqgH9NKQWSq6G2avOwXJ2+aAg7c4dXbX4s2tFtAa5oCV+lPh2vi7ZDoQDoYGVqTo9ZkXjtbEpgVfaGPHZ5y7T5uXqJVR8FNRSDd6gr+3ToSi9UdR6ocprBdOQbVr+Vyb7wZGUdZQ+VqW9rkKQNqKfkpIKiKX251kRFUc5pvAY6OOUMGXR7Aueyt/krxEJbmK8P6vEn+/F43C6wop9ONoHFf0FM8s286zpTqh8U4dfR7diDeqRWD8zX/8YPwsHlHcxbUx13HJpf0woCbPvlHF1K5RzcJPxWmv71jQbK6m0EQZHONYCkIXU2HAspeOwgZaOfMXHpqyDJ/ZvMSxhoKQOboMHQS2k39kP+bHhaBnNPLf/CiMDa5FvyEBSpyYzdJVCrDbt4xMZ/tz6egFpPx3H+X258PvY05wT7gLRI8VcWSzPd2ZChAkeBfdA3/Dh9eIZgEBWFl3HN6VR+NxxfnktsMZrcy20aMXBJbTXWjClL/Qxr20bE8XLtfwotPqpqj/pgelDofQ9eYCSlMaAzJi31lGMRJedU7A6nNPUNhjJE0O3sxfx6TyvD8/oHiNPW9+OwpKJONh42MFiPSy508rt4JeRC/x3DJYLWPIk2/r8M9xS7B6tTmU7LVFU8k+fup/kE3ubIJpeY64pqCKTX6P4PxXgwA64+lguDD8SDmMqbXHMDm+k75tdOVvYsn4UUmDn7Wl8OiZu3FuTT/N9jKE8q0JGHCtD4oseqlyYxDj0VMwtnszCR5yxhWBx+nZUD/82WUCJcod1LIzkDuUllHx1XQ4olEJrwM6sHH8ECg574Y2ydV4I1EdGhKM+YtBKTTFx4O+ojRL/VXn8x51eE+zgsRUy0DCyonnXNKB9MMzwWP8Orq92xaLld+Q8NEdFFXtjdpWFfT0/XrQcDXDorQZMKE+B5RvGZNg6x3YEL0Qzjw1wwEzS+ryGMVqX29CWfQ6mF+mAjK147jhgTQtdStjsfbP7DdswhlputjoZEjLrg5z0oNokP0iAVnPanhjvDyOtVlJ+anybHtbG9bmHYMr/1Zhu/4I3lPxGs8GjYdVSQvpzIp8OGrRA/P238OmyCkgI72NVx+6CquNJJDO+3DXdGVwOC7H0mcr6fD0lXC7S5GX+HbSsckM6es7qan+I1cr+tLIAkXYfaSeLtcIgYjaBipxX43vs31QPAT4vyXBHH/XCo8eXw63bUXhfqwq6JzthycfD8OYa3JwJjuWJycOY5vUU3Y9Ug3iN9MpyMoEFuj106/1R+jI2EbYffMz10cM05iVNhC004rWtH/CDu9A8MofCd9/hqP5p/PYof6QC4Y8eOHmJ9wXJk9hiS6Q/vcAFK+8Dy+81WHy9ucYn5wOBq3PMD1sPAyFXqKacoAXb8vpVXcnqJraICn/3/hfmDkgDHfUFqNXnQ0XpRnSPpEi+jJ2BDoda4PxsfXcpe9BF3rkoXxgNikajmLvntess60TS4p28kYtSV4du4tyrNVoUs0dfnpdBuzfWeP6kht0+tdN/lw3zIXvVtEzj898eVcz/gh4ygn9/8HdzSJgWVEF1d/Wsm5NKO4uncjdo36Azi4jHij5hs1tNejZYg5T586A42ES6KGXTmc5jkW9x1CZcg7JfPzEyYYLSGLfL95bswJHqOjC1qnF+DbpHKsXnoLLz5bT2Rk3aNaFrTjLWp8t/O7w6QJ1ljeVAz+3y1j8YRecNZKjjGxBij87kxUGr1Pujof8blUg7/9RCdHjJsBzpWbeN0x4M9Mc10l1wbq5KlxyNp1fq+wHrZsRNGasNFk+VoWFp3Jhs9hWnpv5DbaV+bC0oCHrnLbF6luZ2KJzCzsX6JHnoBi46NRAlttbiN9aQ40NzfQmQJhDakfhPVtg0w/v4F3cQhiUmABRIuak2VTKlb+d6WzXEdCafZ26d7+nSrcvfLBrCKRHRkDGNUnwdV1IPctG0cVyWZS7KY/Cdtrw7kEvS1yThJ1P9DDrVTq5NYuDzPhntPNRAbyxegm10sS9L6xZ/dUw5Y5+hJ1ZcpAQupRBfxY4Tm6hel933iUSAmE8hzCyDt1f52HqB1XK1LAFwbY80D4jAKHT33PD3XU43vglHLe2xhKjKTTRopJ0l7xH3epdrFFxHUUSxOHDI0S7s720vnATT3gxyEqVBSx37St8klSCKT0j6WKsIO4fPQIe/zTAc3kiYJ6ghBWLXlGaRDJ+SCiFhtty9PnVNv7euZtOBIjD84PbyU3Kgr4tfoP+vkVsccgYp73+Syd6x6POqGNclqiIWxInQ5jbfhZ7q8Hrd28k218OUPXnG/6Z9JG7OkQ5riSd5885DNa9UtC615U839tR789RePPtFuq0isDlp1L5q9gzzDa7jw9LssjRQRD09sqAddU0/HVqErXr34aROQtYYWEeXDk6iE9/rcf2sU70U0UE9Gr+QebcUxj10IVmRFSTxOo2+DbyPAZZhvJDn4nwuGgppU5WhdpRo9jncwMqzX0FnHMbynNsMdmth56cqoPv5nfItS2Plu83BquaTl417jwXdASBcW8q6D8YANEQBVrYo0R00o/Djl3HLXZKYPb7PoYqR+PA5VJy2CnBY/5Lh+gFvhj6JAljBST564QzXNY0CuTRAruXePD3rxsoJX0D5MU5sP373bTf9iLtkN3KfgkjAV9LgdXybPASMUSXNcv4x3lfiv8widNiLmPuGie6FTIVfFJlSMFYCY5u2oReyaMhO82HNobmU5W9PpPESzD1ngJ0swBOfPEDSwF1aGh7TzsfPMbGjHaqVs7gaWlnacvmtdxY3My/h6VZZKcZ/NorDfoL3+NNnbekolfP2nPm0upbU/jEyLlku3kWCOgo07k/1mzsrQraa9fijHAdFjWTAOeBTs5PF0dP4fc8eHU+hrT5g8DpsWAxdxZ4u6qA7mhVNhvVDBEV14E/G/GNkUY8afJiLP8yCo6LV1LyRBn4b0c7tOqcxIMH89FLJwjDLWL454YzUJr3gNf/eEK3nuhR4Fd1sI29RrUN8mDzSBCDF73B7BMKYL2jkEtLb8KWF8XsUx3KNUXKYLv+ED058Zx/KvmTuLkLbpjQzd3jSmi57n5wz2R8nZcGTwUIzm04zqtO78JayengK3YdLrrN46qHGVR+/zm8WC9DHZk6mK5tAv/hSlR1MSXjemc0DhDF3H3RsHNPP79PT2CVgAaa9dYADowfAQ+dffnlTSle5aICB2e1Yc3vdfyvMoFznq4ko7oZ6N+SgpM0xsDO1kmQNLgIW79kkNy+RThc6wnthjdAwjkRQmOHcYnSS2gIVgMXE1tObk8ghezxnHWygQoP+mD57K90PvsjDX+2oz7F6xQwfSSstmC4VHQXKpaosVOrHPofuAAGbbuhL0sHJ21IgKqmD+Q9XQDENDTxVed2/jO1GL36xpHzMnOuSAyhZQ0m4FjxkKImjsIp+iYgNYqgTvMXy7vmsthIEZ6W0QINbW544MVDUnXfzG09dhx2agw0xkZBwMkERuW9NEvuC6RJ7SLZy9spq7EbdvN7agQjiDqnA6hwBmaeHuSFzRI4YeV3Ppx8iktC/PnIn0h8GVXNCZvn0tp5E2DngyBOxhrccV+LJ8hMIdM8P17tZsPrbuSw3oUBXP7mNe6bPwHyRmaivs1ECJivRiHXnsFpLR/4z+A5jp+3jcXmP8JJrXnISVOg9/I29D38FkMXf6U3Sa4YUnKAbxpl05aLQSjyzIJHbX1I68oJzFqtcYvjdTy+axuPnWDE8f1jqD/Gn5aMuoHBrad55nhRFPQ3hNT6JxztZ8FzqsTxxR55EDWuR2U3N3CcnwpTaCYvuBUBiz5Kw+djTXApygODbz3j5rR/FCRpQO1yieC8cwLfbw/FwIKz+OvBKLB/eZoqWo/i+CRHiGhZxns7RrCJixLKLAuGsiYL3H4gEauCdMGwaj0veLicE1yCwTQzEArHbAOlh79JtD6SyiOseFe1Eue2yYHI0UjKz+kjweej8VheEjk3H8fQtdYQduYqhaUp8o/PR/B8uSwYzLHAY4dswNPXiIpXhtB/UxxwUfhByht5ixyezeTVGmnk8tQQVkhVwVhPfYKKd5h/fBs9a/+M2vqPsDflH4YOXOCRqqkkOFoHokcche6Fv3n+OiXe2bqUfcXscc9OSfRNNoXAhL8YJrwLVow0gcXHw1BycwdOnZ/L+XbWmDDxC1zw+8OF0hZQdCGXUx85Unq/CJicfw6J+56g2Pql+MkmFfMdDXGcVy3a5w3CGRMt6l33i1OSTGH1uCbsrZKkv66+/OtBHBpWR9NTjwm4yMOX7/0JgsnHPHnscWl4plgOOZe+EEiugUebYznry2J2sCmF4q7xoHtoL01V3YKXdyrBti9VLNfoQkYPq7h6oguEDJdB0IsWevKvBdd6SHPpAQXY+HEmGMXvRw/ddHYaNGAbjbPkfPIQCSuf4nnzFsD2/bKUNeM6hq5TAaO+Nhx+soDHpGwEM78TrCacTdJqO7CywY3m1fyG6o1NkL1dEOa/sAKM1qSIkjbev6+d1q2bigNHP5Du8xR6GncJG9S94CnPhiihHzhk8QNWnM2lqU2mtD5zACJr9agrMwQdVWo48+NNLlCeDk86MtH4w2L2OLsW0r/4cGp4Ng+8eUL++Tlw9msJrhON4a25+rCw+yjeV1Mlw5tmpGiTyVtuT4NFF8Q5X+oUn27rAcdjL0BstyJM+mKOP5aM4uRv8/GC5T++/fw0FyTuwR1lRTT2UjzEqkVTyrqpMKH7LT7VuMXjmv/C++VRkDB9GpTMkEH12ZZom6oHvt+z+cZWSXiXV4hdT1w5dcQy7t2RxAuNT4O8Why5XF1PjverMTJLgaz+GYHp/WmwKu8lXV0DtPjkDN5o7gj7JjbjCI0yCtSPQPHNoTh/uTw8rn+OodqPYLTESyrOEqe4lk84481WHJI34pSnNaQ36zqvz1GEb5eqeIOKO/MWQUz3iAOfD4kg2DcRBvvv4u3GfPixLxl6nMbDINth2+kE8L+4gD7+OI1awse4ao4eHplzHg8Z3waNFciB15UhRXYvTtrVh1Fxk2jb+ANsPWmYFpkawyXd/eA0sQDS1mdAU4EiaHjYgVn2EE5RsMXGT2eg7gHR1CBvqpqajqlTNDG0OoD1r4yCgksX8PXsIHqZu5OLSnVZV2o6yV95BynKc3BOYC7F2C3FT0OTwUHPlGj2Bz456xxe/r4D9/6WoFDLAVgTvQgt5fxpZVEGC86YCdVCbrznhzP3v9VA76LZ4Ft6CxIe2mN3jzGV6q7AS5fE2VFBG26ueIu2sWP4llUaLow9xGt7rFF2VSfG3hnDCZbPOMQzCG4oM7TfmM1WVvpYOHIJ9i725B8eB2nHkCX09vyB11NkOXNtOQlZmoK9bAFL/prHb9PaqbRjN0Ws6sLA6V8gWN0f3EqlwHH6GV7wZzToOrfz3vRDXG2fyFGfg6jjXDVkTyngVXr5kNcrjFsf7qSDGsKgbBKFGlueoUzNajTYmk8tbRrwXWAKCQ1OhaJ/TRC3YxmX3teEmNABMNX5hWtEwuCAtA1XGs5jFeUwODR+FVwUyESlnxV4LU8MauXM8YlRDS1drYU6hnJ0o8WZ/V+s5/6RWrQsZx5eYCtMu6YC8VoKmJXkzEsG1NBLMpAdHW/wncpHZNYcDoq9NbC/VIkqjKfAmCtP4UKaIg8tDqQScVUOlBFjkywFqGxbiiZyUlSh852a1OWh94INqahMhA7VOpqj+ZyCdgfjnrkO2L3akbUbX+Dihqk8a4I6NJ714btPpvL2HnPU/N0DfutOEQnUc47SSbi06jHEHS6igBH6sN1REFNPfKW4pX1cY2kI//oicGnkZ1j//TFY6T9jf7OF0LAeILp1Bfb4vwVadJ5+582AllsK8PajL/aImuDCGw70fXMNjsuRhfUdoyDtUy/l7JuK279rsY/LIShNEqLTbQ/B7rkHfe7ehvoaIuD3yQvbV3dw+6+NIGxfQX2KK+nRxXnoG/cNTvWchcC3czG7SwqS6yJJtV0Q5IokWUtmH04JLaP3Df3Y2OHFF/gh5DQtZDerKSCqK40NEot4faASxW/5j86sXUl25zXZ8tUh7FbVgeUrVlDan7FwsrkQX+1tY32vV5BaHgqGJmLQq/0RM+TvUubpEkgtLcFHfybC+Zi1pPFWiHNHLOck21Z8klGLn8rfcICRH1m72NPxogss+lgcjCK9Eayuwjs7A9IYAurTtOV252yYXnmVUoMTwWzkdc7okoJdWv4QcdcCh9JEaHSLEh7eJk8+yyQp+lwjdYbOoHqFvdxzUgVWJGWDgLAEBf0NhsqvFby74Dyuds3nk67RYLYpGE/YNGKS/wiINJehnftP8mftZfT160/wceynewF34HrZEOnHfaXttRo067MBDInFwmz7StpycRudjrjOue52GGPWBZ/dnnCJczNcfpdK26eMgCalyyAQactfF22n4HIzHJu5gCMW+rDnfzdYrlEcF1cdpXHfx0L8xTlU92wOm+/XYbeORDiwzQMaB7zg96g88Pt3gN3/SEFLxjjQtv0P2379hSf2ptgjaYVFq4RgV9lpvhjZxA6il3i+axmJWalDbtgQ6OzvxLpieRB9MwoS132gxOEgnO+7ENpOv+ZJGd94n7QshE18yY1fj0HtlxdwJGEe7ppcz032iWyjqwMavyThcfB+HDlyGuxY3IfNqSrUGTuFq0K0cXbofCzPr4O3IS4g5XaSJl3djtIKACdyN0F2di4vEl/MO0/1QJOnIm5b/BSPvzmLgjcb4L8H/nDkkjYYPcwCu69/WUh/I52Js6Yqvx7oiPahrKe1PGd4OssfLIKrWapQ/0gIfz8QpuHih5DWvBw7tU5Bf1o+HHjdT9dyyjCoYy42PZ8OsdlbeZ2mFiakvsTygkuUMvUltD/7TENNVnxuqgBsU1BkjfPicDRPG7t2RYNTiAreagvCjIda9DWtH/O/h3L9/U2cp96CLbGzQVUmlFVPDsAB3zg4qb6dUwpMwWT2StKMf0pLK/9BrWgw3UqVhyq5COx/Xk2Ocqp8+2gBe744DFNiS7Bj0xVcOluJhw7b4bKHgvAu7hvz4lOkWezIoYnHcN6NXPYPDeOmuu24uaWXRTb4Yc1kWXA4oowqY2eDSMYTiJRxxYlBR8C5fxOUnY6CVdnzWHd3JB0xUYO7tS85x7QJ1y6sQ6laAVD6tJNuVZ3AfxuT8dXiYvwSn4jnRo2GD8Ud5FyoCy2p8zHCK4tguQQPOv8HXdce4MncV5g50QTZwwAqQq5w1MU94KH0GOSiH3OwXC6MWSOFlY9ieMuWEriqv5NMzmnC2LIftG/GBtAobkHzNxvJVPgRHtn8DXRf5TGNPIceq0q55Ko+aNx5S573/XhLsDvc/fyY1cbO5KSTy9n//iUY0VfJFvlxNOu6CFx20cArzx6Bj0ITr6veDJ/kZNCuRJDLU4/B/FmyWBfzgS3rR8LFhdfIZlc4mj7rhHXiTILapWxgrsW9vqPxS/0Szv69hEf1CUPCmDKUtz7CcVttaY/wfLop5E/1682xXGgpWAxP5RND+SD3TxTmHPgPzQ1+wozH4/miuhYunH+bdkMjbvo9DV3W1lJwWyzuDTKEMDbAd8N2NLVQAsXifkBznhrXTXdhHS6jrNwPkFX0ge0e6IJm6nQ2t1MgnWNHsHH8Vjj3MJYu6b7k53WTYPfxSHwxOYc6u6dA+JSj8KFCkzK0yjij3x6nt97AQG1LCBLroS9zz0D9t1b+L00WTuw3wySHTLa80cT9rhL83T4Ivp+uxcCv/yC2MgyX6Q9ilL0ePJLrwmPDI2m3Zx0OtVqT0LEseH+8nRKOP+PTBxXx2JUi/Px5PDzcEUJizU08uSUDQsuuUMyJfpqS/J0qrOaSlfY1atwxkZr6BKFS8ysJnL2E63NquDyjGXbtuooaxuHw8IMtdGVW8qYtd6lwjywIHa3Gqm/B9F/mfVRqkmezKE20K7+OKQdkuKIglg6MnsnvB4VBpPUZ7va7TIV6rrSmPQE3b1Ykxck/of2FDaiay5Kjews+VheEyN9qHL5kPXZvXIzHB19RVd1DuCidxP6f74Dx0Ae487wOK/bJge/tcXhu5RlIS17Ktndbqd1gJU2qnUO7N4XT32oxFM9rhfMFAqD61wCSTffjj5tSaKmuya097ZR74QDOXWePty81wuKlQfhr70hY+kcUL3ZVYHy8KnUEOEDeljxIsJoO93wPcvdOaSiH8xR9ehJ090XBmyoryj04llvdv9CjpBWwxsCROutOUNCWF9D0ZiXFlSiC+t971FE9l4uTiVw/CaDf3UpYqLcBl1w1hulHRrHlJ23ctFIMLj+PYUm5UH5ScYW9k7TRO+ISZM87Blc8D0D41gMYzFNRVmIsxO96DQ+NYjAyeR43rk8Fx/JC1AppBv3Ut3ij5To62F+nrAlmYOchSavsmkDxUSOVnXyMOWevkcC3AladpkJz0YiqTCpAuE8InJrC6M0ERVzencq/Xq+g4rtCHBV6Cl/an8MNH3djVFYaTH2uBNbrdnBMWj9fNF4GmrevouxQHmx/1MrK/sw/ZWX4p/4RXvFUE2piM8js4D3UdnxPKmk6OCprAGx2HYKcIT84+f0OzdZzwtyb40E+fzUaNy9FMy0Nchk24OXiqvTgwiqOLC/C5c/WkadcJS+5og718xvw+nQDfjnqPCr4mYN6QQZa59jC8JUy3mfzmMeU/8XSREV4PG4Dqz3dS/vy7OHx4HNccG8tB5kGs4i+BQjffU4V7aZkd9UU8iMIPYfucsHkuyjfHkuhopHsk2xI27yfwhG3EJozIweFM1Vh78sizLlzFjQdvtLKhe84eJ8Uz4s0p/71rrh5MJLbAk1RY+w02OR2BwczHfC1rQp9GsqDvyaylJB0iwoXbYFF6od539UP+H6dArTKusMs8RPs5JsPmDWXU++6oFmYEAu+nc02MQ/p8o8e3DFCBOo1S1lYzwfCLxSDSUwcQ10aW8w4T7YdKynb9h0sGUrHtkOaELTIgyLvhXDuw91oL/sUp8epQM+0B7ix5C+o6OtCXMNZPjTCEN6pS2G4iDW/OfAAAgaFeMg2if6p1aKXeCcvjBODlMjdeCEd4KHdI7R9u52O/n0BH30VYbTSI/qc/AbiOlJowbhJVHagCC3+ykPjgXRa5wzckC1NO6u+Uujye2xlroHq+Quo/Mc+lOnT5xsSE6C5O40k1jTh+8FNvHanFG1Wu4wP5DxQ0lCencd+BxG1i6AUqw8Pbb1hVUg/i7cfJqdwA+6Nz6fMZbUcYZzEdoLWFHdYAfdKKUN54nsY+vmC1t4X5ZFytZAUdgVtTT5w0dmNHJ4iylfHABRII4Te6cDAbhF22O3L4X2JmLfFD1YOOdM5r0QYrnfCfHl7jl+PYO7UiQ8fdQGFibGkgSBv2fONb2oU4X8zltO299vpQIISmZMcjM7sgFkL78NgVTOaXl2EP5KTcZvUPD6j1sWBvzRxo08JzvlkCLLeMqBfpwSD/xaQ/H+hqHpwMtDnVZycFQJHLy7kJz+tWMbHDETTN2G49AnyWv+Hoyt/85+WJMC9vajl5MAtdTUo9LiFle8rw+WAbWD26wf43i7iTfpt+CvSGWMkvpKq+Eh46buARhy7y6sNRoP21V1cFRhNTmYKtDklmZa3S/JEtYk8SiGIxt4MBOWz+jyhXQn+9ImxU3oyvg0KRy+9ahpwj8KI2FJIeRNDExNWs/RqR7CaoAhBWs6wdaktWdzIojvz99K0dB0oczbAX/OV4F9WGS/b8IMFdypBbdpMknISgltSDTDrqQZlL6mGey6xJFXWx38aD9O9g34g8UsATGt/YNy8H1TDfXAqtZAfPfCDeYLz+V6wJSstmEcxH19gqa0q3KGtdPKyNxrLzseJd3bh3QEjmj3WDZxXPkDNCzFMd96zm/EU+LflFxYGxhMIp8HXm3P4iEUbVK+4xl7BF6nlwE6+57GK3IqkYG/2Bfg5x42WF3XAxVdH4X16P/6rn4WLd/uS9Ex7KN4+mjIPa4LsVj1qO/ARlMaMJB/hK7DSQheyNvrh7BUXSemgBLY1jCHlIhmI+NjJO96t41WqHrQ78D0tPLgI1FUU4YNSCiQUuGCXUzNOLZSCVt1amjzVBnqvHcfG5aWgkFKB7wbz+e7XFdwVNxqWuHrAWnFDaOp3IMHAe6gO5nxB1ItW2FnzlzMC2Hu/l+oe6lHv0+u0N1wGmtLm4p702SRy4DF8vOtHy3Z8pSUKeazUtBVeCuhBw1pBOPRWAwq3xYFowhsybi/GF1776ISNHXUqePKoy2r0QMidY3aEcJSAPCzyV+Np7i9IONeR9fKnUbKeOAsq66PnOXk02GvHW8vsOUhVDLaoSOK1+Nmw3n0+hoQdR/FPcVStXIu9e1aD8pw2DkqZjzF2SjBlsg78XbSAop4/g+/KPpQ3ZwVqvGikV+MuU8j5J3RGJ5jHamqA/cFLeK4miwUrHbHnugl0PdGDDRtsqLmlhXGBHNeqxcD5q4pQl6IGXzLbMOeRBgUKree7iYNgWv6Jn+5/z8IrEuFdYj4dHysMfi+3cfv1PtyeK0NSoRPALWovCUc4YOc0MYjWbcVCE00qWTADbE8+oaRF1nj80W+Ahuss7eVOAsve4W53E7jStwgwcBK87FeBI+t1eF/CU9DX98EalQASN/bA4ms1ePKFD5vPC4et8SkQ/HYkBE46jQHORaB6JAP/26IKZgrf6Z3DaRx8/5DeZGTRndZ6bvExB701aew4Igo/xX/FK7URoMUDcPHPMD6X0eWlWjPBYF8ZagmIQWyLL3+/8Aquphbg5NGpHCv8Dv7F60LLmz28sPEXVZzRghdLZ4Ll6jVoeNMbvq+pxGn2fWw7diMX/P6BnRvEMb9gAkVPSqSlSUqgn+oF7s4bwLNsKa/JXAIKBw2xp+IF97iMxbMS0fBrujrCH4YZ8ptprcA7rv/4AO9s/YkTLIqgdcZrejVuLpg/m8ldFvngf5Vg77U+cAsahYOhcWR9ThTT5l3BtVq5uKclgDLag/G7RQK7D40AtZW/4WOwAwwqmnLHdXVI7B4HMsW2dKkqgF1TDflHihbaXFOG3lv6FKC/gPtM1oDi0wpuD1Gl39dvcqVXCHrv2MeBbQ0wc95UyPMepn1yFWDocA2/3dyOviohvHnPZjg9ug6alZ3otL4L24wRBd63m9wP34WmS4uxeKE7H3+rwJfm6GLBgp34b/8FqOzeBONlJ8G5sEw6FzIWl007Skl/76Lsog7oqXwINfvdsSI6l+J+rcHXNxUganQEt07SoE2eYvBXRx1+ZoiQTsUvutk3n0KT3XnVikU8d0gIlFeX4UZUwiGZeEj6V4efzkaCupIXxB0pZuu+6ZRzSg5PHJ8AlhvukP9fD0qRUIK9d+twg24wrQq05VLhAFi2+xx5HmzhPRG6kKGYzhX+80DEr4jCu4ncHCqgJdodk8bbwfmT62DXzEKADfJwY91EMDiqQ5+1R0B6riNN110J+dO30PEPoowt2XR9qIhdhPTA29GJRP4M0h+5L+zZuwEitumyz8UBXrU3hU9OfkUZDz5j3HtJMMq25dDvgWQXKEjhu7PgWpUnybRFQqJTMpWqJpKv2BKqHQ8Qafwc1NxSuMDHir2lnpFw/l7o7lHh9tRS+FDvhb6WlvyxQRY6wr1AKcyfXxxawWZ/hnF0wBDeH/MKqoS0YM2sIbwRZkn7no0EAYlu+ra7BnfcL0XV4EGIqTzGGvdSyHVtJNbvqafUn4M4vYHgy+QGXvTOGFS29dCjbR8gpTgFfZ16sfn9EXqUYwHWouFI48Shf89REHqVAa2DgfBm/yl8uvYe5evroW+eJ9jbZcFBozmEyrMgseM1rhNvpju9Yayp0kEuWZl053oWta28jy4lyfS8WJVU1SVg3KoXeDJqIy86GMy3t4yhRSbb6UmmKOp2nuNe73F0IuQ2/NwvCNf0HuPSuoUwO+IiaYduB7lVrXzTNRtLt/+kT4t0ecyU/9h3McPfGXW0bPYblg87icO5E2m3Zzmu9DSEGD6HsXP7Sds+mWd2ENzuCqAbjaIc15AGj7sk+MdbaXL8rEXVhW18qGQObLEYyw83TYFbO/ZixMe5fGtZI74aWkmnp3vzuXX9fDC9B35fHgAFy8lw+4ohHKEf1O7ahsVZl2AtlsPavtnUeNUXbtz4TeV2ljhoQPAqcRa4CjWgjcc+ULljxPopc/FnYDE5K1fhOo0iDjF/x16xCtBraAQrXu/nnacnYPytdFg93xxqKk7i7OdTaFTvfEo6WYSdOSNxgr8uTM+ZTZ/Xf+MZntp0/Gwj/Gd6n2alRONvd03Y/cUeK+ycEJyM4FBfBzw+8ZTNwtXZ5UA1PnBMglNSBixgocLdMhfQJfwjHfWdBhi5nBd9T+P21gxycHDCXOWL/NNCkpNq8uhuag9YCkzCzdFTYEGMDIT7HKDZRZmw9eMiEOw+i5kVznR0cwwFPquCfWu6WKRSDBb5a2Oxyw6KH0rjw6fng5OFPmpUW/Aowzgs7x9BHwtD8VCXMSQPbYP9EwmyVBZCkpwRZ09eSpKh7RD75RtZ/VdEajpLYeYUaSC3To52XQwDlh9gA/+BKaqPcEyoLm9cFoL+NWvQe1ogznk1G26WZdC3T3UsviebfiyzxEPDYqA1LAAv5snh7lI36q9dyln7jWDbxkR8c8EKFq41Zi+fYChznAiC5T9Q1lwT/7kqwa0fUpj4QA8UcyRILduRqtwMKGCiOB3b6kKZo+v59vnJfPfZXZ7uMpp1HJRhkrY6pGxPQztfXRrY/BSrUm4zS3zGUG8FgnBV1A29C4t2joNx65ag2cUjdNo6EXdJtODHgw3gPUYEd12MgQtv9cHLsBeH500H1fY7lD9zLsjvuoW/1/Zy8xNXuGXXQmOen+bgoh80fF2fP02aCTcV90PQr/1U0nyYklNM2PjkG+x71UpadofxVsIGsF6hhR0PTSFOspXDWnLh4973qHeskOTCZjG+e85te1/SqsGX5LXmKTt7moLFu3yUST5LbjxIz//7wcILJ7GdexKMcGjja4VXsffaWqpdogybrktw2vEMlM8O48Tf97G3zIZkDbbAFbn1mGFsxYEfZkBF3Ui4GVpDs7eNRyXRbhJ4aQeRSZ1wlM3Be18STLyaS2oJc6hoqSJYr36POpIEWzu86Wa4Bt4yng+dNoin/opD1FA1PQJ11GoYB02OPny15wTp5AxhRP42mnFqP17PGYKAOdp04X4MW8/qh2dTCBTHP4YXI3fSL+Mq+jS+Hz8LLAbb9DrcO3UBwe6NOFUNKU9BGyR3Z1OVRxrI/87gZfl7wFH9BQ5e2YD5rwxo45pxdFsrigO9ZWCT5iKOHH+eS7xmss3dabTTqhqOqB3GxYtuwswNinQXvpNRwzTI+WzFg6/C+WzIEQ6jJPiy8hsO6NxF285Olt+USpdi59GEAHFQznTnvV6qpHV+ABvNA9jnfhIsj7TkCpUNdPyuI3fvL6T1KnLQUagK7870kdGeY5RgY8ptIxbTY7vnfO/teA4Q2kNv95eAioc8jNoZQrPKjFna3gyVDjlBjjnR8q6v/Anq+czMfjaZBmi83Awm3lSFoU5J0Nk2CQcTM1Dk20V0nGiJoe6GXOPmTa+mmMCYTwJwpkwPPx6eSSoznvJTq/UUFHUVnlvk8IiaJ7hR5DHp9vylI9bGILNoHEUPa5H3NR3cUdCJS+1esOD4J9gbX80SS7aCakwyy65UBUXZOxAiHISzRENQvnQF4P0HIJx/nDz6flJa40GW9DiCn46MAF3FNh4xfgYoqh6hJnuE6AxBWCM7iXYdzAO1qe85/JAYX4gTh27Pd9TospC0zQfBte8GneeXOOZsPtR4jOTLs5rommc6ua9Uh5UxI8DjtjA3NO2BgqTdWPvTFYwd2xFT5lCd0xm652zC5+4RfJfeR/NXNfGTx8UsfCSUlWSqcfkMV5g9eAa8RpyAQwqT4HC9DKwr3E3vz34g18xX9HHpZ6yT2MbzS0T5TPQT7Mx/gEf+m0F1bfJQl3yfnx7zJrM8YbioVoit6TtJYXsE/y5+wZdO6pL+6FZY/VwchNbHgJRCPW7NssCAZWfhNtXh0QmC3L9qI5c7FMHaAhVo9JcFv0dj0DD7HVrXWuM9nzbyGLgOe4yn4qJ5DXzUu5iW0h6oMtMAFdU66qhaTVf8ikHL1JsCjZbDiioJFHzkwC2diHazZEBwyQTQrP7AkgYES8ZG0Z8mX9AvuQVFE2fh11W+2K9QAU2f/pCJtRbY2kfjwJqp5LRCBDQElKkv0YkvaJqCyux9+FdfFxzuCbKHhCHs/fOMzjs/hmNq5XDh9QSOXvkQDqlHsn6+I288lkNz06Rorp0KfFSXhS7tmTR46wakJHbT1ZNeLL1KGHLiRuC/adJwq0QVYvQNYGZiAo3VqcYQsRoIrd5CBSlWpHD4FB9YtwINJv3ml1dX4FVlc0h5mQ9vl+6glPypdKtmK0e51cBVY1WAxHswA3zowj1rfGwiCIoHq0h2NeGZzUFYNvkCnZtfwR8OlOL4s4ZcYlcLb0UdQUhHGlbpDLGq5BEWXRtBtn+fgebvcyxv6gS5qyeATZ4J3+4Zxs15Y0HpgQA0hbZh9rVeSlUp5AOmbhTW3YtG773pWOlDEPkZRMKe0+EjPuPMMhVKeHQa4kVM4Mnqoxx/QBhMhrVQVVIEnQ9O5aM3lCA13YpLbCbRNMUPeIVqgF+tgfCNMyjsohrr/bgC93/ORs1jU0DmjAzMnjCa7xSkUrukE+8Qt0ejP/shTdSVfFXcaceiAtK5MB3qLbbgvkl7SeTIG4ic0YKb5R+SkOgszEzNxh1upSwSvgcnPxCEBYeVKKFchTc9Jh5Y3Q5ChicBD5rDhTB7GnnUFAMXngWhcSZQOe4UnnHt4TG6bvyotA0d80rxnYU7xrxZhLe7pGj+WnP8GjgeMnSPY/JSOVi6R4vsl2SyeUA5lPlchEqBB9C8bwQLSK2CnlujINfQHl8P7+CYr5p0it7i7xWb+d35DbyyLxQDTrbiRagnVZmxMPLYOxisKAXyEOd47RgUvtZPj/6+BC/ZH6zRuBwPxhzCOms1iJ6+hib6PqD2hWWw4nI8543oxuGIOTQ3/ALFzNJltWp5NlPXggiVtegnJEyOuTIgkzcKunc2ctPMCnJIYh512gbE1IawI1kFcjOf8+Dqg3DzkDsqFtpz0pVqqtSJ4oOVSqgsdoWbDznDZi9F+DSyGKfXCYO9hx7a/nrKrx7/5GOrCvHo7HpUM5uNyZZ7uGu5NvR9FaKNDcKYIfACTr7+R8k2JzlLeAsW6m5n8zF78Zq+MFQ3zwSDBxqQ9uoQdUctoSSJAOpvfI6mK9Pw7vk1ZHcnl7eJtdG8PknYNFaHNx7S4TiLJHDID0OtLQ5w48t/sE5gOYyxnMZW3la4VnQytN4LZk3tWzCYV4QiNwju5nwhu8e38MrgTI6dIs6XFs9AqZSRsL+onO5qN8HZc2IwWUsNry3dwoMOnihucAJPmvpBcw9jqpI+yLU1w9K129EkzJ0D14Wx9KgqXLKrEY0W3Aan5FD2HeNJ//1GuD9cSDNeuED0BC36rzmayw1N6GxhIJ+/Nx2bNLKgbKI+1XiowYOkNSCtZ8bBQ/V4cbcAD9q9BpVD9VAebooy32egsv890LltDhtfuXC3vTpd7KmhSbXbwXX/RD7Y4otB3+dgu0Yu1yd95eFADdioUgSvbpnQprAJWNokTpVVY8Hkwyh8oOeGjk9G8hgYyYqfhGCZ71i0k5GmG5EicOWsHJdJ13D+0iOwb8NbLmtLwI2vLTmsdwT0rL1Dv+850Zh/Q7j9z3k4Vt/PR1IaWOCnKkk+uQXJzaM4T1UffL73gndsJiRIVJBavy53Z+hw1W8xUg6vprqCbBK7K4YXThvBmVsqODNkP4s8P0EmSz9gmAfiO2zh+CeF2JvljGc3nQJd8ZngF2hNUSdS+HBSMb3SuUTbn1nyow3PYQr8wSNvFvDiEH0KsDOB6IHDXDgwheOurYNJcX68VKAdy+7dozYxeTyaFgGWrrvJuFwJtpXL8Kq5EZyZtwj7f34mi6Z8UjquScrXD3DwuElgJz2IM77qg1pDNDi8mcgp9owD/YY0KesyiE/rJov4Nfjk7WKWqBWigjpTWKz+CuLKnGnjiCSQvHOBr2qZsoJXF27zmAcjuwi03jZAzrAJqP/R50CzOq44W8+fu9fADI1lmO/rhIsTbPlK5UIWDEaQc5WDuiutoC/7nT3/aHH3HgUe8GtEh5P12F9SCBMyFoDfs2UQMm4q2Mp9hZdPAjBR7gePun2YVP/20yolSVpefB21PdX5gnQUPB03FYyCTsP3441wLNoMnP/IUMGxInb/1YPXnp2Eod/OuP3+a/C+YQqKlx+j0kN7OuWuQjfTV/HHNypQuD6F26JnwIPDCmhr+AQVj06HeZHjyfuXNU+p9+dVl5xgT/J8WNEcCA8MYljp2zH0sfrHj6TV4Y7gLETpmyiTbgFCyx7zqfmX0fvTDbjVcpsnbj1LoovVaLHqGCi3u4FgtwlG5trgtvuRmJE8DpdHV+Cjmn7wnWmInpUPYeHMMbDT7yvvOmrAHxx3gtDS03RDy4hqNUOgq7OdFK4O4FUpO0D1aTCotwMFLvhxhvtebqLF3PtsEUpH7eHP8pZUeLCXsuL+YoDObAjwL4aRy0PR7kAGlzotwTuazhh5x5FsFKbDZM1xIH/+MEqIK8C0P8HYlX+OpL3Xcc+TZMxU24tXdwvBFKdBuNL7hi4/MaZdfgyP07/irUN7Wct9Oa0dzMH9q16R+589sDU+Fh9HLoE66dv4VU0Ntt8QBHczIYyvEmX3qQdJQ2gt+7w1xLD3CI0Z3VhuPBI/FavBcr87OMVLlti5Dq2N+sjHrBg/1saDs7Qyrwn/ArmhW2FR4Ajwnb6bLmwKhniJLJxldI5GnCxh0aM6EOh5H97X/OZZF6t53wdTGJeeA3VbHGlyUQwHFvtw1x8n7sy7SloOk2h7yEWYqbiG1zwaBxPvqeMMxXA+9twD/02yhgkupSA/1xZLz62nD+JfOP8q49s8bbi06hFfb0yhsnf+MP9jF9Q87+ZD+mfwflQDdRba4+usFzjuzjTQVupnDbEEqLNQ5r8nrOjoBQ/8bBYLPXLlDFrigM+M6P4lOfB37+blAXoo37sW1tWbU5VhJwfsEMRag3B4o2AP0+bUkp+nFAR56/HsXE9wSMpgEStDvFeViioSIyAw+y77bXWC8WvnU6yBCpgvF8fqXkEwin4ATRGW9Lf1Lo8Ic+PZ+5uZJcfCwl0DrFppCtNn/GU/+Zvks/Y9/RAGUPw2H8MrzkBHsxuH6D6CA4FvIcB7Mvze1EBaS7/BEn8Pmlp3ANyiGzkr6AUrWCSTxz43vm2jgw4y2vCg7y54R8RTgcd6CoVJuLvtLw2YZHHRywG4oTeZjWgmPSoeC5ud96P2AT+YuJbBZpYRxkRUgOT1yVh75g9JtJ4AWroZo/Yag09nO4xXLYL7QQtxX4gHXM74xuVpn9FtpQRe+OAP59+c5yPmk8HugS40bFbAKMM98Nh7C9uMr8O0sfK8cHwfJY++D+sbrlLKH0PQMN7C2vUecHa4hhxchmCB5gwcHrueNqUpU0rPAI9xkqLDPAOWnuxmveYOcD7hypdy1oKG1zN2tNrCp55XsKujLqq8/Yu9hyaCw5YiNvklw+rfr3N/0hnwqdZn96uFdDA1FeQ+R8DmsbJk320IzwXPQ+KcIZgurg13XQvxSGQXp40NRomDiOstNoCEnASc/jsV5gi4wthzUXAlrAAOpB/ESx+O0MqbK2jrXlXqSLGlFSq1WOsuBA4q/hDyuYzebdQBcW9Jnmf3nKclluD2NU/woOwZTIiywrTcaXAYvcFAJAX8OzJQp2czmnk1U9K0XRwyeQIXe8jh0Xv6+IO1wazLiO66Ac69VUkRTQtRo8mFPl16T8NbRnPG0en0XVIEsi0RfrmIQuad39ifztz4SgKfX8sg37kfoGNVGO01D+GjGUuoaqMwzIxOhi/nB3CM3mFOCj5PR509QW3YGrxS7rDUpvGQZHcADq5SAYE1/9GSi62srvmQrqfModKpsag++gAYFn3n1AMrSH7cTXp82xwaxbq46I8NeW1/T5fURsFX+zFcqudEVZPMaCVlwpyHGmwhoQjrE3+QdGQ3LlD+Bd0vQ7Fq3UJUCI7hdnsFfLO/kgvK7FF/jjo8DlvF3j930vLKAXSIcqNH0v0w+ool3Ojo5yF/P57f1AJL/xrAfxEe3BU8lVM3SsOhshdwdLiQGpLq4cDFwxwfuoD/+x8B8AEQAgIFAPSPIm0tRaVBaElCSkNLyKpoiDRIKaVkpZOkrEKUKEqSUUJWyW4QSTTQkmiLRAPRPSMtaJ6lDov1o1CnPIlKjm1gidRvmNPymI5mLsGwd2lwZP4fTNl/HmI2iUHT3mWQGrua3iWpUp7fH4zcNgZzpgtD4bQgXvlpAtVcUkK9NhmQtw6jPvF2Mlnxi47neZKysjoPSU7nvJtVbL6shn0eP8ftUcaguP05b7xQjjN/i/Gh1xEopWMBlllRsI3c0ckjhQ3+nCThpSPh5J0B9Ip7zfvrdDHl1mEQi/Njd4taVigzIodfNrxGVZCu6I6BFyLWdNndn0zUgthUQY8/ui8lra+LWfdaH8HIySzrJAAFmXJgvgh4S1AziWi/4wrR7/g27xQrSn1mHbOHePrxOCosyODOKWNg1z5ptIydTMG+dvCgQxUH5LfT4uaz+NVxET8rfgmXxivwgYsA9y/9ofPXX8AIyZEsPz+MLRLUYaxaAYlE23OVWyZvdxjEcxtEQFx0iFMbJLhJ9yYfDprGUxeO5bmCNXDx8T1yyb/JA3vjYX2pALxTkwLZqBc0aLGLH5r5oPrIH+gUp8FXV2nAP6kS2my2FR5nSYDm6bf4/pUi7dx0Bz4ui6bKhLNAC4+Tdn8AhF+XomnD6qwoDFA3OoXVLtiCoFsamu6Zhd3Ve+CRzmZMufWRlbo04eTkUxBxQwg65lTS8z2b2EfuJxm86uClNmEkt2k1qywJpPqKNWxyby8u6hgPdZcjSUVzKkh/Rzy9rwTM33+jr0oH6H1TJAz2v4AHUTVw+rshbPd1wQ3ukVS2Ell2iS++FNpDqzaEg98aVShatJZ7NYTw3CFhGAWWPDfNhdf/qQN/awtO/nOU726dQSOXjed+bwvIsvDmvhUEz8Q74bLqfdyxewn13PzIO/PXc3vAfvrT8wPmmESzQLIfqMmaQcLIN7i0azMEzyqD8KsFcKCK6dn97zAtEFD9P33++u02yncKwVzcAWFTNvNxz28wvf8GzPX4CBfOTgahtnxI9lhEU7u0ybddBIwC+tFbPJg2rhSn1IcHWdJvM25oViftO050bG8giYrag8FUabA0s+QRegVsTy+5YKiN2oJ34HKBnXhUaSnXbnSCg1vnkr2LChg/tMXwiE10j1Zj6L/XlDdhB8rteoJr9JyYpiiD+PypWH9gNkzN3QWPM2/x6RBjCnC0oFFtWewslwMm0XbgsnI+bPkizjdyRkCPxmu6GHoapM5lgMIRY0o9/Ie1FTpYoXY5TksKgjMHnvAb95lQVbgWTm2zgOcP7WDuvDrgqA2QYSsEazdMoHcPCqAr3gX+my0H02ZIQVZpFHlNasATf+7x4b+72bZYnAIjnrJZFtDcezYQVq0APqvcaUtjJgXICOPmKH/ccVGYdP+VoM7LWjhQpAafbZ3JXXwOjIDPPOAxDW1z7al71nIUWruZQxxE8d6bXOw3HQVpfX1wdaUs3A8x4AQdbXKf0cNl5otRt16Z5bIjUbb6Di3clIjr5xXz1qUicHkZ88j0a/jMYCqa25RwTO0xfDD/EOrW+cCUi51U/WyQPMzVIeDvZbz0+i9+eRAJ75MsqO5BJyX6fAVJqz5KaajklfLlVNapC2NFiZWn5PLGQS2Ut/LnhZ8/0Lk+dVJyFCX5ZdmU3fWTbswZBVNTw1C3spBadM0gfq0Qreu4AEbn95CvoBWqrOoDsS5JzpinAMlX82GT0X8QXPgLpv1ZxmF/mmHVkRTIeHkRs47fwKS+AzgyYyREH1gNEkuVSebyDo4OOg9tc7ywVi2f/76YTFNXTKJCvY1Y8QPh6qpTYPzfORS91QrvHHJwgoEdVhnok9RcV3JYCxBy8Swd/mAMPYJ76VnqRubB+WTVXYyK5VX8ZFky+P/9DZly12HS1tPoelMO/B4Gw8UsVcrWNyev/25D0ehIkv15E6JX+kLK/mxWwiqeET4Z9mpE09A/OW6a4g7zLAne1G0D10Q3ujJrIShOqiFvRxWI+agLpV8F4e/bEO68U8E+As4cYzqZOh61cF9FM4wNryfrhwLQ5msKoXsz+UuUEnzNriHN2p+8xOEwjemaCY+OXMTNW37CxBU7wfjHeLg6RhneBBihtF8pfky6xOHW72Dx0Hyq6nTmcKVTrGfaBRuWGMO4QSnq3tACex7Vo7dlHvhtPkkehud40pnJrFmyC5ff7KZj9kowd1EOZXtvwPyGRSBRYQs1N/Qp1UWarwYUkGz7ON7tMAHvTFUCaVdzGL95C/zSVUbJn5V4dkMr9AcVk45NNjh8kyHZ3xvh7x0xmOV7FISmrCGBvhPQk2INkhnJVLZpFr6cPofWyR8HgwOPSes7QbuABdcFl7OCdhvWzw6gaVNbSMnkF6+c9Bo0m35j9tMGLrYRBcEFRfBb8xVpRG6gVeNOYeqsl6h8JwJvrNfmCcdD+cjTUgq/IQ6c+5x8vXtJY/d1DnTfS3YpDrRLZRMunncc5dbE40GHbXBzqRh89KiC7rwhniodBHXhU6m/VxxPJLjDczUxeGd2mE8lxHK49DhYtUqXhOOK+EyqHE56U8uThNwhdPdVSvZNoHFBPbRyghpsF1EHK5XpHN72hjo2S8Cf7Aj8YW0DHRGHMf5RNbzPS+F3UruhN4fB0zYYOh4soKfVV3jL00voeUCW+08soNZ0G/gy0oODaxK5ploC+jXdOc88k0c9vUGeGvU0ZnskvxjbSPUPq+DjeGPUmDSN+konwrXi2xBbpo8CqwZgvrUiJF66gpePZ9Pv/FBKPlCCqw8OsUmkBoiVaXCflyI6HP2ACzcVcebEblLWCeOGQl9a8Hc0/1TcClJ7DCHgegW/dHRByV3HQS9AlVSX9nCMiwkFGexGu/tbwGiZGls9lQBJ818wc+gHCaVLc8g/IW4LV6HHuxNR958tPO3qhvQJXbDOTQcW3rCgw3JSdDLwJQt4a6PEwH7MSLeH5atdQfqHAb0+vgoXCZvAodBiTN98Av1FzpHyxmb8B2IoOMYPrT98Z/m0PPxyWIn0ow1hWMMQshc20cao7WTSdwXvVatR+ssScEk+z9N6W4lHCcDtaDEos7sK9pZh3LIgG842f+MfT87yi0+XacWkID4erE1ymm/R3toA1LaKYeMjTTxUZEAKZT/YV+4AP1vpS9MeKuPGXl/cmt/Lhg2a8GrmaWhU+02/f1aTkkwoBjSOZk/hdazn14JaZ5+BnO4mLBjQArt7c6FhH4Fj3Fc6pRTKggKX8dnMCZRWugBlBA3JZZ0CLFVCUNvhgpEvN1FVyjrYEpvIbY2v8VeJHLxVDIc7TzTwSyXTzyvaoLLxPATFeuCkSe5s/mwXVqe4U8ZvSUyTqqD0AHs8YfyCZ6iPA8WqMP63NAY274tA09fTcfoIdU4WMgANnxIa4tewwQ1A0dgALjwAdC4JhvgXGhw90MVhPzN5q9dMsDnoyD+HHsCX4DYc7TsT/KXWgWh2IBmc9ERdqEOFV/pwQEGe3L3dYYf+ISgdH0iBERKgL6zFEuOWwTtcxYqX9hMFDdDUsV58wzuQvWLzYPPaAYj5pAcen+wp6ZMOFZ+5gXVNB5BkAvD7ezn+ueIW2ud9oxNFh/ncDgVYZqKCOr912TCzmDrWLIKFxVFoL7Gf/y1+BZ2/22n2DhuM/6EA7Trn0FBiGh8d70wBZeYgP5IpRnIZayZf4fyUb6zSMwrPZWjBjnOXoVtgJXXKjqTM/J30QHoh7xnogOHvVmwveZpPan+hfdICsLuU+MyUAiz1vwqrTpXC1pfnqVO/Hd93lWHQS20+nxDHPTAG3qfLwgcZB8zTuI6WcmFU8uc+jF7yEpoxEL7OXEsnSIUuaJpAs88QbdOexCdW6LDr2WMUkjcJx7TY0uKoKFh4TJkmBqtgmKUsxB0O578760FFqZdNHBNBUEeVyg5t5Znz+mHP2k56ovEYRi6cA2LB/1HuiIOE6dmko2sG16PM+dL94+imGs6hnl6wd9FBzNOcAdOwF39H58G/Q2psN2hG506ZoFbaLMDFL/nOqg0gIRdP2qFTIfpYAE1dv59wzSfQd7bHuz76NEuhgxYOH4S1mrmoeG41Ko2fDmXzD8GudYpcfus0Trr2FbepnsBlx+/R1MbxILHtGKunbMbYDH348lAfKmeJknNVF/6stIfam/ps92sjJ56potFf/6Fm/RF642UAu+1ayKddhtZ9COQRrsOcOXQWZ7Y3QeoRQ95tokcbGlfhzXljYeTjcGzQC+CrsgLouCSNbQOT6YbSEFqsV6FTSTsgdUI0GE0AcJt1kgY8jehtrj+11wjRzTdWILZiPSavnsUNTY9JqTcALnWPgp9LgNN7TEAicSI3+DbyJZnF5HX0JB6Ku0DbNQIx+P47nFrJcO9bKkc4VaHLMRVWzunhza5z4K/IFr69rwjbxk0nkbFzOLNWBtxjk+HxtU3gEaLM9rOG8MccPwpYrU7V4lGs5aMKV+5JgOU7Zci5pMwyG/5R76f5bFdcDyNDpWjF10h+W19HATkXaO3EVAitloIDAkMUem43x7ccY4c9X0hI0JKDVhqAvv4xXpLaSQ/ebuanxQbwdM94aLfqxMcf91ArlmJGP6Hkndd8V/QbxARn0t6r8znxngwI+3uT42wFmHQsktXGPeCYOVvo4NfzVLmngCbddiDBh+JQNXcKmKfP4geLAqlj7RjsPWwBBl834rUZg/xZV4d0DnTyL80C2qlkCtMObIBlFu/4Vl4T7N+QwELa56DB/TjpfhTG/LWtlJbiip4mCC3vGjhWaRu1izfjvbRaTtwqihr5BmwYsJc/ZWuinn0tzHdUg6fVZ+lpgCA5LbGAFOUFaORdTxNNa8l/QIwvLzmAifdlMfT3DGhqWohBIknkWfKX3O96sLxnCJxzCKFPuWtIY3EE2P8LptcTdeHHpR8wZ+EzWv7Zi8f4HQRZjVXg/2k9jE1mnGE8Dz2CUln0lCoEjFnIF+46sdcPWYgIqSONrddBPs8GswRus73jBXzo/5eshBmSU4LhdrUOVFndhu/7rcAndgw03tICccV8fJIrSmv6nOjBmWnwZt8b2rZNkiv2toLlicN858hbKu4s5Is748HZQANG/hPmfwkzQWDLYmiPM6FXpQGc1sn8atF62l5UALtmmtLtxl1UFJuLX2ZMBDehKsy+Ywl2Dj/JOXGQ4vPXga++HKn4irBVw1X4s/s9xtkKQe2wNyR41vHMc5Z4TG8eecVX8AvhYBJy8cO+HRV0b04hpo9XhpaJZeDcWsqdQ8GwuF0RXm7/g0UXVnBaaRf+kcqFe18b4H3SDDiiOgdUi9fj3ZgkckowhG2LrbArRh5P7FmB/w2/5l/Td0LrSQWI/c8WrydlYcqG6eS5sh0XLG3npFkB3CvXw18OvsHE/4y4PkET1o/QoMI9cqjpvgDnzLZjoyfxtO9CEVyxL4a3jnepu+U4dbaIQ6XCIBb/1kTL7qm4JEQXChPnQfLDzVBaVw49FYkYk+nKIeenw6JQFdo5+gxL2/7mX1OqgNMnQfnacrodfJjCg3Qwvb0Jnp6YDuZ+xqituwkeJ4vC8vYbHOTbgF4NhjAY8QIGNxTQpbvLMHuiEAhGu6NCqgTPu30Id0cc4sDiDTTjRwxVaMlyQ+gwpPlY4rwbSuCRdZ8NSj/iX42tvCHWHjUHNsLSj4VkbTwDbeOKyeXibfDSkYd35Yl46JIfOa8cSX3PdWnEPwO4I70YNo2zwG7PDlwo38FRy2TAoDmRr6QL0yuLGIiwskeo+ch+/Jp0DwVj0Lc+MrmRRBalDLs223BC4k8A+Uz4eCKMrMoPcwgkcIG4JC7IjKQnf21wUs8YmNFcDiuNW7FV8CvNrUnEAv1OznofRY8NNWFqqClPsfxNsuNN4XhjHIYL29GxHnlY/qCGt05SwJhz+6ntsgM69JeC8h9lGpCeDbJr8+hfgBXo7pXFHuEOcJr+kJe928drF9tSpY8cJPd14OIsXZhIRYijx7POPDWIefkQk6W3oXOgHj7oy0GJ007YlxAKESXqMOPmGxrOeQvh34RQE8tZ6JE8rrkRS/cL1CA6Vw3MLpkjdorB0MHXeCJnCCzX3+ayM61werwQfyj9AOVduXTucSuMFQmH+UWjQf+CIjxPDiKZ3iPwQTEMzo0QQJmq65gweSVMmqCC0qd00VV2IqjtqaGC1J/83e0ZyB4JY2G3QGgb2IzL073gb4U5dhqNhjYpJei2rOOGnJ8QUrCTTZRCyUc5FT1N1XF9UQdky9mTrPZm2r1ZDmYcHgQTa8BCwWjUz/iPwwvacaEgYGa0FhcnHERz56fYFMmgIMr85KAjiG3Tw7GrLnF49SNyepaP1R1+0LXrKFetdIH/fkjCxastcHzBI/LeGQJjjn/GKYdeQkz/T54osxPPBP/hq/OvcZYrw6ngdCha1QrBrVV07FAcbCk4AmbF89Cuz4UnjlIBofHt/Fl3Jsy90cZJ19IobrwazNf3RLW6Afh2bSqt0UxnC5unNGVfLdRdkoQu1Rz8RhNBxnkfYYIue65x5rgN6pCo/Jt2Vh1GcbG36Lp0FJw1j4FH+xcgF32HvNooNv60Emw31/OgfBoJPovk8DXLQDVuAsy32gzPu6z4918/VisDevT0P3IvEMMHec1sqLeN4sx3s8iqsWB7cQL29GSg7oNlUHD9KE9VuMU9GmKwxNOc1s1V5EyTZBZS1IHwRmMUX7YSbuVfonOq5fhjpw7XamziEvXFHPtdFUOW/8UxW0TBVuc3ru+dQ7vfteGuxftpe505hQ58p68TfOjXeUkq2+ND4+vEodXYAJfa7yFR1+20eLUxdEpPwNUafeCedYUX1XeQyLlnWOYzHpofhkLW8GJIHK9LRk0E1QfLaYd0G86e6wC7FP3h/DRRWGmvDzO2yoCJxXNITmQWUO+gHqs0MKiuhLeHlEE0eQDC76RzTel4sM04CfkPVajPMJHUDyiR7psLkKsdj9NGGsEbwWb22PkOZvqOgCKzBbTmyj54vf07LbvlirW+jvTQUxN+lTXQguw/aF5xDllJC/b3/2EzkVT0tB2Nj545YcfNb/j64zWQq5qJnQaTKdtiLPz6pgCmbdOpSGELNBSXoXvlHy5xDOT3/+7CpJP7oFXxJtbtmwILL5qBzpNAlB+njdGuX1HJ5QU8svwGy2+r0Yxboly4dRBuO+yjOQvkIP9PMISG9pPE/QW8I3oPfuoyh4hnj0gwNAr1nUeArKENTrBXB7fbQMXDzuj7QJa8fcVgiZUiZz+WgXLvBrZNMoP0xgPY8EAGNu4IAiPzehqOcSLrM1PY9UgOK7T249CIbtwaZsjfbxxky0yEaxeyQfNCLr044ANFlm9p5qZ76HZvMo3OuAbv/BfRw763YHNEAJZuuc9lPdV4MNgT385DOKn6mhLGNWFmjANvjXtOojNNQcCbIWHEQ3goUUTr92fyotYYPFTwCJRGCsF91ADdv2twze9mWOmhDd5lk/iM40xanveanj+7gMLxhXx7vwHMlksjCWpEs4hoaKwcDY/Nr2D/hBpstJTmRYtaaG3eLnSLXkZPnvVBxfpBDtB6yCcL5GDnkmcwOWgXv7c5iG4NszjUaSOL3z2Iyr37SNjsPl6+kcIjy+WgMNcIRD7rQsurhTRjZwyXPfGCCTX+fEd9Fnz++h8+Nm+hyE8SoLDqLK0iPdha8BvzYi35T1AQCBkeYQmt8zjmZAx0y5rCfittKJy1AXRtasDkQwOomVlztcllLi1Ngg0nptNJn8f4OHwTOpUCZPQWolR0F578sJyuJEyGDj0NmiATDCWnymnTvBrwbx0NPdWj4H1fCTVcn8+3Uv+AhvAbHnV3OTX2mGNXkzgd/bSGyn450KL9RhBtWQO3tV1JKOYx5y/XhXd2bvyr0Zx3fX+Me8WO8DbrR6jtNAbWbS6Ah3vWo5viJ/DfPRasaiNxie1B5HXfGQvzOSzADaxXTQbH/A28eGEZWQ318r6iRfQm3gXftoXBYl9nHBWSycZ+KSz7awpIRWWCx7VyMp8zhURSttD0FZN5vGQJaz7IwqReOdy3bT7McJkK/t05mK21A6cbCuD3ohe8K18aj7oeo6fP88j26XGUj1yE7kEiEN78C5sEnuNEjseX4z9R5rgjNFX/FE8epUaXnnbCceciuB8+Dfq2tJGw7k9wC1jOp3vX8/wP5fjdLwmnTEwH+aAM2KTTzeu7tGGazA1482wyGy/P5F49D0Y7ZVhQG4o9c+aDkGQaJV805oca08Fh52gM71bmGcWudGfjURa5q43PyxUo98h9OCG3nLPTVPGnggasLT3M8guP0ZydNhi5wAeWXjjB07+K0Pc6Rzi35RS8ahsL+EQH1KOv0sTlNpRwpIJzPvWzegdQt0QqXtVwwcOislCzwh6XWxrAkrgPZDPyCAbnV8H9mTM4I6SMlhZIYeKPKk4xM8aE8TX4c5IwnMhV5g/HnsGiMcegZ5EkKNybQoMSTzlH+h3+qt7KF44q02tTYxgVIUd7B9poYdEH9H37ncTVA8FO5ytst95Mqp4r2Lv7P85ZrA1ynj74WqCQzJQO8jn/IfayOYSP9i7k7qE2Nkq/Aklf9nHdvtmQ9vgVZln8hTGqafBCLIQ8tkRyTc8kuL2+mo/lyMHSO1KwfK4ASIkmwwX/s7A6YhNdrlsEw/unQd/icExu+UmzlDNo35KNMDiCoV14NkZ1vMeo3NeQrG7MR0/EYXmIFU8uaMNBP0t4EHMV5W7KQsS+mWSw6xZtKnqE5scZKk1Xg3jxXe6peIiu+WPohJ8kzymZAV/WG/D4Vyv4Tu8aGG0mh3pvBHBPaBd5pVrgf+eTyPfMHRgu1oWcUV5sO0IfvNT80cXwEx3fGoWPFZ7TPL1Omj/JDRQ+aFF17CSwLnflkuLDPDirGDSfWLKBWwf0DpVw2wp1/DvHlu/9t59LvWUh6fUAz+mMAzGRIlh3+x14kC8dyDsEWRne2BxuDja+XWDlqAbns0KpvUyPtowdA2F1CShw5hrnfxiAwq3v6aJXMa6vcOe8RSPgh9M/XtelztbW16BlxR+0fi6OT5uk8FbHLTy1x5ZL52nglihJGHHnOWUVVMEx+8/8YvQ2zj5ygcv7v2N5WToZbSnlZ1sTOdNJBMTCxnFT01kQNy3kOK1Qtngzg1d81OGGvFPw+p0n2X6zo547+rDA7jtc+VpOZV+HqNt+Fmjs9YW3gk600HMWFv04RGbhwVSZLQ9O2RIQsM+A/0quhsPDPTycnozvc5PgTFgW3x+Wg7SuzdDybRxMFArFwW/BZGyRCEn/fhHYjYSPbR5w8fIaWPZZB7LefmTvl2Yg7vsWV3zZidKRH6lzZBnV39oBR/si0S9cgPxnZtBnpZ+8++QIcJC25Iv+CdARW4DBu7eQimwEWOctgxFab6F+zA1Odq8HWcGpMDDXkXd6uHNhVyAM6CvBEYNr/Kkki/e6LKFjGf/I/95Lnj1LGLYn6cKSS67UIXeUDdsjYEAvifbLzIXNz0tAbNQtrqosoSNbJOCjaw1uFyzjkaU9HCoejYsszbBFdphGHXLkUbeS0W830qK5s8HKtwKtpmtCj64j6QtPYfO0q5hyaRq55x3AyeX2NFhdjpemCEGc4C341zeC9rmNp9Y9oZxnoIXG8uHsflQV9XtvwtIr77hCyxSGd/7iO+WGlCTth5m9tSjk/xPtTf5A7bQO0Hm9ltqsW6FxiQDMXzmBVa5L0JmRC7BjyUa0dvjEl8M88e+IWgiqOQ/TbK/zNtSEmc92gaWIJsyPssTdprLwLr4NBbJ/YPrjzej48ivJHC+jpV16EPbnHh9dF8tNfl/B/2wIq/z3FC5nRqJHYQFLZBZyvYssL78vA9Nl/ejPybv4oes1tmkY02hlUW60OoFp++JAqL2NDwxvwpvfNODVGFGInlMCYdXr8FnZfH7bbwGX/w6g6WA7ToncSNMy8qjRyxAmfy4jY/nTJCRlAb2zmvCVgg2W16rxc8Nd5DzRCDv6/VHUzgQqYzfy8f4aHGqIomXSNjBTfRQnVZfAzeUtJF+3jXzqx/FVVxkI2SxPC5aK8roVznh1xStYMr+W11R+xN9fvsFe78XQsG4xCepPgqbcaH6kfY4Wiy/HzS0DkKvfhuNvAdlfSmIBu3z8zbFYXTIZxhZ+Z7+qOyx5uwktMnfBm0fSuHbTWlhwpZK6t4digfRkiPQaCTHTJMFmYS3V9Ebw187XLKeQC6v1/qNN+Tfw1OjzsFie+Ox7M5jWfBiFr8yDO8vuUfu3atr3yBlbprzCgqNbwOatALAE0pofAlAn8QoTrijj+ZfTuMq5HYOlxmKL/j+QLmzihLgIvlpRyQ03taEoVAbLknaz9/nHKFkijVcwimqCLsKKjyOgpa4Ixj1CVO/XgR+2bjDY+YTcZhSzwJtqXiq6h2Ol7kBi8xd++bEBSiQ3kFTlOKhLbEAKiOIFI7xZ4T7B8eAEbC86DSUTluNyoXUwYZUB7f83DTznnqIwoc3QXlfMBmcvw+ScMXBOSgYsVGdCqFMWeSmVkeVlTViv7E/WVbvBWewzPBxZQeNOCMPLKwfo17qnVKguAFYhjWR9QwISArwpIEuYrPv90HL2D9K02w1997s5d3chyUrl0NiG0zhx0yx4rIt4/tMSzGzbBbB9Ha0IzUDlrEEUXNrKoblWYPH7Kel9kQOx8os0MrEfr6c4QeQaXR7TEkP3Er1AYqwRmg6nYnbMNvhzQwkyV6uAVo822ry+zkqV2jz+ghSNGWMGphrGMPPfGWwubyN9VwO47b+Gb8rNhAPWgFs0NOFzvSV5HfLDad51eC1xPhbNboOBTE2QICPQORMLraN66fbZa9TyaBv1VMaxq4M89ac9hrkHlLlJbArEV+6CqMkX2TVNjNxEZtNT61a2z5bl5FeNsKjhCHtscqQFjgaQ/lsWfge00ZxPRRSSO5Y9jkbxqtk6nHJjFLsmV2HfEieI7FGG87v+Y0E8Ru5bQ6jW8ir0B4aAtJQnPnNWw/dqI+jcyzho6VCCl+Iu8MrJHQN2LKFXCrdBWHs0rc5EfpJzEoY8nDhLLxBPC4mA/Z0eGpivw+ZLKnimHnBmRDGCcSodzDhFJw3Vsfy0CbSkGEHuvsvodtOU7lwYAu+xuXzvZxmMND1Chn9sOCMb4cKr73Q7ThaCyJe0OkKxfb0Z/g3Mhtu7B2BdiSFXfO/k8P2neCA8Dfb+U4FZPl0UJLMQC4LqQcx2FacEfebyr89xTtFeOqNciGNPdcNKwTmgfOw391w5wm7ti+ms9koefqQG/mmlvL/rBEfEOVHf8gn8tNsADpV346c9y3HF8zSSP70SemyiwLpdHLqOCICCvDaPmlaH37Wl4L7edV4euBYPDiVDSrss2i77h9tb6thHErHV0AdPnY8GmyYTaKBGHCyTp3wM4rdSWaBV0Abtv4+Bzg8jkN9ihyty8mi0gARcDw6hmBWWEPXkDy4ROsjF9fasNM+fWXAB7FNKpo2T78JTrdEwSr+BDINvkWTrMzT0nMxDPytoXI0jBWTU8+LIu1R0GPnJZQG4v0SMTE8XsN22f+zd/4ujFjzmEU9EQNlkL46zroVTW9VgctJ4mMCjKf33eB5TdoXkfr3Acgt99m2MYKMlbmRzoZMzyv/xiQRtyPLcxc6/cmmeSAO2ODyHUTKBUPf0KD1zbqC+gJm8TLseL1+cASt+R+GRM8U8fF4chPss6PkvL9IXE4bwAD+KUJakY/eSOdOeweHqQpyc6UErbgRiyalDeOJpNb7buICuPzhOEvnBoPjLD2xlZSHz1xZcrxtBs6KCYFxVMa/dLw69H7topVoRH2vx48SOejy0QRpA+RI82X8KnmaYoFzlN26d2EWzh53gj+IpElzwDfp/+MPHKh0wvLYX7XksDc/3omNP1XD7a2/W+vOVDx1U4pKpybj383zquTcLNGyzceeCA/R2azfZJm8EuceetHBAnJsl3/P0nXdJRHgqyp4xgeAhZ4yYpMUJAiK86ZM95yS7wuElOXhQ9jj/zhvC4WMp+CdiCgiN/oFQKA/X3yZQminC0RI9+DbhLM/6aMvuzup88dN7Lq2cDF/z1cC03o4leBym9UqRn+VxnBl8DlP5KA02p1NK83hyHpoBon838Hs9P5iXfZcXCWpzcNJpqNxZwXs6X3DkDnkUXTObdvcowbuZvXg5oJpa+8+zen0buSoO0MYAXTQ7qAIfouLAoDYI88frQEbMU15SlA77J+hBfPlJunsvF3YudqSHB8XYofYi3TToBTV1PRh9eT8NhY1E4y9V6BlwjB5dLoD3pna0VnEOlYzKpsM/75PTGVEwutIFFRdC4XbHA9r94hkKnpWkweZwGpksTKHa4RiwI5L+fleGfZ2nYJSdJo+fkQWVAUL8d5s4TxNRhgUGI8B1kwI0BYxDgblycHbXDmpZcAJStqhAUZcKa078QkIP7tL7ex9ZfqcBt+NcurNjBjQNTwJN72xYG7+Sy67cxY8e3Xxs601Iyd5MGyPkYVSbPfm9V4L3wf7seUmbC8dO4UidHHhx4Q1eavbgKpsp1Ni9A+uKRdnwlDToH4ijB+NM0GXwLfSyEyn3P8epZercrmMIRo9sQTP+CL+oVYfPliko+siBzmzLBOoVRoeDFbDifQJuOz9EQwmzcGqWD7YrSkL9hs+QO+4oCKIdmL3bC2emi/D0T6tQdVsiLd01n32lDcGOZsKPD3epNfsOvR5zGAScxCC1Oxk1X62i+G9qfGfVR87tGGRjiTlwwEMDBKIbwdmsj4s3OYPVdgksUKshn6ICWFV/DtRuzuG7AcKwTDUet8UFcIrSNDJSN6Kr1RPohXoiqwW/hr7z06CmoIb6a6XgANtQTZI9bXfSh9wjSJ+yX5KTRxjnjviFDpFXoWLCePA4rAaRm1oxwzyRz+wrwRelG3Fe92x+Ht4ISdf+wJsdb3n1p3A0rTSFMNlQDD5cioIOjTTq217y1nRBu1438ohXxvZyIyg9W0lWMAI2fk/FiWb+vGLxefi9WQSt+5xA0XsVN/ddB6cXGrBqtgnI/DOGI1fS4GBLIog7i5DoPWc4qapL94XVaHO+A2htn4szBkJB8b4y2I8bg+jvhpf2PUa3q2Po26NdPHLOTrx3wZTnn1qBG1d+ZXlHEci1OoWPx7vC2VIVnnzmIkS8M6UOVQmwTw3jtYo1qNSzkLV8xODvg4ngPD6G3Ae/UWrdXiyTroTZ1ZZQ7fIdVz0+ji0V6/DWXzkYJ38Wy9+YYWyIPZU+PIxXdnwEvcejqGnXUqz3EIIRw7tZYJ4Y5PUXcUadHG2bq8Lnrrmgc9VZVI82oU9ae3HRjXlsu+0GbMIJ4PIyAQ4m38GGjIUodnoHX89Rw4v0B5ujv4K16AsyGm2Ppwv1YGTHOHQYKwVbntngvNhp2HQ5iksErOBIujw2/gwCESV/ur9GFezfxIL88UFotjoEsOQjvw5+C1/Cl8DT1n1kt9qPf5tOo62moqB0NppGxfmj52x1EjX0Q1eWQqO+vWC1bgBrT5dRmr4Ewllx6H0fDz9OHoaY2T9hm4oH/xBdC9tbwlE7+Ty+nxhNCdcy4WDTJHCMMoX5c935jZoA3B94ij/q9/Do4ji+aixBmyxaaONpWz7UJAiZQ294ebE47R78zO/XebNXcgklCOdTd9l9qh84jxcqYkkuVxIyb4ynFyLvwE3xL60XyKM9h6eh9sV2WpkwiIZzXdi1tJucFEdAvq45y5yZi/6Pw+DvmzDUuX4FgmS76V5RPR1unwJNVxpojYoe2Iw4we/Cg+DykCGeNToPjgIRXHUnFWSMJGHVqIWopTyBprwfDbUyCiy14w5fezoPnIwNIOXfWTbc4wju2UNU1HaUvi1/DR3vzWDFu3jyLFLB+7Ei7DCpGspkpoOyhiOdjB5BS8M/kN4IM8hIVYAt0/tJUSSCB5KkELRa6GrJBHgYokhi+i5UyeNRcI8aTgvXgn2ZLzDUpQxDL13hz8r3+ZCTH1y+uIYqxmSzcGYrXa+TJGsrJYidLA9Z34ro+4Vcuvwhna6JpYD6A6C303+B+b0MtmnSoLksAWPfPALHvz5809aerW3kWMk8nb1ip7NvpAlERV4FF/XnUGktDBErT2Pn/GHQWfISJvqaU9DPF5SlZ8Ndt4bx9B4Dfjz+LCT3TwOzKd/p0lVPPnq8lq/G72ftlzs4wW4cC0R1g5tLK+sclmI0F4ITg1uoIMOFopc1cP7z28hR3diYEQfL5brZp1sW3oQ1w7PdujA804gufShl21hDnKQZjC+6L/Lq2alonNKKAeutwKB5K4S7KMCHjGqc01vNCueV8L/pc2n1LgeqyflAn80L4Nx3N5zeNIu3DRpA6LFYvPF5ENu1cqj3v33YWXoQ3UzeU45RCN3M94Zfk0x48hwROPy1mio9b3PgeX2+adbGEonr4Ois5ThYLg66Jvokn10Inuki8HrwMK4cJURrDUfhmCvi5OyUB7/kQrnYfSmsUQhgW7OJYOUpCGdE2mBpthV9vG6A1nomUHdRgyYF/YXEb9vQ5K0Cnp9Zhn+N5CGzyxhelxXAYLYmzK73Ia+8IFbUWI5jQ5ZRrLEb2vFHCvqnDdOfVuLOf3t5aH0TJAaU4oEftyHx7n7KOhlDInvHUcPAXdb6KAHP9Tbg1INaOD/yH/bblLCBw3J8PPiBTo86x2pFD7n583c8c0YbSjX380G5/TS4WhUXHCrikB+H2b0Huaa4gqJjOuH89mn01UINNpxNJkktDc7eshYb5jSSkFgArtssgkZLImHJ4kYoWjAd5Vv0QXFzLUs1bmGb0Q/5fMxBPJzgjw25PhDf/Y8N0mfTZ2FfmnOWofngK+jVcUa/wtn8/u5p3vlZhoJX1qBQjjZ0rTtNwrPC4amuBHhPDYF2hR/kOcIcm9sSYcdWMbb4+A56Jqnxn4Rc/ht/jG39BMFIZwTNUf/N0Z2W+Ex5A9bJV0Lqlh/0ZdtdTv76DiN8CbdFSYFX6X7UKizGN9sDoPD2LbQOOMYf7ldT4PTrpFarzc/m3OQxh2Th5O7P9PziABZP3s6PQrrJ2XkreB+PgFNSsTDbUwtbnrdQWrQ2fAjpoIwjDdh4qBiXJF2EUyK2fDG0GFerm0NceQIuu5DFKiUzQH5hJ0//F4rfH87gW7VFtP5DNuq+2QMuyQlctdaOwxYos2OsHNidVsBnYh4oUz6KP83KgvT41bhbOh2DjG3QsKyJ3Me0g9amGSB06ASJyQTRl/P69G2EKpmtaWe/vL0cGzIIV9f10svXzTS4VQFsVCegW/sS6L3xgk/Na4C2kJtgecqUPsRZ0kV/MfgtdROqoqQh8/kTdvttzAYNDDsSK8BwoznfnLwPXYzbachjB1xwHovmXxHuPX2C2dU/oDkGSfZPCEpnHqWMA/dBYvpuntU6nw4aKPN2HUkQ+53K23SPwwEZMyjxy6CHsvV8t4cxZf5D0J+xh0+Y91Fd1yjYckuJPnq4UrK4Fi44mogjAiK4qUuVL7T3c9Wpq7Sp+R1XrRsN3hJfwOGPF8ldjKalrsQP1T6x6OMP+HOCGy6cMpZSo6dCrgCBk+BDTkl3RZmPe2hwwkHUGHMIks9HQ9b7ZC5xeEJlFkvZ3FICvtppovtnRxjqkSPXsHpYZ7SJT6z9zVcsN2Lvh5n4K2oDfBg3Gib4F7PbbQE+8G0CPvs8gw4G5nP15kS+cFoFN7oYQ/exDxiboQGN7h+gwP4QNeckg5iNDk5Z+48it0dQapsmf2/9haOXCEPsy4nQqX+JM++oUlKID9yrrwPR7Ke4o0kGuxs+kk/+SGwtOg3701XhbcgIdiyfwGumniChKac5dF4Lx6yfhm2TZ0JnszVclreBgnvjYKyiOWwuPE3eCpcQ14mxZWQp7/9cB7HJ8Ww0dhqFr5zKw2NFIWfwJ7epefMvN2N88S6MQmIWQ3e0Ly864oF3o6xAVPUXSC1Th5O/KvlD1km4onQBk6KzOf/GK9pTVsvzKmah7mE7HjfwhRrfG8NfwU3o2xzMr3brUVHUBRrtoYt3gx5ye0Ag2+n0w+vpjnygVAPOnT4AGl8kUA46aWX2M4z4HYfN0inoflgAbILfke1xV0pYPB3Mmt7xsnRLNkucDsbHLmDhZR9uzvsOSdbyoFk6lSLeTOStGdIQnTyHtWSaaYeWGPQpf+aVrcNUmS8PYw58gOv66zFvTxUtipaEZR6LsG/NGmz5chvFIuPgh+gz1jx4kMfJGJHq3jfsYNIEtxomwGUqh3EuFiSTtYYGcytIXs4XZl7cQTNEXfiuoxDdSX8Em9ZJweD35TwHFtIX9/H8um4MV6xyxRnTp5LNbHtQTN0IyVPfQc/KURDXOolzd7RShs4D8ko+SQaKXZT04RnLe5lAoGgkWvhY4Aa36SC9L4NPPjTgnr1v0OTlNj40qwZcDhVATP1qatM5RLsXxcP5v5PgNT2jx2q74ExOD22y6QGh0V/hsuhv8L1Vhue6xNFRvAVet0wGnd+X6Mfpt3i34w4euzcVRke24PxIS9p4pQJnFNXw8TfLMbRvFmwcL819TzZDlu8u+HZjIwWv1qFHehWUGHsStUNH8i+jQbBsVwTVKTvpyuVKDNuoQTtSqqhh+C68ECwjU18diJ/XzupdMeSTIAsP1dLpruNVChC2w5oN8niprBVGRMnR3R2Hcc/QZg54pU15Xopw10sKrdc9ZTmNbJS9kAbpO+3xxf3ntNTtNhsaLaMTMQVg6ErQZn0MG4Umc9OuW2SVLcb+rSb8oG4LbWkj8MjyxK37E6mowRT2du3kO82a/G7VEZy2/grnhw/w7KPpkCGYz/Kf+0HUehev6waY9fEqSt6VpDffK+hRRwmK2lfyZr+FcK50COdLxsP1YCmWuCkAyYXH8cijHsprfk9hXRuwul2aDaEGZoY1gdvlQ+Dur0UTgnVgTslZCBkvBA9SiFflyPP93o2sYOCOxzbcY1EDU1Y90AyOhYqgnHcfww2rSe11KGr+SWObgtFkuKcOHEY+IWv5CvZZ5IHpgipQ8+A3zX1ZBSndx9hY9A2XXw9DozZv/jg4iW5ot0H6NRsQWCsFD83Wcll5Fs4420r947V4rWUaa/fuAb9zl3FS6jc+K9bNs/aOhBPkCApSRLI53ZTW0Q/oFIu7EyzIfF09WoR48dHXltReKwS1B6dDw8A9zv5TC41+jrz9aRfrumZA/LA5JV9BrDl3Cx8L68HyBDlyblWgEWVGPA9fsXXESxohqwr6nkegq9WVfwknUsZ0fRgcWQTr/Wog6WYzJpqlsomiMiyQUuLvNc0oUeyC6koCWKs+CpI6YuhoaTA5a4dggK4Ajs4X4e+8k92DQ6HZsAr/aCtx53spWCsYBvYOJvx6TR0rl0tQbeQwdNy6yEOKHixT5wXtdY9AY546VOkmo7rxBmq97MSnLIdp74Ux9PFxKR1784w1IZbnHBWjqTKS8CxKEC+2tkFfNmDiV3P8FzoGOzrscOrCMVhVUQm5wbXgPDwBxETfo83C5yR/yYlFN6ljidpddNGw5GdHQ2jBSWEOq/aFG9q6sOuwKyi+BT74yJ10ncKwcKUxt3o1k9HYFeQmOg5Nn/wHumgGl+cW44VAQ449sQk/un2j0J85nJseDpHzVmJrQgRY2NzDLzvVIagyj9XWL4JXF+L4e5oEzR/SxlpRQU5rCGSXzSX8Tc+HJSWMwLxYlvSkXVmy+TZsfTOCWkiTBHpTaMWvDFxV9BBbhy+jkrUEpCx7hXuvPeWWcE98mq0K8tGbYX1gGrqbfcG60yu4OGk9jxweB+X1N0Bt7xDIPTTFgOO60LWhg+6MD2Dpb+vgpflZ+PsomyW1Z4Bewz6oEDtGzotX8seCeMB3y7EsVxYqtLbw0fjd9HncMrAoM4IdOeFcFFrPZzYcpMzGq1SdJ8ypA69YKmuAtxeH4did++lY8WSozw0ldbcXdO/3Jfqa/5zX1d8k6eAcGNLMwYUGXrjWSA3j81VA7G8eWER/g70TzuG7W5p4Yvx2uP3nG7QN2mNfgwG/LejiWUdngeUrJdj6qBFPLV1CK0Pvs5utIE/3NET3o0vxl0MqeXmthwlpKjBV5zYtdo1jb4WPeP3oaRTfWAb+u0/h1GINnF3yFNwUbuGwrwrUirlz/YqfNO/MYlYuU0EsNKT9+q4c2LoPnnScgXkOLZRpbAaT45eisfkTCuN+VEwNpVyjNKS1FaCi8ZUCdAJoygRnlDWRhEb/yzxhQRK06nVBY2ouJcleo365HeQ0UYdE/97kI6vf89AbXbj+vZnVd/lBjboVeqX54lGlhRRXMgkWv42lj2uOwuM7gzS8zRDWxrRwydwFFPj3Ezr6DuBo5Q3wzbaChpwqobdblO20VbBDbjY8rv7LsqoCqKr3nUNWufCKJF84FvgDNC3c6cPENZhxyxger1SH2+Xq4NNoxJsWbcT1d86znOkLOj85h/4TPIrKcA2C8uKhNkoewj2YV1Va8rXAEqyJMaUpLsfpa7Ut97/R5JP1OSgk5wxW2+VBV+oR1G/rh8gCWzgwWQz8SuYT992lL9cyMXnIh7WrWlA0RwM6JjvQxiUFlHJZnz9FE8bOraHA+A4WPq+GTcEzoFh6Bax7S6Bt5oU/to0F78XxFB94CT/4dXJNahO+nq4NXueU+QseZ52JChBcJQ2zxiylz5wMds8GUGf/NWx8qMNgchhaROxhnmgS/n2hCSZtl2nJnly6GqHC6r2OOHPMOrhdJw8h0ulo/+Qp3Qn/AlalyjDPUAJWzfdC1eZF0KoohnHJQQw0n4/5l3Jx8Hz6teo/mtZpCJ4LLAgHkzhBLhhm3O7n6nAZ2G4+F4yOXcItPqKslH2E518dCZbv2+lrxSIKjjDH8H3vwO5cPo2/UIiSd2xBXtkKtqICjrVXArlZdvRiRSbN2C8F0TcycaBGDGwPV0JPqCC6J/6GwsA5OGrnHHDMmwSx48R5eOtdkrT7wrqr3lDRtx1wYOEOahtXAn2tkRBcLg6Ff/spde1JCseRaD+uF6MsjsIWPTmye3mbbidM42WdV/H0L0P4usETnEJeo+6ifOh0+EKHzWu5t+8GBeqowpKR1yDGRQevXTMFleZvHGPrzRteJlL0xEww/x0MhYmfeeq1ftioMUT5579yop0WLM06QRdl4vhPQwAGpZvSi8BGHvOzhU7vrabd/ja0+FkvT3w2DkLNhLHwZgruc9AjJe0QWlh1i2XWW9KUe828Nl+cqm7qgY+uGRg77sDai2/A9YI9TnQNo+3sg+7BRfj11Cu6+/0BeetaYUvgVAgWrUatxi340EUDr+w7jvVWYrDYZjTJdNzme07pwM7JPEXSBNKc16OczGLo71sJOHs9FqbOYdGmlXxhWAn3aPlx9+Q61LGTh6rVQ+hrdodTuw5RWPAZ2n2rCIR2vAWJcx7UOFWenMQW8jlBFXgQ1kzJew051kOLciZ30AkLIYw5e4Bcfilg3eF2vLR4Bc0eBggBLRYY7KKgonZUigvjeNVVlLz1JZ9/uQV+mqXSkW8iaL13Anyd+Q8Vu9Xg+KPnsP3taYg7uAucd6fCmfcX8OboWHBeGs8nkpRAUi4Aw05Pw2E2w9j338EiOpC9Ly/Ft3IScODuXB4qvcgfBpThjGcsxZx0gEAHfV4/S4ZdlzvAnDFt0HtflZreT6bhqwbo7yEHHcmL6MCpI/j3+GMQLimi/15VQp10PD/aYkQXtxijg8VWmJE+BSrfzWat6mU05d4aOqHiz1N8doJjdBa8bT/PWS7vOL/uOa/XFIainiaaK1EPD6ySwVnYmiXqt8OGZzP5yqEwmL08DAfOC9EBFxkwbS2g7OCtcFM4ANJ2ZEFH9TUeOFFM3mRD9rKz6e3LmbhkrDL4GWZjyblC7Np9HoqHlfHp/8TdhyIQihoA4H9QRtkyQkRWlJFsSpKGUhKFUqSS0qKcJklRkhYpaRFSSSRKtJQiJS07QpGKEEL3Me6TfL8GcFr9QlzuuRXLsjph+5MEkBoxDrx3yuB3u8W8V0aJlSTusciHLKwcGQhLmzOg4fwDtHo7jH8OjIabCm8IKyfSEok6rCycgqpLn1Gd1i/S7XzA/k674eeGC3SwQRbatz+BZ9/PgbekBY84rIWTl16k5tiJfJi/g8KTzXQyFPhsszxknviDNGcmPI4/hZ1KwdThbQppRWkYtDMfii9+ociKHTD0Qh+WjrfksId1cGX7PHxwfwC2uWZBh+BOmH71Hp6t+I1nin+Qcc24/5v/u/HSR56Z9oCHtBo4u7IUei6X8MK8UsbXcvzpUCLuWr+LLKvlodS5jZ4uXUDXb/nDpmyEKJ0G8kv+hSdV1uIRh24871bCW0KswFOsFv5DU7IL30m/cYD3x7RSylQpeLvnPe1e3czrFsvAPLvxcDz8An9yMcO6MyPo1PWf+C94OURlh2Dt3NMgNTcNusbNYjkdAyjXVmInpSocO6ISF/oYwMkZ4WAnZM1kEg9NqgfQQKgW5C/Lgoc9wJM9dyF/3RQY93QjqXo58hb7NB46UceBVcO47f5POCWhBFBRTaGir0jSNZzr5SfRQKAC+QT+o1XeFTxVKYfX23ljf480zD7yAcQUPOmf6iC+kGvFN1q5VKWjDQIN16BRtBnFT3fj93Yx+LlrDOw2VeOh4F9UJSYKCd8HeLtXHWBxHYzuRjYXbqTxotJwZXgdeBTcotwPfnRSIR+2GgaCl0gxDKYtx6CsFKgsSOC9483AqRbx1ZkeMj+zmPaXvART/xcwIv439cZYwcpHp2CimhlgugwE9gYylCnC10P1FONwCgs+fWGvT/tIR34+OzR+oooVAnTpgj7YKn2hfyPTcNaXP5DbvJDPjllNUdV3YWvvOkDfy7x01Xd6IyEEyeem42c/NTxl7sdV5uEom/ud76YUUnRMCqwOPc9yHuPwaawUXDTRwNCR6/m48Gd6dXIeREnu4FITU6hb7A4iO2RgqLIKlZP0YEBlLob+nsOhEiv4nqs51+5NpC8J/ty3/QOMEc0F6/d1WISiUGK5lsd02XKUZiMFlCnBWwMdrv7nz0dz0nhNy2zOcW3Cv8KacM+yG7YYLMJlZzP4o4od+uWtptVCP6Gjah2N7PlH1Wd286NNIiD/YRo77XiGTxS6we/3Fbi3pY3FShIwqjsbUxdHQ+GqbNoxVgFUpAJo6/tHnPc6lxRa5SimegSN6NDg+mXvecMZH+j0SIcDPRrQcuI7vLJcBfCmAvwVlGHD14ngJnKOTu8T5GNR2pzzZz082TYC7G8a865b7rxAIJ23BCVhStty8lqoy4OzclhI5gTfCZ2Bqsv1QTgjh7I2nOD4szE4hWt4l7Qo9az8x1US8/B67x8O1v1NX3vlwDLEg1x7zmGRfg7N6ptFyacWkfOVQtiUf5yU3h7hryt8qGx4HPzqt4SX9zNxw8Mg6GqbRnxaAZ3KNvLta9uxYe8YKJsmQXp/jOG/Kw/RWOkCdCs/gcIb84Hi01HrbSsqHhygbznETy/8pS931KBshgds6U0itc/p7KZ5F549OQlGBT3oPHY0+nr6g4zgWGgpmgz2281o3sIl5FoqzNI7DKi5MB7e6swm6ynHIL57FHW8V4TEEQZwvfkpn46TxxkOAMGrJtOS0NlY9WwU3FxogmPqjMBePIEblNWgdXEP//28EG+6PkPhfkOa0zkDjXvPYKmmJog3/OTI0AmU7iwA2xf8hVWPbfhv1m+Sj16L/e16LI7mFBUlT3ajVsDExzdRQc4IMq65wq2IELCNjUMPVR0+9PkaVbWn0J/vU7ExP4cUMpRp8y5ZGHPkEmw2Gg2OJ8rZNPUXvFDZwtKqsTQtU5kX7zfh3RpCICmgC0dGX+L/ZgxQ04nrvHirNDdOvsq35KLgzusSqkoEXPJoDJsHTQFn5yrclS+MjVq5kHYuH4ySG+mg3UnOSd+MI9eP4vmbn1PMXCnY8Ow7hITdgS1PJHivggbLJc0iLZaguiNj8YF8EjxS/0WCwfoQcH0f64mFkonkcjK1/wreW6+gkuZ+XL/nPIgsz2Uc+5Vr3afA7UXtZNgyAKWT9CGz1YlbO6wgbPJGGHW+kiIypWjat/PsN0UB3mQZ4gbTHSj3wAdHPakCKbmf9KxTl+6emcZ3rxdjeUo/yk4RhpoqIYqxq0NXI2l2v+kBqwWdMOo/E3T6MZevVyxGfEXwUlkQ0r8+p/2yrqQbZ8+64YOwSaUV5YeayVb4IYSeTcSNVYUodUcHtD2n4+/wPBhO9oDSa+L0uEEecgO2s19DHjQNT6ewW5vwsJUunF4hgJ3zrVBzbxJVjC+CwTBfmDXjHsnP+wareBo0Zu3Dc3tHQtzOcpg9rx7q9wmD2LQaOPI2n+yXNYHDwXiUGhMOGyVNIFtQDKT9U+DJcQece/48GF49RCcyyyk4cDJlvjai9QFSGKmwBAJWKEDGDgWS+pQKtjO24DxMgcBvr+jciPv8ePwkittgj9UWmZj6zQbemQdDTv1FuvjJisL/TqXTPUV8JW8/2fd3caRGON3eLYiem6xAP16F62LG0nnBlfD4SThtU/4B0UsHwSMkHTuqZkP3SjESyxsPVBIP67IsKCbiO4YnKvO+Y3Kw8VYJqbppQPG6dTxj2iEes1cedBqO4okpDRSftQNaU25AwLsF9CeUweP4cbY4exieTI0iw7+qUG2TyDNOj4blm9z45uq3kJ+cQfZfV0OB5VZYk3WNLh54DF7zVaD0z0K8JfqRFhr10t7touR0JBnHhBCtiJkI5c3HYf3IhZykawzxl21p7fFkbPZYxr1J5fzZXYfmVg5w1aMieD8hh5ZVeLBdvjY8FJzLCblN+GLpd9Qtfw0Zjv24YqiC3lXUwgG/hQhXUnDwlDGULEqmMAN3DHAX45L9VmS6aC772ufjmEkt5B/djiKb1lN+oREEB0zEMeVLYfI5F/y7yw+TzwqgfqwrLJteCTfHjuYopWsQaiEMc0N24eQkLzKf7cNz8iWox6wFRRaUs67uFdzzYDx41YRi6RstOKAnjJ7RZrD1RDXN1BPDJ06fYMG4GXzE+hSHvDFBs8gJ/ElEEE6sn8FhjssxKeYGT7roiis8avlIuATfGCuAignqFNauRH3zRaB45wCFXtTmhf4atF/IGK+OeIE3dWvos9oQNf2R44G1b3DnLiGoKZ9EptYJ/HzdMhS5z1Dj1wBO89KYs+aDcs16mPTSleU3joPu2BKGdVkkGNDE/o5XIcpQhyMFS8HvyBwqSSnnXoP7HGA3BQa+S4Fhbz+Z2L+hcBNlij2ogvfUJGieOmF5kQfsmplGb+TUYLJDKMtrnSZVNxsqTevnhwfuwMbNgZzbEcK/1vjzWOeJEFM/CnJDLrLFAltaY3KMCupGoOOrSdzSe5knJ5iSeaEiOOvtoEI1CQjY24fW5Tns8WEFD0WN5kT/l/zJNp7ej/2KgmN/8ek1y9FnsRxYaI0ivcs5vKW7H2b9zQOTTT5w0N8PXMXdcK29OkjlLoF+BYYRR8fhDc8qWJ42GseufUeKc1JBZOojai9ehlI512lrNWPLM0FQCdgHK3TGcZ/CHso7/4vWTT3BclGbsOz9CIwzU8W2J938+rwtjJrjz+YDG0Dw3CO2yxiLn32c6K5RJmkdaIEopSzu/n6BBd+Kwsa0aVzZvxXMVLzw+hkVtr+0Fm9aekDyRBeoGpWAYCyB7w5PBe3zt9hWtBymlobAc3UX1uhZRQ2vrdBa6gK9LvuCN0v7QOvbBJBxe0b/5c0Fs2ZhuuQ8hjc0+/HT/cH8zaUGq0/dolNyS0Hl7ii4FCPLd+UGMPKXBnRcMIKMlbVY8eEHLE4ygyuSxmw9fj7tG2UFw24j8LVLMJS+CMGtWxPZsv0EZEVMx9wZadTRYoRb/Yp4x0RNcFXewuL5F0mv5TXaj9+B2ilC2GVqx57fvHml9gCuF7HgnPixsNHmKYkm9IHFoXJSG26kbcMlqO2QDk39bbxD05JyQnaRdLQOjFg/CiIDTEHL/CnabvkKojtmclqTOEde2kcuk36ib8oN/poqCd1WQfzz+UqYPrsQBVe3olVYDm2P8cLqOUf5wBY36vsTyJM+E2xrrYZq1TT+HPITp9wLIqu/q+BeJGPH4kU4LaqOHy+fS2/nGsLF0v3wuvYvO956QeMPJHOnxzTMFDWjq5smU7WvE2gOHWHPvxqgdVWVcyXu0uzbx0Fk0ltaKzPA/+q92fptFHrfGYmhJifBAsXBbowBy078AHXR42C7zVxuNs7Adfd3wxiTX0guUtyiJc5e9mqweNEuWmSqAfMmhODWtZOoW0MBvpjJ8uhrM7l5pz4cHIhk319q0HEknTPm/6GyLTXoplsMG6ImoZZUMNt6d+O7HZ1Yv/MkCLgrg5f+GpCXP86HcxJhw9BmvC1qizPxP1wy1xI9fTZAngrwgOEoCAzZCWpVt/jq97HonxVKr/ZpwvXFN0jr0HM6GZ8OPbp6uHeWEejufouDmQ14bMFqdH+lic2fJ+KoXw2o5igFCwXl8XL6ddYtNARzWYI69a/47vVC6j31i3/Mv83P84+Bq5QzrIy9RdMfFkKZlTEs9wyi/gW3+aHKDAwwVuRqI3fek12LSzeEwF2zmZilH0ILVGTAw20lHEmqY8c7OznwpBXPLleF/PqJKD80Gx0X3aOnwp/53CWGNUFOXL5mFrpPDuO0I2V8Tms1Szhf5GUnCPc+9IK6j83cVTMWplQqw5TgXHoVOMz1OWd5/t0a6jMex6NSZsJZj+do4PmFF/4Rghdqc2DQWIC0RhbAfttCyv/cD+6HN1BSZjo+zvGE3OvJtHVgMvRq/+GSwtnkNTObiif04bOu+bhxwVocP6jLS4cdoar2C4deE4fjWdGQNmzIL4QksbNNkTMv7ecPe1Vx1v0Oiso6RQc2OlH7d1lYqSCIyeIKtO/8LvYUW8wlEZJQuG4MV99YQmLnlqHA89l8XmYK1OnNplEyd7iq/DmXbx/LGsb3yElLFrPdX+Fxjxa+vT+LldfKwmGr2bDYTAN06w1hQstudD5zCnLGvaGAZ430J+c3SP67zhVfxUGtyIXtlUVhW9Fnlgtq48lGpry++AJnvRtH3uvN4c+tJrwaqAbLAoNpU7o4W+JCuHZ5G27yP4G/1cqA3rQjJK6C9y99OF5cDCS0lNEiXZOeyLXTj1+DrOP6mA1MntHuRHNYlHEK2yVj+HL4eKhyIj58YBCF18jD0sizrF5jS9Kvx8BvE2HsPF2AkrEB9HyONOTONeFlK6aArI0vmD9WA0/JjRB0Zjw5bheBzV+WwMgp/XyzWxHQPIY2D8fBBlVlln3Tz8UtM8BUYy1N3fGZKx1cMTzRG4e+ycDVoQP0es0AVdRU8txKoJ5UMdpTY4VjW41x5Yx4ttJPx6nZ6vBUfjEsWGLNnv9a+UHkfHyUeYZ1RxfSh8xHMMVeiAphHHS9kwW1tyb0q7IPws6k4KBhBM10bseKkiawak2H0nnfOXZzCPg/sYXiwQ9ok9wPR/eLY3EVYfubo3DC8jSXu/vD+v7duHPQBz6/MQSXeT5oob0cwurH8EfdTVA9uwvsdaSwLEiSevM+c31aMEkm2EAkyMOFQ8u5+OkMUGhMp5YLabSapCBi5HrolW6HJecXUGaMGMSnO9M1l2OwglZi6zYBMDb5gLcbWunote108GY2jY/+hqN0tcGpTItX/cwkf1qDUr99UfzAfH4SWoBTbyTT0pOdUH1Khpvq5ODWtGPo8vglGEuq0IrUYZK06GYlUydSumPEmdv1yME2mA7MmAAKiwLBZ7YZWXslQLzAKNqdnMt713xGr/srICFRjx3CD6H7xLFQeLqYNyUdpotjwqA53RKNVrbwAs1WcNliSgZtlrg2bgsGuI6GqjexfG9RCJ+4Hghfy87icoWDwMeDoH/mF/haq8eDtq34W9gI4u+asfRwD0+eu4BvanRxVmo+am3zxuRfxyitW5aXiZrB3TxRkJTdhVmen/Hzgs2wJyYc/oYtxxGpkThBr4j2ThCF1LlesHJYDPyuzSCrdSv5SMRL8v5iwjLXLMCrUpG2vy+Fp569fENpJGvet4LOnEk85dNzehUiBPpGldSx2YRsFg5yvvFauu2pyDN0LUlcUwM8lDsoapM6vDNN48OxfWzcd4eX/OdEvlc1obuqlX46VmN9xDgwaNxDtb9LcbeNMW0dWYEbZKchXmxEIeMRnJPxHMbsPMa5vzQh0UCWG7Q6qCbSGLovz6au5Om4NLWWbi2xAofoA3CqIYzbSvQh0XYJmWi7UWL6b7TRXkJrdTfTW5lhftC9DI1bv7Bj4hd+tH0qDMbuY+EtRpi5YCpkvDOljJFhnK7/C5Wu2YLwDFvqm61FER2ScOF8K8u9/02eambgWjEAzWnLeVdUI8xTDQTr8kXQUKOId+9owZIJ/8H8aT9hi9FPNlHRxdoXHWTsrIKZ940wQsAMOgTkQLnEEuKqL0LppXCQfB3IPaU2YGKVhUsCN0PCWgMoGBKjtsgRoOeuDo/imklugSB8v4bU2XMeA1aqoPvuaaywvJU27UuCB4W3OUZVH9SntcKfC69wnsRLaAMz/g9vkn9zH1ZXOOGx+DkwwsaHq5uEYdz1h3jWSg6p3BzOF0hwCY2CFn1lOpyhSTpzf9D8gQa6E6IJdRMc6JT3MXD8IooCznX0r6SIxFLz6Fj/f1wtPQurjXrpUJ86fO/ZzN4H8rH45Rc8dKKFQqP2Y17wVK5xXoT5SX7QQw/JyVQSDM2H2fF8JMDbSrpbdgieBb7mRjEJrEqcRqKujL73JfkXmUPPyB8gMmEsyhW9JMNP+iA5IpSfZDrz+cfVcKKngzvfdmHlOB3QuS3Bs5Y/xLNaRdzr9xiGisxwvd8afF38gUzm/uX52y/BQOEIeLkgHWvDJ0FyWzMcUH+LBWE7YPsKY+olfdgio0nOKt7k8AlA+LICagRtwesvp1Dqj3jcrmUBMrGD6J29EWWKlmFHyGiMHisNH51mcX2sL/loloBD7CVe9uImLYov4A3eR9h3/xiqH7jLkCQPw/kOUF02nbUiO7hSwYQ31hSy+dchaH1Si9Ul6aD8chwUh9jCnJZynGe2HmJPHibJzXn47/kUGG69BRYm/+H7y2ncZxtN1n56sOe0Naw6qwI9Dhf5cONsfLMtkKPf3cOKcwH8zGMCyAzV81kRG/hSWEjV6/5wxIcftORLMJv22UFNrRtbd4+B6SkNvG7oGu8eGgGDd6t4mvgYXueaRhE2zqhzzpEqDlex2rxYTtR8heF6GTSgoAHZa7L5z4ASfhAcwmNWcfSmMxue5nRxZdIi3nSpDZQOuOM9iUkwPauWePs8CLr2lmSe/KO3fYdwylljSpQwo+SRRHdS7diyVRSOPVkOnquvwEznEZw5dIYPiJ7iWeKL0cHWHcQuS6KN/wq8QdKwwTkdExV/k7YWkNbXMBjl00oiW3+i/LQbtH/nXsxc74GNzdow9FaOLwVsw89He1nfv4ZKXdfQdBVxWH7TCqsSR4Ki5Ha4LyUG7zxmwafKYRa+Ucj3jq7E0S9byOS1AeutCaMX0cFoscqNWw9owvHqAqwrNwZfG1d+uN2PmpStaH+YC7+f5494oAaPbhTApnBzCM8IRLULAmS4dhMrzEzi44MyPGLFAAr3nOSuJkkUGkxhrzRFuDnOjrvyNuPVWQvx4OJANqyNxJQda2BqgijvPvsP70w9Q/FeuiBjpgbHkorBv8ILk/4tovoPG1i05iP/jJmPPjLRpDSviIMvjoOcsXVQeCEIjiYchOpDKXB7ljD8Kl7P2nG6ePP2I34sGMc2/RJwN0iP17e34/2AC+h3PJUT8wsweHAqk/R8WHW6DWqCnYGuTQY30If3mv6ssMSK25dY0NDB1Sww6QcFPenhjYve06FJQ/ysTxnOR62Gd9XnsSerFI1m3kKVG7Nx1R9VSDErwaG/7ZxTaQ32lwFkzpynW6+DqeQXQ7f7c1r3bDUVp4rAw8Jr4OajA9P+tNABdTPItLKjWT8SSeO4BlT6HWO7c8HYoz+GI/ZEcOaq9Zi7XA9IdCLYF22mnj5bcps3iR44lHCW8ir2zIuk6DM/YPLHOzhf0ZjF10mDoFMCLZMIA9PGdTg7YAGEq8/Aiet0IGjgGJ9eqsy2Ysk0IUEXSnQV8W7IGVjlPopEwhjz56vzxZ8nMbvTAtK2uFLyzG5MF58AQpZpnPdrE0w6l42TVWfxucv6fENxEJ6vlKYUxYVoHzsXM3OMwONDGfvXXyCb06YU+0meW6W3gcCNa3za2h6nTTsNgq9WspaJDdySCQL56dU05sggveJUEDonS2flx6Bg9RWM/XcWPrgtJgc1RdD81gBxYqP5T8E1nvZgIkzb+ZQU9jI6zrmDe5x247cDB2ntXiGQSv8LSaZSPO5oMak2Pea4r1/wU95Ospxei1p/a+l9QB8JjRGHu4HicOh2F/UrjqDiK9YwTdOb5EMDYVdEPZed9oaGnHH8UVgR1ifMwS8/PnDw2C5qyb1EH3RkeUXdapZb/ZRbhczIapUZNT5HaLF7RyGvemnHLD9yclrOUVbvaAP/xnc1slRjHEI+jvZ08IQinKjqpKFL0XyxRBrW8nneExbE/g6NoH71AnaNnIvjY6JYdJwlHKuYhBUqmdR99Q4uejDEQaGOLNsViXtuvUOD9SfwYehMXp+vAf5T/Wi3bRht098ATo7DMOVqNj11SwKquwOXhjPhtEI6R/4VgG8pLTiq9SMPdMrhC+HH4L9CANxv3IO+n8qkmr0dIi41kufDCbBJ8jOoaBRyZuc98D86HjMmiRDuP4iS1kPo/H4TKRad4dczLOHneTlUr5nKyRN0QHeggUVCt4C46kg4NioVjZafRanwJgjSBKiz3EDyjydwcP9TWDNXA0Jvt8D6iO0sGI3QtmIAd77ZwNKZMqAuPgs/FkXjkNhxLstYgW+MrpCcYAGGjd1GwybGcMngEOZ7i4D+iy9Ieia8PzELtzcrQGXGb0g/XwJfLl5iuagIkChbhm8/jYb9O97SPeMLYGL/AZJETtIwt8HhVmP6YRzIbXtceIPsDiqzJ6g4a8KHdcr4bo8Fl+7R4/ejjqFfYRulFJnx9uQkfOIcz3MyBEFbug93GG1ngavmLD9cCDOgAnon7ABhCV2wfNpKP/f28tWJk2HJ28OQO7aaf7SK4bdxm6l1ykzSd2kDucYY3hZyiAbk2ujqL0F4cCibJr7cje/yI8m/8jiWBVvSfTvCkmdLUM/jNaLaPFqSPxHGCChA8Bw9XPZBmj7ai7Kz0HLInlALIYoxuHPqPNrruxeCx9tA3M/FHB++Fw43V0Py2UY2HDUWK//8R3rHjVhTJ4rNBCZxgSTCgq6d5Lf2Ke13lgKfBl2QnWjJrg7i4C2XAtbOZfCSp+KjAm2wvGiJOxYChrh9pPrO7WSTdYN3/YvBeZcf4K+ACjQ20ic3HyuAf2NAx2Akv9K9DAouoXD0RQVefPIHze870swwCTAu+Inb/ghDyqWlfCx9Dm2bvQiju4TgWIEKar3ahudb9uKXM4ZwdtlkPuqiCcOzr/OQvSUGr0tG+loK+v79qHQ0g1ty1dDzv1Xg058AN16MAAnjRJiZ+RCeb5oBX7cnIbQ4gOuHcEr26gPNPY84fF4hfRmShplO+/h+ahgNjfiHoh1tbHDRlp7efo0bEzNIe403vA9W4XwvawgbCZRauQWWv1SinhI9kBM8CeMuvuTeXVbEjU/xYIskb1xgC4Nbh3HlVHlc79tIK/bY06XNZwlTf7BJpA9sLRliSwdN1i6YCAueH4E/npPoXlYhCradBH31lRhtIARK07aCWoo2OWVGgPw4AzDbkEy5o6/ilUOuHL8mk7ZINuHNZm9WsBpNb1QNScahDv5FqgPL5HCJ7kNaWvWZds9Kx2lXf/IPm//QIDYdI978h7vmJ2PgVC1Yd88LvDSjqKdOHrytXTDo5x3+c+YaWW3ShX2LBLBghhQcvTEVNLLbeUCrA+fNFaRtaSakYyFNv5MV+cahjaT3OpU2jiznD6Um8HL3Okp1+4yqXqJ4JfQZXLr6Hzc5bodH4T544ZYHBoZ/QKX1RlAa9BffP31FMvd/0ISHX9CzoJKrKgTpcHEn3c9KBcNNQ9DVIAnNz7vQcV8aLHLdzyscREknXxlOmNdjsrU3jV71Hl8rp/DPzpEQXFtLO8iC4maksFTbLmw7sRCbUnbQH5EjVOR/C9ekaoDSCmMYvdWeju+J5f3J4jw57iVcP1GK8S8U4KT6ORy3Ppu6R/yDtaLCYPfvHxRW6JHvNGWwOWoBm7cb0g8hVbTM72KV+d/JxucDLfQVgt0XHUDhzGTY6SsA4Vm6IBBfA9OOv6HNAvvpx1cvTl5thPdcdSFtWjagQgacOPKdGlTFSbN/CUceZ1riO0ynppdCrI47tZUYgl7LeK6JFAQNW1usmCQPO/I2wU33KlzrqcRbx9pC9egWNi+VhVmjNoDA1SwSXXsM6xNb6aiiFsy8ascnDobAsoCJ0Fl6FPK/SUHRuGA8Nv482xmbwnLvPNbL+QqJTYf5vWM9xYuJ8ff3glD3XQbmju7Ff27/UGjbeXZXeU1OMy3h/TMZ1JueS0FWt9GuPB1zd1jACXlRrOu/iz3S9Wzr5EeVpUtgR8B1UhcU462lrmC9Tpqf2TIcDPqFMfflARd64uabVtByppVS1miwtOIaqs2wwfD2PDwyURbubI+HzVazMDfsIygXXeTH976QDr+FcyxCSmVtZF85gW7vkYOrhUUg5q1FGhM2gkr+N9i88TNHSCphhftSXvr0Jz8NOoHrh0XAybGPx3V74+boJtIWewpfxf4RLcuFYkcnshvjSzp+QphWIwI7tvZyXO4HjJ38BN0StoCewnh8IF7Bu39kUb+PCTbHSICs0mgYujgN+363oVunJz5LuQb50XNIdelOOhcsxqvjhECnYBXa7BaAbacvkq/Gd7K7f5inlNvDJoMJvOWsJo8WUcaJodI0yakTdn4yg8Ui9/h4eCu9O7eRi1QOorJtM4wITufq73G8qmoUZ5QC6/dZwSy8BbrjxXnaXWNQnbaVztUOglDJeiqNMcOMtDae/SkLz142hndK2yl23Vg6ubuE6bs71JTfYfXf6vRmUBhOfr4MSv7quNhUDHIl5GH4sCVGojLVe+nRolkq2BIyAve0zwWf8giIuvIU5zqpwoXSp+iR20xllz7SfAENeP5XkXqVimmyvAuVpOlQyrt/8GL1KHByrOGe4WoyMfNHmTmPIVprFr5KfEfgcp9+z1KDrDgj2nVaDcY5rmXr8Evw36t1OPXKTLbcLslpk3UxaZw4Ourcw8KkfTS9eAS4FNfRi2vfcFHDJvIJfwajFW9QsMc27PumhPEp1Ti/9xZNuzIJ7vuH8dLfa6jcnTk96wf8GmlJr1Ir8UvONf7eFwEz3O5DqJ00qL3fg/uSbWmu9DysD2hDI3yDcs/C8egledxq+45GLasgV3GAuG43vqW0GLPHnyG6eY3FIvQgMLALLig6c8wbJT56zYIEXaRhvoYQlfhL0+JN3zDEah5s+HeKK+UsaGLCN5g69xiE82x4Y64IwwcH2FpjmLbVR4P4pQMUt2oStsi8xS0NH+hn10ZOPr0S6womQqzzKXDuF+RF5zdCxPctaJWwA5fsuY85+TshbF8i7qrcTS0rx0Fj/SfSEC6gfOePVCRWi2pTrmLg1qkkc2gOn1sRAErJZzG11QjGqc2EvWKLMSffD7v0J/Dsp1NoXcQ4WvNgKggdLqOw8fF0IlAWHKMz8O3Uizg3wpZuRmQgrrnNO01rcPlye3i75zc8ypoNcrIWkCRxjT5rZ8KiM9X4oV0ALo3X5Z3X36OviAnsfV8PuecjYEGDCbzwr+L92WpwdsV4jhowxcsVGug+aiZcWnSPk7XOUmHLYe4cMIU9u0QgTcaGvKZL4ZoNN9FDX4S+9u3Bm3k+1CS4jE8onsKz7SKQXh+N66q/gmezEsvHmZOE+wpK+/yCzD+exc8GUdio+BNjRQmeCCpxYUoUvrLKxN77+7GMw2DKg3ysi3GBjVJfMe/LQ1gbqAF37F5hl/UQ7BAa5J04CWCZFN++0okx9U3UO3Afo9qGWXehBFwas4Rr9G/SuPkPMTohj/3y22jlyheY6XKDQ39txmcKm6AyRwvkPl6AXJdceqT9HZdrfOCC076gO96Ob6muJOPYZlzl6E8tLAWzI56hdu5NkNaqI0v/K3zuw1H4dlWeflp9wtkSzfhjah+emCQGzkXRJHomn8xdO2H6oeUoXzcJtNMNcHe2FBV3X0SvtAP4KkMKfm3aAfOuH6ThJ1/Rcu9X/nJnNc++oQbx9qYcZ9eLG1bYg4mlHuyJD+O/IW94X8xhGPq8F5yiH+BFe292u34K5hsHQmQkw8vRsrDzyRv0vNOJmxxkQWviEXz98AgtuauOrPoQt3WV8EtDe5x70hympAXBf/kxvDp6MjjOuYs+z8Qp66YlfpD05Pp6Z7q7Qg6iy7Xh8jx1bP6VxdEdjWDzLptjb9fT8kWbuGLUFD5g7UGOUiXYcVof9o714wyzHu5//4gMzE1AP2oMyypc5rQ95riudw+3rFSHUYbWcE4iEPxr48g/1pcn79tFxVvGs/z1O7z0tgTHZlaz6aibAF0jQbd/IX2eeRR+hhfg5Rp3cFjZAF9UP/IpgRt4tWEq19qHwNzZclB72p+XzLpG7TMy8N7WLjqt7IlV+6x491JjUvB+w0//euDS17bgIXiDB//9oVFV4vR1bhB/NmiElYrd3K73A0a6WdDzfe9ZcoQh+KfqYqKQGWWMv8/m84Jx8QsjdC5XY5ff+iSyUh72u1xAz6BxYBHdAZkRObBReRP/89hHixPUyWW3BJroVtAuqT5YJH2Sn8zQAzIUomKrTl46NJ0rxnvRbssAPt/nRmIXfpDzBGEOTq7Gly4y0BT+jFSUvUnC+g/gKj+cvHKAI+XaYeMSEfC9bcI7BtxIYoc+vPrvLkZ8nkFiv6fyuOB03JeQSoNPi2CLthHdGXsRI3/LssNya5DU/4lWphuxwHwF37+yFsqdw9kldgf/Mz/Fiz4soyfrbOFgiwysUlzAPkI6eNutDfcNjuQGD126PrYTVZyH4fLCXohYvxuqFbQhuaydy0RzcGJaE6VmnMbz+qIQ4ZmAHxZVoc1/u7i6bBnOliVovn+G+qSP8k71pzDjUhJcPVtJA2mfuVl9Hft+TOQSr6MQa2gBbqey4R8nU9OcV+jX9hbnzDPBhQE5WCmiDxNuLec7nXs4XEYZVt2dxN2Dr2HqqddUqv6e53TP5wHJ7WT/IBtOu98EO9uLYJciCYc+puP8mcJ0eMdYaBI4hC4zD9KSbV8w/IY1TF8/H1V3LGD7v5JwoHY+fznyAOUPb6EelUQ+vuIrGT0oxcQN2iAq1wi3KxeDWqwA/PoZB3vlJXHeG8RNYw04s1SNk1KL2H/6ODyaFYXeInIcnqEMVd1JqJP4gaSVNdBGMY0DB1fjy5lP8O8SHchdMYHvZM0j/1sT4aRAAB9ziuLwV5JwRPAdZ1zQ5OwZq8lebR/UXnqMySH3yC9mDCw9HIeb3u6h5pBYLreTQwGZ8eBi9h43JadzoOVDDqgJhvzROjB7eJDODdhzcVwJvP+nTBvN+mikcygsUPkHDereJO+ahDpWACNr43HBs2rauq0N6MAITguKpszfwuzlsB4eL73MxZdtSee0IIQm2bHLjhTc99QIFz1Qg5JCAa6JuwzKftG0zKMOJePk4fdxTbg8/xdoNxLALnEuyGkHY6196FWlQ3m9vVz+PYDPBY3koKsKIGG2hovVCunGA1HqfHoSJxw6zJEXXXnH7Wj8WFRIj6f/A7EjgvBbIwG1TBPI6N0JMgj9xm9uipNE7WTeZRZEBtU1vNBeiWdXGsAKdSlMmKIIVTZ2rL48lf7Z1vLGsNccUZsNusZhVFhRx4s7TGHXsCIoli6kiZwAPy68gBdp4XTyjj9IqPnQz9P56OH1CDDaDOZ79cPWiuVotd8Ns5LHwO8bBpiJpbw/5xtNzpGhwZqFyFdUoc0qEq5GZLBaYyF0LzuDjw6OxF+XBmGRni/OGz0f4j4mgsWwOqwKHQ/yO6OwJFkVsFIW/5ohH54/HU98XEtaJbX4VX6QBA1M4a17Nqf5vacbNoZcsEIG0UGOxGrS4O9iJ1R6NJd8KlN54085GJkhD5rWT0it/TZ7jtkDimL1PH1lGQ12qUJXkyi1G3awX4wSvOpOYNWmT7zVB8FuhRbvEbgB7psccHzIBOrwqOFQVTFo+iYBBb3T4EptMcQUFbBubiutXTGGbvfux5mP57FT8iW+7GSLBV8Qtk6ejOOmv8B3HbqwYnocjr5zEc2WBuGty8Nwa911CDkiD6fzpeH59i5cpCvGiQ/ncXznYU6KbyeHpeJ8NGwKDO8dhuz2RJ730QjW3F8Pz0UNscY2lC98SufQh5pcm848uPEg+EVZ0BlzG2g8YwvuYorQtKQShm5Pwu8F7+Gx5HJWMVUi96Bi3PzqLWebTaPdGarg4ucJaacN0bjZDw6nz+a5cd9xskg2dszU5k8PwvnYvs8MAeZwo2wS4DJD6J0eyDLJjrzv2DC4atWSDwhybP9l9ueleOv3SJA/ow/m5V7seE2Qjl9fzCswGYcWu3Ff43uofR/Cnbmj8YSEITQeug9rN6SjV0AYXQlywl/ujvzNf4gfiU0lI6fZJJxkxGcMFGHx/hNo8uoif+9z5xvT6/DAkXyc+MePsw8Wcuz+HtR7oATriixByqoGNybfJMPT1nT8xWIMNQ/giqI7NJoroToonRavdeL6lSaw4lscF2qfIofGOzB/82WOuL8KX22YAG2LffiO7AS+LGsFqfZT4GD8fjhyzxYzblTTKp/XFOM+E+85TIIHucto/uaTaGdchDtvy4BKx1FI6trJz05cpyOJP6hw0W5sX7QVTEtXwavQfkiSl4YIp8nw6f05dLHIpJ4NgL+G2/CZ+VU40zuXYG4dDu0P5gm2r7FspCHU7g7AveKmPGmkM25RKMVE5QTyTUnEQ961LG4E7CnSxmVxyrDP9hAJ7/CjdaLILkra4L/dhvZuuUQ7XyzEtT5H+aQkcLCyMFQUKIK7kzcPX0jiXvENGDuzmIPfEhS2XeGh55FgKS+AqyIBLIanwJutD3HN3jAKyCumhL3+3NquwYWaC7DpnQQNTglhh0/m8ObbDeIwOzwoEYvHzk+G4ccx9EynB+OWjQbLX6txqWsjLy0UhA3RReQ28hHFFCSzQORFinpwCPLCtGni7BdcI12BeYof6d1VfRAKXkc49yBuUSvjWeeLQW/oAGpNlIfmzhLskk5g853Z5O1gDo4pUlQ85yXx4U74oW4NDw/OxLN51RT76CUHRC9lKvgDYWtsYaZKHL787yUKeEyFJRwCyZnyKDdvGR10dOGVx+bCIlV7cujTgvWN9/B2yw961zCaZ6Uok0phK026IYyK6x/Qa5ezcD8ym9sSVOBn+h7c6l9Km313waVFBRi4xBqt4QvGuKaDeVEZxGmp4Oc6cxCe6039bTtZ3GMfzVLaynlqUfD27AD89+UjSr0t47eqvbx/vzW8j2gAq1lhKKpnQbFb90PkvFDa1bSXGurH0lKQxRfbr8M0Z2NIOdEKKWu34ZjjrjT5Zw21q1UzSEdxrEki6mf5ssK7p+wtIQ5Ggbq8/rAmNtw7w/uC1PFRVRc+8u5EwxHF9FhkDkZSM7rYacOomBbKexzLI+SR7Pek8Mi0IbR2vYlSzQK0dkwKT9cJpqMxU+G+vB4EF54HuaBi2rq2GpM/mLOox1MWHSXIL+aJoU+pEpzcqQuSBbmwpKSIIhukoKVsmHa9E4TdpfX4X8N6dq6Swt6pAZShNAmkM0vgzi1LSLFDLhbu4MHuM3xdx4ilxTO584A2r0pohUK58eDzdwZN+b4bLW7PYqGN/3DsmgS6G6wOpy0206d1pth0YBzEaY2Eh4EE203bWHP0Km6oacXOfFcWvfUCS736aWvxVmq4+YDb41Uh+7ATPdhxFPL++woBLEmnnteyFpbDifFDeHx5GfrXCcG5tjFgZqmKK1VSYcbVWPac853j5Eqh9eEw+ssexydmN1DQz4xLXcfAubx4xj3p9Ml/FeqV6vKx1iUssCUUTm1sxTU1ceyr8QdGXlIAw1OdGCW3GzfuX8cvGj+S9xkD3rmvlyRULDFz1QPYZq/MgxZKYCPuyw6KtTgjPgvXOV3BvEc+4HbBFjUnl2CtsATPaz2IXxUtIDG6B4pH/CSde+fxSqo/vsgV50CNYKxIt8I78l9AvXE1/H4uAZKOMWCs+46zq2Kho9IY6o4MgvK7EkjMmM7FD5tR4fQ/VL2jD5MfvuJJn7aRxsSHBKq2MKm5hj4uXoJ3BR5gUewrGLX3I8mcnAz227+huns+CAZpoGdOEHl/E0CfXY1oGKMEAu7LKXJ4Lg6+lAGpHmmO6Esjw4h0cBtyRGv3Pdz2/Q9eMCoh/U+RFFY3iMF/R0L5bR++2OAEs34LwwQBLWp91w4Gay9ApPkpLBVaycv9j1J+qgq8UPxCT1t8qO1SP/V634Tx72u422M7nElNRAmdeJjpZw4n2uUhNsMdBh8RiPXJ0YvKKPpqmMb/KT7ACXlvQHFYGu6qd+DYWzawxQUx/m0mSDlLY3uxLBnceAR5JTvJKGQ8t8wSQ5E97iSeoAR1Pj6s2P4eMoXleOruSDbNzESHWYmcUHeFYmbIYLiDA0p/1oHE/QHocsgXX1TkkfwHN7zfbAv5Aza8QDCQLi9W4J/Ob3l/pSq8cnMjx+tePNAzgUzrjmBk5zz+YZfLqfnmcOp6JjrYx2GLogAgpMPYa59Q0q6OQuZ/prnPnkNZjyS0wgKulLSjDV1pWHfHBDyqfoPcuVjuUF9JA2/74c/UaRDQJsapr57hZKMdJLs5DfIzp0BPzzrWu6XDLy6LwU1LdV7QOALg+D9asUuWM+ctR8U9J7CtXx4W9o/A3sciEHJTFnxDrrGxtQk8d7fgvMGLuGDsAu6ek43/PhkDzLRDBQknyuhaRaorKlkkcCyIFyvA9TsedM05DE4JzIGjAppwxkqGBP7+5VztU1iPyvT31nESbvOA6p/hvKm3iw19TeHmfXHQeFALvkXz+XG7MmyVQk4Y+kOavZdQw24AL65qhRjrm+xhZQB+EzNwve1TGNWuRu+jTMnbXRwr83ppiewOGq1fzyl38tHH2gy2nFGB/tDNLKL4A6+tleS2T9/R+bw2n4g3xo/vqnhp/yGysZgCzjGF6Ld3PCy/M4Iaz2ris4THOKYwGX9uesaHRubzf+ldcMTXCg6td2AViSZ4GGMOopkXMPu9M13IXE9BBX+xaNlBkksJRYpn0AwP5BkvfjOc/kC+E8+R0Ig+7v0TwkZaH3iqEnCqyF0oCVSDvn+JON4mArdM+MXqR5sgod8DZh07ymPsHrBjSxrPnrUKD06WgFU/JoLqxL18r/A2ibWJg5PgK1JxOwLCq2dAYoU+nphGPFZ2FGQNraKqmSfhXrclnDsQTtPb5EBggggf942A2UrLYPZ2afaYPhHCCpLwSHcBCAUloam/J3dek2QDI2VuLUul6IKd1LZyBlqvFoHaYn8cVTeWXxrOhJuqi3FNwlNqCfHGyMlJVOT7AZ70X4TjH5XB699rPHlRHJU0ZtPdi2ZwfVcRCkxwwPdL1oHOIXV8MPow43VV8KGlINxqjnlXg7FyuQjYJuuAi8MIjp/ZAqfPjaUn1wpgyQCDbI4yNhn5Ao06CpP8c/FnRCqIgglWXljAj16fRXhdTbdXCMJh8SWQc2Unl/tngFVVET8KMGffn9/466azJBSTxTQ0Hp2krKE1/zJkbTCiwYHt4FpTivp90TR/32+adUKWL+66gyd5Hr74OQaah1OwNRIhUWUdHCvuYc2Pj7gvdho+/HoQ3YzdaFzPUljYaA5Ga/Zik5Ai/1q4kLVMNlH3jWmQO2sj7pt9lOuv5kJqwkM6KKcASec3cZDCedy1wIpjn3nRup6jMKatl5S+Z0LzDCK5a59xoEwUHi38iC81V/L0vSYQ8W0v/xk6iqHxLvwpxIKyWn6De3kFlW7WBNv+g9TduRcdZu2ha/O0aW5GOzc3TcWnFqHoukwQtrpdgbTTU2B9jzaJozLVjI2GOYfusOPcTLBRWcQ2i55jtb8UXDYxw86LlmBxeT5vDMyC54e7+XXXE2j0mYNnF7VjmMMuzJNtome7/mLkLyNQUK9Cs9XiePqDEln3/wa3112kF7ibCldo0fE4UbaT8QcpLx3wiLcDg+vrcLy/Gq1QfMo/8nxh6TUFaC+VpaDfD9lRWYFajQTB/l0mm9ZU0YGZs1Bc4w6tvmBDlnmDFCaogae2+vIO8Ue8t2MCDJ/JpxuRPmCpZkWtzcn80CeAanZ9gQeiq/B7gR/6lifBtnOmkN/4AAxtj/GvnBBwkZ7AKkcO00NZeRpQ7Yd05Zc8K0QYAqfawPI97/iJdxcE9+7Cp/VNVPR4AJ4bjkWX6eXcPJBKlRWHoL5MB3RVGdOnGMCe7QEULaGFohcec4ljMuDjCP5yKo7ffNtLl3+ag6RTGzVJ2eGi8H94Jioe1+77CYUP3lPj6pn4aZI0Fk1zRZFkM+gr3o0zDRtp54NO6irwhf/2zsS6q1WUo3aMLTv+AjcqEnjIwZXGMdCdeAQSBd/C6KXn4PCRKjQ6Gg3NMVL00vAkrPR4BIeEpwI8S+HDxY3kcuIuVL2Xo8BEO9yYNg1GHLMgWSs9zj9wDUoc9SDNJwHuPT0IN761w7CDF53NPEGB1Zt5rPsPtkxdioWDbzDoqSHMsDuHd4b1MPuxMD7tPgGq+22QvXzBRvM75r01Qpd9o7BfXRvS3PXp2d8gLFt8jRsiPKBZOwHtnzzgnbfEcY0V4qlY5C2zNaElxpWuzV7Kdw6nUIxEN60WOU97nm7FLQmryXemAlj2xbFMkjUU+bbh2TNF8PVWGwT3H4Edun/Z9fBT9EyzoR9B5vi9Ko7NurQh+tU4tjeP5msdOdz2SIPF1hmS6I2d/OunM6ysccbyix2kG2UMGycZUJNnOWjY7WOLDb/R7dhODvIQogvF9aC92op2xLpD2j9D2KK/BbNyZEhTLRntJE9jxI9L7Gm2kXO6ktjzhQisf9cJFtmG8EhOFAyCPOHY3hu8ckYphriG8ppZbhxbWk4OwzMgzvovDUobwI1v++jepRTssO0DQa8zOEnpOVnuq4Jkg174N7wHX5j34UJfVbg81QNHS+oTlAfygL8j5+Qk8cK8J1zfV8Id8Ye5Jns7j3CfAntXXsWVr9O5ojMJ380VwAMWlti4ewacy43CmNAsvnVgEn/4aARLO0xYstkWRzst596hM7zvuhvlBkxHJa3D+DnLGkqODcMSPQPQ7chC+1f+6FC4ga8cvsqvQkvB4sZ3Ps5lfOTJRHjn9RIanpmBW813enKrkjO0nFH3TDrmebrxzd7zoDgzkvbUTAePNdP4pZAZTM5/yGVOj9HhewNPPJKM3lmitH/cenZaY4hVTd3M56tZY64+XHWdx3uWmECJkDZclKqnVV+uYbHOVohL+wGSQvF4VXAVyf4ygMFYd6jYp8NG8t/piEUIHJc5hOuSnkPk2wacsG4VNJ09CX/vjwSvwiRQaLXF9uI2GDdURrMwCrvuJ8CM0Cgykmxn161SeHZgEpTSSRS4cp+fP5CBr/WRMP+qB4hoBoI/7MctzcLc29pG/aoa8E22HkU6Qjm7JgT2rfmLuraKOLIjgRRHjsVlv6fz49mz0WWzCbz+H3H3oQiEogYA+B9WtszMSGZGyoispKFQURHtQ9rJSqQiQlGRjBailLRRKhpS0VKhFApFikKJNO5j3Cf5tN/RrsYg9rhcQL/z40nq8Sv6a+0AEY/28tbgMxg8vQx6rLQg8ow15Mu9gi+1dWwl2Qa6WelwxEuAe1achV1a6lza7YhZ6ZZw/Lg+Fsulwbpz23BCbBRfzo1g8MlGrbpc8HsvAZ+eHsfaGZPgzYI7ZBH2F/QytUnmyhsuNZPi+nZPXKgaQnp2ATCzRYTe5AuB5KrtbPm0nCdtreY5PRNJ1K2Fv0SPwqKoazBpKpJe6SCVKqqDqc0wmXTpwcrvzpgkJs71ITZYfeIwjh8Vxx/Xv+PPxtlYpmEFOsalUCqvBPYbl4HQpn7Qdu/l+ik34H1LMfRZlXFqwVoM1TaEvpxZnOrykXIWiULWtA/o0tlE3WemAzn8wEBnK5i8sBG1Ba1gO7XAVcHz1NdxGwIfBqNqyz96ULOAIp2P0BiZRBDIKSVdv3EwcMIOJVcU8qmzydD84TuM8HlO+976Ep/zwLaICNjzI4Jrr6qAkq8v9yz5COW7dtOmADM2fTqG1G/dh9GOalxkG4vrTvaSbpsabMuLhSse2Zz3ZA/pSo6n23ZB8G3/eU4IuUkvQ3vA0UYedjlKws9ceZ4b+B9dq7KD9BkvyTtbAJo/jIPt27fiS+kmsE86gl431MBVbTRe2fMK/uJNGJq4lQLeGlDoHRuaXZUL3645kfCtU6DpJwI9X1+jg98HNC6awM2nRDntvSOKGQVgnq8IaraaUayrD8eeM4eX5I1raRxXUi4eJkVUaHhLsxqluShGCPoO3MFNvzLgY9sI+KYpyq/ynuHW3OU4LquVe3+fZcfucLpyq53W5shy66ggspQQhFaLGSAz7RF+GzqGH3f/ggOrL5P1+0/47106ee78RL/vq7PGicmw52szKv0VJBtjW4CmVn6a/YpbbvuTwxgpCG6+AocP3sRZMfIw87gc+XYVokSJPWl39mDum//41ok6vjT7A5zYkMvNp0rgR9x4EPy7AkQq8+nhsVf87OJ00lZ/TWsUx0LVv1QeGXINT/TOY+8QhsHrtXi24wnHhu1jG5NHEJFrwHHxmWw9MhGjyoK4/80uejZBAZKy5+EcldNkNWsNLC+7TR+S5dF43kHMvbYZJJN60GPJJErTlwKjz9fwV/xnrixI5Jv9E2i2yVk6t/YGmonbM1q/YYt9D3FTlQAovlBmL7NW/uMlDMMd3bQkezX4ux2GgK1VNNPFnt3nWsHycdqQe/4s1Y/UpFXRluR45AukoQBkfV4DEr8F6UbYOS6ut0JnXQ1we3eZZq7LZplXldQT9orDFb3orM9lxPABHHNvAo3f6I//nA3ggLsvnZOtIP1/QaB2TRA+tm0BQdfjXHvTAPqKFPmiqhZ1HTaGorph0l26imOHJkK76Ava0WLKMuRH108ugTN27qSzthoXC8hCGouwi+JEcF9RAUIZS2Dy5kuQ//QJhSfr0ojWldC47DMPzZeF7xsugrNxGGZXbOTGoXiKWFULbivC0GtHEx0vKeXZes9IZKceZH8ifFcRhlIRO+hUYz36ririA7KZNMmmDfeWCOGIV3PJYLUuTFoxCn4413KBURMZLlyAkjvzueGMOgtF9eKapAMwsSmCHm+Rg5DTl/DD9zoQmO9B0T0u9FewHgp0omj34GOMb3pMP7UM+ZKGMcy6UQSXtb35YOoicsttBRDto6nq/RCyR5cbHzhjsu9iNh6lAe/GbITVRh9QavAxCjxLZtf49+BXakuqblOR/IZZI0eF12crgInxPmg29KSkl/pgNv8UHdqXwb+nzIKPu1fCk0wliC07QFcabcDQwwrP+h2giCJX6jwjxw/vSfC0+cHUqk801bSLul+OxnkiuuDX2gF3H2qgg7QFz5yZD1I5h6g9zh3nHq7Djo32tCrSDcaZWoCB0FYckjTG+cLHoPdDPsw16MHvz3fzmPhU1k3ahZs+vOclWnagUT6EfSvNwPiCHe95d5fL1/SxwchlkFkWh/UN1ZBYdom9Kq3gzH1L+rSlmiw+C7BrwT+8a3eI/cT+0CSNKtoUMwVXRsfh+HI9OH+jF2T+WFJGymGcvV+UnW59x7A7F1EiYybOqTuMf7vKYdFWaZDcVkhH45thiqE/zLRbCd9at+K2NQkUHO4JG42KYfXKaFRPlgZTq2TorCjmN5tceJfxAtr+7i7ngw8EpjnyuaFpvGz/Jrh8wQ4KmvLI81gR3V+rBrPTPtO5cQ/57oVcWrgpC6U6KtHfNoEe7hWBPwNHcM/4Vrz4dwtae+ui+cEDnPVDhJeW+MOTf8fp4BVxSGuXhXT1Kn65fScsvf8Hy699pC6ezDp1ZfQk+Ac/d9cBM/EYbLAxAgdRSRy+8A7046JopsIRzopsBPnoRDafp8VjVl6GCXK/KSVQDUr8fvPUr6J4v06RpqTK4dSTa2B0/UqoLSHsc1gM8QtuY8UlU2j53UVyE7wo0ccG2g49R4WLPqCWr465mn7Q/f4SbXKTxg4ZMTjyr4f9hWLR4I05qWyqJutbLlzwtQqWVn6AKzc8sPttKS+O0YL6zZe5ov8Slgxfpe/3l4PqvTOgXajK18f109eZmXC/P4Xhozos/jyGshMm8tMoL67ok+NhtV8kFtlO65S+kon9FEyYcQQiwi2gOmM2D5mXs+awJ1tnarPoSAWMO+4FAYINvOx8BE+0+Qj71e3A+ZQL+efko5XmbSyU3IsbM61R6sYhHrfnJ84/PZ+8/AdpoYMVXGj/iWox40nhSyoOX2Y6d98HcrV3kMazZAj0HuA9L/tI85kFbG6rxBP3vHBUZwda9wZhfEcv7+n4j75kr+TZt4po9d3fNOmWNFiFOdFU6+ewzGEt+/YsBJn1hth4pwAPHqjAsjBhCp9gBHMnmIK56m7YuVYXHrrGg0qbIOWWTCVxEx8QqxhJ9RJ38HiAHxdMV4U93w7x06ROnmSQicM/NuOD/fH090oEpq/9CDLb79MmJWNa6z4J1BPmgFDoDtA6lQKLndqw9cFqcllXAqI+Sqx6U4bP9o2DlRtNYMOXZ6hkXYSr6qsh4uFYcj80k9MiFlH64UnoZmwEXdfSebruKLj2rBsbu9eyv3U8jhXIRbUWJ/yvThvOWqeiVNMcGv/fDz5pNQEOhefAiqSTtKBjB86eGcFvXorA4aKt+Ch1HD58KwsWI5ygvBhgYOQ2HCiqIqNZ7VD64gN0/afPW2Nu4w2bBGqZchulOw7QCx8BsOtowVGL7Ph4QCPrvo6nzWbbeFjqHRemWPGnRB0iU1OQO24OGteicOZhEaiYeQZcS6LwrZAuawumsOyMCZDhvBzWXp/JR10VITLZjt0PGqKMojEJXujDR6O8QcR0Be3PTEK/v+EY5zLI7gd14Zy+IKtf8cQLd+XxuP5VcCxvw+BvP3nG+Z/k4+AJ710+0MFZCnD00xHe4FNNW5YkompvGk8QeE1auRl4e7wzW69Og7KZg3jWfQJ8LxdlD4VSbHG5BaYZIiQw6R0lRG7Ff5oO2LSjEA6b/uagLl1QvnOG27w86KN3I9WvMwfdpRPI4lgprdv9DPVctsO7t8FgO8MSRGekYWT2P9o09yV3pnrS6AVvUCttMcU6IF40bOOmLhOezgR37uTwb3VdyJ8RS/3djXz2pw3vb17KD59N4wJ9MTp9Pgqv3TWCo5Uz4F2rH22vCqfpgWrw980nfL9Xm/uzz/DcVUFw6/hCqAmXg4OPN5LnhI08umYxBuxaCR9mB+Balf28M1wLk7cMoMkvTzhhZQrCqXt4b4YLzvd8B6V9u8Ey7AGGu5+gljXXeORmPb5vr4Kh4+zgsdwauHHEEJXFv8O4gS8kJLObr349jftwAAOeF2POnnwku8nwpEKBwxI30FRpTda7o4U/euaxts4D/H70P1qso8I6afH8Pk8GKh79xwfvSPCFS6G8glyo0v8XmH6VBYVTQDxahKdk97CFugL0bL9K0gt3gOHeF3g+yhMfHE2Bqt75sOywLWbHRHPsfwkweaEg7OxHmj49FYXvx1H+j1H4a2407k7eyA4H5SH3YgROH72Nf6mNgSLBKFA678tXLUt57hF9popeuDZGnxYKaMAzhWHUlBzNK4WkoHLyJlC7sAZGQj+VzB6kd1cdUX1xJb9PU6aY3a20detP0DphAzthFRz9sJZ3xDkgvyjk9EnysFVDEEpTp/PxYmVoMvAGi2nGcL6tFI5uGsmnSn/hzRDGew5xGPnXEFzSprLB2CMws3ou3TguDNZ+UzB1sRf6WL/lkAopTvi4EWIPG5JejxF+7Q2k/i/noG77RLgZrskqo0fS580x/HjlPap9Zg6bqh/CtqZ95JhYB36LYmB01SR4zlfhwi9RTG56QEuDI2H1+Coq2CJDh3/vBpvcfvqzUwe9q43hsNQpNFxkyDr7rOFAXgD/WoU8YOqBL9KKuDDejcPKRpO9kSao6PRCkZc0zZlRjnvv3qf8B5q0fVYj2nsnUsqKJdA/xRS/GJjCLdMgSFZ6Dn0Di/CHwH12XXieFdeOxAFNGxQc1oYeOUGYuVkeFpXd46VzJtGy5MXQ1raQ588+wW4lg7SbHanNbQvbT4rjaYGaEGSpRREPbvCaSDk849lGJ2LccX+pJ7cuG4+7b87l1EgxuNZgAQdGzSGK8aU2eykWFrWi3Zf0uWnaQlp/6SKNmt1JjhkKsPaTAYze9wqyD93hA8J7QNyhj07qHcLjZS1k0CSLYfVj8Ed2FJvqa0GOWy9dC9GlyaXj0WDZOQpVW4dJkSFQEHUM6wMteJRQK/y8YgKxxlswekI/DTaNQAvjOPr6z4lPfgnjphonrjl8HQeCwrimTReaZQ3hdvpJdvkVSP8lKJJWlhP5TGuHF79P0ZTjKjj7eAPfXmQPM2X/wB8XFZjSfhT+xGyBJ8cV0NPgHNw6a8yaKW58a8ZV9lDWh779IzjHvw2nr3lMr29LgNjSPGoyiIAvWk8gZ8xXuqYhTP6OuqA+9x+7XrWjd8si2CIkgiy7o/GJwA8UGGXCPm5y7JX9Hie1qsKIZ9uwT6SKizwO4bJz8dBbdxdz7DazxpUXzKPjceHwGzo9heCk90aoam8lq4hqOjv6EWxZFEULf7eCt9gzjrr4gf8aSoJ1jSjsUx7F+kOHIUAcBBZ+7qKmLddYzCKIdgisBKeoTswznA37NUaDluwKrlx3A9LW+4PEob0odl0I5QvC2D/8KdUEWNGokghIWisGSXQQP54248RGWY47k8y3F4qRztN1JHF7CGqvhGC+znWKs9YGdeFI2F9ri7rD5uD8dDf6fT/EY24NQdh8Dwxx7OHLFEknKghqPMM5TaQRLD43gWHNLJB6r4SLRkzH+VfUcQeuRq/CuShqrwof24vJuFSe9qz9j1ZbpFO6cwuO+/MZvowQg8iIY5x1sIma3o2C1kWKtHn3JnKy8MZiuVY0UtGhUZOb6MAlF4yVqsHarkTWfGMLh3d5kt+1sXRrylLOWXWP7p27BGqrXNFW6TskjFWDuCB9in0hAVcVr4Lb5GOgLvIKKu5Kw4qyMfTzwRDMnCUEi8auwtKBbxApbQenHIRo37Zk/o+yWfJvFdzdqYgfb8fwzvVWdPFCOlkl5rLAV1HQvXqVqMaXj96eSh/a6sB90iD4Ha6E8q4yOHVPHMW9JHCnzkgwWteMtpZVpLU+Gsbu2oTzTDN4cP5b7HrSgYujrWnKHQeiUAUwmzGBnv5w4tzzqrTm5TkUcoxlre09LN+9BixP5NFKeX0MfyIK9r6N+Cl1MjdGv4ejEcvwx4izdHrUdzCuvEgWSl9hNT2ExlwZ+PvJHJ9tNualrwzBzEMeZW6p4XH7anZZWQCymdfh28L7LLN1FIiPqoQwr3Y4/vsUOSocwkQbeezzqsWPoRNpWvdU+BO2Es86qoFAqzElfzsEAf2LYIptIfl7XCChKC0uaThOzeVbQN9OGGcdGg+2iatxaMxUdi1ewzFSsTQuThF8flzCCw0r4cHDI1Cwo4mfI8KPfxEcJHoVJn3fRXfknGmD5kV+Pi+GNa5pwn29CHIavR17JyqBecxkvvNKm9zq04FkClnIpxisxPrIdPJtpoPqXFwKKOwoDu05qvh8rRDklhUwDPXwzt3nUMI5DcruBKDTsm5sEU+iwrHaMO2uNaQ91ob3jwNp66AWXDH+QHqxKdCEnmy2YQHk9/wjOG4Ni/p7wDX7CpYnT4RKG1WWelpOUoUnqMm0mj6Nuc73YxKosUQWOtbl4SLtHpgQLo2lEheg1zOVqnPWoOTrYfpodQ+mFRZB1mkRuJJTx8m0GmNCXyA/9eaptz7zm5JOVBno4NE5+nTLYRP8jjCET6PaYau+KAV2fAHLJZ/5rcg96Oi7RbNsB/nEZldapzlIS0Q1QC3sLGzwPsv5x2ro3PY1dCvekyRn/Ia7Gzt57MITWGdZy/msA8oRA3ThewjnjtCDgJw9dE53CS8XbAPrYQ8O/PYBrjh/w3Gd5rCt6gj2HzPnrvq9JLc2lfeUPMAdrg1otrACPwns4nkjRvLvHQSq4vqg2KnK3q+yQHiUGv1SN+IldcYYt8Magk2vQ8EtQ459pgxJdsdZ+d11nuEpzkr9bfD5hA+bXcojw38xvClbBOYIbMYVuy1gnHgyz5PVYaveKN69dYjfx14Ehed+PF76N5ReX8rayoJoPN8e8nrMgOkF7l6lyjbDivBn9RN279iCX/4rg1TzTlxemcjRacJwOGUi7ft8DD103mK+qynrNo5hdvOC0PhCWpf8FkIknGl3vxXM26tOL4Su0rPorRR/ZQe39d/C4PoeHDTxxMPb/nDW4BbcaC8E+TuOsudUXRojakD1lgF4OL4TZk18wIPbHsDMzAienmFPDYIqcK5KHUpeXGFlE3Ea0aEAvm/T4EFZLW9Mr4Thjt1sLucK94xtgY+Ycc/xUnCoIxb9ZMX7DH/Bi7tauOHhKtwl1k5Vn0N48Xw7kNDbhEvs2qmeV1HFunp0c23EnV2muCN0FealzoTrVa2cmqIIO7SnouRoZQy+Fo5Bftb8cq4FmZn+Qw3fRfgvKQZ262mAlLU4hO93pLAfY8hHrpgXtyfB7L2rKN61i/LE1pCewlysPPILhdOlIPDfdVQz6uPUN2YoadFCm2fJ07GXibj8swc/CtDjwLWGVGkoD6KdHfBB6RFsv5LGp8ZKQ/xUcXr/cxlNC/bjv+WFuObbXHz1QgAWe56j7LZW1PVfifturoOU39Zcc+cjXjrQyeLx7/j8xq9o2aMOaiGX0Kf+F5/5ZM0dNU089W4BLK5xY1ehY2xoeY9cRyfi4g41GAELOO2bPudNk+J1CXu5IciPK99OIBOvt9RsGwG2b6T4V/FYSE+fjMVTI7GjQRG//kqBCEVptn0tAJyUxtq176FEPQ1yMgzgnrUwLRVuhTeBttCetZlOZm6ijtzZmHVuFnk9DucypTF4+rIUtB2ZR+lXhunqZjXISyqkC1MmkaiKBGhO1eFbO/3xTn0MKycqg/r9t5DVIQWFFVEk/buMvQs/g7NfIT4bzKOfIuVUmxOAiiPlweNWJJZffMgJs+dj62EXan11CYam7UH5Ca7g0DGbs2tcYMJPA/gjvZHy3h+k6HwjzDrUhSX+p2nUjjRSSOkm91nRUC3ZDL/X60HHWTPySnCm80UjcZTjV6q+u4zt3mvBiZubWXy1HlSXBuBsp3EgH3cAx7fX4cWxpqys8gCuTnYG/9NPqEWlA74VZqF6hxwaiJvDMu6mHMspVPALyDRyJXR8O03rf5fy+vazeKHsDCemfWHVQSNQ8tjKe3u+Q63fJwrLOs8NU++TyrK13FKcxDc/IG0tRc65aQEfPnjC2AxJ9nkog0Lisuxk58haPSPJwVKbMjpHU0biCuidOgJy5dZhT9J9vNbowM/1jkDtZC/6MisfZv9LxzlCMiTz/gNmGimDyIQJUD48H/leLRU+92Wx3UlkrOnDylyEhTUGVJz1j+CBOgTqnMFfYdt4w5ZYuDv8BGF6GMWc2EcJI1XJNUSP7tWrkNcGA1iTIguvUiRZJOQmFT1dTELq61DYqR57ZiVwZ/x1aqBglPMmsJowCstn7YGZgW/YfE0FPVjWgautZbnejSk7yYgdNSxZImoSeD/VYXWfYAqeXcJ6V+bjL7E8vP4wnVMebkCngBfUFXuUcj5bgYhABouoK0G1+3VKO6BLOht3YfrOC6yZVMlj7kijtPQTXiA7Acy0P4LRtev0KFseC1J2waRqHbp2SpI114iizqmjtMooDPRzpWDECm16ZR9OhvafSKzNhhripoMqJrFT8nL8YWQAj7VkKXqcDky8fQjvPinD0CE3CrI/gq/qDuHPi5kcbRLJfj+EYcLS+5iYx2D7bxOYFufCg8XO5DRqD/baZ/A/X1MYyLnDV9LF2NLXFo8pjQDFN9oQYr0Z+oWDuF3yNLrXSUCsbS26bpnAz5/1cbDCI17oIQKfFvWwz8wcstT9y1bvT8L4j+t5UyTxyfQyGqz9j164CvHrm5bwoiAS5Las5p2aZmjTkwT6vU0cFz4D3fdl8pIl7QQCS9hh5Xj4kN+KsSrLsXfeNvhRthiG22Noc9Ft2nVrOXw2Z2pq3MEfqghSu7s5X+koLogqh/urEkHVuBLc9Szgt48cfTM2BKWqu3jzmxB8H0zlsd3GuNy3g8vjNdArwBe7H1Tx0TZ7Soi9yrmzT0NUsi6sUbxKoRsusqibGFdvuk8pH6Xg9JAK7RqVyK01jzDS7z+Y9EQfmtPruOm+CgntOEQNywShzCcbmr6PoFjPtTBHphpFlQ1AzV4PwlMsOLxlI+oE6PHjdHdszNFFVdZgp5Oi8NzrIUmG+pJYHcLJVX/40I03dOaBLmxvLsA9L3zB4fEN2N3wGLN/3oDf8g0s+NES0r6aYereapR3Xsx/tbzpwsAhHmifCsdyzDAnOg1HPMwH41BrEP4swxEzL1GbozDNeTCNhD+/Bpe6VaD1MRQdNLNpwXzCjP1GoO03CvtPPeS5EfPw18E0HPT3QuH7H/mRrCSWjxoB79V6cf9yAulbr7i53hDiqR2pLhIfOwygwUAtbt8ix5pD+7H263EoGiUFqi1nsWmxLgjvaOKejFe8YKYqbPn2lp0U7GHBGgHSOnoBezRFwfnPNtjvuh1SuuRgkXU17jmrQeklieC6zIrePMrDl+91YNrSieCq/g7dJIWpMGKQ1ZR8cWrAfS5DH/bq/ckzLzexUXcIhFjrgVCuIIdkxtCJzXl4wfoT632LoYRJMuzu/JrUgq/wu7AtLGmqCZcverJo1U9oPhWKe1KTwOhTHuScf4Xxy6bT3AJVDGnLI1sbgvaifEzcaoj9+8dx5uQNsO6QI/15FY++4ZPBM/UVXJYWhvcmo8E1dTsdGT8VLolL0EBZCBXvO0m7pXvpddwy6H/QT/mXl1PDEkX43raBRhcXUa3+VF4oUcPX5wzwdvdvaImLeFFvEskEVuEdeWmwixamsMATLPEkAQVXGPKX9kmkHG1Ci+tywHfvXHp3/wc9KQL4Vl1CxUf8SU1vEWUqHWB1vXCIT5fgghGRFCDnyE4piaT1VBiWyp6AL3GbyTRwLumcqgflalVSGP8cg/eug1/jHsEW3RZ2QAMQuxiPL0JieNT0RTg66CLNCr6OOiO06VbrF5ijdoK/DJ0kF+9RsMbLHz4UvYEkn1LYrqDEeu/f8fsLwrRl5ykcWeFIzZEW/GCzODg334PhglBeLsKodU2Cg3cxVqwu4EM7n9KPoAU0UjwEg8+KQ213JJTbjoTXoiPowtgeNBuXAXqXl1PbEyR/lzo6YriLl8SJw+9/qhzwNoJf2d3C+cMn6KtxNTk4aZOHzBBHnW+Dd4pAgmIGYH26m8Y3qmFfZBCprXZh/1BNkqtZR0LxduhxxAuXzvAhp3+TQHGVNn6J2M5fQkJJ7dgTjr0tzS9zvCFf/xM6lPhzrmoV/jYXhfdz05jLJ0CH8Q3aa36JrqutpTl9y9n8SCaOs10CqBVIQhusQc0kDE+/R/LQXwl3z2ygoLVf0PPGThSNauA+JR3oHlnNfanqIPXoOSn9FcE1JpfYPXsm7x505eonoRg42oGFvjdz37R7OCAuDGGr+jjm61OS9bbm9vVi0LjwCJzv3AYGMTcoL/k0m8umY6u+BLi0nsapz6fh7aoNdODfUTqYsptX7BwF+cGnQPv0bTh9eQf89ZwEr2Tm8JwUUdZesQOeFkmg/7Q9lKJ3gPZkngO/yIfkxiGwxArh8JsF4F8/lpZHl0DnqjOkvX4Qi36Oodg/e+DCngiK3mvH8+KEQHPkQt4jco5unF4JksmNlNl7HiZse8aNNU9BYf4t+GN5knaUWoDymkCo87rA5oeNYDDLgG/UGMO+FQKssqcHLY8/w30bFfl8wnhIfSHC5q/Okeqmel7goIPGE5JYaY0mGKY6cNbKkfjdqhD1Ek1AscCXN6S+oB+2OlTfXUqZpm/wi4gnCx/6Co80jBge90LYCENQUPKAhUWP4F6uADlknUJz+RzQnqbIy36MAt9ZJ0FyzWccu0cJfrU+h685U/nR7CAenBUCVfXyJHPnJ84qLMfdlUJoIOWIS/6bBBcfTuB9iyTAeu4bDHl5j6ZK5lLAMYDpM3ZBj8tsjiprx68q6rBsXyAJqlwE7YxluCLWAZqk2+nhyEL6droD9f+r4MaMZFa4LwUx1k78dKs6j9sZCFtOr6PKp1v5V/kQGepMAiF9d/7SuA/GZsuA8I8+0snYjcKfK8Bo0Xne4b6ZZKtcQS1hOXXuj6VVRZJsrQ6wSX2QdxWvor/XznJVjTIMJB6km52HYVJPMokPrAXZ8ko42G0Cm8abgMP0bfDgxXJW2+eEaw+s4gPZlRQ59S1nBg2zqWIUqzYKQ9o/f5wtZ4s3XUxwzyEBrvaVgpX7D2LxjGhI2zAMertEaMoGK9DyP0ELR1dAdM4bvjRvAe/1mce+Hd9p+WcLPNGnhArD+/nPYwDx0CD0zMmD07cz+Oy0Zzi0Now+NHpT4Yev4NqVy3nPTSgoVRP0REeTX0kjJc05h6oyNdiY5MnadyuhsuopZtv/I6ul/8HvQGvwKjtDm8df4nJZVxKSHc9zC09grv8c3D8jkXuyRmPdovOcvF0XTv3KYN1zLXRf6CicKh9P618hyI+pwuCV1/CEsTCkBSTQggQBmBb2mCqXROMy7Ra8tPwqf2jyga0pGuT9yJ50rxeBR7sKlF8SBy/pHsyO2I2mzTIsOSOCLJQ2QobQW/A9hDT1RgKLhI+GOwUCMOZ0IcDisyQw0wBF/rpAwUN/Fl7ZDYc26sGpIT+8sTEYFmczGC4Jh/L7phT8NpjjREpJUtmAdLSr8LCaCN86OA7uX/hDRloAZxbVkJz3F8orX8Hjwp7De7M7fHf2MlwffJrWfTxEHws3Q8o2gGca8jR132TOepSFHx94gJfiT1q1bDWcbqhHrUYbGNk5jBrWE2Bi3BxYO9MCz3cGsUajNnZWf4MAgZWYLh9KkyfOQ5W9EtRxYiI0mRqTXclIel6pyhlQgqN87cmoeBfY3fpGnzwfgfb1nxx0WgY+bYjB4F49Tjm7ncTCjfDCtQYq8fSHvYmxaD36N+0wruOTN8fAg31baeqd7xjcvxKbB7pQdMlzdikV58c/e9lmlg7q2n1FA1N9CE2Ng5q8fDIpTsGJMj+xIucU1z1JRCdJVUjavBllthykpoTJIHAuF1acXMklYQ28dVkSW2m6wPWKRtTKzOca50C2H70E1VOsYLnbQ463isEnM/6jf7YyML6/htzkq1n1zDWqtzaA0BnLyNNSEf4dVOB0IyfK3CEMq07uwciabxCaXQSpNksxIS0Fz//w4w5HQzh50w1PVYZh3t1akog7RFn3HLnipTv1bfiPnseOxs8iR6H/02gI2BlD+SMPMs96Dk41UuDc0YFjQzeQXUQk7T58hiQ6wyA9cCLsc3zKax9Ow5/zlrLMuykUqniAfOReUPCJz1D//BuryyTRtUpJUKmezW71/Syj5Mlysz5SfUsy0HY3qJr9hItNF1BA2RGIt7ACudYy0C3ezFX71+BXh9W0fFI0jZXuogKD7/BErA6VX4wnrSXS0DHrDXWUm5F7jBXlXnXFGeEzCZbchKCOPPCZfY7G2D7G9Yc14IaPMSx4m4R6Qr78UGkKJ8pXsJ3XJ1x0QIFud8SCieccVPpqDOtuRKH+vRbM7jDm0/N20qBkFNXe3g7PVFLpfMcUrt+VQN1fxWCf3zHYVKsHcbNPcafGAVDc9gBq3h7lvbsnUsMTNfZfH0EK9xByHhei175VuEjpNKf6TaR3h2XxV7w/rrYpgZYge+r+1E5Rlxn2pgTRws9bqN08C7TuScPOabs5Jc+RdoEo2mo2c+14fTqtago6RgtxlWsEjLg0EzMu6/Lg1TpyWbUDwnd5gnuhNDrutaOyJkEwaM7E8Wf0ebGJHzc+ysXsA0f4xRoxFmgWhAN0lnccmgTX/xB0tv+gWw5dfLwvkHrTZ2HxRKLV1o/5zx9ROPz9G8hdsmQxH1sw6emgKnjNKmeyscO7AitX3KfBHBGeBsLQPuwKMoH/wezvY2F03F2+PywOliJPQfWCJtzSvwMLrq3n5U1buHfuTo7zm8xBKuOhwd2YjcQM+ckiaeyaspyCjm7jawZOtMUoHpRv/QdvVZ/DDgFB8CpXpek3vLA8biYtc9lLJsmz2X4Oc9vz1zhtwVvo6p9KM1rUIDTjMZZt8qLV/z7TTtcTJDTjNecXZGLULzOQ7HpL3i7p/DTHGFyuN0DFn30obF+PQzZ+dFv1OO/pacBxKAY7Vefz3LKf+ClVAYYrF6CUdjRpKYvhx65+WHrThhefnsXHSk3prKoDZgX34Y02Gfj63JKdvv4ijfmhGHZ4iCVaHIDbP2PH22voe/Aku3+7Bh4iCHccRHnRz6VU2d8GeRPUqGBNE2/PWUp3NnSRkKQy1p+divPuKIKX/B46ly5LMetLKEByIe552ge2fsF0uMOT3FovQkGDEAjqCMOG8G56H9uJ02/sRaW5+zF7XRxt3X0JvxR8Z3sNad5WNA9TtplBUXoixN3MggZze445OIFX5ktRjHcphBppUvTTWvqzoBM1Im3gmco5+HzhKExsVqaUrBm8VVUHv+u2scTCx5S8/hnWWURyd5QBfEjZSNE5ZfS4Wx4G1may8a3VZJuWAv4RgzRC9C/9VjxAYu/l4MO0K1x72JrH33SCpshU3uzlAeuGVHHfX2faYt7MzUNpOK4SQNpqMclumcu2X7bgmXva/Dd1Lp+5I4v2T6firIuTcanmct46RxDkVa3Bd5kvxu1dBGnLFfjcURdafUafsUAIvWuKwUalGEc3K8DLGdvAyUqTrvd7UvT6ahRfZc4P/8hT00kJWpjSRK6NESRmYw7HsuP4gEI8VO6uY+Ud18j0dgMbmVTCIzNl9l4oxit6J8HHP6YQuoV48vzPrCi6hrTab9PMDDsYe2IsjXSdjulHzFBc8xhHZY2H+RUH0Kr3MW1e4svxM+fQ9xlV/IIOoOpqXdLcEMq9qwqw6fsYEBtnQKZbDchIJAg8EGFdhD0vsH9OzsneuHyRAkaMPwPr/unAqhG36Oi8ADzuMZKlhs5jtfdvDNGTwsS5FrAzJRQ3HlfEpTNs4FjiL8p2W8FFi2vhsZ8cKZhewRR9K7bvicXJDXL0OHwdlN02hHlTWkDJfYgCXqbxjsh6OK73kvWXXMXiL4b0du4VmJeRhT/umED6e338eXczO+9I51yNh8QmGqwgrkPGyiLwed0PcB1Rh4enqsC/jLMs//YDKneKsdguWSx1PAc+CgD21gd5+9w73Dn7JMuFGkJT4FPUvh7A7yKfcM3Zk5xclsFj+hnlM/zw2l9NVr1PuH8zwISkYNwjMZ0kDU7AG79TmF7RgwYbmmGqYABNi3tAJ6oDoc7NClqXmGH2XmcOKr5AMx68oZ15MrA99h4aHWjDvEd/aYqOJTRdQ1hv8YgvZ1tS39FCXiL1hVTuvaHkXQYg6zQajzSv4CuVB/DdlnFQdmIAVTQSUaqwDJvKLBgO3OBIJWvwMghDen2Zw35X4N1BhoX1Auix25md1ldSr/lHXF5TjK+t23nHW1W6LiIIprsquPeaAszrquR+m8/gte4UP1ULw/iys/jodi5/KX7IpnW63J4jCOdHICgu+AQD626iw+k/4LxwJYaq+LKS6kHycI+AF7clwPf9ZHhjZgpmLYvBrtsV507YjGL1wnR7TQey0T18HGVD4uvVKWz7P4wb0IG87EBo27qbHQYv8tuEYE7eOhtiqlRp8etFtO3RaHKdVQELUBUEA1Wgavle+v6jE8fO2QjpfyNoZ5cbHHynymJZI0Ew8ht5qDCcCHuAH3//wphBLVaYfACGBk/R29cv6OC5Ada3bYMOgUxcoGoJFUePoOiQGkmttyXV46M4fPoQyZ2/T3/HTiHpbZ3gG9JOzglyMBjTS3P2HKD1LlvY5ucgk+AfiHX+xdUHDNDiSDVH6d2DOLkR0JWyDG2fVNKm3kH0+LmFm5QmYrp8Kc/vmkYfBxfwvHWS8HrnWLhVJstqHpt5mYc764w6Q0+yJnLyTEO86lCBXxQLOWVVGqt+U4Bdq6X49Ddx9P9bxBUl/lQlOJuNi1zgqmYrOmq7QNWxCgyI0wXToTBsXn+A6na60/POCBiNHuhj/p3/C3Hl9RvOYNqhEHydaQ6TJO9RTJ8FPtWNoQ1R9Rj8TBFuLc3Ae2bG0P3YB5Q21pL0URtYGpjDZ38TezdfQEO5DN45vAzORoXRrG1b4N61VqxMKefWqhGQ5XsbpXyn8L8Ggq7qM+CY6Mjbb4aQWdQAHDXQ5eB70uC3whpCj2jw3r2a4DhqF1jY2kFeawkEhinAHD1kjbXG/NcpizX2KoKl/kMa8cQZI8smUNGqBZzbvgbmaOhAxp0AeBo7nUS+z8PzZlrwJOYIT7lwEHeCNb4pX0aNIja0++ogBT4N4x8HBMBjtwWr3h4Hj1SDeGPoZoqxT8MO1fUQsfQ+TfIbQS/l66lobBQurWjj8+4CcHCVJofCCEr7qUwxbwbgz7NyvJ91hWv9KzC7LY3MAh/hoktiMPnkOIp+qU8292Mh1PE4q4hUsFL5KfQ550xazid5eMNUdPdRhMGL5fxf0CE4Oi4eJfpPY43QFtxkP5t3PKxj0YsdcFY7mY5YmYLX8iwKix1PTeeV0YxHcsK/03hlpyfghxxYMU2JnNYP4NgRhhASbgyKiSPActc0GlNsxBe3DMCr4GWUk7gZ/pXLUo2uCTXJGMCTeXLwQ2EaXVtwlPpC/oCenyCYnPuLs4a6KLJEBz+1O1P3H3GICTxAJSI1ZPn9A118FQ03HfbiZXELEPpZhEFWC2jNzgiQ9hOBja5GMLG+Hl//S2X/7a/4+Mn3vK9PGi6vfY1fcu3p785Q3j9XGqYNKOGDWDdKTIki8eAjWJ7wBVrikjFHMQSaY3WwZOwVqD8oC2f2PMYpGj5Akw6DQN55ev2tgaUM34J5SQ6MX1jBigW3cet+JRg65Y2Xxvng+9OicNlQCFZ8CWT/dR1Qt7SQSt1LMCfwJo/r0ABDF12eKfCTvg3/Ib8xv+DtmjjsWLyVbIa7MN9dFEO7PkBytgi83PyLxjU78gcNb6r5/IxzqrspKeolp5635UhFDyqOTuZtVhPhmYk2xGe5Ufd/fVRwTxqlhnz5oOEMfhNUym3zH3L/dzFM1lYBdxErfDW1kZfHdsBBCw/gue/ZRqSI/QecKPvPOSgqPc5Zs5VAvOoqu94shaZxbjD/+TCVJC3lnwHdMK+/l5+3ePACxTJqYVsg7Y2kZxHJvidrIFdYi1/EBXBvcx7OnnkDe2y0MTXrMSx6YAKnAl1oVoEgjQnV5JoxgSAguBK2eGWi/5KPdOOZDUlo9LGAhS6MnZhCD/ra0P22OH261ckht+filKK1XOJcTZvcNqB4wh2+8MUaStZegqvpJ3FVyWw2S62jGwt6KSdoEO9nj4Al39Zy9FMpbrCdCEPtyig5Jx5GXZfmRgdP/KQWDbZzPvFO0S56pCgO6Vf70OeQIXxcow0rUpqgcs17UvZSJZH+afzmy1GavL6Xaj2+wob39awSJgU3espgyOYPKo8353zlRTT87jOL7Yjn5heJ1Gz5HXNv5MBCFAepslfwVsUf05tFMDdCkNou3OYzDd5g/i6aPizfTmNyYsn+F8HE8atRvu8ofqox4wSHQvpzqpFuZpRC+GNrmv+pGeJF0/Cwvh2s3BgPE7/+5R0ib8BhXwyUlhnDzghTKj9Ugd6RC+jqw+msFGMHa0f/5ZkZLvxe4RLp728hmaAWTtB0pMZjN8h4YzxfdPrId1UJZj+vxLz4Bsi5lQlZizeR7KZDKCYhwY6nw2hPizpLHcuH9gplUGkUgObnzVhY5c7TSkbA8wkjMd/7FbXk2FPIhy4+JrIfnl6UgYAtuXzo41/01l7NHYU59Hf2ddKe9QMu7z1Jbv4CvC1zHRdaSUEF+8Cq99/hz8R8mv5tFwaHOOFvsUGsKpqAR+Ln0bn0NyStrAAOdxXQ6okwXRay4X/hMpR5/TlPdlxEV06epxdxh/DDvUVUs308lDd7YkbDGczuukG6S87CuGPv8LNEKxUlBMC8qiTeX1gEq2dYwgKpJtiQegj+yCfQAv2NhFUmbFzxF7h1Khc/LIO7pwAG0ixAwjsR4i94sMNNdfzWeBn91syhV1ldOIoE8VVDAlvtfY9WYeKwKf805qUcocmp2/C41Tb2WfoKaq8b4NvWBThBbjQMpjiju7MZREp08vgJ/eSUMow+5u0k1r0EtxSHQnOaNK/4uZF/F7+C7X0yIJCWRHOFdVlV8DLd9Hdn759AJbvyMM37AQVbfYf1k0PhzVRLWNxdC0ZRd7j40GQgkXyYKzmNl6waZu2Z6oRrs+iJbQd2KAH0LOrFyHwx2muixebuj+DW/jo+H+CNQpUzICg7BCMk5Cl3rD5sEv9NBYOFsPuMN4vYSfG/qh+8KOEYDm4UprJXU6B69BZq2GcEB7SC2SzvBOWss4Ln1gvwjv4YHtsuyjnusjBD5ChNnHiILWUtwOHtWHBN7gRbT2f87SGELU4q0O2/HvosVGBmyh++2fMJOmVGQu0UET52F3nxcRe2sy3irk/prH39On4pVIT7zaX0/MMsrEo1B93SJXTt53g0HJXGmtsWoN3Zaip+GYImrn/x2fIhnjB7B0fGjAGtvJs88sNVSvvcicr2YnRIaR0s2+zL2r0b6ajZXZj0fT2f8NIEYcFlPLApADJvHcNv9++xmeMU0rBbCXaGAdy1cjHn6zjRuj22oNzdjwEvdTBXRR06Ws1wa916yDCYRjv6mhAEfOneYDOdeaoO4ZPC0Yyv8MxFnuw/6RhVgSzWVHeQ2IdBuPcyEjbnD9OD3VJwd9cpatk8FdxXn0S3jpcsy944dsiLRdTDycmpHzIvDvNKQwkIEallG5N3tMnNGdqUL7PXAVG8YvgUtshGcUv9IIjuSmFn4Un/N/9X5udEmjf7L83buxEVA59C0p7p3BRvDtvT9/EMOUGYAgvokLkd7N1zD3ICNqG/rC0k5fXT64u7aENsJi68cQu2C/zkZichFvFUgrLR0ezR28SX5+nRwgR1GpxgAc/tk/GrZCItHTMO/9aK07mi0bDOMAtPVi7A2t0SKC/3G6KOppDE0SGaW2DOUsNz+N6oIc7dbA0L5QSh+FAUhiinseaU96z2aDTXFH6Gud+jcZzuNNotEIUXTtrC/ahd2Fn+mZe2vEE730Z8dLaEO99fh9l129B/4DzccejFs0sBTl+SALfBUySaG8DJK87QQ6tyzgzeCv4BiTzWsZsLS6+z/ToxsFz9Aoxen+X+E/tp7v7PeE15Mf64fQ5/R31kl3oBbt95CJ86ykH2meOc8Ooo6uw1wjO39+PMw6shIewwrLuTQl/eumO8gCd2jRoNeU4dkCOkCC5qf0F2chsclUqCG6uOgMeUHng3dj+c2/cQAnbrgs7ab3ij1gkTffPxRtUgbV6pid8UTHCiuwusnvqWNM8O8PIDoyC1OgTlnrfBu52TySVnCt34L529+43JS0MTV5trQ/RaacwRUYJ/8ypJSOEgTw3PhGsWG7AlfxYV3wiCaZvfos1/d8BubzLUpSjC74dH2LnwHPzKH0FjV6Vj4pS1+OhtJY0TSeKqxH76fGQmRDkjJMVN4gKDaoopyIUrqTup+rIUvSqcCqdb0sAy5ixlLx0AncfaULQjlmKv+GKDwhl2XL6JYha3gJ1eAAtMc0V7/VZYbZdJ76JsoOHCGdTL10HlrA1UF3mOKksmw/Skifz26wrUmvcLhExk4XjAZBg5KRNCFE9iXE03j5SeTsd+7QXv6QdZ6oMbVop3U93IVJr0wQL8lj6kxIB/PDR/Bl75PYffhF2H8d2/qCzYhWOWHQDN/elQNk4RYjZmwDbhIySROY0uNt5gueULcfJbE1r49hXZTLvKhvwKu19Zg3lyIrTMcuRwi2kk13qHW9xfY1PQMHWv7oSfqz7iq9NZ+DhKANINzlDrp+Ww9c9q/LVAmFtOz6dtP/PQUnEIRwY94dRWScQegGvaxI80O/GH2xrM+yEM9+ffpPibHvz67UjUGngJdivkIGmXPJzz2wCybzbADXUL0r1QiysuJbHN8Wj+tziNl/3rht7Jsij8SAiyRi6h+JxeKr2gzq/br4G+dgGNeeDMZpMO0lYhX576PIg+7tEGo9hu6Mxywy3bpPBwWw70T9TE4DtO7PFwF++MqoeDbrfo2HR5iG64wS8r9XBW3h/I0NhF0rM+s9D3Thh27+Mz1pfYx9me128YAScbJLmxfzELh5rgs9peOnZZBTJHhmOmrgfYJtvAHjVJiD5pAnVqp2CuVR0p7SMsNt/J1yM38SXZdDhvNpZOmgZRvfADNm20hxOj7qFd+zNedTwVXqqMYYGGM3Bw3HMs2yZIK44UkwuOp3vr5aAjwxHTonVgrcsXzLNUIt93cRTvV8iFnmGwYyLQoq3f8LrCaGh7pI0J9VMgze8+LcvIRJxeQvfvNuIxE38o6FaBbSIj+fR3W7hksAb1lcxpiep5DD8XwH17D+NArDeGjV5CUZVmLD03CN3cJ4HxWQ3UCPCi5X9PgtSGbix2SiU3n0E8Hq+DInkSZJg6nStmGMHA1n1069sxvnBSBjZ+aeHt88fxezVjDq7NAvM9vTB/6BP+FzAWrAuM+XDmSQ6uO0QNHf/xfuFKmG7dhb0LLuD56Dzubn1BRxUIZsuc588ff/Kz06o0Ji0a/st4zfL+a3CL8RSsdcvG6a/Hc2OTJUT37uJ3z9Ih/JQrhn2awKV97XRl/Ur4PlgAelK3OTKvA9R9CI7vkMe+M77cqLkRPc2WwD/7RxDt8Rp33doOCcE9fFHiCi1tM4Fy1708oDGdXny7D6FS/rj32SMayHOAHb1jaGMIslzZSpj+QBnORDtA3WdlkFj5kZeZmtO3OwYUOOEuuq3PQe+7tWDfkUD3LCzhn8Um6LwnCCvaVNFlswmPOOyIlU9H8q5PLuinoEErNY/RkQFleJDYzTt+7OL5DxLgwblOmv/pPwj/uRoHrKfTKeFaFN92Eu1W24DgwiqOHbOecr5KQMXuZSh+/j8aDKwBx5Fb+XBnJFeOseCCYj2o72igBZn1qDYugxOCf3B43hW2ZmEYluzG138v0fj1oXBlIkD8mn64/vQU2vMszvgRRw1RqnzifQpIuU7i9DuHUeW8JwipqcCbyT6wIu8UXZn1Ejsde2DUiq2s5ODGcp8k2XR/BGpcmk2W163B5NIsfHl3Ld1Y7QsS0y6huGAXvZrylw9r1sLNsY54ya0AjCtk4NLmPgwbVuLksjjKKNOB8+ul6YeeOvz6HwHwARACAgUA9A9EKVraU0UL7dJAJKsh0VkRlRYRDQ0hoUiIrIZCyigqRSotUVYUKUkkFCkionKvUQq3747lZPNadPUkmHX9Cr550MbeOY/ZSOo17S8Mw+P6j9FOX4cC132kkSUVNP6OPPxcz6jho4K/ZXeSyHAm3x9XjzMzV8KUV6PJ7M1z7Lu3jMMk5OBY3SJMwo+cd0wDql2C2X5iKxf3jaSIMXO5p64XQl3W4JrZ8qD2egEsqLOmxIcVMLDzF3+98xYbFiQAb7mFbv/GQcllhvz7hjAmwgYe/lsIy5T78ERAOpqca6Ioj3RqKixCz14/2PCgAJpZDh54nATVVgu4NbAYVnVH40KvSq4zbIWtkjH46N06SAhbznd9JcHER5a6lRvJ40gb1eYsodK4+bQ3OQGn51rBlXODmGN0mqLqBMEh7Tc7LO3ltZOb+YzIUZYw6YAToTm8y2Mplj6dy8WaivQgDOHA9ZEgvfAU2m1ejXftpsGlvZUUWvOCZJvf0cbDoXB4ViFcdjCB+Oc69HagkEOPf8Mz/vWomr4MNIR+oMPap1j87jEsfmOBLlYT4emJBvYq/EQP713n9kAJ0Jhcj9XX1pOu9nbwm6OGL/JtWP0DgGHsQcj58Rs6bTvBSGob3T85CBMq0rnYeiu2PW8lrzZt8js0HQomjKXbN6po2qLVrD67nS3HOPPEBRfQyMATJu9OgB1pDfRjvyW8250EHdrZWJ10E+2c3/DYaXdZLbeW3O5ZgejHAlDJmkn/qcqBjslfcDp6iy94bcGmokA4P/IbB12/gDESJnAnNg9KPipyvfZ0yDPv4izH2+w3dxg/O/lRmb4s774nj52/himycS32+qrwl5lWIDnlId/brM6OHVNgb6gN3yzvp8Nvb6OinxOUzToJJ7392KJpAgSIZsBrSwe6J9bG8123k4BEGjtaN4LggDF6eexnpZGfuDBVC3SNxPhr7iGS2a8CzQo3+d2NaBBdPIbmH10Jc6IGeEnfdorbLAl/ozTAZ/JcCNvex1qbTXirogQdfBSMIcXtIHFGAUxC1xDViMKy0k88p+Mzdqqcpc0vnpOjsjF+mPEKYfZTnjLCkWdIIE0UFwDLDQL0e9UQHzzVDauHL4LvcjtcKrceDxdPxrQFmRyfsIJcv2jA0tefYOrH0zx1qjx6ZP2l7+NdSKl0NC48coB1Z8zB6sk5tP+sPkzwD4bgjN+08vMkmlo7gUVadWAoqZtcnsVD6/BZmBVZyvWRqrDuv+mcNfoUvHd8Tb0LNMAxbCSIhY+lX5YdYPlTiUsKj1HrJEOYafAGc6LscY/sbYi7uxrWVZ5lj1MmcJf2wqR4A+57a0c+HeogESaK/ZITSHDyNny76zDNqFgNBvZu0L29iR8aOsL79mlotssUhKpuYfnnXLSHu9yZ4wmrxJ1gXtd3LnzdhQrX7qJVeDTFnwHYfkEAFDrywGPeGTKak46XhXxR904/YIIw/3ulxVMWKrP9TF24E5OFGo/e8ptLsRwz8So3XNrCkWH5tKT7EKQqv0BX6oTXTfJgc+gb/7vvgw31KqywfhgH1N/zvRPWlHd5F5RZ+vKWZZ247yLBzYzD1MlX+L2sD/klTIS4LVNhrNMh9HnfwlmRg5A7rhCbeyQhNMkCJ3z5Qk8ivCHRvAZOKKzCi9V3QNqqB+ym7qLdlte5e8gSrL//glibsahkX0yfgxDJchsEzDsO6xMywaRaD0Yk2nH1AgkYOSzMtZjO8X3KIGbsTVY5wrTvoy5c923kH0VaPHHTFdBbPQpSk0rpUmQbuszaBn0uHrz9ZAZGn2zGLRWLqGxxKfgnxlLVNFW4Me8AWhT9gsxfxXA2fRzJWo+n+8VlFPvRjnR3ZHBmaRzMypgECZHmNPnjGZw1bg22XnkOPkfOU+mGP7w15Avrlx7DY9e1UcJJHBTGqXDI+BB+5TgTpz57hMM/PjEJjYPZHZfQ4M5V8tOPgyXm0pC1ypY1J64GxUoRmP5SCG9XboQNWSlgL4bwRuAJres7yEtrzEBo2hVyXzeJ7g7/x5apdzHBeQDzyivRLHITn04aS6celoBotioY7wZ+EVNHt4v/8s6lIvC+cx43S/nCYuzgvTqzWHY4lvcaGoJmxU+6FHUGH9fdALvpATTyTD1YmxaBW7gJlSut4emFnihy3BxeTbfFVaFbaJH5Z9Sf7I1xVQnglxZLIR99KEFOjCeHP+fu02pgfmsUly9+iubH2qjrZBQHt56EmofaUO5fS+ZXikFXpBDLHilBs2Ax/+eUDQkFI6nNSRZjniwk2fkAg4WFXHdoHqh5voYZ68zhmagwF3+u4vj70nRNuAL3XBmNDd0LQPafKH9N/49WDejwxfYZoCSTwqOFWyBTzppchXfQPN022NX/D5aJZKGSgRisHpjItxQnwrG0QUp1tIMTBr187ORYGj/oBa2lD+Fj7ljQueUIFs/SUTNpDHwMTwSpn2Px7SNV2mb0m/xGLqPNA/Zkp1aLWftfkYINwmtbhE69JIo5Eg876xPI/r/zKJ//ACaPKmfzxhA89K4NV17VYF1vDWj086GRb9pRpW+Yzo0dolf5p+lzZxM73/dHuYOuOP2CH/prKEBl11XUefqDs6US2Mqui9VpAy+qbkX3bUN0a+tGjj63HLTcAe790eE/r9fTPc3JPGvVOXx3eAN4lhfg4ln7+edtfbCqdmUXUXmQnD8Sk5Zv5hTnBChJ/QChpi/Y0lwXmtd/JzuJElggdppdDZUgb2oLGnbq0ZM0YTh5ayqs+XAXymK0UOb8Xr4jEUGVLiuwqdIKtP54ULKvLz91fE+Ttk6hrgoF0MnUhKs+U0HAdQZOu6fGjh8AwvRWU/HYALTENBx5X4733/eDXyOP0+z+56RvPosPdcvg0lJTkPXtQfltZ8jVzgBffywElxklvMf2A0escefW4yfhVO5a0N2KIC+ZizeWHkKvJ5Xw4+oGqhtMhP+ssiErIBfOJTZDr/ICjF+pBSoVX3FPzmgaPaCLJmqrOFh7DcwurMIjxecJdknD0SYROLtvEqxcMBZlnxtDvEMVKu7Mo5JDp8in/S7+WlHBVQ/KeVNwL7wJEAXbX1vxgbwgfzRJoW07M8hLgWhbhyh1HttBks+z8Puy+ZB5QhyirHagqpEJlOz+hcmhPvj9lDMv88pEn4wG2vxUGQ/cUOfHp0eA6N+P5H/5GiXKelNS8Tsybc/h1EwryDTK4kmTs+BcwhAph5hD9xcZHLXsFIzpu8kfD35Di1PHyeLVNerZP5E4tgk2mSbRhacEf3Zb4qmMcDiup406EXokuHkzCH5Lh9BLRVTGn1lX4R3N2jsCdnQ2IWc8wu5iTbaU1KUNmbkws6uHyitk+VjHUWxoEOO9v8SAK5Kx/MAIuPckGJ9tqMOJHW54OXUHbbj3nWLnjENds0TKnTkSLh6rxtvOrvzsoAU3ul8HOX897h9ejo/HJWPRKRNcur6WZkzWgvG9RzlOfCG1hypS/yZNfj4+Fq+pbuPmV9Vg+3uAFJ/l08r2sfB4XC4WjvuFAlEr2WvHUrLWiGKDKcfZpeURLMkVYpfaXZiXqQDSXc4o8NsN/I495vsXE+l97zA6N02F5IuSdPZKHXoo6cHUd2YwLi8KejMM0KOpAeIHVjK2tLGP4EN2sDIHvz9a9OzmbLpZYwkVdVNA/qcRJGzK5YIuF97w8hv0vhGEhSuCsLnCjHSPlZL1FHMQqRSBrHHXuOKVAa2jfbTh9gC4PRTneR0HMeK/N5ww0Z0bPI2AhcRxrel1koow4M2FPRBVdYBk39hAsVgD6nu2UsKKfI7ZNBpuOU2AOqGv1Jl9AvcdSmeDzdkoNEWHYo6spy5lHTCYkIGNAyOgSsWE6gu9+cWvZ6QcD6Q33pd7pXuwaqkQbikdSaGnDsOQthHsu/wXlfsrMfRfHp+69ZuE7s/l5X/HQKeyC2zkrfhb/i7HKI8Bcb0V4KV+ncOuLOU9FodoWm4Ytot848SD3ujytga9rO7TqWYLWLQtjnaOauKc4U2wT+4kB1r9Y+NIJXIcKCOTCFe2SfZCA1cjMFjrhnalGawxdiN+MlxC1iZ5mLIbqKHPGxYd1ucF/b9YbpBB8/sPTLIPx5m/POiclhXPTttG8xYthlP3TFFe6AkEF23lkCumsPCKFtzR76DiHAnYlvYI7OKXgaStHBb3ALcOjIKng7vBxd0ECjpPswOUQs4ifQg7YI+m9Q/I+6Mqr3d/QPVTdOmyngQsCVSGRkEb7j6WieOWbKajrkmcuF8Pa+48xQLzURis9ZWbZ2VhYZwJxGfkg2RrGTRnr8Fzbz3x1vcYyrv+A6NkNeDOkWgofDqa666NB8nAZVDjvwdtG+o4YViRfFYq0pmjDzDopSennZzNc1Of0kRTVei6twV8nBvBtcsTPl2XozU1FWAgf5Q/pzai5FwbvtorDUGNkiA7RQ7kfRxZYQmT0+atkBTpiXvKcllJ6Qy/3vKIr2Ym4J8YFYCpS7DlbyAlrL6MP/TcwDNnNe/89hRkT2/AmvW/senTcvJP1Yexi8xQc7Ms/N0wh5TzDvCrp8a84JMfivs088ifRvB5XC7bqFpBUtRkftqwCy6k7MSVgafxEevg1XvaEBu6DtbqafP3xlpSOjECFBvbyVnmHy+z/QTXX79j5/AvnDJLADtHZ8FG4VQKOFPA1xLMYeHFFejgv4tv37aEnYmxFLlsCbumGlH0rJt4/lwJy0of5ZlOWmCftxAaVGbA5d1faZ1CCLSGmEH/3TU4V+cwVBicRtnL3TD7tAVcvDsVbGqFcFmQNFbPSKEIFMRTmjrYFOmCYaIa6PbCDy55T4SCeEHc5P4VDZ7bYblvH2p/K8WjR3LpgkAuPwk9QA/W+XLOPxXYphnK2PoGzM1DwCshgw59W4E2EpvojsE8Xt+sgnutNfDFaAm4p5WOPKTOsnplHGH/A90m78D5mcDTXp+G9927yXafFb2eNAlklf15R/sZ6Fg7iJLiirAj8Ar+FHfilAIZtM8wIQvVPfQ7lSC58Qp+HTuTUnYP4SKFGCyr3AsrhiZyZ+0lPHPpMfxZVMxjhafC6G0H4LyjM82JiaG4gwLcNfyMpkd9oz3WjPHxDig85Sd9F1KDxxp9rOd/m9dqHEKn6flUdKQG2jYR2fh9p6KIQZ719gmJHVaCxTvcSKCwAw9iOKh+f0l7PerA/480p2A7VAZvQHrwGp+7mcII+/dcuzeV5v1ny5l/1CFq6kaUqikEX3k/jlPPhLaLa0ElSBEKL6ZRk/AaWKq6HaXtPLmzYg2Z5XewbJckTndYBh0OF1C9XBfWO/2lvT26IB9Zj39cs/FFwh3oMgE82yUBBTUy9Ot2BwfulAPzly7oVOFIo5Zm86S++dhUsJsf31sD/9K2U2/Lbf4QUAorjcWhfuoWuv4+CH3dU2DCm2201y6DLwy+ouOhV/j3hXkoIX8C8+Q1QG2XNG0WrKOnQZPozruNHH9sNQS/LOf5SZfw3P1IzhMsxqdWCLI7xoDqZ3PKbknHigQXWLSqCGvG/2O569fx2YR+Uvv0FeIuqMPRxiZet9IQRtj/BLudRjTROo6t5JWg9NUSbL98H2+p94HJj5HwPPML7Fm+nZx3OKDt4Dl0ih6Ed8uT2LhpBhhNkyEIE6T4IYTTZtlMMuNp1WkJ0K38iEkbbLEvdQ8eE47hH/WrcdbXzxCdMgbgsh8H7TADG/Mcdl0QwI3fN7JKtCEt0w5k6RNJrCzwFY2UzEFxijormDGlPF/EP4t8MW/PKTAvekUbqz/iij8KZKP2AicmjAMRvRyOuJ5LLxe9oYq501BWSwIcbiymD2s7ef6KdbCoUoqOGIjBJ+ul+PFSJEzvKoatRQn06vUlmCzdTNWPgSpHt7NuRCqtfysGEUMb4d3rNVxQrwiyNgc5coEq2W924a0xqbzjxyiccTcRrhSIwU9TOw771IqCv8KoRCsHhBSAjWf60PwUC27R78X1J6vw4YOxkNGYArnfDtATbQuqTrzLDavVeVquAD9MU8PzdVvg+6cCuvjFAKQXinOpVx0kDAmhbEoQZiVlU2TzRVhtN8wn3Yog/bUdRjUJgXCrL78YtRr6h0VY3VoLd6d5Qnv1LQ5e8pgyipdgTEwrb9qpCosl/kDIwsP0VvQBeQuJQPiXh/ijZzvOP2pB4aovSMz3FpfYzICbHlvg1ZbTrFIcgSkdPtx/9Qwr9bqTnshb/CO/AQ/P0YWzAXLg61sJe0VPwtHKhzCp1QAFjozCB8ohIGIQCGqX3ejINheO/acJuhIm1KcdCsuhB+MOT8Jbd7TA1mME6n6pJX0lBV5tqQHnsyTB8IIwblkZgnH3rqCI6FyOi2vAoiY15m8/aOHMVPQf84PguySUb7Qj5Uu3yUpmkJ30yyH9oj/MG48Qfz+Q1X8484hBKVS8JQKG+q+ook6CxZ/tobKV7+iVZjFe1l6Fq/dewb9P/lLOHmn+N0YTdM6+wViNLWjvO4YX1iEs9O9juW1psK80nuafj0SnlXfZb4YGbHBGOLLgJz7a+JiUrrfA5cHDvGiGL0yUQwo5a89BarO4/qkAWMTd4ZdS8VQw055ME37wiNmKqH/wKA/XriGdeW008WI5W70yg5+v3tH1PT9Qs+U4jrynT+7+t+C8ZQi3Z10A45ki3Lb5O2qFmkBIQxNX1c5HsQgJzvv7Am4Ff8ZzlY0Yvvo0xOcHk5G+D6VengQlO9xZzF8ClkUokcNaMfTTj+bHeWdgkfAnemEqzIfTDdmiSxj2lYiQaPQZ8j+YzGIflOlE8D+OHPqN3VP+YuThxbSs6DVEx4+Cn9dc8VxnPKV1/SHLrj3Qu76Lyv1nwMafIQSGDyB+rTVG5MrDqv07oOHjGcwY1Q1h96sp0XQu5Dfb0AT5Vaw9byscSasD248aoB+/izs9Vbn/0hxaHnkPer2nofKvE6yfJIrr5SeBjm0Emi61gJSgJeT+dzG/nmAAyrK3aJvvYvxR/4w6woV44/womvm8By9MlYXZqido1dyjXORWSLKR3iQQpEbvZonA1NuGUGktw/4HH2LZbQSTkyYwd00C/wx7RntLvbAtKhV7nWVZ+2s4Zuuk4hYrdXQ0UoFvgQzdsZ/pwZ6d+PCDNFptSIQXJ7KhK/48NU92wi4pCUipHg9dfdtR23ArNQ6X8bDdPJim8JZcRD5zp04Uax5TBzWNQJ7xfgIs9kzEBwVb0bd/B5TvCsGTcadAsmOIlH5rsFrgc9QVbeGA6WqQFZIAjQvOY+qeefTZZAZUtSVDRt9kqg1zg/TLZwHvTcU9C0zAs2oH75JsZ5mts9itRozMTPSoO0QSd130Ib1/pahT1Mflb7Qger0tPExv5+9/DuJriVb4HXua18w9gL2Wf0h8wTquEU7B7c/EQGJOGd0Q/8gCo3XId2iQz947BU3X70Jr6VEat24V7Zpoyk6Px0GOjBMv3PEeTyw+B2er8slB4gHuP54KlUemQYWoKy8Un0XvWmQg6ZUNj/pyCq+8eoRvjF6C3jYPTBoTQ5dUP3KG+T76tesacoUUTBqpTw7+R6le4wfZf7CHvc9cweaeAhxcPBfG+svAwOmDLLBaGsKtD0L5GRUIFU/EV5McufxlJvtcTSAXQ2m0sz+F/cJfOfmBBUyqf4YP3DJocoYfDVSX84V9rlx47gNYJ6xDyH6AHd1C/PmROFRMvMLe3+1hneZJTOjZDCo35vLHrCssNvoX+195C28ehpPS4FSIcQaS2nMb539YyoEpxhAdvgj61utCUdJSeu95C5eezsSbkSZQl1tD7mLfoCx+HQx4rMJ4g3C+N/0bysXL0t6Rj9GnaxyrOArCwhdZsGWZAvfGm9EvqeMY1JUMAXV26CO+Evq3KZBLaBzd3GgI4q0OnJPRgpI/GuCgkQqLenmij6sOhlzdjHOV3UlvgTKX5xuB3KY35P7fVVTGuzTvyFM+8eM4Zz1bBAoxwTwgsp6yVwZAp5gSXMpxB5uT5fCf80nwk0kCtV2TcbWsHZt6uGAuP6FztmdxgsN02LXeH8KDblPxBj1U8r+O2iZjeMQoe0j+8I7bPe7QWb8zXKAqC/9JjQKTu/08Oy6F71uGU23meup8uYxj42ypY38ipgVuwgYrTWiNH4/b3f1YJSidPPkep/9QomovC6yLt4WC4L9A/eqoUS0CezaNpyfjNcBktBIV/fuDX3fn4p/iDyhwdyXVHowGk5kC0HN7OjQ0lEBD9jvYFFeDy3IlYPDtEn6hV8odnxdgZpIGbrZvgJ8nx8OO1Jnwa1cgDDoWQUHCHDrkcpIgAKGs5AC6yKjC4JJD6HdDH05PMUAyWw0OfsLUW50ITi1SbFs6jWLqg6B38R++Ld0Die+1YOmaGpC4XscvG3PZXC2LlHAHxeQ7cK6KBzovusZxGusooY7hrKcX700Rgy35kvRD6yJdffINLry0QGXXMB5qV4Q1Vx342AVx0Fd3oz/nQvnbHG8e074T+vQW0a3HeyDo3zmWfbKKWrMv46svOnBPWRVrpztyW6oHSdW8wdCEbK5adZsyuqzozmEP3Bt2ih+YqIJAWiyVaSfhkHQHXjQSIn+jYYrsPQCLHVeB3qLvfMPZju6rycMJmwQS3q2DQSYT2cM4DmsKHkOqlgq35UZhzo9U9B5/meYeloUTqWngf0uQPH93Yb+xBeZWukN4wj0Oci3gjJFObHFOg89sloOgM6946+dkKrlwAwy2p2CPqRBoxZ/i+etnw9X9X2mfTxCPLVCBFfoNeDf/Iv+pb2aX0HsUqDOCom2n4oXmZyi8NYqsL4dg6RtLuGZzDjJ8v2BKcwhPdDrDbz5docnyW2j65W8YFZKBpnMbwU1wAnxuq6Clitthx1sJrtNMo5e3jvPOl8+5P2gB1s4JBncBT1AU1oIQZykydvZEZ7E6zExmtCkbwbJxcvzPPJxneoXw/PlPQUeeIHzIiOelLIL5YgeQ9utBwq2JLD4jDm1OpHBa01wek7QdFxlZgfnTWbRp4T28UJuEw3k2MF01CWYsXcsKyqr4oHYNNbhuxVAfS9C96MR7/33DRK0YOFH+GBrLVHlm9RbYv1QU29/qgMr7bzhaZBws3y3C05oekHJ2CEWd8IBzdVvhRmkCb6rqh1FCxRjbOI4yI1ThrlogSqlPZbn6eLjxdC/s/TMSp/1T4fMFXtiypIoVh1s54YMwHL/vRpemelPBUUEw71UF7ruCahPcwHF4IbzYoMVjjQLoWcNoaLl5GD9UKePaouXQJTCSfy9qYkOTy1R2Rxozs1dAnk0f2mnLgGyFI3rNcUEj7XzI/tzIs6QE+cWj+ZCj9BCmq88hR7UVkHVnAlxN9aagIDd8YvcbRIdG0q4BbXjz0gk8Pl+imP/modTrqTT8Ww2q3v4Hf2Or2HdSGceUWsB0Oyf61FDFeVFrOOHQLzr2bzsorbGEqN75vPZmNcHVx0jyh/ijmRxd3zAXs108uXuDIS1LKIA72sYwpmcstFirU2q7NpQfCqW4yZYotzKIEuX20VnJEgh9lYjXLawgSTUQtMKWs5VwNVwo3gPuDWl8IOAV5+4czw07fnJ07CVcIWwCFS1fOC8rB0T+rQS9J4B7hm0p+2oNXDapYEXjYh7ZVs/C+vpw/V4DtSfeo6jMH7xG6g3Mf6FHK78tw4Nbc4mO94B21TzeWzQaZofWYUDWMTrW9ATt1rVhxJaLeGZPMv7ekE5+povx/YMaLGtXBxXz1WSgdhXN2ifAQc2X7GK8D14fMqW75mf4gZcL9Su8o9meDIoyf+ijmR+0Ly6GUNUqqPnohxtN9EhqaTHNuPAah6sMYe9CCdhGgeDangSi52fCiyWfIB3O4bjeKbAnJxVqHUToGevDEy0FWDb3F1wXUQc++44FS4+jifBkWv7FC9YlzqPuOXNBdXYB/MjSBa/7LtCQH0+ZT3bSc6NJ5N1jSWmGA+wqL4eBHrVUZVJIO7t0wWRLPKnubyTlDhkUL5vBv0SkKaPeFjbYdaNC0ClYMm8v5FdLgbKEF4deGYbmEEnisk8Q8bqAkw8RzttcxTGz/Cgu9hs7fTeBVNU/eDNHEYLH3cTBmmd8/XQBLIm8gvnPR+Gy695g616Ci8U1QVf6FQgJNdDXCf/BqinpULN3EL7lNvNw8g44HCEF5klAbZOMICvJHfM0NnJtqCPUxlmCx1YTSG7wpSINdbg2IIiFa0eBQ4cOHP8aCk9sHqHG7mug5P8MP1i9BPEJqlj/PpcD0s5Sc0waZJ6YDBUzZnNvtC39Nb0C2kkVKOtfjGb9wnyjfjW/0k6B5T6NfDwfYPWIYFDSLqV176ezTUAt50puhs0bPfmrgxjNeexIW313Y9vIsQAhNSR+ninA0pr3Nhlz5GoTVG20xE0rvPjhDDt8fH43C31GoDlCuGW2G1YOypCbyH6Okq0GHRs5aN/ijnFCLZgQWcDNtzUgrj+dL0vfIGuDSjB02oTih0VQTa4EAgVPU2HoHuwUlYNRItqQ/2A6XnE8BanbX6PZhK90OB5wztd9oPn8KY35Pgwj1HLoeJsZSJ5cAD96PvBRbXEatJiPK27PB/Ex1+g8neZ5hr/xvudinHN0BAwsc6NT93QpKXk1VUcIQ8QfB+5vesgfcmNp8uPj/DD5ATRKKkOWUi+0/VOjZfNlaHpGLf5tHYvWE7zpyfOreNLUnDM2qdCqfTqQWnYQ+mWmQouSMPvFxWLIwUmU8egFOavN4C8Ca0Hz4RoKD5oO3SpGsF1lFa+x+QLrPbqw/Hw0Glpe5Bsn5vPCnU6U2etPQysloH/FIfq89wPdnRMBpR8fgvgtG3A7K4rbs7JhZ8tePHgqDFs2KIG/gxSqndzBUX1nYF2mMs75aESY0445mnrYeHQB+cwaIMub4+Ht6C0UUnKd7p8OogdT7lK17SaOSzzE8TwTl/2+gtdH6ED5PxOwP6sPvCUM9X+/AYOfCVTkmAQ6keMpK0+a7aQqcJbDRJIfrw2TRuTjvK5YcMr8jaGOf3DA/xGbhYzDF4W5NBRnQ9nDhiCzQBEWJm2jC4UncZpwLSVnWnNTzlJ227GSbmRexu8ivvyyohKXOotD6ZfTeFplLEbt8kPz7F4O+JIA9slOMO38HUTRXbRv7xKc2ywNqfcm4+6dBly/rwQweidtad6GqbInoX35Iwj/fIhEZwajteokGFzfQPtDTdlc/ia1d/iC2L498PPoQvAX/4e7045AVk4DrJxhCuYZd3CytT7cf2uOo4pEOPzDQchWiuKEGdqwuXgljHC2wdB4Q1jYNREzJ8+Cuos74YajNuQvi4aUwSdga5wP2xpOk/1pezrwejzcFdpIAYovKdpNCwcVHDkmPA9WOc1lo7nqHLLxAolv3UxjfKTB/VwW5j1Jx1knl9A8KQ9I3bKKHGRGwZhXYbhm3i9aecYWCu5Ngff6G8DG6Ads/dlCpWtWsYRdP8+OfUfpz3N5oXMgfyq4w9bZitB98DooFG3hxMnX4fV6afiWr4SLpSvY8Y8IjdZ+wW+rp5JuugWkHt1B17okaYpWFp5pfEFGx1Wo3VWGN3/tA4uOOdTSkw0vx02GTbM30I5zV3lHuyZrKb0lp0Gkmt5G9hn1BHf/J4Vz6CscyBgDISKTQURNnG99mQDPA73BeWETzzKLh8qFxyBgcDZv0imhZnMzcD4oxCUqn6i4s5CObbfE+tprpHnSnHI6LHGszlsI+3Ib6mvFwVRbjgJgF7tXN5LqiGc4Yvow2isilaUtgUpfpsUfE2jY1hT6xUXonHIBlLu6gJ/EaGxrvU3J47Op0PYaC30ogwNF6SwjZQZ6l9txekkiSe+05VF/72HW4TBwELkEUb7rQfLaHLK3O4ULxKfDzYHtnCS2EXstV6LywmOcet4E9O7uoFUukayASVj0bjG7KSuCheswSx+/i8+KamD8SA84KVnOa2/lcqW9IdbMfUMhgl40OlsdilY+gs1mVkAhoaC44z1eGVwKpxWL0S3sLppKPsKmkt9QK6YIaoVzAGbPgNkbI1l4vAJFBqfTFMcQrA10haHpgfRecTv8WCcOUYs24SV3I3onfw+MYTaenbONvc/40Y3/fFDkw12YrHWCW6VVYHOWKQy0BILmyp0w6UcK7DdZzCV79jGKASSOFGPd4gl8S1sGIsbsQwEjB7DF/TzqtiGfy81kax1FTj82zLLKg2zW+xbF9ppDZL89poaO5LzEfThFNpRUjg1Blaw5rNr4mptndECn8mee+loDZH0e0v2StWwZJAru/R1U9K2ShR9txfSFT/Du/evs4/EWus0k4Fx9Nh5OVOHBeY54UOgaBpyupFs2l0n29kxKmy1EQc7TqeXqDGhKGEYccxgUWobg4uYluORxAqjdXEKN439CvYwsTpcYR1OOScDDgcf8+UY697+XwqW3HuDnpy4otCeV7075wro2QfhKqIPr2RB05I7zTHslSH4nC5U/VnDczVkwJ+cV/8zpoO1rm6DgmS/tENUEF502XOHvTJ11opATbwA/h/bh0JZd2Fy+lUznqOOiw6u5VVgRvvzWZ/vD22kDlaBoaCCaCqvjs3HzeNxMYzbSM4KnK2Zj+nkFeFycBJLT1HhCuTg2Wr+C4b536BzfB5d25dLMzVvRumo1/QYNsEuU4PRSWTKZ957FKYwqdgTQ/YPPqcVlkDJWHsPKaATbECXILynBdw2L4NncajL6a8BO+vmwV1UY46zC2O5lL135ak+NF0zhTKgHpE2rxbsBBZg9V5BqtkeS8U5lXiptiWE/Kvl2ZTUMFhnDu402MPqMPWqIPqeP5m0U9lCHL72KptjtzXjG0BrsktzwfJM+CK8O4NkPWjCmeDEvuz4G0n685XEnroJMDsFZkVa+USxKOvFKcLsgjO01r1DG01s0f/8v3qUwnzlAgYxcJwIFe+J1jxPw+hnB5Z8X8JN+BHqfraXL43r41Nph6hL4xPVagNudT8KN1ULw7owMLNQfiXtEd/Pl019AXzOBHobU0qnAVSw5ORdcHeuxe6cKPhozEtqmamNPjDHa6tbyTeOp6Ls3Djo9i0CyQxBVj1pQsn0DCj6TAW+3c7gwIpIODP0CSQkJXPQVWfhOOtY3N2H9LBnamVOME7ZJwjirY3AzqIALNA1pz4jbbCa/jTSF3eFD1AE22OMGbT7N+J+YFGi0B2L4yQoQfmlJyyV06aasK/xZEsGKqQUoVhlNZtHqIOY1DWytzpHWswXYrPaQs563UHGbHzkvd4W8r3VgpXSWBEmB+4VlYOJ/FXjAPAGva4Rj5Y7d/PZEHBpqKGKB3mz+aq4Fsz2+0HTt8XC4pp4tFTZQRMBNOKFaxL10l/U3vcGEpQF4NWMKaz8vgwXiKhC2YRAnLQrGMtW58OmnIfT8DmIZaTH+IFHHB+dkwcDuAeRoFShwPAHqYatAWHs7zYvfidnL7vABiVOcL3wcLcblo2rFOX68COFSVixetzsOKxVG0tv/duCg4EIMfH8W/PLq8L89c/hS8C3KL1KH6EABcL6QwxdaR0Hl/gMYPEqZLk1K5tiBbrIuDKCV9etgZO9YyF+IrC7oyIc+64CsXjAVZd7A2zflOKR+Plz/tJp1jGRRMFYeekqnYOLDJLj8M4m3d+XQ5I9r4KTOUTC6fRk84jzB4N1htv+sCP2rBun5inJY5huBfWZNUCG3G1e13mWX5VPw0249GtF4CcOsCD6aR2PfisP89vweHPYfgmh9K/jofoDHNHjgnF5Pqt3QAiqRCvDk2Aq4IRbAo7x7MM/+EcZajmOL/ZL0VNYF4mr0WWxFHujeZLh7Owy19JZgtcNtULa6wKPFsmHp1mGUFGqnqymjqKbaC+TDJWHGn2kUqJvEb36u5tYvN3isswicar6LAp808fEzJbg6LhwCJCXhc1wsjYywpgodHVzg1ITX9zLKXVhHFC4IWWU7QSjLDloaGSYobmBYsAc/vnOg3zNugopuPS8Kj+CbHoEw8BfRxaAGSsgI0jzmUfKuYgxLdiLLPi1omiHAV16NR/FzyrDxVgB7zi2C77/1YG7hGiqagyx7Vw9eLI/FOetHQEDjCvok8RA6NynSvLExuGv+JDjg3k/tlV68VSmKDgV5wIT1d7ChXxCkDhby3iP3SIwsQFJbGebXWlHP5HV4bm04atkmQsYTFbh/aQwbxWnz7wwhbOw8Dyai08B94RZ6lCaH3b76EPxsNgsGrEa9HU+5wl2XP5+fDwWHu2ihFUHP+kVoeHwxWP9cBaEGkiw9YTeuKfwCq6qVMaOvgX/Ix0CToxZ8ylJg/wpXnjNSE95ftwHR1kKW3P6IbNb9oTdCM2DqBUlaFi4A70Om8b1tDSQ8YTL1bT4H1/RnY7nsD/DU8WcwiqPwIF/uC9MGNZlhKJ1Zjc8sC9jJ/Dwc6TdEoeO7oM1ODFY77EP/9bvwTZg+7B5MgRa5eWz7pZ5znI/Qinn7cbrJNpLvcYAl9uN5ULScOw8Ig0ayJjde3QoO0jLUP9BAbsZz4dXWDraW/w+WLOyghNmWUJM7AqSWW9K8HE80PhXCc57NgwkvpcBvsS/ekFwDt6sd6MFZT0w2MwPs1sExiXroduAg2A9bYUxBGX41tqET25aATdBKmLWrgihCH7b8teM7M/24NCoPNlufpZ6FtViY2oOpQVK07L0alGZkUFmiHNirlfDJW/G4ev4P2mCey+cuGYKC+3QQS2kivTtP4XN4IuoFq8Hlt9sod2Q+TTs9COrua+FvmjmVb5iHwaNO8sudu+nWzQawVjEA0eL5WOZ6n4yjhUHc04lEX4+m06mb8Pu+OBretI//CqphClrA4EkRfiooTzdVS+nAPzP+lv2CHua14IeNmhRxzI3Wq9Wx5TcNCLgtxbWGMuh91Rht8A8qSh7iFrEDoJdwm58mf4bF17tAU0UQqhVL2E3YGPwTPfGa4kX8IHEcR9kIg29eHS9Ys4tf9KSzZ7ol/C4z44ytnfS4u5KLQ9RYeY4hPTH/QhEvtGGx6Vwy2pcHNd2jACa00TfXF3wg8yWILhyHdYHBvNBoLW3YuxfuTT+OoWLW6KdvCueC5/CTk6fgp0om3Nxngjlbt8NWxW7oaLqBr82vk/D3kTT+qwBMXGyDKQ8vgO5lA/iR10BZLwxIZSCBJX4XsIjwceQVuyh/jA7Ib94Nn3vTaW60Mpza8IWzAmRg0LoM5UYsxuC4xWx1eiK9+TAdcib/4y1Vmdx9QYwvpQSj7aZRfNxoPmbdMgPDeb9o9RE3clJThsjOGprwRIcCAwFL9ONQeZQkmbU+RuX/YnEg9hTOcvkFoVmmEOzZyHbf5tKEwrX0Uf0Vy7xB1PIYSV0PfmP/qkCWOiKGJ3gkGJ/3wdm1bbzCUY79E6M4rXsrhFf4sd3TU3xI9hpPWfuVXBIYXvUQ1op7UuPFepom2UOrKlPpXV0Ih0qE8cknWahoZg3Dn0XghZwuJRg9Qh8vCxzn0oWRM9X5v1JfmlSfgyFJ5ax4Iga73SaB+ZmX6Dr+CQSXXWDFtTsw282MpgUZw6vTI3BJrSmCyD7UjVOBrM0tMDXmOWtoh/CoLZPJZlMSaFXPg8PPXrBhmCJ+GTBg70YjWHfpEN3WXo57ZplBJxpzf8oF+OtdRS3K4njeR4BMknMh3HUSsKA9Bl5UZK1z4Rw35hd5jNamCRse09pPzVA/+B001Tagv7E0THnRAGe36ZC30E/IsMkBzSem7Fb2k9/9sgeBS8rkk6cJY9fqgPGXj/jpijxXqW4Bl2euNDrxAfzdMp3/e/QF9SqqSNV1HObfHgHLf/uhWYc3ullkU/6XDZTWKQJ9SX9pZmAPZS06yyumMSyTV4E7AU95MDcM7gquwMIFPmjYXQml55Mp/poF/fI9BjZnY9kyYDwcy9YF3+gs8psggZomy+GCxmGYH1XCYsMRNDL7PRiWrEXxC/pga6tCmXG57LDMmV45toN0VxmNGTGG3xbYQ+evERwo2stL5RUh6fclnuE+mj8JSePpbAmyG/7MB3umwTavMaBuNZnvK8XCeM/R4B9VxMlJW3GMx3m6vHEiD/+9iWIbFpBJ1XMQ8F3B+zv6ebb3eCjMZbrXeYduRLTCzBJTHi4dBevtb7CjpANOueEN0s83QoqtMTyvioQ7LTr8LU0dVreNpWr0Yqk4DbJe9oUDz28FDcGFdDBVCibDe1LPquKZZhPpYEQQhdRa0d/+AF4lbkBDS79zi1YDLXM1gNKzz2nL5sU4emsulZsZYVeTKGXu+c6PLObT+u/vyeFMFI+6rwJPL9mDzewBarq6l7pXpLHb7Ai4sS4QRq+ciXGjDfjKpHbYZmACVzs7qNr9G9+ScKIbC9pgc8NaXEsdJLH4HXfvioLNPurgoakFLZ6zOe5kNLdGRNHTu89JsTCFqn28oeXRK7x/XBS+fFlLsl5T4PvlmZSnfZh9UzZS8dvLtGulAN41tOddvRPY3WwIPqt94b51M2C2aSCn75SmBcf30EDETPKfGgzlJar81UIdBGANnR2qgG1TJkJobwAffJGP221FwdwsnjeaqmLkliourb4KoZtDuWVLF7SLy8NHqwoKbqiE+pvxdFZuHe8yq4LBcSok4CVFqksiwK19NksfVgD75lbKU1tE7hcfs/bz33inwgnuKyyA5GtdFFbkBrLr7OB7nwKotZ6jqhkLWLrCCs9PPwcqstHo31YJ545+Qo4+Q/mFtyG10BTEWl+Ac/AF+BrURFE6Opi+UwD2KmzGq8u2c4hEMPR55NGBWnN4E3AZ+vqGaZvPFfxgtIr2PO7BpNJ2dnoni33630Dd8RfP8ZsBPaeksSAtmsZJ3eTzavYw++xMLvu3miqnAJb9iaHjRibQf18GJF6mwt0DR9nqTAs0XT8Kj6UP8o4cJTD58IS2JhpA3EZC/0mT4cHSNZh9IgvuZRHItV2GkNg5UOS6iUWONsGGwGSyVFyDXatGQxwkw8ar27jYUwCF1l7hh89/oc33N+xnjlh6IZUOJjnxjngBUPl6nA9LrwFjjSP88UEYvGkVxpMvYzE6yp1FAr9RvWQPVY8FiBpciksmptE3TR+aLbcCYtztIHaBBPl5jYTzguvIO3krXTtsCDVt6eh/t4eqZg2TxdohoFwLytoyE/1lK9AsYxjm+q7hiEYTqN6kiSWPz4Plh3iAZ3U0ZHCWp8w9Smm7w8Gw0heHtmrwyAotuNwTx2/05DEgKh7Tr99je71rWK3zk/Ll/qOzxU+wYZcpqMeYgWBDMe7ZbEKhAQF0xKGeS/I/cJ2jPDp7D+HFv4mAObG0NmgsaG0QhoIhImXVO2SUlAnlo5Oh6YAFBm6eSOel1kOl3Fbo26cAbgGj2HapNRvnf8fmM7Y0t7IT1uS/piX2dbgtyYkzvXtZYakh/PmQzGveGoIzzedZjjZc1fiNZO3WQpVbI3ZV11PVqu08X8YSrjxNQOFqU/6VZcGPfsrg0pnt8KNbky4ZRvE100qWrzkFUv4a8C25Cgari3GjwxcuulcMsQHfQFJxA3ebLSAHr68wZoYsR65hWIKv8enZHHww0QSECo7x9XG38EKMGFaUJfOvn3/JZsiDdWaPgmZve/w2zRQ2BW2iyszdEHlBiCuuLuU7KS/p3oYlFKzbjPqKQtB6UhlF5Z7C4Rfm2HfShBQeSqHLRR/4LnkbN8QcAeeYfeDspQkb/R7C/DOVeCMzjR4NVUPlHU10eakARTYm9J/fJFI23AQvpguAmds5XqluT/kBliRemE6aDr08VsobRQcU0XmZAUUvOQ9nxljA6XU36bn6Mxw95QDvE95DfzIdKFqvF96kngcVwTwusZnFT7wlYMTjFZDg9ZVEGj2o92cevJtuTh+7H1G2jBqeLJCkzD2L6FWOKKzZq0T9zaV4QvAiHX7TQ/dXT+fsVg1yePQQQnaGcoDeWxosMYRjpnvIya0flf9N4KDzImxT8ontHS1p6tEM+jatBtxNpTlGQAwG81PIudMB3sf5Q0q+Frp9qKfRYaPx3463/Np1MR8fvsuffo+Gkr92YJPlRbfflJHYuEUYMxCNIv/KKY0+8/LXM0Dw70u6OYnAPdYeTJaXwsy9IzmQfVnDsIAjHJ3xs7wlK77IBcHR67D84BT4VHwDpIzvQ+/ru9Cx7iNMEukHbc3dvDzzK7j6VOKjHfKYUSMFh/cP8V9rBRZ+10Z26lPR44EztfoqcMtwD6pWjMarL7Xw4CIdmGujx5Y3LVHLJ5+urtnGWvv88b9DByj1pwSO0rHjwvGLYOtmeZi/9RZFF91G2XHL4IbuKEaDe4jeW3BtdADvbH7Exs9mcmv3WNh1Q5sCpJI5ynoZmuUJ8avEFPyRchxetzzF12qr8eSxOtqwVQwq5ori/hpf7gw9iyscH5L2SkkODpgGz/O8oORNDF7f+ZoM/EXgwOZRELDSho4+z6K25lrsvugLhkf+Ue3qaxgfsBg+PHbnP2aTYee/h7TmmB7tsDzGvUUFZO0XxisCE1Cm+RCkzeviAJtH/NRCH3J+JKDqtGHQuWnPliaO8Gq3HRh1GYN5Yx5uD3fH9cOPcHCUBMCeUTAh2AUfvvfCBRcK4WugGZ49mo/zqx/Cgbw5rFR/mqVHMry+dQ+e7FjLKSHT4J+eII07Hg4LdP355fsnrKGzmFrObeG+VAvgNgNOt/6Oe+t3QEtKEn1+oUB/av8i2HfhNdBAcuihmChD+O4pANeinCD5oxGEf7rFhgO7yU43iA6fWo6uiamsa+dD254aQk1wLUd4pNPbH2OwJGkJWAWW8pX3ddAt/gh0HLfQxvlreZHmCHgxNJuLk/aB7p5rZCtiwI+L97NM9yNodknB5YEhJLdWD9R7pkLuHMa4KQ+pIFiLvo5O4jCLAI7kZ2wvFAOxdZuwUEmGFPaqQs6cBiz5sh/bFdfR1JHToE/gNbQOPIFnE8ogv3IyGns/5O8HDODUWFn63OwON6sN8MjnyXA8XAUCBqdR2r5MuPpbDm/UJZCquiI0aQtByrtofHq8iSpqWvBqiQNfHmiAlBkCMEflIU2rGwVyQ5NBaJokFHnMYpmCSVR1SB4r3ymzwltD8PpkCkWmYmSV85YTJ2hB3EZhtpx3jY1XivOJoCq6d2MKyzq9IpMT36E5wYcfWOniGWVZCHgvTr3hyVwxKYeLoodpukIe7m9ohbOPTOmxywDGCF8jqe4xoHBLEtyTV3J0syQnXB4i41OeHPlTlYQcl7FXnQq8OcegMsIKMqsqcZnOX0h4OMRCUAU1VI/nO4whbJMBe7etYk1vCyx6Mxr2nw6iF9GXMDFZgWO2F5CzxQ1MbMpj63IrGPfsJaxNXUIddaqwaIQRnOw8zspNveyclkqRnrpg/XwB1hlkQc8Lec4M/UsPDxlB266n2PVHgsMn5POCo39QuH2A3lxLRC0IAaUjXlgx/Tv8KZsOovuv4Jjvh6jm+RW0tV2FPn1TccjqBE5I7OKpZ8ZjNWZj7lkNEDUcBDZXg3K7SOjYfQlVvgezZVkln02Kg+il++BjUjBZ9wjBFaNgOvhnJ7oZiuKjC5f42Qkj8Ao/he+HClHstxXF3l6K3lflYPdqBQ4/dhh3O8yCnLrVLHDFBjc3KXDOh1zO2HcQv5ocwofrLGGkZgKqluvh7TUBWFX4i4/4LMATCUqkUVoNKyQUkAI8qd5HHZQElSjwjxjciRSjg4p1pHNeBPRGG0EipvPVqiiq+7oAXj9gqGo7h8bG5dAmtxeD1SLJal0wrM/2hJv6dWA1t522GF1C711qoLb9DI19kYNLOoV4kkgBeI3Khdl6Snh7biK0LhkNm759ppC/U8An9wx1mpajSsswfow8Sec5FiMSnrD/nDSauu8Apk0fQPt8UZgidxeV5cvI8IcAW9z/gfnpREMh+8DUYSeu3lMLbekdlHBsGpSdHoKK1O0Y/j9x96EIhKIGAPgfISMSUnZWEZLIShQHRUtLCknRIu2ljFJJVoRCpawkMxUppNCgREtGpETapSjcx7hP8i0K5/o1J8Hg1WWIFl/AAp0SZBkiRVWSR+l5oyAUlyIdDE6hjevO8v2r8ZR7xA8+j2pA/VYL0u9qYtttznisaBRMlLsDm//NwhVzF+CUHW9Y70s4XmvI5HX8CFZdfIWqnWdw41uEmNllMG7JGrqab49H9NtJLkwaxqltAkFeQFsC9vGvR6cgxU8HfvmLYt2+HyAnZoo/lVfDGL0hGtnQhIunrIbQM5fRLrkKZ6pLwSRZLd7xiaDXVJ8GFTaz7OJ6vi2QAvJzt7KmnRJ9dPLB44+FYN/GDfgcEe8G+ePvr3+oV6qJo0TO0gfxSbT2nhxp6+7DEZ9VQavNiOvkIsHqkxO5OmrTlKA2WLn1F2Xv+Qhe8nqUwCPx7RktCNl4GlRH+EDxmjyuTlzOEgU95Je3DNeeccNuhRyYJiFO3nkqELa4nPeLWvAUZ12OK0tG89xnMEEqD22mJ2Pz0x9wTKgQYgbl4cxXRzRcnMBDp/7gj7nSdNxmIeVAMZ2sk+OxEX8ADwzSjT9iMKLOkG5vU6GvkQvBCbbgAZ0XcGlRCz9b50o3NbZgX0IiLtwlA9aJ/3Df02Dw+HgeV4y+hk+u9/ON5FZSm/6URCCOJnat5A37pkFc1y0y0hqmvyUZ3BE4gOZbN9CZyya0uf4VtUQug6w+Q/pVbABfouqo72UvzVDcgwb+IXxFt5scR24njeVXoO78LloT704BLhbwraeFr+3fRkKp/RgeXw5ulxbiv5P7OF21mKyCpaDV5R6nLTEB58nLeHfsA36V84KczRNgom8zaZT+oGvnReGOVAGoVZ+HOKNxkLu0Et6OWMN5syvow/JV6CyxC7yu6pKK0An+eFiUGsJ70WQrQBz5odqkAF7vV0B7Lsrj4lWAzWvquLK3G1WPpmBXWiAdi54BL09M4/ceqri02wmXigrSHbtGSLsmDltr0zBKOpJl99/AqwtHQGXEZr49to0S0o2w+fI8DjX8DYdTF7JldhrMajvDk8bI8fJpI0Hq2X9Q+sqE/p5ahfOOzEeN3WN5bNIRPD+xA66eU8Cm/i4qrVOEY4utqeniCxCbp8JbJEz5+N1QHDWYCwZJC7lJMIoVv0vCamMxmPNUgKzkv/O096tY6sd4ljqRQP+E/4OQWDd8eL8AcrU9uWWdBkybOAvVSB6tjszjTltv7pn/kPyfGLBjsTGJlN5m8MmkJm9DyHsjzXalayFL9AVPr/Blra/xnJr5Df9aruMDIX9BUloOl8iIgMY7CzC83gqTTgXzk3t+lDa/iwM1yqHg+gCmXk8nk+fraLz7BHje8wMaWrfhZHMd+nDFFqWX3iK8tQfH/x1L2zvOwZgZK1h/qwQcjXrLMyYGgbGSCZT8V0QnPq+lKJVO9uspgMeHL/KW1ZkkmjIDRpSe5D+fdcFMxht1w+pw9DrkK1nr8KjGVxgroo+7MsvJIGUiPFB9AM1R72HarktUtnkpPhYWIuPEQA5Sn0mXctrQV9cXnshJwNjmRnxaOhtErsliv4YnB8r8oYz5e/HktXZ8Et9CGdGX4aGnLjxYF40uG1o586QI1nyJpZG5GnhQQ5OEDET4ctY4rjeKITt/abghHUo9rtG422kM3b4dTTKtI7g81Bvd3wmBeU8Yz7hwC4/PFoaRN2/ijoUXeLm7P5sWz6CZXoOw6NsEnif0mp99jAGh0K/8tWgyZK5+TH3DmejwQ5cSfn4CqeHX1N03Cy0td5Boug8d+3uSF9vow4soAT6TEIVy94bxmlAS3zx+HZcotaNXxxUa+D7I929vw4VF0nBruj/OtvzND4vvws63tZA7whWGPWZBf8ENTrIXxcLxI2DhbgYx13IILRxNL5Rk0f1LAEcMppFUbCzpjzSjS5v98eoFG7IpGwntfUtgR3EtGW6XIOGp8Xzsgig6XtoDh3f78JN0M+r4nkfu9ePgi0M6ZKZ5YaldNR24kc1eB27gUo8L/CFBmQqvJMD2CRqw4ZspiPWtxm87S2hgoxkqpDiT4/pB/GRpQVWPR7JvWCAFFv/Gk2tMQOHTJc5qDYEr4k9gwMWdMaaXuuMvQq7rKxr/wRTvh4zCT1UqMKKuBB3+iPHa1SdI4HMiTxZ+j+p+s6l9UBokDtuB+KnF6HrLDIY9EtBDMh9OWN7AgBev2cm2EFo3HYRSw0YYs9IMOk7+JZ+7ujBJeCNeEh3GtqJHpPXqPkx8qsm+XR9IzlqKXXXLKGjhP45JVYZ4BWe6ekuK/ZsfUIV1NuZrTebRA3fgVOlmGj4diBph3yDbFkD43wVe/5802Hcm0usVMyBg5B8OfBBJKoE1qLzxEq99EMS2lTIg0SZD4u2G5HJVAkI3xlCJlSYefmFPe0+nouOE7SQ1NYfsJIxAxeMVvl8fx9nau/hP9CVagL04s+YUOmxfSoHrmiHS2xbHBCjBvMex/MpbDTuLr6Dmexd+87uf3lg2oZOOFkR/z6RJjydwYKAxPL4yCsbGv8WCNGfS0+7AJbX3IaDZkJoLNtLjRAd+06THA3uVYLqIAojmdtCctYpsf3ofbyoM4dprf6hj5xGcoLkUgi2F0fmnIaSr+7O4kwBFps+CNZPfsYjVOa6Z/ItnSanSJeUamlk7mcK7LKFxxQSs/rOGvmi2wKM9e+DP+F6I69vBGrq7UHV3AxaKbIZV0uJQJnWAFie+pv3DlbD3AcK54TH8VKOJjio6kFa9LVb8WUuu+gTp8bG4TmoqagSa00pnNe5MU2KtjCaQzFfi78X5OGGPJnx8Iw4ZJyNY4qkoTko4gjO368HqxjcY0fCC6hR04YZYEdzuPUQC5rLwPTuF99lH0OfMf3T160NY9kMSJv46xkePRPHmAW+QWh6KEi4WcH7pEWib+JaqFuaC91EFtPuWBdrnXuBL5VP47VscRviqUpGNEax6UMs7Fw6jVKgAhcqX4PlL3Xzt5UXW+jGESStC6MhWGTzwxRwOfnrFLzo8SdDcm484exNqz4UVwZcpR8gP/wk5cp7ZJFydNxmePimi/yICUb/UDIUuP2EdSy181HwMvu6PRZlQYebDR9B1zxR4LfOaJ8bPg+tfirlcspslc/opdLYXjNltjJfU5uHeY6KQZz8OSu88Qf+rO8Ct0otcRIX5X9salBSShBz5IPCYf4RH1ajw9jYjKH+rzR8OVNOpAF1K/7gEV9Y7w38ye8gr2Ri1NyWCw29jHPeVQedwAusdFWDt8Hq6Hr2Z7/bOpJa5+vxVyoaiFJaDj0Io/NTWgF2v4vii7Quu9xagxE3KUDTChkJlpehyyVGI3JTLQ4YREC+hCDnixrD59QK4VuQO275p05YZF7BeCuGTZTa2nZakoT8X8N1tcYjZaMEHzmyl/fuGOGqmH9q/mAh/PffDnjRJTk1cywdOVUHjQknYs/EZK5d9hbld7vxJopbr1tlCc9JomvzyLJ4N1YAgQ0D6LgaT7iyCIw8daWPFA85qV2YP2Vm8pe8fxmjt4DQdV1KZs4ve8zTIOLuH30+s4oIzJ/hkTggVLhgDr2TG4EmvZChoMcHvXmn4YP50ELoZxOb3NkFgTh6r/ZZmz3pFVLLex2pBnzDGbi3MmbONLx3ThZ/FZyFX3BHKbt/Gsyq7eHnUfRw6N4k+/06AN/trqFz6NNir6YKlaB+1Ocvynfi/rLJ/DhXfTEPrs2Ow6Y0Ejtf4SeGaN2ngnCVsiraH3Iu+MEVqCi6VF4DLwYxeCgnwaG8nSAtZsY/pIOpMMIEV4Q/h8Lb93OFFKHVNgrYfVsU/GSvY6+cF3JC4EZ9KhePijJkQ9e4DThdXARfxRpboq2CnEw5w/+4aOjH6Gje3qvG98m5ItNGHWR0H0LN2Ku4v8YMZJndg1b/7sGh4KjW5lYCupwgOKp/DZh8lEN5uBSmPB3jbnEM8OPYeFnTkcZtkOtIpFTi/y5+dH++l3WmTQeFlBf5IJ8wa/wX+SzKDYH1DnKsMHJRWhUUe8/j2F3XUTjaFUy8vAJy4yF/fA7TJ6MOxgcOwougjpvuVk/o7GX7msBsHplpA7LZhUh1aQ/vNGMdJFfPK+/n8+/hlPNKlhW1Xf6FmQTHfHyEMe2N/kseQK9hF5mGjxmze2zses17K0hHhGFgiNYgdLhP4wxhNeOr7CjBwEkrbzuHHdVo4PyAA3n7dQnGronBVRCVXfTiE+w3FQGJGEh/Kj6Ai5/Hwz0QVpt6uYe2fBjjf4xT/s13EjxyPoPlTMVC1OMoLwvfzguYwyu+RAjf/WizfOxNVWjPo6q2tPHmCLUw3nwwFy3dh+ZQ+HBd3g+0ig2GgJAB9FVvBN3YhSjqeZt76GRskjOGG2AQc0TkMx63/oFa0HpsrNIL22UR42/mYkxYdQ9/qbVS/UAtqo8bQUq0L6PuqFu26vtHHDckgfnUkwPow/B66HFvDXWHKFQs42P0CJV0soO3mItLyjuSjZ5L40sOznLzelh27U7HIcAVZBMvCT1UDir00RPcbBNihJY4+h8RBeMQ0sk7LYb/MYRB+vYn3ZSLs/TiB1Qs+w52mbbzA6DgGnChmP3Nn1Dv4lTrv7uVq+VQMPSALmq+vUvOSuyQ5FEuescaoeHAk2v45wAoNZmi9NBW730/hbGdTEGv2osRTO7A0+hSVt8lgzM6D9C3RHO+kSqL7LEk+hFN5nTfCueMj0D0yjF5sPgrmR9youHAk3/j6gW5MiOO58aFwRF6YO50t4Fh6ADp9RsCgMSi6JY7VC8RB3VcIM6JFcZVXId65foLOPVWANos9mBwiSmfoPi84+R6szs0AkwJ1ys9sxzkxZTSz3wNf2zGISQ5D45JmqJT4CNXb3chX6TaGJhTw54Re/uQQguq/CF+264K14yDqJm7jX8/y6OIaWzyz/zMunPSdFFs/Y+mbHfB8zGGUyR0J7Yt7+PtkazzXUY+loVvI1SqbqzckwpffO3i6fw7/O/0KZl/RhW6Ja1BzpIIKRsqg5LR37GtgT4ckdnHfcBn2T++jl/O0aJq3PlgqPQRX/RVUmVxPU+0VyCxCjPe8DEH9X03UeD2MhETP40lFJdhdrArlrwyhzjuY5UXrOWfeX7I+8IvDJi5Ek/FmsKMkgGITpcDqwy7oXNRP8/2L6GuSPerqBeLlOzl4MOI8WqdP4YRXguDWKgN/Ta1gWtp4UtxewmqbcvlU1y5c986V6suqeH65EOyyF0WVcA3oGuPDeb1KJPWzl0yzg/DMaT16aRQEs9+KUd8VQ1It7+FUDwG4FXCQH4VKUGVHAn7XN4P2ilwMDu+BUN1fON3HApOSj8CYs9OgUjeDPslcp9FP35DF87cw4fUa2u4yl8NikDs+fQWZ3WPw2Bch2JiuxQcdNajOppJXf+hEiV0XeNKvZ7z/hCFUhR2FxZ/r8VCtMcyZPp+fnI9ndjqKehe1ueSxDs08dQUf3PYHqzgxnJ88CCmrTKDfrISPPm3izIMImkINPHPfAEZna/L2wyW0d8wPXmJ8CFNfq0NYsAKPyerjom3G0PragRZpdkLTsQzOPFLA71+uB7ttMVhaaAgy/8rpbm4Xr9w3iTljHU6Y18nbZk3E1OF9RI09fHPBZRgKl4b8SZmYJxoHN2uj0euAGMq31aM2LAEXz52kxsCWipUoGykJiygWA2qq4K7MAQid5EQSqgGgbr+QGypnU3CSFoQFa0Bu23RotT1Hqi2p9KZXALRCjDiv1ZZ0vZB+vHnIgx6Is+PMaI2dOmTtsuPQFZYgprgS02d+xe0ZBlwTJEpvu2ohaaU+3NraxVmrReH2hxQY63od9ojZ8/KnFfRs9C7Ur37Ct3qH6FeVOc3w+AlxwmNBRyCTyysv0aWkZyTzVo8FPl4D19XPMP1oMJCoHu63LGKByxLwXKqc39hvxptGwjTmTBUmNN9AlTTA85vzucyjB5fENrD1r1FwozqWmw7dRYfyp1DxXBv7b86h4i2T2EDwF19cehtlDtmB90ZDCNjwlUcmDvHo76YcohNK0S7a/E3En+9emE9qaivhwvkTmOWrBkZCinDvmD5MCjyImyZa85lGJdzDxdQQ/ZZWv+pnhcjjbBE/BQbSdtGvT0fw46ZzPNu3gw58PQQOcqpoFFVFXyNSuGJcMhecIgC3WzzyZyFsOeCER65PJSGHJxymM5oaW8eCbsQ4+OZ5ALNOKsIO+TJMMHhJPiZ20BBgTlequyg805duCYmyzadWvtLgiT2GUjCnpAkyYseBcf4TfrRTDHXbBUHgXROcbRamlVlt7EsV0PlCDdaEW9Creh32CpLB8OtE8ZqDvGnfRvhc4gZsK0tL37xg8eUzYGuiM4q+k0KHQif6Fz4frC808Y/hB+SXLkWn1x+kgpit0PJADR4XhVBQ7lzctWsvzvgtjE/OzOAMJxf8ToNwr7KFYgyuwOKQsaAxZi899ZTGq5IKsEQ8lo+OWoohx/U5Q34aWn9Hdpg2l5uEBeEe/KQJe7po591o0ir05RVjZKnATRg6fNRBueUCb3Rupp4IY5id7Qobxrnh0lUJtLP0LTbo13PdCWkwv3yPzydNoYkjkzHPUxvyd+ph6IoEbHxNsLRZgNcX7kaphO3sO/MAWLdGwNKgexzqPROiAq7RrMpXGHHtD30Ha6q+3EN960142KaX4lWD2O2DM1n5y4C2uzpf3ZPIG9eakOB5O1bZ3YCpyjXQyE+gRuoWzTijy39cLSBnej61Na6hzddjabnSEYrq2gP1c/+Q8/EHEJReBjol+bQzzgQGq9PI2ucrmea4ACWdY/k93aAUWwNXk05iz4VO2lb3DS79VIL1i76z0fxdqH/oJ3mIBWPmbGcODbFnp+e+VLJtJn1v6aUt3iYQF7OKz/5Rh8t1F3ghnODdfnJsRotQImwsChWpcsL2AbQImg76ljvJP3QpvYr35yDlqzzkXMBz1j/gvMFPPBiri2+PunDFRlNISPEkqW3TeJxNGky8n8phnqPBVPsJXYxhLPtSjhu/LOTlJpZQ+nIYDjx6zePypnGlYynPlLOBvDBX0OsbCT57RTB7pCR+a7eEY8G6nL+3ja7npmP4jPvQnpRHZ6be4ec39tIBx/k4i57Dt9wZYLBcmvS3lJCfZjhbf9biZQV+cDjdgRbcqKI7+2WhuLIPryrrQFdzCLQpr8RYq3JOffmRLyld4BczttIiK2cquDARdCIWo7efEqgl5fC395/xgPBusBNKpMVqZ3HKlBv0ye86FL5eBYabZFn0xAQwq1kD00KJl+tdgdovkpTfkgebVGVQYFk/Pmy6yfXOCGveSYLtJ1OW3XkLYg9txnNZ+gDVMbDyZjEfKQew6/tAOi4T+JC/LsTf2Is1QXH08eR/ELfAEs/0Z0Ga2Geym+LA/SdmQIL7QtpxAMC/UQMsrHxwWacZJcQV8ILSIjwVfZB6o9fQratXSOfGSYhnWRjRf4ts2mMpUeQYtTcdRhGfLbjsP3lSjCimz7lbOcbYjTav04ClKZVwsHgD5Mc9pHlJyXinXwXaH6dAUNUgy1wrpFWB93lnlhYcu6+PQgNvuLzxAsrPSAKoeI8PLAc5oE6C7mjI04k+GX7dOxmW+vzm19kH6ZDfc15afIEyC8shu3IQcJY3dpmtZn7/mYMELaE3qAC/PtqBNwXEaZKmMQaWzqCTTitIIy0e6u850rax5zFwlAzISqzmkNq7FLXEn+Z+dwW3SiEeNXYkWFiP5GdyK+HywdloeEge+jVEwMkhDh0Do+nk2dUcF6kLz389479FwXzzjTR5/wtDGWslkIM8LK4e5OmLbWF86Gl4/Gkpfc/8x4VXInBT6geKknjFplungl7HM/TWeQoWIknwbv4+wNf7eOf507TabQ86traBlqIwtT4QhqboH9hUnQXNqZ14Q20x6AyOYqlmN5ok8w5Sq86jz9Af+q6kBaHKM6gubzLTmUHeXmHPbTJHwKg3hZps30KW7G4WOWhNc6bJw8MH7STkeISCCj1xg2MW6LaX4w9yBUyYhU1/G7A23RMfbFSD3405HK5jz82ZdzFL/DwpZ0rz8mWipC5iigpztoKwYyHv3mEMk8dv5+/SKXS2XJFih4/TuvZCiPk4CjP2XwTXFlFc+VGQI9dNB+ucZ7SzuQFb9lrw6XuPyEKM4IfmJ7j56jCfMx0Dny64wOVUE7h55BKmLj5N0YXpYF8niSOzG7B9hyKGBW/H3tfPsaw3iZZbK8JvY21aIGHG91U3YczjfsToBl6XqYzT98igbvp06NX25/u+U0D4UToEDBWDyOkMGkzrYV+Fj7xLaC3/XlVPJ5+p0ZgfhXg80QLWJqvSAq96kHQThn2te0m38BqLCR0HHHeYKE2XtlkV8Q9pI3DUzmLvS+E0omwKxMxJpCkSLmD3VY2vWDbDbPUPfMrwKMvZaEPeuRA4ZtRHTzyb6WLXfDpf6AphD5X5T6McNqXZ81jNFkwqEwC7TU9ZpGYdvdMej8++uoPAl2PYXN+JK+Qr8NeF92jl0w0mEyVh7n9BLGawAltObWC1tl6SXRNItoHPoPJUDS2RsAIXsZtc8FEXdsQvpPsVltC7ZxvkPbQjc7saqv+mRQl/BSBxkSwuU9bh5zsEoEjiHc45YEO/bGbjjKa/fNkgCT8cOM73T7zExKZqLr1vRU31BvC+WgrjY+eBg+lqNtEoh6oCK/S+Gk4H70nDj7RCuji5G0+licG6lV04duEn8jN9ySJJSagZfA5hUQNOn/GTH/5IhaSRK2DrNk1469OFP4a8oaZ1Azo8aYfJ/JWspF5Tzc6J7FW+EEN3SpD/XnGYsPoEf3ohift+/cQl4yXRynoCK9lmskbgF5BAIBkRSTroLwENXUIkUrmYnFwL+WCyLS/+sxStjc1pn609fIhOxPHuN7HYTxDkx3xHya7FUNntxDqenlBX+RFyV7vhQ/4PCqSfYY97CEikmkBYaQh1ThtNP9+lEx6rp8akD6Aulw7j5nnQxXmO7DGhBJv9CP4uXgWbTo2kp1lSGDvFEeNniFB84B3s8igFnblGvMi/kRctJojVnsPhe/fxLdX7+KzvJwmsjOBVYw1owio7NNyqQNc6jCDnqTAsNkkC5bLNcP3aRpDrGcGmcs74X7U1a3lLAH1N43GT1lHAsDl4zrtHIqmmXHXUE1RVP1LGBnXau/45qx95TyFxgSh0Zx1fyJOBUMnzjMdP0kr39zy8KwpqPt/nvloxrFZM45t5k3n5KYRcAXFYPHIpNKXv5muRZ2Fd619MdUrCUROTIW7dMzw16jhqfjmM/pWy4KJjzLl5uTy5tQKmVa3lGQo5YHjtDoqvWQTvFuXTSIF0NCuWgfUrNOjE41hYeeUc1GkXsMDwStpouhOM5d9x1qd57OYzwINq8qCpIcRCHWK0U+4D3Yraz+Nn+NI9v2BQ+qgOjqPloV8/HGYJjYDHt+Lx4Le9qPonEmzO9qN1yV+8cVQTRTdPwes9AzReTx8aJMVB8Gs2flBHWL/AieaHe8IyFyv2hh0o8zgWpJ2EsVJwI/j1CoJj2Q7s3buKvG47c/L0MyDy9QT9G/Uc+0P+ciy8ozWjVsOeZAEwgEKw9b6BK/y/sWxwAc54cJ5E3IkDfvlhlNFHcAqtpvhBFZjvNB/HdThDjkAsl1qdpkE5PZyuLoH/ZSzFw3r53HSgBIOeAOg2XIOhPZaQP/c/cPZdDadfncI/9pV0IaGfhjYfY2Wrh2Q8pAGr5Z6Ag/8Rkp4FpFyuSgUKLnT/gjoluWhyy6cfuLEhGpNfaULz92Vka1GHIolDJGy2jF4M3UcTn02QrbADddKOgO25aortQ9jw+DVqqSeQJuvilZoaHu2VQj+0WiA6/BrWbNzAP7u9WaHFBCwbs0D1gztbLV9CB+Uz2dGpkx9c38VH3y7ElocJXFH5kpsfacM/PEiCh405PbwA+m4/ReXhbu6T9IBfaWNoaYkWXg9M54ouXbi3poaW1U6nD00KMFZ+EfskvOLMamm2em/HPeXPQHLcXbrSagDbY/x53BYFShx9h36FS9DiJR8hu9eHs37kkIq2DW8dcQK/eo+GLR+V8aXdBvy78xEb/TxLfhrJYCvnxd3d2QzebVjA6/FKpBhkGXXinpbb0CgyD/0iImmCqjLstQmhqUqruXTUVVj/czo/TpkCEZpuVF14EQ4OP0flmBycOiYL3z2rppU5t8Ds+iaY0zVEU1Xk4NP7Jmy/cxijpy7HI+a76Km1CERF/qVZOaIgKjMRg/5lw2QTQRAVsOPL4et5z40udPr+Fx7ftIKZww1gZXUH27J/gd7kYxDweAIsr9CB0+svgZmKPx20uEa1KRK4c60znHpWR+JJNWRR9okn9GpCvvQ+dN73C7sv3+MZS6tJfXoPta7ajml1u/DzTxdocdOAiKcIsj49YLTwGmhI7uPQlU4ce3gBm7wTgnohHzD3V6R60WjsKTSCcZHNvNr0PyjZKcpr0BKObtwO9oobuOxTC+rMLkGl10mkWg+g9G0TqYmUQ6JGBD567EbRF4U5TGYE63vfgSkZKjj9hhVbVY4Ez/NJ7PFAhCX2rSOXi0cxx+AhXq4WwV3V//HSc+qQEz2EwgNjIH/rTxC7Y0qtW3aR/Vg3ilx6DL2OL6CyV/mY4ylKApsnwZ2KaXD44QZa8jsUBkO38sVFm+muhx0dL1gJV4MmE2yyJDGhl1x0SxgWPtSB24ejODzPneY+APB2/ITv3cfCIvdFZHc7BQU7gH3NFSDEYxuEpxPMdBlFDj3naGxsMet0FAJs/wd798vDrW4nuHxWBI621sDzU1spQIrAMMcC9y9R4Tsi//CMxGf+VnuRzopegr/nJMDieQTLenWBrdgAiLlHk4mbNPr0XWOB7bdh37/RbJQyAsuWa4NI7AV8WB6AJwWe0MzUu3zpngvtk7oJ4oZGLOMszHEfwshrpQao96dy0rb7LJjbRXuHX7Ja3DTQTZKAgKC//DloIpVOCGbbNBV4/8ILXVuUaPWOBG5srMd7r7V5yuYftEsyCGqWLsSctMtcbSYLoiWvWee4DDsPxOOPl+do1r1BDCp9hcICa8lFT5m7e8pQsWcmVL08i2uE97NqZShJ5E+izROns2nHC8hrUoY557bDkMEn7jAUhB2543Cl7z/qbPyFAXfS6I7JJu5+e5Y/qffg+ujl1JbThTYmEjBr6j3ctfkOai5w4EN7R8BQTzBuDr8CDQUjuDnpC51L2cujYsxA+1ooTKoORlXRMfDVuABPm1/F25/L8eTgBiiOlCZfy5noHmwIZ0qtaekucYKLd2HzsDReSLqKU5cu4uNy7XQ/wYg3zNwP3aIzQFPnLNt9nAsbX/3HhM4woU6YIoI6eShwC1TdUuF2m1heYcxQ0jYe5WqPQp2YOWQFuZP8wtc883MbxWZ70auH2/kqy9GcFSNBMzgODb2CCBKyaMycEkyQBBiUTISzQwP8R/YEXgw5waGOOvB5OIYOCc4gn9KjfCOggCeKK2ClxmPQ9nTGZHcHMPHs4LmdIiAXms+hEmOpdZoi1HrsgbDXRmAbbw67uzZSgeNv7j9thhfzzWDO5gs0a98wiGR+hANznsB0yUy8f/4pa3y+QfffRuCDdkmMqFEEu89vIL7lM9dKroVVZ1rZt7SAzfe6YdFyO2iTG4Rnpmfg3FsNqPhvESsrnoY1NrfZKbgJhaw2QYS1BF7Yqci/iidhtrQ1KUfKQL7iEXyc5A39YQ6gOPSTTEsS0Vj8KZ2NXwQHHvXA+6AKVLmiAVleSXzwtzcObLaGYyPy4PpgDI4sUIOFL9p5oCOYvpl1wuWlmnAzaQPfbnxIV81+cvyYm+Cp84Ulb92BsLYftP/RQrApngKHnY3h+qJ+Ov3cnLZftIXez/G0w60DB2PHQea6ZJwfJAPr9PswT1oSvgy3c7D5EcideZPULdKgYFwgN/9+jOsuFGL1wlba/nYdyy8bBcdcl5KIXwrpXTegqWt6wEBShyW737K610d+6DMLL0lVUcYOKfik8h6ys6Uwofk43T9wAj3ijdgpfieYrfvEofrmNNn5Ne+KVAdrzQUkMDYKysonU8AmK1zVrIWXz6py9eOZ6DDkiM2JX3B8iT74PHLF5EPisG6NJKU72uGVBU54dMF1ipxdjY/ubuaQi8Eo7j8TKtPm0pQNpfQ2uZ4Wr3bn9lXNlPRACTXWneVOmeukE5RHKSo6kKKpwO+nZrPr+FzMby2BsO3TGBQaeLBRDcs6d0LdmqPE6jpgM38y+KVpsXVKH8gMCvK8yy0sKZ5BZl/6cTxsQOcwN1jroAy/3vniznF1HGZwj9xH7Oaq7dtwYuZbcJvbzlkrwmDB1rFU/Xcs8BNzNHb6h6tbv7Dpxi5Ydiiejf67CZOrvkCb90+sP9+ExrIIQ8Fm0BQ0iW/KmNAJdxs+2fIBggdMoVveigvzI6HKdAcPF00FmZF+5HAjlzz0X+CyWlVww9m4dvJFZK8tbHneEsR+97Ck7gTIWTcKTgStIcjcCGt0+ui+zVcMPdNNdvVBtGrNV76vrEWZkqrw3i2ABpRzSahyJS2TEIKMnZ5cf2sHzXxmBRt6zGn0xyx490cJNt5fCIev/2Cp7gMQ0ajGscu2c2SxJCjszUa1f1b0unQf3goWhFVZYvxnJEGA9zlIG3UbJLa/h20mnXxTKgggWJVU/PfS26ni0OTzB7rHryTdDELpaZvRKUSWr2tsx82TvPFAbCqttXsNfxUFoTfkGye+kAKpJa+pbLYEXE6dhu5t/ejV+BVq/nVwcZktDI4ZB8V1snAtaBg3HdIG87XzsYlsWdNDGhsPReDW0dug4LYv7z87HVam/ANlcWN6ltvLW2aLU133SXLvjSM8NYeKns/GWK1aFhI2gUPeitDyUg7lfNu5wlCF1VRXQd7a8SwZcQDGzapmA7k0vP9KFmKnzqV7v8soO82VslPnw6fqZxy8YT0mzTyPbm0XoSo9BPSSZ8Lqc4K076ka6o0bQ09EVvNk93t0uuspiWQ95sKZP/jFXSkclrSE4OdXOKfuIh++6ksTV/8j07lRtFPzNEqKHMXkaXp4+6cQvlOYAisG3Vh6xWMUu6hLt9bcpd/Sm/jN+n9svNoYXz5bxl3m46DI1AIc9q/EMOlkzrVzocAWR2gP/wT+31IwxyebOtyf0I1ZQfybZQFGC8B+zyLcau+B0c8OceayUCTbEggpt4aapTV8wfsttw4bQmpTPU67J4wb2v7AUhc/SEu2glX/7mHHEXkYUzAAzlt6IEVQEpZadEPKkUvkMiWH2zX8cN/OX/hx9A2QHdWN9oc0aL/Ce2z8YwrvAs7SBfNl0HR8OQZ27CC9CerwQdOHL355jh9WviTvhX14tlkegrc8hdSLaqwWZkDmUWKgcCaBGrqj2KE5GIJ+iVPd0o8Y3SAB34T3Y/TYQI769h8IzJVBpZsDtHrJP3JTM6ajwqGsG/aHz1wSA3u1YJQ42AhLU5/gvra1ODCihqKnCWBuQxvcFizFPmc/DjA0hMqPs+nk+hQ4+76CDU69Ysnwn/SoUJRNbVwpzKWWL/2Xzar5AvD82iB7O3dQ+NNRuG3qS6qYmosnRR7QmwOtpL67Grf3LqMZT80gT0sARwjLEm//gYUjw3hr7ze4n5iL4W/v4wZvAbi/2gz2ZxjDppPhcONNG+TffYiXDgrCx1+u4O0dyyvXVbGRYCzUWczhZVGGMDbIHv6JNuNqe3VcnrsG7vgrk95BE6waPoO7DIZJeccimP3SCBryDvG3Y12g4KCD6iPPQKHjeB7YZoUXViTQwoUHkCd/p54FqlBy6DW69hbxm8vOeEtrCWRYx3Ck3ihe0n8HktYnwPB8wodGBrD06RJW9NAm684Mur91H8ts8yW58YW8fJwy2NRvpJNXFGhysjR8hV8UHHCIMqOTKB+aMHxQAv9lF/JykcXYMDACUuodyP2UIWz8GE7Ty5IZbH3QbH0Ye2+6yP3xj6H5Zht+Wm9Iv+Wi4KiNJewY7CN5ZRnY+PQ0rQrT4oxaBYxbXQ4dcwWwPMUdnv63mMSyRGHt0muwv8+cNSW28oMISepqANp5/AaOKvLAh16H2GP7Oz7qKAFqFhvB/s81lNw0k7Mk3OCsti+cu7EDPomV0c7vnuw06wYb1I6HunkZUH/sIhnY/aB1B67D7Q8f+dW7CbzMWBhPWM2HNVpOVJMFYLInmh+OUgGx38t4x2tHMjpaCnNiK0E26Svvlt3CAj6ScElbEW5v3sNxRudBbsQWkFLWQ61Fa2j05BJyuXeHBrfG0RgBeawz0gBtNRcofrodjYdlacG+Yzy25BEeDJ+DsZNXQeNAAMxuJLo1kcDFuJEn1FngygRZWOsFHJHWAeUGtlQafB7uBBvA4PQ6qtonDt+jZrCh90g0/H0SHca8Y6fRKexm5Y45RptYj8Xgke9J5J/CUOKRx6Pz0yFUew6KUy3XT+6ByLgVjE2/ocIqk4omXWaZWmlYMTgOpfktUPkyrFD+D8ozFelWpAk71Uei/25FPBf1mM2TZMHbo4WEE9fh+QtxMG7KIyx1GyCnr7NQtXEQvTrHcUJvGF/6KA+CZ29ijEc0X6l7DTL2o8Dj9R8wWubPeDqPpFWVUW5oMVaUiYA7PiTrNWdw8RMB2B8wA2RKV/Cg2h4QlpyA9k9uosBBN4rQHA3d2jlgN/o1bnwymjvT07hx5mm0XiEEitt3g8mHy2CxQ4864iVAVaMQeEoJ9O9LZy99Q3zZYcOWZm540Oo8RV65TZKZ19h63VTwuvyW3FOMaN3DwzTjwXvGHAlO/52KXdGXcHNXNxfekIYzYhJw74szFr8WQMeTE2lnnQb3hotir04cipttpKE38vSz+QfkSyvBz+lH8PFdKbBQWs4Tco6i/Ucfcmq4jNPqgdx3OtCt5zK010/i/+b/5nR00vltR7mgO4JGRwxiwwNpEkysAiWfB3RpVSEFxCah82IGHc9IrBbfzx4m42nMi062ck1FD4kWPD56Ocw7d4hH3F+Ony8rwWEzexAqjMF59x9x+25fCKjeDd9aazBAdS7lVs6HoSgXDCVRyBfKR9GFKbTvixrMnYccGGVKCQ+68E7kHFQqXw8vXFNA45QM2C84DTGdtVz7dRas3zCDLzWN5TTHR+i515aiBO/QQZtpGBOlAvLHF3CSZRbukwlB9QRPLLOJpH6f/0BD5ATLG5jwTl7Fm9I1Id0pgarv67GyrwLNd7ZB0cJTEJHtwJXwiqf07+BZp1pBc50QjCtdD41T/6BJ5Roaf/cgXlW5BYc2KHFbYipV7JeF7NokfBxuCbaGNmDp24k5w+b0uCgIk08E8aa9PnBvwj/qt/4Bi1r9+ZfmZMirUuRDtwbQzlKfRxTeoL2/lOHY2l48nN2J5rmruVu3Cw6kaoHpsVH4Qmoy6T0Vo8ZsQ/yz34heGDtwmH0iXsj2BC18yIWtI2CO/WyWy3zNAQcv05MX8gge1ljhZcXNZgakoxXEV1csoYLNk8GyfhzUjZhHJ87dZq1n2ixtvAu6FxXw2ztl9PvfKayM/ctTB8WhW18fvP6uwIhWNzjt1c06u/rxo4IkSNtJs2XjAn50sIEFXKVg8/hqnPpRD8X8R/K4U0GUQUHkYPwB2v9UkKWKD46vLmfp8eqQ0urHL3+cxrJfA7jaNw+nfy7iN1YuvKD9GJ35lMknr4hT42E58P33geSyt0Dyx0o+LnAZtwrMhjnJW1CwtgCPNsjQxrvR3Gc/Hjb2HiK/vyf4r8wDGts/hC65WVCmcBgmmfbhYn8jLHu/FG4biULFjA948sdsfH1Wkr6/ngf677UheswAT7ihzQdF41AluQbsfGVhj3wtu0v38ly/WxhyVYRiM4UgWPcLHzjlSUPlV8EyNojTSmWgpU4XctAcnCYa0AObDjih8gpqNNvggPU/6lpYww/DZ0PyZQs4pLAbm8cp47HqQVyT+w0VZILIOKiLRdfe5+9V8zj25WEW1ZQGYYHn5K2QzGlSg3Tg4nSMMRyLReeiqeRFJDhb++D2PQdBYOwMKPFsx4KcQurpioSsuOdkUTWM8yvfgXtzHKqJ34ZFMla0qlEbjGW00LuwkyKE89gMy1neRx2l5bfxxMS5+H7SbrYaYcTuEQKQ930snhrjglmBkvA8cAiWX9HjKf2B0H28h463Ajr5eNBNOzFolIrDpNQxNC70N1UtaeeOiTOpclMhmkV2Y5VfD20NSgUPQ1F4U/4T48+Zwx71J7Bbxhi0j9mBcekKkp+/De4usqGyFQ5secUI0jck8tXbU9Dlw0o0FwyBwUFfirOupRNxB6B1xzWcbiXCd8yVYOWx3Vy77TR4XtrPfU+q8FpwHEmWSJFMxnQWOXcQXbKKaNYlAai4+x3Pi7vyE+v9OD9AgkpFFCjcXooKlGWoZ/kFuuDQzVXm5uBu6EV+IYF8M9UZXu74R9f+OWNL9ytYslcDfqsqsan+VdCsF4CBTdNASVgQdpIoOf7cS25hW3CZmiLNvPcEJ9WuAilfDf75ZDRMXT6Mwa33QND2CS06rQfN20qweMgRyiSSQPi4AbWm5IHF36mwW6qblFTiaFtcClY90MOmCT0o22LDa1/ewutJcRD1Mw8dLPRh86IFJCgRT4+9ZrG6wUyUz0vBHVZREJqdyKlvZsFan62456I+OG+Kp4kZTEdOufH6/Blsfug42ghYsVnRGq7dHQC7PkXhIUUV2PboIa1UfwlJ2vNg/IirILfkNcZRPi6+8QaqdmVAqPkGEr8lC2qBAkRT+2HBU3cq2sqwZFQF5YU4wejF66BhVzhe6imG59oW8F9lHrVXBFOwwVrWtsshUYEH8K1HBp6OUsaigt98/kcIqD4fAY8CHuMdL2nsvrqB1iUlctiqHPASVkRljR5oc5WmGV+12Pv5WFjDkvgi7h3u+SkPx9ofcKh8DNhl7MIufWeouPSRxzdIopKnCphufwg7w07TvDePaE/gOdiS/wpIP5L+bjSlr30O4OnfiKqTx8MJ+dcg054JR52EsOSuBVdL2qCspCRuGr2Ui/e5kvfUlag4Vh32fsnGX8NmMC56D92oP8V/3W6S8IZQ0pB8S+Oy/NHgsBhs95gKxzWVMGzJNTgXakw7/8ZwcH4k64tlkpqCHM5MSkTZvmyU1B8LYvkEVyZvwOTSOGwsk2Pn5DaOLLiCzgGzcLLORrriOYf/ehjAt/cvqBQVcfWSKVDrXw1LOswhuOE5WYuV8p2tP1AtNxS+nTGAWZXHSH7iF6w4u5P9Qveh16XzbCKui0725hhYKchfBFfw73R9uDvmM32b58uD4m10cut+SCvP4lmwmVv1d2GX5ChYXbefFigow/7BF5B/+hzFVvui/wQVWlT1H7qVjcVZXXfo5rF98POJAzq36IO3XBMPzKyjprnSOCHiA2k+yoADMyTo2BlBjrKPhiLBeUyHhGDn7Y+0OrmEFtn64QetCBhaOBueXV1GDYIE3UkZeLDhO0+JE4XjYjcxw3EzHLBZCpe3TUT30zrc+jGEla6m88Jx2SQ0T49qn+jAysctKDq8GqsOVqG973iQLkxCo0cb+G7vati7UYcr8ppoxFRTiK0/SWt6imiWpjQOjYyh0afEYJ+NOsfZaJPS/udQ8yESbzkLQortM36Yk8vzSy7zlBRbnuj9Gx/bn4VIJ6CUNHt4Scvg3FZp0DbQZ8/xDjwu0J3sXn/H/+4+xArHQLx+l+hHayXBQClrbhCDffc6MXvPIjYU3MW7MipR5YMQ/bROwLqs5SDxS4AUfvfD198WkHt3Ge12PU0Hmrw4xvgxlO6Ip3kt1vhFUIqOtWezToEl5rwQgKvrizDd5hrOi5ICuelH6aCFCVdK9/HWZQtpet0w2e4tg4oKNdgxr5I2erfgW/Mn/M2kihOqF+Fl0udNQ7rotHYstMrJ0qrbFqA18AQ+FnnA3Bm3YYJ+LK4MjsQTFw9Dx7InkFl0mJUlxTmJpkCGti5cqK3BzoxgOjhnDowbsOH+LjcwKumDJr1sjvUsw69j1MAnYzsX5J3nrdeXgFLkH3h56xOqGgrQ518rSORMGsqOtQTlLj2YdLyD14qMgnfq+8Gx8Dy9MHLFsN+eMOfAMW5rmUxn7Uuwp3MarHaso53LJbkrYhSGbKhg9w3nqXr5FXgflYcWW3+hoNcW7HMXhYfV1vz05Ww+d7ObSloroGllITmRGfpVyqG1kQK+lByFNQoqEFEljquDjrNYsTrXPZNBo7PPKfNTHC00WYPvV3RRu+QIsuvRhjKHXvjUPwJCIyJAqlEIPBdO4mTTLzzpogOXGNawQ7Ityokaw0w05aFnl2n769OU/yOLDeduBj1nAdgq+o+a5krQqbMqEHVOEVqTivnvkok47PCMakZ9pw/bp4OCoAb6bgiCkzkWlLYhm4Y6J0GG2W/UtqvBv0I5fO+aIC8Uukab5szBmjUR0LBzKRgl7YdZ+hqgOiIYHmYo4/wYGx4wFwadzEHacWcPu8Wc4bEOzSgt70bKnTpwOOECysT3Us1bB0h/6wCyu6Xx3h0H6rjawqalt6j2eiN+ea4JGsnzYPUZOdi4xAU+z/9GdlMrIOlUP6ZLKMDo3xth8FEGx582hajiYAjDo+jh+Ir7ZcPBbtVcajqZCsnbasj3+VGK6bkOm79OhPBxZRDs+I4dY4TYLXCA8yPD+djOo+C3zI7+urZAw68PKC0xEnzj/2OsT4MVrXrsljqZo5KUOODFMlzn/wMvzyhkb+ONsE9UDwwnd1DvKkcM9+yHyiBxdr0eTufnt5PZKjNUyhDhN28KKW73aCi/84WHHtrhyP+eYGf9ZQD5aoq5LcnrB73g1R4Hzt3aBj/zp0LZ3xGUZHod/Na14uTLzjhd0xW+GDxhJQ0ftDgjzH0p0/hMzGQwTklH24nlYCC/DFb+Vcb56QY494E26knfopnTr+COIkU6JCMIbDgMgeJ7weOVM75ymwv7NS7hnOP/0ZQP2pQ9+z7Uz58CCsemwh6ZAByaEIxL0paBUsgCmOVyidp3vweRR/n882UHbsiLhvW50rBhlwvdFJyGBSKirDnYjjM7rqLAAgVyF68Cx6IXpH3TkTQPKcMNA+DOHZ7o2p2GeYlfSdZxLrROicdsQ0fMF9/AoQnnwCVXDGTFO0DVZAb6BGuix4fP0JwRz9euJGKIdRHt9LWjM+7nuWSiJXg8jwPtSlPaNEOJavVcUGe0I7TOmQRGomdx/Q5hfjo1lfu3jAXNq2ZQF72Yci+dpk+vyulCdxIcM0qhVvsxvO1gIC5fVMAiN0ZDrsA/alSRwvS5LZx6/B3eUFCmf0rVoOFzHt4bIfy3TJ+NC/TBTzyMEo4IQZ3OYlp0ZC3oFP6Cbe/66NKFDRBSGQVB9TG8NZ9hgsEz9v/8gbwP/qJbRR9pTdA6TPlcTHNbnfhe90OquXyItw0pwHn3A/BxwxK8XuMIJrdtIaLlAsf6reJaq71cWlwALU0qnOU7Ab6cu0ETbvShtU4fJYe/gPDEJXjjcyg11aaCd8l9ui78kN6EAiTcFWMDnX4Y33CejzQ9J/mzuSzdbwhndZ9w5vjjUO/8Gw7vHwvjBxaDb1A7uea2oKnfXjb54U65dS0g0dsJ0hRIq3YkY+ONCQAj5LmtXR8HGmbDvhB73gvr6djcIVxksp3fyX1Du6mzQOmqItx7dYZDZsvAkLcrg8d4iJUciTWKV3jZ5nvUvbYfXEVv85ZLFkCeO2FglS6YxD2B3DBN0ND/xFltyrTrRRa+nTKJdkuWkJCKEpxVuk5Fo5/SqxMe/HaTGKsY68PFGEUa+tZLF2fWocL9OrwYowRy23eifnEOzVylBe/Dj5DCUR/aptvOl0RnwbEr9fA1ZzG1e+nB8j4PNEgW5yERbah6DGhjGQyS7muwfccfyO3zIP//UVAfaiEwagCAv9HUULSnERoq7akkZDZUJFJJSkLICFEpEiFKISmjxR+VUihpKEXKCKGMEBlFSZHOc27i1dciPSE5kJVaQTEXcumngg8uc/9IC84HQa3NDkgUXwabdVbSpqq5sHbXGNjw3hlNyw/xwsI+7Klt5972BjK9mAA33/yHOhm6VH7rP9Y/MQ5iFiZzwYtEDul6y0+cPOGr1C3qWfedxZe8hnnmD+h0qCB9zVCAqzND2DC9gw4/MsaHfd+5dbwofs3RZbGNJbSzMJiukgjPix4PFnU5lJN2Hx626WCqjxoFT82kSU4dcDK1D99Pq8RTQ4E0Rn00mLskkNrlWKpXvYI5lZ0kO7YZ3+0+hiuvL6KQi16w2jsGr761AsXKbJr0thPD9A35tFIC/Jz7H54TUYNcsf84VysLbkhIs9kNQfgvr5zlZWvg4PA3Shk8jWNxBFVIPyXbhePp8MRlHNDTgv8VCsON+D6cOXEHW+u587GuiaRS5QyHKwTgjelYzu+P58KDXrzOWAzE6x+ScUYFuFcq8sQp/nTklAjnz/sDSgeGMV1IAZbkFsJHazHIq2jmIqOn+KW6isvW5YPs4ytQ+zGeC1sfwZMpQRC7xogzAqxhvHgLPngSjxdrf8LMLlOsk5xDewWGYJ7uW8janoCux1vp4XcBOJoUz28u9vOTZ6fos5s1/PpyH8afXcn6jXJYPWUldYj1QPFOAbisOpZWFYRT6JrJ0Gz/GjtbNFn0hzguWnKEcvotKO3mEhxYaADr9qzgAbUokghUoRk56bxSxwNUw+s5cfQRui25nC9u8SRs1YPUm8lwbGYIHo1cwPuOLIDKb6+p4EEqRmZdAFetkXSgdg3U5I2DQD8xVDlsSqFNEuTSXY8JUY5g0p1Afn591LywD96//Y0RCYJw79leFJn9FdefN8TXx6/RC915mLBeAar66iBpRh1JJF3G0RESULLQgCoVbHnHiNd4xqYA3pnLk46KDC9tk+a5wTe46ug0EhEYDeJp0rxHopnTQxfi+S4E76tmHOxlBeVOZfxvhTL6XL9NPgdNodhhHQo5fOKbhXpgWhxKTdLf0CfpL3poXqOzhef5yWVfcE0bDRL4ktevjKA5LTXcPEYaTmdYYH3xO7SaOA0i0vdh4qTXMO+uJGS/ucRxhoe4d/Evvnf1MoVqpZP9d1tcIHGRn/98jI1/inhekhXIvHuGbbN7UDx8Jd5w3gW3Mo7SjPO9sHdWPLhQDO6RWw2jzkwC9TURuNp7CP2uyaDOmHL0efad/VS0OcWlgmac2I7Yt47v/VCGtFnvKHKcF73I8OZKWS10+W8fDpe74g7RfC599p1N/ORgVKcNKAxF4WLvKLIZTMObxd/hbnoI2Rn1kf7Oa5AxfjrbT+yDc9PGgfamM9SXuweUqldBygdBdHmONEnyABk8LsHOr5ZkOGIcjwnRAJ2cIQ5+9JnUS9Zj/LKneGztQ9ib/ZvFjxnSiZevKGtkGVuXy4BnxjFcOLWbPBe6keeAMRbBWZbRtwLtwM0kPsUX/JftwSdKI8F31SSuPBTNCmk6cG79dWjtseejaAZXu8vJfP9KstX4gq0lelDqFw13kxtp0nptzGmPR1X56/zpyRDM3RgNL2MvYVTXQnpnoAUvDjtgUZoqblj3nuZnePJoT2HesboPnzuYk8OTRvx19Bom1ppC56E6dBEXxX1i1jzOJJwtR4xBu9NbuWT1Har3ckLtnDzcMFUJdCzqQMDZGKs8J+HlxlpyrVoIi6cgXDh+CrRNR2O2chJ7OwpC5/x4Knt/GXmRKM48K8m33pjwr1EStDDSmIydPuPXMmFODrSB66WxtCwrmpe3eqHG9hHUlHaUVMVtMOOtGGwSyaW8tBckbqYKkrXRUN9QyVU7k7nd5yi+HJwCkdN+s3J+LcoWu3PJwr106J856Hn2wqhieU6PPM33qqzxxJ4xKKpVAy4PCVwlrkJTfRqHTbUGQdXF+M9gCtRte8DLF50hJfEYrJJMx6z31rhbyRFauh157HIdMB4fDMdzddEo3A5E5KZQ0oF2/AlhpH/fmXeapsGXTW74KMQUzi/JgA3rM/nrrKV0fZwpqs9YDSfzcuHYCRGYLW0I++URJq42hUs7BGFkJsLTDgX6VzANuobk+OCvFGy0noFBhw5T/cMC7lOXBv+LVWh27Q23NR6lgYAmzpFazG5z1mP30HU0HCuLmddiKDpVCwpOaoP17q+cN68fjlzW5tVWW+iV+UGe63mTPjQ94cKtYtS3RA7mXleFAEV3qn6zD/4Tvort1wH8DWfTzFnA/snZnLDIB6Y9VwOZYyMo5ZM9Tkt5Tt6/N/LGQTtI/phIll2z0XVLA0NzE4Q0ysIGj1x6MV4Klc2TOKs9H59XeEP04US8NKYDi/99Ry29fWz1Thz8JYL4VrYXbi7owLD5xVi4cwbUDlth+6x66Aq6Al8khMjzrTmI12/Hwnel/HWbNK+abo2vh86yhVQXTfXR4785I9DwUi8Wp9hC/4FxpG+9AU9v+k1KVxP4pOxTev99H3xa443XrOV5r4YuZ6ioAcosZT+VQnBU0cLr9ddhwe8t/LLbmmHTA7aveMCq2ufIuVAD2upbwe3dHVyuUILpzvv4a94CFNnmRKO9LvHfgn3Q5D8b7+rowmOdUMjJHeJwO2NY67YHD++LJ8XGIPw3UYCff5OhfvgPVl+0gq3TC2nV8CGMPhgFGcpLYeL8LFz44yF/FVgIHqCOz0ySWD1MDD71CMPEunZGr2CoComicWaJ1PijnqQChvDHzbdoNn41yzZPgkizftaI04OJJ16gbUQXtl+XhOMbRuB34UX8dq0RtnbMofQASSgWvcRdJk64sO405R7N4SqlTFBx3Uab7EzwRHcZns8eAJuBsWAt8A5tM+pQ9KIbjm+346+FZVwn8ZtedAnRenUvOPFKFYPCVeFv9Uv4zWG8at8WmH72O84sm4IpPttA4YIwcYEif4xRhihlCfjSuhuv1MTzomnFoPxzBcufHKCQIxZIo1XQfsFHXBSZC5r7EUb55WBAdizVe+4gvm2NzvmudLX2AoQ5P8cnF5irGkrpZYQWrHyWQCXx/bg204enP83n3x+cYVJ4L8slr+GdHiJY523Ja+4DOL88A+nfJMik4wzPu7Ebq550odx6dU5eZQma83dS2eU1kFPD0KGujCm2fpz0rYC8v15lHfPJ4GcwASrAjoPvXgVov4GepeOh9cV9vHBtDTzYdpT3Fdtz/e94/jEpFuLUwtBYeysfD9yOs3OVQOB6EZWuGUkpGws5Kl+Iij+30Cz9Gkh3ucPTR7/g4Ce7qc5XCEyG23CF5HfcenM/mtwtgPM7Urj/WznpFj+k8J2lOPn7flI1UASHJjO8rCbKe/2CsfeAOppuzYLZ376ByA5BzAzoB7fHa7DophLsU5xJnaUeYHPwCQlb/cPwcf/xnYjXeNo1nQ4IVbDSf3GsJKcF3d4foGGeMO3PvUyV5RGoX+XM5SfOQ8fmmXTcvBMHji4lhZnG4L1hA61odMdNn5JZusgZ/EbHU4ZnCrecl0SBj5cgyu4G3D+mAFvtfbhhiRXdiM5AxWV3uEe2iNbNcsOx0f70ynM39yHT3xqA+xaqZDpuJZx1PEFKu1eRa7kD14o3kUZNMp763sSWJ2/j3WX64FyeAYI1N3F5QzO8HNcCMaExWO+YS+ZZTdT8NAfvVwZy20griDLcioPL4+Hc0/kknXAIg6/4883YD6Sd8ZpDWo+SVpo+hz8YCTPEJXmeqjAbpnXyGOftsDO5h09/Pg5W4V4cdyQBWvQ2s+dcIVhsL4VSvpm4EUeD6BkT+nHuIyoV7qDKvmGIOpDEgU/CaPscGcDt2vRHypfnKgrT2OVR4JOej3X+znRscTqsyDpNT18c5hqDsXBTo4iGzLbDHXMdVJ/kSzHXr4PyoU6WrAjgvIG3YKUxCMXLRsGSokBUVK8i3cgYzt0rSR0mm8nJJoeVbUbBL42/MFP8AF3PHgFKnc843/ALfHbt5cRZh3CbxWJQqXwDtU+TsSv9M0eon4DU3SNB924qruFzcON8DVspt0D/sVj6yyPpxMs8/hTvyi8q+mH1CH2ICLpM8dn9uP5qMb780cN+88eQ1tgZPNHwEhkETudi2xrQ5ymQPk8CDDsu4rW7UzBbRwECJrjgmTp9Dm0k0LMzwb6NoiS5ZiIUR5zE00amxAe08bWDNbZHTwcptXp4vsaTHG54QetvQdj50BxOB+TxzfcSKG1uQHK/3CHvUwpLLfJCJf9vdPgFofzJA5QtOBbOL0rn8269XCbvjVNOeWCItBu9VVJmyfPC0PK2jj3FzlLTLQEYaLwB1snT6cO931yYZEGvziXxy5L/SKnRHVZnfoDVX6bgy82S4CrWwU5zzoPHzdU0bfJv/PXrAs+ZNRsPi89n0eN2GHrlO+4wU4cT8xRppLMtz/HfAp9/SPBaWy+KWFDCXZKBNCrzOUqts8fk51ZwabYG25esx3n+9tQTZUzNacuoOe8Wep08gbLpavT92m4+NtsEQm4Isr+rGE1eHcc5UnE091ApNtz6RhXfjuA51UU8zmoc77ivDRM3DxFoAIav+MpK+mb8JVwSm+TGcE7vQoqzWMwPRedS0lkb8Jl+hMMq48Bww13w1GqF3DRnzE6spqAV2zGs1JFj1o+kYSc9EDC1xa3xYfy4cj17Wpbiu4/x4DHwAu77NqNm1kPYazEeNW4KwbxMU4ybWkDTVbNpk6M9q+qe59sSnbC9SgufrtDkbpc8vPBMCDx3I+UGXoaBRAlwHfqDZvYLeGXTRDhqcIb2Wg/gNfssvGmsB6cXzKTqpG6MG2EIzQ9u0oLkt9QttQr3LvmNpdNauDDzGCXrikDjppXQbFiG++1+oPeCSMi81oKi5rtwfk4h9wcao8ceB9hmPAqCvi6AG14M6lWH6M6VGZj85gnrTxgHt6aV8a/DHlj7cD606QlBSMZcyvX/xGonrlKjcAEcT7PmbfLEI5Pu0r1QZb6t7Ey2Z9SgNXYi9Lz+w8oLitErcjJMFjTgXtv/OH28F48u+0M990vBcsQU0D2shjGTpnFLbyHrjjHBNMMsaPq9gTb8sqdkCQ/4mTwKYx5NgKVSiaCT04ZFh+MhNXMeys9PJw+wY4PRJ+jH6D/gDX/A05XBuGEvBmjMQe36Pnw0soseJW/gNxcRStVTybMyH00mNsPkXbZQbBNCIbJ56O2aRedk+jld7jOGRTWD7OyLkPO9Gg42b8O6aUYgnnuE7g9cBgcbDyj6qcXr5nrQB+Px+CUxCqxOSeHJHaPQqGQUfO404uLGVRDZXoA5X2rh1/IgEnJxwEA3UZbYuAj3mz/k/YMW8G6dPZ4r6YDS2pWcl7iDSqMt6IikLj4Qcea8xU/h7jth9CjThHffR/AWoXt8WXMnKS0poQu/i7FcdSMfnvQUl7co8xFnU7ilOhn6L0egzzZR7NvnQP2TtuDUmI90PekZP1UD1DS0g06VVxjzAkGuS4wEtSLwb0MNpBy7Sl7bPWinvAn+Dv1B1Raf4bpbCS4fHAf91S58CsJJdMVPMrtxFEadzUO3q2Xgf1aaw0JugctBaTK8NR6yHudQa9tH/r2lnO+bjeWIWXfwoVE06nQ8wx7lDnQ9546BzgSa6sxVWdcg7v5n7spexLPDumnsASt4JD1MrUMZkDshj7IOK8D14hDYFbeVpR0d6bbjX2g41ovccQJ25G9kmfAV/OOIEFvMl4Kvqz6h740ILl8aTZwlhiOD6lE9dhdm64bS3c0XufXTKnSJMACXT5vB/OYPbEvQAVflZOwbjKOVhS/4yLga6mi9i1kBhai7XhlOLrXHoi9KdHS5IMi+NeUZ7mfo2tuLOH6gjYf7RuK3YTV880YQNiV9o9O6JnTuxz2+Ey2CSUG+9HtJMO6yXUOzdfO5tmgqGB1SgY3phbgsYgNfa2M8mveBTqVchZN9SVg67EwXPGfQ0fiR5D5sBWWy1Sh5rwJ2tBiRTcxPSPnQyl5vKsju8ELYPWEFr74QglGtI0BOog8s5/ylA1Y/sG7AiLrFCEtbLHitqQGEWl5hkbM3yY1UoOfyMd514CmKbn9K9XZDYPt8NyRnb2WB1nxMXJFOsrnS3LhQCcoy7FC4ZYjbPFqwe6IKlodfgHUqb+mC0UaOX1OHBkMT+YufEGS7n4EPB/NxdtJ3mgfTUHByOhrePsgmg7aoBN+gXU+C5+noQztOBKudivhKewmouWeD6+yX+LDMGQqPf6IT9z6Dm2gKbfioDrtvO4CTvSTtd/KnxYt+gsywN8RfqUHNJh9eUZoHS502goK8BfhKGUHBsggImNoD8yMb+aCKFchui+OTjRPZa1U3mLySwifV2nB+dTGJWvbxUqdozPfrhLw7p/GldjV9+1sAc+c5sY6lC/+cOgVuKrdzWelsWB+QBRdLR9J6gTtoknsCxc7mck6JKBZZfqZXfqPA4UERHF+2FoU2BsGHIh34qj4NQiTHg1lDBZud/Ij20v4gf88IVkkdZ/uQcPK+8owcpc0hJLkNT+9qgqNh3jT60Ag+0nEI78SbQmBuAORtSuTIP7cpetpm9LceRWs3z4HAD68wuXcALfPCEQ7rw1bPVA5ZkUgfBMbAQtkjOD/2PzqRrI0T4vTZxy0Hz58PgtQ7knBxlChD6gso1jFEaJMmhVkK/OXbIzh3Mh4Vld9Sv/F6SPlsAT1bn5PBfEv+KnEZhJ948HaFcjyh1klv9vfDpjPG/FbsFZeVM0iEisCjT+1QOOs3qZ7dzGfbfFgx2QYUDl6gw2XTQSt9GTnbqMKf+tNssGsyPPW34JKpluxivx5Dy3bhY8cmcpUfxSUKjhTgrw5pPxI4ZH0MLbArQinJ69i5YyuXqRTCm+BkzFj4jwOW1OFglhb8XbQStybfwsLzKlhepoF3O/IgI3cGbnWQYd9FCLeP/6bSNEtwl1KgXSFtbPb5HZWEPGMTx+kk90KSxg4Qw/axVDtnD9YGWMHt8k8YsqwN1nYuogeNT1nk5RKoMrtO2qfDeE/SaJigtgwkCyTglOQsPn3Blbruz6OUywkYb1qLj9tq4fDLnby1byLPsLDi3EeTYdvFapIdcRLvPT6PN5+dIvHx/jg4oZq27J2D9xfNYcWnD+jGHFWgr9HsJuhAOd/HwizXUKxK34cbaDstdksllbUfcdEJT5icrQlj/d/wo2pDUlsnTw3hffivqYTTbAVhWa4eNyZOwMG173lWlhZMuhJFGfgdHK3UQMRlKstpIwopSOGdGEe8vr4Cs3aJ4FUhdTCYF4JjrCOhWTmSny0YAsMQabSFjxh5uRM1ykaT+9RAGM5WgcfnL/Cw6WNcktfKqueAfkvewHPbirDM8CKtn5qCy+NrYCmNhfnuzqySqY7Baft5SfM6VtGU5V1Tx/AUm2g2DK+hku/tGL9RFXBJIR3RVMB5vTrw4mQb6IyfgkFBB9jTypbbNjmz8+aXcPShHlh/GImRhf5QTeF8tPMa2a7YjtcfbeC+Bme6krsc766RwtIPRjA2KQEvT3hAW1e44sdjsngm5QSv+PuJP+/24XX3v2CGz13iLeKwa+kiXnbCnqSKf9LBB+2w5WQ9bip4iDHTT0JkxzUqXL6c5i6XhNFX79GeTxcw6MxPmm92Ed4HHwLh/Xc48IMpRd0u4YKNniSxVRKCS0/iwX0baZltCkRcyWCFZUUQq1YOvSvv8b2vjbBF8RU53xKH3p4sfKCbCvtGPcebU5/TmmPa1HXeDtNYBT6LmZL33R4KDjeD6MGNlCAyjw5OsaMVm1bx9f57pJZriCrfVDFQSxtmzRfEZye0oUZkNz/wS0X9olQInlZK3cJXsUexCWpXHkeV84/gv+JDdLnNFLKevedH8lm8RikIv8wWp62ybvDaYATfTX1HmYMqIJjqgIYO6rBk9xvO/U+Qj30tp3LXMtIeVoMfZ7L4bvhIwBBdqF2yF4YdxeDSQkdYu/IjjJhxEOa06GG9uSOdeXeQPryOpHNTL7OFwGrsy5GBRp8AcMifTadfFtKzW83gHDiCH/eYkp3iLt7w6Qs8sh7gfSoI3xML4Jj8cZTK3UQ/74lxnp4+d8SpgEXuV5Y9N5ZMH9ewwtPJ0LrNgB0VnTDL1Bo9OiS5L2M/Zsx/jnknV2DljyV84+pUnHRbHtxqE7hrZQhctWwk50tWZL1Siw6kX+RjqcN86c0t8PIcC2Z9yrDGN4KN/Q5yz6oErr/1G1/HXmKAp/xoE3CgUwb8rCjmmOnCsM9DlE9WWJKE7RMeNymaavK28vLJKuw77E5/jHLogeozSMiyhBllcdTf3MpO4mlwwVEaegt6aIvbThDQMsXQzjtUO/IJ7+2zgrFzjehcsD3WRblDyoNocHh1mK+8fMx/Ly2kVZP3YU/wR5gbOBl6FR9DtsRjCHDo4KGDr6i7YQ/IKVrg++Zi/BN3m6e5psLCNFNQGPcQxK6bk5XpII2K+YKzhGPJXMICywUuUWGMLzS79IH4IUt4ssgVKk+M4NsH5sLoD6r8atZv2lFkQOYqJXjWcz4rnw6AL91KMJToz+/it4AjrqMtdjdg9bMdFLFIHzf4noZY272c+aoEFPolwS9qiGIaP5OOwkbo6bbAjjxDCo/dBCrzZ7Gc7CTctWUFDwrKwMiATEzUb6CCjigePayDvpO3kcTynzDV/zFn/FgAZtu1SPOfKawZuYxfBDaAwHsXmFHoBlrqLfC3PZUCwtrw3vQQeqb/g68qCcNWHzWScBjNX+Ju42bzK3Rdtx73Fs3g564yoP7rEZeMkEL5L6qwZPJFrky/giYDY7DbC7C1SJu/iFzk+ksqOEZdiIz6ZEj1lAW8LdvClv6VdGxmFZ66uRtOPZgHrk4N8DVMFHdOng0KCVH47ZYhRI0YT73zuvlwwhCIHP3EqrbpNHv/Csw7uwF+3DaBxwdlacpRhtE/tPBg+xBv/PYYdGqD6YbjA+yOVMQ5rr/gk688yRkU0PZkXQjb5gRXbPMgNCmd/gk6UNm0UPj3uYu3bUjC3WJXYLvQB9YW14atku30sLqXMlftxIlSWmBpFwptW0bCnaeJPK8hjaZ/+sfT8hRA0v03fY2PINOPe/DJDls8scGUszel43+f/OD6h2q4ESnMezOEoE9zFCff2wmxxrXYGpeN2Q+l2WeKGKwcPAPWFyWhulISxD4Kw07jWGj+Lglvi49gmYsZ6B6UY7Q/hc05Kzgp8jENXb8HNwanQP3JUviY7A8z2jtwvNBlmnX9CEasH0NO70Nhrqwh/Tkzis6oqoFz40369PAwvzU0g2wNFzLyeQwegdPo6/pMNNOWhw6hT6Q8YAQxE4R5dtwaHJtyAPJ/HIOfcW3cpj4R+ziYNwyp48Jx93l5pCBsGAiEBZWu4FnTA30eWqj38glKWblw/caP8EYikr+Na+budRNhbdddjNaWwWq9RqI7B/jV43TUcCzAmdMEKPXPBCqb8pF2G+nAqnY3vDNSEhu6Bqm6eBJPzqzmbrsAmHjuN9qEX4bra+/BsyQCvdYbbPpoGt9dl8OXHkvzqJZofjJLEraEGnDjF2GqSnmGcWdloXjDTNLqNkYrowMo3v4D1l8n0j4VRAemJ0KE6ixW+DAdJ0dIQoJgJ8cuCOLRf07CkyfeIJEnA9e0HSiw6BQHx2hgxqcIqFG3hCbtf3AtLwKf0WcKcNAEyvDAzA9pnDh9JG9dPYtNtY6TwNpRcPTUVfLSLocK+wbKDJhAY7esg2x3VxZfZMi/Wv3xeu8DhOBJEOwUDh+XWrLunk78FfcP/G1kIGdCNbVbF9DJnT8pRd6BlyeYgXmWBawhSbqhkwE6eZ+p4GENWXhb4G11BzC40k29698wKBlBdLArf2jQhh1dqfgiTIPkal5iY2ozBsX6oGBANtenpdCM6zIw+tYtaG8uoj2rI9k3MIZvGfnQbdFcXnzdnh4cCeZbCbEo9NwaKjYY4d1Ry0B3SwWNN4tDFzoMCXs9+VFrPl98Vo+3X0XhhgBluJT4gtPO3sAjU8uw6dxCDtBs4m9dv+BmZQe8XvuHVhZ+wvCW8SCw9RdPmWIFTnOJurSq0WR2HVd/OU/Toksp9/VTfGL4jkf56oCdWhHeO3UL9m8SZXmLSM60LgENr/ewSqCdnwyMgx3vjkLjLgtI+7WeSp95c/cPPxJ3Xg5NscmQPDkLbNZk4K2deZD9dxIO5cpBb/8ffpARBnkiazD+8V28uTkdl1yOwDdnM0ldUBsylr2AySIa0LvYgc/ou3Dczkt8cY4tG6t8JsO2cswR1qDqhr+cbanKqXrasK6Pub3bCMttGJemqkD5+xpS7b/HRZe+49CJdZwVLIIPumwhrnMsRSW0sd7ebIo0MOL6z0o0oD+BQqPXchb/x5ZRZ/hI3HhQvuIF85y66VHpXz5w1YNNzV6i/q8tfDjwN5asmEUz3Tex1j9dSGqvxYBl/hCrJgd3A/xBIF8UJ5fuoPLgNpA+sx3lhezQYP94aBasR5forzzBsJs63j+hcicvqDaqo9eTOuGn8Xqyqw8CqyVjQGT/L1oo6482By/QXedICt9uQ1sU6rBUYRUNR24j1/ULOHzHeNAXu8TZa1KouSaI55pawC+lBsr41cy/Fkyg3680ePlrJ9y1TBVKTv6j3GgD3i8vT6P09/A7Vzlav+oodmyZwcHGV8F9WgeEHbYB3bo6CF7Yw8mn5kK06woY9nAA0zsV0FMtjtZ73Fml2Y68lUZCwLV82DxWG5Kqd4JPyy1+MMsODxoiK4vto4Gr57FcywRuf9aGTT3ucO/Wca5/0IQyn41ZwyMS11kZQFTLMn5Qr0Sui2JonL0miPeKokdzCJw634qy965RPqfCs1Ul/EBMn4u+5lPK4wPkVCcKvuFfwOSpDNs9vYKhDrp0bdJWrhi9EPIrfKHPsor+OCugyURJ6AlbgyFaG0gTEnn4ogHoVmrD34Z8XGgaD4t1b9F/t5EuFQGotk4mmZY3oD9pPnlkBNLBSX9R09obd8rvYdUpC/jLBku+f1INwpRycFfEY5ZLN8dk40pQSI9EgyAv2r+4C/2bFGmTcCcmXrCG741a+HWxDWr7TuTAs5Lglv6HPP75UuObZh5w+s0uT5tobdokODxzIuj+2YMLUtRQZVojFMteJdNR9fBQZA0enlUAQRMX47kZwtB7Zz5d+LaCPlyfj7H7jeDar34MKL5H8XFrIPnQMk5M+0kT3CdDisVOrpzrQ6ZxIjD3gBLbtD/ktLRztMxJmW/5z8DDn0T541xd8P7xGM3EOqhM/gsbXc1EbxogUuzGwYZ4GBQSoEfh01HBUxLm9jSBy6AtOggkQ22FF1e/nYW2ja9oc6owvIyajZptHeCdrwYVJx7jut473Gf8AZdtlSV/29n0ctNYfF3+EDd+nUcbL06m5IMToHjxBjwy8izYyMeA0DtjLNbdxS5z6vnk22OgP92UNSz/0EDrOGj7vpBMv7nD3lRPmKpgTPfKB+jbvmD4+cKTEw/ksqSTJI4OFYIp+xRYtOs/aooohJUzXUFxXAvID3/ggtNSlKr6AHedCufxkTLgq+xMJ0ICUePAMV7No/jdajMqjW2iiisK8GlHDJ9PiYGyVmH4JPuQzr06yz8dH2Hb4rF858Q+EvGpZMv0cbTYo55PRiji+HAxUFzYyhlbrKnH6w8qixCrzfbnHuUAXHtoFVxz/o1rx3nwey0RqHYKxny/3TR5RR/fHPSBXX3Z7HjJHlc5zsZeUUuKfZxNKW9toPXs/w1eSw0HU8DUqZoSZg7S2wUaHD+vGOobV3NK2GjoS54KZZY++CnUhJRi3SFV9BXQFTtQGGGEvR/acN4Qg4CED35rUoMOgVLydDeC3oOvwN28EpO3bufx+Uu4/60WS4WtgpN/rqGmujlMTN+OLkIrKa7yO4807oGLj48g7h/G0PxCjvnbw6nDb/HCNlP4W/GWGx3e875pKyn0RAl7VPvSd9E79O/+UhzxuYkemf6Dxc5jYcuu5/Qq14/WzfzBKdqvMVDgJe6800pDwmJ0ZMIZgIlSYOVLkDdrBAp7qcKpgAK4c1QZU6a+5yVHBWD6gWQ8W60O/yX+x2GtKiBXGIvfSv/CmnsS/OqjCJl6F6BL3VL0+ZMLn8Zc4G5pXZCJMIJRb0bD9DPTwf3xMAuwDPxr0qMl9+Uxb4w6ez+txiR/f1r1nzFsi/SGlt2dPBTRRL5b3vO1I+vJI/QSxPU+JldzbbhT0MAeBmMgrCkIei0tcU7kPxr2+49lpcU5TViWnMfMYC3nO1AzYQTNFbSFcyUt2J9Zy4Yro9n/WyinNvfAPj8ZmL2shZb4bsG0Cglc/V4Ims63Q/RLTR4RXIxLk1KpJWQv6ihNoOKhN5Qr7Uw7HgphmaIpXDyTQq7lcVDboc+SaXXk+HkD5ufa8uNzYjDV/AgIiGTAwmgLSNtXxdNtNGFfyDf68XMaSAk9hpdjzrLx02ZSexuH3ijI09bZgKPeb+6V8gH9oWfk9ecYeYe40Yc2P/SPtWSPiTfZ0diKqzdMgJEWr+mG5gAsWfMZz7pOBbOUCFzzWBfvNObxy2xdfn82mlPd1OBnXzqOyzanmO7DaLtiLruNHYUHvftB+0QQaTvuwGcJ38DutQKkFEXCT9XLfKhQkdXrTCBylC9qRbnSEyUhFpveiwseaJJtozDo5+ryv8lDFGn0nhboZtOmz8bw37Q9dLFSFVrL5WC22z+YicaQ3n8RdvNp6DxgyevmdXOXmAjtLrRAjzXyuO7uDfKkL1i+RxMU9s0BGEiCQc8QKPLzBYGnP/ndwC846FrAyYKbQSzwGw9fkIfzXg2sEdWJJtqnWbrrLZgajmD9cBP+OtMd1IVGQIKePVrOQZhytIO2HNPgFrt+mDEvl82q/7Ltw7dspWwNj0y+kd2iuzj1rSS0S1uQYMhGVE81AbOQZ3xpyXz6XOFEYc+L8MzAIBxwEeKvX0bB4jwnHkgoA5HN0fzJWBaKdFu4+8Ub2LbJiQMln+DbCcZwrMYAbviLQ5BYPs31eskNzQ6w/oAGzJWeweNE4yFvoBduhzaB+U0JqDk8H/LnHKWbESnwOjWdorSYM6sL+dArI+6YmcP+V5rIW3cMvDjWinWrwjHDzRW2f7yH4bsU4WvmNPzw/AaZVgnQrCYJ+OIvDV5DKzl27S2uK/KEY7YmJG/ogqUxeQhZJmzz7ysWH75L0zQ1YL1VBL5cXUnXjpdyT5YstL49zlJWtbj4SQwY6O3Eyq0u/OqCPsxWuwRrrSdR2k5VPuQ7m2Pdf/DVuTl85HU9huWNwriT7pBwbDT49aVwRfEFmLLTh4dzbtKlUZs4c+43jF9/GYPER/OuFqZH+QJA8ZYIWdYU/1EYtzUsB/QwpNoCP5Ib7QiTzz1h97V1qHxIGbSnR6LS6im8OG0xTEx8CunX0llBKIRWLp3Eq8Q3gvaQOTmcGg+nRSKw4ZQmCLe8hpFyZSx3aSkWnKxjw6XeZH+tGVv6X8CzU+Zwr82fck7NZp1PtfjwbxT4pAdx3LhWstJyIy29lxj46iVMOKQE4ZtnknXfVSx5Mw4EWlXA49Y3PPXFHn3vubLCzD0ot7uanriPgYoiYZTL9CD9Xy70tzERVjlncmihJACGoem2H7ByURtI50lB7IoweHdJmcxOu4H7dWX6EbWFPgteBpsbzvSr0xLXuLXwsJcyHBB+Q18CtpHdk3NolypOl/9YYpmAPI2nNzDyfTT+efKDLHIR1o04Q49yDsKi/frcfX+Q8dUP3k774dXt13jvmggFWm7GP4tUwHTWdFi3cBnMNP9FuodLeP/qcsBDTrBuymI81PwO/s1LxkJFFUh5FkIW8u/4ecUutrp0lL8dfYa6OZ641l8GHjfp89qfJuy5aAJ4rw5gJa/FIPd9K8ZseQCmkp0gH6eMT8XKacHbXvwYH0CZ/QrgMGIOPVq/G6dvmkGD7t3w00oWjfOqWaHZE3oFl9KiE/38T1oTSi7IwLZJKzgpqJBuxSRDYeQdHFKWx/EKYjBxVAy1euQgGQJ0z+2CmdcQhOKkcODYLSYtT9DYtBRLfVqx69dyXrjID3+2qEKa4BNSO1UAm0fl4dISaQgIrMGrPw9Ae+ZDvLlzN7+XWIz3ugjm3vLg2ZILYd30Ts4QPoyf3WvgmksdTOlJp++nvoJZpSnOLjAApd/AyY/q0QNFIGGCF308NBnVk+PgzWNbKr68GNftWYY5W6VAJXs6HLSeBVEKG1FzQyNfntaMtcKL6cShZ2AwNx9DQnYSPNMHxTRpaqv2h+bBULBICkKcsIidZALp4d5V1HVlEKZ2b4cXp4ygz6UJqUCDzV1jaOz9F5wf/RGtH+Zjx+td+DBgiH0n7ASFRgGYv7eZlhxqA9lzwzws5M6iZslEjQX43/0Mygq/RDGHBljI2xJGfw7hs/2noTC/kUU3H4Yl6M71AYFgExfGTmdsydFmGwhnacOA51+yj5bBG4VFqH19Nd+ZbE5VEYVU7++G93KcwVfuJoUXKMFWN0X6uLEP9OPO89pAOxCQtsHxmjUw7YAaz88qwU2Hovn3Jw1YH7eFhtZog62BNvctfoOjp8ZSg0IjjS/diWfkxFgpE0HGWhEerlzHddN3U/QsdQxaFQ6nfe3pukQznP2giPreozlZdyo66ZjC7OF9FOXDsM/TALRLp0P0sD8tuWjFHROWooruMfzrfwiwQhB+SXdS2nActxevQP34Jbja2ASSS0J4a2oYP6rSRcUZPrCwUg9EzTvwq89G7D5zi8SPXKFdDpUYkudHw/KT0WavGN4YvwNEuxH8Z4pw1ywlmmQ4xC6lzbhx4wLYNHCHNbYYsNcDQ/zxYzNbzdcCqaen+NpYR66YvxF+7qtjEe/H5C0wGj/K/MGRL17D4RE9UDtSASIbSsi0pw8f9o4CDV9zVFN6icomHqhYcoc/68/CplUG9MDbGIKe9cK0OR5Y9ngUvp8sg0tT9pDwYCXoQSJs05aHZQKXUH21Lnh2ncevOSO5+ZIj+cm58YC4EF57aQsyWuPg/KAJRNZqgej00VCnu4Kn/7PDNwJeNO/jMbwXdJrHDhXx2+4y9ghI4t0JRWRkOBE2Lm+l4lsdHHx/O+fsk+ejajvxXvZFcLwzm2dXxtCb+zKo5KwN7wx/kNnueSjoe4SqO25i69ID0NDUA4K6P/hagiMIXx1PCk8MQEvuJ32YMpuvtHbhmX1HYfXJ9WTyIhidjfaR5d1CPBNgxoMO2iB6rpbCqJ9OO7zmqjAHfqp0Ge/L1WGNyR46NlxKkRd7uemqNhif9CTj+D3QuX8CXM9ogsYVl+hqtinlZERAQps/B2Wrw6HdqnDqiABnm16B4PpalitqxA1739Nt4ThyOqWKdzqGaaN7Dcx9Mh7WrnoNi7/owerSEOr2SOS4XxchXcKUm01U0Mj+Fp83eo+Ky+Uhf+VhWiscCk55EylxTxg/X5mECzZegIqvX7j+wjx+4eTDruJCsCJeBDNKtOhT9yKuufkJVjZmwKNvR+ii2la2i+qB8s2z6PKAIvyuPMlXTD3ZN7CXph+/Am4Gi1FrhB5LrezCCwECvDp1C+vJCcH0548wr+Asiwu+4KiW71Rj+QudN2cg1M7HaYtkQLFxKY58qAx+JnJYPfc3XOnyZKNz93lteRr4R9kQXVuIkwdeMFwq4AE0hjfP1cDe6gf9aFLDcI35ZLbLFhKdznKu8yHaa7iSNcOGcdROAWj3a+XiRXWwIvk+xcWL0B+5Fr4x8yrklblhvWMA9sktZ4E7ApCwZx9WjkvHzF2dtOooUElhE1+u3EL6MSb0p1sVF90IgLvzJ8KmO95cq2SOURd+49dfJylHNou60yuxxvQiFG5eAqNau9C1RhXMbmZwTvoSnB/biq8ORnDC2W5SrQ9By/jHmGDQRUdk9tOWIm04EtGPsU4Lcf22KAwva8Mmm2yek1/OR6cGg/LdXFJbcQmn/9SG17eruTZWkNWnSND2nSq0N7sfMo4q0FMJEXxlnorTEo1Jzm4CfKDNaHS0m+VKpuDlNV9oe6EK5TyVZ4WIfnhv7Y4jpurQ0m5FWB9zhp7+XoIjlG7QjHW2GCS8hX2naPMoCyf+NPgXjsoj79YcAVM1H9C7L06wWnoCK3UIc2DWLPQNUKDqs5pUGioKTre78HmsDYyf4E4h0M5ev5xZ6+sIXHXsPyoTfsH2jkpgb9qI5zqPgUObJMi/84JfGyoopCKf5y3Yhv3PkzgxXh9yz2SxzvFi7AmOxn/OANvq/Ol4yTauah1DNs3voCdDiNM97GmPTht+2BEHx292UFGhMogFXYUPM5aCVaUZtN9fT9q+t0C/ZzYOGVVi/9EmLg6cyI8nWsEss8k4RmUe3VRZwF1znHilThod0l1Oz6paIamW4VxnBSfMZpD+qMgrKneDxwdbkJTbxQZVn2jU6s/YVyuFATH78MaXZjiWpAhdkpJgtKEA9GEKqDRuA+FUG5p8ex5/fvcPtq9agY/Ur8APUwZr/x9w56o0f77yhI3VLuNYmZ34x6IULx1bh0ovV6PtdB288VIXJqWco6t180DvTx7ftHsNKlZ3MCwwm406H0Ox2RaIVVLEn9WGsG7cYVDco0J29+6x2cA4PjmnBsPFvuPeoae453M8en9wJulYOZCu0cNHGY3wb2UfhFgd4tS4NjhZm0fJzw2Jbx7DqdcPkORzccjFZbBhQxUpn9gAz+gU5+/3BU23jXCiapgzwpfT9Zc7OHY6gsi3cNC0+4YNBxI47LAYn9i+FbdfG0uZu7dD6OA5HLn8AWrfmgDPWjdjxG5fGlzojv0HrmBh7yZImC+DX8UGuSLuJdm0v2WPtwqweJkRPrv/HKC0h+719MHPjdI4MFjEQbMF4WxkMYieaCUVHyHYs6iJer/fwu2z5CGsJor3Yy1vk3nEVxJ8cO3kTpoqHcsz/QjGOBzA213PeWlzOoyWkYaeTc4cZhLD7r3laPGzkRd97EbjEnEY6T1ME6p0MFJaFX1ye2hayF2UD2iFRXWP4MU7H8qu/Ar6o/WgKU2CZLp+4LGUn6C92BRcs7w4tEwPG6u6wEvWiEqruyikaTKkDEry0bpyNHV0ZfGv5rxujioN/IriRLFa2JW4FKuX1pNehR64tmSCv1sN6Ky8TZUlq8gqTwwf1WmwnoM1mZ4fDQKHdCl/rwqcHVzAzrSF880UUfC7Eu1pSORGIU/kSCXI3vINE7f3oed7EdCIKgK5pNdgcfgRGlnt5qUHf+G70HbQd2EQeTefnd7v4H/xWvBrvQHwyCI27y+kVxWfYOFaQ/hS6IDukov59vgN0HTLC0pvyIGmizgVHlPg9zJMmjsGUWxJN3yuD2C/Yy74rXQ6Zqpuhv1FCrB32xDvHCrH8aWOuE/eGyIyt9IhxaOU9vA8mf40BMm0LHIINAOF1Y5Y5XyYpSXu0YqRIehXlUxd/SJ0L0wVwx2uUUt9E2q+kYJbK3qovS4Uds2ogo+1dXRkSg6+KZjCe7tX81zRz5R2vAx+7BWG8oJ0EHb9iUEDs2hbhhFYDD0B+QQByh6rCzm69pS79CX4r7aGrNl7UShIDTz+S6C6REdomCVFfxKzYKNnA+R+Hs1W19/zglKAvFkLwOrtKWr2CMUYMT3Y5niZoufLYk1EJ9parKZXG9IB6y0horCNlKb3Uu/kVIrnTWgfNZfPHYvHWbbXqCDXj3TWBEH1LmXA1FB65OuMIouMMWyrCj0fEcYaJ66hrXU7GoklUfbh46CjPBYyhoJ4qukSTts3xCtOnYZTb1xA/08onfqdCD+2BkL0FHO+UqwDhy3f8e0paSgvd5n9g8pwf+gkHNEeyvYj9vOVJ9vpYvFfaLtsCL7aEeh3cBAdtE35wQsnmCQUDBuMh9lmnCae+L2PHzbX8wUhMyid0g0qf0y4QVyIt194ipcLJ9Pab5V07vR2evipFK7n1lDNZQJRqROAM4r5178FdDppIi/J/QqNXZkc+zQOG/xKIPL+bfj2XAPeHdgPr1zmwn2FZh6f+ItDG4AGx7dzdcMauDV3HwpNVIEcCSn4GzuV9fbu4P79bTDpSxU/iKqksPpXIDhTj/4aRKFAjxuo7iW4rrcY5ESy+dLJ03SyWJtOZKrS4MSdFLnZCByfqcG81CM83GkK0UKx9Eqvht7tbOONmXps3/UWQyZrwbWYBHgq8gBW5Uiir5EO/CfrDPsPSGNF9H147d/C2LOCd7+ZT/vgAVfoP6etR1V49d2J4FC3FiyVBshUYxQcFH3IRz3+cLF5BzQZaGJ48CH+ff4S7DGbBOCwlDaGltCM70nwe/9FhORFVDjmOq+tMqZVB/xQb+k7rGvRgAV123njdF/yzTeEBdqv6b7ScYgs1sDqJd1oQTEgnXKcmx6rwMLgf1z1chQOXv3Ea3pu4kCYFmb+fkoJY5LwX6UkvJJcAEo8FUwEWyDqdgwON4dB4umjFKZqRjnD4zA0OQOlbDawUvQn9ndWAN/XaWy315ae7npGIgb/8It+A33TC4HI9uOwf+p21LBLo8WZU8Bo5Sdwc3LDJVeEcMTJSt63uI23Ps2kr8eXUP/cUPqUsBfvtivB5KddKJ/4F2WuLuQFqk/5znEhqszpY5OlRiSqR2S3+BeXfBGDRXfvwW2Z27D0QDDZ/5LFt+sm4PTMHmp0mYH+5eXwymovuforwRGbr7B4jCleTn0Nvxsv4JmxN/je8cnctPsfuITNp9cvUqDWWQkmLn0OlXaecPdOA5cU9IOg8k2Q1LiJCnMtmB0sSU/qDmYYC4L0rdFQURuFZ26M5rH7U0htTyS6312MOSOW8ZbvD/FKlghcGTCHviNdeOHfNehNHoT+J+Z0pl6DrkguglluQaCWpInHA8TJw1MDyjWFeT5Zw8ERmtgp6g//hBazod9OPJvfxFWnFqLhk83gOkkTLHQcUDKzACZQD35vO8fdPwuhfbUo34uyg0NVnRDwN48mPhaHrMvPwG/mBfqu6EpKtzzp+IutuK/wNe3Y5gb2yQ4YHz6T4iu0wcSwinbHOGLanRfgPyqUlwUEQce+IS7Y8ZLNf27Fec/UyGakGWTF3UHBytsoIyVN1hIrcZ3bJPbMe4gWBrOhMOAcd0zYgEHBMiAS2wlrwg9AWa0XB+nKYdfbJDI1t0TLb89IO/4NPjphwVPejoXe4PU0t00fIvwb6IDcN7Z8jrgmu5BmJiuxSHYn7H1zAR4ECsKlUdtomkMb9sbHoaF8M7p/scMU1/2g2XwPFrIxK8aos6yRNVw4ZMg3BE+z5GYb/KkSzHemWMBY762sJilAY9o/wqKz77FnBsPWF/+o9UQNB6tos7DVGjjUpc1KY/fS3VfXSEHSFW2d/mGsiyrEPb7NAbt/0+o1qhw1Ww+LBPIgyiYXvpEfVzd2QOvG77z7siSsuG8Pb2LcKd8zkkdcs6OibXr8ScCPfzo8pNn+NWAep8rFjyzh9lRLEK66BHFpDtSyfwm2fDlOXmN0sdH6KO/8NYKea01i7UYTuLbDBQ81tvC7h5EUZeTBxfdCIHzUX3qZ0cAGjRF00MwCb7wThNrgcki2OkuVHh9BZOVdfD9nNX08bE6iVzogp1UWLHtl+Z3TeKjRy2fHGXdQNu0uLxv/hXyWnaG7Rd5sIWpASfwfJXXvpDlu1uA7x5bWTCmAFwUR6PblPTz7aQk+lws59/w+UF2yHt49dwX1Efowt6WSXusHc6zUfD4jIwhzw0K49uUOnvU3nE/ka+PLpevZ0NsACjUqUfXGDciVTsCVb5twaQaBeLgO9/oF0/sr2/CgXRLP26ILhnYBJGGzmX/M78AZj9rggp4bl7mNoc45q+hF1yn4nDEO3j9UgT0a1Zg4rZEzqtSYwns5SqKZGs4G84i7SlxxfCfq906BwFvj4GXxJyo7bAHyDub4ds9aniWXy/8j7j4UgVDUAAD/I7OQ7GRkRVZIydbWLpKGUNqFZEVDOUpGi4yUklREgwqFslVGEqVQKUWUStHCfYz7JN+RFdFgHanJgdSNnTqVsD5AB1LOb8G9WQf5yZ5a5lJP7PM9jkvijOHuh53oJT5I4+YasMZNLTgnpcQSq2+C9eyfPMF1PA88vw8fRjwG/7t6uH7RLdxhawMhuSYw172T419ZMsq1o2lqKhduOMavP7+AZx6WNL9tFTWd9MKH4dKgY/8bljsm0+E2DZ41ZinXHb6OH9qqsEvEiXSz68BYfyX4K2tC3htVjjWZiLOiuskyOwaPP7Gj38f3QFVaCql2CvKhlEEwHTaFbe8sOPH9MT7SspwMY1Zg7rto0rediVKuwixbs5dGipfh9Plj4ZNJN2ROWAcCa4bxor861WSPgGbfPOysX4tx0sKYsOM3vjkxBrabtaPF3ls875kFBZzyYuOJytB7NRdHXPDFltW+/LxSFWYXE+gN1uHEhGTuT/GEiJYW7v9mAKoLv0KoQQbd/iGC0QdD8VPteMiNHQMnxkWgpp8lZaZvpl9xu2lDRgZ7GlnQifJ/4C1ZwZcuAMiZVPL60eEU82whn3V8AQqGy9BxrSWqZXVilsV5NphpT7bPNGDG4Cp03pHBc3KewsYNw2DtP4wR4cYQJVvPSXU6oFkymdaeHgkOWb/R4KU3PD6hz4+3JVBrmQxpSSwGz+kSKNSuAHVzn8K/gvGg0/8Obm6vpVTjn5ThGUzJegCDj2rpZ/gVbvbaAqL97lgcrwLf3tnS4kxHKNtzAcQ+d8NJ0SGoKvnF3SICJDJJFg5uj4NRaaow/q8vr7orC4cW+6PRz0Vw9spVynx/ntyd9NA0WpGqZpyGdgE9SFvtxad2DfOaXR30zjUSN1adxpzsGdiQtwyvlljjjFnC1BMlAmNOfkE7q7WQPV0WdZIqWfSaBCdPsqWzB12p/GYv84MtvPqAGsg9iuM3hU/4r+MKnuk0nqeMyuE7noK0NbqHitJt+a5INVRIa4KwtRDVL7/Aj76ZcoHhF3636hs8k5iBU1TcYMK1j/goXpGnnxkPPrMFUTJFgdSSfmGs50vscJmH+b4LeMy4E7ja6ztXtn2gxlnjwbHoH8hY3EcBeREMPq7Fh19nUnlEG60f7UiLl9/nszKNKPrbFGJ2pZHKrxN06cUjfHQnhW4L1INs507471AxV85ciM93f+TtD5WgWcuDfM4eBqHvy3jHhNk4nOAJRS5hNLJ/Ppf0CMFjM03cO1YOlF5N5XcaD+HWand6/CMVFB4O0DqTRtKMfMPzHEazwScvKKiXBntdXfKzUQcQ34ielvdwXOAbWH82nrrlq+j36SG2tfZmOdVpkHy5Eh1ji7iz6iuteHWFtTLyeb4cgONXKbD0+83qCwMR061A/5QmmkokwsaT1fDsSCImrcrFpp1fOCTLA784+sHzxIfk/mQMHNqnQQlqxdAh2MPCiVsx0XAm30u5zuvOXYTwj7fx3YN7JC2jCtveaoC5XjAs8FpEMhktbBj3Hka+fkMz80Rxcu4LVj8yEh6sIbi1qAoamrbQBNlSvvk+kpZH/KHJ97dDmv97SIcYHhvWBVP6lcBTgsn6qi7K3DWhyHu5lHEkgkVmOuHSCQLotEcNzssswwdPVGCf2z3igD+Qs7iYpb438qBHPyt++0A7LsRQ4QUDFNm1GmcvV4DGGZ+obZwcpvlU4OlmhLtxdzg8wIR+aepDceVcHPT8D1JWGEFCzFU8UFBOqUfMwPepMPcqaqNOxWEeOhRAl2aaYtTTq9R6TgsO5T2lqNMB1JxriDbOk7Du7GLOxauwWFOL13UdwRS1BDq/VQ4ud43i6//JwZcjE3nyyiHsu2kB9wPkyGStI5wvu4U5whNANUMYNq/Xo/+8NeB3nAt7v7LHCfdWUV6SMjbcFcPfBm185vdPuvtZCZxljNHhv9sgc3YSllhW4dTUI7j/4GUq/d0PjctUIVwwABb6IVhFEM3UOoGyg1l8XqYWlwQ1U4nmY7ZtW8A5yioUkXwDIsSsYcrNFP40hci69jHuqrADkfm15FCWDRkbPHj3+RN8wMeKQlKs4cjSYvy1eheXaxbQqVuf6YW7DbR3rSJzh5d8xH4x7hc+DqNkRsHcnh305u4UcpB/ghsf6GLf0t38ev5RHmpRAJKzw83PLGD/VWk4rh4P6017gVmPnmhY0+HWdVR/7DPuse/nl36raNphSZbwMYCNeQU0b7cZSE+8zNKjX+K8SxNgoog1W28fh3oy58Hw5jzenTcV6iQm0vQSO1S+KoLy3X5w4sIW/NnxlgJsRDF+5QwqmPkVLMT1oWq5ILzQbYWRK/9wU+kcVjcRg+4fK/Ha9ams88WXXh1toIf/ycCdh5e5ZGwxmDX5U9nKr6y88hTmpawiTaMh/OWRhnN2iXLEBytYkq7Mk+wugdzlNKzvfEY6IpaUr7CIYsqvcZ/wd753JxZfL1CAEToWpCAgiM1pL1Dm/EXe06uBc4OdmVqPQsar13hy+0l6eHE8yE0zxPtPw3Fd7EhyzGSU33kKyua08/2C/egZ9QGnDdvhEzlV2D8pgCffbOK694vAyXQuaS9eA44XDtEy1TPYVC9Cpos6cZkBwPSSYCjeWwN7RhSC26kHdLtOEeYr3MBjp5v5o+xb7r80n17PkYShR7pg5dJJjbHC3BV2lr0K5SklSpRCn8/jLYHzacW7bbhvgiTMV0/BvsdbuNmjj30ELnJdnCg8OSqEQeN6EWuqsfftN9q4Sgjk3sVzxPxNsH9DDpgpqNG2nc/5vbo2NfmPZYvFbbjj93va8dEKyoNe8S3vHtwnLAynPnpC88tsEhyfi9sORPCBr3eg3mAF38mfDI6q+nQ6wJg/vLHHgbWb8ef5ybBr5SRaKbccDtWmsNGjUfxTcgxsOCvA3fXE4WmVEFGThVMqzUkrz5X+SHyDWYWvQLZggCrHCEGa3lqOU67C1FkadK8vD9bpqkHls7koN5QFYqFW8GO8KemI64P7x0+4b1YAnp0eAh836dPJ+M/kUzQA09aLseAWxKGOdfjtohQ8nPAMSgql+UR6EL42Modq33lk8fsWjTXxw60zf+CT6s28XsUSlowyodpLBujWZU3L9RzYYWQsiIjOwqRtzzHe5CXtyjGmy11ycNYkl99cNydri1Ja5adJzgumYnmqL54vtMdjKMCq1Y00PVYPxjqP42hLI4TsX5g12oPXHEglQfUiXnP9N7m43MAZe4ph2QwTWHu3B7+W/+BDe51IXegda785SXaqA+w3voTOdg1D5AJBGNEIMNHWmXJVXkHVhSr+7+gXjHZ3pxE6ORSyuwDKFB1x5ZvVNGqdJqTeF+cfjsmIyitwzeF3PHHPBbLPasVZrou4LH0Ryuh4QZIEwmO/QDa51IruNVEgnxaN5lHKtFLrExzUnEBRDcdg0w8jqBnJMKZNEAOGL9LRY1vZTPAtZlgnQmXCL/4xmAfHW8KotqGUbrMK9K8bQKPrc/BZVTbd2PAFLCzmk+qYM/znswwcVV6OG+79omcDNlC8sYjm5k+lnuEPYDmrB5P23sJjO9zgyONiKN0cwg9me4Dgal1Q2dfIj18rYe+PveQ6fhn86BrFi06u42ehW3FBSQfWjkzj3bnCYJMtDHNizEnkxRV6dS8AfIRXcZbgPMrfuBvGK6yHt/+2gsYKLVAP28tDQQN8ckc9nnw5AZ53+nLai1yUbdnOf1w28aI/vTQbJkJScQLNGrsZpUTVeZVUIWyYg+hbvBSbDfehV5Y4ev5NhjVbtEFphzWkNKjR7KqPZDRgSOIGznCo8TEqfv/L83ZcwXWlivxHexpU6wUTJQtRxZnD3D5oyQub0qBhUSS9+uqHlw4n0P2N/RS8bSRovHWj8VbB9FTvJuy8pkqlphMxdu1LrNn4DI+3WNH28kyS8FeDAvXH6PQmk/0KXPjA0HaY072IPSdth+T3fagRIIQrXBOxo0MRtIo2YUiDKI7P2cI9E+spXOcAJJansXp8EG24cB5K3yXQ6I3TYOQeGchd+Y/ibM5Q+fdizjd5QV/3tuEn+d1wpSEcbNa441mWBh3hbs7RyILoB1vAt+cYFmYastmURgya84Ja4wIxQj0Tn/tMhjcL3fjUWDVunbkfJiZnk3pJEX4baEbl1Rf4LPiDz3UbPvPREK47zMCjm8dQRWQymVmuoKXHz1JWejXNaVfCcbm/KcPKkBcKGoHk4CGQCFDAOsNqXqJgSlHO4jj2SzALPl2JyUKPqXh+JWcbmECBaCmJfV4J1WYvyLUgEgTynOhwWC2NjozCo14GZGZylx0i5aHZQR29lubTBY3bVFCchkaLRLiyxYRVfrznwVZjtk25Cb696nA08Bc7yYSCu+kS7v2lQw1KPXCkqJrl19pSyDQJNilp5ebhEbDgdTMruM/G/vEreaT4aX6bgjhD/xt3J9XBEZ2jZOb1gZ53joNrf/Oxd9CXDCdWwCTtClRZoMQyJd5Ycesppnz7wXdNR4FMkDZ8CLeF7RVJUPpKmbMCJ3HS3l/g7z2Df77fxTNe9sDkfgFSG54IzpMnQ1TTEVgR60u3rVfzXZ31pDBNBroqdTE/YzTbK4ykvjeTYNXJAlTwtkWfjjCyjUnjoQcDHDbrBK7asZ4lKtzx52Np/iBlBvK2ifjibQ0/pQssHOKHG5YOkUftZZh7Ko7f/3jCv6X24m05dQgSfcfb7e6Blwaz9+8rMDVQm7v1OiHoiAsYV1fAyrPFfDjbHBbn58NrzybKiSvDf6fb6LHLYhgab0UeX3dR/MtrfGlyFP8JFgaBp/Kk/asV971ZyZ52OdC4byGPD2wm/1Dk8OtBNGHXIYpeogllm7cjdY1guSWBNMJQkBeovEK9rl/4YfAX3PpJ9NDyINu+lAI7wROcd6Wfngzt4LURiqCvoAYdhybByWm1vCgvkgu4B1NWM4RM3gIJvbPYLawG5j3ZxDldH7HSSouXtSzE5+ucUe7AZE56JgqaBlo0bWkHCA3dpVkuSZASa0wBzy9Bi88xXjHxIxov2Q7CzeMg3LIYZ3YVoRAVkD95gJKRFyrvlALbuzMp1D0cH+S9poMNBrBEoRBu5h2ho8e+saxHIfmWbYMCSSeomnkMn8b10C79cNhsTrDp6le2mjGMm3p2QPMoY7KrYXrjfY/mnzOg7+9C4W7iDHArMIOtZqKgLqJPK59OwWkPf0M4BIPqkWsgX6NN8XPcYfjtVxZKGQcHRbwh63oWj4pJh/3jRsKURgOYOOIxHbtpiSHugnBURA52mU+Cxq+6sP+tHeUtd+HuQeTogxmwP1QVBtxmcedYFbS5nU3fdKxg5CFDtEsby5nvo9g835evGmjj4UlTKG3NJiqaVQUfpyqRMevCmteBOKP5MqVJOrBhfx7drNbAEbu7+HW7LJnuHcSBhNk0198SNqY95trw1XBzQIYGPs3Eycd+0DlIhD1jbmLi0mFMubUN76oaQXCqPN7vt8ZVM/dy1BUNWq6tx293ysBgtQXIlTRh1610LB9UhukmIhRRuprW9F8ij/7jMFVmJ8SKm4DOr1c4e+ZdKlnthqFfxwDWGlCDrxCMUFGnRe2xsCXNkE42j0eLmOd4sugvbZdKgf+8LeFAZgNs1+tHl9uJGL4MWXCGMVc59dCdo3qwKq0RNI+v5uE/AFc7o0k2PgaNk+fyJJ8++JD5ATMiL5PYw0z6XSYD7UOHyfubNYxZcICenrTn65czsT6jCTL7buLKWZG0aOF2MuR/4NPdyWckRCDNfTVPFl0HUeUDlNrXA24qgeA6XpbfHu6G8KX7YLfAa96rPxYihc5QbVgRL9ouT2uPmFLA56vw4NIosNAcTcKv/8KdZ5dovfwE6G65gRF9Tey5ZAMYFK/Alo2HqMLLBif33GA1YUXYMqBFwXbK8KbkLPwODcCfsxO4pOAltzoWY3vpMhyTOIsUpurCpGPGaO0mCU4m+1BPeA3O0rlIId3TONPIEmZmd2DavUoUn/YAnUeNoAWu0uDyV4zWLppPcx2+0Ot6b7D+WcZLx9rSnd5r9LPIkDfIFaB5mxwYFL+EnfyAnubNRoXQEyxul8DyHXfAfY0jfl6+hZfvH0dqypqwwGQJJklE0KTds2B/rA1XKr4FgZVZlPH+IRXluPMFkQOUvRrhh2w+T3owyG0ZcTh73ThcmXgBLC/vhuY+GcyrF6C79ASlP6rCz24XHvffbEg3z6XeAV08NLSYxJ6+451tYRhWvoW/fA8nI//J4BawDL2qdVHjxjz6b9t20A6Yi1ddZXn2wRt8PMQMlTae5luNFvAlqRyCDprxpI/N+H7uNnxzCUnv9FSUUvTgLSqp1LvdnI6O0YapkxJBfjpgpaghO10+wufck3m+syDx9NM8eXciV9kFQWyMENhJKMNcmyj+d9qbdr9IQfnlZvRyew6+HLsTdTAdx6g4o36HHBQe18RFDw+x6aZA+Ff/kfO2bOG5m+TAY/IgZWWmYUXYf7zpljKEPZuEC/0/8ST1JNIfmAs3A6RRq78OpNZPppFri/h2zgigTFVYrv6DHNru0dBSWSpO9MKxGwX5n7wjDF10IJWW+/xV4xN/mWgBkne0KUPHGb9HGqHt1b8spfcEPH68Iblp3zht5hr4tSIIO0UnQenjQxTTeQcsF/rg4rvR/GogiOW22VNgiCD+UPZAgcNrweyPDrTvfsbmH87zgYiF1G00m7ONHdFTfC16+jVDXUM2ungJ47CONeyILob7e1rx4TIt8p7qxluuyMDh4TvYJR+Gz5Jb0fl1EW+pFIeSpGSwelPIvq6BXD5aCxvef6f15Yok+/0EjNnnAL1CpbhAYxrM7fSgWx/EUNt+Ar6UfYcvxvdSQ08IHg49AiG/M2iTdAtYRavCvzQTzny9E6Y+rEAnn1Ww9Phe6tbqQDXLubRurTt//ykKqb1T4IzoKvK5+4a2RP4jm3PldIO90d56Mc2CBKpar896Xa85VkoNlMT0IHWRFf6Tu0qp7wzpq0QapImkguals6SfFAUibhfoVpIgxN47CNo2vrD+80FuUWqAFjU76Dr2BxZarac3jnNAf1Uvt3jbgL+bGAad6we1I6U0zj4OmkW9aOmjYdSNe8ZZLwI5VGcQDQpV4Ni5lahbFAxiS1swb6MAlNzbh8HOh7ks+gpeEKvAk1+sqVlFBGa9aIIR5rbsVbUDWqSb8MajGjqQv4Vi4qV5Q70eSDdfwcjLRtC2p5VFDK3YxNyOPSrc8NqdTjRomAfeITv5wEURmqx2E/I8tSFZfheWi02kp7F+0NXjz+m352NRvB9ofrPA98WW/K/xOH3vV4NLSp3QODcWu11fQDaPZdWaY/jBRpM//J6HAT2nQMdaE4uKlEFIMI/S5Icgx74dk5t2YOyMf2RivQA/Qz28fTMBTZLS2Of+BDg4NxKnadti3u0RsPBDJKr3TKY918NAvLYdYsa8hZ926ui4SgI65nRQYW0C5p8fwvM1gxSXMYmjR0+AMR2X0WHTBhrdPojCSxHynPRJ93sldvqX4vCVtxCpZ41rTzjTop5Y/te+mQN1I9imTgtcT8ZgZq4TfK05Rr/3jwYRy0yUm2HOqmZfsWxhFjQtmAD+EVLw79xJdN2yk2PKgGvzT4D6zoX4SecQf513AuQP7eedHxegh7gw+AwYwJztsrDcSZsy+pfA+T1i/GBsFKzbbA/GgtfhxOL/cKBOFgbsb2LM6Dv4A4NZNPsZyusJcE2TMPyQVeIVFzaAV+tzNO6WhHcrT6Or2EaynhKPLpeteEnsPo787kGbnqaDxw8l6K+/AY4xphAhGc0+62+zaE8GRoYowbkpJ+nToUWoObGUR7mMR7Xafpoug+AqOgLaKrOhNj8YhFJ30a9qIRjQbmXKvgdWpbsp7+k8HPPJBqacS4DQY2vpcIUJXXbuAMWF6TB2Xhbp6G9Do6LLnGyUh6lX5OF15j20Gl1Jt1OPYknUaVwQf44DFtRAh74+ZXRlksHLDCxNU4fAJevIfclUsm9touUz9uD1f+/409NaqLx3n+ztrsOTAebuGxqQAx5oItfENx6788JTaZzz+yKmS1rzufpQXDNdlg7ubqM9dlPASiUVr3I7J+7poyePpTHy93X0yKkj8zVN/LTmGefrXsNdz6VgtFMjzJfZBjOWriCdcICB9520RSea/eOWoZSLNAuM/cA3QxUh7mMeurMofzq7lSVvRcPpuWU0Vjcd5olIgdjBJ3ypYSQea7UC4Tsn8LTdDB7wEgLcq8kOi/Np22cffK05HfcK/IaRm4zowUGCQ4sUoCrND+O1HWjoxRP2z06A7iJhXjL7C86JkOBdx0RJV0cGdqscgnm/87n33FbUWL4FBEc4kk2zOU3fugy2n/4CwcU/wD1UHPbPD4A8UX/MeiSEOwYu0tVdWuxY5c7OCVI43yOC7m6upIQF0rBK3ZnMD5yBI7XtWNkVzk/+1NAi2+ew//p4TGx5CIW3xsLVfaIw42MkFIcZkW7TKtgd/whDb0vw4dv3UPfrU6zpnoH3epy5XF0UvOYJoNf3Ayh+yw63ePWhw651ENpRCJ0/Yqkpdzdu+2ULl/fKw38fMvne1x8gMFaOwufYcveMXpy9ZxP2DWbxiKDT7Fz2BwylxsH3z9sooMeb52T74deMBLL74EWf7HZi0MR0KNZRwb6GCWicZgFLJYDCJ12B6Re+Q7DrcXaSfY7bJhF9KBHCRZrz8V7Tfp4XKw6F9x7zrbYtUD/7FVT+zKUhTxH42tqC3tfT8G+yEj17eod61U3gy9T1pF09ihtCRtHf7jMsdegLatR4sMIdKR5x4hU8WBtMx9eowZJtgzglaT5dXz6KRrXHktitTcDj5rOSPXOmphi3vWiEoucqkJXkDIf6R9GSM5XUkl9D1+fKkHnPfyDgFQltmlbcJJpPlZNGQm/JQUg17sJVFcHoeLMW38X6Y+yDYnw+oo9uq9jh0wIBEh8tCWfX/MEpf03wZKUmjvTQ4Rd9GVSz2BEl62fw1uDr4ObkgM0ztGAT6nFu7Ea426RLInNOsZXzBNg3PZiEFvlA2vEsDHPVp9LT46DGUx1lQ4Wp75USrdVYy89GuIDs7A18JPwycGc6H9EnUN0qAEczKiClSAuvrxblcyQFRu0XIOxgHC8OWE76hx/R32vfuO4KQ9zSkZAYnAQnEhPJXmcE3bS7D6lNg/BY8BoYn34F13x2Mo4QhSGZdN6tYow15+6gp+cSevBiF/updfDjGVOpO6MMVuW/x+EecZgc5Qjqd3fjijvemFiwjOe73YF1ZvZgfjedVL+tRmmKhFS5SbB+vCiK/ZWmdztmc41HFq4T3UTmYXpgub+d98AFUqp4R3m3jGByshVIynjz+fVTIWuXED6b3kFpPxVwoetYSH4iTvFh6txvNw3ay66x15dhnDPtG9V83E/xoy2wY+kxUDeopkyx57TvRjC4Xp8ICa2iUPdJHYvd43ng1BsUf3uEzJc1wMypNrht809y81OhhUYTIVrUE5uXB9F5X0mSa2iCj1EdEGO+jRz7NkMTMriI+oDBFgEw2DsH7RL8WeClHOldf4w7tAq471E4HPKWxMubjTC3Ig12D2lC8MRBvvckgRNcZlHJwTh0CR9Eky9PMX9eJHTlr+DR8e64eqkNhF+Op1XxVuxpO4nvep1FubEdEJY+Asu6MsCwuoXbbqYjxeiA6loBDisM5N3XF/DgkAZeHGyEKOsIPtAogdqqM0lu4whc4WsBZv1RsFjAEk8aLoXUmCFeWTCaWiWdIfjIUci1jAN7r29gsVUJ1m9ZBjsN/iPDelfee6ASereuwkfSN0iwRQiOK//gUb5TwWLFVDiZKo8rc2/wqMVf0Gb+MgiJsYBbn4zoqaIXbg7yg6TYfegiaAVBz2vg8YTXrPVfGB558h013xeSzt/f+OtmJFW2faftM66w2UJBUBeIYf2GQs7RdaDjgrNpueQJMO1bT+nqJbj4iBdW59qjnMFIOHduE1700sO1AZ5cv3MTi/9pwJljVOC7TSmaP6rkU3W78FSHAhw9OJb2LMiDRcJrYCjvLL1bNArGLFPAQ7VfWPRLOH8UGMUlawTAthRw2YQI8LHzwz3jCROTHNB9rAHalnThsbaR3Hn0LxwInAi3GzeT0+ZoEvi3CwfzRKjjfi/nFujxwPZWNP2Yih72/hAkZAzaNiWc0dCB+qWpAME/aJfoI27ZXYezZB/TWNF+in4sD30WhqAr+g/rPnlyh7Y4XT5WwncT76CiSyb6rflG4S83UcHWg6BkIgtC9i1Ul5PJ6pF3UOm/IbazSeXabieeJ/KOCg+WgjlloUySCgifLEWlznII/74WhHa4Ubx1FyyZf4yenqyn8kkZ7FydQqXyKrDseTjqvZcA924fDnlRSo88DHh3gQr0jUumfWnOvHrnR268pgyvRN0pxigRNq0sgxMvgnCp51tYv+MtTsoX4raLtSzqVg21d6XB+dxtMjBooQNap2lL7k+cu281VliaU/mwOT+yiWXXvSZ0Pc0Klu95Qwu09WlxVC1LPhmCeff6cW1hNPbcPQ3Ph9ywtUgVftkKwdudBui4IQ3c7zzGtQWD4LWqCYVvL8Z9Ho/xtpgBJp5uQzl3Obh5+AdqTBMjHf3/aMyCcBg2E4TdgYwWuseh3FgCx1wYBUsLp4H8gV5W9y7GBV/W4uhoPzq3eybnjVGmJ5OmQJ3+N+44J4lT/ujBnnQDHHaOQTsJM/pbpgRiJ6RBSsiPgzQW4sklnuRR8BDrtyH0xWTxuxhTfDywnTKbRqJPxi2KdS6g+NH1/EjoGOVsa0Cd79Lwru4ibFqkRMsG52Bw7Xe++qEJFzzNoRLPg3h7czYffjGHItvEIUf/Cc9YtYBjuyTpYNBEUK3vhNYd46nJ2QSN1FKgpc0U8taLw9XX0+jtgA2am6zhOb1GeO7UAhB8UERzbnWS+PoDMOf9LpL0kIEBvd+8Y1UC+RWsgt0P6jD2vzi4XpRIh2f6Yebq6/RF6QBVdGvBQoccSjmaQrV90zBlRwYW4FTW1nXAbTlWpKbsDRE9jNvOSsLh3GDuGZxKIT8NaZ60Li4cfwtWrF7Oi6QUWenzGvwyexJNWCIBn4pSwM0sFV/VyCNGLYEDq76Cf9R5WqeaAfEK41DXPgGP71OFrypuvHnhQ/y88Bqc27mYhq0U8KnHLBbyTafkAyVU9E+Z4l9pw811x/mVnwqFXpoJwR/mg5fvOCpKesUDhRf4xPBvzpldgpZvJ0LunlzqXb4ba7d7wFLRP2iWNALqJaU5U1yINnwMQmMqoLxAK1CMf82hpzWhWP8ltrrU0ZBWAM5JiGc/czlQzPak7c4JrHFTAuaFOnBNeSva3t4KQuNEeaF/Kdxwfozj94bQ9Q3lPOViGMWOVoSPdftZZus2hAwFyLvuBxMHNsLlDUchTaGB9f+WYsCPxVD0RR62LF1HT7PasLR3PbsUmsGcDTspWjcOb5+rx2wPKcwUlof2MZLwd/Zc+rxJn7sOpEHwitd0KccBnnzO54qXk/nnu2i4Z6nPjautIMtfgNfuacZZ/5xwwoLJZGvqSr6THvC0+ZfRScoVUrJC0XnkKIgSjKbgeg+ev2gzd5pvhVHmSnTmpShE/FeEbb5PcXhUPOm/mgiH3jvj3GOvIbetlaZPq0XL5C7WL9sOTofNWUCuGFKDFUhDyAyOFTyCWXPS0FDNgjXFzbAx5x/4dfjw4knzea1OFZf/aiTHX4pQHnMTnpx2QJP+gxjS2owi2qt4u+FdKJq2iBZGX6SodyUgYyULqh8f4yZhKTY4LAj2jX0UdnY9Sr7Qxgs5XfQ1Mp6H+m6CyzhJ+PExgiMOZvDg3ofc9WMTiXrtwqV+x/jAIW2c+WknF1wYwAZ7M7j68Q/GrHdleSFT2OMwG7aftMCKb5Z85+wK8Ho/D3NaE0HfWxEe17tjVdg4utsSxTZBO+nOZQ8W39jFDxVTqCMQ4fGOZjRW0Qav+EuU81SX0wcXkLOMKFjOnwcCvpep8dQFVG19D9st/MDrnSl07l8Bd++P4fTsAI5r/4PVMato6mxPnJj+lzObR+L+t0OwrFgRhg1f0ifZr9Dy8ijlpuWB6C17yGlbjuEPdXHIjCB86iKetVIeDhq/gH21YnRT9w/Ztqvi3z4b9l0rzAUbJOj2ikBSm26EEtVCEKOEfHk7k+TzHG5peIidUo6I36+hxr5B7Kj8iS0D+6hCWwfqdVbDyyfP+Ne+r+gvWoQ2OfnwxzIB06ut4W6UAt7tECYngbGQLexJh5oN4FBcJG29FIfD6kHo3JuDhYViNNbQljfoj4RXC6X+b/5vwexvNBl/8swKd5gcV41XW1xY9tcdag1Qp+WNItiqbQsJv0TA7pQbKgk1o3azJzzfr4hj/+yCVfclwGFaPOp9XQZH78VxwlQVcMUx8PR4F9lqJeGJKhkS36cBWvN60GZ2Mog+Y7ioLkJnN+nB+zmOnH6xCgfN3sAXwQDQPPWNrk7K4bw+V15/TI/21aXRallZKAnYy6/n3KDQg34g8foPLBG8QQ4j6+jTro9YGKDHHfcfg90kUdjl6kOnnjRBlPNS/FhwCyXyq0hp0iVeXvIQb/77hi4+x/FTjgkYiiA1n+7kaOkYvmv2ibvHjaTAvRs4ee4FNERZWGv7lirVR0O3bCcfc1kMZ4MlSEVLgk0PpVJDJfEPb2NaoPELu4T/QmyZCvxzP0Ift0jTQbdlKCs2mlP/hbPmxFE0T2sMlLqsxkuRMbw8dRxIq4yjDziIq8aJYoDYdByqs2Gp+MU85u49+hB0CyfvrSJvUx1wKjnFpRtLSDY/GIymi/DHZetozwk71IQb3PI9C2+8OAOx0/SgFqbQETtb3PdoMglrbMCtMb9J5t4PDF0/HkZtXAM9NyThh/8UeBaSwwGT41lmmwTIfXnJVgKemJpsxPeHE+nb+nXocdwDdnlbQHlvIjWXuWHGsS3g8FMRp457AS/3bmDvkCiQPK1Os/sbMWv6GGjBX5wh9JxOnDqAdmYJ1Lr+FApvC6X7f5x4qmQhpykYwmEBRfhXP0xzhzthufMVemgYDWPDxbC5UYufXn7CJUJtNPbQffJ7NAWi9LbguOsf6EP8dLYWd0G3/W+o47I3ve/UpPJ2Zfq7ZwlNStAB8WN78Mw7X3z4Zg2e9HvIH+rvUnNbCBRaq1G2Th1Ern4I7/5IwoO7o7Ezfyp5/TECrYy35Lo6hb4UqjJl18PrsPVsbK9PQg4I7VnmfDn+Fqr4qbH7VHsO/h6ED+9fpd9H9sPTWXPobuBonLbJEGKOFNNLl2vw6Ns2vtm4BHyPhqPlfhswHa+AJ5XEKOdEMmevsoEzkVewMW8TK+05R6IfmtFD9ghnv5GgB2WTKapUDUcLx8DbFAMw9fmHj+RmkqJpGZuFvsGMp5/ITTkGa87sxLR7AfRZuYe/2kpBa8Q9Si0zxuAOVXQ0+4hKDy7Qc+fprHFACEj2EqUML6SlJ0dBTnkbW8bmgt7jP3i7LIZ+TxFmLQ8dnnx7ATmGTiPXzCI4uccCdj+vId/1ZXRKbDGLH7rH4rquOLVlMn0frMSCKlFc+rYWxGWUIDnFlJVXf8dEnWkg5/KbX9t/o0XNp3lE3QSIKzsDd9fUwI/RE8DloQ+K7PLGJfoDbKzjCn0WI6D3zlV2E/7F7VfDWanqCJWvVYKq+ofcMeI7umxWRjfjV2ib+IZ84qfygifuVCQ+HtrWE2qJTYLpx8TJW/ArbHNVQ9RLpJLmcBx5bYB7X5vQhZX7sNv2HEndHgU5y58SqTzAPps4TruRDHkh0axXW499b0NBPfIIq29xBe1EDXB76EtKEQp0NOgzi7YfhRmLdnHs+y8Q0a0ILs1fwWxlM5wOHA8P//sEA3mtEKWKnCe1l07kVOOz6hK4t6CbzIZ/QXr/aDjYqQbnAxJ5c3sf2wiZYNqVNZAkJUJ6TgU0QTaEjgbJY3GTPx6oUgaVEWXUMOU+ZMvMp4r1uViTmMVnXu6ldyN6KHiuLel536H7dyRA89ktXq4AqHCyEXInP8Tl5s/w1lVCkeAXnDecAfbDYuAkJQC5z4/yuXuW8HLOHhr104hW3wmig9nnMVxnHtYOyWLCU1v4Fa0E95WNUNKgG5u79nOi8U6c80qd/E6l4ttL8yn5WiJ1dYbRiu0Ewx+e4TlvX1QTzaXpmU108oMvTdp8HzpEnbE4cBcvOXOeHPwmwtkvpVgxcycmz50PNqLmDGfEMOqDCC2X8OGNpr9Aa/cqbkpVBrUvoyDi403efViNohxesbXlTwq6OBZUxuVC4rJz7HAhHD/fk4cNbWFkXx2O846Zwtq4KjQw7KDRM5J4pvN4nrFlI53+VI7BHSqwrzcZK8RPkN+PP3xgOJN38hvwcTqFhd4nOFFuCtx99AlyEsTh+cZnXHfKg2vq3/FDUT9SiguD0/UPeXbKMKx82w6Vzk846s9Y+DduDGWZh1Bfkg29M6ugaXo6NH3rJOi7H0T5syPpi30qaQRYwtMxSoThPyDC6SFFvXhID8Tmwc6czaRofh+XZgxgiFgkrzMbAb7CWShnrg1Zo3Q5/oUZPvpkyicTg3D3cBylx9rx7WUbabryCJB1PI2k6k31JfogNeEEdZv85ccVv7DPtoqrzq6l0rf7ocpTCx5WjaODaS5QaGtFIkc1occ1jZS3rsDUtw7cZxLJ2YZF9LhRH3ZkXOTpZh+4SVkUcpV1wV4/H71vG0NRdC5+cBjmZtc40JqiBLkVMSxi4EfGUlOpy3A/RJ93ATwnxH7hpRAUZwpZwqqQaiILqf0WsFCgF71fxMLKhPlQ+2gpLjDwwA8rZ+H71Bo6a3UBA78qg4bhYy495MrXO8+j/PIFlH9qF1f1WcHiQkMYv8SfAjuGMMDACPbX1KHZ951w7ftq1JAWB/WPxvRBfB1M66mjD2ZTwOj8ZFB+pwWtRlOoSKWe9n64A30j9sHhhiA0dpkHk6v3wIqSXvQ57okN2wzgr5gufkw+AMsjPalF/yGEP02He65TSLl7NT3o6uJzj8/jPEVh2JwczRM81kCh9iVsG+yHq4ITKe56AvjJfuTLNum49sF/eDzaEIpvZGOl9To4UmVHkoX7qfXKFxh4Hos71myFA7aO1OV3Hu5oqoPV2g4crxNBNivvkaJfDdYv8ybTxgc899A96DLWwRb24Q4nDVgWksnLREfSDJc1YHfwFt569w750TXIUNzK7abDqPt8DJp/VYAZOy/SQekfcBkuUdkLYUwc3EE1e0TQV3ojpgcrUGDvSn73RRxuaZ+mP6+VuMHcCj8ZB0Da4yz2DlyBJwOE6EDlf7w9Sp+P6+vCvvEb+biYDt4M2kFblA/C3fOG7Dh5EJfO9cQTBx5w09Ualr4mBCcclVknJIrKxFbRDaf3NGvXawgO+orX6k/R9d1vYMRHXf7yTw5c33nCqa3TMMFoJzo/lsB+1UZOsLCFd/7vof7lPnq+fZBaXRWh1vs9eFmcYHHjSrw0cSYYkymHHl+LLeN6IS3JjZLOt8CczCmgUNDKi/qm81qn2/j1TBVNUb3A221L0SN4K6GQCp2a40/jYyxAct0zNPj6ABMKFdlgyT1saHqKAX2nsHqeLEo9bMGxYeE0pKMPB8RbIVU3Bjb7+pBfUyYtLzbi/WlvqPynGhU/VGb3J6MxaKMW3HibT+WphCdDP1J1oBPaH27kprFLSHbRQjofE4RnPy9F6dXj4I9tB5quzKaDbYDvG5bijc0LucP8Ks7+Xoqa6w9jdcZzrN46Atw+LkPNzYgZ5dNYwes2LZ3ryvFue8lGWAOWXokF6Rp16k0nGBs9TBNT1vCitgr+8K4d8q844ZBsPh8+fQoWFr/Asyph3PJMG1Rm3edRtYVUczGAPrT6YL/dLPCcswxLP2+i42/a+XniE6pTmgC5NVl0KewQfJDrosk3kmGt7G7c8+kz9fb/B9tUrSHk/XxK/6sIt6K60NdDHNatluZbbro8SUYKYu7a45ukEppTtAwOFs5m7226cOC3DnUWjOHwS5YwQWYrDrglw14Tax5O8oULB67hjiuyuHEug2ZRIGgbV8MxLx16bllEz3pSeFHFUdipVoblx9fgpj4JElw7BhRcyti/xZRNnraCVtJx3huqT297AyisvBQ+uEpQUdR4UhtlBtXSE2jFuc2oItYHNqcyeXDnIwhRfM0FW6Kpen8Fy67zp4+ZFtBw8QOXT1zMnbs1yH3LPRQJV4b/Ortgr0c6bAl+z9NiIsDk5ggQvSVMuTUKoD1lCt/89ZNdvgVyXc0v+NHXzOoO16gp+B6pPBCC7+sy+MlhE/pra40nRcVhpuov3hjiQ/f/7QK3mptsv/g3eksqQkCuFVuPFqTQ3Bn40fkO2SY14KjEY9jxhihvRxcZXKyANb8NQG+tETyZmcOWch3wOWUlzJYcwwdHv4XE5Lf40cQcH86r5ugvhuA3GIxnzq3iLdvGQ1r0XP7psp2kNwXx9oCV9G0gCoNb1nLkhqmQOuwMG42cyeCfEl/aLg9JUvdYWt+G5mVXUcoXfSzdnAQzjEVhYyTjpcQ6GPbfiDNkxemnoAcIVL8l75Rhin+lQFMdfOFyvgq4BeeQcVEbz/n5Bn+NS4IeeyeQLd8JHtaDcNbvDnW2HaCS05ZwJUSYUXIeLz4VwoITf/HZ0slwPuQ+zhr2A8+Fvrzg5gu2GiUG818oUs1/1zjGQp2O2FszZEbjyJJk0GrMZ5P72jCjeDSEqKlBb2gZ2fxywa/2V+hV9Dt6mf8ctcNDSfxOBQbONqP479FosVQHMv+k803TZtz2+h9LblsMu4Wmca+fOaQOO2BD9V64HGHAen2GYCkqCyq/rDFLrJPNVjaAk8dFcNAq5k2imWR+XI+/OZmDyPexIBfyDKdMDOGBewbs3ncP5tzXgrJtzygwcCWGqfWi3sTJ1C8rCjsbXnN30GjuWfSSym5/5yvx6XhRtYA3XToLwv/e8Sf1GN7iIANP95+GcUmClHFjE+4uioC9FtfAPH8cCs7cDdc1+yGqUgWUu8Tgv2NfwR6c0X9cNKqf8UCzoNsU9u4nT7XRY7nbFfglYwWOsRsNAjdmoJO0CzpGhFNX4D+c89GGvwQto4mNZhD01Icl93+G51/NYcrPdqqP+k5xfUf45A4dPhPaAn2WS/mW/Fu2kREA+Y5ymNA/Gv5lTQbBjmnwXjQYbgan0KpBYTQenQTglEcFG9v4nkA6XelXhr/GU+FHeh3El2zCEa478YfsfZzntItOfvfHlU0xlH3hCFzwF4HhGb3YeHwjeeV70fy0UL4+JhGX/okFy20mNLDDGUyvxqCnrg3onfHHJer6cCUknD5XLIf8ny4opX+BXFvu46j3V7HlqT4X9chC/8pT+N1qKnHCVFQ5YYCrq95D1aJ3eDSsH9aUvAbBK/1Q7aING2oXg87JfB6ZKUtPRl/hXdoL+K2UGS6+upikX6RQ869raHRMD0qqxoDcdX3q+bKMfWuX8K2JGqjivRREr2xglj5NBVfi6U6pDhiWieLQbUUMntOI308msZmiBgeK6nJ3pR/ctpGnjC260HdLGw7XHaHb5+LBblkjqBRGQ6ScFXzTTqC5y8TQOeQ3qZfP4YuFBBPfbaJZ9z/AlJkJyGm/WKxjI2kd16INj/7Decf3cmtNImYVWsGXK7NgkWU3r/mTjXdHyfBXrUZql/zKect30sBdA3zv7McO67TAPreQF88yZYmKbjCxO4lmaYG88WsjulxvogTvN7j4wh84v1senpc8x+gkG3pWeJoGzbbxmnXucPT2dRxzN44Kgl1w/IUgeCwxDQ6c38M5M8NY9ugu0LGMpOr8drgYpshb9uTg8flbqdzhP2wwVATD/iBa2BYDgV9nYr7VTPpzxQAdvYox4b4Hx7E+DMoGwkMfVShTNoWRb6NYtHs2bImWo5nvo9g4eAfvunCJ7T/ewMRqF2jepQE6Z+pwwdFy+LxUCrOt3SjbaBv7t2TxsoocmNkXxbouAXBtvDREWQii+YpdHGwxC+fleuKyB/bg+DqQms8twzusT8pLxFB8sShcn30QO2tEWVguDfRGaHCW/GiKCGtkN0lmu5vDPDXLhEMkx8GkfE1yCrXmZz9Hokz9Bcr/voDPv7pFCXKz4LhUMz4MOUb2vRZQukmCDpvJcHXVQoxu6uYZy6dT1YXDVFZ/HN1mOvHMDEuSaVKCva2XacV8W3yoMAx6I5PYLDiFerS1eTkcgdljX9D77gq4GDQSvmWoYrSJL9tk9bOq8yWqTyoggZmnqGhBGJm06eK2R3NoSeBk0HW0AqnPU+jq45VYGRVG6df86GTvRJi14Ryuk1ciL5dzLL3ZGBJFEdHRHs9lrmOn4wEQ/NKeHSNP4SXlebhxjQKqCLfCqelSoHNnBGVtKMMXr2LJtP0Zjdv0iVLKk/H11Gs8pi6W3UIPQ2aBAjSrSYLS2hl8wEmQf5ZbwYoRV1DOPZDV66zhzbYe/HR3MhafngqJmaK4Qa2cxvpks+DEFPRdr41Vx+xA6ZQTL8u05re+6yBzkxZ8U3rDTqUX6e2ZoxyjU0tX4kIwOUmA/JUuobqiKM9y2salIyUg8qwTvF2YAQX36yj91nxyzhyHol1T6LDtRgytVaD92l+g1MgUkg/688kUA94RFQmNwpX0vWs55ToEsf4aKdpuZ8m7XKJ4/RdL+OPjRBffT6QGK0ecc2or/DuwFde8ngDx5tq0ocENVjq+pveBIiBx/BQcOdtOIqfvU3VAKCYtsSfQsSTN0zJk3+5NLTO8KPSnHnS8zoVtZ31RVrEd7IYl+Hv4IAzXGrGrxyCsOClOxg6htDbJHNSP7oQJ3xxxwaE4Gj7jyS5B+aAWMZ/LFv3Bg/ejcar6GCCfcWCYI4N+9Z08P90XnfOO0a3eZDB52o5HDy7ChatNeWW+KY4bOQXsdq6CnEWLKcK+HNff9ECdhIXsJmKBnfbTMDDmH7ieB24qUoZEm0IuS71I6dnh4B6SBeisjkOqblQTFAftdJWNllmBySdxuLq/FOPz6zCxwJtURxXj9LeeZP8vGldIlqHjyfVktAnJnKXhZ4QarEstRT1fb7Sf2oINF1+wXZc0bjnVBiUOv/HqwC3eUygP8zP34U2TIXq9R43MhR5iRvI08H8RghqJ5rSh/T6/WfaVJp82B6MeOUobU4enyn+R+Lc7fO1GNL+WC8TIs+3U6h0I22c2kqi0GLw68APON3Rx5rkdWLn0AZdKR5PZ5tMcXviEal+dYlkBe6y2HAUuf135ufIgat6Zhz1xFnyjoZduj//H1zUQjVK+wr/sIPpzQg9ivP1xnFkoObv/QrOw0+jes4DaJF7xiwg7/jPFn9yvR/A4e0NYNVTKYt1v6MfTTzBpbzANvP/GlopjQGHiETQoycYdz22wzlsFTppOxEfK1aBRGcNhg5r0INkA7u01heyia7xUdzfsGR/LgzKKULCrHURGbKc4/yBu1snEBTOeUcW8HFZ18KK1DSNg5/2XuFJBDSa9WEGPK1ohu/k2CNWMxpVrN9J6qmGFRTl8atUW/rHYhxwaLWEIz9GlDX9g934j/rM5jc/e1wb/EWLoNSOYXySMZbHEPPiiaQQaO7VQdP5USjbYwb0pHbBv6zQ6HHYF435Uw0DDMV7/SADQ0AKeLY6nstHDMDtiMXcfXUB7DGJgGjjDBLSDoYoy+jmlkoIltEAnPp5DL5lhzBFDON+O9H6FG5svTSe1BxlcbFpNHyedIbcgZSh6HAtW9kMIxWcodNcb2PrgMtx0y2A500qWya5g2a561totBj4ht3n4ag7W7DrLoyxHUMVnV1hwbIisfb6itU4IBR+S5LDfytCfZAzy9mnoPkEBrtVIot7qzbRV4DKYdcawZG8EfD93iP1bJoDM4DxYu/E5+00wgp1b18HxTcmwWugTaE2/jHvSGOTDXvD+qyNhypuX+D+O64MrBEYNAPA7op2iiRYp7UgTlUpCCQ0rkZSRiCglW0salAZRUcqMZIRofQ0NUinKjEqysqLSPef+jCfy5lLOsFUhh/9cqEFzFKYYe7PjXAdwDR9P8a/zaMmZKfD2cSWXevbC+KKJ8HSrOVodtAfLNG/aLLiRP1h6QHV0KwmskIdFuwW4aZsTnbl4FG5uswKRtLWk12kIhgIL+EZuGb8cWYFfxRQhXLaevgX+gZpzv6Bv+DqWVn4GH7u1PLDBkl5I6dIM2cu8LmQy7I6fQ/6x3dTX8oQdQnxhpv5H3PT4FK9eNwTKytto3okC/itrAkI66aR7R4pTv8dj/BUZuDzVEoNe9aHry5ecruqDWWu8YGGMPnwf+5GXTJ5IRzJ+Y6zMFTh+I5PCXhsA3t7EHgEb+HifGBtdEQcVW0W2ljPiaym9+NOqmRY3e1L/v2MkcKobNOYr4Xfx46S4Vgfqz5RAwu44UoyKhami30nmwjGIyN+IO4o3cWF+ORyqauJs2ZHQtNgLbM42orxZCApHfWBFgT2Y3JFE3+c0gdLYaKqSeY63tIygW1IAdtzy4BrNZFqaKIvnDzuAiOV9quh5j3UX9sHVPSEYaKoLPnOuwLLUKZDoPUSjndppmL+hxNmJkP47HT+86iehmFwQuSwGx0/f579zWnlVVxx3GZxj9/dzqN32KC3c+h1CzAo5Z7MHL9E3huMdv3BTiys4fHpEt0LTcPqGq1TYvZKtkyuhNrINu/vu0e5NcvCyoReFr3wA0bR+6GpdjOXrVpBtym7KLvOHxzlnYHmKJxq8nwCxsaHcVP8KpVyEyHLFNz7n9YWiaQRfT/9GWvvdyF23Cbe7EMglCmB60Ry++Ggxqrr/A4m+Xqqwfoq719/D1b+SwXaHLTlKTgGVe4pUf+oKbPPKYYlxYVDr9I6ODe3h+JAtuP/+I5YqjoAvuhKwO8oGdAsCqFdwL1nOCqT7lW2c1X+SnaadhqJrbmT2KRkC81VhqbgL1Cb9oEHz9dgVvAvPzFfnW17pHNDVCBvGfaMNdktANVIWxvY/5JSQeqz6vA3q9V/SVvcP/P14LVau/odH+i+y28csOp03CcbnPODcremcH7cJ2112Ut8Wababv5zWPqyHpRPeYtqPK7zlmDy8PVtOyYP3QHD0bJzgIkZXTpdRzaQQiH6WQ/+avHn7kic4SXcSCKf0QGf0Tr4ansv7BQvRy/cxKSk1wMnyNvB/eg+PZEXC7qUzQefPKlz8zhCKf5+AvgPvQep0Fup8bCSx3nt89/QOsB+WQN0TDHsU15C96waQSr5MvwI+4ODlKPi2xQRlbl6li03puMdlNEScUIfAZ+94jco0VOtOJN+DC6BTq5iPXt7L8fsf09ykUJaNWAs2RbIgvPAayFmnU4jTC7IPCYL/TJ0oyGQcjfK5CIH7T7J5dws/VdCFOx99ecZ7A/KelkiKah188fB/MFtKC6Tu3AQL4XRoXJWPz29owo0Ke/Qb2Qa2ewxglIAUxIb30Fz1rxBwUR2miS0ggbGF2KEsDgcq9SEhTBdWO0+DBZ8bqDU7gz1Si/FW2gYQqXPjZas3Qk/pKPiRfZBKcphN7csh6V4m2fbp0WmBJpow+iqemxTIftvS0fGvGpReWcUe1/P52URNrDYrx5owC17zOh6WjI7GwD3h8CRBGxfdloCsRwfgwzRndPQsIfnZV/HN3FmQfz4cH3aM4FzNk3hExIxnDevCnG5jOlBliA1BtXBu+wN8ZLUHBm02sZ3ObxLbcxSyHILgipMkqDh0UfmhD2xk0sJ6hRogfLOJFAMbSFBsCs5+fgrmXohEqTcjwfGWKZ+Yl8ReP5P5WekEHGPzgsZtvEGPipLwYf4LEtHVxn0OCjBix3t6kimE53a68q2qWohPfksH6upwnpIYv9p8CGU+pMGeThPIfzkWhLZ0om3eTjpuOgA1JwvBTcKd97i10zUTb7jQGIMDpoYgWBpJ76+ncKWtJCxyW48Dp7Zi/a/zXHa4nP1WZfPqTWdg9WtdcBttRRuPT8LQyngS+26KEdnHQNUjAtbNjcTuW+V4fvAH6u2ZBCFrO3nVwHLev1wCR9hX8bkjqZgXPIomCAnCz7AaNNidRW7fZ0Ka6Wks+mkAoRrFNHW+HU2fvJ0XWbVw5IpdcECwi8UMMnBg5FRoEJ+Nbn2f+NzTNaw6Nw/85ExJ9Ik+hevMpnE9mTw33YacFhIc2ScEPVDOmmqxtPdmDu58vgFGHn4B39ysQcfjHMq5luAaoZlwolyApdQPgdr1Czy/yxQN1QN4OEKFY2oW4sXAxdB5ZDVZtk2GhpXTIPGiOUcnWKPsT2XephUKKWM60H6ML14MMiA5b2vGb5bwSXwVvtl3C8cb/uNZb3NYZfJtcD67h4MNBPnW8ymouD2XbOK04eq/LXhyagBcHrCl/uZYttn+i76ahsCuI8140LufLr7bQIu8DOHYbkO6LHeYTnue4t17bSkpswHGnn+EU3Luw27JOHjh/JVsv6vBdpsB6swt4wO7vOlF/zBLncuiB66eoHMpEAYr9PCvz06SNB4HUut1ab7nEUw9ZELeErF0GbL52PG/8PmWLQhcVIc6XzXKlR8HBkd+0fTBJOoRu83eYgdh7zcFOP/Xi36/k8Oek/fwvlcytU0kuLDnJRvuXIFXGubRxaNKvCm2i7X8DPB3YABFp4ng37JOEJ6mCusLyvjJYQMu+qFBf/Mu8FyfL2gdWI6+1zu5oVYPVGJ384VvKmD4FOmJVzCf+SaIg2ta0K2iHEYIB2J4gi7aRSyBla7/wbe9ujBykSFLSARR+b2zuNtGkbPTJrJlewx2WnvwSg9baP2hAtu/AEik1LG3ljd3q88kzyg5dDp/FgwM9WhotDv/1pbF2g0+kDsSYfnm3RxsMIyzTqmSnsVBjKzJx1bbaG54HITv/F14fK43v54pBP0zRsDI8Y/4m/FqrEu5Rp/M3CF15D7cGrWIjHzSwa+iGMMajCB+ayzOmxIEas7tvOmjCme+r6WAV3f4+e23uKrJE0ujH9GO+6rwekcZC3j68LLECg5gKzC/mkligpew0eQl/u4g+K9pKpnsmAqljSHQ+jsWk87qotERE5LZ7kmFP7rIaJ4MSch4Qkx5LswvEgC50y1g/j2Ol9a0gmRfLE2xNWblVHG6Mb6Zx3y9Dl29lZy3RBhGV1egmVItdr10QyclXf5uuRbtfOyYerP4rEQirj9xFaJ2jgPPBe9hZWoIKs/ZiCuPHIJ3a3eRSkcjlj18gnnfl5JqQjQcbzKCOSU/0Hr9HzCb9ZWv3twLy20WYt8zbVjSUA5i32fAhT19LCQiAr5vlfiNjiLerOyH7LhunL3MgKb6FOMd99s4vK8GFMeI4MVp8jDLpQHUTfYz5AmT1T9f/hZ9DLfVXaXPpWoc9zOGOj88gmd3DKHPMpTtE4OpemcX1VkcpGjHxyitPA6ORSViyvRS1LDeg5Xb1WF6sTXfbtcijY9RuO6OBEboTaAIyw0c4HqYncrm49qMIGx/PhrujmiCeyqFJGs3TG3jslDx9WF21FxBBs+jyaHbCqQhnj4KGoNv3mGekbaP3d9F8dhzetS9ZA3GuznA7p7XvG6SMdzfUIvrxWTh+yRR7r4wF+YVX6LpdduZmnfBnbnaGCaTwmIS+9j+xC54LKIJYWNcaEzRbBg1/REeGyGKCedK6O2AGJ8wM4F/Mqfgx/x1tDHVCGbqmtGo9+I4ePkd9WpHkG+MP62UtkepKz2YcjcDrnzypUmXDODlQDq/m7+UL4hqw1L9UnBb20vPHFy48YgEBTcHUFGLIUcbIyxSC4edoRPILfYT+tgLQY2MKq/3PwHbw9/CJu6CA0KxuF9aHQZN4uDxmlFYZdoE/W6zOMGgg2QfjWaPKYgJKXe5MngyCMsoQ/1eT+z/9YpgvAVf6veA3qZMXqH8Gb+6OYPRJw98pLAYrqzTgKEvSlixVxq3dTnxvugI/JS1BBOu3cOOF67UMszYuGmAjsZOg6ERvfhd6Bkl6snja6tiyC3vJDcHVSqfI4yP3onDwUXTUFZBHcQ3jaMIz6V0p3cuTdXs49MVt6FnrzKoX/0Do6TXcGDUFv4SYgy1m66gZIAute6bhDfibLDvkh1Ped7GI1zV6PdREU5QsMbV3VNgXtE9yB23kp2zujja7jxmhPlwa3QlXw/7gHKx/TByA6ONvDg8iXGjZJUL2HbED+Ikp/ND6WBceyeTWtQ6KGFNKTYPXqAfJuOg6tNa3Bd3Bo+0C7N/YytptsWAk9Zl3qVnTP/svEDr2W4SnGEOO36JY4LZDdoi+ZrXjZ3CcZ/VqPygNv8IOwzrX4/l0yN+gPY1XTivehT0W2ZRvh3hg4IMvhf4HxtIvadfMbnkuGUpZFb7gd4hefh3cQLkFteRV/NpWmnsi2nBK+hj2BhM0rqOLxyvksGUy+hsLAoiVWUwbZQoSz2Ug3kRW2BSqDwfP9SGpatng56yEqze+wDrOxEMt6lz4dJa1v66Ay56J0Cjzwn6FWMNYa3TYEbLApw69SDXnJWHUI/JnKG+FGKfj+Xd3gfwr+4ZPj/wHmBwC+8tvQSXj5/nZRUa0AzK2KCZDrnzXTD0VCaZNexnmcwt6NS/m/XT5HB20wPc5TkKCj/ewKIRNTzZXAuq1U3pWbMgptRdwz+GbaiijdQtloddATowXqyJZZY9praMOqoWisalVsfgncx8eKp3ko1XXuG0vLfc+UsNRN4nQG3Uf9jtN540LJp5xudXJJiWh2b2QyyfUYg5wcGcZjIZ3G2/k0rwRWh1FKWwPZEktG8kic50YKvqICgY2U2YdBd6BuThbXg1/VHcRsfuRqNH0hzQ8C6hqtAAjNa7BMP/neFbMu1c5y4LJyetxu1ngnBL/BFyipsEt9dU80gtOZR3/EYg8BpzZhSxpzqAc5QBvjqUhNPvGPNWj1BO8S4j5QdpOKXoIN368gXB3xTvKRpCT20Cr1yyk8clK9P55IVUvPcusNxC1s+bQpe+3qSjDWb4/KUJ2J7qxCtacjxzuyafvv8dz+SIsoZzOMo6i0Kmkjl+VZ9CMY/UYAwqsXNxIXekXeBcuwXk4SfI33Us4da7J9wx/BymzftCldv1oa/nB+l8CIcO9QTq01lAise8sPKmNV9rGcB5CZk8wmse3rqsC6oLtDDAyZWeVGaj+vg6mD35AClBLlhYT2Cfcy50XaEG1L1kwE49nHRr3WianSe6er/DN8deweLBFLJ7dQUHzEI4uW003NAAqJ8YQ7f/M+fLD5/T2297+aHQa6x/MQxdUEEpppX4xqcZF0zVhYeRB6hs2wPyfz8VnO5eBFFzU8qech1d1g7D2UI/KFA6htvPqsG7Xlmc9a2UnovdxFNFaszN6lStu5w+X12NMTKKODNuDewbkILJ84fAxHoruArewauLfsAS44sc/mA1j6hdwT9G/Aa/8anQ4TkRahY14b6sszzr41kSEC2CkOfddHsWg5amIEQf/AzWF8bwKosp8FAqCval9rJh/GFW7TzG82JMQc3mH+LJlSzlUEvDRkvIaKESRGyTpkH3Hnbefx32HknFWbJSnL83AzaufAWdShrwau8LPPl6KhhGRkH8pH4aTPxI5y+epAnQgcLLu1gzsRyytZfA1kmN0GxkDm3HIrFxIIBCnE1YfcY91LzoAYrnNbGjypmzRszCl2b9sHyzEsztzqXxyVcg32ot/H7dRD4xkXjHrwjuduTie2UTnJE2yE/UpSEyKxPrlcZw89dpsGGhJRyCWJy7pBZ2jSHyV5yJ+EcZfwROhlaVGD7fvp8UBlTBVjECJ6oQmg3/39IQ0rQdTlsXYulKIZj6cAy8XPoUGiUY2rQ2U+I5d542uQ7GfA7Hgff3eN+4bNwA0kCzz2C4qiAwLoIPC1+gf1gMnJN6xXKykjw0chPzwVu4sRygdYIWhW1158bDi/GD+n/0/PBU9jdQoe8yT/H0fiveVSOH2Zl6MK3uPEk8WYZmVSNJ+M1mdrgEPO/cRSSr43RfyZ1FtUT4xG4xEMp0grYAZU6ZmERTfGyoMeE/iOrdCZnvwrB110cKEasAvWETOAu2OEasi4JOelLEeDlaem8jiMUu4MObpcH0jDJevezDE9EQQncvhtjTVznusyebHLqGkU2epGQZySvuLKdv855zoaEbfvijCj3GW8jwYgb8Fo5kqSJj/BHgQbGbf1PaUnV2bY+BGSEvOGSZJBxzlkGlrG7UfmDDHjM08UW8CVT0f+HLHsOcH4eANl6orTsazq7ZgfX6Z7nxZRE/P7EbVFvvYu43N1r85BxTzQDK73DlHFEDULGs5hUacVgeX8Uend9gk6Imty2Zy7M/OfKmvUo499x/PFZeAOKi7MFu+kKsrvWh4keP0XhHCfeFe+DryHrsqt1ES9Qk+OU1cbBXnYqSW4/w5WsLqX7+eGpfqgtWsYtQqUoYJjaqc2fgEDcWqcDrzS/5XqQ3qyXfozqvYr6ntAuTOt/Tbtm14Bp3E6cmjOc1n82hxfwnlb23gJdpJ1A5uwPt1xiRpfshvrPaE67pynKAVhY+GTsNLqV6kXC0BUuKzaWS4tWUXPyOp4eeZvfw+2iWWc2CbnJ83NYUIq1HsUG7Ka/10oKZ99aynPkQhDs1w9aaAPb58wd8WA0ttUTh8MdmfvnOm3elS6Bq6SL029iPxyuuw+plq/ju1zJOPrKXE46qga7KXdo9L4qf3VcC2e6NWHDZBq0aZpKmjQsr7vKEoPdS+DtGHIK2fuRpa4L4XGc8NXmeg+rUiTSmUQv9PT+hZMcO2qybj02xArD6oxKN/aiHEmO8+WPhBt5tVM7d+gnknPQM8j84c43NCBzznzTIT11Lj8MN6ZdkJmZ+nEohppPRAo+yrGo12A88pcLgElQ204HIZytI+o4k3nOL4IjiSVztwnxdaCSGlbzCd136tL+7lp88NgU7b338RS6YX5EP9w7vxrVBXuQn7sUyXgP835E0UkuQJcrWg/PxMzm48S4Mzz/LqdkLaJzhNRaNGSYwu0x3Xfph3cIpqJ0gC7rJD6GgYSU8+i8Zitau4zXFd7FlTyJbr3zPf9ys0adTFByNTeCS61/sbXzCkUbHcbvjdSxIt+McuVnc2OzMxaY1gA2/qENZGjrCt9L+xyJwWj2UXSUt6UmGIQoOOMHZQ8XYHP2A363thSOVpvA9TpGNn57FF5OzQSc1GZ/HihM6jqbliiOgXsOfE2b70ET50TDixjK0TAmn1qyTaJdmgKvSe7hm2Vs81C5AThF+OFr9GT1tkIFPrMJiNAQK2ZZY7bQUywO+8qmNK7C48Df3nY6mv9s7yKtLAVA8hCdITMV/txoxNQTgXlIxabkt4XvZu/Cy2nbuWJQGGzrNwOtUGKxz88bH/vNY/+8Jfnj7BBS2y4GtXDPvd3xLF7du5vMwGtYdLcSPSZ8447kw9G5OIadRkrwtRZT/kz4IixQbqTrFAio2ysCsv6P4j8UMfpZpSn/uXKNqt2+kZzMP31s84XMP/lKsnC2O22wIBQE70GXqLs5FeXp3fjSE25jy+GeueH7wCo03ksY3J3tAtE0MImxLuPDcP0jIfYlyHlHkGiJFQn8VYHuXJQ66ueKKmrHwdq84mFduR+s7FbQh/xQ2XR1iq9o9sHz2digqeYbDoUm0cGsTz+1gWC1mhLfT3TiySpva/92kHe71uNXtD6w08ceVX95BYMZF0DMbDR9CfsPcL2PY9LAmvK4ewtwxwihi8pm3V0XAh3PhoOo2CNuWzYD84Cx6r1+OT184Ylj3LsrXysaFG0Ix/6sizL74lGRnP8CTnxGUJOrh5vi7bNJzD82LFkC97BteHPSRvyXKYNCpVOAflyD/owY4XpoNgyufkkLqZrqzTh59DAtp9tEfIDEwCS2VXrGIjwt1mYnDwws7cWxLPA79eEV/u9LI16SW/lOeCS075cC8YwL6SXykxNOCIGZ7gOhGFlXPOQ5qmTP4mUsqftmgQUaCxnTE/jz+1BymRT3SoHJgL61N2kfFc/VpzOBMzt1kxTN85KHZdRNZLM7geWEO1LFWAVwPPOQT9v0Yu/gE/osdRIXv/SxqfYJbsh7xG/UN7PPamxIvWcLeE7dBXUWCH/f9Y/fSYpoWbIEdQiN5QtQ7MvKfRMHTz5P8YkmgwNnw6eBhyFtB/PtFHk09KscaLw9Cb+YPWKvSw+6Vc0ArSBeCjSRpn/E11ArM4zO+k8mpLpPkjqhimbIZ2ZlGQXC3KW5IkgO7j7WQe9WLBNpaKGxoOVo2HoWkMW/ZpFeb5/vGYpGQFw1KTACtXqRTfrFYPqUSFlXWYnOLP+6yKabukcbc2V/On5P2Qu4OBfjx6RvcHZ5KD0Ii8eWuK6j16gd3Gbdj8xgTDNjyC8/ts4A/X5RB9tRBfDDFjX/fluaE7x7wz3sVxkanwamRk8lvQxt/lxUB60X6oOA+Et0ELnOcszXZya8A+yeXQPKmA85csRklvq/DG1lL+HaFGMzYvoTSf+0g7VsWoFl6BuTWBIL9wzlopL0P98ScZ8GdV+lfnQCIH38JWaMu4a/vCvA+wpREOsxgeJwvFxUY87LRSfgmzgpvqKrApRJPOJupB96N3eRcWI6C7ffwsFUE3q+sZuX7G/DxJT0sEheCu5HhcPbLFtRZlYRS4evIs8ifN1UDyfnvpF3nBmi6nifyenm4uSoCF38Xw4bpf1nhlDvu93DAbXiPDvp44gwtHxghNAHs+iVAqv0D+YU1UG2eA5a2BPDpM1o07ecv/KathVnWx+lmpREqCYmCvYw+yoaeowdPMzjQTQg9vC5jZ8MP9gntRK0n09hFX4NskiaCgDHTo4IYLjmlg3oPd8K16RqYLxdPudmPiaW1sfjTXj6jqw7j1vxjo+ImTI94QbDAC/5NlQSD5uukMxyPGz91cPJcc74GliDSdwCmm33GF65GfFYwHYqlnXjyxiFWm/8VZWZmoELcXtYslQQBuQweK6CHmmrlLObkTpOeTeTxhW74cNMddN68kkU+u+O8+1Ngo/Jinlpgwc0KV2lvryQs+TuBr0mvwCZ9KfohUooCljt5T7Q6LFJexVPbPKBrxnI2l58BJnrfwCXuMGXMl0KfwRQIqjImyw0WYNyRi9WhEyEtMAzKG+1QOHUu3MreDPOHNDFqvTa8Tc9l+eXisGRqNCb63MYfaw/yxOUH+cTxrZzmZoPDsAYFjrfipL+q1L7YABZpraa8QTFKXazBKWteckdvOGbu86CJ8e60ZGIQeObuwchlliD7WZjrVi+Gard+NvHbAWPsqnDc5/vUMtoVB9Sl6c3y+7ggfgJYj8rA/aTL80NUuT3PAnL/E2QdyyF+qegAA/aClDZPhpX2CsLMijAepbkTK157wxHF0RCT9ojMXjZQl/leDvn0kU5CJu5wEIJk4Yu0rDwPGhafxt1zGuhkSCJf7mhHhQP+xHOc+L2aKP9ZPxGit+0h8Q1f+FGaGI362sXyNdOwc+l63DhyETX+TYR+yRWwbZIuJGX0covVEtAvOsXnVuyA1WYOEHlTGgNXBVLdMVnukunFYFkDOPjnJH8MCqdz1z/R2M1l1FzxgYeD1vO1FHVes+My5camorydAnyev4d2LguhF1dWUrTrMri96y0E/j2Ce02DYERAHes3bIQXVwkCtG2xUCiR5ROsWLW1m+OmtqI0FpLU0CWc0NwOsfgeRdebwMj0Txj1+DfNvHkJY5VLULAtiDzzBMg3uw2dDibhPzMHUBAWgPyFqtQwN52Tev1ZXPk/cLpWRNfdfsEhhx7oe7kfLi9y4Zu6M8GgL4NF/inBIk0dTHAdokRZAz4/PYi+lk+CbxmzuO9INJ2PHw13iv/CatHl4LL6F82VjuHhcVlslCxLBm/Xs19nHE6SCqeyVRKgELKce4WM6PywPsgImOOQQQ9dmFFOY1Gf3p7Jw2ZXK37WKQaPjSfDTOUrqBWaSQe2trDJsRA++Owka1XX0/DqVzju51ga8jKGOxIXYcbWIrAyjcT4qxZgVnaWHN/so0HhZ2yYXYzCLmq4u38SmOUswsLj1nhQdCzdbt8Dh+Oa+MPlt9y4vJe9/cw4Q3U1jHQzBacD3mw8ZjWrlTiTk0QO5hSUcOaqE1gy0xPkDt7i1IoK7v6gCcNtpzmlWhazJlzDfau2gVqhO3ezH14fP4YWrfCirzk/ceUjQ2gudCXnj0Z8X3gBanf/xcUB9+Hp7lmgEq6GOlkfYUBiKy1frQb73m+j9sg0QKVLZLlrIV9/sZTrhvbjtdH9tExJCC+GveFZ+kIwNuwrDOQP8V9/PdDW9wVXpxU0felyLrFdCoeMBHjhrtl4TlwNfoy6gwvSlsONiElcNnomTC+7hnaCDjBX9QJr3xmFE5Kfk9vICXBAaifrnxXAHXsroWCtGvrZOZD9/iR2Tncm5wNWGJBnQ4mpKiD8ALFRfgk7+x3BKakNMDPQDxx63sDVHVZQLnULb/FXnPFDEDw6PVH38z4arlXn7psGaLnZi8KPBeKh0+3o8kcSZXkWf6qZCVYrf1HEyhLGq858ff0Odn9WhWclFEh1kj75/G2DjX4iMLtMB8w7vFF5sJvfuerzE7uDEHZ3CZ5IKaAiqz8U/zaE4sKEIMx4MmQfloP7ijo4KyQSjvZ/RM2IDfDjkgVN1vOG09M3kejJh7RdWxRkDCQ5bbiBQ3ZEQOaqh6ioOYgrSnNY/ZEeD7eEoy+spy8fR8JW31xcdaUC9AwE4cuVvxT6O52dHbw4L/Udj08cgSbCR+mCojzIP35KkpHVbPfMipJLTCHz70yqtU3DeOME/hjwj9NHFtHeT/Igtk6KSXwO3n1lgZ+0/8K/jAm0RU+TvsXL8nVRE5q4/gScS5wIf2XLYb1LEIocXsmxY2dy6x0fckzO4coNCagibQVBbytI9osWLLNMxYMhonBsTi8qHM/kj5Y5WKIrAsUPr3CYy1e8+PoXqS2dBi3idpxn4UI5eiWoFzodtd30yKNhD61UO8DfpkWjw5Qc9FHWh0uKZtR38SQslOyBwpIutOQOqPN4DrHNxWhRNohvNRpxTagx2N79gINqH+C3kjHuDGkFXS1LLpOfAvryR8HcYwZHZC5nudszoctuFGWqtPA81xK+4KbN+mfM2PG/LRBYdYwWaV7DkOcPuPy0IazdsIRGnj1Mk3glgvMacjYYoL1PgnCg4xd5xvrR2ytlKB0/Az5Vz0LhnKfkeXQF1f0YBd+68nntpW6Qufkfl0k9wG/v75BW81iwlUiBkg2yWKbRQKaV3+HhaUEMiX0LEc/acemMfeDxXh9KM8XgjqMO2IpUwQGjHayT5YYeSss4ef4t+iTQj+bGE+lR2i4ckWUKVW7moOWhwZk/L9GrqW/hlL0gpcx7REUrD2FL7hdIfOLDdpf14J9hICjPb4Y0HA/SBlnkf/cvNbb24KuVi+C1viF82z8Gm/TVYaqaJ0SNP4La2ip04HUmX1uTjzf+7sS9i/y4wSgUF148xprKpjBhmTG8ERKk6gFNWhI8ibdmnaU7Entox5uvdKRoNScXLMGr7gDVY2Pox9bT6FC/mAuyCuhdgje7rNDAW5OFuNRVkWviDdlKwALWCsXzqhGHyOVoKYT7ASyzCiHHp8fpbncfaeb60skkgIWNwrA24zC8iNKHz8a7YP7YqfQ99AEfDBrDlx01uPzQMnCSt+bUUBGY2fyeoucO8Y05k3GGwEQqqtvJlqBBs9YXkp5vMCenKLLmf4pgX+XJjZtucfuOWZR4OpOzW41Q90ou5GIe9QR3srOjAzbbKkD+lw/8SbGANSt3UMkmZ14g003CI3TY024z5D3V5cVFzjx9vADMdh+gcznmsOuXKexIQBBQXU6+tok4ZfFbWGf0D+ZPG4Q0LTFI38Is8mk0Tw+dwnsWBsDDI2NZ7uh1epB6FfRJgaSqEZPKRsHHOl0+9DYH6i2kQODTUW5XrucXKpkQs+g8L1+vjHOSd8OoQBX4cM+fC4YicbrDKiw9lARv5/iRoIQ7u5crUc2jRlgS30iFSWaQ8agIyw568ZDRaOrpXw7pFVZQW+BKqjrm9MNfCMPuv8VVrsZwRcKTH3km47DSNxqcswIbdbrYVrgKnZZ18snIezC4wIBse6ThmmkzbiJjftHhjFLBp7BnzVZcbXeVxx0JhS4bc/5suht+LpwIC3IvkOaaUZQR8h+ebv6BYRq+rDWhnNVl26lRYwXFz3vAXhOnQW1EDmeFjaNbuQX8X/hBTrf5ifN8U6lm2XRUs1jMO759pY1BAnD+QiPZ+W/l0CwdDFK8AE9/LYf19fXgslCdDBRSoSI0mGR4Krw9JwNHHKz4dpA8KgR/Zq8Hj3mLfhsU1ffAcMoIoJvdcHqNDmyVMqMFFopc42fN4dE5fKjqMWxKycaT6k1UlanH69or6Foww9k1syF1aCQV/xSl7b1q6LfLF2aW2PJrATPuejaanNUaoShUGgpG9ELYHGvYbyIHjvuWkmReDLr9XQqbhTaixBszyP++kH/Fa0I8EdPiMB6Wj6PzEzbCgifumFS5BdYLrYMvTyIR0o/zqTQLiHsYArsy/THx+URMjzeCUSYZFJBfxYX7ZuGUMXcJr51GY1F1uPt+FnREZrL1hFasufsZRiWWgUuCNkw31sHZbh9okeV+XtZlApuUK3i7pQ8IfbmNhu9u4KX3gfz6mgak3hbmirGTYdLVXii4rgnjG59gRP4f/pnpxHB7JkwcOYySFauxR18YQ/3DeHOFCD8KkIXVdq/wm64dFKbspntqx9g7R5i2TF/DtwdOwlQ9RRw/cxZ4+1nCFecIltD9CjGJf3Hzo/E40iIeLK8DWFi6U3CUHR2T+IYhAQKgt9oJU0Z18pirSTTL8TelRq2C9vvyuL9vHihJZlOXxHu0stGDwA23IdtDgv9pRqNw6Uzo/nyDVk8059ndFdxX18omR4N5/jxhWHbmMhouOsHnd32mLdsBLJx92L9/KwzJTWPl7k3wRkgGktomQl/0LX63sgeET9rTGY0qOjZ3LU+y8WP/7Y6kLyBED7uXQcPeUWC12RLLtlXDnx/1tOtKO5rX1KNrSw5xdCWvfRxC7vX1NDtGFaLXF9NwYz4k1dVg3wIZ0k1Xg6Txz/FGrzs2JNzH/bGNtOT5OKgeOMoNsirsknSKIdSKP58JJmehJSQ58xd/vhBEKJDOLSU60NqWyp279nL39qlcHKBNltIycPazCFRUZUFwZi7Oyg2CBRt0IcSyhPwUkvlI+SPeemkQpMLm4Z+LCyCp3Z3+JBRg5K6P2HReHFxXqbKQwzOwu/oN3f4GwrLSK5wu084rd+TQfH9ZiAtJhDn5FhD1YTOP3X6bu75cRP9md/oxbhM5RO4nJ/8RLN1/g8KEA3jZqJHgdDwezrnch7Huu9DFXpAr5N/QQ6Uu9CqYi4LmTrTlVAWlS+rD1FcT4MZLHxghfIk05WJozQwRSo2eyGqLnkPtsD7qSxpTmRNA+coeOK9+jG0HslFAYSbW3D/Om/w1YFS9FS2Ws4QBYYA/HirgXVOCl/7k8ZucAfjnsZObpTZhsGA8+Gc7gaPOA751yQHWaAiAhW8DGu1ezYcXPoSKQSfQP+SIbuLHqcJxNVid2griGg38LXokbFwsTksi63mjWRkqPJNmB80qfBb9AuQXl1PovlJOC03HfcvGg+Ada048Xom0Mp0u6JRjkIUHlw1IwpmLPuieKE4rAqdhqIcFBKj1sm+LE7yuec6mx5LRaHEQWusl89TH5fzA7wmsFExh4Z8jYfCSGN9RiuKfjXMoI0MSZeZcoA7lG+R7OIqP+pnTJq9w7vWRBZnb+1guQwH8fKXwko0j1CqMgiKdP2RbIwAPdp+AC7uqoEldH9xHqtKY5+6o8vsIfRntCJKymnzefBQ6yKryUb8JfOZhML1vNALyf8CX7Sbh5b5sWjJ2GJZb/oRx5ivwxXltflSwlxr+iRKoKEJ9ZzAmtwRTqe4V6Ek+AB5a9pyzKZfyWuSwvmIeL2gfwilnpWDB9tk83XIuVlWMh607JpO/UCv7GNfgUrFsvHwwGt93p5H01JlwMugPVeopU82fD4jD1fhjpz2VviCWvz2P/bbUsCPvYpGbCrBFZzLZVbeyzbIjLKz1CEInzoPfr2bx17Z6vvn8Ii3Il4HDgyKgZHydruiG4P1jdeyhOBa+ZKTCZ/nLPPFuC+ZFVuKjb3ncMHs6tJ5oxC/l6lC6fxmJG2SjqOoT3mq/Gq4uPE+mgZmkV3+cJ0TIQEdoFtZPm4NuAhPxS2oMNhXe5zfrkSf5FmGJ9Sj+MUkWdxwhWP9+LBcva+TNc4PhwRUVuLlPm1Vmf0GHjFj2HZTEJaKDmKE0ARSF18NTFz8YeeYevbgQhZbbZPlKXhyGp1/ki96GBMsvc5c/gb5FDq/pXMYnyImcLMupa1sZSPpuRbcnJlAtnQ6kUYrWP0bCbOUtkDa/kWLk81j9WRSbN/vzt2Jprpwcwt9mpvLDdU6ofBZBc3AVjTUQhIXnXWF5cj46vtOmNTsGsGrwCydYv8WHQu8oyHgMWHnf5Oo3B7lUzBG0hppwtFkJDsedoYy/4lD96Ae2HxBlTRN5MHiXxtmNgM4/e+jxjTaIOV0Ci3cL4+LgV7jhbRMq2abx+HsAFYs7If6aDKl3SXH95mi6W/uBxmy2wI2B0SghJwmOp05zscp0KLzfxLp781nXX5cFJMNxq+Z+XJ2WiBP7UuCzRhvKX+3DRTm68DOpjc7sfcsR0fr4vNANlhSc4MT++VCRbM7fjpTijClxsHWmEbROGWBvz2Ee1EW84JBKdgWjaey6FfjzZBQXu00mu5wiTHxhBJ2fP8IaxblcMCoS3j4TodzsOXDQcBu9F0sge5mTGL7KhR+Wy8L42KsY8ygAb+/RoskkzydHSJCqjy9XB27jyKeZvHOKLjZbqELLIjF+9S6fQl+k8NHgfA48do/zNifzk6uu+H3wMG33VUGLy1Ph8tEb+E5WjO9NfMKlVcXkuXwGfvhtT59brOFkUAbqwE5wlreEB5YhbDSUQev6A+nrxG0wbbIgh5w25I2KnvRg4V68ETmVlnYqwGUZDfzuaAyLspfzI4F4flIkCEGjj4L2niVs05IK1c/fQauWIYimhbBvRCg26s/EE2G/4XBRHI3QXwuxuVn0TrQVSlwe4OFNI8D6Txv1J1jCnHOHYFTvM7R3PAJnPyuSwH5lfmpkA9cVR8DXv5bQnjUPjPfnY+uODzzyjwjO8TCj+9MfYKJBNCWNu43J8u9op4oO+PwL5+DbUqD6MhNrzhbiZbXZ2D2ynlami1Jix3taEmIKzUkycGCpHoT/NGWLwy95RM5uNnSr5J2WP/EC7+J1g4uh9qQjNU8yBZn9bvyhch5F5r/kjUI3Yc6wPGbJbsUDuqZgMPohdAz9pLIzKlA9YRc93GhJZodsQLPZnGeeWkFCS5Iot3MCNe6eixYbUtCjYAaIDPXyCEFfqqK3bCpwBbK6R9O6C7KwLkeXbAwn8zaJaEzy1oIx/pbQEnsL/9I6gvOb0cVDBe+Eu2LAi+vodasVtHrEyU9pGvgqdqO4ex1deV8Gevck+NiUtehToowl6gXsdGMvrmubTQW2WtA5+Rbnm10gu62dpG+1hxXOvgX19AYId9Lg3Zs7SUtrFuQ5GcLSDWtgdnox78ly4OubhnjjSEFqyL0PC54sx/PXL6ECPyfJLxpgF2KEHvHfofagAa1ZlkFHtS/T87gmeJP9GhPNd3ODZi7oNBAkzHLAyXUdPDyzmNv0v3D3zkacK+xHTVDAQUZaJLn2Ez2YLwEb9yhyW4oFrlB9j2oLP4Nt8Gt6HmWD3j63qW9dPrVOCUGfNh1oDfrEOePGw4nyFF4u2AFHN/RTwTFhLriTRrPse2CTqyO8FJABFdVJqDUpjn+OXsqyT9Rw4MoM6HsyGR6XW7DW2AScNPsiVU+eBgsyRvOG5d9BPO0e6FWvBpvdvuSALehyaRos/hUOro2q0LDJBDyrYqF8jTG11QRTxQ199kuw4j7rVJjf48Npl3OoadYZXr9hEkzzM8ENQW1caBMJo52nc82Dsyzu7sJeXvWkWPyX3yXPo6ALk6Hz01nYrKiMLWPG0XP7AfwQ8wtKqzMhqtqIXq97SXm9ZnzmE0FM4FV+PqIZO9vvoEbvH755tZifK50lC4FQnJu8mba+ssMkHy3QjgmAfWWHUEDfArvyK3nEuYl02X4MDQv5otzJVlzwR5iD/GeA58lUlPqdRysdL6FihQ3vDMrCsCJN3OznCzd826l2rRF0TTeELbpRdFjRijLjBpi7l7B6/jrwb3Hgl7F2XBr2jKJ0L3DAFwnwWJ5C9Woi+PU+wMcqCR5TZ0aznDrRlYTI4/pcrvNy4H3XVSE2LwS8NDTQue0i3Zs1jTem5cJ+f3+Yr52OqWsdecN6C9zUIgYJ2vf4V4ITVYpeJ60N6piu1IwYUUP1u8ohyn0ZyC19SGIy5lCy4gI4/heEuR0ObOwTQYftCM/ur4S87of88+czKvCdTrH5oiBZ9wE9C2zYWCKbv2RVwA/9XnrU7YvL17/jDPGzaJ8whkRkRoHael+aeHwXuOTkscrcw1DIupBz5Abt3hoKUfMKuWXpQTp1ZDy8ezYeVUXeg8m7dTztli3nhAVBxo80rL86TNHbv7Hkhzv45ZopjGtpxtN1m3Bk+1zwSPLlAwJjoNo7AM+kHuLnY63A4XQtDJdKg/s6M4zymMf9Wl24eIw2Ythx8FVKx6H/UvmE8SbWc4ki8ZZxsOTbLpAet47VXpVBe+Jy9km/AH0HZrDxbG9UWWcD4hanMGObCTwY9winVDLNFq8lJaMa1sLboBGjhXud9PlG+QUUChGHc+kykBSyFv4E7+BiC0Es3+YJe1M3kV5xNPpv9oRNn1aStO9lPPNjKjR0eMGVr0VEy0X57fuFOFfjPSTqGIH9RAM8oWHIKb17OemeEHidEoET1zT4zyxFts8TBJ+k8Www34tOjqnDoj8nMdMgCpJ36oH0VC8+ul4Jr8W9xtixr1DB7QyPlf7Lq55/h+l6v3lpwnGc76YCigXJ7NX0ga4pXUCTd57w/YUv3fz9GyVCNLlnrhYfHbuQ6m6NA+87P6FgliMs2HQXq362UUZJDE+3r+ORr6OhD77CraCDdKxaAQYko1Bly1xMKiriX/9lo8aLU2goUwYzfIPxl1AAlg3nQuU5LXD6VghDGpvh77rJ8Nl1D2zceImTTl0FVwFx/mMTB3UXdtCtzxJwo9cMM6JL2V3mK9FJH/7teps9fvXT64E9aG9vRvx6FLfeE4WlPaX4YY8E5l27T5FXiqE9s5K3ThGFubqrac6dRlSbc5bmtklCLgvBuIBLZDzrKPrbzKLiLxnce7OEwwck6ejXLXz5xk4YY2YKoz4J4taG71SQksDvIvTYZHgWrvp5jd7OF+OW70L87MI2FLOSB5HQBtasncrK0rmQ+dOWFVuKYLBzETzYMR+2+mbRhDRFXljO4PnkAPcGutL8q+HYdE2Qd29JoHmKQdCqdIhlb09g8zO/QOLOCHD++If/HNSCuOM76HH2UUjEAXh1qBRu1a0AM87BP67bsVHXFKg3gjY4CcOXrFI+37kNarO34s794iDpKYkXl2wkx5Pl4FZlDq8krcFltgw+Kn+Ad5cvYLsrThD3Uh8WG7xkW+u78JvXQPv3afBDSYYF+4/Ttjn1qCl1C3YWbaV9lipcuMwVFGI28eKdI6DFWRLeJgujhdMROqj9mFUE58PgP09eX5OCWYbVMFJHDaQzvsGaPHEQ67HFQNtJlF2dD4YKq2DGaEm+ZqgIdYfOgKLCC/gybghvdxnAw1M9cE73ASgn3KGctLEsveIPbMnMx5IHE+Hz1H3oeHYaf0yaDPVpsbhDSRXeiJ6hXeNDoR4+wdDDf0xBVdA41Inu6VH4LkcA3n6YjDrhb+DBhyYsejCfdcap8wLZD9SWXkgR5ol8ZSfy/WwJEA0/SgUR7piLR/CsdR7tnPiCFKYooJXmJv498xi9v/iR3mTIwL0BDdaLfg3WJR0QJWjIGerDJPtFk6MXiWHABBUWG6oiy0VCcBwmU5y5JT2Y3QSOn9fhRVV7WhwcBF+sHkGw+AO46ijIfQmWoNyaiG9vj4bqgF+oC5UUcu0JjZhUgZecl0Hfs5/wfqkurkmSgoaf4+jRqg8UNv0+NV7sI/3vVrii7AmFnPuLb+wUsFk8jzufm4F/jQ3UpAez88wZlHlNBt6FZsKCyep4ecYN9JQfQVP119CSPQrws16G1g42cZWOE49y/sKW/kEQLv2aojcWY7DlBRzfNZU120fDoemL8fV8Tdj+QBPF7s/gyAO/gSbWokdNPo+R/MTPfh1AvjMeNEPraNzVEKxK94fzzXF48M0/qtFVxDOymtTy8xTvTm5mFXMAkYlpkJg2g06HTeer18ehrJovhtZZgOfvnTy98gvte1oFRlMM4MKotxxCNfxrYBV88BhLfzqqcayGAxoeccbHCSr4GfeD1lVpcJ1Xz4OlwmwWaMf9k7dQZfJmnhHcglPKyrjsWi7dCszkbY/VoXTPcegUr2Jb0SQqGheL55XyYE6zNkRaHAD1TGOsihsN4lOUITOkHiW/VGGxyDpQsajHEB8/PuwVQ2pdj+HR5D64PSMGNDxUQPLNNDzZdxprZ/xl5+8vuGW0CD9vNWKXKwvhrbEjzxxMAhvh8aAqugUX9ahBmv9yTDkzlb6/uUlfq5NQZUY2d3dvxl0mJjS2UBo2Ktdixpw3tLFPi3cWx7Pv+yywupjCo6asAxuZh5h72BQVW8dAdXow3JEuo6+jA3h84X3eMK4BnE1v09x5PtAZmYFG2a/ZXmo83PT/wxci/rGPww++7LgfRmhsYBE5A2SRQcwu6aP1A2chazGCxL0sVpl7FUf2L8Q5tbMgzGwRjDG+iTpS/dS9Lp6tm805Ml8VeuL2kp55LwlOYDocoMkblz2lCvkDNGlhJKufPYp7d27BaXL6YN2sxJ0pd3C6fRyOvmTBC2sOQX8coukZd4i3mUsqCaEQW4kwJW0JXAwp41DZ63BsYzGNPeKDutcqyGXEFrgh84RyRYvAZYMoxBfMpdJbnVweEgY36S7lxPxjxxhjGisYimoxNQQn41j2uSRcP7kXDeoCYdRDFZhiX4RV6sKUdWo0jyj7xZOibuKL22M5ql0OzJ5ehtlFSVQnwCjhtoCVH3pz4PTlZFqUAK8Cv9Od/nkcW2IKEsfCQbmzn85ohfAjj2c4lN4KbW2bQFvPGHormrnXQh7u+cuCad97Cj7oSF+3jaB/VQ08vvogv4Y4arSw46DXuZwxegsFmcnAwt9f6IjvYZqdps5VRmtg//xn0D+8g42vP2KZNU/Y8vsxmp6kD8UvbXj71mLyrHuLqLYfEsZE4pw4NZz9bQ5VnephdQt5nJGgDm6CJaBwwh6SBGrZol0BEl0vwSmL3bzErZKG0ozwlU8JuhWMhvvenXy3yBZm/9vCPyZ3YMyQGh92voAbLbJATqmcXt3bTUqJstBrXUgWfS2sc+0Jr5dZyS8+trKPtDQbTimBc2fUeXeZEHp+l4C7aksY67VhobYNHDyrTmtDPUFqngApxRtAfKAtdYv/ZKUcKcgR3IhJw03wfHIKvtlQANcE2+BTkyYrXJ1AQ/vS8LaYMFca64D3uK8sJ0qssd0K7ExWguvuYqgNj8ARBx3gywpDipnpA+L7tSFET4TSNJVBy/sTQ2oqSN2KoefB8vSoQhyLurOoQC+MVQXE4UR7NLyxuIZZm59TxB0lHhWZzNpDq6nMMxGN5p+F0d5ryVnXHCKOS8OiMdGkt8oYDrT5wx6lSbyoaAPX0GTe/3AnzK3p5R9ahjC/JwAOrRnLC6Y8IxuJJzgp6iGYtwZDR4gFuhgqw/+Iuw+FEBQ1AMD/aNHW1o6GtrbKHiVJRqIhM4QKqYSSohSlQXa2EknRQqSojOioNKiMpEhlhAb3Me6TfKsPjKGBv3YgViMFl55NAz9JbUpP+g/fLegh68f11LHjMk96qgHdLv+Rzi01CBhWheCfvSxQco79JKVA9v4WnCTahU95HyT2vIfLYxJQL3Yk/Nr0i1Tfr8KIRwF8M3wsTok05tnxpjTLr4y9N96CYdc4ltswAi6FhIJOjQMWpCfwWoW9vMSijFs7tpDlhkY6olHAi76H0XYaAepzrmLq95s4XUUF5SXXo83aYVbX6qbyr8cxXNaKc48Pk7mvETx6bYdtMz2g8eNG9HMo4OQF7Xwi+h7I2fVz6tHz1NMsQGH26pB9cxF/yR1PMsNzCRfawqbrgaw3dSRdG58J3Rfe4LeCYCi9bwtOYnYooZbD2kK5UJH5AWuGboCf9hQyNBlkN+dF+D4lhtwiCF4tUaPlatH4evlBiPoNpBv0gx/2iUNQcy0/Vf2KaqsY92wTgiNvPFG4/x7nBNyh6euIz8nrcH/sSQr69BPmGMyEu1vd+YuKBigKJmKzVCO+dG1kq3MqIOWZwV9y5Rl8dGDVQg1u1kqh6Ag5MPK9DOOWNcEkZVVu+/gb3O3WocqJrbS4qx6Ua/JxTrwm3HHUhRLDGaxw4DftvxYDC/dNI/H02fD6yjYS/z6RX4XcoEfzf5L6KiE4aHwQzX4MQmD6NkgJPAexKgHw/cleCt5xCp4uvsSBWIj5j5XhYY03ep97i7tDx7JA0jio2tuIWoXbEG4fxk85b+HDNeSLYsYQue0CbabZ5J05ibVO2YK8sS4qavXTpvMT2TfuPJpM3UzDbpOh1isRRARTKUluDSluqkcN/98UofceImQb2L/9H8zxvI6dn4XB0uQSlQfeBKcRY2HNNFMSOXUcNdY4c46BCI+SFaZ3pyeD7aAF3PleSNqILDGpEjUu1SMO69Hp0MdcOe8K/bmzEy3HLIWM+xNhkvo+LJHP45vyx6CpeS9e+FpJrUprISs3HlzkxPjcv488z00cNt4torlRXZS47RRF9tmjqM4ASq2rp89p87jXWxa+NZhB/ipzqBVKBKNj6vAsVYcNalQ4aqUw8f5NlB8rh8cst/Ov+1dhk7EiSMxKwrjvW9Dvfjo+HFpCTsanue34ForpsUetzq1Y/qGGNXusQDdwFk/T/EnTK7I4ovQtbvEXYSf12eA/r4r2iSlTS001qu4Wg27hV+z6EJjntdDOUmuwTxIhb4VKPrj7BH+VOEPFK3/gSksVUI+aBsN27jSc30RPn+yk1hmuPPF7EXz/PJrTPkWgWqkVnqwHOP1SidWXmWNssTvHPdfAK4OLIHfeT95l6kSlZ9aCX5Yw3thnDvUfrnNL+QoclHuOZYsfYVuECrid3IAxhatohelVvCQTgoZ3R0JyhSKXuk/mMb0Tabr/cxg/Mxzj87t58FwT5b+6ScKdqnBo2SjY63qK6zL0IH7VPz7wewA00sbBH8XfuF5hAJQy2qnpRzbVOYtA89P74H8qBdMpiyaf7cf7/z3BTa/3w26vIE6/VgAdnh4ggJIQvUydhfg4rDk9A/cNjqSoI9fwheozGrvhG9+0iaVbwjIcn6UPSd+WkF5wFC2eMocnlHXDw61pLOS5lRzTvOnxd8aXCQOs9c0e6hfb8CyxVn6/0Qw3RoTg5c03SH+TPt0WQoru0KehrgHaf2M0hDvokqnhVFY03EbNQmfg8q1/WFW+hNbPr2ZhZV+o6WrHFd2CoD/GjPrf/UQjfxUYf+oA3NozhUNf6NKhBH1e27MRGiuAtYpFoCaSMUjACb2DckiquIm+bvRD8fhePh+QzL2uC/HyzA2gcEwEUFGNVt7KAYPas9QwNYxmbpuOvTvHQPccEU5U66ffMUcYEm3B3OYz5ca9guXvh0lefzVq5r1nmeN6sNPagq+aHYMs2RyCu2PhyHqmks4dfGVAlcLeqYPJPkvwzEY8rH6Dd78doAMNYfz6iD5oHx2k68mfec2kAxhoLE5xhTo8ccsKDNXWpizRRrxhdZNKZ40DrdwNXKjPfLfJBvvzZ4PL7ju0Qn47f5yWAi63LmGXyhw4e0IWymd9Qx9pFX7QG0pO1jtwar0WJOZOZGOu4dSJv0mqIQhFPmnB2UZHNnvvwPcSJtOWmPOgXlsPXjvm4JGKrzRYcRjSTjyh3Ag70IrcyY+cl+LJzqVw54YltuQO4AgjRVCZ8IDenKkD/e9+rJanDnJfxckoVZefS/xgoUsGVOYqArM780jwkgbU7LvKTfNNcfFnQYgo9cVUCTlKf9qM4p0mMP/obZzWUI/2Y4X4SG4XBfps4iuzlWFw2zCdfLoQ9Bc+RN4UDjEXHtLYhvssNJOo8IIOOcZvRI1sIWiJK6RdaUF89OIqTv14jD32x1PMsbfgmPubdRrH0o29P+FUrQQ8GafPP+PM8dd6c67LucX5woS1Px7Qq4detKxqOR1uEobNIggtMZp8TNOQ47S9MaFsGmVtiIRjj+dRUmcZjLJUxQjeRu1SOhCcrEIjltnws1gJ6Bi3gm7/C6AerR7uvhKD+Se+QEd6MH59aw/z+o3JY4Yc2wY04tTfx0jKZxONNlOjD0cO0cRUTSoY2cdpVwj8LKbCyQntYJ0tBTnqPymGKzhRbSOdSBbm3pLjtDDBABwkbEHL6y6dzzKgnvefaNhdhc7MjeUXY3RQrj0Rkq4sZWsdefa9PQHqEr+js2EVuGxkrq4Wo57ac5AU1ciK00fjV6dQGiJ9PPJsAizxVibUEMFq1WLM/zOTrW8W8uMLjyhrnQKlzrYgizeEd/4w/GnswXtbt+IzS2Pas1Iemu+cASurz+S5yxS1ribx6gszwSdMF0q/v8Uxsi8htLwXvz3Sp7+LtqFbXBb9KLkENw6JoI+HCG+osYTNNzS4U7ge/pNp50vjjLHctw/Vu2z4T+pH3v1hAW/YuIdqjCTglnssTj29GsRGE95P0qfUnVZ8eL0vBvUeg94V6ym5LhkrfgsDJkbhpx11aOBTCZZKQSBvf5bOWR0i3ZrrnPIpCStrG3iqjy58/b2XdPwWwp6NnmhfZkPGA6tZIC6RfoxKBkEbF7x4RwSj3OxAUu8yNUzV4m2/k/Hizc0wpc0NppWG4w5N5pRpoigCX/n0SiGQ0qnEe1Or+UH/DDp1bAWdv3cRaIoYpogVgnrFMlgw+T1Kd9nAgzOj4WliKSeLRsLwXXNIaphMlY3OGHj/Jq+PnIWX7xvApZv2oJ3jRSvuS7Lv+Vd8PnkpZ490Z4edTfQjVZ8vjB5D9dnjoNzBDKRepAH88GSlGR30+5ggKRYswhN6a7GgTJqn+BwHqSNT+Osye1CRfktOC+TBXN+eZozbhNOywvnX3ToUzXemuc7+uGaNFWxoloW0gs+YXHIMl4SYUKj7SpaIa4B5B47xguxNIKh8FOYHVgGImEKn32P2uLwG7l+35FUHT+PYFfvo0dAnbn3SznqrMvHAeQV2+obgsl6Jpfe+oaUm5tQl9Irb7A9ivnkrzLlozrdgATXmzqexm5Xhe8t7CvfM4PfPD6H/5HLWUJDFo86d8Dt+mK7I1CMbWoF1tBTMlz2Fc4+X4SaNmSgctBq8e12hcP49lvp6ies0d+Kyw+70MVYW9v4xxF2Flrxx1U888sYNDnydB5INkdBgfRxsVQPx7nVxSDwkBx+DNrGZSQF1WEtA2gVp3B1uTrv1nmBZlQF2yZ8hhw8xIBNuCorL20jcS5KfNIfgQJAUJK2+gDM3TwLLvK14+O8ZtIjxwwcxkkCDy7i3cgDinJ/C5t+fICjDiaP6hsjv/F/WGf0YJ8714si7MmBp6U8DEl0wNOcZu9u+4SrLXEwxOccXbb3wi9ZfyPp3ibOOmYOTeSWN6xajBZ/LIdSgnSjyNmre0OfiyNe80OM0+l1Oh8Qz2vCtZRDk59hjblI+vsmYCEkKB/m9bANufW8KJ9TN+NTWCs6eMwHSU9P5yOFzGCL+Bl3X3eRmgTZuLxzmjL068DZxCWveOw4hr41gAwrxv88n8eSfcny2JI6cX4TgnLw6eme8kSUHkyF51zG2/qMLa8ROYmpKM3wb/QRelrxE48ZN6DLhKK8xs+TT8wXAdlIxdgpJwGOzDnb/8g5ft6jj5vEP6AkLQ9PlCpry4SaPP91HoT/20t9OcQi+/AVrh2LZbeswmsi9RBY3ZOORsRzm/4fmnd2LT02SaL25DbyVS8bJFg10QOUoPlmpBX/OzaSrO7XQ8eFstq0dZv+zt3mpy3h4p7gf9CyCYFVUHPeNvkEeoxbyOvE8ONA2keM3uMD2yDOYbIqwMk+SF5T4wZl7B9kBpdBYOBccb28F9XV1oFD6ixUcX4D/NA3oCr1AJpPFwb9vK0VrnsTRC2dw56pppFmqjnETxsPLRzdQqEcP5hZn4YxrMeQCm7hmaCSO65tAStd/obDwdzwrmozD/b40fEEWFtqMI1giQeOnSKDMhIcUdDmaonKCaFxzANikJJPO27cYWisEtkWH+eijBDY6fJ7sRVpY3TyMqk9/4BT3O9D0nyIGbfIkuGsOKiaVPMv8Puep7gKDuen40NcN7lmk8VulViq73Q8vp7Siorw4BJw/h/cfWPHqRbtRHatRbHYXTUswBU6tp2uqTVBWvYE+BKuDRlkAof9Usk6NgP02ofBZ8SZNtvrCM6YcY3vspTsmwtRwdgS0rh7NC6pvg8MYV1aV7aOvepXw+dYSMnmnDFtm1XH3HSucVq0J238H88LVW1AuQpFPfjPk8WE+ePTcTYIrG9nLaynNHtwFuxVs4eHzXpTwqkaBye9o7eYMMv/uwzk7xSg3aCvpa3+D0z/306EaAdib9QkqbobT/k0f4NnXTPT9ogNuMxbTDSFX/vhyI2i9OIzL/umB0vi/KCo9nwMeZPK0V8WwX9GAtQfPg9V2L8gXrqJ1B5PwZqMVeH8bwj0KZ2hVkTt251WhVbUkN2hY8KyMVmi67kGTPBXwxxoJKEmPx0eKF/H2cCjesBVEj6MleP9QIDuUzeYiFMJtfjbsF6oCsKKZHZa64cBoM8yK+ktStw7hwA0/Ep5nAw7yM6H9bxj8SbAGbZ1kTNvzjJ0ab+GZS3Phs9Uy6PxaDz0DJry8XwHa/JKZLiNs7ftEzbOTAW740pnXdfAtpYWdy90xMm8YPtB/KBU3ElM17cDrciUrabrhtNdVkDs3DTFvJYd074PF1R5UE9pAR6N6Yc8XZRBuNaER7U3scd2Cr4zcyZ++Mz2K/wOCepVsnHGHscQSfj2wgboHZaD06yg+3iiOFzYrY/uRLHr5yxLFt2/A3E35YNg3GbqbEbzlNOF2pj+9XrqUz7z7RKZznuGmteUYdfA7K7/MwvxJjrCn1Azyf5xAs/8SsfeGP4x1KMPTM1xBIvUNxbgHoZ7XDpgWUAUyvbpQ8TGXvTwC0e5TAhftNsbDaZ94dVAqbhq/nM+474UyU2P866UH1WoytC5QCjoi00n7+SnqG3EbBhrD6K2VL7XMVyGNH3LcLWUOdqWxYJ/ym5xM06lIbzqt+9iP95sLODRxPxRniGNwy0NcJqkCid9yMWlBJO+8/w88a/bQJseHeMnhHeolX+ElX+rwz8sy3lUuBPrLKin2XTS7GaXA4/ZUOj++gb6slkO5Iz+ozXkXNv+bzZeKRsLle1EsceMRXBRpgfI7QVCxs4DXaCZy144veKPyHVR2KtON5okw1CJBpk9SYIvCc9y0sIxU4r1pXvRx7nJ7Bq1z/7KgmxG+l7CEtglPOVmtnJ8bbYPF057RBZfz5LRvJnendfHG+hiaeMSAPupbgspgKV+fexIunrMB/s4oMusrGPxrhftvAvBSniSfTQgk1VdG8PpjCZ3KOIS2EWFwCxfihYrdEDkwCg8cleWRH0/QC9c/MKlRFDIOKUOi9leMKO5jb6981vy2niwD/oHP0plQar6G33vI8NXcsbB+8C9GgQeM1Ga4NsUGfYOjuVv8EL9ao8RLAl7wY/t+nGQ0Ht4a1kDFrCha9FiNH9b/hn2Vn8CDLuJr5TL6IVJA9+VPcHCFCCw8FYw6Xhc4cN8KrFf6yEdjztL05m3wz7mdPxu4s7X3W5xipwKre8+x3fpcFupfg44p43ki3uU55U1srfsAXk/4yGuPz4aITmtYbG1I5//bDqYvAik6RAZuxpex+40Y/qGugW/9LkBU4ESo6RoNd7aYwj1/UYwZNqD0JW9x/YLreCjbGIbH3cZ6gb+UWaLET0aMgg1bxNFcPBu3qM+HTW/F6JDFK7yyXguWpGXBrcpyTN0/lyq3S8Asdoe+JQkUs0GCVlSIwvvVlWjaIoRqD/bzMTMf/PrNG0TWqcIv2RAePtAC//kagZLcRjL9NEhN717TtyIZUD14j7MujYQaBU2YvCOQM5u249dLxrQIA/j4khdYucqZ+40cUbEjDWOuq2LgsAIs9TkNanPCSQ3zUCpkJ3Xa2tHv4o+clzULZkx8hNO7buKFj1qQGPyBen4Y8ZZ9Upj7pxOqztyED/MjeFbeTrpi6kcPtkQR7FSA9W/mwMaMn7jtYDZaF3SAnucgLzQKxrO/XtPna0fpYHcPF8oowoaZeZg5s4XahxfR4QYXPhpeD3Jkhi4ZrgwftHFsQSdeDZOF2wZbsXzdZh6VwWBhFoapNjZQPnMxBJ5xhPXS0bRcPJAzP0rDn9r1YKP5G+xPfKe4Faew13ABX9T4Sy8lppJz7Hq83q4Fv56IwZv406D+9RO7z9oHDsllUOL/m78tFgH7+d3wItMXXP/byd//SYJwzwC5iPuAz6x5uPyZHq2a+pzlYmtxaXwyzAobw969Bjz1nQnUxerAuHwnfmiVzNMVn6FHay19ShlP3z4YULFSJyvICmDedwWIPvWTxofGYHL0EF2w/YOPi7PoRKk+On9/DLLuryi3ugfOnLaBv+vHkkTVCoxUyeYNq7NZfNUSaNDSZCP3T1Slo8f30nt4pYcCnM1/CmGTc/FKwRZuGLzB9mFn2d/PDU8Z/MEpRxTBeKCHHW1VwDnBh9R64zncVIWloubxXqNa8jsrhj1SfbS8eAYGNWjj4DcBKFBTJa2SRVxu/gs1Y2Zi8MxEuqkXxZXcjSOmP2bjUX8h11wRssotqaUkCJc+eooBMSeoJcUFGw5MROPJOai9vIfzzlzHkS3jgUXUoWDhKhpabEB3N1aS5PoYqI6uhIfq1vwiOBT9HQ1ZswVglMl/9Cj1Lm9VQ5o02Ql3BXuRznkvTvugCXKdyhD8E1BzojFINGnA/avbMeSWAH9OHg1Pi6biGKkeVkx8j192TMQpL4XgiIos6FXMpZIiL643b4fMis8suqueAt5UQcpRe/4x2YBtsySo1X4i3JHuBn2Rsbw9+QRlrt4FffuDsf5yKViJ9XLvmhS6vcCMnmjqgdwLGeovlAMLXyDFoSZsP13AYWU/aO6EQsh444hJL35gcibAm+XtuNgogUwM1bnr/iLoyClGg7QiVBDPRt9V69DXZQY+1TGDrwmnsFdkLW25JMspu5/TttQmMozs5mvfj/OuAkmeripF8psVYUFOGOeoitGbtip4HfCEVQr94UWYHpp3TUBl4XpamCRLbw9rQMVnJxx3NIcWel8nbYtxUBPSwd8nSMJuQz2UiDSHoOFpcOCsDMy73opPIr/QiMJbrP2iEA4HxeMsYxUUKYjDsjhfOu/+nB8KMDhyF5XoBmBkvjQ8/1vOM10ewecdQzR58VM2zFvNOjdXoaKuLkQ8MwLtMkOKG7Qjm4N6PCh2BrZ9iqKUcw/A1a4ZX/9cy4ePS8Druo+oOnEJ35v7nPhxE2wuVeBPEfsp/GULvX8azK/NfoKqAkCgmx3KjtJGR/0RFCk3Fbdb7WF7FTM+1nyWhxZL0PIqbSyoGAvOwltYV7wJh4xfoKhbCdZkBrJi9iNe/TAHmgKncvhzVYjwGQ9vq7Lo14YgLmgdwoXbrDFs5yDZnrmK00W2wyO5YE60d6HlOnYwJVuG51Ud5bFFMmS9QwbihtJwqkwwjYkyhRV3z8C6azrQ+kkBnps5kFfhb1qoN5Pfqh2AwcmHeFPGRCoyv8cl6up8cMMbGg4xhj3y/axwIAPMRs6iTJd6dm0OxbaT+zDfyJdzg1qhrOcYXglQhaI55hTcdorVJM3ArCOel64ZCfF2o3FerggmRNVh6ootcOq+CCi9FwV90VDc8/Irediv5ZFbJVH3UT9at7rxOcNm2q5HuLPWCE4ZfeQXF8Zjg+NDuP+lAo4qNVNIUhL03nKgWbvDcP/nQsyXFoINwSdo5jpJyPYSglOC96H3xWta8eMTiZkIwZumeRTw2xMPRNmATfYvODV8Fx7UemNycDQU3QnkxifNODjqMN98/5SH9Qp4WEUXHj+8wqeK9+LBV+EUehpg9vqrGFxZxOseVYKdvRgbr6pD2wGAyu3f4KVRK0isjgUH4ysQeTeDvmZkIESL4qZ/LiSVGQc7ejRhodMP2j1mHdTr3QBVIxEe7fwc566UgLFfhEneLoxnYhSXrLSGha+C6XveHBprfBkPlo5Gx+staJv5hR++yobHAh/4gsIP/i6uBPIlI/Bm7i8+ZhKFTxPlqFTblgcFrCg2PhVmzjnEQs8CSCHJBOY/vgEfD9/i1bPvw6UFMvDJQBh8DGegjydQ5Kp8zt9/nz+ZC0CdUCscqHBiM6022iJnjr8TD8LuKUe4WHQxXwmNgaD18iwYpAD7lC6zwK4U2uF1nqKXm2BdxzKUPtvFsSsOwwSn+7jnQD/c80OITBamjQcPgOLFfxTa+4wqyk1wQ1E2J157BI8mvqXSh4tAJFgLCqymQ/uP7zh0oZ7szgjAO8sgaFX5zLarlpKzzSYumd7FECoJfbEDcKr9O8cnWZFPwWHyfXqI0yfagIjQGRhR+5UEnZ/iXWd9UPUj/lJzGV41dcOZsGlU0fGe+1ZLct9zHRTPUGZHp9Ug1j8GPJt9WFF/HeQVruUvUwRoRs8cKmk+iZlK5hgSN4dcd63loJTxsPS6O6mt+YW/WtfhyeI99MrUnx9GC5OtxnSkTXH8/tV2mnfZApwCjDCrGqhedDxGh3mhZfZeXHHHH7pnPaBW8zn8wSGSqwPNQElsE1jlOeOPmbG4zVUJplxejmqzz9DvmSdwl4gXn9qyj3ouSMI9x2VwaME6DLU0gZaOTu4a+RlC1B6jyecqNh+3Fzs+PKPFbkrQVhTJ05TUaFyWD0s8ecxJr3IwLcORA69VUu3p0/DJswyh0g426RSw8vkKUCuKgDFH90NoaDmsldNgV4cS/Gh3kXdt8aGSJ2ogozkfth81ByWn8SCdOwb+GDVDmHosTTL6zGuTlfDq0DmU1pOHitBsumw1FWLbHOBrSSgp92WznelHPP/XEFrPjoQS5YMw87sW3C7fTS7CebjqjgglqOfDVKuVmPL+HiWsPE5mSg4gL7+LPh5UA+PbxBI2RXDQYSSqNMmDZsYR1mz6R+/nIKv3HSTdzAMQay0Bq08+g/uP8uHOs0+sm5NDk2vew0tzaXYoLIZFnSNZ0HceNE4wgIzuReTikQaL7mmxquxuSlnxEqId/sPUlksQ/7MMrmQ9YZ0rMlDz+C97i26GQWllFK0/wTGCElgTmgQrlQpwytWXYKvtRhXGAv83/3eBbQ13jY/jxzOestN/yEGZS6HH/Bce8VmIJu//Q5usizA5Ug4eNVbTz9N7QVDem4001rKCsjkd3Z2Lr04m4KktirTkkBM9abOG/QO66PMpnCcMLIbT/+6w8aRqDFkXTgtnKSMoueMl5zU8/54W0PlK3OFpTCeLp9DqncUwYfY4/LNUBuOefuCwWCsakhLkscYq8MWQaYzQIo511IPZEj5sfektXpg4l/1E42CJ/21+8dyXNhSKwILqc9QZ1c/lz6Lx6b4FoPS1gbovJvMW72o4E/Ab3OsfgXiAGYiMLoZj7UspLzwcHl2KJqNXo+Cu2Vyas6mH23IauF7zKF1PsYJlDyv4bU0rSC1SpncGZeSurUyrpg1gRnMsrxu8j2HPU9AvWgXy42VwQuJvGsoqpsd3i8hpVQVUHlHi2TEhPHZ3FU8qkKSl5QBXs6uxL7UFu5oMMNI3CMQ2P0NBm+c8anc+WJbO4YjTBvxJ3Qa6bRniAqShfc4rLK/biHvF+kj4agS/OVgNf7KPwKoPS3Bt32gw1ekDnw8z8LuDDY47EowJMQd5tqM+jJn0H1wvusdH5hRR4ztLGDnbla6vT6dkD+Z31mNBvssEk+uMccrMCwChS3Gf5Q+yWKkJzbM2sPG2UAg/L8UjLm6k2x8XUf6aDJxSvY2WHeiAFomFbKWvDhkTDLFhxy/6daoLj2cZgOTuaby/5wubHe6jyV3/MENhCoSbKcDxd2dh73/lkNGbxhLioZybtI/zbAxJLjKYN8tk0do+FRgUJbgmVsWjlIv5X/UM3uz1HJTuSnPn7QfwW2EE1Mfp8jnDPIgZrQC689vwR1M09ImH019FbV7/fAlFJT3ipzwdDLzdIaRXk2bAeNgnp03l6Vug46oBlNr40hu1BajacgJHuA7So1RneKu2A02my0CakA4dNe1m4TNjIe9cK+18NhGW+3nz3OhKsIvYh0ZTysnypyF8KTjOgUpGFJW+gM7E3wEbKWP4peAFl5f9paZFziQbsxpblTQhVr2TVygt57MyaWjlWEQ26c9x7bGR3GVSiANm/RxSe4zGi1qA/6FB3Hh6BV4KXA6WkSsgbrgG70xcB7Ean7goaRad11/DVx6qwWK1mXht+CL6lz6DQIuRtO/lMnbdLc+qLunwn/cSrovxR2cnJbg34TOKt82FjbNzYG+bJYVmKoCu+iiefvIzrlz4EKQ363OVkQxMOLmABLUksWWGDcUrWtPP9mF+s3EOuqdF8D5lBc49k8LlRmqwc5wJ5uTHMrloQO3nX3Taw5WtF+XRqX3LaZq/ICr9OUI3HwpC5vBLmBurDlfzrahh9T46lR+Aesp5qB3ZwHva75Gg1TDtNVIFNt8JsuujcIHIIGxJGE216xO5J28j/rw9hNLfpuPm49ux9bEkgKQQN/4qogPd00m34iuuulZC1hXBKHKhDu19/WnhszI4JjAKVm0p5tR1ERx2OJflSwLhvxHaIDHdDaTUkJYPauDozWG0slkaju3bzpPfOYCxxiO+5z5A9yZO591S57nI4zRUGpdTyKJ+gh4JsHdyR+UCd7qd+RUOzPlKjyNdqcj4H099II0zxkVght1FOpY0HqKt1oJ36Hv+U/cWzwcvYZ2N0yDJagZrB7+hIxZ+/MSzGMrGq0HsB4CnG7U4UkgYN6nO5esH5tODtDHodsyG2O4pflhjy49vSkPDo/lYFP+G9SUZZ0e48dVBf1ote53G16biP5f1fCDIACZJCYDGTg1aZ3icVoU0QNVIBVodtga99ovzYLYc5sy7zat8J6CeqjnUPlEGK78j9Of6DB7ROZUE2ovoo08OzHqkAZaWMeB6+CSF8DjY+PMfPFl5jIaztcnQcR7daI5j+4GFJDfwkcLoO4VqxmCtgyzE5PVhdc5o3HsyCw3jN+DlJ4b08LESNM7qgwb9mdBgdJ4b3ijDwdhQKOh6CUqTzFniizvqhMug87EZrO3hQXZvy/HWyHI8elge9iw5C/53m+hnezKLZiRh4ftl1OFtggXX3oFm2Fh6nbsa9IvMIFtrJ4/tDqTgRRvgUFwje9MCchxK54BTSuwufB30DAvonIUomK71RpHcUygRUYzBKYvJxaiGF4WfBu82Kbqdp0s2Y1dDzSZzaO135BCRCSBt8AEfrPUkizcnaFJhOE51/Io3brhy6NOL+FNyEiwaV0sHDBfSIekPmGh6mBf5baQr9VpsrdqBB13DWSQqlRqcrEF/Uzmf9JfiVU+vsmqNPrYs/8MyKsVwU84W+uvH0nGph+j5zwhU3tyFxpK/rLzOjVutPvCx7dcg8s0MLtKqxlm6MmQKN2GF/BgY4bid3BLDaV+/DQxo2fKIgEPYUPMTRexcYNNoPdDJk8D+jWIQe92HjynUodOPhyDpPZpG2RjhpTGWJLToC2TsXMY9+3/BF58R4DkqGW4GWlDeYBBfPAT4XH8mpZ6UwcQEJ/ByaeG1uxXJ/SbAJgEx/JXejzC3gfUaTdlNtpFnFYrijrXTqDBYFJ7fnQdvjqmBiq0aV8JiLqwWhPHhF1jv3mUWu8rwZf9dGHenkXPXX6FnZZawLyqDVh6OAzA3w7XN/my/aAl8cOvgoDPhrF1xHHcXDuA6XzuoCdvLy21fw9E7dznv1R54+O8ePz8yEfaskebEc4dx61AXTr4qDQn/DtBs03zKcC9kvQdVaGmTTz5zzuPyxR2Uq9WMhWsawLib4HWmIEv2/oW823U0ZhZyfkMbFZddQ/8RGbAjZBo1iOQxPpoEsjnRPHfnNK7+lsLnx1yn2w+O0/dRMejx5A3krfAnzUeHydXJDhRfTKdj1mv5rvUPdFhyEU9s2sOtjtkk+HMnW/tUYXCeD7c2SsCavDt49fIjCCz5RaeyZoGb90e0L0TG+iLM9Ikl6a1V1LtbEqQt/mO/f9rk0nEbva+uhqtG8jghJhcyxeeioII8L38kCCm2RnBr9WruX/kRNwZdZeUzCexodpYbVHqoMf0m3dltR6qlMtA/yxoOSDrAlHUh0JSfggOGDqRlYIt3My9imJo2xKq0s6YtswtYQtf6blaUVsPHGeMptSgeTsVKQ/ncb9R38R6eSFyGjs9no9d6M9iZowWvJt/DZR6J9NpuOhxp2kvuK7+D2YnzYDaqgR9YaGJdjRpcjrkKnUoiPHLoDh84eZOXeETQlYsLqdTOF8pKLmKXzk+2qDcBx62+fK3Fja/JyFF09XScXC6H6z9ewWU70nij7mZwO5xA+yUQ/pt0CfMWu8Lxse08Z3YrH315D9D6NG+UPclth+x5T7gYzkiShbFuFfxEzRVF//zhu6fs6HqRK6U6j0GyCub77WoQOD8NVr0Rg9eh7qS98AZ/IaQEtxIcaLgCR9/GQ4WaEd/tqMV9mU2gPxugUq+Ru68eJ/k0Dap+nsMe3SJgflebcuJHwqrVibhu+mSa12oFcmpuZFsXQLY1CZQ+cA1Ua7W5PyYGh3Z1kqTVKWiZrkvdPkLw+L41rywr4fNWCfRy/BxsHpdOctWmZCoxg66dc2WzAGMe/qoMrutSWaUlHyTVo8EoOASytDZwziNJDPIdCZe3CNPEIqbdataQLR4MZ1d0ouzwPxL6ks1JEpkgX/yHf+gehIkb8njWWCvKFNaCWt1taC6/l/dY+bDZpGt8unklzSJfLt29jg/nhkJEsSs0xhqAdY8qLlstRDN6rqBW2weafMSc7tQk4ewL5SjqH4rhZn9IMd4Q1prPhrzdPViYsI0FcrXoemgHFf33Hzq99IRlOUo8sEadXI/KgNy//bxjZDymbRVgKVct+nmVqEx9B+xqTOEgz80cEbKLK3ol4OStx2yj7ckxU/vpcIwV33bZCYbhmTTm5AtK3RJEGw6dpe0SGlD88yCdK35CD+3P8pOHbajzcjd4eqjCc18panYeQB1VdZ6fMBneqWdBS7Aov5AlyF6/lCunuIBrsggcUXRG/59TscfYmAzc5EG4/Q6dyNnBv/Ousc4qU2hzL8S3VqOheNFbftBii7oNkSR7ThGeh0yGjdF2lDZuC2wXF8XJM26hwoleGhuYCha/Z3Lm+A3A/oYwd4MxbL35ijp+/cF/YzfQ2vJeWLlZE854L+bXap4kucoQpo6ZDCpeD8jF9xo8tHkAcW3HqTZKnV7o7qONeIY7f27CkWdP8NkyJTAJBUx9dANHfNbC4yPi8LWhGSypm0d6YQ5wYZ425s5TgJfSkjD4QpH9mmvhz5//aNF2ScqXLoOknbPp9JRhGjG6A1ZqX4f928dAzufN7HP7H4a1FUFf1CxQHllHDgP6PO/1CIpcVMfTM0dD7UkxmJgwGkM+7uSrvwwoN6qOGgT96NuEV1AbOZ1zpEVZ1jIE0sdIALmeAk/RGBjx/QtuC/hFevHh6OeoDyreYTRnUS1vavKiVTITocseObTOhXs/68K8mcto8MB1uPFZklWPK4PEREkK+HIQdrIEfF+7kz8smIuaZibUPWsN/r0ygCcev6FRQ/EQaBPJG5acQBtRTZCJcKf8Cxb0svMaFD23pZez7nOZaxRMeatLY9+NxXGnFlNtkjpcTXKD04ML6cMxXboySRgfV6WwFDXhikPbse2oA74PaWGPTA0wnvWc6wSSUTxgJW6XtARpJx3OelPLWQcq2dPkCY5tlKcXQ6PA3O4J33kch+2jNoNxURobblvEqZdUUP5GH9qfFCb5x01cKWkChWfKqdzoDOjPzwOxy6Gk51pH+6vsOLhRmKY63UYTAxPOaFYH1czPNGnPfxAcIQNFDz7QQJ8CHHn3AlWxja/Nb4B771+QdKcg3NVTZ0eNBii+cwKe3FwGeybVQJ7rFRD44ExlnwTItMGRmy1kweCoCymiFQf0TOFZakF8z+I2NEEGejwrprbkeTiuPRblNyuCwe0QsEleixYrPSlGqZVnz7tGb7ul+XfUHZ4gOQRjzv8Dn5DREDqQxWF7FOnLxtmUcpMwXHAI/2TNA6MLVZTiNQXGFc0nDzt7yBiIJsnbvXRoClFfEQD+Z8vFK5V4lN4EaK/ug/VJ32lfqSH8vKUBQecHIPIY0XK5N5Tu5IpCJ/ZDcWYk/LkryaXzM6j50AhYbraHS1sl8EXibLyQ9ZNHr7vIBx1Ps231Axzq+s3DHvas3iYJ27/H0K6PfZzaWc1DAV3QXfYXou1KQWLZeupfdxaUCueg4nFRkNAWwIHF4+nZ1pUwMd0Az+anwTTPTqYyfVawbaVRWr2w5D2AkO8gGZZNo8t2gvDM5STMFr2CHk06tLx6Gpb/7sLJ3iLsXjoOfMunYUD2V5aPcOArZgKQVv4XndrNQePdcTqd30eNSco8dpYI7NnVShZNp3mzyx7UznkHIjFKtOzOcQx/nEM1tVcgIqSeFYJVYfRZLZo2NIanib/C+ec9eOlqVUicfQgHnQ1o/foktnr7GuTSbOHVJydcfH4O702zR/nDY8HZxAwm3LuAgwcbKXrkfhDPDsBWA0Oo2XEJb06rwxsdu1l8yWSW92wDTd900FzXTHND/GFF/hTWEFCBlEmzaULyBM6SVySZ6Ev08c48uPNjHf7+G0Fhj4bh83YPDHyoCsOyjMdnGiJ+8sH9NyMpQbUU71d3oLelJSYabKd3GYbYLC4Lopf28VoZHSjcuQW2WISCrfdd0nraRx2qOSD67xL3ZZvB+lBziO/diW77t3NV9DX+dOgnz9/qir/6C/jaGFF4Me41+WsIcvo6hLgRstQueoJqtD6CdhWz1utEnB2fQHrKNZgQLkqW2fKk9VYDjnj1YVCOPob6RvH8khauFHyNKWZ7qC+ymSt/SPOhc8/IrUIdDo21wf2rzDhG7RHObf5BLvnF8PrHSty8qpI3VXng5JxR6CELoODqzmHpBSCXYgpW/ivh3Ftd1jLxhDt7/Lgxx5BPWk2iWcYm8KvCApb9d5IrdqjhKeEXUOtezlojR9Ff2RPg6/WcUg45w/gKKfCSO49CJzr4WsQ+TJ54n/cKOtNW0YkgMP0qxY0YTfP/uWCHpA6cUhqm/Jo5eDtOmw/MbsVi29WA61aCzwxfSBDcSLlyymRqZQ2l5So8fHYBbnEb5GbrVWB8rQNqKvbRtr2LSf6SNdzfNov0l5mDonI0m20TwxEPhdA79zRXKTOJS9Wz44AJlEpZ4yvJZ5xvw3CrbRHuel8GL3WdUDhJjcOWLeOkgVU45vczjtV1wuvXruP59DFg3JOK5ppxtNliPKhEXIGLx5/B8n3i7PomEzo/q6GngCI3TRKEW9fjofyZEBS1K9LTVz2knqSNzzLnQ76EJBidkMK73droTfogfambxaUrqddgNt2ZMw87zmty1Nd6unBdHOatYzz82RtzXRjSPNfQ5I4hPmqTR6WHR1Jb6VtQf3oUY09IQLa2NU1yXsleWYZgf8yQruXv4JQVC8hV6w0oTp0OQlFhdOJJMW1N0YaYY03srS4KQzUTMVBtHn3PfwGvj66huTEZMHdLNtcEXYei4plosm89OI2dBLFrF7HDsw+wpPcHb9bP5/jH7+lppi0+v/eFzD4T+5fqwFRTVbAO2QLuV8/zkS4L6swMg1OuH3jv5lrO7mijBQIqpFD3ELf6ycKkNY5QVBNJ3LYKL9R1gIpkG7f1iIPU0n7wOnEdJKd9g9JFNmAT6cwJCwu55WMIBey+CSOurQfDG3Px6oJdHLpIhac6mvOa3wxrG7t56kg9XpY6FQ9dnQ/CE8awqLcaq5kYwIP66eAz7z1+nDMBfkoN0TPzLLrfvpL42Ds8KeRKg33RcKQgFsYES7DM8bd08YQaxMl8Bdkd4qBisB0f6HZiw/tZvD08hiKVYlBCZxWessxDR0N16DPvgylrbHCOwgle5hPOSxY7YFbHXN6o0U9dqx9QzOLZtGWeOMx0XsEF9sKk6RAL3z1vI381A/s7jvg68RgXnfag0u5wDhFTgGqRetB+ZwP12u9ZRHcdCfInGLgwEUpmzsXRn//AlObV8Gq3KUQGfcdhK39o3BVDwV3pJH7Xjnft6MTeiGieKqBPo0f/hvMjRsDDUBHyD5QCXfnVlKI3id5HOOPVrm2wauca+Np6kBZp2rFgtSEILXzObfmDWKa5DiV9e8Gq8TQHR0zDZCt7/Ga+F+KVn0LvkTEQerIOA/A0/GrbAlcTZGAu5mBoYT+k7VhMSY/9wGtTHYcaaYCghRTNVF/OoVJvyPmNDfVcEQS8tIaq/S7ygy82nGjqAT1XxCEprwBOdEZh+4JWWn3gAzZ8bsU5KQq8PyMR7KIG6F78RRbfLwECpUXYXb8MNcNEoPjqOXL0iQM/pSiy0BdF/x0L8WRhIS9IMINr0gUYbZsCJc7qFOFwB4Vik7G0rxDnruwCif6xZLSrA0fWmMG9cn+UjO/mQ4cOoPbdLWSXkM06206z24y5oO8nTtULBJBAH1oV/NBw0lR0MXfgj9+UOfvQTPJc5M7nPqSgRnM33Yp8DEfHa0Fa20KcOewBoVP9UWF5H16SHsvqt/bTr6pdcLVKGR9ujqKL6+ShQ3gqX198HgUkAqG3UxDl+rOp/FkZPp+tzdmJcnwwyRNG5o4F2x9q+OCkJM+vl6Qxm05Sr5AqLvcaRc8m/McVX6pYNXABPCq2AYXJW6Hz9DOY+FORi5aOoCmN9TwsbcDzXk2g+gYH+FauA9NeaEH3SmMYa+AIp7wLWHmPJsWou6G/ynKaIq0HxgGtaG8xRMeFNOFT/xve1+bG6blreUdzHb9VSqYSiZ0sUlIEJ1sF8FzRKPKQsoURL7tBR86NWqd1gd3iGCDThbTqUiO/KzYhiS3KEKizAJ68tALRgipw1lsKabgRby7wpNYYY3DI8qLEFSdwe/V1uKLswtnnrMH1tTw43UuC6P9sQbDLgS8/+Y6DLxtQXaMQzvYfAPH03bjY1RqE9XbDf2nP8bhiCA5NrKEtS6rZUtgT8qJP8ww3Kfb8upfD3eRhxohx6DNfjJ5LaaP10kDUbfnBpx/PB5cbI2H4+Fn+5pRIlz3tIGiFAu/4fAZP7/Om1flBMO93OFbpHAaNs/mgvz+FVGccIHs/Aci8Hsj72pfywcOPIG6cNKrAJF7yIZ+rpkahkkQcbms1wJM77UC/Uo1Hygtg+5W3+N3pOLryYwi5M4G1l5fQkpy1sHjvCaauUfDb/AcVLUqBfUEr+N4BXy6XkcBjm/tpstYzal1qAjsG/5BQqBqkHrgHaSWhEKPSjdtrE2jCiEq61Z+PYzpfwY8vkXxUeSFdzbaERG8x7PJvxdoNyfBHbgGmNq6k9Ee5GLv/BJTuWUBNcw+AxjdLCK0So1a/Nt4Qfom7LP5S9pxv9KfACGIMd3LoWVvc3egK8fvtYWOONWgmPEfH7aNJ6sNynOsxH+QtDrDh+miuSPzJY7Tnk/VNI1DuPUo7Z25FwUR1bMlaCcWf77LCx2x+uSYc9Ktnwayi7zworAtqShLYHybJ7YcUQLHvMN3qWIt7B/ypWjsGrxa08imH/bS8RwoC3A9ixJQ0il/jhgkGoTQ29hFIyrXBegcg88UX8OP0SThOA6EmIo7HVc7j2Eu78VKbKZzxG6CoyVtJ1PQoDhbPo7eHSnmuviUkmA3CTq9D8Kv4EKcdVaSXx2XxZ8BSLg2vpMxPV8gmop+aAyfD/pg7LOY0DdJWqKJ7YiyM2ipE8Wcn04KXFewUHEOjblzlitXicNs4hHYBU9HaJRgWKUIbLjqDUtdL/JypBbWykWyYlwNO4+Tgjm8wl3EcVZ41Q6fJXpSg3gkiK67Dg6jZtDffhBM7trLGOxv4KxhAyp+m0jddSxTesw2aMghOT9bmGMrjmm4xbKuQRL17E+Dqci2+bxbGEa+nQfOuX+RYsB+WxwrBx189tOF9N9ibWfPtdGUQLfPF9mXb+NzucTBFVoMuFnTAm1/9dGeGAIN1Oh6UHcCmU1YwsILhicYybpJkviqqwCUnp/FD4TessmY3VURrk0jWGjSVFID9jtU0N8sVb+cK059+RzBac5Euet0mG+sbVBu3FlbTXxJ7rwTn142goj3P2XXLOh4hNZYrRlziG4IlFOb7lxTbAqnd8SII7pGAbLkc7PwVzl8SEuFQgiLG1pzA9+l7uLLCAfaeTIbWE+W8LkEFyqOWoNDO1Vzrp8xJX8154b5FkJEowL+HdnCfTw3Pr+sHWVsC/8sNNOpOB1uPcgHZZb9A7LYRizV8JfTcyo4zMinq2hhQCRWDomZP8ps8Dl/XXqNmxx2c9asff5uYgtyf61w+cT4OTZKGuzFyULdmBERmvsGUrDno062NGSE70WL+LnR6/4blNnyAW44K3JtoB4stunA48CbMuVvNq9YPw/P7jbhk4Ar/9PjGOlq76IHyERjeZQ9PtIa47fJ3Nh+hwzEHA3m59BOoLBPmrXuyWHxTEvd47aW9nxRAeHg8RRseR19tJZhs8pHXbnvJbQOhpFx1Hm4/yQe3ZdupVEsBPg4Hs4VjOq24IMk/L3uz0ggbPLg1H/++E+GW0A5+p5FEI2s0YNTxS/TkG2LkpkHSjlaC/ju7YPYCE1zqvRzKvP/g1NLlZNspBt5+LbyxuQXnq4riZ4GRfORsAt6XuEp393vS38drQf+sK4Y8sIRd77Zgrs96+FjpAupnU7FsaCGqHZoC+R5XaI3PWkgqHwfPJijBVqmP9GT7EPwecYgo7T2LuHdT67VQeiSkAZ4fBEH1sy7rv7OB2Jg6/iIezm9eagN6/gUdjS+4UsQDT8Wdg7vXBehdQRWa5SnAeUNVtHDo5XVhn6FWeAEeOZICVbPHwiKx+RT3KRM3/5LCrbYykFB5El1CcnmZ2X7MG06iiBhxEA+Qx8R/AVT630Keo1uGhiNtIMW8BRfoneUcMzO433gFr53WhQ7/FJIe7YXxnYXYmL4Xp1gagZCzFlaE7iMHC6Z5Cinst34HfF/zC2bYpNPDhDqU0yln8zJ1MB0oYoNuRaou7qeS/V5sZhYBC5KLqaY4DFRqxtF/n3/Sb7aCLy/+4ev4u3i2KATKW7eC4wYtCHE+gG5nXVlvQRC/btyGX0ykISroHm8X16TC9C4WzklHsYJR/Cv9OWkfM4CkNBfYU1pBxf4T4crMTyR6Ww1vlUTjjs1WsPbMHxhKEuelJq5ot/gWrpzQQVZT1GDNyc046YM6z1QZzWr9e3G+Shv5msnC3oxC3KoXDiMlDcj2kSZcTvnLlV8L6VuDFJfuUsXNCr7oWazAF6uCaKSRPHWeOQcH96jAyhfFcP7ybkw9qIIhN1XxfwTAB0AICBQA0D+kvUs7lYqioamhJIXMhszKiAoZpUhlE5U0UGSvSKXtiCRpSKGUhq2JEFpW95bPKwWpX45QHzbI4nJJKDsmhGaFacDta1l8Q3c5fNtzFN3Gl8GLc8BOe4/DkoVf6GyzPEy/nU37nkrCjbkKNHh8GenYfALpV6/ov+M3yXloGMvd5mH3XOZZNrNww/tRoHjSE9TUvmBXrAGLlm6kU7dlqUPkHkWYbcM8JyEY7B+mMYrKMAfc0V9HAkKUU3HERGnymGtAo9wS6ea4I7C9ZQXF3luBpqcFQGzGWxRJP4RCNZfgwuQLPPXGPC40W8NBdybwkFA2t0r10CwZUYhSeUm1HW5ooQqo1/qefx3/CmWVQ2gmO59FrKyheNIskJYUBrfEQd5AjWT/OgDm3HTCCXktNDE7Ab+pdvM1+VdcamwBzz10YU2TPv5TM4VbHufhl382NC4054YLy3n64RL4NOjCpekzecE7hn1Fj3j2zKlgsH8zJCuJ8eGT6ii4uQyUnefhrxwzGCoWIAUaC1FRuQxuo0A+chHemPeOdghEQfq80fQj/AeKd+aztMgJPm0qAE5LT+E0kSZ24w5KlsvgiEt9nFrujvc3qnOd5mpcu7aGtlywB9XSm1hhM5cOLazE8tV5mKJxm2eq6yE8lABzuZeUJCMGV6pN4fXGS9RUp02af1rZ/4AdwL9YFHc+QLjqIgTPkCZ/RxFIfyIKq/x6SX/XIXT/JQX78qZDzWNv2Bj3hMOudqL13FKqMLeBn75jQXFwJOR/8KObx6r44KzN3DZwjGUvOLNOZCJWzvbEdvlw/FCsDcKe0rjN5xsdmj4S+q6LYN6mjxDpvpzrk8Vpe7M7DV/fRILz1KBcbSp4bL6KFjeC+b+LYymbNoCfy21ePfsK1wdsxxVFUvh0C8LFuWNwnJ0YaPdUw1yDVNgh3IgjjeRxvswb2FNfzbMStNFBUAfkrBvhlFUv75OO4IdjRwEtfIA2IioEPmfxz6r1lDZaEMQmqkN1/0E49U2BXm5SptjbrmAwLo2Wr/ShkH358HyfHCe87KYAA0HIVDeFl1d9qFTgAnPNAi6dep4Vknfxfc8AelC0gSb69EGNuBa8HqMOB/3CQajDnK+me/C/+FIaMe06b7BrwCtDpSCtIg9d52zA1LSZjw9qou22+XijRw3Uv62lv09Pkpq2J1Y/9kK1Ey0QumQUFBZ85TnbduDYn4cwPGQ6FHtO5P0WK3Dx9rmUpfuPzk6dhysEbWDW2Zfw4etNXNK2mONm70RYaoQdUi5MqeIwpXM9btK3oZEnNMFvyBDcde+T3MpY9gzqQsX7S0ArQJG+rTsK8bElaL1skNPDdEDXl2HEqDLQ6JTBBXnCfJCGWPV8AnrXFPB1rSLwLN9DmZ1CsP7PenZL9mTJyJU8+DycRDzekOOoOxStZ8tDBeOoKmcRvDCxgtSHj+GDxQ9Q0xqipY0TYa3iXDj6URR/6aqgd+k9uC1/he1+jALLJVF4p3MXasg74KhEATyuOQjOGM+n/hjTpr9BZP7+EcEtgB2mZeQiboGNJaKk1nybZjxPgLDYMYixDVgQHotTR/yHJg1SYGV+HFYbBnCcy11SCWvgG8cvs/n1av6sdYHXnZmBpurfcWqoChwRGuKxpb84uruZjxe6gneAI5R3vKahy8MQ3GMAm8JiqcF3PKQ6v0X7oKm8c1gSVN5sAz3SpfaUUGiKCOWxq80g/nIR37prCRtNKqhAZBweN15L809N4psCKryyfwgWZvjyv12tZOb9htMaTCClfgmtnnwHhAuM0VwonE0df7LKvjG0OP0updVdp1WVg2RgOwmKfx8kr1QF+FpWymqxHpA2VYvLlTazdFQ2vBbaSa9lD5DKehkokBIEz/Y0dhScz5sTjlJQ/Ct0Ef8MxdNC4VdpOo6vOsif2k1hp9NTOlOaD8pfbXAr+4FF7kg68GIqRIWfB6lpX+B4dCunnmDIaXHAGflurPvLBu57n8QJouewqbKLo182kpvhU044Ysdd2SPhZ58BzD90hQ+MieDOScFsrmEDa54lgrTtV4h5WcUyzeE4wU8H9Hkk6E6cCi3bS2mD/xCXvXFBwY9jMD3diEabFWHbgYUsYiUDwge+Y5G6BFxb8Jfauu/wjxs78NIrM0hs2EYN5a24aHUllk22hOCjP+DRiH/Yn/4CJm3UYfG/f+HO/lN8eNCCjvp9RMVNJ/DyonGQKr2ZqT4Vtr2cB+76m1G6YhYcuXyEpXYdxrCE3TBfToHnNtrDrlH6OENXFh92KYDVql2Y6jKDoo88xbR3B/neXQm4lS0HPfHjwXD7Yp5qOJerDv+iRSsmMx4+jH6hXrRB7w9r+W7itIpslpUYC68PfqLFbEzjBotpweobGCkZDF8LTnKLlg5O29pJ4/Z28n+b9aBUZAikLtXzmFBvEDqTyd5xCWzs+A0OmSrC+tHJPOlFK6wTYPjXrIXRp1xQ+Fwd9iyRpuQHKXzM8A33/fXmhQ5Ii4tkOUpEGxq+3+CmLVaovns5Nsp5Q6erN11Rm0d/t5+BNnVlVqzVp+7ssZDRv4KMZY7TUnFRthItJOWPJvCfczB5DmXBqZod+LH5NB1bYg5KJ4+AWdgB3NRUj0ZB3yg8T5YF5aIxY64hTE2wpmUlayjgiSoc9wrk3rQxcGulGAxZZtPLKdlsvHgXLm54jmK6Mtyi4UzjAu2gcfRh9l0bwh6q5py7uZQ/hKejVp8rHx0xhmNtfMjq6EgcbTIO+uRa6MC8ICi630I5kWmw8PwcsC/dz5oLU7h4jzSHHRrFzSuloPmmCI9X9YLYojq8ELue7C1luFfsOizx2cyjD15CvTjgoO/CIOAaRL3pDzD29zGO6j+LSwP/4FDmSL50OoHdBbxZ7bgv3u1Wgact01lw8XkMFRvm3IsT6Oi6bWwieQa2PhDnPTCR6zLVUEbTHi4d6oSbJ3S4+lY7jFNMpTtUgw/eCMP9nDn4d9xMio/8QIcaR8Pnnlx6XDcJmw7as0rgLa5UmcNni3bxn4JqeFptwj9z3qDNTlPovfwPfAU86MDF63zlqTc9nRSInuo/eX6gJS4Q6gH93Dw0XmIChyOyOH2dPHs1NbHD++OYNJACoa661BfSBE8al6FCXAHnLB0D2RbfyF96AQXHN8HvNy346vM9ii3ogaUNAbj+7kd0ujwXB/S04eSbmTTC5AM/M3xPr7q2UXXnDKisf8NXWq7A0Mj7oPnVA2VPGMFB+eWw3VkUhl5PxBFHpnCToC1Nff4BM0RraL/IeQjTfEtyBkrA/Yo87UgH2p9cDAJC+/j2mq20BP3IcpErB0Ie7A1cyMdLRKDZz4E2Vd3kM9Z9MCCZzXM7XvMnEua2Xz1QHCiMDyvWY5fZJIhvV+WH5gTLyv1R/74CCJrmsmfPb/h4bTdV+PeDQrQ1PpQ1gA2bdPD77Jl0avUVOh0/DiOfnyNLiKfh+H9UmZvCj/21SfiXLmyw6OfKqwhl6adBYuggXJ7IoDlrNepHzaW9pSqQJ/sC8g1MYY1+C+8vV4MtL91Q9+hiaGyIwpZ9yaT4lXj25k84YKZFHW3CIHz7FC7omUTFC+zxhv54vpPzAXO9H/DMA2NhqLiLnUuPwteXEnBJ6irNDpPj3atEsUfhNlnLaPHevwaoZXES8iVuoYx5Kv/11QU/QXd+LWDILjr2ZPjhCrTvSaHtAsr8+MJJOLP4G+/72cdZm0Xg3+xurlGuxYSWbfiyLo46JJRw1asZXFgyHQYE/+KaZ4WknWQHO5TKIEAkg2q15+G0p7Oh2VkElqp/xinbi3CH+XZOELgDRgaGsFL7G6yXPM8exd74T2o9XXx2GAfWlqKV213M9jsAwcJtsNVQF16/v88idsGg2/cfZWedwRJyZ/cHx3G91zoWc2oCu8eyIHpQBCbGpqJJjDdNG7WBVIW3gleRA71Y95W6VkwD7YKJsOt2CF/fPR6erZpCkVOnokRIGbZPnAMeWQdBVHo6HbmsAmcCv+JP1RmQ5iUGtSU6/EZdECy27KRC4zN0qmAf/np8mgxjfWHpKCHsbjLnajmC0fMi6eS1eJjpXMVvnp+GbxBNs5OAf3VXcuqNsVA3rE1RygQb5yvhIrsBXlChxrP+s6Pa/DA2mWtFj0rSOSDuJX6ZHU3BYy3hx8Q2GKX7HT6XnmQpWXd6StPh/hkP/uGsSZY3MmFnRg27dVrCkpWJ6C2aTQ9ke7A/wYt3Rnxkg2hj3pdnjDtil5PX/L2QPDQejE/fhEXXi8B5rQ61asbD1HYvOvnIHwL3mdOeD+uoZQ2z6gM9CC83gvit4fhjywn0XRMAF26u4xP2PtRnYIZ/hbX5kUURbss3BeVzTuQa5Ye3vCpoMHk3iJufxkXN1iimdIUDvwVyW3UzlEy1B9H4RexurkfdF0Zg2+RjtGzMWxDLCIFbP29S2Hsxnr5wNiw2Nwb5pkFOT3HknzMjqXKuPE3Y+xyK7fVR++FIBqn38HnFHBDqEYMdky/zadFrtH/cfH49eTL4OuvSucBSlt8XgvOOqWBrxB+aGakGSz584Oj2x6wSUAWWqsm4s2ET7lugjbpfB3FaSw4GBw+jvYUlxCi+xiuZpZTs8ZKStpXCTAdXkPg+DStCJaCoKBHrzu/llc5ykP+shvZTOXxvbuKHfblcFPSabEP2o/UFD7hhu5S+hMXDJmklWHu2B6ZXaaJu+EyMabaDz72bSC7sJVluXE83x7qjbp8a9aEy2KYdpDZLF/g9/yeuv38BrVpOQ/YzRzJf2MJighpcs80Of+aYwpPhh/hKoor+O9ENGTVm1PVHHAOFnoKCgThaHN5NAdo18LppNOy9d5OtZp0CJcnluCC/DDPbv3DA8y9g5Dmdbn8fgU8rl9D7pIkQNM0Ql90BXiNcg2O0r1J+/FqsNZZEhdD19EftIZz6mIfvzwAUTq+AMR8MeYxzEl5e3E6i78VIXFeSVDvW8fcjhjBzeQdXy8vCowWy0Oi2FPt3tOKWE8ok59CEiXprePBVMWs5MnZuE+DoBDWoXHqBw9V1YHp7CEo4lODHL72geXYlFjx04/0758HypmR69EQGrsZHYsaKDzR9ZCNMbkqmfY2hHCXpRImz3vG9WFH65j2K7uy0AOnEWbRjYwNXDS6gX/pfQbbqErZuEScLxf0w/KWNzi5aiDUzjGCn4Wuqi/bH06skoGfZMM3w3I7LPupA4ZobqCrZhs7qYuyvbAY+R36B9QUtllihTm/nrMK/XxfwvmdVeMJgkM5ufMmblHUh2UUUzmS1g82/y9hhrsGLDMZTwGcZ2uSniE/3xOM0nzU03tGB348Tgv5/C6BZPQvSLmXg9AnRIKhTQ5XyMnz84SgsqA2i7bMrQOX0ZNiunoDrNe/yWYdh3DXvNM5VmcMi2x/B6dF/cey002SmMx2T5+pC4GZNKtqxiK5tkgd/iQCY/vwMzsm7DCX6p/jbv/m0bZopHLOxhVP9OTQQsgoX7suE1Uvs0XVONCn0D6GE637M9zqJ+bsmY++5URBp/RNn78ik091nyev6H3x9op8Ddq7GJi8hsnZRpaj1a3DR99HQLxnIf7JSoUPjON4dUc/NmYO4VKOPnSYswh+fZfCYZxWdGTYDGwF9nnhJBH0Ma+iDtRDm7HlKaWmpMBwjiXdrFfln9zt6tlIYtkEh7Cqey/U3kzH3zg04dS2YrE/7g2+TApX+tgBlCIeVAiKwzrcbYlbvhTJxdbD+Ph/HlB3CLAEx/uL2jFS2pbLK/RVUWmkDDvWd3C47BhJ7fcnnpjQ7bF2DvalX+XFfHrmp5JL5z2SUMVUEUveEjc7L+bCQPC+SE4W2/ZcoZNtfHIhWx4shvbzT4jtYnLeF/MX72eyWK69wD6M07QbeOW0UmK0uAi2XfH7wdj5rjP4PNAP0YErYSBR1eQ9Tlh3jZ2U1cF9XBH/kOXCotCYJPSnHTes2EqxUAb+IkVTZ70epUa/wTFsAWsj14oDxPZa5bgJbL+aShXE4vnYUgcTCGN5koEUFDht5xY7rqLgigdedOQsREy/wiE03wdD/FTzUVgFn3Ud867QJVKT44rUTbei8IxkDrUpo2f1f/OnJdz6VthJtN42AYOOz/NUkBd+4CMCpdQ6caPyR2mLegEnqVTyyR5+Fa5bTm9Wy8Ozsbj799D2/t73BUVOeU8AMA8qJioEvL5xhzhlnen42C9of20O6LHFapRl8PLOJdwkwHjrhDWPkevmPrgsfuFeGd52zMCXLGBaOVWKxmkLoz9NHsT2XGaWr8X2RP7ZlSoLvKgkOnx6Iu7/Lw5K/utC95zeXN3nBk/drqcb/KDXpiMPPLfdw+c0WtPkhxylVEnB8/1z6Z5KFUROZrfv9aIfkMZ5kkszKHddg8ZRE6rq0BSriZCH8tzcIOjVjgFw2da0IQddGJ1YOnQ8d7IdDqm3UP6ICOixMwTrlKx2y3cXFqx2YnnSTqfkbUrpfS+vjGrhypw9t9/oElWka8OryRJCJeU827s20r68MFwYKwvW7RvxTzw9mO1yE6/eLIGWEJZw8cxc+xF8DWLGSUz/sAXdrYK1qb1reIcgC37oBPh9nmWsmoNC6lCSTomkC/cS4plO4deAmeEwZghFnNkJBShOf0hnDFZoIX9UPQEmmIj8x1sGlA/twxfRRfGOsDz51K8TISnGoaRiHU8argkBHPc02PQhnz4Xw1csV5HvOhlNGLMIMf0nydhPCy9VKVCYjAmMVTCHUPoTSUqNAzOw4Pq69D/dOf2a7WGsW8j3HClNMWUvYGAwF0iGwbTPbBXeTRVcSTPWohGn9zrjmVTAUy9ZgofEEvlMuDuPXRvJwzBgQ690IvV9KIfePHSdcjiKDqjIWqN/El3IX8fYZAKFdK0F8Zj4lXdDjl6ceoeTE23TyhyT+sg4ln8VOfD92Ku3ZJAed78LhYUQ1iVlWkP/siWD5YpgbAsIhLPcNykjvZNlZ7/jnHmEQD99Poqqv6eU5Q4QrFbShupkuvn5PTp8ycOUOJ9Z5KEilHgw9+wk+TGzmDUlhOLBGGuoPTIELNeXw/qwrN7y+QpIyHtDjMAZm6DApC7fjdXjGf4v/YB+tAoG90hwltYAq18biyM3vWNvdEixYDcydIsCwFogX7SInKaagoXn4ysmeZyWHgcvlPTDorQEfLPPhyNoAcM86SHPKP0H+28fgahAINiFLYf/DK5izPhbdzYzBdf1d2NesiKKXy2irjQgair0nw8g0rAu8w9eO7gdPGWFuEFcGu9oq3LXEjM8ajqTlx2J4XKMmCqocxE4VYw7qdcDWuEP81EgKfji8BNnud6Af2kVWR4/i5klH2CI/EZZMPEbfNoTQFvbGrgwrCEpOwdCHdth4eixnyVtgzOwcFjhgBdPdR8G7Hkn2S3XGsSV68MxlH2XvCQeZWFFK2RrN3uKNpLE0D5XjtcAyyR1E7bLYeIICnFnfTH3nFGCx1l3sTUjiBYdFMEPMjVacu47z6y+wcXkWxhqOhtfBwjizyg8fasuQYmAaNm91p5amx9zme4aPqZ/ijoaR1L1DB0IqhVi9NwV/BLwAtSO6FPBvG1zTnwFqHuvQ+eUizNz1GPLW2MLvyXJ8ccJTTLN14YN3Bfm4dix2xY/Ax8njuCZAE6L1pUnrqzmo+X7ipUtug9SteDZ+uRMGvU9QSmE6x9dUkfC3YRSviSCpegGI0fyOhoNFtGaOEY5Zq4Gzm3VhcEkAXUxIwqyT2dQi8p3OjdCArbl/cY/eRsx7+x40CnQ46/Z1qr5pRssvSUJVkBglKjjSjV8AepcKYXtBAD59WwgNgyF0LK6KMpbMpx0PU2n2qEN0f5snpcdJQZlrDHjL9aC60CFoflYOsQ9leP72AWwW3wYeBzsQj9WwxkKE8yabKWvgMwoOfsBlqd8g9UQptWuL4Utp4nttWTSmNpP1eiVhwn8N0PJkCj/Z0oLfUl7BrppIlrz5hY+8Pc7D6wQgY+NvsJxiBnsT3pG8x1H00njE320isLx0Er8zWk6/JtSBD/ti4tIBOBYrDi6by6jSqot1140kG9PdsPKVJbaHvOEA+4eQbFRH+ef3gWqNLgR1f6W0wmb4EBgAJnNUKXZeLA4cm4Jdm5bxIuUEzPAzx5HXDeHC1tc4wzWOB07ZUnP1Nl5+QYh+OqdDxd5KEOkNw9jqtdTeLA4GUclAO85Bc+pOPDJlFiafqOe8qF7MVayD7JJH+OKdH2+vHQ/86Q+gVy+HT8+DT+ZFeGpjO9UeV6SN8ztBbp8ZjZAKpDd1ymD2IwTG3HpCY0560hrTSH55p5uDL6VQyqpDXKMwAab/iySpsglQElaNS3a24J2Bqfwm6zte3eTPHBkHhuE/YU7SNW5oTofLi8zhyBZ39q+8SwV3jEhXayku6HPBgtMBYOCwCty+ZeAtB2c6VCYCno6mOFc1CL5vlKFrpz+DzPYAcDv2ioK1ftIaxSh4Pu8X3iqWhjU3dlOVvDbcLT7O50Kq0Uh1KwXdbeOKPSPJdNZBVGlpgPAQZfg9O5CfjP7F7v1LaWRiA85XF8dWqw8gvH4O5hrMpV+OTfSgbhLk1w5T8bh84mxb3Cz0jsU7s/jj333w3VMSegS3QF+bA8aUmMCMg0ZkbiEC2pFbeJVsCQ8XPYFzSwp5/HcFnjM1lQNV2uDCyZEgKtTJX6T+cd52IWyNmckdHz/AtLnSoGRQxDLK52BtvS3dyjODy4rLOLCnmWO3VMDHH0l8o1uPkpf5Y0BTCIU+0KAD0Y9g9LAw8NXVHGhXxOPH60Lx7nTe+XUDjXv9Hevu5dLH4g/QE2fJYustoCk3BQ8vCObTfYrU9J8TtJYfp7jHj0iwtp/z966COpMQ9N4hBXIXloFtYD4UPFrN/ZIHweOKFedljmDZkDHsZ9COxS2DaLlTF4o1cvnb3GVskZoMgTfaKepNDHz8rMIJLn4sGOwF//Kf4mSrsTDGV5uP7ToAV4Nt4YfLdEh5sYWmrXxHB16a0mlVfXYPckXNb0LwaKQbLrPuh7i7n3F5LrDX+CCc4POaem49gJYYd4zc/RsvzNSDiZcNSarUmMcuraCTj+3o5zs3evOfDJhdX0qu3dLc3HOCy7Q0QLncA88pF9PxkH3Y3ZoAv11UsVsG8WE78k91E7hmYAOLdhnBYFIwOs7JAePCMrr81BR/7FhMBpNUME3vGq/fYUf/zHbR7Dcy8NglHJTuStCU6FOo7/oKGxRGYE7XTFoq/I/tVtTRqspkmuEiCdaXN4PJoBkVDn3iiLve0OvyH1ZrJUHtst8UaOZCjb+7uH+qBQStVSWH+rHsO6GW8g6FwiYjB7433YC/nUvl721J8O/UP7i5WgW2rPHGeOhFywe23L1yJQsG2KKhwSxYER/C76W+cmtWCk/Rt4aa2dqc0nYMKo/d5iP/LWeTU+GccDCZA+xmgmXhKWzKmkHjSxjcRnaR2dO39PiXPP4IioFrpiKk9ugvDs99i9oKObzcf4CuNFmDvUECRg630d8JqrRRIQCbH4xjK4Nu9LRuhjMxn3Da1XKseKQHcvNjYPToChj1LoQneO2G7N27uU0ilTZ5qVJz1RJuyLeHrXr64HfzEzoM/2bBnnZOuHWVqhyXoCceQv2VDdSkM592x7zCAVELGLFeE5O7LSFMyoQDNgtA7fGP7NfuCPOSCuFmZiZNvnCWQ1PtYWeHNvw5/gKDzWbxAtd8VjvdDL8SD4OYsRvmPBggSasl3KswGbpnKvABi0HMMZmN5cViGOCyg2Q3xnOpZS3lJ6/DgZ//ocB7LcgptuXwobMwOUOQz2iU8rtDAXxb1QrbrU3gwp5u+Plckgt8pGCs1VVIuysDgUuuQt+TSPDebYlDJamYY3GDx1q95RqfTBLIsYahOCMy7pDBJ6vVyUjXCx9cmQarDtlxwtVm3PBWnWJ940nogxQs8D2NhUEhGFq0FRcn3IdOrZVwf8YyVJDNwr8aBej47Rp/8bICI6cTOKexgOZmVQBMc+FVd57yxC5t+nf9Mk13fcNTKtpxc+NoeFo7F2wfTKBMoy9Yu9aLb/u+5IgjcVxxsQBFxQ/TyO95VOYwCSr6e2lT3El4GRhIGR+q8YWSC/h83Ubqj7ToX8lRjm2WJiMNQxCeGofOXwXpfGwrLD25F7ZI/gU3WTvCX2r0VDCRLm2ZTDq/R0FXmgjt+k+Hh0aPQK9moIM7YsDptQleeJlFm7dZ8LtH8ljxVwnyhERZdtYUDO3bSb/rn/IPXU944fofT5BJZM99Ixhe/SUTByO4MTsbp47aThaCNmQ2QQxp6BnoeC/D2aJ/+ZtaDFxJcqOIXoSNc2NgwdsnKO5tDP5HE+Bp1y506H0GhrULKWSZPgY5/eP+BAPQ1m1mJ/02nDVJDuOlLVC3X4mad2uQ7Mc5NE9QgGUK/HnwKoHLmvu8cLMLGfw9Sj6XYtmzq5Zk6wfxS08m1ju0wBx3CbxVpgc6VZ24WkUN/hsfysFPsinYRwgLwwo4TE2eokti6GOGNxcW6MHGZ8G4+EQuDYpo8oSinxyt5cDbLSO5P9OaqgMK0WmRE2OLEDx8cQl/uQeByeE5GFUgwa/vyoGHpQS0jdxD2RmzaaXcKNC4Zg6OWjHckpiOw0aBmHLUGVMr41hxkiLHnPjE/x5H0McVcqzirgVr/lOCCd9H4/Eadfj09yA0bDkGjaY76fMTHZwYWsTNZ405tcYIpPZ7YWm5F28caCSx6WPBMeoaPNz2npYfLwatCT/pXp0L/IkygKRPLeRaugCWfnPhS8YJsCHtA4lrtYDEC2TRWj/6MuYFTovVg9sTG9h84SeqefMcz5f84TbXXrSbKEzLooTggkooBLUkwsodk+BRhBx+TpGjUcMO7O5xl6J1BDDSoRMeywvS7ovveffqUhQZMIFba+bR85wsWLnuJ1VnF9LRGYbYcDsGpEMzUDByNSgpa5HaIQFYMEsWbAdP0IGP39jIxQPUf9vj2zn6IJYqxLN8DFFuuxj3RwMcenAIBlv7+FbCJTCedgU27xnmYxP3op7LCTy71AiDp/fRf2vtIO7bSviT0gKFEs7kbqlJMSv0eMHq2eSkqQObXiTRtenWOM7MFookHrDBTzE6pOWPJ28H0PuyGXxnYhIOHD/BdjtUqKoDUOCtMgxWzqFTd/9Am+9kGshtQte26XS+VJafv7XEgMblONZUllctM4b6L9fJIWALSE5xoPJJD3jPzXw8MPMHr/9cTXkZ/TxCXJISmnTg8Y04vKq0HRRLmsl4aAefrJ+CV+sfobd6FZ/5tx1stw/gkVNCsMs3kar8bXBU2yryHm5mz6Bl7DZCDW869qDxuV6QEnzEr6fqwrSbdaCwdTJu89eCT/qDKPAvnP4+nUNvXG9S4tVzsNUoATbFqcKCO+FsPyqJj94cwbaXfuDl+wfQ5bU0S7uupiVQx/O2baN966xATDwBvi6WohFl0VS8ShvvmNrQzAxFar5XDKe77aH9likotqqD3msnJr8ujlF3IQGnZlwzrYdn6uWCwaAPou5mSnznjTMu2cOQni/dex3IJ74mUNUWQ9zS6YRCp6JppeQ/1tkQwf/S3eihnSAsrzHn9K0/0WPgM5yZeBECCzRhTeFvPjNRALcLJbD8gxJ0thMA7+pxJH/+FT0/mYfz6mNh5ud6qnizlyLcv9HMsZcw4l4AGugLQ1r+D0KPODyb24txotHQdLsQ1ig0g43MMs6+sYOu7Eig9f6j4f28qWhg6Au/A7/BRIXrvOhyAIlvKOeJc2vgirQpzZ1fjaO0lCFVPwhW/ckDp/5e/OxxBKJmtNLquBrUuynPBXXHSdzxLbq7KcGCzmvU/v0vPmsxwTiHNZD96TcdLlnHNoJKcP9NPlkk5/LHd8JwV1AO1ycIssD9JPaN9oC1ti+h/50tLhhRTeqBp2id9QSYo64AXt12eNvuBRseO0EFchtgkpwWOD7TBf3gCqDKNF56Kh339+iA2LyJNCNIm6C7i04GxqNaqCN10RLo29RKm4+cpdSLL8DERxbMvopiuvkCXJswjJe6TCledi0vDFpK+/N3osPKGhb8VE/NlXZwSXsMOlQFguJiHVys9R0izTfCof+E8eVbwvIZiyivxhgibcbC2o09rLl5NM9z+cCedREokPISjWu08KDWMVp8Jpfl182j3WwPKZb74MV5c5DLdWM5kUF8viEPhl0/Q+6tMHy3PwafN0RT3o8xcNPUDPZJrQJNY0P8B/vpW2Mfaup64CyV3zhzgzSR+h+cHKkB1befcJH4P/w1IYtvfmmFS0dXcqyhBXtnZtEiq3Qc9lbHESEKcKtTApV94qB01xGy6PhGw7OOUZ9zDwt+6YQJS/UwySeD1jkZgvFPMdy9yJdCbGbA6DdSpOD1gHoVvThzbB6VUAZLPlGjJTF6oGxeD2oHl5G3fTZcHJTkKW59pLTvGBk7deKiVRE4XfEfeP1RAuW6r2TjWgDR+dsw7X4x2df14vdlBlht8ITvv/LnbxMH8bb6KFCzV4AVger4+KIh6xuswzDNBhgvKoj1+/fSem8rmhBXRwbXR4N+njM3vo+mD/apmHjpDKqM9kbQJsw6p8Uz/+zjms5XgJkAc+IucXpiA867RrjcZR22XHnHK3ecp/jGWRw3ROz3eDIYOU+CTaEK2Oo1F1Kyz8FSmffg+MiOUrXOo9yCO9A29QkY/PmHjfVi0D5HgJ/59dH5RH/MPBxD/VveUEiYAn5dcAOq6/8ju8lvqXqdAbj15UN3ezdeTLqGIw+N4M6vWei5WYEMh9eS0I/zvHNxO5iW6oOX0Di+7H8QY3v7oLFfCEOTnHjcrL+4LC6bJOJSyVj4MGu+F4OZuUvhbZII/pyaQh98veHiPW/y0palv8/P082xm2GkpRDObzWCFVfF4PgGppAfSEfcX9PMrYtAsMsXJdtDWeHCfTyx5yrGbJWHg7Jn2f6dKI2yms2ecu2gsp3Zd0s2lZ1uw9VRuty/yR2lJwEk9B9j/zon2v++h1RstemBTwOrpLli6AVjVu9vRhExZ9jmaw6X3zhRrdMaNtcPoSWynbTS0A3lkkayxb8pZJurxCXCIrQ3ZjzM1D/KbyXtyEZAFO7u2UfP96xmaYNkXiOizCM8PWHFo3Jy0h8LcqFOKL3aA+LSLVBnays1dZwg9QPXSNP7AD3c7MnbEvIhJccaPsd4o/SvHahW0k8J39fwq2v7yX3nfjaqP0caiWvQwccd4w6NBlONGWydrkMXTbLpSkI2L/5+DIOuGpPpnnu4J/UJmIXVsOB5AP+jUyE77QJJHQyDdcvm05bQ+1yQH4MqqX/IKCGYylbd483v9EDsyW1SHvpO8w09af/yz2Rz5yupvTgCjrcG0ay7Ff7VRIDqD3voOvyFzohq0dK3FbB6tS+rnmymYmNvPJCUAUvMV7Bx4DX8u9Ucti0tgeWDUiw/pgblnWfRxtO1qHooAiuW/IQfZYPQ8UmN3h+fDI39bahiVUhbVPLoj106J5bpgvYoa+jWUIWdc69TmrYwSo0zh3GNb+HJezuu1r0ONd3XwdR4M98vS6KQolt4e9o33F1QAEPvzcFEso6D9+Tjq2JJ6E6U48FWDXYuN8FY/7l012QVzutdzH+KR8Crtydozs/nsHRZPokd3Iqm9dsgvG4jRr9cgO80y6Hv+RVe4iYIm/o3okn7SZ58/h69mNZFYyYHY8Tu9VzY5wjVX05jnrctjze1hIFie4geeM5pKzeBdGYkFj6eyCbQij0OyaRh0AJRI7347H5hmODmRb0G+dD8KorVN4SQ1Ngl+OeIHpYOLscZ+86Q1hIBDh5nBCti3uKK6GEQ6/LHorF6dM7AmHvuWvH98ma+diYCfgvqw9TkMWB8KhT7tpXReFNxTvwsQr6hjdTuFUPjvxyGiTbW5HuqBWIaRKDjVAOcxmqe0l1Mb8NMSGLfR3yhtBc+tijDIicm/w+BvNjECs4v+0RxK4WgV7uVoj8P08rmmbxoaDJ4XNyDr8wXQMedO/xdaSxsy28Fb6+/WHayDBRMTsLbO2tp2/oKPtLuxPRWidQ8y0nkPwnoGtLBgvXyoHyGuVcxGPcEJeObmGUUIm1GNbueYPXMEBiYoQM1n8VI8LIETjpTDF21HZzyahPuWByMSnZbeSi+GOdvnoe4XAS8BB9RxYoE0Ilu42WZO1jvmQpomx2iS0cRfXUZq56kgbz3GBh2ughtFc+517eB1h2aAqPndcD9M208Q38Xhu7Wp7MR97gqagwEyI/Fk43v4UDbFTKNOwKuyV9w/ahkbr3gAdmf3eF5YhHv8dQDmY+zIferGwSnn+AL3U4UX7MWn7q+5ITrd+nuismQvugBbVcUApPXv8mhfSX2vj/OM9TX8p/FkqAxdSNPVzrO407J0rE2K9ooKgWO0olsFq2BNc4HwHWMGF9xPsW2tn/gX8F1urZrBx75ehsF9mmA7PRLtNHSj0yV1+Ed51jwKwqh/nfa2LD5NruGBZDlngX458EYiP18jWrz6ulhtAGOKxRmi6Z9sG17CChrLYE/rhcxW68Dvk0cBRX2ERxeeY3FH1nD0YNKPDCuid9t7cUZrrPBiObDx5wRHJ7KEOX6ELLWxXNNfSj/Si/lyF5Ftrd9Bhu2ziQNhxN40cgd9+wg2DnLni/qPuA42s+L/UbzrSB9njHgjuKyzjxjcAX/euXKiaMZtJdcoWl3BCnS5gWIJz2HyaqXobXgK6k9/kjKu8xozO7nWLnLEoqnKeHWBYkwYuU8bA9ei6sogtfm+PCuv5/pqPRrmrHJkzKY4WPMJLA6tBXkzsfy5Sx/dPNyo78wiM/ENmJA32hMyiuBBzNEICtoK7eNt0SRX6/QxeIxO9qYwIK1tfzWR5JrGp2x9us3CGxXhs3XvPFoVxaF1F4EIX1bmLPuOJ9v/IsZIbK8sgugr8gcL9vqg4DHYU6TzEfF8pGwLSuXnkXtQk85Jd7zsp0pbQ/ELP4AX6eowKev8zG4PovOHjekwym6lNIC8OHHVH62RRE+1krQC9epHBE5Ek7HO9NREx9KGVcLhwZtabutC4V6RMHMH0/g+RMd/LNwKi72HwPKrybQ4N4kXiIQRe2brGmBdzp62BeRrMJHvDLrHClLfSWvB0KgoINw+r809Fjrz6fsitHSZyxXNh4BkajH/Cx4KtoEZdCu74LgoZqIKuWb4BZPosyd//CobAXWjz+Kl4wDeZoOcdeuWpjRYAoxPtH4ZdQevqPxkfuqftMkb09eYX2NHYNioL93GS59Esx6cnrwoUOLGr684rrohax7TIQUm+XJL3AnvV72jA7NLAaXLjscd8sUVk0dST4XTdhlYBNZXfyOe9buhciQrVhstACdNxRBz8plkMcjIW3lODTyQd5S18rnZMwg2jsAVvx4DlumO7Df+ELMnXkZnG/pw7q9+rRLv5FVFzlxrshK+jl5EX/In0rjL5yBDps7bJ1RxnvOA8QceQufJqXjtBv1+P62JM1L3orGiksppMuKG9oVaUPsXlJ+ZQvvhHzQ10iLFnw6yLLZrfg66DEFzJXHgNfnsHGMCOz+8wg8F+jDtPf+2BI+jcO/q0FIaCvv1jyAG+qWY+w4ffooJEfSdS34J8kOSufEcve+F6QbfxQcoz6CISvzjI4W/qy+ho0tlNixxBvGek6CV766cNcjk/7oAJZtHAk16qk4K+g1hS0yYb8vMuBVFgnpI0whdexBsNhF+FjRC69alfFp8+d4N1mR9j0tRsdxKnR/+zzSVTCGsR6hvNFnEV174Ahvt7px6txuzJhbzttydKH79CKe7ziO38eLwshcI6qQ9eNE18M88mgPdExOI6VGGXwc/Bt//dvLdYuKOHu0OZSF7wD5WGVo6uyke8unQVhmBX+p+YcXp9TAXavvHFclSoobJsFvyQ60ONOEGudc2WF2NbxokYOmEZdQsw+xQmsddZRU4VIZKZD4dBcDvkvzlaqbfP3JbtrpkYGBtic4an405Z66x65jPNguyhq+ztGH2VHT8PDTHNKblcMCFoY48OE6Vu9fyfdWy4Fm9Ux6E2gEMRUP+FqIMs7f0cmb599DUfmLuPPuC/57LJ68q4I4auk+nFwpB+7250hluJ5//E2iMSKxKKZxjpVOBZFUgidMEV7EW7Kf4En7yTBySTbU7bRjN89lVK6Uy3u+HWTvTEv2fX6I5r2+TMeyI2hMuxEka8lBQeRGTL9znmLdpfCJ4x0+e/kIhdSIwhnHQAwOF6KjRuow6uwLCh8fQSMOPMUqSoYf0kfQIDEW2/2/g7jhXypPPkoZLtbw1mYBLoyQA6t/Xyhn/A3Ki7/AaVqmPF+kEv6xAc46fxGWWBmCxA1L1hn5h94GeVLtEeD/7ktCdeFriI56QVN1k2H4qwtNuDYZfhSEQ8OfbVga/g7fyMhjYWwnpVxahIfjxKjoyAhStjyCumgMDl8yoa3di4YfFlLS1/2U+OMnZux4SEOBHaS84Q7PidnIl7pNYMBmMe196Az6p7RZPWItB1StwW9vZ2LPGeLPw3YUutSKZvtbw1bBraDtL8f33rtxkasGaA1fgvWmzDKzvUAg7RdsetiK6yZPhP5vFyFxfQT8pxyAWi036SKksMyPZIrbP5EaDSt5SmwPFRw3g+6bPSDsp4Stch/B8moqmN/5CT0+08nQehs+ODQS9q5ygEcvFGCD5WdSUG3m6zQezU3vU86Wq7jDVhu/TN5Dv4Vz6JjBAOtqCsLuG6dBoa2UK4/M5B8Tn/KfmtXQMnsHD/gf5t01ybA4yRyMjaRBtfkzRjmd4w6T+ahqmwnh0bGk+NuaS+4Ai20VwhrV2ex3TQzeaShD5aUhWnPxNf+naYgTtb9RZvQ5MDkkTcrv/vBo4TB6WiIAGuKPwVQTcL6IMo3xkmHD5jj6sW426B5cBCrjz2O1jTLcOicPhydH00/r65R4QB9my4XRhcZwzvA34d07z9P83kacunE1zN0oBp/2r+bun5u4X+gwa6ae57u3f8C8Oiu03iKP1yrug59FPA+0KsAUAy1wOhODIYXWeH/UPWra9ImmOwJ9Gi1CXXNLmcvbCR3GgrnRL7y1eh2uLs8C3JpDYsqBPL5ymI45lWBjzScMUj+AEn+VYXfkH4hd2EoPut3BonwujGv0h5lTb0LTnBZuleokqdIK2nxDDn4NBcPGTiEuPO4JuUnCOFWZWdzMABPP2+ONCjPM+5tI3TUW4I6qrDGun+tmKcHOa28hbjtSmIQmrrBywfaLM3nk9Ch4vFANhLzqSOtjBR9YJMHqz2px7Y4/UN5wEArXhYOHoxHnO11AxTJj6C6IYMvPSJP8BCHswC0wf76QX6Tsp+ZXrex9RBBEdhrSGlCCZ/c62Xq9Pd7UtGDr0tGsGpPJTttnwNmOHopyr4XwIBneFakPM7b8hkXfl6PQl43Ufv82PJRKg57H16BcfgTtKa8nAS9LXDtNA3Ytv4dnHq+BgMl6fE31C0RoyJGdTCTPFM+hc7sHaZOpMDyJmAR585ehlm8m7h0xjIKtZnxHVII/T1hHhjSC6zMd2EHzJph80oNXJpMx6JwbxxhthJx8HX7hX4ZxDfP49jN1cM33YSvrs7zFzABuNBTC9OhKOK1qCAfnLWEZI2EKChJjvY9pdLjTg4ZDfOA/H03YaefOE6ZV8YGX3lgydIhSf2yBUG9Hej7tGWR+Wo7ztYGefgA4YPuN9RqesPM3e9oY3Ee7D3zHrgxx/uh9lh2eepFhrRJ5qRnCqDmLKfWqBGuuU4LYQnW6/XoHTq16RmP8d/Bb9Wlk+CEeHJQInnfsRP38TvxkoEwrNILQW3wDaQ01YGtmCWupBKDKJS84WGoDj01uw5oAe7BVW86fdO5StswPShG3RZ2ZedQ4K50E3gbxWjNb+H37Mi+5e5VN5X3w8y2mpcadOFkoE8ttD9JoOzsycFwIQzfUYf3NDBj4WY+5H+/BY9n/UOC8CI6eewKfrjNiZZEh/mwlQH9qJaBWpZvrNgdRT4I4t8234n+vJGHUcSmaPlUP6MAQ94dWkFeFJiw2HcClBfOhXfI6avBTytL6hJ4PLVhFQYfObvKg53ckOUdSGOQOrsYD7fk8sTOC9jXMpcJzbeSbvZrtI56yqHoa5f47RH3vjcF3YB8l3SkkT6ViMFVYCE/HzwQ3F1sMs5gPhaIGIHixHtK89eEg5/MVXMvLzjbi29fRrHcrh/q+PYWefRL8xdsRErkY5eIl4e2Bdaj84AgWLlwDmrmdFKZbxkN/P/OxTWpUmLsFcnSccNlnLdgbI4Fh50vh2sIInJlRh1XXmkDvVhW+Pb+bkkJeQMakZ/AihKDPVh39X5aD/SRPftKvjeMu9UBw+gYuulOHXWtMaJrVYWpdrQCjdonjriQBOqwqSaWDa3ma+XZ6bprHrgENPCnwEz5b+oOyzilAId8kh4NT6MaNJSC3Mgpc9MuArpcgVz8Hi0Q58n1zF2e/EwDpxiI8GfMfer35CnJuWnTA1oUiQn8SZyBLzblF75PPQ+busZDzfTIHZNuQqnwV/jUfi203unm8P0OoYSOouzaigWA7h9Bk6Exph4+Bp/FEsRK5xRfAwroxdOpABHZYPqRdZSMw/fMRnrJLF1rCD1Cdyhv2WNmCvwSLoVr/IbiX+HFepTZ7j5LgDH9T9MrTAyMlUTq9OJ1zojTpfNgo7O5+g3Jz9WFZ2Sp+E7oOu66HcsMsCVhtkwXN81JI55MOKSbNQu3H4ZhbQjwUcBreiOZjp104n7goAQE+P6iWFvGEgU+k9dyHL6bM42WRgeC6VZRCFFIQ1nfyW29NuD0/n0d47SbVVXs5MiqHrcUruYGCueJGMPt+uo/l9gOwcKQU3Jm6BquqnvAnuRMc7DyNO761wfeVBXRi42bWjdGE9+keIGxiDtW7s6Do80uSiXtFBst8YOjbNQ4T9aUa7+kk5i0LOfazcF7peLDvWwv3sltxZ8hxMF0nz8Uz+qggciykOn7lF56OtLhrLi2U1QTHCYtBP2sHfpbIoBuzRkF9mxdJBjFl+inQ8V0u+GZKJytPsILBBWc5cLMb/7ZaCzV1nfBhM/GMDaVgrmSED1JS6PnIvaw/2ggOJCZAwLyz2IQxnDFRk61mZZL/9QjY5lPP3iHrMNzhIG4tt4FS+xzqWBzGq9v9uM3Yk5aGfmatA68ouWQRXn+5h5+5noJYIylodBSkklp5Mrg5nbR6xGHWrnF8LvkOt3m95shhT4rsO4lW7gD1xwzw+2A1fZ9jxjaba9ju+icSDRTC4LhSMl71COK/IF+fog6z6vbzwxfDoN94goue3YOpIx/jvkmj+NKo5ahwN54FVqui50IFmO0riPu0ZMDIvJy+5O3iC0F7IfllEpy2q8GEiNVcrT+Jc6SNQeTHQ34jNxYvSxTQgQV/cGVGCYcLD7C7VAgt1EkFgYYn+POJGkyszOQLQQdw6stb8HDJFjYXP0YR+jd5SrwntLsY88idwfB6qxqo6feB3PPp9DxyLptsHqbLfQqQcTwRjmxcgQ4RCrTiUxudD0JI/PQE4+ocwaV2N+zeuhDeB07gmkf1dMjdBd8+SUOVqjC4eNoGqiZMh9zM5/xi1UmYs7WKm+ddRT+TZxB6SQt8do2jEL3VdMNGGQbrbkD+Bi069vU7HQ0uxr/2gtjjsZS0rCyw6MUgv8o5g1U1ViDWsRQkV4wn+dbfuEhOB/Y5lPPYLAeYUhaEheHZGDmviHOnTIZTco70bHkJP/Gv5bTASVD1Nwl+dYxE2w9PUH/PUfBTSGDDZePhg8gszJ6QA5Ceja3HDeCYyXQQiXcEhSJz/n25n+M+i7KpnRK4+4aDmr4dwAhRupW2m2Qy74KdcAJVri/C3LCbkIgOdHC2IMxtHM8/9wqChJQQf9C8znZXNHHnvF6S3BDG+ikydKkkBRNKreB/4u5DEQhFDQDwPyIrkWxSRmREyIyQVBq2BqXQUJoaRmhRUiKiaEglI6kcWSmJUlEpGlZRVlq0KNV9jPskX3GzJW39zxzOh3vCyzBRPJk/h9Tnx+BcuELW9nV4J/AZD2mMhFHl5Ri20R71DRVx4+mj2FvzCrNMg1hxUSJtWXIKQnx62NpbFNZ178LV9sVk9cSaxuQVY8vTPfwnJJ1KMpEO7BRg5xRvONygAXoLUvCvmRxu/XmSj/rIstT2Psz5nMtyE+bz3OoteONdEo/vFgKNcyYgv1WS2iZ4cMI2V3R6fQMmyErj+V/VsCawiz66W9DhAnm4WojsYXodWmtC2UJDhRv0P1J1/GPIfTwb01cEYaO9Bg/V6EO9gCB32xjg5eF0jswNxsD/+vCXowGpK5TzhARvuG6uA07TjeFykx59pPU0cU0MS2SFYssIdyo2jOAtbTrkOsUIIgrq6WK8DNiqS6Cgbz9IHJqF+aFhJHRlGdt5bsagyVWYf24rp68ehcnFZjB+oi8LPPRltc2GLFtvxBbi1jyuV5SeuuqAiOpurLW0Jd0cCSiLfAAyiqk4pqaSug6kkrTpQRQYEcZX5RsheDgMfh9eAoWp5rDwgCzLRGmgmJsgeewxoDtu3ugVp4E79U9z4M0f8GplNoOGNay9OAsPGTUArttNTxR9yKdCCU+9lOZfP/6j0NfCEIA2bJc/Ei4rrcBnd+dBdtQUmvh6EK0WicKXm8U89+k4uJVhick6b6noqhaoPXoLSvVP6XebCNtUpLNVUCd08lrU3JSCldn6NLw0B/Irp0P5+NNoVijASo8K6JhqAokvWgwTXjnDrOtZvDU9g0L8VtFISYItme/wbs82+tsbBTvT1MAE11LNyXieK5SFKRuO4ME4DS64PwoOFyfge2V9Xlo5RF5fi2GE4EgMGFoHU+bmkvFJTzo3dIcDTgrDZEtBfuWtS+0hYXA+yZ521ujC6eZbvCK9k76ceA0NnQqwvlMc7v86y8aOdyDQPYOKG5/hdMda+t3/mCot/nHaiDL4Fb4NF1oJQ353Kvceek35ae9gZ8Eg5R6/jVa8n85hC1VNLyOTNbV4N0sAnJba8H+Hv9GkT1l47u18yt9xh6UvJ+Aa/2x8te8OO9c84J7D+pBZEw8CnwhCqvspei/wDeuFNOu4Dyu4ldDTB1nocZ54b/802Pf6A5ee3wnjd1yEXa0T0DzUDaJgBx/0Xg/Oq3fR75oIOK0qALNFa2nkJneWkNLEYdFGsrObDQfuSCK/qALj+y6QuHErl343gtsbiumX+hOwCrkHQ+f+kZPeMfAPKSTUXonrR7XA0OTXUHJCGjb4raPPPwtIWuYzukS0o2VzFkp9FmaXgFaeba2Fc8fPoOsC00DL/B+l3fGBBsMlaDzDDia/FITg+Ll0fPta3jyzF8ZIT8f140zh1i8l3Bi9BK+fUuMC/2GwlnGFM3JfWHB2AqJ7MZQ9Xc46mYow8tZ9rhdNp/r03ZTy+SUe3bEOw4xDMSl2DLqvvIZvjJPRWE0a/uocZvWZifxYKJWGb8SAVMwunpr8C+7VPQXPFcfJYlcaJmy1hKWH31DH8bfo//YjldTvhkVeC3H1El9cHq9JpSIbyfbweV52TQ0mfZBn14hSSloWh6nh0uTu+I3W1Znw8ZE6fPhRK9lMOQ+tZuYwsOs7rX07jeYUmUCA1RVQN0vhbQMJ8Dp3CFwvW2J2vQzk7DaAKh1zaowUxr7fo2GNWT142KbCi8zpOPL1UrCfVoTafpth6SsFGBdejF0133jDg30o9jCZ3s5IoqZTRdBx2B71ew3gxlcGxfl6UKowgw9UaKJ4nBHd1r8Obel3wO6ePewui0NPPUe2cvGFoiQBOHbJkkxdmzgjZhpvFLKkxnlxZH6jBeN+hYDIt3O4MjsA0nvMwclJG6sChdmgxRU3H3gKbhEiVLt6KviZrCfBkQxh29dB7yZd+BpWw6o+Dujhl8Lpr3248MYSzJ45jOdgITqtHEZxfSf6fXkyFL4awb0T5+P6wDx6mO3Nqw+PgxXjw+jh0gX0J2YK33vvDC+fmMNvk4XwpEiXPhRH4SCfwwvHFqHqVwHoO7qKjILuwbvlHTijbwrscI9n76pNtOzgc6rz9cPylFASmfQPb6jK0GNxfVAcOwf7HLQg+7U7Otz2gpIfdbhG6B54RzugrkYJxEvP4mF7Qwz9U4I60dMgpM0SnT7fZKGn+qy09Bz/OKbIhx1/4Iq2z5ARcAH09lkwfR4HlTHr4akrwugcE1ohuJojGi/zUwkLTAtJwqcZJ6lm0jrwXW4J0btvU3K+OOSM2Eib7kVQ7OAevD5qAfvc7cb+Rd1sjlvwZsAYSL4jitNUi2CN6lLStpUkoagkENWvgzDbYTw71hB1vJXR/dRUmLNnFq8WOE03Jnti0gxl3nuVULFBlQ6NewXVRndISXMdqnoIweU703E4Sx+l2y/To8OqeGP/SFobXskKGjoYj4dRqtYBOlfIw7MdJdyq1sYeHVastrWK3L+r0PzFS/hn4TwYM3k5OLY3seYxMwjetRZ29X/ki/15OKr7IB1UmELSJg78ftpG2KTwkwsOmdDwPm2wflgL88+PoQzvjTQ+oAa6RF7xjZhw1B7cBPNzd0PNQCnLaeiCdvxsUFJOhxqng9xdG4cH1/jBwjPZnPHuDFVECvG8v/6cFKQLiq1h3GwhBReCnWnN4otQdqALQuW+ktvAdMg3RXi0NJ+0PPRh4SYVdsrYz1JxFnQz6TNf9LGGF2MTWM1EiUYvWs6mWVsRF1jASC1Nmh4mTAo+92iUuB+YpQ1gV2UkdPfeoKG4cGpVWk/BZ63ggHI7r1Z9iykPb8K9b795Ve1pLhj+hinOISykbwnpllG466gBXDo/jweTbbF1dyCUPvNAk8xD/CBpNcKPdFwW+QneaWeS8F8rODTficve/WAVMoHwrb4Ufa2VrCOMMNz0Na26LUZGGQ/psaQ8nHhgw4ONL/Bw4FzWHM6nrzeRvqRNhtrweEyf0E5maX78+QbBv/G9sHxiGGVeEiVx6U1spqEPYo8kOFR7B8Y0KvPzteMh2t4Y1inMofgNQSyGP7GtUgcbb2XC1CmtUDZFHurzKjhrWJ7WFZuC94l+8jwxTJ9eTUTj/lSMGVgHS+ouc4bkB/5TMwv1s6fQ7ieWcHNoPNZMy8NntkJUXO/D22840KXGqzR3rzt6u7ugzOp9bKajBo3Hs8lFaYhagpp5e1slPfYow+D9V1F+kgq1THTjedte848Cc3A5FQy31G/Q1Y+6LB5xkRJbzvOTyDA03bgSY6U+0frU27gtywRGJw5A6EM9SD5pCnIqllBhOESblN35m6Il5xx8wS0jXuBFGUWw0xlHf2Nf4Yhb72D3KkvelvKWJTaGwoaqfWjhbYruB83IjpRB3fwtTMr3AheJQgiNn8Bl0Xfg6Mm//L05B+cvuwBjhnVpVKIlRF2/zOdk2ij9kAieDQYYN/sSP749FZ7XykDP72aeO1eZ1So0IeO7OuzQS6Hz+asweakM3dmWgEXh57hgcjkKbCiGSrNi0hNmGNaNxgeR53Dbmo2UfqoOH5+ZSqmaYTRlWjhFWgTycPNmPDtBAtR0zuA7cTGoUxnE/tBNoLpfk1Nt1XFW4VG8mq6GkcckIGiaBrSddIGVhfNhZN4+Dl8tz2NVlmK2WAZ/26WGiddOg6l/FL7xnQIk38I/zrxEie+XuPT+VdzW6UIxExw42X0Ub3yyija6X0LWFIffO+vwgGMnbRC1gXmNsnR6ezWPtlSFCW9McFGyF85e3sofUidCb6AZLV+Qy6eFXtDrGQogNGYO68rPA+3lWnBTIwI2K81FrpCBOfP1Ue6gOt/c5ke60bH09n425pzZgRcUa8ln9Fcc8AjFRzqKcCfoCc/0Lge7LSvY8HgFaIxaAAfMSjBNyRkm7XoNiY824qFJulCj6QKyzj28p3Amx/SvQq+ZYeg/4wrUGKvQqNuSNO62Fx7Pmgxfpr3iI7ru9PC0HbWcN+L8m7Gcse0Q5Qfkk2jsPHDZcARc9ZVB974ClZw4AKcGFCFs5UxIGHhFMicb+cihNzBv81i6eesg7JCbBP3RW2Cxji39+R7AU9z24ouoXyhgeZUVIqdDx/3x0BhOuOyGEojOPgM/k61JRjgK/ZoWo2bOWqxIFcWIAD/ajaep9e4JmqYsCSk8TI1iUhTvewEfvFCltEOR6HZNiF7rvgP3eim8c8ONGvst4HfML1JdYgHiLgm0VF2fHM91AgaJwM7edEzqG6YM+oQjW0ShutiIqk89odLkV7g405SPuL2gNYsWMqrnQJjxP7qxqIIP+4+H5MVHeeUgYlxXM3X6RrG/+WGYnQ8QFWoFVm6DcOFWLXs2TIe4n00ocE0STaPekf6KWt4RPxZVRN6DqHMIbrJUpwMXLlD8nfHgqiICbwNaQdYsm4PWqODR3d/gVtswL7Pw4Her3GBKoBQsCxCFbg9NjPXx4Rf7B8l7YjzM+eROYzRv02uvdOroe0LvnU9TaJYEpKw3oEhvadbOjoRxcIPqPi1EcdDAzTZz6PwiB07cOcibjceDs+4bUhBNwWXF3eTZlUzbei7z9PhyKhwaBwe/VGKaVCxYRctBzoY8fm97DF/creaE4Too2O6J9WKSbB0Ryg+03Cjn7xB6jBCBT9nhWNFiQT9viPI3uTi4WWFKMr0taAQN/JOF4fbP5dioOwak61V574YCUDzyA3Uc/KFoYwre6rlNi8NX8vzJx3Chwjd8txtAYIUixq/ZA5OP/gSBrGGMWN2A/e+8+c9yF+rv/sNH9xSjb7EivNmqjEX+5/l78m5qjulg20eCqBA1gy5VduHf1HG03eEjLe0fBwXTz+OiB1Nww3+SNK98Py62Wg23lz9iqZYaMnRpxUOznrGZwghoFJnI5qyKYwVVYStd55oPR9HgaxAqhbeBzc5anr+uj1N3CMKNww943FdBPh2aDqmjCWriskGn6SjcUZ0GKm6ucNS1gxfmi8BJ8zOUMKcN2uNKcejAFqxmpnsFVnRd6T4ZCgvBxJonaORjBjZpx+D65CfcXSCANzwPs5fLMCrvVOeZgpF07+hz+Ou3imovKEO9cyCaFh+DBdMY+7aPAqkxz0CI9GnMcA15hZ2kzAmT0fCpBQjJHsP14hnYt/YXVeWKYaXuVkieaAGFcbew8mA89Fo8oEDv6XD5XRl6H1Jm54+jYe4ZYXRb3wz/9HbRiLlTOUBDlY9uKMWNG2RBSLmQ/bzSsNs+itZf9mJheTN4x//QskAddNXM+X2FJ9x2BShse0rb09fjcs0lnLEglMu7q/GSbzfd3KTCQ95ZaGPuBkZfhaD39nIIvHeTxk16iSekRvAxqyCYu88dFy2ZxL4y3bRUo5zWLZkORsIXMNzuAYUNJtPgpU7WuhYHPaaJqDG/ES6EV2DPg9VgZykOnh/X43lxK9z8x41wfQclT9Hkbz9kMFHPmlaJ6ZKxQhlW71OG7YvnklhXKY+2mkHaCx7w/l11vKJ0JK1aqcHS0SLgHPMPI0QtYc/j77TmqD1KJq6lncXSKDBfA2ea9UNw5mI6tcmB34wcS+FFDEvxMt6Jusn7vthTgd0x2rkgAaqeBNHP64Ywq0cPsyYFc0yBCDQf9YQrYpq4VcodP3hs4IvlEahr24timqUQMnsHOY3cDJGaxrBnXDs2eElS7/N0nqI4moy158J5mVGgHXmQGk/7c5lJG2YIiMOhCS5kl+mP++k5ezqehumtTvg70Q+1lUNB4co39n/SzutPjofL2ekYUVfBP09+AfmpLjDtdhmU9GzlN9ryfNP7H6urKZL6Lj3oyCzlpROssVRahwf1GzBXpA/jBoxJ6Z03ix6og18m5tCRZAV2c4xB0H8l5Z3vA/eit4T9PXjZcwLYOvjRX6tn6PUwE0+9Gw2prZ14umQ93jutBxd//WFb8zSweW7FkJ/GAyef88hZNbwqUha+dk6HdSlNlBM9jPv9U9gl3genxeZSU/8AdarOYd12ZfgaqQk/es15+O0/oLM1MC92FNj4leLJuEY8O/0IOW56SI7ciuskjQDpORz0sMAt0w5w0KrfNKu4n0+PdCb5dyo09v1C0NHLZ4NyMwjNSsUevyY0XhiFgVJ7uCh3NjTIyIDpwcPovD8QXB3/ot8uJRB5bMqbawTAd/g/mNlyg77/u8vPfu3DpgFjkrdZxGolSRigPAakPSLxjZco6cxvJrft0rjG/gI+GLjFGoYlPGUgAwae/8FcBysQzSjGwO5B/K2TBSfWT+E+jw3w82EV5+RFk2uBDq6waOVpZ0bB9o4ZePC/Au6QPIefVQKx78YAfU/1gdq9xlyzJIQPJYzk9AmaULrqGxVsmAsfcnzB+JkYyoQRe2ta8tuFmjQtdAnM/6KIu++KgIxAKYxOOc8LVbXR73Uy7dt2muYefwB7bWrx2TUTnrX3No1zEgPTjzY074MXTGgpx6IFO2Hrgm3wLV2H3AMzwOpqD4SFFEDorckw6+hl+O7RyW1m49j06zBJr23iaTn1qBNoD9tVhLD0WQSmSluA3PgzeCg8nJIan8Ld9Q948QtbzDd2Rx8pGz5o4QHGO/6AB2jB2mgFcjOZCfJ1xXQqbw0UGlbjNutybr2qwsWluWQXfwwrOnRhUd0iPrcziYMLR+Or51vQr9iCmoMHYZ+qHN7pU4fpEY48VlAZch+ewlCnu5x3ro4nJymzY4QAWnxO4PePTuAHPTtY3GAMnyUN4PJJMTo+4zTs9imDiiQPDhUoQx+/LPZvzqBgqbOg+MMRO3/KwMPF4nxBsBL/HLxDKv3/oXTWW1wzwQgV58dTtlgHzbWVBNG+ibA4exWtOL6CC/dfRXf/i2SQbofTLSS5/I42pBz8gMN3TVjwijQkT7vHfAx5/PdRqGCghRILlmK8fi90Vp3GjRMtwCNwInYvUoHJSeY8NskAey9nwaR3j1jnjB/dTmmji+L11N4kibdWtZO7oiQMGdwnydK/6FiWgWKVLmTtr4Byn0fT3XsFUPk9nDcHK8BKcdP/m/87Y3wV2zSugCvP8klpsSJsWfeFN52JxnmDgvBn0TPSaZLkoLsTIapGAZ/qvINYgS76MsOXBiN98fHTPFCqLmC780EwGDdMGvdEYJOAKAenD+D7I/nUF7kebk5cDNrP3Oin8gcuzAvHvdKXIM5PECLjjoDTMmfucfqOgwlV+PZCMkRZEP63fCQK241HHdvb7GgwAmb4D1KZchApVSB0584jZ0MpKC1vhIrk2RiY/g+v9W6ErnYrUIyZTT+2TCPDzGGoT7DC9892U0v8frwwcT/PeRBMJGcIIo+EwakyH7d/+AZtCZNpUeR71hPaRMXSAfi35APMeor80WU352sbQ0FVLx4+PYbUO/fD+UmX+fro2zwj1hdDL3zBG1dO0OWuQUiu0IHulauwrjQWEz/OgXEL/GDrXFfKGhPFyo/acfyNFlr2VRHWHTODQU9HlH/yhjcUhkP/1S5MnGNCYvljQTvsIR7qXUBaN/p5lIQCzPnQy2WfXnNIjxQ/6rkIK7mN/I9/p66yXXzN9SZN26iESU/HwbMqbbDJD0TljwvgXNYqjHKPxCVfXXBuVTQMhU3G4ISpOGG2MtyXNuerbmOxKXkxTg9MAAfDbxD65yZuvWJEzrp7eZSDNYY0CoLQk5u0wN8Gupa3QUPTLrDQeUNTtvmD3YYkEl0TAlcHhWihmhAMKApC+qt+en8tAefmtnJRbCZrp9yCZ7IP+M2eg7BYZjE8+WgMF5q0qUnhEK15KIY3IwP5TX4qOI3QwfbFaXBBuhkCdgzzGyOC71eKwE78BVwcF8ZrYpfCFRcTDlu+A19kbMSla3OJso7BKzNJmB25l/LHtdHAFQt+fCiaujzN2G/mSfg3mE5JYEgNK+bzG1ACyZ57/FmmnyaN3srvigVBzc2Ay8ar8XCRKiVurSOtWB+Ifj4GNDalYP0qPzzfN0TTf+rjvOotvLHsJ/tpBJFSZiYXX7lPpdYTYfbK+7Dsqx8HpcVxQ0QaNbSOZu/OdyA2WIdP9W/y34mbaGyxNniXdPH0+/24b1wdOMyoxvtmv3le4l98Zn2WtlknY1CmCN01R3gV78JWjup8Ql0bDT2qaWuSPWvPraTWEAHKjreBwm0/0K3aAqyue6NMyHOq9xgLrk6VmOgnzBY26lSnO5Nc9RLYraUIXE8YQ3S9M9jZ97DOHT+yjjnIcg1nKd3gLpfZPaEB1WxY7V1GnpqaMD1aia3H2dKDIVN482ouqCdKwvitj/DowEVoCJoN/9lJ429pCZA1XAUjz31gy8s38furWHhHYmh+Owf+3FdAe9HHdDTemouOWkHisSbaHedFLFfNne3e9CjzHW3z3gjVimYs2KrIq3MEMXP0VJjgvRQfvB2GqIIwNtzrBCenPAfjGhNYlHGG+4QVsWHdJJyXrwMrjCTo4oYiUjXshnbNrfyuOhlPlI3gwtPfUa7OAbyj1WlnKsHY0Xep+vZOtJFVAIO16ZySFwxrS26TSeFk3CS5GmMqIrl5iwbMnjeHvdcHwrWwl7BmlwZ5bm/is8UeOFnjFr/2Diep3CQwGbSAq9In6Z1gHP93tpBmT7Rjfx0Lajz0CEza7nJ4iSh8T+mk8jmmMHfTJRY/fB3XmS3hmst7UfXjRVwa/ZlHr9qB8aceQ3t3CIs2CoFu3B+6J1GI9X26+OTrZgp+I0smC6ToSWogPb6jz393+vHbRGt4qfaDAkSaMf+OPV99Kk1yWy24OfIuVt/7RTtOfqH75b3k0SAOxZ7VYNjzjw6dDYQLNRI8R22ANkfcIu+Phbi6KI6OfavhK0piMO/+bVJP0wRZ2300VCNDv96egIclqnBUqovooRFpLt4F3o2KsDZ9Afxdsxj7koQhYvAf+MhZ4HmrMmwVeolaBpPQSugAKvQJwyMeRRojSilP4j+YfmkvZbrkcaXwfZL/94baP8uy0qTL/FFfHPQdx8KsCTYU/OUMB2TdQjMhE5wUlks/rPM5vbeMbq29Q1XDxpBU+IPE73tTjbMI28yLgV/rvXjRwb1gfAjwcdVDGD0mHYWnTwG1uoUQlfwEUmRS2WJmNeio34VSkfsgZRSMSg6jYYn+dNbaKgt+dbvQa+VJuNzRwXZP5kPIDHlaZ6cLtdOiuXB1EeY3ReDYQDF42uNHFw1Hcr7VY1IalsaFgUUs4CyCK6zUaMbVa7gi8Tn+yZoKa0KQrcvesoO0JtfM0oPTeY/oSN4P9pu2GoalAK5olMLYjdYw5mMy9H+6SnXPGkh62ADhSjRleCrQTNFJMDs0gGW+6MK2JA0Y2pJP69zu8UyJCbRo/1PsbpSEshhxKj8SDw4LNmHSjk2kgXKw6Ug1dHX0cHYwQbuXG8gbC/CgzximHTlQnvCZAuyqsBEEQKyyFYPdj5J33xB1vTwPnc+0WPC0OQeqNGPojH9cFtOEsovHgIqZAgzxJBifKAIqbi4ku7IFbTa5gXbwM1z2IQPvHW7BGUUjYGr5GjZV20EOR2KxM+4eLxNowN/jXPi6iDrr6R0n18JwmJJvBL9PPkc3mZ84K/QhnFBdzPHN0dwhtAqODswG1/g7JNkjjq+X6YO+wBiyD9+P5yesornPk6koQZpdBu6Dsq0P9HjcI+96YR7daAiXwk6Qr7MKjjD3hGkmr/D87WsQ+kUEZUuFOXdXL8Yv6qVxv+TgRZ4M6ylfJUmZHSBipkaBrWa08cxkOJH2H43uzOfGaSIUu47B2dsUHi9rRaPYnfSlSphW+Nfj1Md6KCsiwjU7LmKE+iMUUZ8KzfrHQTHpD/nNdwGNvGJclV8K6w8c4Jo7wvBaz46GpAT4deMYmBJSxlVK5ai9dBPbSf9ibYFQTFg6ATwPP6Y8HSXy6ynmwfrx8D7lF8aO2UKBJatYf3MnKKf+xxkbrrHD6Pm4540qb+iIoKnnJoLTAmt0ebmET4asQrmrMuTwu4ZWDD3GCt1cDvLyhJ1ff9Oav6bgmm3Dhjui0Eh4CvztK8DN56VxwZ6r9LrCES87RXLa62iq0gKontuG8iVaFDNuMlGrGs12suW0PQtIWcGfxs6fCiHTrtBLb2sofDzEFeONSHXZcooOO0wvV35n5XuOFOPWTBtKa6HUqIbKajQh5/RvalBvw4xDLtzVfJnGLnODC3M+Q7qNJe4bqYctk19z/GFNyCnNIdmhbfxnoAPrSi6iqt5fOEM9wAarSGxsDBX8rEafUVawV30LFiy5SdVTcyEq+x3cCG/npJ4cMDxfAW93SXHrCTVsd2N4u7mHg0SmQaa2MeyJ+kePzHVhWPI5b155FjfVxLC/6jmwnWEBU2zS2OtXNvycNBbWer4C/wvTWWbWP7Bt0KVZR6Ow1GYIPwmPBcHWrzBi7EI68p8KgPwvCt+vQ/O8lXl1mS2r/GvlExKH8Ni6SZD1Xy6F71vBKQG70D3Die4dmEgud9Zjwrf/eNQcJ9CQdCGzTAGIr3zGP1YEoMJdCSxtc4Y1cuN4ppsWPMwo49U393OYViIcPSoKJjG/YOsjcUrNeQBiaXVEU46B0bcGiB9XSmtOufBwiTJlRKhAdMhbWm7UDiafn6P13a+46qstCozI5AbBXdzw4xF3ZPlTifc4uOdby0/K8mCUzXsQnvGRZoy8DtfMv4JdlDLYLXeglUlC7DZkCIUri7Al4CmEO1eT3fkqdpqxEv+JylGtqz29aG7isQePw56RevDHag7nRSfRn/B0KvL7xs8Er9Dnwm5ojDwKl5uLcP++GB4skASlyEbqC4gAyeP72CX2D/S2bIF3UbXkW9ROLUeN+E2cLcWoT4FLp7ShIeIHSJ4w4dVOyuQ3So23lyVCf9goTN3zAUotHOFDoCSE9yykzu5erBQ8yRdWKpDYw3Gw02s5O4w/TtKfF9JoxV/QT/rwvtKfQxU7OKvxJZ54s49+ux6kcQc+8tqh7TQ6wRcf+gjD2UIBcP25kXSWmMFP1VRqs3nO+femgcLjecDb6rl+gT4ENtmQROhomLWjnm6p2ZMzuHH/5g08ouUvmFfLw5ywRVA2vZidtC5Ae6AQrCuPJImy1RjjuxiWOZ6jol0a+G5zAl6rIEhf0ATFSWeJHxmCbrcdUUMJLg+fhLZRC0Ah9ghs2hqD/22eBZN3mLKcwVY6NnMM3C+PRF/NS/Rjmim25P/hiNHt5PvNCZaZi/OPfQ6sL5sNy74rwJsRCfgTF+C6TFm0lV/K8z8fAyWxf0xTd3PU30QUUnektwqS0HfwJJrGpkGMdiOJHMlFu+4bsKrvGL4YlcCWkxNx97f1fMZSA25OawalN+V44spH7Egjel30l96UtKLLn5G0M+YGPnn6DG4NiYJrnBNMvnGCwnOjIeN+MXu9CubFN8P48KyNmBVjA1tNC8mwdTrs9gin2r4nMP3LO3DV20lSgiHYbnUJVJwrIW6JCH0RecY7tMzgNlRx1f5hMBIbTdHtRmgT5cQyF07AI99RfPVhJsh3eHGTjiDI3tvHlrZaVJr+DQsSlOn59wxyEmnlp0+TcO/xddiYu58zHEZCZVw5mmkdofya7zTudSLNXBhIAyrOOIHUIG6nK00WK6IRTkKQ8nETT1K+BqYr/KhWSYJt/m3BrxFnYajoJbkafaE1FfNphqg+BJRdg99vJ6HtBlt8knYC3U+5obVJKgZ6/qYh7etsKvgaZ8+QhD87loBE/EPMV5vJDjptYHpoJH3/5YVNtadoZrsnTY9oZTdfMbgoMgEUs7fCpJlMOvtk+FywH51xDeZZlzqhqlsZLSqM0aXYBEoWppOD1mWYpbOa3PXuUuQqf955djc4GwvijosHeIapKOUla8Kn/fq03VODtCyy6X6lPh5Y4gEnP9njOLcr6FXmRaO19WHbeFHwDp5Bc5/m0K6NVuh1+gqEarbygMsT8j1+FT54R7J8RRELWhlAics/UMsM44FtQhA1+wB+P2nAXeVKNHV5NI7P24NG4i/wmawqxP/rhSXnc1EvmHjoozUZh13gP+kuVLn1OUY5R6L20XpUPi8L7LOQ2qe/h9sB8zH7tTgEVi6mhLI6CvpgRoq9RTgt9wRHFOjCTLcGOvYuC3+qWNMk1xP8SSYcnY4lUPjhEJxjtY/HBM+HJFmEuz71PEN1Dv6JD8cpO7XBnddCQtlDmDHBiq1WVtB2qWD+aSUHHb/fYOH9Krym6IK5Wv6k72HKLo5xlGqQDS9v74YRNzcSn5WFRQJE4Vu20S9XN+xpV6EWT0/0G/uZm3Kuc9QGdYx9Zwz5XTKwNbkU7DWvkZiYPyV33MNL2l9AYuVtUl9Uzd/F+3GUixecMSNYtkkStPf+wq7RFrxwTgqGS7+liz9cIcpOhF9JBPGPlpW0JUEf5C5EwacnMZyqY4WHr/TzzJNPyfzMcphbk4kTSBVXCYhjg5UMFOccxHNpgjxjIIszBVWwI1II9qtGguL7ffD6QSfEfLmHcwrUYMhwFMSciKXN71bSWv+d9FjNCKvcntCX/cd5jIUeyM/pocU/rGDJggL2397Dqx7t43+ZhiQieJ3FEjS46eMuWnImGRoup4CCphnI/3gCMW525Nw2zBPXf+WguEP048FDEvoznVMEfXnW/d+82VcB7AJdWfB7AT95XcyGG0ewK+/Bu2+m0sFQBWwpm8v2N8+Q70uAlO5sdnedjUZr3qFxYRVYXGsit9hX9DfUGAzcs+DQRVe81mEBso46aOBpCnVejfhFZZh3rpxM44ur4SAu5R3VP/DotT+8TUcEFG4+xKq/dvQ3p5NH7rsF17bfpLcF2nBpnjXcNFMDcesOapgqDs0ZBaAOe7j3wB5WMXRADc+fZLk7kTV0Bulf6jva8GMSDNfJQYyZC6wNUsPpldUw98EH+NxpxOtDU1H6mhi0SWpju2w1Li+Wh10DthCV/plHhEXQk4qr5N7aC9EHquhYoRHrCIuSmf4QLm4AmLTEnDzsnPn1kAz3OZ1BPclXVPfJCuODLqPF32+Y0VVJz16Oh2XVFlS2PpElPDzAJvId7328ns//OYmGmiYctPw8zdXZDyOU1KDzqw+/nZdM4b5ifKZkJfbdn84NW0+Qys+fKH9oNCssLcMR08RgOOE3v185ARd1mMJ24ZOw79IBMFzlgVc/PYUXPmb04nUrGnjrQd5Mb5ITb8O9LjEcp6rNnQkXoOB5Ekvo/WQ730gI/nEdJp6bBJrqDbAtVYosLx+je05laJM+kgt9JElyxnnYWPAddidoo30XwytxK3ZOLORDxwP5ssl7mtaxB7tGHkD12+Oh6f4HnnHhE1c/Hw8W/7pxlFM+HfT4C7NvB+L0c7J8ovUv9uskssDGNRy7Nov8zZUgrzkAS+5t556sA1Ad+xrenhAmyYgtdMhkI27yTMC9ki5o7CQGmy4O8MZxAHlFM2CH1hx+1roRM4zXc9qQL+9sPouG2jkcJ2MCCpe247+hQsxS12FT0RLuqc2H1qt/IGphD1/bf4DXBRugdao69A8u4E2Chyhz/xhafLCC9Qq/o470YY45LIfzhFbB4elp6HFEFSbOq6dD4b0U8vEKFL4IgsvzcsBvbCTddq5nqffFKHZ6CVjvlYXd206iXdEt9L1dj5LK+VgzT4s79G3526VviFvuYXtICpim6cKcxxrY6BkEfh0BvOnOCLTwqsSE3Uocs0WD23d85APz7kHuHh3of3+AlY500obKLIxo+so9nAC7Dn+GYrlizEk+ztWlFqQoNArWrF3AFvNUuV1RifziNFjFJYEDvj7ipculKHKrOAaLd/MtbRGw978A1rcuseGD6XTItw2fa+zEPRe+Uad/M8uIKlNaTQmm+cjAn4fhdHrCSryRuZEPjm1DK68QPrIuCarav/KnGb4ktP0ojv6lCnW9RSz7wZaSG+yh99RdrHq4Hi+qn8PXAQN0olSca+sTWfqdItwNcIO1DHhu/m6UzGjGE65BlCJ/H67vUqWjOvfwW9RRevN6Cgg7KGPqFDXaHX4KX7n54MetJaA434iaJdvZ0SgIqxfF8QYleXj64hvAqVa4L72PTnQkYIhWOq1c44B7l7ZixNEYSIhWoyRjYTD75Ya6j+zZUyET572w4ZyPEjz700QqElPHlIU34fGFl/jGRB5Cnl/GVvWr8DIvHi6WtNC69GUo1aQOOU1e3KxeSOm2s1hUVgo+5CZRmsZX6vYIQ9QlfvS9FU4O/WKjsQhtrbdQcFML5VhJQItrF18v7cDIKEF0eSQLV/wfk+p4fR6xby3kleTz2L0dKJNhCO134uHlxUC4ZLeGn3+dSw9O1aCUx2yOF4nB5XufcOPqB/RTwxhuRy5A4V1pbBBfwXvCdTC9ZRR+7j7Ca4cEKH6oDES+dbLbAUvoWemGe6+lkU1iBmgt7cDop8V0/PAu1LWxhk9ObVAzcSbEb5kIi7fr0umseTTFYRm1wFZMHGfBT76XsWGfOUT8t56KImxYPXoUbCjZSzVJsqj4Xy++/KIOWXKMq1+mcsWKWVD/+SHNn7CWt8RPg73va6k89SDkzThMT+Z8wFgrWc46MIsx/QJZXf8FKsflOGTLePDNHqCuO89QtGMFGe89SIP/HeS4Aw34dqEJLbe/j387jlH+nlGwf0I8jvZrpmjpSjyZ7wcCXT5sN8OdP3s+o+ZZflynFs5jn6lChVQuVdUqk+apBbB7zxFulDGDHsvR0B+5ATMWfIXjuRq8XEUBjk0xoM9HXoJBwUJclveJY38Fs/3f4yRdM546ZQQgbZ0/Nl6xBLsPuig5JAan52pwbX4HqH2/BcYOZ0lmtgrFa3qBtX05PpNQgG9SuXgxZyyWxw1i0c9yCqB/fGvSd45NHUVf9/ZCzs8y2tagAGoyL+F0x2IqwXG8YKYTSRxdDBO6prB33HrUCdwDb+UAIvVHwzPBdRQ8uAKzPQ1AMC+KWx9tpVz7Yqi/6EevBx6CW1YS7f2hD9smZpKf/SY8JueJleapmOm6n4e1Koi2hNGe7iGIsR0C2WApePywiW0uOoDU8tvUr/iF7IQPwNGxMTR9th8e/5KEXfV+7CUjAONGJPCpRS2kbdMEpZUtcDnHmX2qZ2Bf11wKE0jg7DNvcJHYaJgm7AdBO4TgsMlvvj9iMq/2aSBjjet4WqKcZhX480jJmbBoqTmkbpbj+6J13OVoQCr7x3GWUi2NyQwl85n/QGnbGmqcag5nwkbBp5nHaURlLVhMMIVqiVEw978xeHuggaV3rsb0Vc9x4XYTvhShA8/V+uBK1Ql8e2A0VfcX4CPlm3jzrA/uqzrJD5ubsPzSE1w/VQAmfn2NGV5n0FH5MxYr7uE9ZmV4a2Qelt29iJs055GPWi7G2IlCX9hOENqdhqvPhUFiagnHFufR6gWu3Kp6jryKKiBc8TZpe46FljYTkJV9hFBzl67CXBzYsZTeH3tKy/ykyDzFDDf0P6VjJ03A+l8syp01pfTeUdBjfBdvRaVh1v0FFCAQwf+lZUBRuBBMdlCDph5XznRw4W+a+jRBwBPe7F3OyVd+kuXWeXxPqRSXR86Cth/m0D2pBop/21HBvLd03G4+fyj5AAY3T+CNznMYd/80WZ5VJIVTE2DeXF2yTXDBoNZhUk+xweo5RrCs4yu/sRzHv2a4YuDeWvowh8F5eTFuc9dk+b2AvLMcZH/1c8TwSNCdvJ5N6QxuVvaEshkjYcO+TRjTPAPW5Q5iw2MXih6QZ5lRZRT2KYOuuFwj789ScG3YEkTOqaJ4z2EubTgIimfvY4eYPlxSvUqLcm7gmNg2fJ9ejv06AjBi3BdasigLPr20xOaF7tB5JBoUjFx4RUQtenh2wpQEG5bUGw/OO74R9gtQ06/b8KLqEAi1h+OTNyPht0ci2G7YiTlbHvG+Cks482AJPH43gze+V2dloXPkWVvMmVUG2JqlgFJGslT0x5Ok50nAklW7WX39Tjp1OAUe648Gm/qJ6Biygd9WLKGy8lb6uV2R/SsmwaDuTT6qaslqu/bjN78gGh67BirGlsINOVMeOrCUtN9voEJXffAJnEO1+5bjtypHuIqT0dQ3AE57aJPJsXK4MvgSZ65oxqygcfDMXpCPlR5gMwdffnG9B/4jVdpee4s/vlPCn1+u8eP9Cny8Th4Eur3RvagALT8GYe70DhLsa4PS1igomYj0RuUiiZung+RvdYjK9KeQgGq8hdV4SV+ODX+O5JIKG0xReUbDYoO8yecmr7k1AnacVeEl0+aAw4RRsPbUEzijc5cckyNRvqYf/h30Bd3S63C9fDpAuCMtabbH1c9LQL9EF2vEQrD0/Xn4LjMLjDYe4kt/UvCOnhSMMUuD3B4D6jR3gf1G62F6XSyrNepin3AR/Fd8B/cajAF+MgWMDWyR83ZB/605/HTkNNJSO4sWG8vo6PQXtPRPHs/RjaS9itqwYbk/1Og/5vTwMP7t/oitnLdRTd0SKvtSCJnT92LQhSZ45TIKgiZO4/YTnky6d1AxLgdWq4ux+txSUBv2Zukdt3G2hAOM+GoBTwYO41bbH/z3yXX0nvcQXuyOhdRcK34d8AFlDxyGn3nXKLZ2GvQuK+PwZ2YkXVmG+xpNQHBzJrpMKKBn67TgOH3FVz2vwPutNawRu8v3tt2CdIFmsvksT09TAH75h2LSjT0U7ipMbUY3QH/JCAh5FECF7VUUeiWHs3MkUHL8GTpzQRsWasxmKbdPmLJ8Nwc3ioHVmB7QXSkI779cp5CtaqAwEM3mzpuwvqwFhkuYS7p9MURHAw63z6GdYmPYR1+c66KbeWa2Gtu/vQ/uByZz0PiPXNdRQFnCljBx4S5YmGlMdiPksOvgD7iYYkaZj3SR/xEdD7hG+g0d6D9VCd5krOB1RzSxuqAQI28agWJfAondHmT/nWaktbkeRcc0sqSINKzTDeUZa+ZRpnUGnjKczzs9G2m7XSjr60nQ/H/9kJy8D1ztR0Bmkj++cR0NLtSCJlWT4EPaUg6On8Als15BXpwPSXzRA/MUXegJrWLFHanQsegj75m4m/Os1qFDwEbw/5DO/pcqoEBGjdO/jITy8X5U3bCUPJOXsNMCE0yoPwAbF33mIKEI1Ny9g9P8bnJAowW8nfGTn6vv5QM/HblzoxZY/RSGXi/iXWKnudc5j99GhsOKdnXo1HrARb2fYV6IPdxTDEP/vwJ8RiGCBcJGUsBybXh+Jw6v/dODE+ueY97qfZDzx5xvVl3Eb7u2sfzvEqwfn4zfxgpjQ0E39aYYgb5ZPTku3ksSHnY4Py6YR9g9ByHFO3h511lSP7+JjumW0381YyDQppWPiw7RmChL/i7vjq/cbrBzgCQcGnmD//SfhT+Hc3FbnzDEfn/By3NzsGZEOXZf6UYq3Y0vM5fSMpVKEjIMJ83dy2CRiDFc8orAUX2HqG7HVNbxyIBmh0SS81DmKRcrsDMB0W7bY5q6l8BF7iye65gEeYmCqJ/uCYv2bWClYwfRvt0FvUblUuV9FdI9ZQmZFfo4cWE2LVdJwTVyWhx5YBYlmvXA13Hm0DCojA/6j+Ctv1IwLWEip8qMhXPUAVH5gjj46w9KXVWDYKPJoHW1Em4a9MEPXQLHvTG0WsCWbB1GwihDH+zcW86nzh/BkittVLldipaceQBr/eTh0XrGwwcesIeMA8XkN2L+pWxIy7TDcNd1uGLOZl6ReRT3HzWBdyXCfCJoDlhptYD+/W8YOmTNp7amcu1/DmjTmMhaG9xxqpYuGL2QwpjoHu49MUxOD9VY4vkgTF2bzqNOy/Nx+ze8YvNacOvXgNhcLXxwXQp29e9C2/BCMNQ8iWE7Daih6xbph12AWPs7IJQnCOXbkrE48yVd7xLFB5PHgPr7RpDUyKMK79d0SvcHWandgvvZDDW7Qujs+etY8cAevfM+8cfkKrx/JxhUddJprWkJvRjQ5ok79WCHYzl/axSEAPFDENx9hXxHmdK9J69g65Vg/rbtOm8+5o3PHNVgYUUka202wR1tbynUbBTP+L0a7vYmwwev9TDz4TzeWRMP7jZmcM0/E+IUPFk9fyrfOfEYEz4SLTVRhxVx82HntC5AiYtorakOUr86sG1DIhxfbcSxtYZY+8uZvliJ41p3G8S/cvDK0h0FI7XBf7YX/kxLJMfLfzh7/Ao+GxSLETHL4cVQEG9xnglpa8bgP10LGKuynu28kJ87KGBeahvTewOYma1O4Z6FZOb0kLZWrcB/a7TAJ8QSrXt1Ia5lDxy7vBli326h9fu385/JH3FffyceuWrHU77qQv7j1ewu+xmU75nBO0c93BwPqLFEEK1Sv9PB8EF0y9Al/R+iUPXVAQsUi3G93EMcMc0N3H/t5TP/JbLgRSlckSaFsQ3F8JQF4fHUZOx6PpFUK10oyXIFnM/qYQ25VrhX3wkP9i7n/V+HoWGHJrS8lYO42U146FEw1OUvJ8cp2eQZrwItM8tQzfUTr9lUSV35lvDhzytu2/uY9BPNMWt4KSx4LMsaRmbY9fQJpjhMoPDkIOoXGgGS25SpO/Enh21Nxr/RqZh9IQUybV7DHNd71Ohai6++S8LJxwgJcV9o3YEFLPrSjSxke+FNYCTuarxL+OEXBr5Yh6tD+lDmkTH8/ZuDHzbJ4EBfGv/WjeRvWf5QmusLIU3fqNt6JxudaaC8A4pQHi2BT2RWcaKtPiffT8BK5QTozlyNpjKqJLjtMe1wGw32D6Rhtct4OvV8DI1rrKRBpWbeNtEFl1WEgtLhv/BVJ5uuzLwBEw3loLsnkZT1zvECvX7cPu8I53ouIkGLAPz77Bv11InDxLmXSXz7JKjdHUCnnfP42MLj8GBhFJ2Y50cHXXSpyOs/XqXViP5LJ5Kg8gRYd6mf6o+ORbPeBhZ4vhvSakS4aLk69O+fhtUxddQveAK6x8iDzFYXojAj0lt7nqZ+zSR/K2UMiNDGMZKzcK33OuysPQq/L42DrBs6ELjQFnOuB6OHkws3rMzGAQ0/cBW/Q3In6riv6ShWJUnB94oUfhcxQBvnauIyoRV8KF2CWp6/YFvpFpjYqk7TcQ/lyJtDitsKUlPJwLG/e7Hm9Gz0vTmFzLMD+eetCJzsfRN9u6TA/LklPNj/AWN9x1D7cAjrBbVB081zIDzZGu6vMoG19uvhy5JaXIv6oMqWtG/DH6zU3QuV1jUUdKoVjTZEcljYWvrbkIobmwdR3McYnJ4ps+81RzZ4Z4wdITPxk9J1vEJXsfpBGzl+O4wql01p+2SAf1GxILulifV/76a//Qt5p3QMSyV6s/JQMM+P7COfUXk44CwJD1428eZf73n3yiiSlLyAhcYPQTBlDA6VFIO9xWq4eEsXWt2mgZt8Nb5JSqL4DHteJ52Bh/o/0Jrwo+TQtJV8vrZR1fIZnKwjARsVnoLxxck413IH18+9SuP1x6KZaSvFiDhCSkEoZJQf5CVvjWD6g2BqcgimhDNjYMrjalpi/oDyul5y3YV6nJVsAz091WD53RzMdIzwSJkwdw3+JC//d3BV3pOaWRQNhMMwMtQdp7ABTlGaAEKzitkrbBblunxhlefWEKl2BBd6joPf5Zpon9LHvfdtqXnXSBgj/won3p1A17syiUJ+o8M2RQoaCEJ/kyi6fvcWpJmMhv0y1nAuJhpEFjpBg8ErfPZgM3pVV3JOzzkqLDsL4V+lsFvLF2dLqEGOgx81RPeCx4td+PHhaLpxRQik5WtxyfAxULetg64FauypKgDtIVpkJTeBVqlvAf3+7Vi39gHkN/aBbpIGn41dyJJ2e9C0Ww9erClDuW+nUGHnUwo9IAX3LBAM7hyHw2fKMKJrI1q//MKKS6zBMvkrOG/ZQcO4ijnPnJ9ULcYuAVusD05Ex049mh24FOcZicM7p6/w/cV4Uq3/CMW9Obxby5FX8gYasSyUylIBpkpo4OblhtC8VJJPLWynPQ5RuPiqAH1MigZx/wj8HwHwAQgEAgUA9A+ijJJQVii7jIyQVAoNMtIQlZSQpqTMhhEaIhoqe5RIqWgQ7ZSIXEspSkhUQmXk3si4XwwL9vGDjPOYqy8H//LjaPDWa/BUvw4Bc13h+5Abpds5UlDpCQgabcxt4h4kvFMLAiuPg2qcCvf8+MXPVfVx+ZpN2GqbgH9MXbntcQi3r5DiwgBN+HxqF7V6n2CxuHhMW7EN+4PdOU/TGrUHQ0H4zBnI+2EFAt5jwNB+NJ2q2IZXHKNgpnEPz35py9lJ09hy7hB+91uJrZrOfHS9CYTN0aGb83agzrIC2n6tGEvWvaJ3911ALOEv1dpU42sPU57zFsB69yU8MUeSemLmgGxbIXv663BbwkGOG+cFL+IqseG7E5zLFYdYgf/opaAJWV+vxbKMm3BjoAKOnH4DdGEqjimL51r/RmjOU4fpn/VZbspniNxfwdNrgvGyVAYot36EKK0oqjQ8Aa9HbsNpO00hXXIIx6oeg95vM2FPez86Kr8FR43X4BLXSG1KT3mgxpvWLxwJuXtmk4LyVfDSzabyjUtoi/sbyHaJhkVjzemQsTMannqIdzsngt2fuTzssBnf2InAlEovHn30HCsYnqTpMT9QsOUZWd98wlZ7xKBtnzraBoti9fJgyBw1TA++F/PVb2cg8NN+Ev5UCpXZt+jToWlw+cptfrMgjffOdkPXend+WnIIHc6somqnaL5tXszJD35jxGdVkGjYRL9z1+NcpZkQek6TSkomU2fGBHgsGghz2m7Q/evnsadYFBYs/EsPrdPRpnE3KQsNwafwMxS6ewdvsW7BmaOrsXLZZ+D/jMDobyzv1ijG5joBOlqgg76HZaBubjxq+bvhqPoS3vPRFiaTMtQd/cILR6qTwv0NmPFzIQcskcW415los9AWdkrOwbwbnaBxSAUiqtay3uEHJD48RHeszjELAOfs0KL9V5y5Z8RUmvx1BybaIhzz/QtJc8fBtqPLUdF/M5/99Q0sRf6w3JkGOPD9HXU8vMM7jDTA6GIHVG4LAefZVmyf3QfLxqTC7d7XXKXrSEVnLsD6J454rEoM6lcuwyd2P1Hwv6107tNd3LWqgvQOB5CQajEujMjgy9XT+UfsTDigcoHCtZaT8sr3uHRaD0tM1+UTHw7hXFltrhdqIVeLaTRnnD4EfzDEsJkpsHHBKBhj58lXxbXo1+QiQMdRMCuwBzecCiGZ74LgXJ1F2U+KcNg2D8PzlrHQ607aF2TNM9dlcs65JD630hOzXeXA4+dlNgxK57HrxNHP/zWrzzwLDu/PQ2rtVPRUUMYH5g+hcLU0eFg/hgL4gcpVd8hRppuaSzo5/mMgn8lxo2LddXxVYR8ZDKnB7rgFfGq+NpcUGdGT8UfZfL41mY9qoNd7D4D2lx08l4o4XFIUvs9J5NcXFmBl83TomyfAZYLTeIS3Aml67YAgfVOeZ6QO9aPMIW1xDGofmQBHfxiyh/46Di6+BXjwFJzUfE3932LQ7NFt3CMkDZ7eN2jFwyecvHImxv2VpfLfGzm6+QpZSqnB5qpnUNNH/GKMCsx+q8yt1Yq45M9RDs3aSKe0GrE5MYOnsDf6ZevinLOBdGuvNtwKSOH4+0nwvEoNNZJsaE+JBR+4ak/tjoVs9GQxnaj1oZhdGqB08ghVeYhy45adUO3gCT/m2XJn7ywsHnWYpC/XouSKHFxmKg52JdKo8XA2tpouB8b1bNvbjolGtzhq4UIMmiXOhisrKM5cAMbkb4eDKtWQdeQTKu+OxQkyZ/j0mA3cs78Nx0zYhX+t8qHNzQg82/Lx8Q5VSh9+Ar2vX8OPRS3chaoQpJ+MZ/MFOEOkFyXkRoCp62yo/CvEugZmZPXjCuxN/o7CC77QiuIxfKBGACX33WSreXIwss0bPn83pc37jfDAnRCIevabZ92QQHlvK5jxOhEr5rRinacyZNlE8GjD0SRT/QPMbmhzq1oBpff85m0+13CiohCvkxPhN3KicHvUePS7eBxrdGJRjtbixG8lvCa1EzREn0DgqSG4uFASsNUMWp4ch+QDrylroRf15k4Dw+IlGDKrkC32PIGu5hD4lfONcmOnwpKMIf4+34x+mYTS0+v/QYSTHtYeP0o3JYpxk3AnT/FdCmFpovBH9Aquls+iw3veUcGUKB7b0Ar1D2twf8Yz3O4tDBO3x2Jh5kR4UbwPAvIn4kOXbFiqdJH+5Z2A8gEnLBZQp4OiQqy+YApm/tCGjckz2U9EnI/nppHxyz94/Vc1Otp+welLt/L5O7/BcNsXjtkjDOMbRqOtaiosESjHZSZ2oJIZwjuyNGjN+JFknxSNhqHi0JimDQFrq8jB7z2KKnaQbnkNxr2R5Oc9IajVwqh1jeDZykgUi9IHFx1pfuWYhS6H92JOaT6kRetwpHU2ztqph8mTF8JW/8/UnzEFhMf6smBMM33QMaXzjsAdl11wkloC/SdhCScPIdywsqOM7/IwZaYLB1vuZaPWB1y+LgJUUpO5L/4PxJnl4qug+xDxL4CPfAMQGYOcr6PBRZlnwDumgPWXLQaJCFfeUKuE77/95SP+iryqcRpkFjCmRK6kE6sNOGblUp5waxgyfDJY0fsQiy9wQ1u/YkwVnAwu8A1j1/0HLkoHuW6qEXx8cQSmuy2m+MQ0+rrlHP9McONu5xEQrHkXN917Bw4wzJZrd2Lz2ma4O/AfDVo7gobReFyWd5rlJipCXWoyT5orABO2boN7Z6WhcH8grKh4wz/vbMbyRZFcvKaQZ6jJw5qJRCmTQykv8gSX+H/gtL+GMFL5AttuEwV9Y0mw0T/BhwYVwKm3CA9X7+I0vWwO39nPp2ZtgvBiM2jfYQ4JKxTBa+YA/toiAQrDi+nF/BLYIFpE5fFzcJPvWXRXHEte/6qxI8oc0/W247ctBuB13IvuJcqwXYM/sOsdqm0UxmPByXxQ/gl86EhnF49GiteaDEMbf9PqtfNBbbgX0wR30646R5b4GwF5vvo0duNYWvg5Ekb+HgNbVq+nyRv92VgoAF0elZH6nBaYcG01Dkl3wL8j8nBcJ4S/ZJiDz4PtzIrrwfJgC2o3BmBk8kky6vUiu8IxJBejQP+e1yMqi8EmaOSfQ3V0+Pgxiu55hCue5bLbtS849nQIrvX/wppaZewergpStoMobt0LWedGEZ54RpdEnrK6pAsMDTbDjIW1PEP5EqcXqMEssaPwqrCNNdIaqdRwPl5+lsL9B13wkPcZDLw+h9c7OGPgA3HY7f+BZwuepPSSFlaMLKW4vt8Qs0Kfqq68xvu/bWD4biN3lhjDNiMZKnlmhL8+tLFBbi9qn9UnhQs9MCIjEGN3WVKC0jrOWioHT2JUQWWhFWSWDNLv6m/QOnY73/3RiMcjXQg2v2XplW08r2IcmKa2Y/jAUX5Vux7DZ67hkgXJ1FNpQ2O0emHNyYN4p90Ln78k2DM3jY680sa4HXZUWyjJq3+HUlFvL5+Ty4eEwSuc8Xw+uuhPhVrNSzQ5sxdbjaPBIn4r/VsUQT+a3tGK3G1gMl4MNL0mcbW9GawV/EKvCwPg/T87Ll2ShvsNl3PMhFRSlW/GtmefaOhnLuyXVITnjt/Rt9GMHvkXse+9QzjHsp/yA+KB8lpg6wZXOHUI6dsRFbAot6bc5NkoXnoOs7I/UuBnL7h5eC54Ro5hlapwdFS8DKPENEH00ROsvB5BjjGJELD2Ek3v92cp95fc7vUYIsy7IU7cmL4lyECXTzG9V79D1c57uKpiBS364oT3/1jSeg9JPP/KDdQ0JmDQrFHgZiEMnt++0mr9Peg5xZQDZX9j53s7Kk9JgAM9Y6B+gz/aaY4C+GIGXs1u5JdkwDvvviWJq5tQbr80r8rezM9uPgV7hbVga6wAC9NVeYfDVQyS2sjH11yFMIU6CjG2gdmzTsPuHw5gNv8oPUqWA4tvo9D6pBzyvXAQ8LiLqvv+Q9/BBTy+9zU6agTSrJQLdPwUQk98GtyVz+ZiDaL1nqE8fekenvGjB4e8gqnzfgv4yXlRU6UhRCwxo5dJl/jQq2GOTg9i7xFNIOntxVcGjXl+5GpcNricToWoQn+FAUX7iNO1Kz14+dYqsvl9i2fU9cPdGXfB/PhlWu4uCCOea0CCylgqlhOAUdb2NEnwF4k3+PFJtUF4nKSFHSsmwobuNryiLw0SMmLcI5SCUmIE6obXYUXqJn7bv57mK+ei8+UJcOfLfRwTKAIpSZ5osmYTPTr9GA40v8M/g/awb1o45Zyawve+HsDNJ5+jQrEczBWzhoG9tnTpxXn226EJLjJz0NFZkIvFJkCmxWOs+j2VAhLkYPLoUqow0CMjjR/8Oe0LNaVWwLY/5ylyZAXYh4+ln4MTYLhfCrpTfvF6P3k0FbjGJpeWIzQsxaIvy3j7uLs4b50EjyqbhylvlOGjRioWeabgg+278fq5JGr0FaeHIwpBVOUb1DQfgavgCnES0+Gd7DqaruvJi+tvkcrgZDxuM0S2f1aBXr4apFrEQvpGNTzgIw4dG6ahyZ9ZHLJBhXu1S1Gx2o7j7qxlv7Xf6NzHdXA2wYmveGvDp9ZroKw3ji8uvYnCqd/R6Y0d/fT3ooBJK6i85x9fzV1OA8ni4GRtzj+vTuIPCwBFPd+g08HReLHUmx3+JfPUS5Jcv7cUfAyFoez9TDy95TROEVeGhMRgWLhIj0QbkrCrfD++0r0DP2fGMVw3hBkKZfj3mRJV8G3uiXHFxBk5pCE8l0t0n5Jb/R62iYzn7RJy8PJyGc3+8pDnO9Xzxx1hfLOD6Mujney8rwEnpVzG9UanQU1NEXY8NOLB753YE2FPW2S0KTnQmoR2HcZfywvpUOYq1ApW4lgHDfjPcyEOxSyg/vgsGrPKFLRHd+ClRQZ0xFMEU6VsObIolgeLxOHqv8VoLV0AyzqFyX7VUrS4akwHB99Ba4csLnisz2WxT9i33gQMAnZDb4oAqql/wFWNiqRV+ZB7FLbTL/nN+KQrE1evvsgNVePh+9zn2AK66Cm7GnZm3uSlKj7w+vJ6PrXgNzZ+lYS7qSb8IlcXvk05ybOumOPYlxG0zcAJvZJvUXHfMDdVqPHkYj9KhypwX2kKe7REaVWqG2gXv6aaLTN5x42f3Ov7nryezqGvL41h7fKlJJakAS1WDfDbV5MrZRbiifowMLKtobfdAnyvJhL+NWZx5d93fNp2FJwNOoyjbd6DcMd7aNRK5ysGO+FH002+/2EzBIl7w5Qj12nEgBgsc9WBnqVr8XygCeoaZbDX3ywQ/fUIg4MbmZYvx548LZZdPgpMPf+C7nARy19L5BClBC70Ijb/boZCIovh6/hD/MlnOXxaoQ6tFxVw8O560k57RGXOL2jWntP8s+8fV99eyjpuiWC5Q5+52ACu/HsMGH+OT5ish8hjJzAvJARetp8mCxOgkcckccfaWxQxUx88pLww2u4YfZmVCjX3rWDiNEP4ErOYXy08TnIHl7BymAPIlRmBRvlUGKEUg/+UEuHCrZHUlDAKykVG05mAaZTcYkIj2qdwzgY9SE4w5ExpTei1DQZVm5u0OXEzXB2Mofsu68Ek4y0ePqpBK9YpwB6bHDx8fAq03FzEPbuacPPXX7hhyl66mHkY52/YyAHj7NGyShLUWyI5/VkRHhqZzPOfd/HZpp2cNy+GM7tb8ElHLzuv6UazceJwNuwCPPBewUdPHePh1ePJ/kg8LJq6H2wndGD9bUtSPfSaFKfMgKSF+zDeO41OW83mcvkl9DlZBN7oJKJnUDU13/bn8NhKeHlPCnI3hUGqkDKdm6ZEUPQTfqrvoZaTSzBOPo1TC9/z6TQhqhIAsGr1wZH+k6B5VR/3f2yAh5TJ9odU4c86IZr9LYAX3xQj9DOFnFeetH6nHi2NYQi5eI0T46xZu/EwRUTlwdm3UTDpUSde0pEApS3f4cGWbhj5qw/HX9+A9/asB2v4wAnp1RSfWMhZqZdB4twoEIPv9GPUM8yP0YGlocIYdE+B3tdOox8rc8hv5AKykRZm5W/jYYOKL9m+6YGowVVkKzwRzM97U79qHzyZUUofBvo4K+MKh402gg/Z9+CrTireyNmMncfcubpEjq871+DstpFUsMkGJz4bpL1RGrBCfIhzTv3FW0s9YNe4xbw8zgKHasfhFDyFCo96qPDzerr2CSG6ZwWPqvJmtaBokpi7kkn0F7yfWkmPN0/B8tBsFB0xn7PENeB7CYC/wwjyd50EVr13WeWdDV7cepVfuh2lVymxFLujC272CsOLjv1w+IAuz5ixiAcuiJBunBS4RxlxiRnxuefydGmNJz12U4Gne1O4uWccmmc+p9VSN/jj1l2kN+c//n0gke6fUqHKiGUkFGgA2umF+DnkJb0RPUwnw3QgfudE3rVInZavSSGd0FeoPDcNuqXk4eIu4Ah5H+hWfAs+jf3sNOsY+lUYw+/kmxgpE0hz9ZxROWAGLFB2wdzXC0E7SANi73/AYPEnVP3IEl42tYPDvsvgGp4LofaKMFe4C00clNB5XSeKtX6BeZe2Q89fPZYrKedZFTbgaf0SJ2SJQUZRE7rnOEN96Dg+7LAdiwfzaK/nCc54NJYzpzjwvMuLwWOjDmTbj4O1J1/Dp5ouuFlqABHue7l3tRkqfd9I5+1LcEOtIVZpqsP6totsFruF2/OdwfuhBj4rX8fv1RbC21XZ5Gw/i3SEyvBzjhT8yhYBm0QZjJBzRoWgkawQnYSekj9QKncDBIX4UtR9dXxRYAFHNn+AB0MadP3RNh41HITbpXZzbXochnsEU8O7Oj7jMwuutJrBxTP5IC+NWD/sQstcfejSf0bkHhvKXjtaYUJYHb/YZMh6tQATm3xZ0sgJLk1LoJaFQXBw9VIs79iKV3dJwYhfEvwvu4wrT2vCCoEUelhylq9X5POg+BCt3G3NfzYv4vqjshD4+y8b3LiDzgHCcD/3MK7vGaR+px0QuEkDZ9RKkGatEW9x1uDTZ0q4cusMLl+tDUfF/bH5LtEFpWUYnPqTX605S82W7rD6aQLqK1VD1f0DGNAzCU6KN8DFxQ6cf8oF9Y+MIIHwl3Q9TodFXHzZYtpd8v00h2bXSEPtuLWQG/oZrnjtwxO5Byjtjyl0PrjCV2+1gGzzT1qpvZYtggVgV0kuH3NIYZ/gabhzbw7e/xqIRc+10f35OtzTEg7r4mJ4vKI63NymRnqT5sGHHV5Qb3iQdWqFyHJoI35OOoX+olbUWPsAMUcB8KIdvtHwgsZbW2lCdCF2Sr2k7Xe1SO1SKm8wFcME3dG8xc8UMnTSoLDAFN12HaXNKiF8O2ksJ65ZQ3cix+JIbTcaFbmJnRWFIfTrL3ofsA/rD+vC4Z2P+er2LxyoWcaJK1PBIboPzp6xp4wmAxi9upVrp5/Fx9uPk0FILMoJadNXy49wZjAA336K47oLiE5S6pBVZoMrj6TzcGEm9rRK8/l/dugu3ECTZ6fwpdIhupuejj0Lx8N/FXVc0ufJcZmXUDjvJu3f9wmPf5gJo3feoLY+BvtbYfTqpCBssHSDU+rpNOPJDFg304Uv9RzjoGWdMEp6gP6cGcQPO5dgdJ0ozLczp/jGJnBOTGfNR82oNjoLt5ycymZyqcT8Cf54dKCAkDa8vVWIhrWKYLGE4aeUBJ2du4ZfJDujk+xSePTCFwvjinnfYgv4nTGBG3220GeFDghblkcs/Jh3jrOBd7du4wofC/LPn4yye8fCmCO+NHPLBxgIe4xVj4JJRe8CmNyTxtt9l3A47ROkrt8E/sV6sGVtC9wy/QLXa1u5oXceNqtfgRlGztRp+RtCniziguut4CWoDvFnHSHSSBSla0dwemcJHnMJpXl357Fq+QiarvCSC9IV8WiwEbh3hVDEaxNoCflHrhZyWDG9A39K1eHBviMwuNMHd/YswNT12hCybxDSfnXxmEXbYDhFmg5pX+EXtt9xhIUiLBbZTiNsbsOTMCUoDLHHZyOEeF2uN9YIN9PI05coUNYKT+/3ZXP5Sh6TrU1T1UdAqEAWFLzIos+9Qjgu6z9YpP+At3WNpJ+pq4A63SnfCzBVUQQWpgxz5kM1yJmmC6pHl8Fmr9vgLCkC9yEA7Z1ec9aiBJZYBlCVkc8Ciftw1C5xei8rzWWz72JX8hEq+DxI74O/YvtzK1xvowY/Z+7k3zFlIDZ6ITqNvQBJCz5zV+ApqF83Cu0r9Tg4XZdVXxhD7X0HcMRyOG2uxH9n7cTYa4FwyrQPvR5G87/lNXjMy5pXpFhA+T+ippbvtNpyG3+YaMv7Pf9CktYsbBu5ho4dCaIzGup8YY0qJHrOoeA8dza2jYKYF59h3dsRlJiyF7Utz0BPUhKl7PoPpkhKgd3fkXD8cjfElByAlb2JMHCkkNZM8qabRUf51yRdKj51kHu65EFkVBxnhU3Ftr7lEHIiEtLFZSFgsgXZDJjhxVO/6E53M4i/EAS7GCUY7VFOSWHR9DNCmDqD0shS8iPkXH7Au+4mQeL9WEoBGZBT+IRRwtfYse4pyN53wLzw+1Ab0YNewt20+nEwvN9QBZc8GA7sv8Ml5Y04WO6Gk+u+4Y/of3T8/C/0dzOl97Ne489ZY3h9my7MXSQDPi/eQWxoOMRe9OJuh+u4wGE7jc0dgNG+u6jqfSyaxoiBfoEfTr41jKgeABW54rzHdjaK9Ziz+KcgfGEwnloN5fhV0QwI7E1nnwAxkPnJaNEYgWuicmC2fRKW5HpDY3YUPHpVTRZao0HsZBZZX36ORgcGcIJfKilY6uO4fe2830oYp6m14LRVmVBNSnB95FRQcb8DvV2quPPgcRRQf8qub3ei50R1PHzrDwxsKSWB2ePhRswhsNSq4s3lOnhSrpHXGXiD6UknzLnmzY7ft/PfUw0cfwVhz9hYnn80FiuytPDqpBQ6FVfD0grGvH/mVXj3IpLxmA+82aQA0rLJNEF+LwlEXIHj3V/B8fI0MPZopO6o+yxRlk9zvt9Ea1dh8Pe2JSH/SRhTh2hlLgmertrQPtIZXAs3oW+oHQk36fKbmWNgL1mScKgTpa69C3Vf1nKS8iEQWOoE3f+s6eDHEA5cJ0rHTyD4R/qh47lKWHejHR3d0mCkuQiXdU1lN0NlzJlqAw/MNSHsgxY8rrZCc4d06s68AS6uOTxF6yZ47vbn5NVNdLo3CrXk+7i6XAAK6j+x5q5Y2lj8Gp3HKfDbAxthrXomlc7WhTCrAfxrq08zm5VA778B8G0z4E/Zeuh0pZDUwxP4cLUENS1aRrll40jS4zGsdJcEVe1fJPlbn7aO9eaI0facvscblSb+Rdl5FhR6txeEVhxByaHp8PWXK0UvkeC42H2saPKBrWa/gk/yc9FJMhKlA5JIsP4W/FevBlcWvsHWw614JG8Yw86OpmNfW7m+Spk/eUdS11dFGBy/isqmK8LyRQZonC+IMEeNtNOm8wt3RzygdQSUQwJJ0ksE3sea41l3EdgyvAbeCS2Hp7VvKCzIHrd8HwCd6B3Ej4f54N4N0NZH/PqKMERs1CKHTYvg68SzmF0qyo0HatFsbSSW6ppRafU6kpuVSVoKBjDx5RbKNvqKXbaJaKZ+mmQ1/Kj75j8oPLgcQhRtOd7sJAXdNQGHhhSobpkNlRHJ4HrIm6f1CcHGrdN56zEdjp1ph3dkPkH6UxUY/tyHIgtK+OXnWdyU1YZ/ku5zic55vPK1FH5vaOZMhydsOH4aHC3px0naL9GuMJ73Vz2ksLW/4MEtbdQtITr27wHvW+PLq6ZPhcMdSzhq3AQ+NvMDfem7hR+lZnHFykNwe2QTNS+WhoqLrziwQQ8yVmmCX3wzCKZ/pZX1ROveJIJocyGtCZ4ICW6TwF8+Eg9masC/S29R51QY/JHbixtWPmYzmV9k2O9HaVHTcfZKbVzrGAWpc2Xh+yJb2uPSBJZwmbPOvKN7U7yhtfcn+czIoGsejynOciWtj5KDCvPFJP3sCnyLkcLb/cRDqqlkcLMPpxQBuvbZkd4qV/pTJwL3apfjbLFwVh2xGNsjlkPF2mvg0r4RJBdpgKLeTggU+cNTZSQg7LU7j2toxFavl2SmepUOJd7mEosgrnGqw1kHKmCkjQaHPiUIN0hiAWdlzhnjh2dem/Kfm0pY3rQJgyd+hf4ljTRN6T4duDsGzCRuwdYOI7RyXcRBLumgM6qTZ5rs4YpD/Zy8sxE01hhA+RIlaGmfQfflbnL62LEcdquWD/6+R49O/OY7b17iftURsPOKDLW4ToBVazN4yu6F4CH1F5I0n1Hq9fW8WDuatv3N5wlvi9jEpxcVhcxgrHs1fJ03Ak/YBvOpzk6yLZPnDBEFuBGdhSFzzoBXZhl8C5eFsMZ9+EZgiPKa83C7rCsEN5ai+I3zqAPS0CT/kz75+sECSwsQ9rnCq6QjIENNh28v2467V41m5eDLECezHcPHJkDevH24qM4MhIsVQNxLlUX2H4SsfS3kGPaZFT6aoUt8OdivqKHHsyLBX0UANp8cpl1d87mjeg06GLiCaqwrWfg30rLq6Xh+LwM+ms5KlaNBcn8wdHZ9ZdWsLmpffZBL967k0lLkvFR39rkow65rj1FjlxzcUZnG4xo2QYXpcVwQbc2pGSf4nX08uSS9YPpTCXWZ1TgnVhfOZS8h0yxjvr5vIs35/RiUr+pSRvA97m9ToMG5E7hIsYN2bBEDs2f1VHjsA+4DQbb7qkK639Rh45OXILS0lOZtcsQnIiNBRmAy9ExgfJ9qBiecsnj9DQV6WdkIizeNgKZXm+GW5juqXfyUvm6RBK3MDD7dh1z+Gfmv1huOOPkCNhs8gHs6fZR0Yx1HCLwH44OScD8viHZvieCCtmz6ETaJO8P2gWi0H2VvO4YPR3uQTdZCaB8Qh/I5BpShfx9XQhjFnLvMVePVqcXfEn7Y9vORfRU09r8gDP1iBEql83BqDuBjnQRs6j2Kbx67occdb5b3bcdI67889KIefu6cCLLWJnx6dxfYDleSzH5bTnP1xub8TaB/azXEGvXi9erlXLd4Mgw8AngbUMJTPfXILyYYpWfJok33TpRqNYSutDZ+ZPoOohaOgeKbVZD8dgP4rnjBDuEnYOaqDnI884hNZMdCbIU6GG3IR9g7BoY9HmL65nDqMlfCkAN61CssSMHT61k/dCG2lxZDUuExnFsyBm4lCrKbyRZalFwCm74FooDHFGibnoqpZ4bRq5rwvEMJdZrIQ2FwA88t3wQ67uex1aEG/XUb4YfxIEi9ssM/QeJ85p45nS0TgchFfRQ6imFxgQJGKwfR8PRSlvD9ypOLvqGQ9E886bEBbxcaQ872CHD624Bhufdg+l97sjC/xDVD4vzd8iktuPEVQu4vZd6lDka/puHzpa1kKbUfXo5M44KRYuxxNRa7pzwEsY2WXLegBSK2CsGWCj2WODcLt5+3YtG3orDviCHtxEe0JMYdZl94RG8MPkJYpyFsS2qnWOUGvvZrOT4Hd6zc0o7pf12g8vBEPvTxGKoePoDdtRaQvmEMSXb70bH/HuLerFTcmDifOqxqYLeoHD5YfIorHPOpqVUb3hcGU/2UHIjvPsHXZGqhUp9hsWoFZr/qJrtSa1q9KBmvhupBU1Ib7khcDzpZq+iVA+NMqS8gMvEjFKz3oQk73GF6WzhG+6jDs+NOOBA0hFlCx3H5bDfIDdiLkZ1tbFDuTiPHLmIV/fEce4ihUTsbz65IA2fveFarGYfhBhboEvwESDoF3YtSyf7YJLCp1IarR6u544cNZgYTZS3zpHOzg/lQ3G2eECyKZyW7WFP3J348NQbuTz/KN7JWkGNlDB9W68BnjqWwRPQVWbla0sgASbaUqOe6AwQq/ZO4cUIz/6sK5RXnduHcHcdALvUWD3x5Rj1uTvDfvO9QeHE8qGq84ulRIRB3yYweluvgP6curldp5JvbbqCPyTzeeGQ3HZCZAs8P2sL38D5OKLyHqSfdeMPEKv7kt5eUNUdA/NGF/KpuI+aHywDqSeOD5fnIB6zgWMkbrFleRdmvHHHP3GJQX3aDmnKtoCBGDGYc9sEDZZ3sqFLMG2r+wmr5Fh7YOholU3/ActVp3C1SDtKFInDxtBQOGW4gZcsi3uxZBUWfnoBb5A3U/biK4oai4cDoIaicIgmvzodD+TkVVLglShcuFUG99T/ojjKk3T5zyHOHO5yv0YKQOUrw+JomrRReA53vrmDFikP8PtEOc0Rs6IFZPawWisI32imo1KYPA20bYML+z/ws/A/P8SuEvJ2OoHZnESyOLsUf9oVY2CYOfzbqQ8Wd6aBqFYzFg23oBZmccsKV/86RIpXhAWg0bKetL8fD5INT4YrnLNoqMEi/8sdjo7s03itCiCgwwvPm9+Cb80m8L9EL+0frgMCzhzz45iR0iCpSqPtrDCoaycrF/+GZzj2QqzaXzR0d6UnBRHjOZ+GXYiLWG/7BEKtoeGHXjrq+q6la8Bqf7RcEzYX9NPHdKLjleRflbjvCqHYbapSShuxjy2jWkCiNzXmM4kV3Ya+KPeRHC8CrOSHkVb4cJY69pc6tn8mIH9LvxWIEe6J51DtVfHA6CMoNAbxb7Nny+BwUnTiRU77MZ5fd1Tw635yCsh1w+IUqugwEUuUfZXiXWYdTXzfwDt9omhSVDJ61YnCoXw4ivi8CdbGVvPHad+6OVof5ye4smiEMnl6ddFHzLwSatqPu+kxU22gOWnnfsb8skrWltSD6mx5/TbCmf/rPYNUYVezpSaZRYjK0U1AbN06L5vnlL7HG0RT+td5h0/dzIYNM8V1hMqRvZUhRWMd/Nx+DRwPv+OzFTJR4NA30wvUp8EAUj5kPoEe7cfzZMMpMf4wyu23h5oV7YFD1GZzDxsHwoQ4a/tKCxbmV7GgVDC2Hp+KJnQNcFnuFyl4e5jPG26DhqR4MO15il/EOvMIrBXUrHeHqDCW0cdmBFUoZdECjgcePDSaRMcqg5h8OqoPZtBoteYPmfDqpJMA3XEPg1ck2XtUuBjvmbeOrz6bD31o/pL/XKc1+D/26GcLhiwm7O8To0SstTPMgEFokgeeSpcFP+yo4q7lS+Mg4vDfmLteXmqGP0SPwiPrGHkN+dM8kh7O/zoTcZTN4fZMaxmyShQ61WxjVfYos/jsHUvcy+OrrNbQYikn9ihIkf+nEXfODeILcRgxLzcJEj/Xkel+MuzY0wsW5CdBmPgtGb1EBhVVSIHiyBdbVzqbDdp74Y6svtrhlkvi6IhjrI0JzMg1IfpwFhK0q4nkXBznUZzpr3P7IB0tMsd2yHy4fUsZRAtOxXquBQ88LgXJLI841SqU9Wd7wYmYIxUb2wNMCNZBwfEHmFjmkqvsYFfLMIHHedVDTvwjLz+yn+KzjZDX1EzfkOUCirABsuCABqzbacvd4UxCZdIKD+oew9GQ2vLuozP5O60GkhEmxfBY5CdxkD01xjvyjBpdTd9EaZyeILWmmmuBddPTDNqD1qpgp95k0HYNxvVkVWp/WgBlto3HX+SKQW/IeVhar4mxnR0w7/JkG7Qoob5Exb9jfin2fJkBtQgQsKN9OV/Kr8fHNQlqx/Cau3ZiCK9ePo2qbNnIKO49pTpMh9podhLy+hRdS58KiBiUqaVKhU1ftkN6ehsCR9lR6XYw978+A7YXnQdPNhyI+vKQnSlvoYqUU1+0Wx+b0W6ggl433whrZ7p45BMy+iy3eV3nO7hEkft0UR2Q48uSZI/lS8hAbNb3jynMvOLFJAoIk7emtmxbP3eFCkXN3grF2FdjvsmazJRfgcJkn/Mn3gQGNsSBxEyBOMRjq9Q1QeFUU1z5oxEuip+hQaxg9li3Bu0ln0MNEFaoPX8TnS5/xoooWvurcT1WbdTlVV4eDTivSy2Y3rn6lybpTJsLuZ/qcN9ADHcMf6PXuFTz/ujv8UnwLCdV38McWQZr8K40uRupDV9RZXLu5hf8YdOCF24dY4kIZFjivgbAF+oi1QhC1qRP+eYyApP5e/u7bRiEPW+BbjiotnzKZx2s+p5n/OXLZg3rcU7cbBRtnwltzDcKZZZgT/xWynT/za5WrdLb0GZwt28rnZX5xntV1PmM2A6z+atHXRZPRuiKLj+k9oi/LR6Fw7lYI6bwLMdkI80/5o+HPSbBfbz91PZrB2/yrcPMWZV4YVE6Os/1IISmIKrd9ghNNnjAsowFCyWUcI2vO7xzHU9SpVqwXWggtKgfBdosAdqWHw/6B26SrPh1kZd/CgoDX1HVyM7xTXMAvPYLhtcdj3jKpAPbrWJNT+Hre+tAILFI2gqfaYpTo6YZafRkOk+km2xsxVP97Ek/U/kY9xzZSaqwGeE4qxZn/xYOTzQ7cf+QQ1yw0xKv+J+jqyHyUrvfDq2PFyLVzNMh+vExft+nRgodF1Pf4H/qo/cPJ2AqLfVOgLuMZ/tGZTUoPAXK2PGEZK2NI2HoIH8ddxrm6ViQ8bjIGfHnFb/JGwbBKDf5UUIVnNhOpK3McFsWthn+mgXS37yAV5I9H0xpzbFy9Et/gVT7oZgEyuy3Jzi+Ll3hk8AH55XRaeirkS60loS3xmPqnnsZs+8BHY8bBnZU1mLR2CrabXwefknyIzYmje1OkSemVHAUc06WO0sP0NNsA9OSNcd/xbrAy/QAHDr0gebjMWrMqecZ8Qyr55syK1cJw/xxCa/AaNn4xDrvFbUjkdQGcKO+j7xo/4Y7SBZg9wQNMBmOwZcpk0OrYATtFf6LbdQ9s1TgPOTO+0PMUZzxmt4E6lnbTSn9JKBsvCybxl/iJ4AmUOWXJr6oF8Kj8JZ79aQGf31CF77p16aZNBfX/EgXTisvwVWUG5ayuQpWWQV6SHoCua8bi+kcyMG/JLwrSWMWiRprg/DeD2o3d0K7HHVvylfhs8FLICJ7INber8f2YGdT0wRsuJ+iBfEwxSpdbwJQMBfJV3AhXZniT69FaXtZ8mi2HZtH6JmFM2y4Jveaa/McnFbR9C+GWvR85TUtn4+5yXHTDhtd1LeFw1W5aXSkJn18tA/WWRpIqkcVVXb1Q0VzHX41aoXLseigKU4MlA8HQqDYKVOz34YiN68Dh+1f0G70NxkeakYWjOBzeNQ3cvgVT76AyXdssCAeHHoPzWUGa8EKKG0wucrh9FL74dAT17nvz7F4ZdtimxtuuIyxRsaWrD4UhQW4F220ZwqQdr2hEyT8SPXSGc+cP4x5BQVi4VhEq889gkngayOq8pfK4IBLyN8YRHxfjCHalQwsk2UAiCd/1TQTDsnxWjT8FX54tg7LrCA5p6rTu4BV4apVNgnuU0Prkdtq4WQyMu+TYcZMqFWr5sHNNK1XbNLGrqyGva22lnCmhfG9GNKykSfDyoBbKHKzkqSrddFZfFOx/ruXzAbPpR8FbFDkjiXKXc+hThQxck0ng/cZf8NLWQJB4cYwrbxnx7R4xTJXawQ1yZjxXM5ueyWtARIIrJRVok+JLczr5Swvv6tRAutAROPtNgLtVC2jacCZPuCgGYkY7sP9nIN5e8wkkHb7S1CjCiKhgSJ3bRd7ePSydF4jbnGRBINsCvbc/5en/NnLDxQck52ECfz6X0aZjK+jrqhAOnxeBbQYI7q/20eS8AUzQSMfVQeOp5Pt9PP/6E9lqtKOaqQ1IdS8lQQU5WJbogHOPJXDVtuuYIHSNdFd6wlaXadjUakyl+JGrfH7Tm5dqsDlyNsC9YTRQ0MVvLU9xwatEkM9+xxNUJVh12mYcOtJKHeMUoM7wG4xc3Am8uBTOf9gDgQFrqT7bF3YtvI6xuecwXLSOp282A1uzEB7SkyTo7Aev/SLwqzgDl3cKQo/wfg69II+1+nvw+4LpkKx1Ano8TqDLTzU2PZ2FTYWH8fBtf3x0qQaWGuZzsN0qOnFIDW78N8CHF6/EhTYWPKCZQmPFX7JcfCm/8evDxVsDwOhkDsTWaUKkoxeOb1lNx25f5ZCRP9F1UyxaxJjhF80ByNveDryyHLx+IQTtqMPV717T4Godru3WxoTETrCMPkG9JwVJfasz65g0seJxIZD/WscjCvwx/8Qz7DgrAZbuoyFU/T6OPPuX54Vcosjx6pRVIgfuvpNQWKkd7NvGwm2fPZzV9pzivATx8WYP6H8njfQ4GtINEBrufOPMbfvw6T6AaOnX/KJ1OwYtX44tonX8YIoHT478RP/+mUC7kRGX77aCf+JpJFE0AT9teQPHnvyjEx+L6L8Mb7yXLsSTSlXhqL07/itxoLEbW0H14EeYWbCLtB9Ecf2eAPb1saeS8m5cbGMGLxNWslShAPqITuChyYVQev4g3N+5mL5RHv0cb0T1YtoQWqQEfXZfUTDdhNyFFpIM93Ft8wjatu0sZX8KRzdRY758VBHWpTO45OfChtenQXjqIAtWb2edyZtwT1g4bp2Tzse2fOK1HcfRo1MLUveY8pTf3ZwN1ynbhOimvBdtajzH6/Yvg5bTm3DBsC3kuIyHqPbn3HfCE/Jjc/B3dgTliGmir94c3jRwEm7ZvCOJGkV4M3MymFg9IduuP/BfsAlGWa2B/8TEeeSOnbzG/AL5fNgE+zqq+EGjMbinzoXn0jtpZmIu7u/Uxbo/T1g4SQAmKC6mjGMd8CLMnzyvK4Gw+U1O8dkAi6018bLQQvJWnYoC031J8ocvCbhfwEvj5pHSnYkw79w1urOiAS65S/D7F4kQUboVhUIScGX9J2rb70ytX5txcpohBF6X5sjrptBwRxaU8q7BjfF6aL7UFapTj2OEjgUMqg2T7EVVcLt2H5rqnrPz/Du84FwpbdodAE+kk2mJxU508JjLZfZv+dAGC9jRvYSe1m/CwPDZ0Fs1l7cqi+Gk3O+srKbAavfmk8ouf5aZaQonF49l87ZC+Dq4BPROy8D36KuY904QTDxs8Y6QA5TZLKXzo7RgveAZLH6vxv05V/DOpxr4US1JvQvPs29xIt9v0uArQmfQ574u6MgJgm3yEhbOWY2rZo2iNxMSsCFlO77jChDy6YJ1t89Cs7gxjDkaQwsqCmGpeRvZPmxGt2cHoLbOB/c3GEBY/j3wkcunnjfTYMj5Cu64lk59fyahclgpiXTNJbT/jOpeeZx2LxFczPPoZtsUMLL6SMpFu8HL+AkX9UbDipdWWGkty32ya/G3gTt+v/wcCjZKwa4/dzkofQ9uTVPAyAo3nLS3nE6YhsGNtfcwP0ISXsrPoTGLRKB93zn6eDkN9jgjCVSnY/nW/bjZxplKAorhM8pxZ9M9sD+nAStun0TT9znccWMtFSruRukZKaxwK4Ys7lpAzNp8bIES8rMyhmXC1RgeuRevio7DnvGJmNkdA3LyEehmlgwnT8jhmPd1ePeMGrTe1MSBgVB+szuMPBXaqT3UlsfWnIelb6PJ2CaY68I+U9d2E4i22cReTn38SmoVDXYjH3zkgqaiT8Fl6ma+0G4PDSfzcPkYIfg0ag/uX5aIhs/aoNt9D0RZCkKW/A208bOGMz1XQbq+lp/aS8L9PDfSkw3glB8H6HbJI44fr4EpPbnYMyIF12kOcXx/CdumGoPj+9nsPS2Cg57I44FvMtT+r4y77MrxzbwZ1HhzOQ8fSAPPJ0YwYkAVto9zYgW191hW08ZW6q9IV0ABT3UIcPEHS/ZPq+XMRjPw/HUSJtXcgmzR6XDHUQo+ry3mW8/7IcX5Hp84UkWNCQe5LV4BCo/n0Mvtx7E9LYtz+ttwc8Uh2lrxBlXflUH4oDre2/IcoxxM4buYP9SFiZPg6CwyNVaj5c+LsGVdFek059Ml+yUcHx4OE8tU4NC8e6wxHIku/tHwEuPg4DwVzvl4Dle0riCD35NIfZs3it4aBSqZtrj4/mrS33odI/qcaJ6pJZac1yIJd23+MB8hHifjrGdj4e40aUixWoby49bhMwVdFHmdyr++5sH6hjBqLY3k0A5B2HxdFiISVHBUrzDojclmx/6RPGpGLQydS4S79VUkNP0ubte4w6etGH5OcoJxXy6Q2vhADpT3YLGJuRBR7MtYl8AbkrTJf0k1HJeYAU/NPqHcnG4UTfmPHUq24avjc1ixrwsitwgSLLSB+sNCeOkUw6R2ZM/6O/QwSZ4MbG7CwIwzmCUmiB+f/YTc8yHsODGQhZ5Nh3eaBTx/wX3MP9eADoZP6E3fHmwOmknbH0ny0blraVPiKv59VBG+xK1EvaqP9Pb2EJjrqKP7syKuPeRA56aJ8tDgYzT3U6JLH03AxSSBnkYthru5Tlhd+Yb1rhwHJ0VJGLVhkF/cXAxn352H9GkAN/7NBL1ZL1GzIINqbBy4YLY0lm9QJUUtN+zI3YdJHmfwspUwnJ0lg7Zlk9hBMoV+zI+mhar5LDBnLc26o89HQqr4r8QOWGYsCC3zhvCTujivC7xOPj8e8Muu6Zx4di8fb9/CrrGTwO/PAbz3TBaGugN5yrAvKJuNwey0G+h7URd1Tn0Hg81PqWR0OgQVvyHbIUEwLTuPn+Mu8mPDLSSh8AC0Jk4H2joPtu5eiWGW4/FggSq7JYhA8eJM9rtWAIoiK+ljej8+0Tfnz28z4drVXbzObwheSh2midsnw5+kIijfHgLhV8ZgwNNE2ORqx4ve3KajPovonYI27BL9Sy4fJaHWYRpI3RLHhorPvHvcPqx3coK2UxJQEe/AXbNy6aukJitH6cCXQ6JYX9BPK75a8KyulZj+ZCOycBYFfRPD4ej3HP/wP3rnJQ833cfBcX1PUvFYBgsup/CWe8Vc4/MCdr3ayvXl89H29Cn8T348ZHcU41ivZSDavwl9bwD8c8jmPyLX6X2aLhSLXWWnGhO6UyAG2vHrIFihDGT/vCf9h5sRxSaC/ZEckA9VJrebMzDBfTa8FxkH30ObuGe8CaT33sUXB8fAF1iK33fK0cY7SyH4415C5R4ecUEcWsdOJfUVF2BpkyYrGKtgffZ/1PM+DEfOfEt2sUWou3sCnBgnArVkhIEftCl4jidKBJZxz58nsFe2DoolnsP73RF09M0BEnJWhLUzf5B3zANY+0+IFE8bUGVAEzQs/sgzN2fCIZMarqxxhKmXlSBkhCiusulH/2WNrNDeyb0nC7Av4yB2XKxju/kKuGpNGOQgwsjMTWhYm8w5KWPATuwbP2wvpNRFxYxBgHtklVA48Cu47FUB1YiDlO21jRe8WcIvVIfRUnqAV7ycxJvmT4E5lstoEtWSxekx8J/WDXBKtiD98Df8reAKpDVEwcPaj+QV283NdqUYan6DT05Vhc/qCuzYr4L5PRbstSMc9guH89G309H4ywCVpdyGSaaT2Bp0wNn7OFwMiaAKA3uatTKbwcGBzh5bQtuFbmJvSyRG+xnR9o+qYG3hT262HyEo+idnXN/As4OzaH3BYxBeLgL9b4rY+GE8B26Wh9Wp/hz+Ko6X/rnLarAKglPV8YzLJtZtmYiHV37iM+mmNCnQGGyuTeWSIGv2SAzHkGvGUHtkGJYusMQ7MncwIrmFR4w4hppbjCHvUAQEQgmP2DeHoPQwJoZ54dnDDqTQMAwJe2dTn0AzWPqNh5xEDVQM94Jb3n3Adl4sdukVVaqdhabGVkzdZgZmQ800Xk0ONi77TtVyLpzteRVPhPpSf2g+PqYHNDT3C1i93U0aTz3x8XM5qPU4TTL9ZaC0ajzRs+OwNEKJ3Vbkkml7JoeuXEAJH//y2w9T4YKvN871PgMmS6Pgi0Qhx204TA8GbUjQ3w4Ti5rxZbkgfPCaCUJDsVRYbA/1gdPgQ8BxGlA05iNHR2HTRVlQ2ykG330/U+PRmbDMJAEurEnhRJUMxI5k8KgJ5ZiPihy6Zy8edDsJsX93g44kQcisDo5Wy+Z/CzxIZqUxBFr3QLm7Mr71KcSnam7ctNUavpjKwZqDS0gyLBRNbJ6TqXkEBk9u4ZR58TR0KZMjfhjxxvRgHCc4DaQ05qB1RCcMGltDlrA7jTPS5C8OYyAurwbMTN7zU3MtzIjVB82rd9FZeQ3+T9x9KAKhqAEA/geREUmRmb0yU2ZRSRooUVoSHS0qlLSTltVelBJJoZDSMiohsosISUYaEqKhuI9xn+Q7sv0emcxZhCeiL7LkvhyyutYHAiJX8XCvB/12F4SBvDh81rEfvUY+AuW4fr5lEQOiCz7wm6en6Y/wNAzTcoXpjkJQ9SoIJNWecNAjG3iW6MoBk8JwV8JR9Oz+CspSPThHtRd3iynDmCR9dt6wEZdrtuG+6XW84HMJV5w6hjtsOiBirRssOF/Niz1Gwhm1pSTemMUql1/xnriH/CXoARn9KsPEpKM8JO7FLvOleLuHGuhrf4Z89fO0IMqATgde5zWipig6WYW+mpdTW/1klHZSYoGTo2Dto/2k45QMXc3JeD/qKpcVR6CC/h20nFaGWdp5cE17DIQcMYa/OuvQTGAuh43ciLbFStjgYwnvB/+Au68M/n4bhTWRbyhQTBRCF9nhA9NiOpSyASYd6If6uBocW5LH9968gaelFyg5ZDt3sQLYjR7BSR9nwVLr91S8XoBcfveD6mVNmtWlQMbn47AjIYWEQAokGo6Ts6s4WyzLonbj55AtuJ6it0pBtpMhfh6ewHIpM1l2wxhor1yLlhv7UCvei9g5AN9n+/DhLd2w60kqX4xvg6nfXtOY00YQft4RIpcOg/t1Pc7sP4y5FuY0/EMPHocqwHvrYbq01BactynD1zkZKH5zO/p216Jh8Qx2XXeG39Er8ryizbohO0HUYwmu6DGGYxOc+NvoIv7Za8K5Z8XYYvJ8PNRzEwuC/9C13i48bdNMt8QU4c+IVlQHDSoqS8duiZu8OOE9xS33QqP0VlDyaIYBXUI5MICzXiPIrX8LpN28x6duGoCNvikcNHzD4+zS6OSAAme65zDIITi619PV4BJW75nBb18+gRt337C39Q2YvNufpbN+w52Q+/zz4ziItPTC0qAm6s7aTCcdC+l0bCAYPTiGvsl9vHh/BqjpiwIGCMEFAXeYfOAF3S7ehUuNTNjJNg5V7+8A02sLKVmtDkrmLad3YYYgIheHctMTeWhwBpfOlYCpPAf3F7VArcx36thuDhu/e+CyQjNYOMEN8r3PouOI13jbrhsMQoxgy7xRcKS5gsVabLF0cSb47JCHafdHw+39xRAkas3S5kJc/CGWbIPkuU03AT2sGjh+2nmMRxXw01vAJ0eNxnnl9rRjxyC0yTE3tI+louBwbJwRwX1vj8OxFWaQMFRN/oefQ8Ipa+4co01bpSph1fFWSJwxnUaVPuTIrdGYOFEMVhm+ZNMWd75tI47Xl31lkY0NkNflyuFzZejE19MU6PIajn+1gQTvzfxmUj6IvDiEcbOdySrNHA635qPKp/cUvS0Tnut+o/D9DNKS/pxxNQSPTp1Hy7ZMhSm3RrDXnx5IkW2AsMYkyqx8jOnFI8EmoAolb7TT/r290HNOmO2VrjIMKMDISxdZPfE+LwpYAUfWWEPt8iJYF36RjhTUosjZZFa78Zr8o6L4mZ4e+Zw1RR9La/CUB3hx5C6b+L5lXYXrUMeTCfROoMD4cs5bvQnXHtcFXaUs+uYmDb3NQnw0Zgn+++zFI1TK8UBCPzo8qKG/ca60a8E2WnvyPp/r1wQLxQdUWizDTh/f0Opr0mhuUQlXVFXYfhPQzaI1aLfvG31SFIHu+Gr0+JuMvRkLmfLP0oKP07FZNwoDJqtxdHYTjf3jDauk1cF2uRNA5EpeXbwK1dsHaOU0L1qU7k1+B8MxrH4jrhzxGAo9LeGW4yk6L1HCE1I2gX2hKG/+Oo9H3HmIjRUWFHnXALtCn9DMcgsI2jwAlqViIL61iTcue02iV/J5ZlEfjQl5D8qW80F6x1kq/WgCee8SaYeMIIttyoQE+3skW9RLjXu/09O6PjQI38h7w/9Dm3596L4aQbvLv1NJuBkEF+6G8M5PtCbfDZKcdiNviWaBdFvcOk0Tdj5RhOrMeJ4OIngiuYb8ToXT/vsJ2FqzjwoUr9GFIB0Q6hIEne7naBcmRe1rpVjmzRxc3F3O4kE+eGEglFwqMrB3/joy8gVYYnUOvAdTaa/rJXz9sQBG6XvRkxI/Tjf7TFJBgdRTtZR3lRlD3l4hqLorxEkvXfHyMT2wrFlCbpcuUNWz/WhlIwlN6h+xblgU9pZI4pRX8ym7uRS1onZS8vib8FhWCdft/sZvPD7yx/ulNEvCBqSiu9BIqAFaf/vQgSRbEmNlmLfKiIPmaoL9dGFSGEpFnf1W8GyUPu9WtuIfBTHssDOMJF5Fc5FODJ4+dJBuXjrNOQZb+ZLDWHhjKsgmGadY9uEsigu8gyle87H/lSs+1VOjlJOqNH//fyxfOgIMVt6lYmsh6BnUZ9eABhiYp0eCOSN4ukMmx7g24O3M+bRLlOBorhJ9yfYl0dEfIfvhP7b3Bz7dIY/Oi4do+ztbNK4P4d50dTg0eJ4/rNsCioYXeb0hs3zBVLYREYZDZu6cHL6M57StQ4F6Q5g9RYp05m+mltmT4J/iKBJSkOfKuGUwuWgEhmm086l5W/HKNkHIG7+fvlbHwqsODRx96xbnqU+lWicJUJ8cjdFzhFEzIYmfPCeYGOkO5VMyabcyUu+sUbS1RpI09+WgZzLBw49KLOVrihJndEF5fD5tzZCArZIHWbnvGiZGzwWpyEpK875Pf0J92MzeFAvizSC7KQDkZxdwfd1J6jIfAx+iX2PV1d30JFaYzaSecZ2HOgkd04afV/aQgUYbTVIrh1StYHoqLcgn/2sBr6PFsLzSn39+1uITpsrgPtaO/cND4Y5JFhZq5rDU2QekfzyCb3zV4Fmu18Hn7B7yTJgIwvcWwI4MEwzTd4e+batQumkeL1mXCr8HtrJ1uTtVO0pTeKoExFzJ5fPCAxz8p4tnRVymeaaJHDS8n8abJ1BeBcK+dZ0kbaYDxY8L4ek3JTj4IJaVJ5bSxan/KPVQFLkM96PRzQe8f/c4PN9sALK1x9C+nkgw8xilrrqAH+2FKPp6EDz8WceNryfDwTYp2P54MtzSiyTXyV+hYOgif6r8jN0zgXdbqJHSuX90RXYGPlsdh2PGy0LNnh8wT0wSd025B4K/77On4g8e8ziJfz8Rg6T0ZnBtC6eT38Vg1sNqOq+9mWJb1mL7zu1Qf38XJK99AslzRHCR9QleEj2KcI4iTH18gR0vG2L4LEXmHZF84UEk+P7wwfPLxflrtzX66knR/VgbqHa3hAtTTtEI7+co+kiFPMwdYGpVC9y73As1MsH8aeVvanxoCmmdd/lh7SDiPTXSCZxHC570ULutNzXU1cLn6VOps/w6+VdMgwUX27GlrhNzrFz4WOsWTAu0hBaTeWjZ/RY3ePTSlupuig+XA/vDQ2yufgJW7RoL1085Q5XML7A+5UqxnRnwsJnwwcQF1PhFD0asy+bRoi9B91o3DMWEQU9rP9+pk8GmfEuWnVeM9o9GoHbtJPhT/B83ltvyPgFxeCf4EndviKDZK/ej+RpRvJbXT62/jvP6yzJQcX0dHlh4iGfKniPWWI/nO/TwgbAVfYnW4gyvMKgs96ITrcIQV9+Dh6KmwiTbAZTbLEG2Tr3cutYCt/FU9Ak4xuo6TeDkMAFUrpbSMu9kanHw4pLX6fxt4CQdXD+Xz26xgmanTp5pEIhsMwVm9SfS6JAuSHQK4vaLx+m0hDq7C0Wy4cEUMq27wGHxM3HUzpHwY+NmHB1byQrBK8gexmGUbDidcEbekqHJblsUoaFaH/u9BaAlVgeS9F/RYKMXiig9BJ2oo7Rq7wYSFjCiR1bmaFB/mm44qYNNpyauaRjE/0pP89eHN7h7yjBJyi0FCaG1mOpxDQqkStjDwRJ8akoh7JY4PNCcDDKeu9ntOvF90Su0rlyREl3/8O+rg7hNWwesTs8gGw1ZlhVPgWkrzDjDeAii/SfAktO+GDfxOUjPXoMbH40Fwf9e86jcLxxDb1l5RRcem+IGK7eJ8g6wpPT8JehjZsbOYAEfHj/nUveVUPBQDNr/20/hzd9QS8qHRKdegQuZ23ja8gD4ylZQ03SQ3VIX4Ek3JzQem0oyL1xx7ThvqJCfiMIvVoPt7avw8gjBBaEF9PzpUrifMwY+X52C+Rqd0Puvmi+N3IcWf3248uteHreHYOlJcxizIR/PlU7BaLFnaHLNm68q3KbBDaowSb0QJ5ndoTHbROBeSzwpJFhjyReE13LHoeyPDsglmtGUU1UQmP0AvkcBlX6XgH8lIWBXdRp8s5JprrIUfxOXBP8ULX5l+JhEs99B8pZceH1ECazNvsGrpEu4YKYNjR5iTJeupUV6SiC2ey1ELH9N0j/jWXmrOjxqs+IjL5/iqSRJurgglwZ/6pNv3zGMWvyEM/rH0pgOXdYcHAO9+lV4XXUxbYy6gT6P+mBAyg7f3SqkqyvvwzsoJGHbQFQ7Y/B/83+XQQYqheXQknPNLL2ohYyrLsHd3UHQQl2ob3GDb3+L5UVXpeFZ8xX8kyRNQp1uXO8xCoVTx8PtFaf5qdFafNv8GJWM5ThZQAScSlXh4X8HeGTzYxwVegVnzzeBiEuveMqcZ3jtyy2Wil6KIcu04fp9cxZfSHyg5zk3f1uEo+Z8ZKfXCai94QDsLsngJ48dwPPmRJjrbkw6v5R59n59znOvgo13onh8/GM4o9sFl/vE0brsN22YrgtqARe46W0gmH7ywqMSYbzj+Rd0uHEPa9qayLNuPPi8dCPrs+PgfOIqWqAri5eDd3D6h8sk8LmV1qR30PDhKPwvOYfrw5pAd7cCLD6uiv8NB+KdqmIQ7PSBtFezWGdqK+4J/42y6xRpcX0SXXAcCc+Hb4P2wXEgoCiAg/VfcNuSx3zH/TM/lTtLi3YjjKk6xX4oB8V+QFOCDMnM9So9/FtBqSNdyWnXaN40UQYXCI2AOOtNKKIsBjFC5RgmTvAo4Ta0WcqCpWUtSLwsYIP5uVydf5EdLePBU9QCVtWup70HPGH2N20ITn4NJlEzQOrQfJ51voW7ZK1g+5hhFq2ShhMfuuDYqvnoMUECXaqeU6qaG89IH4Qn9wgi8mQhem0Y145TAjffU+hyFSEz4hCljuxCVUclKPqxDMTMxcio3ZYdzrlwcoA2mId4ocbP+Zw+9B7j88WonBh/CPnjZs9B8Kq/hB9bA5EC5GC6wWPuyRrDJdWfaa5fMwxsGsE+2m3YnbsNfezbeOo7TXq+QwiM3F9SfHc7nBkYIr8VP7k0Vhm+2rew4YNEPGc4HS8rLua+uwQFP1twbeII8Elowvzcz1Cfm4t1G0/i+n8zoCF1GSm2iIBd9GQY87Mdqsx38d2032T03Bpe/HqIVvsSIfN6Kp06YA9p50UxL8sKnPf447T8M9BzNx6uZx6GDDMfKnJsJmXrrSjouYO/f0kB0Z2yMGZiAH44FUy7lr/m484i8EvIiilnMh8JMyZd86O44OlJPCemCh5fA2Dj4Qoc/+YSWo7IhOGITprb/g29StTRLbwIDaRfgESuLoDfSuhrdsAj6WocsEKQ0Mkdd/y+gcc+KLBhvTW4X5Nl7VBzCL2vQGpoga7hH0Cs/xvevLKWj8+bxzkPn/HN09pws+Yx5sdrQHvEMRoyKiMp3VTKm6rOXj0mqNtoTM9TXMhKwYe+eyqxeo4ZGGc4UujiGnzRHwSLnu/kdxtiYMXaKp6QuZ3ULkaAxzZj0ukbD1+eVuK2uUmsq7+cYu+08Ni5ZZgz0EqXJlWwT0IYNYVmgukGETj92AvVK1ez3aM5eO2AOM74bcRJC0tw3+poXtaYTMa13iTeOxakzUpw+Ol6PjlJlGPCO2jF5Zu8Zqcun46ZDR/icshjkQ8mPhKElIXX8V3DOzh335kyV7zlFsNzMDzFE15KCsPcKfnUMtMaKu5ZQUL1WwoQdqd3nY9ArX4+/x23nLc/2UBH2v9DlxtRsOhJOX2xMAHVrfL0esYwxE2N4q2tIhB41AQ6RffTvUoD/G+bHL0OimAWNIFHCZ9ZSW0eeKAdzkg5glMPOUGRhww07XwPr9aeghX+BzBvrw3MPKoPnSJPqM19CV80WEOVYu7gIjeIQQlDoLpRko7JXqD21+Zwd98n3vc5G3YtkoSJv3UxZqYVxojdRW/5KLx5agt/mJ+CyaXqcKZjH1U5zKBpjcFUPNQBgZeFcNfMryx5Q5IVVmjR3UuxfPa8GhhEHkOdimpWPWhJky7dgfDdffBtaRNbTFiN46o7uGjNBboRawYGTwpBzSOG9sz/yxmL9dD2jDZtKWplryZbOHSjhopKjvPQQQl4sNGM+o/acN3zKbCjcQKtrJ+C3417+My7ArYTn8FaHptIdO44qDt4BsIcZnJxTghlZsVioJs8m+RH8qEHXzjuUjeVNSRgX7M+PJv8B4dThnh5pytd+Z4FueOU2HbqFoqp342jXxzkLfIryShWAk7b+dPEimT8b9s1+n0RQTRLBZMSLGBBZBuNl5qGMoeH4PY7GZA1N6DwzmraanWKR6hWwnyVMDiVOxu09liz4NpdkDj0D5L9x8H53ycgNG8t57y6DfuF1pC48zd0P5PBFZ5W0GO8D365W4NRgwR0V3Zhn8ECjP3yF17XtLNKRQEovyjiOym+sFskDYU6vOnECVnIXvgeY1eqwTqXebz0ylYu2WkMS7VLwaRSD5dq/YSJueGs90cB3hdexd7kt/xY1wK7e9Rx78a5MLFRDic9KyC/tbbkFulN74+qwCw3Z04wNuADO/opb98erNN/gyk5tjT7WiK8e9JBLiXK5LpUCoKKqjAm7BVg42PQtHahw7EzYfFKd+xTvQJll7fwgeRQzp0sAppR2aR5SotbB73hWkMHKpqOpeR1Hmh/ewV3lepjxSYdeJc1BfozNJCf/4eTJJSIzhqj598G9volSWWLtOjj0E2aoRhGI3aqwYJ/xhx6/xI6/tcIWjEXUbECMLLWhxLqjsFN8f2YsLuNu9zFYQ5GQ7PpGQhJM6W7mlbwn9t6ONQuy+//PULle2oYWdsHXYGq8FiugOJ032JHsBZmLHgLdvtU6L7NN17/7SeaPWgHhY1fYby/LLiXD1KrE6Ku3CP+OH40L379ilTz36Bn8DmO3OKBN+Pnstl9Gwh8ewX/ZLzDg8ce0Yv8W/xP4CZaXk3BwNRp0JPoCeHZoXzipCLYi+mQn0waC1x1wR8CYSQzcgUGO36HXQVu9DBiFOl/kIXXuVOg4ux7Utd4wzcjnFHQ9yKcHSGCpS+3w9yKszDbXJneSJkRlCtA4uhWHLzUyoty1MFWYzamNF6Cg6fXQu2dOqhw3g0VlRY84aE07H91gd8Im8CJoaU4rLKOza6fg9hyK0rteISPw37wQ/GT/OmZKfhvF4CkS784Y5IcXSoswz9pc1howQU4s+Q9OkWVY5PDT4J3k8BWezVW7UzhCLFekFauoTumGsiVBfBsvBTGTjpIB4V9+fgjFdCO3c1tSknct3MUX7pnBpblwiy++CJ2eQBLB8dSYoENrPFQhf6FlrhV9wBXLrED06J7+ObDG1q17BrY5dymByuq2PNyBV6RN4XeiiQQcJiNZQKV/Dc/C1SX5GDdFTcSdU7HpSfiwFx6LyedEYQqcTH0/Z5J8+c/oKF54+lo8iWUzwjC5zP+wCyPXN4w6jzuOsoguVsTMXo8vxmVg/JXiihWdxk4BH/jVH9FcDzXQ+8UfKhweArMMp0LU6ZZo9eJFDqQOIOmzzek1gAdKLv1ksRC98DM6Z68950IFC7ey6JfL/JpjeWotEsFjVYYcfWLOSDjac11Tp9g49dYvDrbBHQFhLgybiLXWhylxo3esGC8Jt1+84WtZyrwJY1cftlmTOMGrEF0tgHN0/aGjSP9yPeRK02bfhPHz6+n6gkuOCxgwtfqMvjQPyPwHdiGDlLv8LXSaY540sx/FWNoqxyDinoUCX25gCd2yGHdsCFUyLnRnE8ymF34iIp1HsItuS2k9iCLNMdvZJXedD7nd5OkDCwhodkK8obsIGjtO2qtXIx3kvexwZJguJzxAe1HM3YG+NPf4jEgKbsZjDJreen2IvhWM4BdLZvhst8GHLXQFcrrp7DqjCQ+90EFni0MgQcXDuCWrkqSqQjhG4+uUWHldhyuE2XHSamw366UsiQsIX3lFXqy1QecViKvvfkC+k530g3rcJ7WMYrEk69C7ZAaZX7UBLc+T6L7LiSReAgfznfD4tuX+Ib7OzTI3c5KE+7w12WH8G8Hw74F8yloxByYfq8Kro+bwqcGVaDeZj2Nv6EIslkvaebvMBTcIgrevq6w+nwWFp1UQZfZvzh+eBot89vHyUXdyAKi/OexF14xHA13nz/grq/7YcZQEEgqJHDVOAdW1xiDm8d/gLLfi8CqtJ37HCbD91nSeGDKMiySDSWfxFwM8lpJY67dorTPSagwXQvMxJqp/Mtk+DXBGidk7MW3YTNQ3iQHX/idRJO5KpShqAXrLouDp3UajTuqCL0NKZS8sBwWyi7mIwOnOXqRB/5620MBNR4U59lIKt/L2X+lIdy7+JDWnZlAU4czSE8pGR0DdPHlah/u3V5CXYfcyKIpGZ5vVYP11+OA1QtQxyGbR0wVQ4O+5agi2MsrG8wg8eld+nzBhVu9lOCF/inqLjvDflvXwFSLWqpy3UJ5y4rAzHgTtvb9QTeJx/whywrU+2xxbIA17/SQx/NG4jgUowdVtX7860wByot/hJuv1PltrzWkDbfDzMVp6DFrJ2hvzUafzLV0S0EAM/Iu0QiF67RyfhxM2yQMXwTcwOdsMElnjYW63W5kICcM7/xPYPAkfbTfUY4eAqO4aZ48vFFbypD/naUTFpGEcQOKCB/k57OFOTRIAtY9HqBIwUi6mDQOen3SyPK5CwsbLIExeqN5Q3ocZu5/DBOtN+NAoiGE3wxD0XhBePRmLzkbbYRttTbsd6UM/AODaPuN0VTwQ5NDIoHe3m3g1Q4msFGtmw9djqetm7twGZ9FDd+neDDtFW6rm0vCi0IxZmonRAUqws+jElwv8hgFnuXzjBZ1ttkziOUdIpQJHjRhZgi0n06FZwvGg+u4XpBrq8aEj158viWbZv2YzSH7BrGneATpa5/E93dX8MsqU/i6E/nOvS/8arc9ZpaH8T6DhTzi7AUU1lGCksLn/Dd6HHOjDKhvs+W1Lz9xp5Uj9G3ypo7bDyC3ZRmJa0zH7A4Z6G25yznTJ0Dm7RCMeq3DfwW08UFyEE4V/YONG0dTdnIB+Z+RAP8FxnjliSoclFzLUzI62WP0B3D7dBh/m6Vyy7tgqrNQhZyzcpwzQYBf2MqBznAfptk8oMfP1bCsazwlJP5Ge4O5vF37EeTUncbbDcboVyMHbZeA5ppLk1TvEa4QPMDWs6Ro5YIbOH9uMAS27YTHvuvofIMK/MlDrG9eiJbDj3k0vIR1v7M4Ma0HGtP6+fyu1Xj2QD2XOKrD+541uCwkjyYV/eRlL+Mx5v4F6tI4TdV1jbQlZgPJF9+juvxJkOwsR6o2SI92zqSUdhsu/PMFTgp/hAl1QWz4xR0Kestwf54wfA+fC0l2KaR2yQJqf0ijr/U0zPzSjPLnbsDXNbV0wCacynWFwU9nKt0LFuCec3kwt+ksVun14iONIdyjsBNKPWfDRDstGLKTBdfYcKx0yYOJE5VASO43a+n20b67hfTfF2eqnRSJDq5RoD1bDGoCG+l+TjC/ik/F2UNLaMPWVnTtFAADfye2LwqE5V/bsDidQG2kFjX9/I//LMuja/M24xy3+VjWa8QL8oOw2D2B6zoy6aSnBNwqe0ZX/46H9JkCZCoXyopjQ3Dw/S+aJP+TXysfQ52N+nArfxrIlC3Ho3dq8KyzKd/Y8BKmWiPevl/MV6qv4/i0AY6vecBvU0RhjrIHun3dBie2CpL/EkueNUEEnD/voUcLTcEpeD9XfdpPx3vlQbBpHZ0fMud1BVexu08HFCrjaUZlP3n5zMFBo34Uf2zCmllTwcPLgFVfHqK5ytXw6PtCbn2SQw3hdSyckUFrzqbyxzJnXOvK8LT9EOmOCIQn+xJIoSyVS8GFj242wOMu1njRvwaThAlF2xRgXdtL2hHgD6VChtj/NJtcXdz5jrAlHFo/hGbOTynvaD7hWUV4tP0wPFbeRL80YqhuiRcH6LfjyI4AkL7uyN0uYnA54Ak+u8VwzX8YI6tP0lxlRU4b2UAi8kNY2reVpHblsrrCBqzXeYgmyiYgn6+JQWv8+ODsrbgrZCvG2b7G240PePYjAyIhJ3r/D6llQA2yPJ/xaQEDlPSfAq/V6iFWZCnNKU5n+5TbeGrzKxzb48SOQzIAusoY/X4CR9gSyNXM59//dDH3w060a9ZFuduWPGtcCc2PY6if+Yad0n7w8a73nJwYREeXnYMXzhEoduI1PwiayBbXrGniWwIuKUZlla8wbYYnvNpohC6twXzpVzL+2GzM47V6oNLtPGdEaoBDpDcbrCwDTOunE80GHJrcAL6Cchx9sROHn8Vxl0s3fAuVh74YAdybF4eTJZhvjbpDtwsv4qYPfSSYuAG6DrpAq1AubmIjWH11G1kmPMZmx2RI6/7BGd3d+PPwIvCLOUjVUe+x4P0JkH9qAVWOy8lUxIzTJqtQ7T7k1/IekMuX2WqzNeXfOcYVjqHUA6NBWu8fs4YvzNWrhNUXR+LSyNm8qvQUJoULgs61Sg4fzMSKCjH4ukYav25IZ6O2M9TdpYig/ofrX6qgcPMhqGj8SkFu2az/XA0+3wwBse/zUD9Yi7bdWkOO4UKYWb2JK1e5kOPxG/jNRppz3dRgupIcuE0upOJlmyBKwIfsbhynUJ3fWH04FKIdf1Lr5naUEdCHavUE8J84C9MaNpLk1krw1PbjWWNN4FY5wdsR/SCYtoYGzypBzEspcGw3h5exF8DhxyioG6mKJ3xGYMaFOJgO/6ByjxWrpItA/J7HkJO9GSSeTmSz4TAetyocDVqCYN7Z76DrN0SnHhwBFW0NGPlBhjXagulMfBypTt/JoV4P4GvcNq7IEKRVnq14MK2BClrk4eXenxx9/hiPXqQCC1V74bivFpteKgAna6Z97usoVF0fcosnwxIpJVh0IR/X+Vzkyr5k3CeVwhNu5WK0sAub9v6mSekn+fBUE7itV0gbSltR1kMJGjdlsuP8d/Dsojxb5+SgyOiVuGbdIRzxXQ62jfwDCzbfZ2PtJVj91RROJq0lzHjKoodz4O8PR5y9NJG2ayrB+qR97N2xnVwS3zNZJUHp2EiqDk5gvSNFYGA/g+fJm6C8pgTsCTaCD0GGkPq8mdGmgAeiTNH/QiFPD6/iY63DpPK5nNJ1dWHVoeX82b4Mxxq9pAMqxnDymTItmHcLXNV28RTfXaijcxkLZkuBtts0GDJ4gHPj26FHIBRT23O4rbsbS2ECXPBQYZ1r9pQgKwwh9tkkax4EEVoXIHGsJI6KuwP7xf6DnhJnkJzzE1c97cbrXnrw99pO2jv4Cq87L8VbaaL8sbqSqm86cddJaU7uSefE/jiKq0XYNbAG358poy+GGbTgznP8QWLwe+QPEnkpim9vFuLKGmJnQ0mIU55Fc9rroXySDQdL5/OijHckWhPGi183kcCNiWj34Bpk3dCDr6012Ba0BqaXLKCOKcZ8utMOB4QLkFZWwrV2KcwKyobYI5Yge+0PDcoHsMDVTojeOIvljbdxxcSluKveCm5F1aCm83ZeMywFcqODYaBvBUbEWPHEEQL8L/kzSEw4xZUTF5Pc4tm03uQnnl0/CUL7euhdkjMn+b6GxrRglq1UwJE5LTzoroobrrlj+jtNjCAtuFU/hyRdnsMTzzjquZ5P9S3+6LB+EqSalHDy5Of8O6KRLb0twNorl6uiX3DE7nb00AvlL2f2oIWDKPknbYZdm4+wa/Yatkwwg41vBihnxWi6OaMWQqocuFtKGXeI/6QfZ/KpSPIEbHJ8y9nj9cDj3iVM1bKD7GNLOebEd7SMOIn57WpUo6bK2vKRqHP4Mnq36IFb6zGQybgMaiIRLP+knf3wL722D6Pns+R5zhERXq2WSNItNmDhMIG3JUbSXAlv/Pr9EbU8mMM1+0ro3Oyr1LHnEfYlC/OPlZJwxmYt7Ir7DQLpY/m/pFO0RO8XHlnTC7V9zzg8zptUNaJYUUwPAvbr8X+rZvO5OCscp7EOqnxleOlABd+SD6L4ihfkNPSLTdqN4MkIG0z1toUCSxnqP+gL4DMD1r+4T6/nZdNoiThY42eJv/IUYNLbqZTPFeysXg6eJmUsLdTBi0AT5WIv0sVbWcA/18GDGAtQKSiH9Dx99hOOhMLxS6msSIv/iZzGbYW12KYQQ5M9rHE43BC0no0GuuRLKrpZtDppHQZ+f4JWdaN5znYJdO8ezRXvf0BpqxbUfHfgww/rOa1Rg/uy33Ou41eSdzNmVaWDeOn8Tv53oQBfhQvB7Dc5ILVsEhfvuAtfjqjDNekMCKpZiu8jVUBthzCqemSjyFUL6IzKY9/hg1AX7IJ7th7CtndJtF0mG5M8ntKSkUGQe1QKx7+cCnZH5sLISzL4fVcabDD1Jd9oY5Qrmkmj5HNhW+QgTlxUB81++vDkdybGDXnjttSVIOq3ATN/e+D28F98+bo77oj6ANvGvOXP6bJQP7ycXiR5YG3IKlAQmgD9W5PYV+A1bUw9whmX9Kj51m6MlNKAj1fUIVZpM7Q9HYZPu6vo7tTdGL88hC9H96BbdTXci7xBV6S1wP78JH7/bRcJnKvjH8bHqfgj0NhbY9lyhwrbmAzgEosxFNY+EX727sDJl9Vw6NpdPtcawyfXzub6jeXs6zSJp407CVkn5UGzXgfseu+RrPUZ6hAaBscaWRpa/5ybZi7FxiMz4YZzHYfd16GtgZKg03ARx2YHQtqoILToLYNJMqn833AeOjgMgLdODjvKKdFhAxFQnNzMZePyMfDbZVD/+I89k9rI5XEXjczMoh3uAWSnLway1oqw+9lK3LNJj3/UleAW0Xu8cLsvB5xYQO4HpyGvrAdH++cw+uQkkDJzRaW3guBUfZ4Kz1VxtH8ErfZ5gIfO+XFE4nL89mM5zt+pCs4byiCx9Cj8cFzPNboz4VvSYbwxVoyjalRZSPAQf7HOpkJbC4hqauDDDlM46lgp7ssvhhU6T9FjVTBnPZqLB3omQ63cVRhKFYFy1Sau/iEFUPgRf/7SRZcNnXTR0g8/vEzitFV1eIokQFHBGgL7D1Do1L2oPFaV01cbcXihBCxzZ5znvQTnb1Hjb62PqFzFAH6fzKdvRU441nEjjYj0QEF8zfY/RTk9axN8aZjJOzWXoaS4Odw+64leIa7k3vENxo025tO1ETzv01rYqXuYA8u3g+YCpJep1uD3Vp++f38A6Yr9sFBYEt+t3U83n9SB1rhjLOWgyFYv2iBjkSBsWyZDHfn+YCz9iaItHPhi9yCvZnfKcHoCF2ZN4JXjZVg9dApo7Z5C0QGj+N/1s+wioQ+WNnW0vl+L1cP80L08jvL0F/KtPZOhfO4/uHUlBDbkKLPnoX/8y8qOLximsOjaXs5anI/rP57FpP9kIfOAFvy5IkiPfluy19GtOKZUny6EyfGLQGCL+yKcVKtFuhuEQcXWkrzy9XnSMVvewvtYSPE5xg8sAQvjephzvQEuf7LGfws14NWLJvTOPw35CUP0IfEi567fRVijB8Kt5vQwYiYkpjrz6DMK0PlRn18NdbPSnHFs1hcAV0edwYEs5KMnpjMkZyKcvIWrlaWhfaMmjFoegsMqonxJ/jO2Gc0HwfdDYJ7+CX+F3oWUH77c62gNnTcU6PYeS/QYvIKTM47TAYF/bNp8Ds2kmlDrdgPoJM3DipvT4N9Ba1r29jXNelhFCjracBWiaGJ+KR1XFIcdS77gt00mMD1QGCQ2e7OoQgtfbZ6GbWKXKepgGX4+0A+PLk3im/bn8NIjAVCP1QWL6X40c95nOmMah+fjG2nyxI+c1H8Fsx9MZTPXX9R+dC4NRhmCh4E5KRT9YjmLZtYq3w30ZjnsrFMGofQ06HMYxrEFo9i30xxe9ifDjDU36eWYOHDKHkeVX9wwtcsS1mzVwvTaC9BRJAMug+JgNNOFcg7H0MXT2jB71zFScunljpnHOXPEW7K0TgFtj/mwJUcO/Lqu46tgc+40MwMr0wZYa74Dvvj8wIHpQbQ4iEHCModvusvB9VlL8PoEbXr7p5LHdq+Hf9f+0siqJhStqyRVrUheUxTEuo0q0K+yAA8nr0STOlWS31aFlqVWWHaqgx6M8OZAs3Vw/fB8HIq2AIF3p+HHBB8uSVHEFREnMKjNjiYJ7mJz1SZSmfGHcIcV37OQBP22K9iZvoHtFm/gzTHVuGFSCrp3XMU7D3+xS0YVvhq8AE31wrBOtZks0zx51a0CaD12mwUSHPBWmDnsvZBIL1d8poEDhfxcSBNKzfKh+8dzHGW2gdMXT6Uf1wLgvE0eNoxsQuFDFdioY8/1itqge3QE/6tqI+VFLdgxNhoUHiHJX6rm3gnanDfTE9w1iAVWWMHPn0aoUXoMArt/8ViBVaRmY8tyH8rIvDOFTR3VIF/yHmTPkYCuxyWgdes3WT6zp4khMyhtkQpp+V4ndacUOD9TlVZtsoC1poaw5YwsCOw5iC8ThODXbA2KDp0HIZU74WI+s0FBIHlfOsUbCk3BbKs5Wa8zwX/XymGzSC4rbepmaf35WFt+C2//84fsNC/yFDGD+6NtOXtsF3mPnsDGTZFcNVaGijy2Qed1EbJdv5AXeXrhyEA5eCm1iH7qHaSeX75suEgNhDevY49IZczYls3m5u60xVED1ObaQMcWTVjep0EN2y0g8WcOu+97RzefAaiPk8DQiv1wc64orVbVg7iUXLTfKA5KBb3UIaKJ8cr1cE4jg0e5dPGthhh+L5CNnjVqsNZuCR+MqmA9Ux/0vjgaJd0UwQ02U4jBOKwM6+A48UI2jkbY3FQKrdMSoSqsmSMFPuC78FR427QH7n4ZAst4CV4Z85uE70+EvBPXYGf9B/AYVuRPrdI4SzYdNvuNZGG57fQmaDoc/FkJC1OtIS05GlrWVUD3Pk/QuahDzRduoP+mL1R3/i1d3nmHS9cD/G62hvI6dYYDv7CgKwaE9yhR9+whtvqdCW2Nh+igYBvd72uk9jIhOGoYgTNc5+KSKlO4e06LW+5dw+kBLrj4fCRZdJXhX9H9XO8+CqLS3bHszjArPDPCcyQE4cOBEO9wF9ZfEwQRp9/UbypM15aoQ7hHC8zsKAHPFi3+aLKfAmg9JJqlkbn1RT4n70pj/c5Q1VoluCDQgUsyreln0VhKqbXhsZlP8ZR4FJ5VCQUfqiTzQ0fZN8YMNOze80OxVEw+5AP9d+6RsIwwnlOzhtvDIXz9Vik1j9LFj0MAK1cmo+Lf0Wzs7sbnYj0w/b96CC7KBQ2fS2h4WR0maNxmtzobWPzuNXt3SrLZjAxYpfeRasMz+XtSLMeuvsDPZu+nm0fWkCIrQdKTk+S1fDWLWl2CKbN8aJ6XMw5cYbI9lghJTxPwY44XNq/WhkEDTZS/VYitpyZSdkIFrZfZwakm8rDwuQPdq2uDKUGH+YS0PDwdmcBv2A9OT14D7+QZFsmr8+RiGT6Tq0+HBjeT7ao6/rtdBzpcAFLrPcnvTitWXJdDt6yNYK5bSq4GEtRwOYpszaLhS5MW7DRKA83yO1hiNh6kiqr4Xt45frbzO8Y+20H7PN5y7s8ElrhmAenJSbix6gbPnLaLRw2eIzN9Yz5OYtS8tg/O6A3Az4V21JKIoBysxK9Uu/jiowgumrmTo7RmwwyNAuAMIGfTRm47kIwvraaBWdAZ9NyxCky2dEJWSTos3nmTCtdlQLfzXd6ywRB2ZdmCvJgYrMcarDs7jxfa9HGOVRBNtfrBGmaurPdHgXJuSVD3cWeQ9leHn1onqOJuAs/9OIrVS2NIT1IArl2VorQ5Epg0VwtUWn7A00IFUCn5gEqQBvfNu+l+sQLfG5eJJ4PyqP/EMXrg6ogZIfnc/U4XjsT0QOypEho/0Z41uk9Dk2ILV+1/TtN6nvBrSy9IjC1BlwMjIalkE8a47+CW7bVsU+8Ah6XNSEmrAv22y5Nnw2cOCHkAm4cM4Pbtd9ywTJ6mRGuy0alOKlxpAc9eryTrrftwe7Yr/tWuRLsEachuPUxdcbf5mWEW6VqakVu4PVUm/UYnmdF4o/IGTxuqw5z75vB+lgK6iNWTovEf6puRyOlKvWQbLsORxTfppm4vV9215QO24pDiKsrFR+5z1b9AGpw7kju2+cAvgVCYaCzN62SfwluZNNaxHA+2Zndo+eZ8PnIzHKuOhbPlgYcw9uEcku56SLjqP7Dw8aQGK1WY53sfRAcN8MwnFarnQEq4Gs8fzsWxfIAyDgrmwIvCkbjHdAw0vV/Hq7YogsGwD51Y9gyrne1QfOJDemPrTW6Lj0G79h4mXSkYPTYWggZGkOg/HxIQ/EgeF2bDOHMh7Pu8hY+b6vIZs3E8LssS9tfkw+qpPTjW9Ds8y5iJ4hXX8VBDJWz7swHtxRfhxui1HPRcAQYCjCBS/wtZtWrw9NUvWMpXn+tyYqBgigUGWg1x7+xYVv8zDrrZhtu6SunKeAmMOWUIO4374GSLMxzuWgn7quawsZQXiHWqwP3Xp6lm4SuScDpP7TEnaPTUE1D3dQAjBqNR3UwW5zQHYuxBZZj/9jYoeVTA66vD/Kl9Gg6tuUVpNe/hj5UDrvxWxNsMP/E6XWsIi9zLTZGudC+PQaOugUYXbMSJr37i/oxmFkut5wjb47Dh6gi4ZHyMjWS/4wXHKJQrqoXftvPAaVokDdqZ4FG9JrxwVh4eFhlBYuBvemsTj2eW/+USuW9gP302kMQ3SHK+SwKlSXQ26AVvsxsDBbaX0E+2Duf5vYZDyT5wNvg5er7Sop6/Q7T3WjcYl77k2EA5WPLYC918f3Hn1I2wuXAPfZS5Alhvw4az1PFTTSiHRE1GhWwp+Pp5OdsJrILaYy2w7KcFjigPocVjke6teQHBZ5ZhikoB2CwyhuK4GtDxFGGjx1tpz6ljFLrvGWlauoBv0FFoq19O+j3DcNfIGl46+vEvSSkeFFPAm3YvYPlqW7b+EIx/v/0ko3lBeOKUDxamqMEH8fO4Y68d1Uzuh9sjNtPYl06sIzAM8mYZMOqGJi0fbwFZG6ZA2Kk82OmiCHtNJ/HM+2lQ3yhJVdsJt68ZQDGvbHZcuBNlSuShO2Etuy79A6HTBygidhZueepCZwbCafeQHEy6FkR179ZCwlgbuPj6Bj3WLya7QQFuEdBkV6WXMCEjjRtHX+cRWqvITjMLM66IwaKuKnB8ZUiK+2Kwq24NfY0/RZPKd3NE+w6wEv/Gzo+NaXisBLTZh7NJ3mZMEmqGbKEEqIq1x9hlwhDw25AD/Lpw9SYDqs9Vg49XU8msXZNl7DTxbMtVtnjyhoQXZsMybVEs9bvFM2zvYVUigviN/SgsHMk73Q1QMPQExpMH7/Wdw/qBv2DIaBb/TviIckkMCdI+6C85ClzNfoFr9Bxe/3Qa/aeBFNYcjX3tz6HRopJnWavDkcYi+PXJi+yV+2jwlSu3jd+N4w7HkpTbRlb8FUJL/0Tz7lMmcOTGI/b8kwD6e61ol9AhnuS4AAdnrabPrm0kdrqaPRcepkmGE0BiggE82O7L3SsJ36dowcE1I8nh03xa5F+Ns92bUCttIctLTQV2eUhS+6ej/4sdcN91GmTWuWDugUv07bgHbjH8Ct1Qw0pN4yAyMJwP7LMEGe1aCDDxhsVqmdA2XhbClyTxY4s39DitDs6GT4byhEU09nMwP5GX4JfHr7LbnKtw9I4IN1k4oPfUHbA0uR6sZ0jCOtE+Hh/nTQeeF+NA8l6uUpeDNblveOhCJun7b6f/Wg/h8mIt8PzcS58fzeQW571wbv5IFG/Ix5BT6lix7y19+NGIPhv24otNk6DkyHjCB2Uw8tYuJLdNvM9pHkw4KgFiYQdIDJxxxsFnZJ+vBb3zn3OudAvVSJ7FmHx5nrvkHJ9XOowOdrVsICOJl3Ou04Sn1mBfFQBfPuixq89ByHyaRilvzsGFdRYYGOxPJc83cM6pfrR/IgdvtiqBt/gRnmAcwPavAI7N84dQuy24b/kNqhwpAmWLZVizzhzsnF7R+8qv/G7HJ3qzOpFXHOsA2zuG3CTVT+2ei+mAbytX7pWCjgPn4U3lRNi0votkxu2HwoefaPJVZUyKPURWS1Qw/nANxk9UhfxILbSIj4J56tr4b30Etmb0ooW4P3svPIRF02tpds8HsD4iDSnr9SBF5QKZ67Xw3AnSdLDoGKeOaeUJLXHcoilD8+OU6J+IPuhM3AQXQ2TQVf8Fby+MwG92iRyo/YPeLnsHE6bcw885JgQuSiDh+phfrRsJl9rWYFncKLyaO4YDHeXwfOcuDjg9DQx9HoPoIz14U6ELLetUqTZ1K39ethTMLHMoQ0MVXMb+QmfZaD5R9JlNVCzBOjAIIkrjofvuYWgNC4Y9O//y5qoGDIocBJXtE8mrOQLXflKBpVkrOedYEY65PJFOKM+lJbscuOJVL4ldbccQ2yCWbD7AkS9GQVxUJ40P1qEyTx1QPfUC1k5dQx83+kJe2mFsHTUZ80500oRkDQh5E0j9MeFwbsseCBVfDp+mvcW1N51hbW43f6jeh1ktlpSzjUFrVQV32oylwhJZNlpRhVln//D+y/FU1R3OXa5+ILogBBsDlOHA7VCe3z0F/+s9zZM2VID0pym8fHUb33l+E38fSKeIvC78vs4QAhqcKfbFQdzda4nmM4LhrEguVYiIcNidWpISqYO94T20vNoC2g69YZ8XL8DLvh0fncjgL4np1K3WT4KNr/DfgX1gO+SAk6N1QD7EjzNkZuKMDiW+NZBNgktns3SICNpV/eXLKTt4Zk8lqbiMg7YH5rQqYzHY5fTTLHVfSC2N5o8FW/DpplHwPdEcSmg5WGtag+9jDfYyqcYAmaNcY/SQ5o+azoNGDnDjnDq9vVGKw8+O8f771pAw2RuXeizH0Oo19E9BmJPd9iHsnof6AdL8YZ8+awQ8pbtDghBdFEZTtf/D9i2FYKibQZvFssHpijXPLKrHGM2d8Ez4C7hpmcCqh8PkkIDUE5sO11xXwMpX1rgipQK9LwdzudJCdi8+DY3NxjDu4xiK98pm3x2aMC5LHyd/KGaNH1m4OnUHmOByPGGfzUGfx4C/y00e2ZgNX/bs5dLD2aic/5cfHHKijy2xtEx8NaRNmo97SmSholoIJB4/QtkfjtDZ0sFp8VaQcP8Fnpi5nuKHNbjOq57HyYuCyIosnJDrjj3Zs7Dvjw3WnbQFKbFakB5vi9qHPtCZB+50xc0E8npTsKDuHJxaGMqS+VkY+egcxLXIAK+M5sXumzilyQSW+4wE4U36qGd5nPYtn8eeDw+SqFc6SeV58CGzAiwtPoU25qrYLjYG8KEVKkWsYF2Rc1A4bTEFSBay3+ipfN1jOyk1RkJtYBWa6kpBwqvt3H7XCKwPnkV1LeapIx7wzF1hVC+4gp0nykHzhVCIXWgOtjr5dLHVGA47fua5qnPosvg8Sq11ZaifShEfBXjBRz8qBAvQbBlD3r6zaGldFZYFa0OatifGRtwn/96LMOJ2KY4SyacpZxAEZ3yiQjs1To+vhPKHZqS/K43XK+bCzdwwcrwP0Nk5hN3/jQZduxcksH4pK3nFoY7zcrp74yckpwSBAM3jGeUEbn8rKOKvAHwPl4K7xitpcFwSrtMeRWWqFli2ug2Oxxlitaodvm7P5i/ykiA/ZwyKF0uCYPpE8hrzgksn5eEMrQlUGt9LZqW3Qe3JYjJvHg1Xo3bA0P6TUD5sy7vf1dIRqXd49tdsLvIawaVNPei3/gwsMjcAh+Uv8f2seC4vOEDZhWcwprYQDOra+eXJeu5s+Mv/o7g+1EJg1AAAf0NIO9qaWhraaSmhjJJs/qSBlC1FoZASUimjMkqk0iJSGaWiPUmUnRCRkpTtPOcy3lHHvvGNFZYw8HQaG3kN0aEHV0letIfDHaejh/xnmrh0AzY5x5LfvQJIXmQNGLWEzGre844N/pC5KYZyy0+TV4Y9rxkqpe/eHdT9exXpnZQC42VyeG7iMFuOi0fbzSPh1r+/3JeziXXmP0Db4QfUfHYplr02gk33u3mO+SWodLenSysG+aa2IL3v9SWpkm1ovsme7T8b0E5xC2gYfQKebT0CRZs+sqSjHedMD6NFdtdZZzShr/gNXHbqEKio6YCeywz0NBSjD8cm0nlrKy6ZE4e/CjV5QOYOpNwaw1Mt9lLPCWs47t4GK9PFaN0zZ/Rc30YdZ9ZSvdBKPicfCsdvCkPLax/eP2oUCLpE0oGWeM7W/MO+q/VpxZo2vH4NWSTXkEXG1NOiK7W08vIokJv5DlcmWrFRwDWwerQHj/sUYM+IITg7xZxFvx/Gdl9vjrhoBSLqk8g8+CynqSehfUYcj9U/AWey93LIlgyKXMzgEJQC2sNyUHPKiDasksPpFv9RvbcL/1RbQr8WmXNk1y9yLXbFvLvXMKxDAi7+7cG0A+vgM2xjjz59kGzpx7o8A4je9xcLqzpI20aXhauEAYPOwrQ5+/HihlegJMwQdGAXKzn/YsuOnVA6VYK77CSwUGcMdJ3aDHnt+9HW+TeJXKhlw/d59FDxFSyJVuIn/5TJ/9tlrNYyAIP/nDCmrZzkhz1IpCUY/8MLsND4JOzJTsZm8UT89lGE8o+YQGh2OzwoFIXK/TUcfH86dzV8gQlbJOFv+zB0+3pB9u9+bHBUhbB9hdSp/J1yBxSwtsWa1b/Phb+nPVlg+VnW3GkNMl0asK9YHUqH3CmoJRZjdxdiQs9PiqxMpTk/HPBlSg5efziD3kwz5gdtluDofZr7HgyhfewRerpxCJLuenPvzEhoXRpFfjZhoPVFj9a7S8Ch7rf8qPwALjv+HLePNIHJmyX5p8Rv7tmxjFuzb8IM3R4WPDAB8v6ow/NbP0Gm3YBVioJYamotG2Wr8+ov7bz37Vfo3l+GlxttIHavKrZMNqPQ8mf86N5UFBG/DJffLaY2o3f0VykEOqrO45mdYpB0QBkcYjfyk/ar9LZyL35t+kC9TedIbuF9LHsYz3V3z2HoFFGYtMeSNhiJ8q0pmzHe1wPDk5TIumoKRIi6IXc44rOD7tQgqwbhkR1kJXOa4r/2kZTFM/CVmMWbjv6DgqMjYMukVhLWyqM/z03g9Ugb2lmpCV1jIjA+zpBrY89C6p0uXPR1Phdbi9KU7zdRo5VB7gKyyoYWrpybxfnjzoBj/lywur6CrEUkoC3Mj2t81Dhw8SSI3uaBr7vz4H4to/u4DXx5lgpw+kl0ebUKVgiW0ZwiPTrTKAzNV6xwq81R3hnRz9eC/8KioXbylj/O3/KV6ADIgvzrGzw7bSSIS4WiUsBMkrJ4jDPjFSHXupDn/10KFiGC8GZeDwo9SkbZPj3Q/3ORp7WmkmvdLX5yZBpvffma1tl8J599K/jg4XwUfK0M33ZIwwJ7Ddolu4f2PBcFyecTqNFTBZVuFrLUn/F4a4I0bYlIp/+756ajNJ+xH+L7HftIc+IZOhXpwTcVltDRona2DEiCM5162OtiCCW73rLEmkSK6O1gA5ez+K8/DC5MM6CbZ+Ngf816vvt9Ik16qweRwoo4W/cc5Mn1w/CVyxAZYAwylv1QEFXJNzXsSHbHBe54qwcvRn1GK6ed9Gm1Mgus+YYQJcEfDzlwQXAfRI9ZQ9YnD3FB2mRoK41Bq2OrKe5hHXwZOAoXj5yG1xmDeC5jHw/KmEPhyu/wvsUKTuYtwFueprzlhwS2T71MUjdl6LSLM5Ql7YB1VRu4Q+s57lsoDk8EXsA9ugCdEtYYf/QE5ArmcNppF9B7Po7Fuk9QVP0SnDZ/CsxwTeP18+fgLufD7BW0kj8oTqeWYwP4YPg9ecdo4KMERxyVLwUfgnv41vx9tDWlEEKetdMStXhaFSUM6x8/h21lBzn/2mF+KmEHPNOZd1nvB2f1n6ATMwdz8yWwpsyO9yTpsuOjZSA9+zpQtTWgmQO83udHWxyEoXZ4A5e0jYekX4nYq7MTwuod4bauBrV1GoGJ/ikq+zWGo0pFQfDod1Z2UyEvsRdUUi7Cu1OfYoV0PF9aNAJ0l3ykVW8SIdjYmlO23OQ71WX8OkAL0yxssUcoA6e6/8b9eaPh6Iy1DIeVubB3L0f2vYIWN3264zIe67Lng832OQDycvj7oxC82NbCE2X/0hZvI6io62DRkFAYAWNIOGYIPYwv0oy1I6DgpxwMfFZi++XidOp0Dlm710Hf9yKQmVRDSSvC8N2HgzBpUhJt9BeAo1Kr+LjaWNhb6c2vb92lzGln4MjWaAx4J4Lnj3nignhvuhhtA1rllyH94DoOrLgGDQeDYPEuVTxWORfLut+yzILZXOm5g1duUITHWr9AoOsTxcn+pfsdZWR1O5RctZ/i+8UrcLbJL5yQlE72N1Wh2VUd3x+5BI4TUjDvrjMevDLIF+VnsejlWnp7MpzCXt4lL3EpeK9VAfJG92Gb9gGc82seOCp+gM0ZBtDZ8JTaIpbznohCKthqDgELa7jwaCWtStfn4QQbaJbTpAXLg/mZYAx+VSrkPIsy6qgbAS+XpYCKui397a/GbEEdit80FfxVe/HCorX47ZwCLPs0k7yTRsPtTZNJs2s8WB2bS8E3d5JLti5E5/aRrtUqmrPkDrSJmFBStQ4kPhvEcYJR3OisjPVFaSSU3Q1FrxHOnrPBg9Zf6Oi/NfjvwGRoipTCpOrZVJ0RTZlKCdTl6kUS52fh4/P38MezAJo+ZhXseasBJe4fWf3JLuqXGkIVc0fwfbAG6jOFaUS4LZ3teMYh2wdhw7dJ4Fi9AXJX2GJIogF/3l1Nj6XLSO9SFgWvXAXjdKtZc0MJWSdqQLj/Ijq46Az29Wyg/s4voD1uF8lvmcAZm7/h5id/cLutK2uYKUA8z2DoGUvf7L5xvVQilN17x8rRG3BU7WaSOVxBR0Q0aNubKWA8ThwOfXjMO64Yk+2by3i5sRWslkkgzj9DTzbowsisY3zoohCIPVxIBtMDQWrDVGz0fo0Rmc0Us0QR5dIWUk75B7B+7ISLNdVAB5LArzOQz1n70dLAR5xtr02THxImxC8gMbu9vGfbBb4wahJsrdHCq91/eF/9P4pdrcLn9mWipkomTjpjAEE5YfS7xgNa7WXA9HMypw4qo9ikChb9GMfrc9Ox7qskFqo78K3IG/xfyH5sHK8C8x9MZoP93fSo0xuWFNTTk0eXUHnsUcz5bwM/F7pChYMOjKlmcMdSl2Wag+jHLWGcXtoDOZdecnnuB9qi7Q/n1h7CheUvcYb8JNBQrQSx5bs5qDKDmqb58zKPWzRhYgV5Drniz5DVXDSnBpQ+WoCp72Me2trDY12O8LilAnRl/jVas4bp7VMzyri4ji/V2nBKhRosaurGxXUrqcBKElWklWimjzO16b3l0IxOuHavH0OFosC+XAY+L51Ox9qW4K33/6HzxpFEJTWsrSDDK25+4/nLisjl3SI6+M4SIhvySCw0inyiV6Fm9xWM0zzHDyXLcdHdT7j2/Sr+EqtEkqJj4PY3Y7DUceefuVtYP/QuVlz/BmtNf/F/v0/wQX4DapIrwDRUA15pXaKf0w5xbLcrpef0U15LOTycfRpcC9ShdGQomZtIcW6IIPRVmVCRObPUET92iRrJyW+GYdYbJcg6oghCkwrI7PN+LHtBkPM1EidIL0PDI22wMUiC27dUo/N6A/QwPkxNwc9AuDWMHGOEIWJEBtYWXoU163dTxGqgx/cRps/bjelv91HAvb0YYGrGoXFGUBOcSVkTEuh9qjJW3xoDKjarSV9qNyacXYvb9GVJIzaC3Jaog98/bxotXssHe1LxhmIcaieIovtOSTrzbzFsCLhHpUsmc461GVzS8ABjAw2+XzYO/gqs5tiFwTz7pCPHBVtxYKYq7vs7jTwGhcAqrphTL07jbx2GEJW7BzSbLGD+Hg2SsA0mhwfisPWxIMpriUD2j0K6uicUI27toZjNW0itjtFmiyN2nejmE8KJUNnsyb6+oiBs4UAeCm3c3KKO1oGCbFmTxSevlpKhXRILp/mTUm8cvttMkLm/AQR0lUBcrRM+O9+htd2XcFe1DF42NcUQKzfUnvgFwzw1If/5B1J7/pZT7BVYt2A6VxqeI+fXmnj28FbsCZqDLxdKc1C6DhwzOcyLw0djxvZG7t92ksymfIUyp1mo057JXc/WUeOawxCYMAmODP3HGZXBpBk0Fy6YOhD8Os2FPma8O3EWfDx+BqNlFdFqkg6s0lRGcaVZNPnQR4pp8MGqoSI8o1hFdfrZnNZXDTEym2ih8AhwjAsCtYWfsF9sBxe+v8lH5e5RXooqOnIt2bsNc9wzSzRsngC3+/7wcokJeOLeNmj+Nge3LW7n/rF+PKyqTKnF/9ChJgvHGiiBh04BSzb9hkMji6DOfj/YVX+kqp4+aFnzmX9cLANZZ02U8jMHx9WTsaXkDP3w/8sbE5L5rKEpzSpy5J9a3vTSNRbC80Upd2AS2NdtxXK1eExd3MpDdbtp0uKV8HSkCD4vbKC6WfUc1XgG8i2N4NPLKRBl0c/FFnU4FtTRTXyQRIeSWbenm+oL5uFH3/MU/t4a/khsodiZ70Bk2moyk5uJUqpO0LNsHC1fqghy/R1cEHcUzSIlwWVGMc88sZyV5FZi+GJPsFLewxMP3EFNDSN+rFRG8wqGyWm5NjiWv4KnB4Vwx6EyPKafix27dpF5Zi2ljT+Hyd+UIfBVHCy7rgneprf4X8w+ln69FSyX2vP0pvXsc72ciyQ18FXOazqbE41xkiowxfMHBY66i/sflwH8XofLc9/A74flpDzwhHN995Dl0VgIPCsFgsfU6PajZdy+soFTE8L4RrwPZ/3yoG9fptC9+zp0xb2FReaaQMXHqezY6cMZvxs4auYxuhs9CtVPvue7xkt4cHEd6a7rRKE2BVCOWg4f7F/RqDvO9CSuFBdPvkKp1pfhcbIUtuci71r9hfykdSEnfBNuCHqEWW9COArCcb2uF4W7fOG9pT5YdXIypNhXUPq08SBiJgiyqQvAIX46GRkrkNJ7Sf55Wx7emu+CH28b2PmGBpWJTICsw4l0aUELvG+qoIn7+3m5rygEbg/mtNO/qPTLDvgxS47U8yxBacolFLAQhaPzAyjGK4FVyg1pY6YFCJ89Sz9HbeF7HsXQlG0JwblR/NxbgX+9eEm2iak8Y+stWOPQypkpq0n+WREOuk3AQHEbWPO7BJbPWYO/RJvA999uvpddynr9qyla2YMKmy6AXEcOyebbglfzZqo5NI28Gv2p+O0ZuL3ZHRo6fuLnHl0s9QjlptxnmN1GsPPgeegvqaG4enE6NuUDJ4xnaL0izGIb88G/9Aj+rNtLFiv1YbPYKa6OWQgZj+6xZ/0pDN4ZyFkDw1w2IgcPPRSFrff2s+gFTdCTPAaFG6qoY5wg+ihf5v0xR3CW2FywyNnIOd1DcK9dnGwGxcFQZzwcfP+YrxbtoA2pkax1sYQvOF6FfwfXw50GZST9mVQoJgeGTr+h/s9ReHXgP1rQac36xyNxcqooqj7ZjrnhBeD9MxpE2QxUtxyDzSKGlHLtO6yJU2eoW0+z+kdiaNZ22lfvjde754NvgBAc+OIDP5OWYDYE4fvL16l5Vy3MCl+BCfYVJOCKPPN8P857bAqbVUrRwF8Xc+cF4GV5F3jxYiw+XyAG77uLaWfrFRLqksc7DdJwEPXIwfsGBZmtonFvmjluVhfJWAjSqvFfsEU2Awcqo+jrpvFg+eEmh+gYwOZ9MvClciE7ZcriurmNUJzuxwNvA9BOMZRVKy1BZaQFOWkU0U/N76ARXIqLs/1gUq0D9rh6U3zTFE6d6YkGizXgWaQLeEwXoe+L0vC46XjKPuPH1Xc+UmTmRpgQVANjC2opJVkRXqlUcO9TW77akQbC7QUkql4Me07PAebX6C65ArTnFnCDnigkZ8+goYcPqen5A3ispYBnlr2jT2ZnOL/Kk8//MoeGWd4grDwJHqb5oOPttVgcq0cxts4wN2gqW/hewk3q0mRb/ZFMf0fwKbIFkzonjrD7S9IOKqwRMZ7uNX2EO4uMKHPTNtJKzkZdLWX6e2w8/BOeQWLfVFixYRMJvV5Lt79t53fW86jguxlbGHiSbbA0evvZwMQoc1QrmAMfHL+iz7plsP5VLHlus0MpxRTa7TqF7TJv48hJEyG96R4tG3cUdoU186cfSfT0njpXr2Q4v30knmkPpq+n1vHnebagPG8VXAk/ivVCp7FUfCSGJzvx/bNzQOt4HcRPFkT/wb2glScM8wTPsPRBRYrc1kvnlngSmL6Bjb6uJNxlQs1hxvhUsQ8fF4lAqM4QlT2fAHo3d9KbHAFK1N9BrUO9JNAVjdJOhmRw9C7NPK0O/cfKQXb/VPw9yxN1DCRxXPcdTjHrpVa/r+T92Bw7ksRZYhnAy4AlqBn6GD0fP+InJIG9as38X5AkfX84nt4H9HNVRirk68nBazsdnunrRl4bz/JoVSFu0mtn3fO2fKZUFqaOtcJJ8UtZ6e4o0PCsgt6/IehsdRh/tj+hy6mBhA4LOEDzPf702c/rlRdw31oRmGclTVX615A2XsPerpvQLimC3XYFeFpAGC9xJB861EBVC0eBgMtGXHJyL4uusmWf1W647XcJ39BZD78DpsC2ikC6eLaFTBIYPvt/pp5aE94qFooxgW3UpybNW0c1sJvLauoTaYMNQz8gMcYQPpqsxN8uL/D6uyrapt0Kip/DeVzVHbYRGUmGn/aQa9hWVlklDfb3TeCEXzCZeZWDtGYzmj5uxJM1jSSlKEPyaStZtmgtPTLRhG9nZ9EzFRG+tL8Vpjfs4X81Arxtmy8Oic+DEZNPY6XOYui0lIF9ZyVx7o0mXP9CAPeb1HLiezcebv0Dlg9sIP2xNk0UGA3JkybCoQI9TFi+ly+ZnyZ5forWLzeC6fxr1K17lSdeXYlb7III/6mB8otAWFRbzE0eF7lk4DD7Ggzjl9D5uGzHDRI70wDqrnr0a7UkgFYXCPnFYoPoEBnzVYh6k8kCM7JQaPoeCkm0BQVeR7aa1uDy6xPpyBehRuswLPzzCJK0RuGRDTKwSvc4O1i3gmf0Yy4VE4XtqjNZIl8Pv4//AbfSvKi9pJi0EuM53ECJtJuEiN9vpaS90lD9aCPdDVWhJ/puPFUFUFciiy6dqETjjYfJuGgLlLe/QK03GjDTLIt7gxaiYoY6y9uUcs9mBfL7OJk9gm3g3Dcj6hyaTy6GoyDunDdWXS2g4Y/F+K2/Hr5NboBxtnvgUXwJPZDZAE4ui1jvpD64/RykrisquD7DDB6WTYf9wbUsdNiXNzpk47JvJ/jk7SZWkxWFgClKWLR2F1xZaULFX93xiGkBj5u9EUoinMn17hm46xZH8jnj4aq7He8IG4LX66aw4cgCDtjRiWtfr+VV4nYsJTGFl81LphVDQmDxAmlF0AESmB8Bl3d2UUSpBInOcWPormQb8/l8Z+VdvpojBaN2Z1HFLWS/nUbs986ddqvMg82Ch1FBS56akuXwbuRR1vhjDAsK7rKk+CtMiLiDrxYvB4FN3+jwkAnaJimB1y4A/95D+NV4DJTNygJTyxg0f34Ck+NuUs/cjeCSo8J5jxLBoP4T128XgJh6BTB9sJhO0yd4Wv8Lr8nI0zhFB8xusUEHj8V4a5ECjdd9BIf2qULsx+3Q6JSO9S3OZGjbg8KCuWyxK5nlbT3ZpUsC837PoEOplrA1l3Ekv+Nj8dY0LTebyyUjqKkgFey9V1DWOEEo6rsNY40EoODHDhiNhpCy14u+mkdS9JcCkt89Grrta3GLVA9kxbbB+OMqoL5rETvH1mKHRh+fXxlNRzu248uW6VwxRgsCIrp4dfN6mLhbHtzMXnHnCgvYpCiD1jH1HP70EbRYyvLncltqeRtHP6GXP0mpQ5zKANy9ZAaPDyzF21ufYe7Ea9iX7IHZoW4wOnMCXWhwwYQhRVBQ34q7D4RwTdsEeKN9kVRzD7OLvBOpJdRAwLbpfOz7KE5vIigZUKcDO6TJbsga240u0LxDMZise4vvpOtRUJAEbZ16GT1LBGG3yT66KZDCDv/lg3HZCd6ZKQ//+jIwK/0ArDp/hROnHKAQBUEIMi+gl2Lr4cvXWKxpKcW4pv0cZFbHGbnbSWRJHeqpPqG4YAOoNbDGvXFp7FnUAr+bxSDjThWsPEckljjEN3R06dB0XW7DEfD2jyF9XKsPx47dABF5URyd9hQMQnfRLCoHgUQn9n0cwAaVI+CtpAAJzRlF61YMwucRWhTjW8DJo3aiuZMjHjhhirEdynhqkQxUnndCR5tY9MEcar83CoJSi+G4SSbvWarHYoqXuHhLCobkyEHo6p30oXkAio3vUEmnHbeVt3CneQsX3JiCJp+HoPfZXt7dyNA9ugeNF9tDsN1vWDLzMcw41IG6f5jlBg9Qb/gr9Jn6H7QFjgLHvDTQswqnfY8PwrCwM/4WuU5HF+rDu6el1OfoAw27RsCmJCUwWRuDm1ZO42HvRIzqbAAqCOJRN+fSmzm78Y+AFQ7MG0U+MxH+zskCrUx9qiuIY6VQNaj4mkArr5eQz6fJLJZUCgd748DtuASs8NnE788eh3FfCUXWnOXc0AjYG34TCl0Ucceyl/B4XC0FZE2AmifpVPTQhg+XdYDviak81WA/3db8RxN3beTM1mH21P+BoknjYWppJWQPHaAVWbp8bG0n5cs5QuY/QTiYEcu93a2s4twE6ScJFiplkLpHF1fGteJbvRn0vfgzXPPdi+Yzl3HY+/d44WwjTtW2BctUR7izNAWkPynRwwZz9FI5CSPMmsj1ozvdM3Hg9rsbUbOQ4J76Kh7nOJ6D4n/g/aJFLHgqjOiOAN8f2AaZzeqo+ofomJMQvJz3glZEjMaxc06Rut01Nq4Jp/V/joOgkzt+1G6hJRkLcG6oGOyRfUcT5twH7dGO8GTjH9Z0XwxPxaJh+4IOljxuwiMXncAde2RhqCsRl+deIfF8RfDv8KekyGsguuEVvZ1mga+fzoeDgpNI+6kVmFr60Wmtj3zhUgF+PzsAnYfPk6FoHtXZNpPb0EMUqamlmRLqUNFcB2FfavhP5zSa0nQF0u77oXLfSY5N8aNTlpr4dUop+SwRgi1DtXj/8FS6+ysMj8lvAbEQYrjzgdVnroPgI97cYOTFZm5acET/Am/LVaKfNyq5dUwGzFrryut9g6i68xdIb/+BIYGnwX+1COSJnqP1au/Qb44TlMVtx79r7kPC1um0uGUXB/R2YaiEF+gHCMCRy+/wz3MNCqTl+PzCE97zeRlLK9fDtRmXufJ2D748/RKTZttB62ElUno+Gl+SPpB4E5xy/03/tunBv7rprHO3lYcFb+BpHS1obVHiS7ve0eGWZjB4/hUvfvCETZ4RsGzDM5idNY/brtrhCpvxcLXfg4wkl0Jo+g0sq06DHPEneCO9kcfrveBPW/P54nlJHntQCAJP7sPlXca8QuY03xj+ii8WXsd/vk/B7sxaGDC9Bl+zOnjXR1Mw/WsLzxa+pAmPDlDaTgHeIfYEb0W2s4GHCla6mpK+4BOMHScPcv8l0vPJ4RT4QRCTzxxmvWuqZLHFmhM+j8aSJdKoGhVPCwyU4EbpOLijV8kJt/o5adYDDNmbwMIrdmGRoA1+hKfgcGs7/dg/Gfa3M99P/wpPvz/E1yabKfjeGlj1pB4t5wgTR4fyUFUlufYZwyibN2gf+5NHNB2gNTpr0fNTG+xcH0dbdraDUqcaKTQY4l2TsaApcIiSTx1FZ9utsPLcCbAIN8WD7iHcvLiCnDx9UO6ELIxJGw03JJLweJ0oLnBdC8t/rWCBqW0w8e8GSBKXpSUiO8hE0AEO6ZvCstk6uH7bVpyV8wyXnuxALa8RLDZ5KbX9bOSQihroeTgRF0SZwX8xJ+nw+VRKFq3Airy7hHsVqcL5F7FwLni6BnDDq2G6kCAJr8aMokLVt3zw1RwyWqPP0WXDJDjnCSZmMZ5PCkePr0uod2AsDLvYwPmJRZB+dSLN9DMA+V+GWH/YCN4PvcOEBc9hSqINDJ6RhR3GO3h5fhwojIrAreYqsHaeLG1wtOKwtnpc9cKTefoEmJNtDA1OV6nMOJbDyuJo2ZnXdDvzHnuPisA5+6ay2zN9ePbxDGQ0ToCZ+it4Wasear1SwKD592Bh1SkYqRmNPqXLKVHUmfrOl/J1EXNwSHsCO02+oP6NG/Blsyr6D7rh3jUO8GjMexJxieEVCVFUNFIPdr7KBf3w21jllYSVe5fxbKl9dOiaG827lgdLfnYx7UK+1z8a3Lel0dInf/nU7hq4GfCXXzn2YflsTfgv+hO/nzQGg/YksfensXDB4jzcjdiPXpPLIVjhK/tMnQ6Nw+t5cmgBVm6XxV/uraC+VhkevXPiJau+0RyH+9x3dimIn27BfSNK0ddTHI5Z34BRiwLhnroSxAYQn73VhOlXRvPhG0n04M5NNArZyW/CuyFqQQy3lAXisUg1eD+qEJqfKsA7Tw30GneSOvfawY2dp7gmyAsmnGqEX2v6SDN8DLjuPw+69k9B86w3uy7awmvXNtHmgdN8f5Iv3rh3AJ/cHAUlHroQ3fOIJ25AvCipz19XKPGK2eWkvk0Atq+1h5jqCZjnrAJ1U0VgzFMherkoGq/b3YPgA5/goc1Iln3aA9ZjZsN4EXPe2nKf79eqgFN4IGaGzCJ1vWkgsB1pjHoYfhKYC2V3dtMgT4EtD8fyz3prELSdik4jRuGHD4Fo6zsE3kXGqJ8YwPGhtexkJoC8PZOdi6eAa/YK+HF1AWo+qsfhjnd8boIdzFsqAK4vl4Dk/U/YkHgdlfS0YJbpRbzk6QBHqpMhzbcLIPYVDTS+xiXt3Xztyyo8a9nB80AAsqJ96NPXJI7PeE+bvaTwQaoIjH1YgArKZynyoANSzQRqH2sOZl1b2d1bm54tj6b6Cc1UEzMTgkcnY7TRbBoweUYmbweg0Uccfv11A+GXWlStlgDFJq9BK6EE19Q0sEbgchpQqyaXHY5sHm4Jt7sXU4zNYoorsYf8slHYtfo+pG+dSHG+GqBjcIpzpOMoSGsUyIIed5RspSHnfOyxek0LdizGsTd3w/t/AXhH0RrXCa2nvV+kYeKW3dC8dB967HzIM5K0cGbTCkp7+oQSwopQJf4k9luFsNw3cbhgZQwy0gZUJ5+NAU1l8FD2He0PE6TAw/f4tvh1nFiQAseXjoTreZE020uI5KOC0d9/LGwLHsI1ziNgeNpxujn3PG5S7wW/SXrw6Vox3XgZzImfkjBlsQElvhGElZVK9K22lFWmnILtORFw460BVD4phtnjB3n2PkXK2qrLPUdSOO+9DviXF1JRqjSL64tg0j47eFkdxr/Fj8DLs0fY4+ZNvLfpDcw5/QhNgyvB8FgOnn6gA7N7dKBcGaiO9Li4pIxEXglhSasn/w0fTTrvrmLRkiacdeAPnRfTgZd+88FGRo5c1Svg6KpDMO7HHtoxUgFO5HiAed0XTvWWhwqFUaD1M55mjnkDM9b95lU/y/jYzE4OqTUl3axkml10ECQr9XhX71gY29bIDaNWoOWaJ7BRVBuFem9w1PMwFv48lsKDtvFfVQMc6BeCZUIilHJYnpuWEsZ/uQtLZh/BP4719HXGKZTYkUNvfohCqqI2dO3NZ7NdB2Hj5JUw608F6xqJ4vqGh5hQKAhysxth93ZrlFccCc/8/9LXDV/YIV0ZL2y1IdcJrlS+swQU5m4Cv78JeNOoGidvUYV9hpWwZeAh6H4QglTha1w/8ixYBqbwDv3l0FbThuFGVhyarAFVwnoUOrqJuqWjUck7mzFqLeCHMThwMoYdxzqyW/VbDgdt6Bq8RgVbokir6CBMAFe63yQN6W86aJTnbFpWORZrV/txvpoyzEuZDRFfpsGFps2QvO4uzcmvxt7gozDz3A8eTHhLF44M44jLkqDDm/n9z9ng91catRvz+NMsO3QvroY53bWg2svsqZ6MXgnGcMBnAZ3eYsIzL86H6IdT8dvxbfhjexS5xytwts1UnramA3OkJ8NWwa0cXDaHZKIH4PFJTZ42qxynCYuR0Hh/WpejgEfL5tPz5/Jw/tU2iF49BO9dNTlH7xa5vQ7G3soDbD/CHUX8nfnFz++0S0AVRp8YCdNKM3mS6CZik13wZ3iIyhbeRoFAN3i6y5aKbmfx0QxtmHPOn93+xoHL9xWsHyQLRysfkL9pCnTnbYPLKnEc0XyQY+1U4WDrfzBkV0IP/N+DUNNu2nT/Cn+proC+l2O4dfx41JFNpZT7tmC3eB8dEy3HBQ656Corjo8NqvCkVSN/W0bk7WJH+bLu1LZyImxPSGJB+xvwvdGUDN26KFspH/Tql6NLUSx+vvCH6gobwSfRCj69usfhTetoeZU5XQ44BHp3hnGhRC6V8hhKfzifl+utoNtWYlAsoEvVt7r558EafKe+HnXPtvACzxIYsUwOhXEinT91ipasFwanm9MxveU6fv3xiCdUd9LMgBk4vnALuA7Iw1WLJH4b/ZArXkrC5/qRdHLiNFSXSwEj54+8Pvw+vWjaS1m7FbjE5DRk58+DgDyEHXmhHF/hzH1HullV5xBpnQgCTh2i+K/KvLRMjEqlTkDXU33wqP7Bi/gahYR1w5zbwZjnkgqHJX9ztVo32B4bgYXRtUCzZEBDLoo6zlbgGtVcdtU9StecTPHExEb6Y/yBtRTX0tsxZqiprA4xFd9x3A0kp9MWbNTtAoPmopSjkYpts9oxYcVOdrv7mvbka4Bd0zM+cKETHBsL2TlbiDMcfUn3bgH13DnMRo/i+Hy1COpEERTvsOGECH/27XmAkR82kq9bFt5sMKP2pVfpT/YM7lm3A38OGMKTvk+4xzkN20WseMQ0Bdo7Xosaj7bA13JfaHYT4e4rZuyzTwTsD5iR1CUhXr+/lHxWPaG3f2/CkpNJLPBuEtWHCHC8XTFsPSAFZjIGNFhxFG73ZsGze8GsX2XChSf7wX3PBHa3mc2zZq3jBntBaBA3ochtX6G2+QsfeZgI49Z5o/npGdTS0IaXU9fzt7WOsGD5ZIjxyeLgbUv5hEkG12k3c+K7j1DqtZwSxPbh0+9zybpXiAI0BKB+TygveHkD+u8soC8/2vj90U0QJzmHli86y+Z3zpBorCvHzmTI0daGk59n0KZyGWgNKeG6Q3NZccdSKmq1wetXNShKex44+5tBYIExZGm/gMo7sphiM4q7Xi+iOyl1mDhlHkavvccfdieRcqwWOM4tI48p/piZ7w6wwI8S2pFmiwaAaK0wBd8Sovo5h8HQVAcuj4yC3XMKaVJANLctLsHX55ZCXFkdy6V3wa8oIU5yqaGBUAuY9+kE2PaZkmtWMzVXD1PfcCgvTQzgt66XQffUAWppc4THKaLgtTqDV5r3g0P9JDyyrAT9vivyAucWbJJOpE+HKrHe5jUcsVUB00uH8JzHAM6RPc+LbUQp81QYf5j4DYq/CrF37lZ67HKAzh80BlWtX7hj6wq+fXECrxHuJ9nosbzx7Dzw8NvGWyYfB+vXe3DaNkno80mF2lp7fnsoAiS3nqJZLuoY7ZRIz5q16eyTv7SoZCQml4+Di/kTsN0mBaJSJvF39mKF3FY4nnkYK/47AzrXOki67jSf0p0MJ2PHUnpPAc1dtZo2532n08lyNNVZDkc2raQq9et0etF62OiqAFnp31la6S6IuSRzYN0n7PAZi4s8xTCxzRlP/amksYeqeIhlID3UCULKfWn7ektMu95Fs22v4n29AdbPDWXLyqUQtVeDp+mpQm9dAA3PkseZC8XJYXMPzhZQ5gwVJNnwaJRrnUuz+vbA420KgJV5ZKR5AkfGIR1s+4ODbRNIKfQqTvlljNo2PWA7fjJfHzSHafnetNs1im4UKNHCShNetuYLvFBaCP4PUuDnJC/GwFQY3G0NUwwFwCd4Om6+R5A2XIFzruhh67QvPNVSFkUPK9CkqmRWVjEBJe08NtzvhDJHL8JSER9+diQRF7+pQ+eCmyDkGoSiD7JQImwKfMlJZftVjVhR7g9X9v7D8vxWGj8rFQu/bWTh22FYkyFHj5z1IXP9W+pa7Yg3xljQlksDdO74YhQ8M57ued3ia1UNhI9vcqqzIKiMWwDW5oI4t/QgZTg7cp+HN+w69JJKKmy5+5k21V4+isr9aqChXgYdQ9O5anQnmjprUt5kPyx73oR7NyayVqEAJ62UZpkQU4jd4s23Fo6C8HYbTMp3AzWde7hFUYM3y9qRZkU2XknZROmnNUFHfxmKl/3Cv55jMMHfmd2vrSB++Rnsrh9l1n7DEUXeEFeoD03PgunEgRkgHJuDDSbTAGNCcfm6Kh4hngERZ6ax11lfEojWh+GL8iC1SRe9YhqwzvQPiP724ysy43jQYwQFPHYEb+UIWOEmB0Pla3C13Ekm6Y0c8fowmHUWw3obLTgRYQHnjRQ4xVQd5K1GQ2PoXRD//AJuN5SgVuARWlPtRr9Ex9MHh6XwTjMQ5m77hzKnBODnDgdKrNrP4z4eRpvONVD/4CkaT9uGQs+7QfLJRrA4Uci3RghBdro/Fz/zwbyw6bC7OYbO3N+L53JbqOpuLK4sOEIGKlYsFWwB/37+xZn+yVT8ThTOTxXF5K8DcDllIXyP8ST38zfxlNgTaN0sAaoVWhxwwxAloo7D4VdTcdck4iATB2qoPQN5eT6w/u08uC4uCH33y9HieAJGpi+mwL58CCnJBpve1VBy5RGssdoFv9MGeWaqFBhPnswmH4RgWvQkmOB3gIqVnMHxpjT7hRlz/VgLNoXzJLALoEBmHthN2sML3s3l8XOHuadIH65CAiY8HeR9uQIYUS0GM5wMoP/BOR5rEIFbF1rzrwNGmLk7GSftVoKRU/Xp2jdbeph7j37OFgO6mMfdu+wgcmcbDTxU4f5r6rCkKQTcam1RPPUPdSaO5lbT8VAy/g9t+t4J+W5hbOO/mC+qirFccBA+0agGW5HRmLrQnxy9J8HtGfPRKBTI7FwhT77sA5M26uCyozks1mUF1erLYcutNPojC9ByTgrL5z4gFyNpFrc+h5+1j4DSvEnMkSbwNsULTpZvR5PpI+GVx0WoSn4D26c/QL+wF3BEbQV/edZIWmvcIXtpLw5fLUKFtCnweoMAdPpaYfft7zBheTjCVAd2Uh2DfpFq+FMrgxTvqPHGDGNwq1XgpbWJGDHdHaQCSzkqwQM+3brAV6o7oUnSAc5caOU3tkqwYN4SdN9WDs9TFrLbaiM+8+4Hf1vylOb6tqDp2vs8XlIQ9f8qwDdZU3746QjmDfvBpsV9KBk+AmCKNn47YQbnifCFyy9OzraBiJDHvPDfF1yeaciHd5uw6fwK/jjCHVzif6C3wQGuddpDd5eagYBYJmUuZ7RXUoC1Ucm0TIhgtdAWmCsUgmmOfpRQkY59UkKwsxVhcmAZZCaOgaDOLFALvYCHv18A6Z5haFdO5/ffbWnePivY6L6Pvhsuw/VCA/D8gCgdu3+F+tyl2WTwI/8Qnw+uUIIOdUKgquCJvo8boOvCJZaKPAwLZC7DeElrHr72FAKkRMg74RyMa5CH1TEOINo6Ds/tCoClE5LgWd1WUPMwgSeKk1Ez9RT8F/QfNZipwop/vfT88Wv+c3gmDxU+oMsBH8Ek/hE9ad3L/l4m5CGnyhlVsqBxuZWulYexssBvytfJY7Os4/hfpDZUfdjJliN+Q5yuPK3JVoQt5x1QIG8H7Da3pmdv3mCN4XLwTNZnO/UldF9ChQ54lZJ1ljBEBn+i/ae3ssTsXJQfGKSce+4Y4zSGxvVZsZ5EEmi/rsIXLrIw89EX2vJaGxWPIptpC8DxOFuUbdqOvyeW8oeTCrh6WyRXT1GAkOQjML3Mlod6V+H62884cPgU/U7+hTEXKlAwcjSarheg4woT4PPQS2w8NpnEL+bTw3BjSD8iQa32y8jtshALJWahyL8A2ucqAeeSx/CfTYFkFPGPjoWpkXWcEdx7XQWObeGYFv8fOWXGUX/GBLCYcZtXS1li7ZEr/F1zMduo3ubl+SNgj9NOWqQeADnNWlTeLAa6Fpd53pwa7Bz8R2or/7ES6NM55TRYPlaFJZfVg2HVW3qYagLfo4vp5IgIxg0WPO/wYVK0vM9ZVS/Ab281iaRlYX35a2jrtYGyhTPgm99CuIIq6F4YjD8230LNlvmcW7eIEtOKwbb/FY6eYALDyb34enkLP3GYyweO9VBYawGZflzPjiu6UWHOB1pquB1OWptA6H8n8YfZTD4n3QHlwpmoobyG06oWUpmNMNaGjKO7lQO8M08RemM2QdT0K4iy70G7N4j+sz5DEfvM8XXTLFzrKk39la1otngiZI85g/cm1tC6nmcQJuCCkwc/sNN7VVit7EXest8BFL+jnaYVRHaHkDoMULf+JsA/YynE4RLIczKtW21OQRmJ1IlILVMnwZejN+HYFUlcpp4DA9sS+b5QBZ1o9MfQx0do+wk5+u+cMduW6oH3pB20ufAZDrUakO7KFeRwJBAnevhD9PX3mHVkPjv3C0LjVYJ/u4rAyHUpPkp/xgMLF1O+nhu9LnhBZ+TiOFPTA8Y41cLOMAXYXFTLgyM2o1FVPGpM1GSpgdc4RtmPPSTi6cXUJN79xZvuGhM8+lsLVgMV2LzjLJ5wzILxC6fgk1m9lCBaDv2GcyG2fQNr6olBjtU/7h8piSMxgTfr3SbjQFUSOKzCIovc2TbyFyQHu9L8YHlw+uEGoxvUOH9BFp6tugWHjD24f3QNB0QGQpDQITLLsUXyF4Nv4p44PSeN7tVLg9Nlhnsjmykx4ixvufAe9dpdYcKmFTRluwqMq11NiV6XIc1EEN4clEfT6aZUbATUkxVHyroudFt5Cv8QlIJbzyNB7LsXXXPfj1+ifTDS4QfOcLrMsp253B7xBD527CW0mAipuzXRYWklTF8nzQ0z7Sjq/jES9XDEFKMeXmIeAKfUrOHIIz2Y8CuF+t618sWMz5ileh72JTqj/cPL9OOgBMLNtbhQuYliNytCtIAFb5lYQCeu/uQ62UaonrCGb167yvr1R3npXHOufegLa9+KwtVhTZTR90bZhG3gfNkYZRVe8KlTqZheuIX+DktimMpijj8nCKnTDsDeAUnM3l7MhbWBvH5FCKQVJqLbmkiK/a+fDwz10sVXqrAh3oa+pTzAGtttuELFAufOtaZxGUvAttIJVE2c0eSUIog8EoEH04OpbHAcRf3Ox5beZp7xwBxrx+rAO2cr2LlkGQfcrGCdcfIw138uuGd7kO6+XBqY8YYMn3lBimombuog1AvcR15eArBzxAgQiIxhpaF9EBvhDn1GlWh4q58lBEtgjkwE3MUwOCN9F2YkmcOMwBl8SK2EtPZH0PKBpXQ9p453XHAleyFByA66gdlJvigZNwWWTZsIB/SucVhzP8el+7JQ7Al4N1kE1dfI4IwRH6B7/Sva7icJh1cSnh6dh2PF54OLnB8XtIXy9wevIWCEAI/9u5UN7N0x03gKBEkZgsmhiTDJ+jfefhtCtye78Ol+Ezh0iSDRKw2WL80A38kTIeTEKTB3fgUt947j3BZ/tim8Re+zxXD2SWG6MvcCNmrcRBN5E5j44CeN9xNA7iLQ1tuPk893QO7nEaBWMQv17UaQjOU7GuujAtO2CHD+5B+4o9iYnHNi4FzUbUx7GQrxI09w2+U1dGiEOQqFKcHWnPV08NcOuNyqR+NZkcarDcDuOGMynv6QvRY/wV3WopjcLguP0BZClH5QeEo9N70n1HzwmaPtfTBP4i/8mXwfdRVOQs5jPRjXaUZmYVdwpkg1kLA7fOAULEn15bKqLhQVroG3961R+LgtbF4yn1JS3sBn0Q1c4q8Ebbd38KPJSrBwhzGq+VTygMpoHA7UgTkKU/mJ6Xp2Iwk2l3BhDckMEBu3GZNL+0nmig4ZoRAWG5tBnMEaSImM52mK1zknSR5lnZPRd2genbglytNbqrEwQwlPXTABrcAPMFR8Ai06GvmXrBMnn/sAmt8PgqnaR/R52kdj3K+Syhk7CO4ayy+idalGoI+erynC2N2rsHmEFUXcdmetNDXcbrmAEwcJfs4fxYMtYpxdc51iDybxcfCBtCm9sNhZCkWeu8HzvKm0IcEc2l7O4YkxRrzK9jddm32CC+N0eeaAJR8xPw2znXThvEAeaARZQuOLLqqdpgKPl9TjuCUfsd9qFZiNWo4TFcN4YNdODvlPkn4+YLilMJ27/y0BxXkumHwrh13i/FDF6jB+i35MLQ/NsfeqMPcuGgtv5b6hZegNTFzoR+/iGgGC9oBl8SCEd54iL8VgTk5K4M5lGtBjfZfH5qngw7Z4MjOcCmO/rgfbp5l8umcY35ytgfuThfn3GAnQOLcQllpuxCr7Q/DmUxzJ5OyEv5ot+DhqJf7QvIVbP2aB5AsV4CQzsEi8zx4LV3HJrxmgPrmW/LOesLp1Oo80akLnbx609w5CsWI1iNf8B4axPqAa/Y82C37GxkZRfFU3jZ4WnKZvau78NssEhAz6IXg4gL8LyfF39UsQlOuBN682s3C1EQkc+gKnlDto9T8bCJNZyYqKJ/BR9G3Qv9qPAVIW+CnHEvP043mUGsEMjbPoK6oK9mtuw/UHO8BYUoGFvevRWieLfg8L8f3V/7GhyAcO+9iN7mXSsOmHHbTONoNKJVFseTqIYSYlsN2+H0EuA8zviqPgPFvY2KcN5aI/sHLqbb5u3MTCbmZ4VdYQ1F9dxzl7A+B+fihb9InxfjVF0L6uxYG7MmDb9hd0f6cqPF+yG80KJuKy0RH06fM8/j3Wl5JWSMB9r3domHUJZvm383dNGzx/5iss+qVHMudS8VH3X5JLZ9Qt1oU3+63Bc2oLvh1sZzI0pPrMcMqdMQP3OaniQ+1q/lwaz4tuCkDUxhMU8XId2X2VR/whRz892uC20x5WjHvJNuPaIaVvKjXukYMzqX9IoaADg1dVQN74l+AbOYi/RyrSgegN+HTRHjjpbwp6BiOgTOQkPNLogiDhp+h+yhGN1EdiUZAyZiYU0Z8xnnDLx4jOPxwFIRveoYBjKiy2N6WrhftA9elzuNagxtI/H0HP1k7ImncXhL8YQJW9Fp6N+AgGI5KhRzqbpi+/CevKpNDw518orjvJ7yM20bMuDYhd/Bd7U67gc+3ncDk9hmUr3XhSuxLesktBeyFkd1SkF4NS4LD7GKuflyQlxSU0cNmdDJ9L4KMUZdYdlciGX1TAavwv+LtGBlxXeVH/xrXU9lsNVufsoRdz/1Ku8gBk6Q/Dolk5cKzDl0eVioGbiyc5/DvLnU/rIXnFTyqd1kGt4d0010Ca/S2byfFGLZ4dKQz7ZhmAqXAzlcvIc8p0QaCl7iCf3kt5dv78p9gI95Tl0YmJApDg2YQ5Stl40ngEnohbTNvXNuKExSdAbF8ezU5vp8bfq/h3jxaERARizJIijBdp5fyjhazhmkp2oy0QmksRgl2w1yQeprMylOkrEnTn0o6e7/ROrA7dO41ZaWoIXOx5Tm0qCiD4cB7MuDwJjo8N4YQXJdT7KABbX7jyeKev+GeonTNu/eY9r6aCvMZW2BkpDoM+o2hViwWf7M6guGJFUvC+gCvto3FqjDneEEvlw031zB0GsHDwBllnzeMPn9eQ0NwKOl3jTuFCjmSj0wljuQvy187jliEl+CR3C/y9DfHpukFQeyWFJg9HwpWEz2ip6Y5Bs65Bw6UJIBqvCsL2W1h8rhL3/FlAzguVOPVX6v+Iuw+FEBQ1AMD/aNBQKRpaKNpUtJM0aJjVKZUURYOMjIZUpEIRIkRSIaFklSRpqEQiZKakjMxEC93HuE/ysdPsVGj9chLaZmbB2oIr3OItA/rbTWC/vhaaqDRTsjbQ1qz9EKU9kRO0dDEf2rHLUB5tjMfC/bIp1DVVB49XvgeVc0l0Ypkez1pli2aNUShl28FxhxUh5rQifNskADv+PqV6uWqq36IAm5XH0PizajCvwAjtfy6iDq7C5lpZ+Dn3OcQ5/cJZoWaw0y0Qo2zWgWLkKPj6fiv3CViDoMBEmJIpDdq3o+n1mTLyj5SAM/OOo7/kLRK1E8crNRpcmJuHayeeIq07Y8AI1LCu+yY0aWRRwodWevJ+FfSeN2LBRVdJL/IX1t7eDrcOCMLerDWYM7YdRwV5gcrfL5z36DFJDz8khf/K4VqeFK9pUeOVq2Xhp44V9Nbeh71+e6lX5w68jtvLvs29+Pa5H+wQs4b9yhr4/YMOqEdv5AOrj0Hm3SQsrpWGp2ER9C28kJm/4QwRdVR48gIyhQ3Ba5cSz53dTlj1DWx8xuLWHivOPjoNMx/0UdKur9ilupwDFE3gwgwjvHHlKpSmf4DvD1Io08CYWwNbwVtqM0Ztvokzp3VCvLY0mOIIqAyeT1P3CoG1yz2uDWwh5ehaqrgxmdXHevOlsKd4/aM0vN5RRM8+TqVE/y7eu7ieTXRj+dPeTby00Q22z79F54PlcXuzFnTER9FQ2QLI6M3Blrdz8c/BaeD6Tho8XcLRft9x6F8+n56mMthnZrCy90bs3PUVbX+Z0OKrxA/OC0DoP3fQT+nE7bNMaVO3NtSvEMXeT+/hRvUQG25bBHfuH6P4fle0Vf8P3SNCOf7cA5wwzgTkbZ6ifXgi2McvgthQJVwprAj3VLV48N5c2ntVkb8X+NOZpVNgpPwNihHypJR9GnD03FnQTDOnJutSLJ1Rg8qLTThaDNF90AD0PuegqdQH3F64E5OP1OPZxd1YPX0/KmdX0QTxS3Do+l6wL2Z4/CsHTs9dDwdb+rAlKA//TBHkD5Omk8ftX/w5dBx8rbzJPXuMARavBTmXR8gNH/jEqdPEo3tp6PsQ2MVdJZ/ii1QkLITrrkuCQeh4mhezioV8FqKtnSy1u1vxievtbNi2gGLFv3JC5HiYqTgZRlidx+X1h+BU9SVMbNBlWfP7WOBdwU3Tl/FW8Td0XakODiSPgIS211gT0wUXpu/C37t8aFqQPbTEC9OvLXMx/o83Jz7vYK9afTj+KhSm2FixaMZrfLpzCzgMmlHYqBi8JLKSRv6upJCUuRD+TQ8Gjx0m+bur8Nu2XzTF7yBH3MvFQMHvcP6TA73V8ofLlyXJfeYUmHvhPWabyPLyQS+IP66FBXoSrHswiVreetDT7DMsMckEam+pw5L8T6xum4Q2BV6wOKoIqsu+ot6KQozZNxtuGcrR9c+XUSPAFCID9vPte8F8Yut6HOFxAz4fWEL66mNw76PJ+NVKnm1CYnDOuVHQKaSO7u8ewWbfSlB4rALhhz5AToQfu/4aAOE7z9F0owpqbZkIh4tWwbjgSLzrHQfTn1jCk/yHOCEtGwu1v7GO2FeWd2+kjT7jYadtAEbtH0mjKw/Tx+gVWNB/iXlGDegvS+LYG8I4kFzCaTss4PCXY3h7QyDH1rfj6iNFWHPZhcOLs3lLhyqu7/CgSNkNNO+LFngYLoe8kp14uLGKL92ZwB2pLlQ4Rgcn9b9FtxWOmPJlLXqFi0LDuemkm13Db6LCWfT1Cdy6RoOsJT/ToYIYWHe4E+RkHlCRh+j/zf9tEcqCuzHiPGDmBrFbVmGSdwcNB6djmII3Tawdwf8ly+F6TXN4MFiFX3ecgyvzWjF3/Q/QnC/Fhs+acM26L6R4s4M8ldyhWw9AxF6VlI65wrezTjB4fpjOWB1gR7dwPuJ7AgMd+uGTZDh0aIuD5J8MOvGxF7//LYbr1ZNx6Q+mKJxFln0y9KB1GtwKiYSYICu4Y13Eq47b0MaH3TQ9YS3PzLWgxGfOTC+uQKXwBvig5kRHjY3A7eAgO9z/Ca5PV/EWvTAU7sph34s/cBPWk2TfUZQWO8l148fAyUlNlBs/ilMWSUDvngGW3f6cDhevwBjNffDIXpCLnz1GMQ8FeDdxN23yWABZyTk4sn0QdnocQ20LM5hzJIGer1nBjw3O8tISU/ij+YdKbz7nZOUsbHtzgzS2aNORS1U4Y4M6VsceJV+hd1gRpgM+lXWUJPWAKpQPY4pSH2wasuaw5KusbNzIZYu1cJ9QN26sloEnqf28T3sGeMomYfiqHfjZyJm5eh3eH/mSD5vIkUHRC6yfagUpH0Ko6IoRRjxNA9F/8rBmkxDvDajjOc0aWLo1Bkt2TeRcKXloC/2Es/0uUuISA7IwuESaH9px3LkztLMoACPGHYarZ81YCFThhX8AbzskAPs/nCPrpSsgcokLXhRu5e64n+Bz7RB4GQeSxjdheFY6GmY1XKTmWl/Uem/L+YeSobXxIchphMDzc8KYfLiAPQ3Gwms2gHiVg/TwfQeE/WvnMqMoWiOVQBdyIrD/YSIqx60Gg2US8DNNi55p/Kact44wS8eEHmnLwSKpfDofKwAPQlfhqzMTcZzlCDhePBviO6vxiLYx9uV8B4UlCXQzY4gWKZ0GoRY7kj6ryAXbR8DBJ8+gSV2Mj7i6QB7sQY8OB9Ad2Iabs2exadUJEC1PA72X5jDmdis65hqQhHc3rVp8G5/0TISzyuL05oYsPPu3HCP6hci/UQeajYmlp04DmyR9/hsZAFP0nuGTUcbgoStLQstUseOZE+R4ikLtQklWyThOIwXfcpGtAEVcOw+SuiZokz2Kf/w7Qv095rTutShcXv2R//jdw1Ehu2i5ciFO6JHh8ifXSXD7fFZqrKFxR0bQJUtTaEwnQqNc/OHSRaE6MqBcP59fGQtwarczhhf+BmM3BwrOQ5j4TY6G3vhx/OpmYmFzMGq2A/dMJxzbOQfWVFZCuVoM3RmUAvh5jh+tvIEPQ3ZAfLoufP+3BhN1DqJcggEGOozlCtOTrF6kCG8itahUxw1+emTA5eY/RFsPQWxEEflcCse4cYt58+ti9Ho9HT76JCDaOaFjQw9dFK3mrZmDdHr2Doo71UFX7m+Awz4L8N+DqbAjeiWF/FmKl+5dgks9cVzzLBX3PKyidmNLFJ77hxZ9F8DgldOh3d6Ol9Q9pXuDX0k2eiMbeLjQqtQD7PRpD2zMvUqG9sY0rx5B9Nkufhy5kSv9jrGppj4WuMZxfVkgcOdv2N2zkhYXV1Bcmh7UumZDywRVdjLcRxJ7k7h49wDsEHOE/GQhPnzCj/NPxPP+L+ZgvsYMp7qoYsGMfWjRWstrkj3o1aSXvODweFb+U8fmg3J0+6sp/LvvjENHL5HNykO02E0UIhcuQdfcJjpv95r+DHTj+pvP8PJUAZj8nzHqiwVS76ArVSpsoucuqnBKYwqIrunAvZe/4BC95xQlMZBzPc5+mmsoKXEuHe4uR8FD5hAdHkC3h/6i3JGxtGbsabjLinD02l18bZdDPmtTULrtGr2pvoB3F2+CC70rWGbnOxq8/Jj2r54MSdEFKF4mSbZ7cnnN2WMYN1MUfG9ZwMUGPw5Qt4FDRyPoxQMF+Pozn0TzNZEGNuNaKsLvya7sU3ESDlytpUL/oxyw8BpKaRpCZMUHFNq8kSJ6LXlfZx3GJvuQ76Y5MCPejRxnTqTKQD+sLke4v2Ey3BQJgYPjesg26h1dGP+c1/56x0MG60Bl+mVM/jiFiz0AQtL6kMKj8VX8Uj41/itu+1aCvQWZuCAiD42fXSPHcUYw7p4mTLsnQ4o9C2hB5zg4JlOGQfIvYPaHB/Qy3h261Jie25ymZ1cU4PCZWaz8eBnmCfhS/uplNCl8Jfofi4KTExawxlkTevskFls9FOFTQir5bncntaN1EP/GkEK+/IJxG05zsZEj663zobBvbjx/hwC4xz7HpQKD+GbxAEQ9kcSbPVvJ/7Enxr4/hVG5p2irzXZY8UkYctaX0K7MNFTfrMYaB1VZa10D6e5rgzeJIux0UJ+3eM7EiS+lIGjZVfy84QZKjcynPscSju0thNVjxVHMLA6EXSdR9QIglQ1i4PA9lCPcMsjqxRCYVJnCYG8DLZmij2b/vGDH2wf8UimazaRUoXpRDsf1z8Lp12RRWek6jaiUJGu5TvL4lkE/bO1I424jaTuOBedrM7DczA6ifwbSD4c3aKd+AFOldHB9w0QqPurONSWFLGViCO2zR8O/yJvkc+wJXMhQIYnic7S58BatKz5Iz3r00L0pAgo8LOFlsSx/8FClG77V/GHHXxL4QbS9UREnLRjDGpXesEx9Asq1y0Pm9vM00dYLv+gX4uqjv6jKPJ/GeglChPVvOJ71k9/06ZHfgAVoOEXD9AoR+FhchWYS50ElY5hDj1aA/O8gqMwaj7fVAuBx1Qg4staU+/Yfwh4vxK+PuoGT5PGHUAGprryOSvePUEL7ExrloAEzvXRo8lx7mJq1CcriXuPrwLMwnGFGp6QDcPJ8cVxSuxtptyx42shTVe16jK89wFlx/0hBJIICIk6S5Nb18OOcOEcv0OQ7fpLgfk0Nng8bUdZzYX7oWUcBpqU8I1kEVINcqXb9GDKInQpFLaKwZGoCo+QrbH4dz3+dCuHoYxcSvORMVz3UyaEY2Do9HwL2TwP44o1z9ERZXNIAo53PgmWIK7r+247FTjNgW+1r7vGt5To1Rcjv68LdizJgufIKcJG8QUe3zOTVdYPYkpLIbPKKM4Lkcbq/BJTYxoLduVvcu02bAqcoQstaafheqgPF8z/xGon/+F+rHj35qghLEibg9aoesl/vRW4yRyHz4yp4JhQGt3IfkUvUdRToEMfKKGFwvFHBYrO+sGZzOJu6vUTJ9dJkfkOC3ITDaaLZVubyeRR2dBT0ytRivaY69vBhVHouDSdW1lDCvsWw3eUpV/54x/0xafTurwWMjgighoGvcCRgHi7rmoaXlW3Ay1UCKtpCYFBvHC39SHxQVgQWJTyjiiNNMOeEOoyvnQu3XuzAjgfX4N1IA/p0F1hWOY3PZUyHcwojKWT1ctr50QO/zVGixFm+eChKEnZtXIebw5ths/NJuH9CH8KeJfAyne28KzYXZA9noZZDNWcNrIRnM+6jd88rCne+y5Fm5tBpLQt5SVIwdCWetJ4EAj06QXfsIqmhMwOSjv1jx/eAc2MmAEyo44EjIVgozbiv/jVkh/dgSBGxxqu3WJ/YyudkQ2HSDBXYeFKSntVugt4LyVw1sxEaX+WCkLUxRotE4MkRTax1/Du+bzCD8KJevja9iTcti8bmvZXg8+sjQKIkPm8JAu9VQ7DAtpPjplqBTUIb7POcys2FH8EwvIj7uhVp37AFtYzYhb+FKjhr7kc0WiMPf6NWkPaWDXC4ugoXlMzmsU6puPJtLk1xiGGFICn2Wroal21kaLL+CEX+jvxvng5P6x9LoWv02LROnEd3KKF+viZ3zDanbG0dSNWtYcOC3XT5tAUHtjwATZkZ1PTgGZVXXOBhGwOuXpGIZlECkLrgHu86Vk/WUWd55hkzfrTVFsVjr/Kh1Ezy3lkLLrbT+YibFDxMD2Ifpe+M80roT88Y+OAkD+X3aqnzlDZGitTi9VcjQHmmDnw6YY/MXSC+LQ/zFgjixbZgELu8gFMWBKDnsA12Oo7FM4PCMK7BE9IWAJ22+Ar2wVfI6ZgevBgYokl7YvGhrQl9v2mBrCAPJT4zced8J1Bq1aLCqiHMmRpEFzeKg7tfCVadXYtWubJ0ytQcfnen8MCxt/CVH9NP4UL4e2oK+gsepYzngmggVEcXh/zx7OHJ8HzoFcwcKYFW8xNw3c9HXP42G8FIGDW693K5jzV9PFfNyQ1S8FDckc9GC3CA3HTau+A6LnyojpZow0H3nGmmtz002XbRFSth+FRUCFNCXFFVMIoLeBRvaRrFcyZ2wUuZ6wzrRuFk/S0sISAIMfkZ8PHjZ7ZzrWOlH0Y4qL+OD5x6B2NnD9HcqTp8zT+fvpmPgxebt8CBNCIpSXsy9M4Di4Jw1Akp5rtpr2B+eh9a5DRg783psNCmEpvCVYElX6FSTy7MtY8mUfoN/4xXwwapUtghkg1vO8aDpnUdW5fv5mvlyji78iIFiDymguxV6DwwG8OuOZCUiwUMBo8A+32ipK/RAjI/Mvmo4VYwztxI/7RecqFNJ0bsv4s1r+Rh3kUNCL1vhTAwFhJ/3sUTF26ip0AdZZh8wUdO0hwl6o9fRtrzxwoFeD7vMg5Ie1LryBaYseYStN1upIwJyhwwHE9zrE+iWFAVJf0UgVy15dwfIA/rda5QiVEtDm0qxf0yMpCr3sM7Kkppl6Y3ZEvLwtVFI7BDtJDTLMVxr5cfCK9cR/fKnpJn+Tuor/BBsUIVWiquAy3qPlShGoJtbirkatxEiw/40V0nUXSPzafxeiegTU6cFW7PgB8bnUE7JQbvyozHeOFD3H96BnrE1lJ6eybWlDXx1i+9tMhJDXZ5TOWk5kP8QUaOjDxn0SHRSVgovIdkl/nivVMvcUSME+3cIAyS1AlfT71E8Zu/SHb2PlJ20qfLc2/RvoO7YF9JHj3y3wmO4YLg2ucAnteDqOPmXz7nGkqle6NRxcib7A660igSpOrTQnyxSwl0Nc9xfNl5GOVoAHekI8BKQBfOa8aiqZ84htxIoSqTAn64TgLKG55TwLczXDJqJn6ZV8R7QtU4blYC3jWwoHPxL3mEjSSMLzSEvoAq7F21BTeYdICkxQ1SblIBurUBKuvC2HiLEog5GsC9/ZawJPcwN52ZRfmmj8nWtp1mFCZyyVhHLmsQI7BXhYB6XRLzGAMhnuPhu0MQnBRez8rNE2Dpq0So8xukkq8e+KggnA9/1SO1egso1MmCWffXIkkbU6aICL6feghissbx77ypvFv+KWUbT4SCUCkIcKzljbLLWPnsefKcU0N9u31IYH0airbu45vV7jhraSZaz1GErN5qkit4jo8vi/DkW5L4yfIDD39p54t5mui5YzOunDOTNdOmgaVfNvfYeXHVBmscEjDgF8KfOXivL2e5hYOxwgdUXxRF5U1W8COuGt91LeKoQ2OxGFfyb8UyzoRYoC1Mx0KKseRaPQqsGwu1f2ww9swCPjT8kRdFxKPfqlEk9XqITGR7eVC8EsY8LybhQBEY1h2EXOEajExdASPQmISU9NBJ7zunpzuBapwHHz3QAik1wrD2axdrNHdT/5Y99EJTH0JVdKhBaBw9bZmOqS88UXT8El7bqg4HZBdi2N8gOi1VAOcN74HJr0Z0uBwDh+aJgchFQzbOyoRZQsZQlKxM3zOGMW3dUZRtu0E3C/vg3sP1VHjOC1QzJsM6PREuvg+gI/SUJEWLMUvWC/8rP0hHloax3Of/MKNzPN1mHx4MCMYUJWNQKFhLgd9leU70JE7d6cQLjzTwMvOb6NAzhevllnHN+b3QoKAAMsFZkOqzmGwFTlHsLW/MPZxC9z5M4k02OkxdU8Eh9BjEntKBvBFfwfL7OtqaLI9jzxfCqrZsnjT9EbmslyBdw4m0xsGM8yInwTEFL45T2Ib+L/3pdNJ4pAF3Dt5+nWzOvcYkn0EMPa7CImJTQdeQOXxOBGRvC6cTSbZoRhlQdP41VS/2ZTspIhz7lHidDtyJe8iFhi60O/k964euQAG3uexjUQjL261RIqcH6ifaUlmdPKy6eJev7LQmv9Bs+LWtgQ9frcGqWxdJ/+8AneMdfFrsKswxsoCEJjlOLRHH6ZNc6Oyadnp4N4F23fTnmxsNaKWWKo4s+oAn9TTAZc5n3DzmLu2bIs6Fv1rxcsIsjD/8BcceW81t4sN8+34QB7mPAJu+tzxT0As7Jf3Yr+oU6jtn4vF5X3H3Gl966XEGs6o2UEUFwgzV71C8pponRquw/QFtXFs/A3a0N6O0SyUVhD+FV6Jj0bdTBpZ8RHKOuwptEZr8OCQPfkkXg7XaVbCNjuWUlAEedJqPqtKiABJPKNF5KckFufDlXbO4umQaTT4TgifDE2F4cBsaGa9G+RQFkOmKwEfvv/OaZgPWC/4E2p8Eue6+JKZ6l6HoizY41jSdVmhrgFjae1bfPAi31RzAZ7IAfPDTpbzZf+iAqywvuhQEWXtuk+EdeXBeJ4Nr3T/ytNHidFJuLotJXqXzSna4cdErXlXiS+UjjkDxKGmIePmK77iEgaHSQZbKGkPvT9ex7L6zKH1DhBbVqqP83C6KuSoCw99e8qiwGPi1cT71rBbn/bqdvGd5DGwUu4Qi749h17eXsDp0Ghy7d4z/VT0hGW0HHHn4EhxZmQ9WUur4KzqVfKxW0TbywyI3EVCSS8bKZ69IYLs1JAo8pdgHwrQrvQvufHGHuGZ/umXRRH1N+nD74yyOSvai8BkvyMgojaacuE81Q3Oge2Q6TEqdh8MP+2Hx44mgZiNItwIP4MAWKzh+YhZqSU3A5f1N+LfrFX9IuI2+471ozKbJEO3wAm91jKZXl0/RFGMBLH+ygH44zEWfh/s4VyWRw159o7sCavApKpiqH8rRL/scFAwNpJ8/q+B7/VecKSKLPq8z2X3fLMjbivDW0oBLggXx19lVLNzjQwKaU6n3hBF3y5wEgbc78Pasy2DSzRCpbQ8RqmV0/J85pu90YvuH+TjNeQS+nJfOq3WK2HijLLR9k4StP8vAPluQ1p/6gVNVlHjTgcukp+1Fa5ZPoMDbC1H+SDwG64wB9U37+fNWov2+02CJ0yfYFzAJt0i686G2XixPVMbHnTLgMlYEygIrOPP3N7b1Pg3z9BfACp0/MHCllvcbVdDLVzKYmrQNjwupQubwIcp3dMbFi9344fZ4+tY6BlNOtvICueskOCYYbn+0pxE7AaY9yieFbG3QfLcX/UXT6OOyz3Sw+B0cmLON7vy8yGc11UE0aRpkVN2mU9OsMC51kBvr1rKOhgoKrReio/uHUPGhMtlaxJD7G3mwFPlAPaIxWHU1CCRz9kJCtR4eM1KCvbLCVCcTTpNHCpH/t8mgEWeApviLwv4eZ/uMkdAyJoMG5BP5yIwiOj5jK72Kt8LwzwJgG2nPvZkdvIM/4DX5rdz/SxQvyctTQG0VdLtOAaG5a0D3rQmcFulhrVVPqOKoDe6IvEKTP16Eou4tEAbXYd+XXO53eIe/NKVhi4gzzMnsp5quJaQ0ph2u5bYwTdxHryJV8O2dLWQ+qwuO3J4IF77ugII3gTgoHsElWZU8cnssSZk74691Sbjtbg0/fj4HvqdPgEN6TXxLbQJVWTuQb6ca3RCqp7fp++lZyC4M9wnAp6H3ODlmKgz2/aY3P1fB2opQ3I1DIHtwL+rv2QObS0rxqZUqdtz8ifOvqcNvj+e07Mc5fPjBCIRi83hVbSU7fH3Di57U8aCGIy2J/seGUyQg1sWJVmcM8JaP12DTl1W4PNoaL6tnYeiG42R3JZlP9TjDL88pkCYnA3dsttLSxo8UsHg+mDsEs8TcPHq9/S/mD91B85YbILJdC46pl3DxzwW0ac4ztqTZLCh8A47WnqbivXtxDv6CD+93wTx/hJJHmXS33gH9TiG4nl4B9dqH+HaKNYpfTcVTHl85tjGOPkQqQbnBFNgjWcEXrg/zTUEj9Dvqzmn651H9I+G3dX30YE4BJbtpQLe7GhQenwkpb43I6mAdS91VwyXKhXhlz3F+GunPHvcrUGGDIoytPYZvJ24lr6X18H1hKf/aawdFNmk8PjSN1rgWcqL/TjJfPAVu+Uphy/US2uBiDO7qn7HvWyF8TFjOB/yrMLlInnOXPYKka9rQv2IvBiwuRuc3dWRr+QXPXVzJb1Wz4OwBUajePR19RSPBJEQPPh7eAkM8l0Jqw7Gz9h8c2ZSOfybtxn3tX+DqPVO8UtHHJ+XFYd2aYni4TAbUplhAgLEknpnXQfG/LWll9lmafMMO+1TnoIL2DNggWglPZ0/n4VcPYMK5UXREbw9cUL6JG/YngJtHJopZPcaf8gQFD/7DoZEK8A5mkaGbG7a9+sOXJ6bz+TPfyPPxdpL9eQG93dTBfaw9B73/TU8+GECuLpB7vg9uPrAd5OwOkIRcHhubbMfje/QgfsM+PjAhASy7jrBGfSrdG6jDl/5L+KjtPDockM4xvRlw/9YocA5TZ/2/OyA4oowtrLXh0rl+2Hl2BjXeNeIUQxvcplSELSgJrpWmPMmuhefKN8Juwb341aQIJl7/BzvONZPM0CLSUEmn6eHKEOM4BpOm7mXDUmcO1fDEJRNlyW+mGJz+I4a9Ci78UtQJsFUH4ue0wY/paXgErWn0nsukmveXyhYmYnH0e4itWA+am8vJdoQJVGMRV3b8RzerVHng4w16E3gGVEzzyXK+AsuNFMZlZtXwKp1BzeY31ZbthSIPTcxZLARtE0bA59GBWPrDmQfXv6Xz76Qx64clyNRM5F0lVpC5ZxwYmJbif39sIUjiDHcvt2Uz79e4q38raS5HiBY5ztNN31Fa20KKHNmLLr/rqcGzG1vVRtH25gt0WfApmy5Xhv8stHDU5AXgSFdIf/xn/PJlgF++6OFFT+5z+Z548JapwZm7JUDcV5HvPLjCCzK7sd/wFm1TXMpxU6rAad1xmHQ0jIKzHLjohiVUNP7i9JxaPPV+ACxTXsBtwTe4f70SvrzqS93i8bi+6gzl3pkCe0QsQMTTHpXfH2HvjCPwLS+IvXOuwAa3cvqvPYzOZ6+giE0WoHb2Ke4//AemFT/D35+QjJ/M4gbZNrD4eRZWjI2jGWPGcISiFmQIxqDByww40Lmbdy3eyAaRFyFD+j3+97uMBrfm0nW32bDxmjT4N7vzM5mRrJY5kRLudNPKB3KkHvWAKiv62fWoJwzHJOIHaxGw3NzHVKINMjufwcWwCnaeYY9vvhzkXabH4eZbT5zdsI/bEgFmZP4hOelIHHneBoKWiLDM8mqs7fhHz5+54OIHw6SSRDz03hJG/nPlWoka2OPYS4XRsZC7+T5a1nxCcaF5/NCnGkbL3cT7BWMgc4QvwB4/Cq8/ComV/vBh73Z6/fsYtIruxMNmm+AkruN3s7Tg/PGJ+MJrPCxY6QazTHsw/7QKGCsfpLm2p+ikxT5+Kf4UytT1wWFLNfRILeChX1/huoovjtFtw5njjuO/dwuoSXcV6D++wh99pUEqfRDiDqdwXJQAmgfZ4lS7JFQpL4dDnkLkMNkdLCWreeivGDS7TKJRDdux/cYK/pUqjiaK1/HByTD2sV8Ej+Wk+YJmJgXoToDxZtEoeioHlsS+5cztwygh8wnmjU2kohOhdCOM6KJ8EMxMUIeK/S9pssl+3L+JKPCHEO7XSgGFJZakudiM9sTXs9P4NNqcoAG3oqwgrLURnM7387W8MyT1YhngvtFYurqb3VNOQ9DGGNRqlIF5ijd5snU9Fg5Mw2+7haHSOh2qQnXp3GgfSuvezXIlBykkUxAGVKtwkeAV0KqSIeFcLVa5vBTPHpyEvw1fcdDiMlKNuMQd9zXBL2ElDlol4obp4Tgl6hK33ouA8he7QO14Mb+p3s991//RmHlm8K2X4VHOUpqQ34HNdhX05mQlThyoRZkrbbDzySEsFm3BNlsJKPiwk/NOzcC5ny/RqoIr5HzNltzsD8CbsCIeKyKDmJrDgkfEoK2riQNzP9P36W/Y5+IdVh9upKuLjrHoifNUXnkc5rtbs+QEbfCWaoawjZngk6iJkpjI5lfDQG5mE1YYH8EhgwzaOV0W1YVGwIc6SzB3DqbHhiPYN6SUHynosuTdYt4zaZhr7grBn35r2FdjBKmaliT57BF13biDPyWyAfsCsULehFwXt/KUAXWKqirASy8k4WyqGYjG9+JVVSuenbONRapbaLKXHEmHhqLo7ld4tukXjzabAqC4hZYYS5BdsxMttVEm/+ZWvr7KG8vVvqFvnxAlvFyPdY8lwEDbArfuvIiT5fV5TEs8nHVy4xXOM7AiKQ9aihLotFocbT0oAS4ao+lYWhGU2ShTTe1vnvZmMTf8HQPXk9MovM8JmsaFYargZDCMi2XfnS/Q0V8L/92YyNmv5+AUVz+ebTOCj36+SFk17ZQxczp4PHPk1RyMuwrUwK9pLKfcX8LlOyNppbUVul9swsWbz0ByqhlczFGB/P5XbOnljJjTSNn7jKja7hpm+T3hSftvQ5z8RE6SNIUvitMwdsRVvnBqOUwQWUrmzcOsm1UFLSYfQUIvhTa+z4Z0SQDleA96snAACu4jK25HHiWhSv6FP/h5jQsJaKyG4N+T4ZG/BDwtf4DqhUdR5uMFvOjSQsveVJCuaSD88NSDiDf7sXXSM9j8Vg4uh/WRzrta6Eqog0aVKGz0MiGls39IuP0P+tZPoUwuQdchK4iSaaVv6QuoKTqKvyeGsdOOXrj2Xz1kTIjC8ENN9NcrFeqt5KGicxKXbS3GVZI+mNNsgJITneH7jDfcufA7/yl3pjHBJ6BywzQ49HkhFgna4xSR96j32QsLPeP5VF4MZJvegN3tY0n8TiX2C+uDz7AS5vmsAGlfI+iyzQArkyx08pbgwkR7UvBIpmv3IsEpRgQOhCmQ7bnx0NeQBqfau/jyZz+avnqAFfz/I8kLJ+DS6W4slmJwaGASSbKnpXfugrXMajbf10V3lk+lq5v0WfCBM9qcPwrHL02GaS6N1Dt8mkaWF7Pj8mZ6dFWUg58t4q7OKJ7zsxyltH5ChjeBpkoBi7+P5AGHClhicwlVo0rZd54riRvl86VKXVquLEUlS+Xh8wlxHvm7m80SX5GSwC+YUbQSDq7Pwp+r19OX7u9k3FLHtzzlwTZ/EIT3h6DGxTd8cUoW1AS70Xh7G9a3/glvJEbBrAPVJNBpAsKlx+BCRz7/THzIEqnEr85OZ6XLt/BY2VTYFdTJ1aoL2G+cEUTdyGCD0OXoaDefT56p4Pj7wrB6qQQ+lj3J3lu7sDark2e8GAdHgsR5vLsbzD1piYsP6gD/ucrrPJ/wZOvX8GpKERfbf4IWC1VoajcDjWcLaLN3ALsuVQWXX65sMXYEJ4ssYeev77gxMItKakVAsugPyH3OB5Hf1lTgMwxl+69R11IjGn1UnDO3x6OW6iWM2m0J957MhakPXgNuuwCTbBpA/79AOKC2mRWHX+D1RZ1QJxTKgVul4EbxHc6Of0+ymncxtnY+tfa8w55dnZQX1In1W0XR2lwddceZwaBaJdspC8NFUUV6WlQGTtPX8JX4LNZ5ZAKl2Z9JtTUSblWMh9aGInx8yxRW+Jfyv//CYF6FJNQ0SfB6i6tUa5zCEqdqWKxNGiY7NQJHv4HaLxLsuCybCv8145NaXbo6Xwujvh0DPZ1r0PLJCG6skaVJg1Z8xvYFrLhuDPNe5ENRFVJp5hiY7Z9BBurL2OjhVJAPaIZihXC4vfIiv0qOYcFrM8ku34G0V0/DiFk/eFTDWI4+MgEc55eT4/tlfOW1ABqsd6Ny2AsnNnzmxqG9tOFEM6gZ78d5DSbw6GAvrfdcgTW2X1A+IgwmfZbgFs9aWlESiPmNd0l71jxeudscOp+bkHRWKVTMO4Mez09z8/Re1DP4i+mRo+ifmw0HKouyyi9TyHocg7oOAfB51kh6omkOGi+M6LXKSTKd0Aa/TlfTiW0N9E1tDLz+nc3vlvmit/kj/NvyilN1rSj5Zz093NaKcXdnw8iES+QzIAcO3+3ACbfAFOf7GHzDjI6I52FqihDVyr6in50eNOemPLgYKIBFQBe9GjrHW6pHc//NaK6dtZpUujeRUrsx35jVTHV+sfT5iyRMnvIY/h3IgP2Gj3jGcUDd/cHo9CgCqkrW0QYhTd4caEofDo6HlRctqG35bO6ZgDBKZBMmhBSSx+pJ5DGTWVYrmJNqYlDf3Ag6FkZggmMbDR9L4rLVAnzuqRSNu7EVNTOj8b8WBxq3ZAsER0wCfaXzfPPnOvoio8rvQz352bhbnDNuJuaRPXV+esBjx46hwf6RcEbbjG/PScMXfIx/37WAPRdE4OxGSVyntIALhkXwhZIb/p2uCU96M+HZaMJ/BZnoUn6AxQqO4ozgBJKw6+S8REX87DGFg/5pQoK/NH9dUcKq59fxt7RxXOhhCUcfnOQZHa6UbaCMPoGWGCisC/eeLuQzxvfJf2Id3HbWou9LF5Gk8VNefPgZHJTfRXlnHGD/nEkg5eCLhiFWOLlZmL6VvWdd/Q/YvQB4eIsaF7ga8d7rU+BVmBG02GUxNvRxTckLqhHvpYV3r5Hb8ZV03+oXHJD24fjN67h152gYkXMeGuQuUIhuANa918azj6LwqLYtlr1+gJbp5jCnWZ9X2QjBosQx5P/BgS86zaSTpnfIpDIfZqbbwQE3M+o7+AGuycznUdMUQUCWeCi6FBf5lfLtznNUbXac1d6PwovTX3PP2TVUHV3MEXuVwbfgDvauILp9IZAVzS1o79AyavqlzVLaeTjcW4OrAm5g7HxpuOf3kLJKU2Hp2U+wIfQOt5v94rTg0VxzcjIeqBLjUtnP+JTGwTm5CF4t4k26Bduh++tNFn4vRAtOONO2d9aw++lIvLv1OI2bYQRDY+7CHelyPLz0L6+0iuMLqi5QduY2SMZfpx3Sz0H+ai4L7tGE94skqV53CEZMc+XDpQ9h9eb1+Euqnk1zk0FMTRt9xKaj4ZzpcGubOKzeqEiNCbNI90YozbrTBccu9/CVm/Vo/+c0qHv/5SAJEzj4ZDIo/1bCw/Pf86FjFpQyuZr7N22EqzscyHhtB+/uSYW4gJGQOejFwRnpfMz1PxpwbECFigmwKsSYdl2XgQbLIRjV54RNi0bA8KVNVB59AXIET9EdtV2cG+0Jb3buIP9J/bC0Lhn7LxhTroIcSH604Y8NSBEGZSiSHMmrpC5ANseQdIsY+Lk8gtdT70KNkgnICo6kW7kpOJSjhspPUvhiSgyqekuwbN0LlBC8j+N2vyLZUH2o/fyVY2QdKTB3APPH32S1pE4u2ieJiv86ePfeJOye+xdO6RvB+bM/IK4sEp+Pusrr5pqjeKASKvzRg2d9f/Cn6GucxJLsLCgKXVfLUe2sAo65vpZl+sZhw183tpcbxYYR03ifiSqGXjvNC8zFwO98LyVsqeUa3VsQXe0OZ/Je86MmDcrfeItzVm3lpDlX6GupDni1KoLViymUVTGGnM9nQkfXSXJ1mkuN9tf5+5Y/2HjsP7gVqgWOo7Np5EtZnBskAFaJG3jn/DXgNqMdouQ3c/R9I5wEyfy4TQI2RVrScRSEtNJwyDj1moOKFrNjpRRmd4aSRMM2evfMgYOXTYJ3xssp5rc+fPHdgjfjluNM+WDScT/MS84CBQXnw/0bPehaaAWVs77S4RfLQHORIwR61eKeF8I0fWYQNVEqKS1IA4VTKzHnuAisMLKBPWs6sfS/abjLMI+Chp7ADFl98kv/i17rSmm6swUMVctDclskd5qH0+2/s8FOqx+Dhq5gjcRzXJWJeMXHjVruxnDL/HFw++kNNLs0HzbUpMIzt3107919OJeTDQ5iF2D24FLYvDWSDS5NhRnfFvIb6xTsl/yJ3uP3Qv95b4CFx9GiI4wrn2bz0wIRniclCD+njcDXrcs5UsuMOjf5cbBEBq+pycYJRzxxwfs9dOK0Ey+xB3iw0Q5V0sahzJG3FDg5lAvU3HHFgsc0kNqN76wuontjOOhuMwKxa124FhaRrm8j7j7+GBQd3qOt1XcYVyqLeod0uONwM0gIW4HnEXm4/qaAXIpkKDV2J5pGanJgiR9emVqKNkeaoP3fLZIWNgd7sUOgIXuecifHQ8IpH0r+TZBesRHPO07GkU4zob5oIz/eLgr1W615X/cOspfcBUKZf3jB+tG4eGo7haRd4ZbZGqif1k7ZV0eB11ctnH7blczN5sPR0p/8OceVVrvY8c1TwhR3JZdem7tT14AQDFmvwaxDQryhRI9WFprhVvdAijpYQEM7yvjqhbMQ+lAdfqgpQUMCUMjjNzis00JXfLfQyKgSHrJrwPctefjPbxAEzuwl23Bl+BD2HVvfHyev/ncYv0CWO4uug5VcLUQ31kJyUCOevHSfl1wwhmkZcgDHo+DmE1PqO3QHJU3nokTJINbaNbBraws+H8qnCO/xMG7+Y/JxuYWFupPx3tz3kDN3A+j636cTQ7Ng79+x/EKyAvYuFob3VfKslr4aPPS6MFv7FpdFrieZI3chvGYPtzoGwvA/ERS5LwAW0AkeL1qxa+J5zks2gczKPNAfXY5VPUnglZxB7VU9uHSNMCSltaLWgAp+Okh02a6FNwQbwCHHm3DhjDTLLwqgXeEmpFRtCEnrflH7f6Yw+cdIsp8wAupfLaDbMVbwaNN2vuTegV+mqtN1a1FY6BQEN2T/oHyyIlT/mkaJWp3gcqoFcw7t5Kkhiiy1fTaearaCfvV7lFZ2B3KSrmPULlvYqGGBcfVbyEu+BIanDEDQpzkY8sAI1PWJVbyX4N3FUuAh9hBnLhGDWFEdjsjugXOCItS2OIREzhjB5I29aNznTltm/8ZkYQeYZDhIoUKlULHwKcyOUmF9rX3w84QyJG87TxILxfFCUTW+M3PiR2ErqC1+BLoM3kVH1zVU3NFGp16JQ6deBZ2pPMvNswzIR2Q11Gsd4JtjJLB19yK6aRHGen9NIX6pHqSd1cNLdXkk9X4Z/t6kwIq+BfRhkhaVaK6EfbXptKjBGK8lGUJETxAbHu7niI3OWHUqkn77LKIBXyvwlF5OniK/YHuhIlbKIfhsPg/z46NANCOSOmt+wo9bq9Dw42lWFwvC5Xk5GFzlR+UfdKC8W4AeNlrCEpkYvq87AyXTL7H9hkxobGqhixNy2PZfCcQ9ZDjjU0Vae7cAporR0WUqWHfJETftKYADx1vBRNATeq+s5eW2utCQ6IqedTH89fQOatp8Deb3RqCbmDN5F66gHx9NYNw3Y5a2VYAT0gwG5imwTvw02dg9oaOWhfy8azb+i8jnuyb92LZ+K5TaC8GMaV7YeHE7BzsNYKvOOdIzfEDT4TNsyjoHK+aGYalWHr/1VgQDc21QN5nKH0atw0cXdbnumC+FTcugva+k+frIw6i6QwWTCnUhc9QaUDTwwV2hRzF9kTaqtEZDT+Z3/pd4EaNDM+nQ1FPUrGkAfgWFsGXdQTDMn8FqC9eAUZkCtzzMhCcPtvPTTC0akWBGeiXG0DonBxdEObPzvFmoeMEdLPeMZ/3jT2Dyfgu2KFwNA7sbqTtxMhyyO89TBU7R+mXdrHVtNS8M/EkNK9TgbGkKhLlaAIQuBzlfaZgvfgHSpHZgZIQKmt9owJPJDILNz/hlwFvI8d4BN3MOwLp0BWhPLsU9ct34sFYQI7PnU+/lTogs6oLMyqfwPnMvXwm4AHrC5mC46R7nRC+GTZanwee2HFxWd6LGMXl87NV11Lr/A8oq++C4gg4sffSBIvy/UvPyrZiXosrvetMoL6WVzM+3U/REGbAyEGC5R5IgvWkyXust5fa6DBoceAzm7idYIiWJg03b0bNLF0RF3CCjUxQUqueTx74zfFA/CdRN9Ejfu5rftCuj2ZZLEJt2GKyPVfLH7qlwypXY6DvTnacdsO2gHJXKMHwrdUYHHsbFGR2UHuXA2pVmsOfKLbqTf5j1ty/l84VulHDBHS5984cAu3Au+UWQ0SsKBsb6EDS+E6Y6nyHJjh6ykzhJZssn0BH5fm47dxX9OkrhjdVadowTAL3DknBoWxzHOkbT1zFlNNj5H9bfDqe7rXP5w+Yh+JGZTfvKRoHTSzX+krWMElS8MS8nmMe+uISFv+/RdisTGDeSIHlxNw6PFIWAHx1c6rcCZdK/8K7ELjrTIs25zXPoXHQfxXV8pITHrzhMRxoWWdeS8UZHnlj0B87q1NDT59b8eIUsuTidQc3PaujteRX+0xCAjbX+0KKVy2N07uHjBVFo3bsbXotKoeZ6KSoStSI58zyIuS4H8aNX4TP1VhJ4W40anS18pikGZ+7fjfGxfjDhzjcU22KD9xLkQeJoMmv1boW/40+QQIg752c7c91ONZp0og12/7xG3yLzyf30CJg9bj+1uNWxVdRPkvCJZTbKwdK5T8i38AK/7krCgF3CZPVwBphECIB7jwoqmyVjRU8m/JwqRqodWyHaNB03+OdA6PAEaB2ygCm6a/jqOlP22hFLD1IlYXv5BFhD2+HWVVeKf2pNtyWSeekKEXBCMXb/agRFj0/ypJE+dHTzWKzYN0Aqr8X4n5cmxIR0Qu5RgtduvrCjdilstKlm21QNvP7gB3inzYYz5ft4icNysnZfQeOKLMGrwAsOBazDua+uYhmsoxacBMaN4bBYsI5tL13iw7mXMfu2GHjnhfGmLZNoyc0Y/nAlnW+8E4ULK37h0Zc74f31eXg7QYWuLVWDEE8bGOvbQsMxhTRP8w1sjkmnP809fL/lBK8/8Z1KJ4pir+goKOYpLDMxlR6dfw7pDtfoVuk/nNjoDDVPe2DlZ+D8c7bwZpkFPFwsSv1vFrD+002gPKAAHWID2HvFGDnRgjV6jlF1aiYY9E+A0ORlHNlwgMg2A77k5XGMhQ0aes3G5+HSfP9rBLtfMscJczShf78/qoUocmllKKffHw3D/s14IuYx1V6ugheWIVi26T4sbxAHv858NgpPBsOeRC416oDkrBV0rW0WPN2tgNpXtvKbBbf4XvEYiHwsiWPUP6HA+BAqmV6JzbknSDrBin8PxlP1hVqade4wz3ugC9dK2zBqNrDIng2g/s4PMxO1ULehmaY9ymUalwx3RGRAqloNzD+YgsmosdCoNA7eiR4nvpDFc/5UUv6OPr49RQcyh9Q5yB9B/OpbHDaL5fs2W1E92AxKu/uwY0wITNwWSxr6j3iGXjSX+WvBuA2fKa+2FnMyH0PcwHH0l7gGdY1roU1oHBcfFuPwMg36JzoOvn7bAStOT8OXbo+5LVKN5qXEw4vV61h9pzYJXTrFmn898LW0LGSs2AMPeA/s9h/JYbnZWHLnD7e8OI/XORJvChbih8ulpPdyFORfaiPd7ebwW3cqyoy4g3faJ+CfNffxhuoPCjbbwSf8+9nrjAyUTlHFTXo/IXKnN4VfqGRDv1QakHHilPQ0yD3xFisG/6M6WVnoa1/B9x3Ws9Gydlp0QoPOrvyNS96Mpq0j3PCifRdtWHUSgkeMhIOPj/Ho0K90uf4dX8w/R5IXujnq8Tk+HZwLO/fn0+/Ni9B6McKkwPkck2NNNyZKQPrDvyS6P4irw7ezlNZH1l7lyuObRMH7hynI1G3G+J8DNNT3j4fvOnLT31TYMl6K7RUNWD2kiF1+F/KyqDEgu3gkzlm1nnQtl9KfTuazYlHgKjaAC5/qwM68bH5t85LCeyeCncwDmJ6kDCFt80h4jiYuzwnEGPd19KzSFeRSaoEt70FMvxXof+uEnCeW7OJQyrTmIqQsVYMLR3eC1vJrOFFiAjRH9TCfVAarr+agdGwa70pZRoXT76B0Uizukk2Hz+V/cHbQcqoWq+D23PGw6koHrHwzhPP9loLOtOM8u3ghtp98x3F6NxnbTWFFyTh6aTwVEjy9OMj0Mq3Vi+ANtgdw7dajJLr2OjhKbcaEqAmgcK4Id+4RA9CJI8kd43m5oRVFqAoijm6G89OMuGjEGtrybgi/anqQcshISHT5gst+b6ApWvOhIDmD+OYd8m8dhiWPnXmHdRddLxtFi6XkYY3ZN2CXNNa7t5ri+9r4xcbZkCb1nJ507wa/qz9o6TN/yj84DWyuPSf3CbXYecKOzM5p86/SJBr1UZxl2wzIUryR36n6wxo9A1gqkQWXrznhWF0rPDJjOjUcPIoDTn30/I4VvLYrJ1OnKEz/Kwwyakswd/938L5xit6I76CLT+/wwOyZsGPVBPa40wXSFuewz0sV9nlU/o+4+1AEQlEDAPwPOzIzS/amrIiM0joNlRItLZGQikhLaKGEjDRIGkJJSWnREEIpSlFWaSpRVor7GPdJPtz+2w5KKj/jy4ffsN9nEjTs2Ak97UYU6riDLJb+picturA9QY0rtJrJyOwpjT+YzNoGx8kuPABd7z/Ax6ntGDZqKu09rQs/NyfRzMA2uj6xCUf1tLPmha2Y7pnCqp9EUT/lCwUVWdLXYTU47RNGtz79x5KEqDkQDveqH1OZiRyOjb0D2b9dcOZDN4zyNoZtErdIfmUsPJ8Qh8VfBcnP0AhfegWAVdMNLltvg2selJHX6bFwylgIU4xWofGrXJgZtxvn+8fDv5mxJNutAAu2DsKE0ASUttCDNc0v6VWnEb+3raXT9/5AxNs8DNX0pMzNSqDGZ8khcwJd0hIF8VItqrhRyAFVf3FrcgoXvPOkE28+8BaJQji58hUE/27jKHVB8JMQJmeu4jchQqwnuwfduoYAjbdgR8tKXH98J2348JCkI9SgVPwvNl/Qooq3OVDjvgnVTdJBpPcL7Bccz+7io2jPIy/KUDOAuLuBHC4+RJ6L0nDO9hr4YlfCHenDvE94EpzJYe4y8MY3blYQHBSOi676QvDFneD+Npo2HZiP+5M04dOqRors84KBR98wLXs8jH/aRSXLr7Piltt0a+Zy/qQxARYmtFNVTgaFJJqRVr8zC45ShWhTT9g44yAqnQ+HH3aVrCYZT+YW5qCKN8g2yIbTZB1gnaISqC9Tw5DaGo6eooQ5ktsw7cB6aDnqgKZ2OzD3Wg8GXJoNIaEGIPxvHP/1qUCtkjR+M2s9humspmklNVDc/x/I/zCjiU96eWzESJCxWM/Pk9Nw1o8klOwajfZqFWhSnUJG7cLYXxdFh3xEoUF7EmzZcZl1ZLTwzYPVbJQzG+5VfWTjs3bo2mZEj42VwdhhHXb6KEN+dASMDKynnD5VdHq0CJsllPhgaiRnFTzlNqF63HxcAC3a9OFHwyIYW5HA61pUyDnqB5raVPBArRVbL/ZDm8p9PE57LLWXOkDAuXEEz3PgfcxiNjqiT7vKmgEzD8PJKyHku+ApdeunQXS+LGRQL98uHke3XsVAZJU15My2ox3R5mzldYtnNdpQhpQbelVMgP+m+uCJpnO4+m0Hp3spkc/Hzxgpspys4oGOey2ElyJjubh3Ikwbm0mDxzro3av3bG+6nxWU1dHirT8ughRyiqkA8bgIeJQlALsPCuDxY17wz3s8ORT/gW1y82iPTg4ozLkJV2PrOOzfbC6Pl4Lg6VmsrJBKKfd92SukBbesNYR52wLZsz+Tt7silTduQ+8xVtByuglz+47w8jxLHBXUBYZvT3AYv8bh9P/gaLI3VwbLABvYQ3CaED/RP0DG7524coYDaX1t44PQxIGR8jQxPIfiXgrT/i/KkN8ijIJDSRj77jMcu/iCKm+3U+uMuTx22Bua57/gHjpKFZOloHThYf7cZszFBokQP5AOc7t+UrTFDe5MrCarAXvsaGznxvQxMMNKnd6tPAMiNR605KYWPVLrI4XNcaQqt56+zzWFkh11pC6mCTuMMlC2oxOTnvnB/XeiHBC1Dsdu9caBcDu0l3ODiNCbeAyUQKbmPokLjafxUzfiuhVDoHPSG0ctOE63xt0G0fMHoFTCH59+GgulfS+hbrYvNylt4+rfHmgopk9d9qXwQLKYmuYqcH7QF7ZabwluL5zo3LTnUHbbEZxD38CKIDFcMLgTMHonYO8uMEvRAw9XYUiqbqQpLivgfp4wLtM9iD5XJfHTPYDEiXfQ6dg/uDjsSuEiAPrzz9Ln+n44FnMEn/dI8HVfFbw7aytcVXVh4Wly/Fn2KYy4IQRHJu0nmfYEzg2djiO+aMOTJITmSWN4j7UR9m2U5EdXL0KOsQNkhSjxuqGv7LxQk+fqF2FMvRKM6HxOitt1eNy4OUAhE2ntxBHwcmM9u5XIsoJHEx2WbkSxKVP50oYwfr7ZCr8PK1CcvhP/3qMMwV7vwajWhib8syff5BAc9VcdA66MoIHXY7n8wnEsyZwH73E0HFMvBf+dZ8CxwgBHC5jjf7MsyFd1JoXdXUXezm0kO1sfnIOFQVnCmJXpDHhgL3rMiWfJiS9BS3IbT1urxgeXFaPlbHNc9dcI2oJX4x6dlxiWbouLbBuxaO9s+jT7Ct0JnMu2FMkHPL5CRJMk3C7ZDmmLdkFbpwVbmP2j75M34N/jOtSR8paqS1RwhMQVNg8TgAXSP/nnwFN6GCVHRpl3MD53Mfte9iHF8b9ofbo2TpaW4CtKtjCvbzpK3BUAlaNu1LbuNqu9V6Xj2zeyuMl0mr9VBzsnBoFewWiwf+9HaWri9KZ0PH7ptcQLnVsxeeIsDpYQgcGlibhKZTvo1SlAZsV4xI1zyFw6BMyizDFbahRNaAQu3nqHrvfPZJV4QXzvKwF3hcRJJDoG9k8SQ41lt6i8eB7sWnONT/0YxKi2akoQK8VLjUqwyqWH/8Q6wtUf2dTn5cqWthV0liw4tyGLJcPjoPftOFDWVYRxSe5s0B/Cmja1kG7wjsODN3O1cQ/2ZXVy6BILDtF7yIvm2sN+d394/SyMvMfasX5KDCzVEIJZQSP4bqovVkzZxxt6PmLdSwEI94zGXr96Dp+XDNu6HeDnkvnobzUSyk720I/2/eig9gqm9WtBm6QIvVrQS0ver2GpN17A7mokOmczKXoNQvDnYbCauhYE5YSgpeIgo3ILhGRsgLezTlJvuyIY3lhHs58dQtPXD+BQty8Ha6rBjzFBlHd5D8nK6VFvtBBlbU0GvT2ZvGS3Cla6KaIdd6HqVSPYWZ8EZ82W48pXfhBuFEHvJeWpxTGB7p8i+nTgIHtvNobjWtLQ2+FPr975Uap3CkYqFnNeyxP4dWEfR0yaCAF0mo9pvCH004cxs+1xsPwBCiomwehUB0422oLbk9rYUP4KL8vJxLFG9hiwewJEGy/GB2OXQNPk99gvo4SuXfPg32Fz9vssgBpjjoFA9kzep2kFf3IPw26fcaB+Ppqunihmv+mBaJ+zBYdXbECZnSXs32NNf/4bCXsb1VFFM440j2+jwto3EH9qAgXmCaOa634aniIOR3w3wqqjWrBxYyf8OTwVJq2QJ5/np6l63l/q9TpALy9aQH9pNYmcjcNWdSFYLrsfRIsugWJmFDatE+N9IpvputkXFj72CQWibpCXuzt0Z5rC55P9rLvgCS2NN8bl8WI8c28oz+6+ALUjbuAlo3sUYveJnGeLQcsWB37QXYX+3ZK0RywTLcuNIOiWMm8LSKGGj5IsGhuFMltsYFRPOQ6ZzALpbWtIyG05Sj3Vg8CweSSj6sg1PR68VridJ9cj9H55AiuuzeKijAZ2t12O5ltSWSXWhdQefQHbNbdxuPsbTo6WhzcV6WD5PQyP38+moe2F6NybDsrbgcDFkDaOjAbPyWbotNcKFp5/ifY/ZvHAPS2qcc7A/25cwI8fszk1Wp2iTjVArnU3VOwVgiXPolEwuBHmpuyCab4/WcxxB8qLGrDIhXLorhHEn3KjYZu5Dqzsm0zXaRrdtBoD+botqK7thfXRGTRzvhiU743meWfE6W+/PngJlHBHXDChxjEKvRNGHlmnwPmyL26P8KQHs4ThusBcVpmuDP7D2mBapcrzxQzR2eMoxMSMZ9mmS6yhGkAKfXrgdugODowwg1G1AVTndxPWKipTtkUfdrl1wqX6tVB39BP8VUxCrTYH/hojBK9u7cOfcjkQljuJPdadYM3TXuBMI1E0pJk8150GTvOjC7OtYbLbVXgYGokTOmdxhsE8TE8M5afp38HnngsdsJ5MLdefg+VqCXiXNQIOzNkHnDqTTMdmYuL+7VCbsI+UzwTh+iY5tn3uzPZ3xkPT1680YNFLPxUHUPhsHi64qMy5kevBPmcFVDbJ0NFUG5IPNYH/3pXBLLdCSJnygCL+1lJe6g+U9G0nFS1RNm66Sbs9lnNG4zjYTKqYuUuI9D8IU+aWYN6X9ZeOi12mAxE/cWJyP6TFj+OrAsbQW/kFtq3agCmrk+BMiQGcVoijvrY3XFyrx6WRt/ir/jOKUbUCjyvR9OQcQevwXVh/dyL7+qRiYpc+7UxywM43GeCS9oqWBNnDyOp1PEWzF3Ytv0ZRj67hVW193uuSim253+BYuDhcffeNMg4pg/iM3zQj1JNmTR6P379LYNmN6TB5diG+nn0HGme8wRdBRnB0kz6kVXnz8u56VqrQogDRfzQm4gJOiZoMK1/Go0uHNotMVqJSf0sYs2ExVZga4H3HZPTzHckv9jfBo6kz8GJEP86tncrrvH/iNysjiP5Yz4N5Hri1sRnSd8+EQ8PPeeX2G9RhrcGtDyLBSTCH/m7WgVHZiXihZC87+2wHH4vPLLdqElW+BFyS2UcPW9I5rCuZPawU4I7ib17iuhfrM9/B+jGiPG1NDPuXjsb0o+FQlpeFr3+Pp6S3DMrrSyAm2I3PbA3AHyOn042T2WQikoKevor47ogJC9z7zkK7xcDQfg6YJQzgTUUfbs8fhzEFUiA0fQ7pzTrKGxZs4J6ybSi2VRg+jVFAFUt3tn0fBupqVvTu0zKYXLEFktdNgGNytex+/SF0Z5lCalkGdk0bxV5Ktfyrr4YuJG6l/Wc/crBAPFk6uuPiF4PkEKkHqdsekMcuD/ybsAJjwxaB3/FcTr66gy44H+LfmRYUZlNDHfsmgNS6Hdh5w5m6pqpQhZMXhFtpUtzUT6hrJs9oLsxmU7NApmsU+Iwfy3rpVvhiaS81fy+DxNRlUPGlD73y5vIneSVKHvyKG1gfGjIjOeHqTLwdJIYb5JdyYvcTaq1wAsevb0G1r5u6ZGqgN1sYFH7WgJVCLakeUAXxK8+4u6MbyyZrcYtJGa7uXEFj2mRo6LkDqFVo0mzXpSSCNqg5PRCMO4RIwSWYL2Zrk7X/BDptHA+JRgDvvv7hrFI36ld6iG8f9vGXm/U8pvE5dX5cTBc1a+D+NaCpX+TAG2fBtJM1/GXXZVSZuZoN/I2owy6P5Pqa4dG7CzCJH1H215HQMZCIV6wLqTTGAkzifsIWnTgq8/Kinq3RdEJfknWrK7hbQh+c7d/wYqsX+LZmHJQXydFvlwDK6A8g/wudGIr2/KfgMcNCO2h1SKGsshZQSHJiu62F8NYomqyXvwK664SHP38Gm8dn4fAiY1B1soEdhvqwIzcKY3u0SHWjHjdE2vDOdTN5NfVBQ2EtzDosAkohr8l2ei3udbAhb/eVWLGmhGVVJ3JHgTttbT4L/FgJn9mJwalbXfjeu4BdZB7Tp7bxUOpwCH799iDnQE+4umsMvLdrorhR1pBVd4ZcSr6yraQoRSyazlEOhfSrogXOKX+DaSesYaRxPt7YpQ46Sw7yJLVBHpWaQXtNfrKy2XPKuaEFdjPWYKlsML6Z0YzVMpYwvLqL/WdFkvHILHC9WQViEYs4UnoyCSmO5ClXCmDw0jtqGFCEzYtn4cMkD+4oW8iOZ8/D0Q+vKDU2gCPSTnPsBE1skmzH3f4aMP5wLyauteZnJ6aA48kqCPmoSSa2mbRDtwd5tRd1T7XmnokKkFtkRcszNWm/bAYWueyBndmfSV9kEy/NXMkaU1NI1WMKLtUfDeGzdoOjxhG8PSkYTCVC6bbZa/T4Tw6artwjBfECmPX2FgcG6IPbtJVsle8PUj1OkGl7g0uF/LhdQYaul/tAvuUoijrzGB8b6sDI6wJ8Ot+JMnS+kcu9b6yZVknjq8fTr+1/8E6bBukq5uPSc0KwTOUJa0mPhWPfMinlnAsolJjQX9kWLhII4z8tl+HpyBqIus6wOS6LdcPNUM1pAaq/G0MVo73gkfAt2jZshMV3//Jzha0snWwO0etn4bcNYaBz+AO8FmzGnuyXLNUezEGDwTj4eCNqHe1ld3tNMHqtAXFzLHjxOEf0cAriLbrj6Pil75x+Oh1zFjnRgY0i2G47EXx9frJLwzJeei8ZfAJGsuUNOUjdqkaVi17xU6ld9DzzP34RbQMV6y+D1L4QHLy+GGLdXCBnBNGqvae5LPQQrfivhV/M/gLvb9tCklMPRilP4yNehiiluxgto5No5tARLpzcBraXb3DueCv6nioJ53XMIHfeOVgccB3fL7KlAf9V9FWsEFWKSiEag6kh9TYlDSvCXYVe3Dp9B8f+9wdEhe1o+kQFNIpfyTMTO/nB92PUcKUIXWskYXS2K9taiEP4OUfyMdXHI7Pm8pp9L/m5wEUwldQiN8lm7FyrASG8lyaerKP6i+dYZcxkmrBXnYO/f4cLPaU8a7Ikxzwppu6ACSAl+gB92z3g7BZz1LHWwFBXwFE9mjy99QZ5/zsKZfYvgfSN4F7cY6q7NkhNC9diY+BLWJ6cyo1LFMD5WBb6mY7hXTN6ucrEAtZ/suOKOyNZxjaehC5+xHDJfNL9/YubXnXwx70fcPc7J6pw1YO5hW/pcTkQKM3HluofnC11l4RfW1CYrQGKJF3H5KUz4belAnR5R9BfFwVakDiAa/LPQveROCzt8WOfbD/0fTmdOgM6aOilIpyId6XDf19xSkAu9OZkgtGmElpitocvG1yEL1JT6VuYOZadM4JJQ0q0bGQeZjndQofCVDjVVMxqU3rhrNAKOqr+DS9NHoMLForCVXEzfGQ4gOIHc6BuyV0MMeymWddEOMxLmrfIzMGLYua8YdVIOFAyFw5kb0e3R/MhYDCGp21V4IWvFtLZk3PwRmAolAW28tmfUvBKVZ0m3C8n44PPsLJqAxvs/srOqdNwguhPjPX/ybQvDthUGnJU/Xm42pQme86HFYatvO/tT/KOjsNJd39AzYoFdCbzFzubGUNIP/KSceshUH0la7b64ORWRaycnouV/hN4+6ZKWK+egJcPyYO7bBiPf2tJmfsISoQ3wvkuQ/YZ9uPh17fZ+sIlvKiWQ32pDE0terR6TTGvqX8MnqL7yEZYjdLG59DJwJecO2olmTceBe0f+hBd3kwpYo5YP3sBrRVleB9UCKo1bzDBPAqEX74liS1v6el+cxhXFoYNRbvw6Y7nkNF1A73e9mPAuE2oWJ4Ml2efZ5MDarhiKYFkqhOanplPTub7YO2tCDy1No/LJivDsn3nQJ0TWS88kWz/yUDaXy/c/qIA33hHQoOeAHlOX0pKFQ20w/8qPZ3Qwkbz/CF+tCrIyXVD++eJOLffDe1/W/HF8nT+ptsDOzYvggXT5RH+7gOhPm0wyZ/MDwSW8t1lCaSwMp4+eNSR4Zx6uiNXjpaZv0i9og5SJLTgQ9lLEJzSRrEthGl3jVD+0mZwO24D74/50Nk/iynbspMclI1Ba44SCWo34PIDm0n6kwq6VT8ikcPWuL11CLp9rmKzygV0aJWAfXb5mHnEg7x91mHlwbsYe92R5UWLoKtqJn7xagILuQk0/HYMiKoYkoyCJ1idus174BsNb9uGsV7DaFJwAnV/D8HcVx/BqU8XTqmq4J3j92jht0T8tKQI6p/Gc9OyRFx66Q+puqnj8VZT1E/RhBjri3ww0J83vVbCqA9u/NLwMmS0dmL0vmS64lEOJ7zPccZsI7i1QooUHo8lvTghUlmQToJn3eFWmi5aVPZSubAn7/gwwM+PmsELqwa6K/UOB/rX8fOK0bA18jUpZFxi/zUfQHfsH1T2DaHnFgQ2rmKscjkRGm4OsMMdKToQ/x1OGPRwr4ES/Jdjy4tUFdHDSAxKjfNYc6wQv7lkTBouKSQ+sRB2tF3DpaetwO2mL7W8EqMpLkow+WE5jBMdQx1qS/nyFgeUqJ/GoRgER/+zBWk1f/zqJQXJTXIgtTqUk/+Zw1f5i/ynQZ+kpwpBkmcBtBa54u7F9TjTpAmHfZRgs84PelLQgI3/dnKhSTEd+jiK3YayWF9Rhf7saefNhyfBRxc7sIFEcDwYg4rPP2PesxiMmnuCCnr3cKdJPX26vpSlw0tohokRDMcbglJBPHxZEIJGTxdi1gdLbuu9ChnPCnFvujstkfNj71pDmHbvGfk1OYB9rgQl2V3mio1rcLF6LWUkPuDCyjY4ufsUmiQZw4+oUfzQaxXqdSSwwb+dVDDozGO/DeH8gYlM/52AmvyRfL55FAjO6eDJc7qw/b02DsZWscHGQ6Rs8QxUZRaAi/YfkIkpx/2NIyEpKJgEL22ktUq/aO2TUJ5o3QoCmfWYVBqDc8994zMFT6nAzBRSnr3jA+GEN6WDKVv6Nc8f4YtaGxZQgUoz6mnLUc2mZL4XZwSbVibhpI9jwaE4h2q2lGN9sg5WLBxNQQn6tGaSEDT/2oL5VlJQOnclvv9rDDVzpCCkwZNLIJhSn2XhvfmmHPjXg3q1RrK/vwR0jrpOwk8jeVKuG4b6lcO+8yFkqhqCY42L4J7WXfKfMoTKk4ThfrglKIrt49UWIfR0TwM0r7qF8TFrOGyeJG5c3IzeOlMhqVUbfKSUsfLOXDxybjxZO0uxybgierZImxv6KrE0+yGsWRXAv9ZMgA0Z36FIVoafTjjNJ7pl8bZ4EwYMybGySTYsthyLDmF3kEeoQFD/IxRtGsssU4B/0v7gtCINLJoyDh7NPEfXchfRnM1DIJClAg9UUzB/dQqG+idwnkslymXdgglnjoCATge3xWyCkDEroWk2wJHoM7w5KQhtE27Cqz1FeGoolgpLatmnLxMzsnIoZr8SBB5Wh3UbJbFw7QPcO9WIi299Bq/veRQkMIvPvQNW93TFipeWPKJCAn5tjMCCGTn884UZZ7VlgZ73Wd543YKCla7C0mVq5HntPo8plAXhi5tBLgogregfqW4yxva509Gufg2M0BFk0SupYJAwhhO/KYPDtnksvTsE18wuAB/5VqqcX8WHf76kRwcEoEAiB04VnQbXaE3oqoujjIRCeDV1EmSY6XL4r9HkZa+FifJLaWf/AhT5ylxCquC0XRLOn9pGn36+hTkWQbz09ioeH3UKPY5MwI+XLsOInx2o8QpAfsUyHpVbSW3nWvGz0yGSwEN0KfU1h86aQ1Ynv6OmqQ3KnROGDcs8MS5kP248vIgr0keySs8tvnn7Pp5YP4Wk9wThjwP5eNVIGWYefYlz0RBzfUtgxbuFtOdPFlZqNbOGUSHlDXTy93Zr/Ph6Aii/Pwtbe3VhvYwZCZ+rwb6QTxCbMpWKd4zFtLbzLPQhh8Kvq0HqyAU8Qe4C9S7twJCfulwwRR/XTdfBt0eGcHCGFixxKqZPCvZgYykPkbNXwKKapbS9yQaOQBiIHDxNVeHfMTsoivK/joSuHgNo1/SELANr3uTnj/vSdFDBXxQnf/KAp097aFLzC2w3X4LLyhVgpK4RRsaIQq2kGGflXcUV0f4wrUgXbnQl8QKHRHxa3Y1DA3Iwd44jLFEIwhG9cZRa24ABTa/AUPINT2su4Zh5Z8jxmgPefy8E0890QsfO+XxJQwZkwn7xkYFgFL/1CFXSTmGvbDs1VB4lwfGycEW8Gt7rGtPKWB8UNzoBu09ZQfq7IajrVGbjcR2838WQ01yE4X7+c56ZsQocrmvy+4UakPxtkOIOlMCZ0avo7SR30tPpZN0QDZi3egQvvtML2WVm+PXgRnZ1Ps1v6RJUmA5wS+otPPelFRZ9MgHPX5fhQnQS/1ulgnv2m+OfLfb0dSiGvoyO4VsnbTjnoSl2pQvC1/p43ufO1LzuJd/fZ8biX4b5UvpGstmtztpZyujhdg9GrLYDlz9noFuwlqTdxFgqXxPWdb3jjuw8npmkxCKpC2GctROekp4A1hCCjSovyGKXPS6/0g+nt5Ry96k94K1eAx+KZeiz22X4e1MY3op6sN/mW8TFr6DSvBs079uQ8pFV4BzvA9/kHlOy82Mu7DIEB7cIjnzwked8Wger34yElUvqaBe1QNcqVRJqkKWK/jN4MlQQ6mfUoezhYE6vnMdGF6wxd7IuHhawwclnIvGGx0Uwk/zOx8IYjFy2gW+ZHVZreZPibkt+O/SG9u+qRusXK+nsSU9wr9Hm/PdacGuZJ7zNaIJjZzdB/qMe3qqTwoE1f2lc3xnyv21AzlPl4JuEDKQG6vCg+iZ6PP4sPG2NprraEvQTyaTvsoXsqv+RPLZLYtMVAViYZEiRU0tAoSIFzv95RS0ujizeGYsPf11iz+93efnjKawd5ADjH7iAtrgzlhQeJjMXC1Yf1wXPG8Nw864s4sSXKGF9lkz/2UFesD4vnFvAIXsBXyjosqP9OhreBfBO/xCtWLIP/WZ0U99ebRB0bOTNBoeocfp2yOoy4TX/dtLElHl4QqycSzeoUdW8GDbSHgclvU/wWtZ2dAjOgiM3f5NJYgclFG3AmXHnuV+vj7R1Kni9iRA8irThO0VnyD4gGz69zMZExdMkXx1F0eUdOPlmMmByLNs5icN4iWecISHHb76Oh6ntPtDo481pqTMw+7IJnJJPQt9f1RDbpw9Pg4/gTb8lZGeYT/GvfXDxvGZubtvFHuaTYOeJaeh+MpliWlQh1DWXe5IrKMXWgN88mUbLrqznYRc3sntVB90hf8FJ8BQvX0Mgs+ohLJlZjJYryvBbzQQumfuWOm7do083PqDTlRgIOVMO7/T0YShcmI3pKLc9eciX1xnixNHlsOLSCpQ3bYCv89ZQ/mhdnPh1BCQfbufXB1PRMHU5/RkeTfl1apBkOoFzqsNp+bXvuDpBm775GICubwDtNzHF9fLv0Hl6L2gmzaZRAb+xYusdXFrfz0P1+ZA9XRtyHkynfQenQYupDmQUrqDVe+vop6goFrhMpQ1dxyl2pA6lflUBv+Ey1vA5CEtnKRMdRF4xqxHam6Tov2pH3C22n3CXIsyYqAMGj2op9M46au704RN+byn+bCTeqvhHAUHXIbOlgXqLp5F5vib4nIqAhpk6lLz/PlzLkYSxeUtQY9JDOmDjSFYy53F+jzA3/7CB2HtnWNzfi6pa3mNeRyWH9Puyr0gqJ8bbYazSZT44PoHS5WUh1OY0zRbL4Mf8h7VvemDnBUnIvXQEwsNyMPBXNT7SG+Irl8ZBxraLIN6sRiq+xjxCeAAX1OQC1K2i2Raj0fRMD395PAhme/UBb6viBHNvejT0Gys/X6TABw4g1pFCJkIPQcNhLgzovCa1zDEw89gn9hFZxF/8z/LHthEUfmo0Dohchp5tLSTjuwiPms/n+eAAkmUj2HroOhe3bKSMv7/IxncOJLTuBf2eIpTb8hp7xbLIfY0m7Npdxme2z4BjdsKY5VjJf68W4Vf3N9QoHMCe2lX0OmEQFpurweyVFRykFwp3ph6ktU7XeejCXl53YRXbHs+j+kXLQSHjKozfIQA6pSeoKOYFn9yWgJ93TWTb5WrsZ96KPU0LkXYn8hrBeyi8UwECrsSyYpABpp5qh1Ou6kRpjqT25yNnbXpL3a0v8fWEQtzwWQpMa2ajiYQbJeTYwXaLWm7Wq+R3VXNQ3l0XLm1qBMfl2uSNCCmHHUllfSZ9XbeDcmssoS+5n9qe1MLmpTv4eFw1GYVLweJpEqDhKkSNFZm0NfEc3utYC8+rLenQ7ghaXhdJS/a34aslTjQlQQA0tI+xh5k0WD4/xgZTo/mj1XH8vayHJfgp72vXowihbLxlzDCjYAUtWlSO3tItEHEmGk59D2f/2cSdamm0sfsI+Ol8w9FfTQFGbmeV9MWoLbYMXzgHs2riBmx5ZwKhzsLY2anD4u52uMJWGNbezcPvu7Rg5ZAjSgcZQOBfFV545wmcnzHEJ0+/h2SXQDwaqgGSrEna3wuQA32pkD0w/cwLlp2ZCjFLPqLtiL88t/Imb+42hZ7IMngfUkbYFEA+IvNgj90MPPUsBltulwC4nKdUTxdyHxKFoo87aYzSf9htsYSlirLQN9OLsf8tXy1yh0dtXmhk1YGhgmPhwAxRTJw5k+Yd3gy7DyjjTMd5mK6eAYMFh3nD8GmSERHAkCuj4Xb5Xq54nQeCrgr4PlIcPKVEoCh0EOZKCzJMVUS/Befpr6kenBr5mCqmHIeWL5O48dozvNBjwAeTi8G/7TTXhQez+9ArjFhtBsKT+pCWzqV8uQUUpX8Hixfnor9KEjyS9MfV75phw5IDPCvDGFaOmAI1T8Tgxr8UGB7zmJvFA2EgPwVDFCzwz/6noDfxDTQUAWR3FpDbBDt000DMfT5EN5tnonTmCxj1oIXkbetYvKoIc21EwHhCLThGtVBzfS/0jd5Da/pd+a/LHrKVm8IHhhiwphVsF5vDlkX7afV7UQq7VIzFG2IwbV8Q7X2Vx4uLv/O78WmgopkKU19LQ7ugMfa7RbL22EcgfmEpDAr+R1b7Kuh58xYoOGALiq4rwETYGu6LGqLfRSneU1yIsrJ2/NbJB3Ujp0Bi8DVQdNeAA82+9PAjw7naano29gmEVCzH5OlGvCqpDJZWGGCB23NYv1mQnOSbceVFOeh38EW/900YcnoKBV7zZq24AnTcLYS3v6Xi+EmS4Kfyl5obVUBkdxeex4M0Yskr2rcf8MYNCxol8R1GpdbxL2sNqk9FXp7O0P2gBHTHNdEasVx+5uwNf5LHsVy8IvcWyKLMsuM88W0e1MeJwMq9ajz0dDHVCE0ggTVbuTB9KepFbaSeys+Yo32fnzX/ol9bBKDwayq/vafDR68Vw4+xxN/brtCstdvgkvoQO1/3J6092rzgkD2sEPfky2GlGHQ6ksP0XelEfD3OKBgLJY9uYHpzEO36MBLt803h290NNKkwgU1Wv6au3naQyQ1B6f8qgXaqkqPlFTQf9MAZkg6g+CKBxOsGeeG9SeSeMgU2nriN8ioMHpe2cMEPV9j//B6n7LGH4W4/OGhyDAoEcujq9g8Q9SEHrU95QPXEevo7vQmW3AlHP10xONWVhjOeP4AfBs1498sP+BzYxy4WMjSYvJY/blLG0bvqub9EHerXdUF4YgC0nVsI8p7u3NW3n04pv+SLcyuw/IMw6jw3xbXKNiDnJ82LY+bS5vhH+OKXCU3LFYRQq9mYCes5sGwU/61qgOwqhH1fo0BTZhZdiuzhf+u+4QZ/c1whex7GHbxHtD4INC+uZ79wHWgYqsOD7jOowccMpUIzQCvCGr1faIHrDSVo/X6WhqqOcvvzMaD6QREHV1fSyrU36FqHFXjYJkLnIWe46DodZC9oUk6PIv28NR5muFTz4AUJ+jS+gWqiNGn7FHMQCD6HNgGL+PrlpfTrgTtse20LFlOTKPTbJd6hoQhVXwXZn5J476owiH1lzue3TmffViO48lQNlmYO4NiUKGq9U8eSJ9vhZscesjIIANdiTRy7zgrKW9Ihy2wUqOo7suo5EcybYMQltX7gFfCUpzSGgZTkOwjMbyQ5h4vkaa4D4+J+guYRd4owUIFlof/gl84jaltRB/H7VXj7D0UK+zwa7fPMYEhqI9o6POCp8+PpmnETCdR8gX+LJpOz4Fw6eaeO2p2bYetNDXBUNYE17RWcVPqKW/98oSe6gazQd4bl158E6fpM6Et7TPMWS4JiQR35S1whXbEwnmr4j7RCidb96sctd0/jhVx/2iw7RALXHeABz+GFQwZUFVeFmzL0cIv8MhYPLEADBUGkwp24gxeSstU4MNIpANEeT1Zv10S2cqMl7yZzotNdvvnoNAknHoeYC1E8vlYfntc6Qo63HrWseAVyskfZpyMU55jOovcGJ2libDbEZr3A3zv1wDD2MK7eUIdaB9VwnsoXntqyABLEJ0PkAU2u/30Ur2Y1s9mL0aAzag+pqObwyj/faflRb5byfUmHdpfhsofqXJpmgK+sR9G+LHPIGPMFStcPUuTx8fisWIbvKWVg/6gSOpskgfsui8NYpxC8bW4Dz5cM0JH5gUAxH2FP1FmSnvuGN6kdodJACTZct5RbtynRZT0ZOLM9FttL7nGS0UNeN3k6PBQ3o8UlV9B12kpScaqk8MtydOnDSLhQLcTXpoXjNxHGqsumGF8ewjvrF+LM5VEQPjqbtzpE8Y/1ylAhbIB2vaog+KyMZd6ognRwBy267Yt74i3wjbwcvs5ZgxMJYaPpT6gyCqECvXO4vESG7ohsYmpFdLecStdb5WDj9BGYO2QIOVmmlPnvKEsWT2cb6YW0w3ge10gdBSfvNk5YoMF54W3Yv3gMzGp5zypeRRj7ywKD7iOIXCrD+k/qZBdnjsvqOmDXJXEoGikLaYsugLFNBAaNbSbjN+Pwiqgkd/+5jo8CD0LkwYXwueQpKqpZwC7zUBa7f4hWQiINT7HHOwaT6F70bfSYks3vxj+hUVLT8dBrK7ieuoSGQwbJ1jQYNWe9AdsvZ9kwsxS2XPsIDRHhNL8oDO6ajYUvJxbzsfowFs6+DFGNdiCfJ83u6Uf57eVM3iz3C6SNrtCRV6rw+o4U+UrugC1j3NlfdTtO3LUdH3o0ULX7HOoO7cFs2kTzEwi2bDFkzUl7uET1BeV3eeCaceq0sPsaiN96Tv8SOkixagHO1jaD5bIt6K4Uwj0/0mnXk7nw38PxBAKfac1TS7z7fSafMSrgaYoq8HjSXw7rJFixvhbtlMfxgMI9Cg/cyum2d2Fq3CB7WvfCem8FEE/L4c2fl8FbnZuQd46xUaISFW6voQMqCTQ5c4hlWRvvPDKDbYJD9DL/F5TZXQSFzbGY5nWIjfa+hC2vzDHsQSEMpD6gwBJF6DXIo82jh6khfyXXqSlhYcQu2CGwBz4HzWC7M6X04408OauPgIHoA/TVYA4pbh7AE6nqePdZOHoPusF8e13KmbWVnwY9Jt8JujAjKoQzHq2BfRGf8fHo/Sx5lllZ2ZLkXB9Bi4gnrb9yGeR+K8Kt79dB8awf6F75Amjug8si78CaDhccepEEQ7PSabHjd17TMRF2q3nArs4RFJh4DPWM/+J/F8+yV4IivpsdA1X+2/nw0iH8kGYOenan8dsGbR5+1g5T6jeDY2gY6B18SlPGvAXtqwY40v4s3jugD0Wh32jV7WC0ma3PY5f/x8uW58Ea9QgQ97xMY6/o0pljsXzWn8Ezcyee8vvEZyvuQu09Myw5tIb+CcRT/NZcWqFeCyJDzH1z9cFTKQQdLQq52ecpPXbUAyO1FShS+Q0P6a3ilDH16PnBB0w/6YLI/UMQuXU9uC025tzv2bghdw3caNTgzpi1GGVZCEPumtCsPg46IqWoFGX5rtxd2jDpEu6/f5NV4mOp9o8Ln9aKhAcCO1EmSxeWLJnLd1sBs2Yd5KzGcVijMRenhFmjYsIXmDv3LFTnH2GTuyPBN7+Hr8ZeAiFbHxQ6dZo9Wh3h7txqVHR+T9qxQrwqbjwtf64Fa1NuYap7LlVf/0HOor9pimYrDJfHQl5qFwk1T2Sh0UmQKaEJK07/w/xXgfygWooX5HnwwsI7NHJUGzyMCObxCiO4amwHHykcAe801GFfZjCo3/DmHJnRdNo2jJfpPUT5vAmos1sD6rK7uHSGJkz9cRXXDhTRgMVWkvhyHAXLlKH4hSsuyLZmH2sDRv9yGH1WAd6OEuF5hXoce+8JPimcjRa7nRFXGcMSBxuy3ShBk0XH833XkbDs0X+w3P41Gg078qTPguhR/glkC9v4yNbRNOq9IX8I3c/xHwxhleZliFbWALdFp6GsrhQkzAJ4iW0ie1z4B/3mAXB/ZAKK6+jA9e8m+LbcG0YmTuU1w495i0A3xGUdwPBOZ0iK7IR6rfm0slYWko77cYXZdW5aYMoJK+egTbAAXHjhiFlrXDlE8jZWwQl608lweEkuiu85ha3ieZgofpkrdWaB49IdZPazBYWXiRLm3aT2dkNQ7P2HLx9VolC4BX3c3MU31UrRZOJW/DgplmVH68KVqjaW7R8DO97cQmnvMLxXbUWS6bnAty/Ca3MFnHr5IodLWbLRGHNoNxwFqq7NpGj2AmTcFWlgJPKIM734X9YNmmqvTC9ehdAn7oCJahqwK8oGZXdfpLfqXSi6P4b3JRmDR9MI6ipyhL2FohwSLsfPyyTA5kYoXVCXoc24DXzj1uLV/fv5xwFX7ku+ibNX5dDlec9Q7LYGaAmugJbJElA1K5kW1SbSktTzLCLxAR7NC8QHXuYUsCSN51wTgWTtAeqI/Q9s5wng8CZg81hN+q4wCoUP+dNH13xW9c2Bim3j4PVjZZQeNx50r9RjacEPKP12k1a/c4fYyTF4dGwS2ftIUOI2AWiRus2Wc7dC/YVpYBu3Ev8dMUGV1895UH8zH4nvpIXzo9FMegJE7TNC42/J/DrZgsdYRPMPif9YfLE3NqcCJtw9wgWhgyjjZAIX12+jpdHm0DLiC/uZmpL8jyyorz9GF8N6aKVwLaeuqcR8V0U4F/MRhz3mgOVLJY6xVcCCPDGULRzLJnkviZyWspSLFNdVSECB4WeyeXSc9wnNgNO5piSl4Qer3dfx/nAPKnswE29Y34MZxyfA9t4crK234GLjE6glkU4CN+vZIrMULr1xg9qV8TRH5BaeP2gFE+8V859N2nR88jxYeb6Qb6jd4D69W3g8A2mPpyFs3jMSRQOsYfn6NzDbyxyELvTzpIoCvLhGgrZseEMq+aswr1ESo96HcGOFJDw1mAeJt7O5/9JaMqnKYofys5hgoAPlV+eR7nQ52BRwDxWHleG4vRKq6B3DpV8MWX7RTnbeP55urn9GEWufUqmMM93/dZ43NhIs2l0F72PdWfFzPgTfV+IprkW884kV/zA5B/vTF4B4piFFztSEnq+ncMpzeWyXuY97zuvj3uSF7N42gGGbpOGp4BwQ/1kPZsYjAbpyMGX5NW7f/gWquuspJUKBRJqkUSN+FqlseUE6lRlwSE4XFB19sW5cHvynY0E19xZh0KnLnBX6nixTYnjEDmtSTEkmfqgF81c38pjJIpDaoAXazQtB7v0gJxavpK87K2lihji53wvlHW9HwIhj3Xh80xQQSHLgrX1RJBz1hqNlpHD/tBe8zfMY/PfnPimLy4LDl/18SS6A5nQq05O/+znVMImP7uymv6rZLO8sgxpdRrBxugmMunmKLFeIwJ5Pq2j3UlcuuC1Eeb/e8SOXTzRTuZ+Fi4Rp+S8LELz8Du+5pUO2/Rne9lQZFUXq6fb2q3Aocy9Stg5fNjMm/2GCXxn9VDdtPasl/oecspvRTgydrp3kM7vP8tOgm+Qd6okZrQ7w2WKIfU/I4rL0Dxyttpxr1/ej1zU/dp71B7/PraAoOSEw85sA3+Y4UfycasgR/c0yx27ztaSfPF19HU09dBXN07xg8Yc3/L5XAm5enk0Lptng6NpRVLgoE/TlbsMc1c1cvOwDL358CvZIjaAjmVow52cLGWYk0Ez/mxw8NpBrzqdiycnZeODcQRAvEaW+AVG2OS0F82UuoqtzN6S+yyCjG13UN7+J3F9p8JvrH9GzdznEGf+B7EtisNvtM4jmmqDL97l8xeYtf7B8jNt37qIrNm0YsdEFlM+MgIpuKRA7eAKaYpTpe+FDlDC35SHDSXjRLhjlv08j+RVZ4PJsNL/ssgOnM6L87P57Cn8gx4ZVebj/qhsNVa7A8LV5GHmkkdvjK9FZSgr2aU2AAbs6GDY6BckyLaxvo0p+816h9x1LTnDuIJyzmC5qMBgtKMbP+l9pQK4EbvT20wj9fxhRPBVmKv7gv78SMWX0UtruqA0FF12gV9mZnt8/S1pf9TB9VBop5gbwLqWRGPjUjm6/NsB/VhMheY8R+8b9gMLzzXzMN4N/eV8hcYET3H97HsYFSeMalUysTJIHBS9bVEt8xz3pAfh3tCNKCG7nizcegvqinXS+QQlzXEVJ2sgSVL4dxXF2DZi4OxDmbSmGz7mjaeWhT3TM+TW5zW2nN2GHWXL+CDigJ4qnk1VZWTuc5KXLWDj+Oe6+381Tb4rh1zYvFtbSpaofsmBcG0DzlfbRFnlZ6Fqhgz8eV9EWxzlwvyWJ8xt1uF/8NL+ssYbDXj1o3xKJfo+FeEKaNdVdb+ImUX1SLZDDpQeVQWztNxKylIOaSbsgtP4uzrQepGn/JnC4wHK2Dh9CL56Ff0fWkoxZHc5M1gfn4giYKPMbhlxugbSRGI1NL4dByUmYTB/45OEAuA1CeOexMtwov01nctewkexO+Li7hiPOn8CBna/xlGoCvxxAFmwwAslICUgr8YFr1nf4QJUxrxX5AtWHUrjQ9Ti9L1aD3Lqr+KdYHzu8NWFG4QeSC6rmoJFneUNBEH1+7cCDmX1s5JvIMg8L0T99mNa62gC9tMCuGx0UeK+S9sospObmXZyg0Yzm1REk5NJG+tteQJ0vg8QCe4TsIXbarQOaKfexeZEnPlllhIMn5Khs1T8Y65yAQw4ItdUVfLXCB2Icv8JJxST4REsh6uZhqqopp1TXL3y6UwyOntKFO63T0XBfPvRFVUB+WC9VfcjhRcMS9DXLEw2/fWdl33EQ76EO130S4Ox2FRj1fjop3TfEB0FFGH61HOefsOIlM8txVGI8b5o+Eepay9h61yhcuayXe5YL84yU9XBA/Sa3rXwMioX2MOfGS345ZAtnTmdj/TQLemK2nbdsPsrjmx1x0qi1nO9xjDe2BVLwjhFs0ofwfPofdlU4Rg9sjoNhQwlf+jpIdWNaUWOjIpoO3UecYAd7V6rDgNEADXue4FT7bri82ZUnPzkM/jE+MCi5mB/O/EPTNjiAuQxAZd9tptV3MWnIhhc1qYOYvh596BmGLHmkzxdiObpVjyYGGcHJnG18QlcQ5LashqjfZlA5vRc2SnTiVpdr3DhxOei4lPL7AVtonBKIrm/+wU31RIbUFm7JWoq6naX0qOgRSYnJwYqkSLQUmwSrd69n0ZK3ZPhPjdX//sTayREUcXUnvN5ZTcd8t8HeZbN4eBZC9gxVTP2ZC+UudyHkQxOukDjMmwJc+NxNSdplXANL3g+Dz0FpWOF3CdcuWogr/wah9t8udk1/xTMvOqO17QY0HXRCeJNMtp8mQpx9Gv2b0wqR0QI4ptkCD9ZWQVnSQtod0IhjDlvis1ox2pJkAUHPr+OZx/tg04YC8DN6RRMWH4dvJiIkPiMZP994SqqCEZgWPf7/5v92j2ijm7tWk/zaRGxX2spxc5Mh5+YOOPP8AS3bHMUePT+h0VgN1sbqQM2Iv5RzZAquT5RDwc2zcFKgHqSedKMV797Q49uurNSuDGd05pFswV5SFIvjmUefoGfEGco6akozDOqhoVeNZmal49kTwhCY0cexK8/Dl/sf6dz9Vro+yY5W7yCQXRlDz4q+ULR7FJx7Ngb+SLtgxI5L5LHIlN/8SKdus3U4GfbCogXJ1OlwnrKF1UA7yBx2GG3H4B966F23ktP9hCn7+QlK3KmEQa8DUCrAkfyOqUD6NVU4JbiERW5Y4b/7dqyxfivkv65nsz5NPpOTwdInY/Dcty84/5gtOM54zD++eGBK7VkWOLKD1K98QSd9e+xJf0PrBtayeXU2bV8/Ej71GuOTgEnst2YfrDUpZ9NxD8hmpzuGjNpHyWW/wSpiFDduNQGjb1LQObebZ49dxC7zruJdlzSWjDpKQ8v/cbPbdBDJNSSzQCsYHTnIr2wO845MPZ4wpp2+Dv8HB6sPgOCxvXj6zwGKdcmkyhmCkBBKVDL3NU01fM2DqW00cROhU5wDv71XTo/EK1heQQ0XHtKEBSPuQ8P5iWw3oxTS9hzlr8ZKbKn+hDnOiYtHVvPBg8m4vVMH1DyLcPSyReh9/SE0PupkqUAzjLhiQ3pPm2DVHTm4+cQc3q0VhCabNGz9aMMrFt/Eht8xpK+zjsdL93Bs8zA0tCZBmH0uFKfpwYLYSoja1U3O/YvhnA9B5VRN7PwRx/8KP/HW1kPQNdsBZquKw+1xi7nqtx3EnQvFy1t206aNkXR+cgnmHdnLliUr+OGQEGS6WYNV3RmWfXSXvFsr+djqaOjYf4zHymiBoXI6xIYeZtwhDhfm28OBu1fB9bgUbNF6CXbeUTRgZ85PYp0Z11b9jwD4AAQCgQIA+oddIhkhVGRnJiMhIlGaVNoJLRSitEuhpBJFRUlRtgppa5AoJavM4qQo0ZBR7lFsviZvlzqBE8IUoNI1Dh6r7eHNPbNZuM2fP88yhGfuv1Hv8hhY9PQ8zA4pwNE6Y2Gf7SP8tCSfhuxGkVh7HfYYTeEE63g++XMbpqSOgGiTO1j5WBikPBRwXbAZjg5w4Y12wXzn5GE23erBKxskqODtdDp1t469jDThjdMUinhPoL2tmLZOGMHme/1IaNZTMm2czo1FADXfRbHZUAe+fZ4A6/y3oYeZF464M513jVeB5CgTcH38AGdZTSdhnUJQj5EBbyEjKpgrwRuVNNjZ0wAld06g3wslMXHOEui948chdk00SVgQ3hd+gbU1D2D8+Vd84T9BKr41lVzbP/KPfhe83XqFu74EQk61CFhbnAKtg0MglrgcazuXQsa5KDh5yhTMh9z5vNYO7NUZotZ8hFmeF9lt01nMy/0LZbuWsPWePDSLn0Yaw6IMD56icmUzHhTVA5viNSCx6Am012XTM2qh6rvFcEB4EasMONEv9y00r+Yxyk0XBsHGX/j6qScfE/5L8aMC8ZjPBea7n3BPhy9FOd8njx+RMLHVBA71Pabz2/rJvtCO5XMRbZ7r04fJltDRTnyhP4Pj3X6gwWxD+JC6HnSvWdLuoVBsvPYRd306jXTyBMst0ubtth/4/JA/ldSZQ/tjdx5Tn406w09xWPwziB4Xoa99gWAsvRLMKy5xl0sISDVOAg/9FaDwRgFuxatTuNEf9tNdyOwsjZKDV2lYahIdO+rC3+0E4bHtcdj9fQ1PuORBH317sW7HSjIs0MS2jhwsPfAa3SNPwqQEAI+PryDT3pVijUR4y+hpeNnyFK80PEgzOlZQSaQ09XX+4i1BBqDdUcjHbm1h34mF/EI9EiXSZuOE5VepL6QV37yU5d7KddjyXRDmOgDl+2xij0tnMUAvhGY8XYbRb0Zi+3o3lsi3gQdndOF7lhl8/buSC0Omkm9NAD+VcoUPQtX0UusGd0towo+IUQDjBbiNlOFrxTpsmr0EMr8rc+9dE4pP3Iu2Zyowqn8s/afogWWflaF4WBiCXEqx/koGel21oN4cU7oqWcnO4s1Qo/sBZdy9qCrbDBJ2ycOD4xKwV3cZeS7JoraTZbBt+kk4FX6Dhi5sgGljbuOLndGgOU4ELto+B6nJI1i5+hylL2zBdzq6lFcvD7JffMnw3Udqun0XnadpwPLgJcCPy6j2ah8Hy30iocVRrBk+mzLzF3D/fFvcW3SW2x4agODlmcTh3+Dwnxy26VnM3VM2QaH1Kjp1UZq2ff1AHs5L+Y3nBPh3uwEiHhxnXG0Ip1reYXlMBZ8qOsqtvn70rcCegtOVYF2mKFhufQTlo+/jnvp5kDOrkM3vvuPJ0bncuPcOD5wfwzuWRTDIa8PhpEkwY+1OiLIo5vy2KBY3b4fsO1kk8E6IJm86CP9EjVn8BILG+jf0ovYPdzuuJYuzx/nsgCF5GyaTY2oRHjVQxmeleRA7geBe2ULsNI6H6S9UKdYoD2N6V+L1XbVke+4Rl167xRKWL3hfI8KU8W/BwUEJT12T5OGT+2ha5AMaSDrJrYnzSe1REB14/IYFRypB/3kxPLdkHP9yPcdL3fLI7rkWFT4tgsgxa3lvRxfFvvYAySvaYNcwkXU2CLHOBOLRFW849t8d+h7iCAFzArA0xZFF5ohj1QYdED6jC0E/RqPv3AGeezCQP5+ZSEV9bRC2NpBEUvXQ4vJY9I8VgciHLtg005foWigejJpGp3AEB+Mk6h5ezbf/xvHf2MUo9WckZCXuBvfHztTmYME3BipxyH4hTpkfAllgyE9im9k5dgkpHlQC56KFKP9VgIzimnG5SjV9CFgGl2Y1Qoq3JJzcdAK+ug7xQl1deNDUTJN7xpN10wYwk8jDDOUn7GXUR6GwgBdvT4CsZ6owsHIK6NWORt2tXrB1QRJ93xlBuLaFveWSKVh5LcwweMQJT/9AaJ0KXJXcRMNTn9Km0MfgmF+MrW7TWULjHgTWisNVfXEaZ3qLNeePhE0z9bh6xB9qad7Doxv86aFOBh+NjOPUvHP4cet1ODeqkU6PQLCNSIBzR7rYMNeX1wWH0OddapytNAsMzArAr2MOujde5ty/oiD02xDXPDCj98lTuUZ3GC5OPwHa1UlodnMUOQQY0bclpvTQwRyW9rfT6hnVODLJn278rKQO+2+4pc8TuxcuptaNjbB4exlITx0NT4VfY9jCBax1YiM9DAuA4YtmuEfEjdMlZqKxiQYeKQ+mhb81YMOBTLZ/vZcm/P5GykX13PPyH2Ub/saJgwFcW76Jhq7NhKIbhmC2IwD3KFzhom4vUovN4/KNSmjXsASrh+/xfVsVFDpoyPpXBEC/dhfZTzoEC/dEkEGBNj1wucebl0+nkKC9oPj7E+YtSoBqeXlomCfEYy+chvLWbnwyu5ibvuyAgJ8a4LYrjSe4HUXDCz8wwFEMpvyZDeXO2tBi6snmFnKo1T4dY/XqSfzMXQiS34relVM5rFASap4bgOmUEN4QUgkLyobYItSAD45VR8+4/Xj4miHHNDuwQJM8xH9ZQ/opR8j0+meSf54PH+/Mps61QRT1vpKXxPzAHQquKN09Huov/MTajp2wK6QeY9Rmg8nCnzj7YRu4Tv7BjrHhfLphPj9wk4bZDjcoIfwhLZ8xD8UlAuiJmzYmrlLAE/NuQFP0b3x0Oh+S0lUhRVOZ92nY85QWdxY1XcZFQ3108kQQ//xRRpYeoZT/2I7SxhhB/9SPOPL+Zph3aAs3+E2Bb05VuM2qEuTKCsjJ5RI9LM6lJWZTQLYzHRpCInj3R3eSe3CZzbpnUKpqNSuOvwY3EyeyZJs8Xo4UgoPHfXiTgiT5RSRx5ddCiHCoQGF/BzD++IVFv3yHjDVeNEZfHKJDJXn0OQFIfKaN0wU7ebzFV5adXc8LHW9j4IsDGBu3k/qFxeHmvd1gE/EKHu+T4KxtMdD84iSJiLjx/mId8jNWYvEgTQqfZwiXsnUoYqMndgWH8Q29L/jmggw+m12D22O06Pd/3XT7XiUWyuiD04R/4HNjmDULV8OhcgTPt7U4UWQndC8SJsmhRbxXPxn/zR4H1g9KUEGzF3Lq01E7wwxozVw4fLUJfeaVYmTzVnIx7CHb15Pgb48pGL01xycRaiRg5w+2Ud0wyzefVf6rgBPntuNig39s1m4OHxRtYGnmd1irU4OWZr38yHM/2X05z19yhPmC9GjkX9qw3FEZ1gXt53FcAL8WLcaf2sXo3iNPH5R/gsdBI2ysHoSL/hZ8PFsZcPdC7vBKRPe0FL6cJoBJJRXcZLIQzTxmwqOQFTAUFEQJsghRkl0Y8fcnx54oxPKE2XjtWTmdVF/BVzbowzGfbBqWSqUfFeJw+rMbLhzhxZGxtni8MYbSXLfzR+GRdGD2crqbpc7RWw0ovcICJnS5UNKpKfhD9CGWGhNLrZgJXhuf8RmJ8/DQzhNcR/2i3bJjISDOiSbt+Yd7Pp8FkYkjubBnLEh7qfG+tp/gX3MTnZdk8tSd8jBZ4zD37llLfQv24WSFPfR9vSueLf2I77JjqMT7DP1V1MROSyV4bPeR9qbOxR+tZigtBqijWU0i1WGYNvkp6m/2Jcc/kSxsOhksJYYgbziNJxk9hrj3Y+GvpxmKm4/i3K5pGJyeQ6ss4uiH2RhYunQyvbgWRof1J9Dnv1PoQmkgC0pfxu/vP/AsEVG4xtVgGqwGn/gnpL8255hvPiB9ejIX5ipDmKcWBAwWQsI+dc4/8grq6qzhfLwJtPYK0xK5Qzxh/kk+Hnid4tMV0GC6O3SvW0afXzrg57rR8MO+Bo8/V4ZVuRKwZsdOKN4kzZEVcznT6jBV7WjEHKEyUD0oBi1d/lDr/JcF9Rv4h2ITvr11lwTu7UGxLzM58MIbvt2VwuHvLCDQWpI1f9/HlrHubHXLi/MebSZlx6u0u0uM/jvfAPnLetAw1BBKtVsxq0QWD79rgst/DYB/ltGTjeGYKddLb5Pt8FdCEtgoGYPUVj262iIMAzAbIuwHKWrWM0y9cIZCd26Gte+CYLX1BxSrHwO9c1fDhxygSOVjVBbxh/97dxUOPqkkgZVT8JGZCLx9cQf+65cB50EHcPayJyPrfJrdcYb/bPEg40sbyOtvPe5+64CeykKcOEURxDxP4BQ7AUou2cTRX6X51i0h/GAgDjmFe5jsfEiv4zP/tJsKPtHG6GQ2l1/HGUFMoiHGOM0kyVtz4OTeLrw3EAtK2vo0QlMTfK33cMs/PRAPfERJ7/ZivnM/HQ69S4or2ki7PpcdJSzxTJ0YeI93x0Uzy+G/56/BerwMJeyLZdxuSSplW7g1S4NXTUyB/a7qYFnrRPIXjKHUtpT/WxZFDRjLIysFUKn3NTl80+DcnB4uk5CEoeo+2nZTD+WOebOSpR0pbJSG8z5uPDU3H4aHQjltuRxrHJeCsaFbcamtEO99kkPkQbxPrJzWJBOuPrIG+uslcPHY9bDeWAhO5WjgoQVlNGJ5Nf5dlgDfTv6gZiMDjIleSwrOijj1jgU5KRnBuajraHlzP40a5UOUfJS1XFYCWdlCjfpfikxx5yd3xnGkzEjYdWYGxC38wIujR6G1/CFsnXQYZ5nexpkWabx/WydGLZTj7xWjYZbEElTX1QG9wWvsnJdNS7SU2bj3NovPu47RfhdZNfcAfZOaAuvSfFlUrgJOS90At61bqGb8E6qLacGXixNB+ttTmOPRR+HVslA1Yz0L7vyBfgdOQ+b4AnzloMaLvH/AgTpBPrd1GJcc7aHSmQjxoqo0U3ACPyru4oFN5XB0hikLuY5D3ZiFuOdKGTXMTOQ15VKgvMCPXj4Q57mihfw9IIgLO0PBv+gRzBo7g9Y8mM2jf5ujeJscjJmfzKXYjgv/s8FLRz/wDgFRHv3chaftGUnVBtdYa7IGDSoZQLZZJl7WsQfXOyL0OG0L/LiVh2+GXkP4DykyCSrhdKtDoHZeDP61e7BNzinIcYmm7q31XK2kiz/TVPjlxit4eaw7h8wUhhm1YqB4pwOVi5Ko52EeOZzYSiEys8jl2Hf6FmYBwaeC4e+efhoZJwI6rUvhTPshvFauQi5WS+lO/jZSH78XprjnoXehB+drnaIZBybCs3uHQDq/D9RLLsCHCem46EsgNB2Tx7cHxPD9+lZWqRzHxotV4YTKPlr56SLNUbChI+ufgPKolfzs3zy8f+EVuwZI04ePvhRbqwo7ZUQoJNmZvI8loK3OVT51ehPbi0+gS4bTQfPqKXQxykKpGn14mfePQ/rUsTiwkOMStOCS3VTwzy/ipjw5HCO9DvxzjkDkQwlwVxODiqo0kH4ixee2vYfPqqWk8egw/fhwlcMV7vKylnS48twUPtwEuHS6EQXGv4CXerHQ6niLl15fyfNmfKUn0YlQF52P26tMYPc5fyxfW0MWtw9xLZrz8tP24GmkCak+swlUiihh9X7sj5aF05/0+WmvJ2S8s6KulDi8WJPH+mJOsEQkFYptqzArXora6qdAhps+TNt4k/yKUniRXwVVdenjhd8hYLGwBZd+OsNum2VAJl4Jcm6so+ijQ5i0uwCL7nTRHv+/dN8wHWefaKMbGcFovV8dtf/Ths5nybBOegeceIRUOyocl+2u53apE3ysxp3uvUqAhgRr2O2sCkNURg0+U/CQphWvt4ylPf5NcP6KP/lHrYVJj8zgnYYnyAWPgIA1HiAi9ZYFNrbi3w5fkvT4j0vWumFD8x96P/4bLpV/ganTlGDMwFIwKzsMOx6/5i/ZuVi8rJfWht9G/0fbICHYlEcO7eYj07Uhcm88J434jlHdnrR/w2+Y+WIK/1dpQO/1r+GosXVE0Uv54kJViBDro6ev1LjsnibOflRMUQ1j4ISiHH8YdZekBMRgaPA85jULw5k5J3h5VBlklUyhfT9LsL38LhxZHQsdPyPoU9UzupwTANtqp0LGKGEwcGwln+ni8HVCGrgpjKGDlREUkHId/ddU4oBkFvlnyILjjdlgf84RpV7lsp/oKjopIYN9DhKct2ESHjBEWPonEt2yTWBEuiB4ZF/gn2uP8pI18zG/fTlZL/8OYV+NeM4zTRD6d41L85Ug7VMtlHxtBYHxIrhYPQkcew6xef8MkI904YmRvWzrb8RZywVA48V6uvbcFI71qUH3lS2sMUeNtg0lQOZ/63jkpuPgul+BXwaMge8/AIWK3lBN6lK6lFQMKz5Gce7gDvp5yxU/9Xbx6fy9pC0yFqyEjOhLhjnqWWVy00g/zh65hh8FnURtdRUMKr5E+zpNqf7hFDD/08Qbjh5Diw5f+L05EJaYfmcvuee46dwL/DrQS9e/1JFnvSk8G6EKGt1uPFlzMR/tXMXSgZr8J6qXN/1XS1pZOhwa48yThqeAUaUEShfq0nC9JjcUS/D8mA+43zeNtz2dzmKl81De+zmePGwJq4LWckPwPPz8KR7T5fvg5+9UPHFjG4BnLZRYDeFzA8LggWmwUycSTnun488HnRTddIXU5J1I65UdR2TegZ5YF7KbV4Af16pDv307Rxgt5Cr/UeQSX81KBoZ0duRn7vGs51D5VD4eFMGKz8ZCxoU0+LE7C77bPsbRE4pI4rwnf5vxGslaGSWGUmDrn82sHagJev8B3fmzA35umAddF8J4Soci58N/jK3tWELF0CqcyZKlYjCu9RJP7mqny+IXufCyJx1suUf7Y+VIUnAPh/hYoJBYJif8Jw4JFrWwc+EKzNO4hG/2LsDXv0NYbEkFDWwuIrlZtmA7+hkJPVSCaeFt1FR2AhWLrfnN5W1YVHsf816u4jj/fBgQdqPDBZN58aYxMKAri9tlX1KjgTW4l6/H+UNS1OOmx0/Nwnm9fTxeXOQJOu1mcDzpBQXyXSj6WICGh5NgwaVoNFt8nZPGVFM8ptKCmm6Y6yUEmr9mcX9qGBUGf8F32wuw7Xwen9oyAkxH/QftXxJ57MgU/KSuDIv/bYaXNIucVabwxQt3IXLdLRLKLMHkqM/Y9kibSjUmQocBgPkLSSwIaqXd2z1gdoAn6ybOBouR0yjg2lQctTKNm4Ti4VYxAWUE0FxXHx5ccYQos5HuKHSRhY0U6UiN4XeujmSVu5RiHYSh5/hXnrRzkI3HmoFf4Gouqs+nL5FjKFJlGoqc6sSGFn+OaZoGYtX91OGtSY8XuMBXvV3wYOsEuis2xG3novCS0D/I/zjAewoQ5J1u44IIQRQZU8c2D3Wgos2Xn/jPRlkFD1zxCSDmbxAmbRkHLpol2Pg4F6cafIJt1XE4f6k8xK/4x8rp+WhyqwVS4kNY84UufB26xYa7D0J00iw+vzUCbp4boJrmN+jVFkvf2I9STXphacco+P7wK/jNyQUZ0x2w+IsJT/5KMJTgwn8mSWDu/MNUsUQWPPR14JiFBlx7W0trYkRJKPAMrhM5wFbl+bTSUBjby19idYc5OCqMAlmXK9DxcB+6CHzFAYzAH38OYOoCBViUPhL8vD7Ro6kT6IWhBlyNMeCT6a585IQwnWlai86qp2jK/Wj8uK8UrBbpsI/mWl5yjYEPa3FFzVx8s+Yt6naPY93vr2CT1xM065eA3Wcfwa+NrmiyRwtuOaTipxcFuOK4Pj7QPsCJlbZcu08CjU2cKK5jB6r1h3JLsiW8SD1NkRPCoHFUPbd4x8PlwAlQ9GY32H++RgJfPlCwrBKEGo+GN9yHfyCILr8nPPMyEI1nJMMM1VjuOjCacdsIbl38HBUXS0LAGl9uOzIF6142wNzQ5fTrnw2OeLQbJt5zgUdNebBtTC2FHpwO7esqSOZoJ9qM/8ZLqj9y9ZoHoL4zlQYWbQaF8hheLV0EK7+JQ2xyLj9zvkJNTnak6VmN6ebLwDHAE2Seb8eQugvssKmdLXdIgNSneXDXWBhnvF5AZnHXycLtMevXyMIXWTf8bNWFy1bl4qgsAVgm95dcW+JphY8SzFebQjlCVTBTToAO975H0doMWuI5m84py0G02C8we2eOA4uyQW1JAP47U8E2s7XY5Ygh1g+nY25YKbxZLQJhSq50P60ETmM4DQyOZ9EQD1Zcnw1jopawfdwD/ikfzj7nrKDMxJLVy7zJIfw2Chuk8xun23jg5DJe1FvPb+vuwaFqU0xpkIUNLp/5rATD7ln1JG6axfE6Ulyx7DHaZl7FnrAmdpwsBaKC0tCjYMOnf62C+Zc+814xfbz03hPOXw3DqymdPGr7MzwhawqGv01gsuB6Tpo8BZOah7Av0AdduzeAxQRpmBiTzVXta/mW+HlKdx8DG5dvwuWZ78CkJIyFu/5S+JmTnGp0Fg7rnUVvbW3cf9uNPa4x7L/Rjw3xZ0A9VBdScuVIyC2bj5RPg2L1GWSZKAk3Dkvy8LER8Gvfe0xtuM5eLst4qdNEjLLTB/fZ/8hv+gqIkNSlgMndYC88BqwneUNoUCOcPH0NMq6NgIpkb5aSvEtv/iyA+StO0KCVB+6o0ofWgxnYN88Z9xX9AkEHA7bsvwXR93+zk68aBnbVwQGvXNgbIw7Dep50eIwiDmAfZE5dR7ovotB5eDfNsHCB+bqvSOViNgfmysNypZ24RsSXSqsTSNj+IwtoWMLWoAconHMH94bIsYeKHd5ZORGclcVJ50c1+k1MBs3THezj1wCj/x2nHb978IhyNFokeoFpyRgIdA1HU4Xt2PbODEe8HAm2GIfZyWFs44hYtrYbS8UeYdU1LfiiOwFnrZ1Eme3GPF9qkOvCv4PUn70cUZdGVomBHJkfih/+WMFT3WR0LiilZecb+N/e2Rj2xh8HL73Cqh0NvOftWuoUekV6kVPB+lY/5itcpLgDH/DGqjg+YqCJlrbX8fMZdVRySIOjBx7CvkICa0cduGT4iZ5/SqVHrw5y7G4dcHJahHayETwam/GN1zBVJUyGmW4/aXpaNi98tw3szjnClpX2dD/kNz+UCEXXEzY8mJiGf/wF4Frodp4eO5v0rUNBwy0Gd4wrh46ELyQbEQjJtjOIVm3FEG2CDMuHtG5MKqXmhJGpiDfc9Yulg6HHOLX+CrVri3LX3EzQPmUKcxX/4V5Ze7QrUeTSoV3wrtoL/A190eeHLHjtNaTRTRIs5DoVtuy4BvtfSgKfPQF7vCNxd8EEOjomFK+6/oLg1X9IMmgvTanRgEkW97DZLZpPWWzG4BvzqbhwBx5o1aYNwq042bIKyvacpJ4BSXj205tk7LRw7Pgx/GuNEE/KHATJDTW81jeaT/dfoPF2tSC/cwz8+5uG58RzUNUiGkIO7+I7m+tx2rt+/Bh3hpvzZvD45n98AITBY3CIpm7/TRq2tiw3HEBmAgNsfMeeBq6a8gqzaLw4dzRZiZmCWM07WCmyCbxlH7Ja0y+u2m3O1+110PrAYZB3CYVHCinkKzYWwn4eoNzQS6Aw3oQLGm05v1oFBW9mklfyS/CJ7uBJ9o74sVcMfpY3w5dQD3KM34oLevv4eL0++P26xgH/FDFTu4avW9zBEQKS0KB/gem/lahm5oBtMsf4x9ZSMr+xHh6/0eMO4QuQ8NGMZV3MoCVqPkZ49IH9j2YaE/4SE5c7QP2KG5yxzwJ/NV7E5U90aLyxJRReTsFTzgF03UUeuu6Wsar3ZlS4GsATPPX4cLshjH87ByV0RoKgUCrpzFTCER9i6HeWMFRL+OIHh4tg1TUGz8yYA/NLFuJg+CSwCZ8N1c1rcUrjJV7n/gGb3uqjRuQfDuq+zav/ecJdk9ucuBhAY1cVl4nOQY/UG+A59jHLXxYhuWfpNNSXAoFZUfz+vBEn7lSCD/s9uaFwI6Q9zId5ttWgbHCUXTRK8G2UIv0RmYiSp8LZdrwEPCtSwtMfBCF4/xz0XhUAlrduw+eKGni/8B5LrwjByz1bscbSCFbVEj+YdoTjmv1BXXMVV2SPxUWdP2FKUgifgFQMW1uI8hky0CN8Ap9EJ/D1O6a0I2QuPc7PInzmia5f89n5tQzPkxeCuHFGIJ0sBWvsRtPWRmmQL7oFis9cOWIsgcluVWyU0sLMbaZ0uNwMrltZ8P3pCC9+q4DUgU2kcOIxHzC7D2EtNlyn7ICyHb3gMzwdpJaVkoKSFjmODsd1Z0+DvEMJDG0qAs/WbFLJnMszcxbicSV5WLc3F5+Y1kHYiE5q6jLGvStqofKiDYxZ9oMz6pXoyMNN4OZvAGE10bhXcRV3Fa0DIbN1fHHOREzreg7ZJY84qOAV7vi6gAPbpcFkmiVUL33Pp1aOhubnW9Dl6UF4LZLBv0J6QOSqHCWaNvOXa6MgeEUKFm6cR9mx32DZrAeg9qCFbLYMQ5vTaNAsSIA1qIoPbqtBSLsFtKhM4b5cJxhqzcIrN0biUfU43nA1kn6JbMeU9+NYTXMsnPPRoierDvLcVDVs8TDnlQlmpHnlHf5ZehyeDcTBnNoHWHNPBPp+X+EXSd/wlpwUPOyRovRtfdy9SAqrJfJIKPcMBwlo8TtvEzhhOINEvw+zxbtZ8HrDX5z0eA51ugrD4apCJtsNtN7zHzocE4KUfaJQ8v00+xTO4Ci9H5QzoATjlDphpughNK67SUsXvgZ7NILTW0sgwmc9KpSfopbnVXAux5wCTT6R4/1q9krspdfZsbC63wT2e90Gj0cJKKFRTXojN2N61W4s+9eLWSvNoTvQgedUv2PBuVIgMmsppR2eD89+rOZgqUv0e54N/ycpCd2JCjCuZSG39S9Hm5HWIDc1njZ6HYXkzUJQDJok7z+NpfQiSeX5Xmi99oQaV8dwg6Y4zK8NxDnfvlGoqA5t3HaCTKdpwMZrCZx/rpD35RuzmE8Kzp8vBJc9Q9F5Ty/8OHKYpplW0Ijui7T1qh8YXX9E7nkbcVfNEVSZrAJzNuVT4H8DPOVmGSy+oI0eN8bx4/njOLfRB6Yd2suzEqNZfZc4XHiQyikXSinsqhlN1nBEy9sB9CXlEs26Hs7/nkli1sZFLBkzCtJnJ/InNW1e79jNnSsF+VOGBZQP+ZPJ8TbW+CNLW46fhHuF46DHcwTG6V3FmOeFENr+AyaXL2SZWwG8aKYaef1yw0m2Xfji6RTYNFuLslWFefxZdUiozcTKDkXunCCGMontbLdGEwZMZIl+mcC0ak9Q79hLp5MsocGsFN6JhvOhchNQMjqKGi6mtG9jCPQNSUOlXxPlfO6EXWnfIW21NS8QcOHK3LEgXTXISVnHSD/uEEWcEwZL8xHk9k2Lbryqwf9yArnnTSDWJgdQYNEvTq5YgysqDpD5ZQU4qnKJxiyMxDMHh6EuIIXDhOaBQ/Qz2Kl7FmQEFrO+ezbaGOhDmcYrXp3UR69kC3j3gSa+/mQzLFKdxhFnD8FfhSXsvdyM/k6Xh++5G7jwoT35rSuj3Ev67HqzB8qqdSnDboBWihzi3XOOgbiiENgN2fFMiQN0zywFnpjb4pG4TVBmok73M/6gRNMDEHuoCYtDBaF89R+ItjCGJMcC+vukB0wWeGN1chlU9Yxixbw2WHZiJQ4YW8DAcleE7dtpWaYX2RfNYM0vGzHr1GtYJVENYqmzcN2jevb1EgYXx1aMr/oIZeV1NKL8Pl1MvkZiTTdx1vc10BbuQxuOAd17Zwn/7ofCqgmKYNw4gwMu/WLLWmcQkd4OSZ0KPDxTFQx7dvHBs9pw7vYtSBnjDcGLc0mgdgsLCCXSgpbL8NxSkZzOyWJMTxvvk5AFkfx4krS5T9K1R1lnfgaJ5fzDZ9dqwOnQMfiQfIk1B/1wuEUTfKq3okqZA6CeCS+N1qEtRtGU3RNPEdI23OD9Gy9Xh4NvJ4HErgTe8iIIhgyE2E9EBw8MTgXVop1Qv62ItIwTYdbdJNI/KwN3C03IInM0NNxpoQbNkexRfBm3rcxA94NP0fW8D/iGpIH/DIKYFzNQGk6TsK4pO3xeCIuKDPHw6gXsfCYPLTQRDm9XAKsmTZi2SxBdmp2xUssV1wlugNszLrL03Mdgo3Mc1xj0wpvQbvqRYQy3V57Gl1rbIP6KE3w3nEMLf6zmzK9V9HmHBV6cdAgVwQZf7VGFlWtPgLxyBt6Rb4dHrwvRcU4f+k78zac3TIIWeW/q2pHERRXjoT/bFPcdVMGnMZPo+isJDK4yQZH6UuhPfcQJ50tx6KoqO0toQu0NQdp6q4rnTXWCxRcj8cE4R9ro9RNqNUZhe7QFGC1rp1mK5uDhUIYqx08jx+0kn3oDdh4ux+Hzsty8eiW+OvkKdg2vR7XJo8HBTo6+rQ/HO3eDQO6lJJufvsKnMpThV9h3EPuUj4dWO7LPdCGY8yyZeV0pz3yRBm8MWnGe5xUqWXGF5U4cg9jSdvD/SLy8TAhMjb6zsdQOGO91jpbee4lln8JhV4kgxVEMdm54i+LRFnjbQhUUO2thm0wj9WWO4I8TV+O4/D8o2ONPmw9JgOQ/JyiGQeyaNB6yOpbA6/dOUFHdA8vCPnPgnG94+dRmGG2Xwa3iMuj0qwvWOlrDFp10rClN4K/6T/Cczl48Pa4H9lj4wYebAWCfWUUhyaWQYaUKO8bag5TacpDJ8gWZffqw+74K/TNXwXa5BCjZ0EiimxbhezNlsG3YA8EnfWFBqQTOztkE+4y/YVX0DfB2+spBq35yyXRzHl2pCvsCW0nBpYRkTCX4xct8CFt/m58VzIO2A4l8xHEBSeyPRHkHYTDtGMF3U9Sp77k/Wh2v5c/bjlP3oVcw7ed+WJ8lREaZ1ai+QAQSPz4E0zpXdEzcTQnXFsDKDd8JOtTQwdOIZs0+g6suW8KDe6Pg7hNp3K6cCc8bRtMHjxLafcaML/SLg2D9Xkq6+IrXLY7hwappwMr74XLCTI6J+0iVblGcKdNKjXXTQO2ZMX/5G4ApS96QWq4JHH19mQfXnsRtKaKUsUgba3+eIZueR6wu+BXXxF3EhSFH8L871pDqvBz1VPKx6Pxm+pgwCdIcXqB+tRy4VM0CxfWXYHSGGM63E4VsJS+4ZHGU/V1LWXiRMZu6nULLv0qgNEKZhSR8aIXuGXwspAhFRanQN6scjrlEgWyRKJ4IOIMflM7B8o0/SS18BL9OruCcRg2oihBnjXVXqMLkLsg4H+HSKi3KdG0mhVg1aD63DHr8Cun7KXUYcs/Bi282oEzDHm5Lno6lHqVgvEMafYvu0Z+ZwiTxPB5ULhpBUVQf5aoc5Kgxy8jd6xPdCj2P9T7rOfvVAziksgs/TKiErYKicGjrLzBM2gxHjYSw6OkUKDFPwW7RHIzQUuTqUxf4lr4I3VcVh0ydVE5U2M8W3zvIQyCWkx+H4lD9GWjS6IC7N51YbtF2bFklB6ZnZ9J/9mPBDkoJ5xTybQdXCHnqyVq+WvSlqpaduipJ7qoK6N5oYngzCIeeRKLqpW3QPMoYj0g30KYCWQ58PgnDJzRyZJ0+DOqtgnGuj3nczkzcqLUHtnikc+Xzu+SqeAG1M1MgOEKfUqdNhntlT3n5qnLcpbUQLu5So+Tbs3BqihnKh2ujn8hi0B6zBO3MpaArIgZz0tvh+VYvft/rxk2J4qAqup5k9abyD4e/JFRwhj/mMRx5MR3b/C1groEAvFmyAHuCDuHfnXFQrVFMIP6b/MceoX6nybDm3QJonq7ISe0beOuZDHAW+wdehufYeccsDq4zh+TtE3G0MUFjeydKfa/G7741cNBdkPcGVeK38j66YD0P3Z9pQkXoDTDfowwrnp0G/W1T6c60K9SCviS9/jlIOlwh+dnqEGMXSVduVIAmWcOxZZKk5mCHHn8uwP1cFVr3KZSsH9qxq/Rfkj9cSbPfR2Ja9AhQO6uFd9OuU06IKo1v+o6x4V/xdgRAwJtcEhQW4AULRvOqZyIw8oU06Ht7078rKryxw4mW+3mDpMB00lQewEB3e+pybgFbV1Mo9tLHgKypOHeTHNYnhGKvWxlddn0O5m5yqN1qRVvrTGmNmins2uOENl1GJPq8gJpCfmHCQ3MuPmbN69pkeNyZiTCQqQcV5aJwNXEPZrnWk1VJDW00+QaT08v43KZ8XNzZQ/qu6jDx61HeGy8D7bqxdMNImw917YQ/ct54VkEX4p2fQPqnS3jHxx3EFRRZ+qkpGH2J5TytM/jpRQ1/vtTBxwRb+GxNCHurZsENuyX4fLkyJTcag37tY3rVmwQHOrr5kTDhGrt+aJxhwwM3WzjqURnvv9XNEReFoGT8cryaEQ/+EitZJdwHa6un40mDkzzR9jJfnbsKxmAQdpEaLL35F0dYq0P+Oim6pB+NH2KscaxiDXuvmg+3r5ewtnMVFCgbgeJECd7XKMuX1tzl4yeXQrH/WNC21cPCDUkg73qHln6+BWu/yMN973W04NhrfndzNQxed8KPY+R55qs++ukki+MuVFGBxjz2e28OLyY7k87rVKz3aMfSxDd4R9sAvZ5vpJI6MbYKVILxI5txvK066I9ToLa8A3SttIXDJEexsc4Q/0h6R3XPT0CBjBP5yNqAvKE4DD4X41cPZOF+XwyNsh7EtzX3afUhOxxbLUi8cyMKhe1FW191uPYqkdaKvqa1j5eBx/n/YLtiI8T0q9GIt944U3MLfZR6DeteMEh6B6OUoS/32oYTtaeDdrkdVDx9Qwc3n6QrJ1ugqGw+13dJwtXqZnp4XxU25XtSRcE1KvkYwUqBR/ERzcD4wCc8y3c6v+gQBL9P8fD2ZwsVhs/hlb1+oJqWx+ad4pxx9CO9tBrHc3a+Q80iDXCstkELkRDW/dJMN0bPxPnf+vi4jR7vnt4P5ml38GTgHBKLAHC6J0K2x2Xg3lpRyBF9TWL7bCHs8ix82f2PPxz4QNnyN2lykgV0KreC0sbZuCQuCM2XF9A6kfdQ2TgaDkk40OAnAY6wzOTKUkmIur6PpLb28ErnxfQhSI/SNlyEvHWBuMVzMRi+KMDXjRU0tQehqWkMpk61RKeANhxjVoWX3wpjomswuhVl0fvTb1jW4DL49kmBWP837NgaC7eO7+Kzp9Nh37R4Gpr0CH9pqWKmiDxq5J8GgWQRGLq/C3+PbwNHow/Mtm6gbqHAGWYF4LXoDbnvF4UDO0ZwyheAZzJ9NHlaCo2fugZvGt+DX+//g9Vm82H98cdYIN1KL4IM8eVGCzhe/JFTLyeDU9UIfhaxFIYHetH+61PI1izkDW6irHRsB2xpt4KBrxdQ484T3ucjTOV+LfC6NA82VDzA/d732fSpLPQfWkTVG9Qh66YFLUh9B7/TgtkuXQBmeEmBjNk7KrqzD67Y/2WZd0to6wSG2wWl7DPswVZqRSAkfoVuLDqGMlfn0OKUJ3xCfRCDajx5XpQUBE43o2IqInm/bzBv/wEoWZ5FO5JjYXf1F+7fuJbC0uuoNFUPdKJT2HjqJvhqu5zvswIa8R80+q1NO/A7xmu3UM8RE047qg6LFzTQ3glW/DfiPJ2I0ILsAQNMt9Xiuw8HecaVpzBJ8SmFFivAn0XqcHVTDRh6t0JD6x+63nsUx3W9Y4Gpo3hvdyP/jdzJmfIS0Fz1gu6VB8MktV8cOG0DPpy4Gdptqihs/yCeP6SHQm7/4TjfyWCcfhrPpxHkn8zjF1pHsOvfYd649yV1Vwlg1eXNmMOTaWHmJFhvUASzF6nRft8BfLXEjYsHp0MlNPO+sI1oMTUKElKyOW+6LsjJZVNbzWv4uiYdA6xzocbrFZivbgC1W9dRSHQv7Wg+y4ouxpAh7EdTlcShrckN/vt5iO4bGfPOZ185HXTIa6QPbc23htjdY8DqWQvPVEzDzCdpLObtSYqfZ8DBcDXa+jYBa6/HseSSJfyqRROC3Kaz+QgTJuu5JBvzAlYtbMT+iT+4MnQ+mYaEQV3vCoqVV4RVDZksUb+H8tUE6dmCqdDxPpY9fOXZt+sHXH08m3KmJ9KFp+qwe0kDrG41oKtxT0mmu4fObjOlt6MNectnec6RuQinditQ+UtdiK11pDPtJ2H723UQYrOLpDcPU6eWJkxacZZap0/CZ+YhvFpLEIJe3aVXge1kd34lzP25gGMnLoffz39CROstvHHFGVLGhXKKhh48WZfHNz5GwIzXalg8PpNVvn6jq8fP4cGacoppaMIRazVIZbMKhN4/BKQlSitXWUOU6GeeP9GUhz4/g7ZDrVy0aSuNkvDA24/UQPT6ChS95gxjTWxorthXnLOlGJYtWMLBFrWw+ORlmmqtx2u3a0KLjA7y1lr+534P13iIYJPbHMiOmwDFIybT/DPR5DzQiA8WA6TV5FLdqvE0uPUu5i6q4KQaI9rj5wGeW7NRf5I6DZeexK5SAVBPzyXjqA8YdEgZld2+Q5bAcTgy04bKHJaB2pVkGrnsKIufFIKzMSVY8S+ZDvyaxdtVpED/tgNQ62wMS9vHSsbmtCHNC2/Gm8P5Uj+eprOBD4w9R2N73+ONLKRGqe9ok76D/cZdwsfiTAX3pEF6ohu4F2/AWPeLrD7WgHqXjqcg12BqbJEFg4MXISVdjJ+/kYfzFafZeLUsy/fXwTpvVWpsDQMLi00cbdeGozt2YfDXVTRD1gj+rHqIS/ROQueOW1z3WhlTNnSQzXAOTw4ux2ElDWoLLWINH2topb2kdDKc7ypFc13KQxS0yqck13BuODyP9wwrQcfVSTTprSTUQRNNlH9Ht6+o4buh2ej+9QSdf+LIK86msJ3lOs7Feu44ZwWyU23I8OchyHa4Svsgn+ele0GVqzZVbvwDYZ7hkGqpB3ljVWC1ozA8CheAZj0/+HBGjux+aMFVuwbQLVCH3NWhmKUtDFt+a4PPyu0cvNIWdFf/of6kMNwGNpxo9ZlfrZWgjt511PYykVaV6UNN6gI8YnGVg0ecoWLhLEoZ8ZACdC3xv/okrF4WTo4rnEjdfSS8TpGEoBOG8HbNCZbSOojVBffJW28/GX6roPBl5vQnLJdl/ceAo8NnlsqeBDYelzk3fhXeerYGlzWPBKH+z+jpOwFHe6TgiIsTQS8tjq8bG7HVAiP69csR851O8dXV8qy4soa9o59g32ANGqtNhrTGSURbunjnuRSq7FaFycZlME16kBOb/ajBKo18p0my0kQV+NzZBHFjrlOp3VoqeynCH2/ac/w8YWwy2kXl2p3UscadTPOmwBXVOvZOfM9z2qLgp7U9bs8JJrMM5Msrf8C9GRY0N66PJLWsoH3eREoZNgb7Bj+2vhaIrUoTwfF9EM0WK6e0nxlcXR/Oz/6OBGMXOdber0Lk2c6npi3ndLHNWCNfDMdlayG2aCKGlSjQoocMop1JcEE+nYZ21cONf968YVCXvmlJ8aHfLRBdG8bTX18i8Svj4POAO1fmqGGr2gn+Pv003TI6xyr/vcMs9ICOvR14RMiLYzYz6MZK4Vv9NLqT54l5mV/p5dZEvGRkTPZTJLk06CWYZpygc5HK8Hk/8sfKEzQEwTRWXxLDZ06AVaUqtJOMcENFC9iKx8JoAw3YMtGCTMdvxylnxsLkmADc4yGKvcfuUM+/YDpy9Sz6hFngTSNRaGgOgYB9tXRAYhxl553HAbtWdBN6SNkiD+mR1VjY05OPwemWUDJFG41OBUFn51lW3HmDvPrGkHrgPV59vwD2z/1G/7qHyOC1MUw3+kIiFqM4rSGBfu8EXCBQDcexiUNX7+Y7RwYhJHUe1Z5VhAeC4vCl3xmGJwfjU9UglrI5QRGb1/KuWeOoa1Y5avgfx4l9UlAnkUNDk/Mw+3ogvrJ+iip3Tejx60JKWi/Nfys+EbAFOd7SgcGp/bTm8xSyfppA4fs28OSKlRhX5kKCfV0cPDEKxDKkEXPN4PiaxWy4QR5/39TFl1vEQLDoBz95mQEHCqTo1pQSLrFfiAW7VGDj+3fw+94ClvxxFh2jN5LdSAd2nbkD92zYxVXSPhCw2ASOBjCka9zi7hpVfNFuSHvvXKLbk4VIx2QLqh/pg/iUh2Rj3kX3zuhCfYoPWE5bCg8vbeFqXxGUvq+Hp+L34Nn6mzy1pRYi9bpJvF8e0i/dAWGpZZiWnsHgXoyHdd1ZO+goRE1IhLM3fDjl1koSDR4POZ/FufhPPxrvLKC/P57we+1H9EdQlhKf34TrK6TRIsmWclaPgoBVAfj2zhYSri2kp/V7cV2qG/Y+z0TR7aYkL74GPXqS+Ei7AqxL8cXljmOp22sEfL6Rw6XeIuyXHo6nnez5Hf7mr2EWrGAiAOfthChVMJGK5C/wi83LQdBTC/adE+J9JxS4X8OAH8614jv+ahCkHIFrX9Ww+dV9UJSfwa+PXqNjHy0Jz9jxzcBL1LnqMHXhVDiwYwfIvYnHEpvD/IE+Ut6PLHbcU8zwRoxk1ptB6Dl3EHKZCsnJXZwjU4h9XXMoaoUrRZwXpZaVNSjY8wDe/2uAezNngcIvcdjxcg+lPdfE0lgZmDE3iT7dv88L1lVie546dppeRe03ejCz2ADKk50oJGU9yqlZUU5OHa3Mng+RJxNR5oIofZz0C3bCMey0MgVBigfXt2O5cWo2GgpGQeHkWBBq0wcoqie/5moo1DoEsfYMi9ybsCepHcyyIlE6P5dSPjeRYb0uPBntQe+sAviidDHfvDcVRHQVcee4Fzz10nH0X2gMB3bc51t1aiBUMkiVqV3UkvGJT24WhTnG+zHlZj5oH7rEPyc9oXQrLZTsXcAzbfK5ZaUpheSacIaeANg7beMh0bHgEC0HDx8mkKltFn7sKAfN9X100GAm661fx3HNorCu/SZlq9thostWfmtxFze1ncZFwmeh8d5tTj47TO/G14FomjYYyGwmZYd5ZE3DOGe7FGtbDfMUFSdwmdbOoKFCQQKXcV71CIjynAgxxgZkcuU7nAnbCzG3CzgwQBxGPbwOaqoN/C0gkEvfWMKcKDts9BaFWTO/48DKZvYvnUo6ddY8dybSMpttrFJ6EysH5GDtxBkkyjfZV2o86zoJ0Jw2c57yahMenXINf7+1x+f/fWUZYX1I2iIEm4Q6YcenszTq9j5cuWsXdUrP5TjDUJ4LlvR3VA7efG4KXqv0YGDNMM9aMQfE9q1CAdmD1Gpxi5XeNeKsMhdo9t7B4ktEoTXjDah+1+ANQ/GgrNlNLcvuUuPE76wzOopMIYWnmzmBTKY1vEt0oLjBSFq6QxwSPs3DJyyCJ09eB/yVyzdlppG3+Ri4fxEBXgIsUHGnoUOjYKmwMIwIO8YPh+w5q6CWXCdogj4mc7OyJfh9jmb7g7NR5uMxCMvTgd13a+l1/jPa0XSXzx1txL7jpURamtAttBw24zV48/ELxOvmwcRKGVLt/kdyy+Pgz/HJ2H6uiYtTDEFu5BA9aLQg5y3F/OJ2F1ba/KQsuQjq8A2gRV9DYLPQSR5cYwmvfzyFU5Wq5H7FkJ5kZsA9rQIYhFResecBP1g+j68PL+HXfiOgpewzRVYKUusMC7i+bSnfnWBPTp1XuTP5ATyqKOCojiB+vVkA8i+M5K+3vOjc8zbcoAU84+ouejl3PkTvNYJNA4m0CNLJd6QIvGQ1Pmxxho7m3iNVfWVKkTvN8msUIMkrknMtQ+FQYR953DEA5ZpPcNjekc9kGlHejU/4wuQadEQcIv9NHRAwYRQlXUyij+myUL7fiWsd7Hm4IQZGZ+8C19szYEu3EpbFZfG93FtwarkunzugCr3Wh/nPyTt0+24vWlyxhwOD7VSttISPde5j94n78UFZOvkPS8Ct6DBet0iGbYetcLzCXhBQ14GocBcaWNhPEmM3wqnqKnz2XB9u74uFxK5u2LzGkLJEa2H71Ax4uKOYtcZtIZHGZLpxOpNXXFOCWVt66fH29Tza0ZeDWxZh7ooo/HAvEC4NhMCuSZE8Oq+cvsZLwi8BHyxwUOM3vlshfmYNTKvYQMsOjQMt7cvw6uJUtjC5CcW7lEBVeToaZmyno/8YNhno4t2QGJ5l85pa1pTg28tzYP2MZgg9KwQutiEID8aQnePQ/8Tdh0IIihoA4H9oKEWFUmmh0pIGFRUpJIlEIZEooqVhlBmhoiKUQiiJhhFFaA8VLVmVlRGFQuU072PcJ/lo1clLvGzmVNzdFAhpUk7QFd2Dz5sc0DOSwLdVFvNDAKeKiKKfxn1eMWksftBXwnyppyyYksWHzYbxyVpDWNBRDZERuvif6j5QcvkC01ODWbBhPuzeXM6/1ihxicAK+HyFoL3hH65InQ+JhzM4d8oK2Jtvg1O22VHewp+oVXuUnLTGsxqZwCcLSyhoicfZvxuwKfoez9W9gv6Hj4KDohq9TLqGtcYv4X0cAs7vpA8eDmScIIfJ6g34Z7UmXM8p42MTjXDskBc9TJrGuWLykJj+jCbGFVNr6R5ynWTJxQlPwb57I0yf2cHeD6xJp2k9K5VIwoo7ijBg2QMvbKag7LxfeFJ/B6a6MinNNkbzaTPwxPBr3HzNGDLGZNFZn0yM25WEV8oWYeFnC86Mb8IZ/V/5eG0l8s1KzKsAaGmZzdv9xqF07Gtws8jiBQmW8F1akqdVyML1gnC+moxUsnYipBbOgu0u8VCkLc0uTpeANwEckn2Fu3fJgP8XS0pIc+aH80yhb9lPtFReTJWConhYMwxVT55C6R+FPOonsdLAMyqU+8rT42VAvvEMnzFYTm/dlXiJ0AAvfRpP2l/ycKHHJTiWN4fEb5jRnNBxIPlmENWtbGBb0wlSKUslz/5mmBfbjnfyZ+Cs3h3YrrAHN09RhGjB+/xKtBhfxN3EFOU/6D8tgZ+aX4OAFE/MfL+KdQy7IEFmOrQ2DqOdoAy/6kvFLKc8Drc05SdKHsAsw9VJt2DBvbcsPKwGJaGOKGxxl/eHHcd+rXWwrMAO7z7rBJ1DuRwh4IdFnW9xZaMmmNgmI0xaQN6WiyF94im6sPUIr09exb03isHScQms2zzI/0lOgviEfBAZ8AJdg2fQkaaLEb5/ydwhGuxcXEgu7iE5DF/jr/tVIUToBJhdG8a/ltG00N2OimIew50z5bhatRZe01U8AoYkWSMHdyM9SHBxNV4JmUZ/Hk8FX7ld1PcRaG2kMF5/0YL+C+1IN0gcdtu9oPOrVTjzoCt3ZZegT+Z6knsliP/5P0Gv97qkMvY4RuiNhBOfbWh77QnYvtOAj0x7RCaxs7DshzFmFq3E514P+fpMBWBLFUirB9olYYWZhjn8vKCN5vyRABeJH3TlTjKs+t0L3y58xyfyUtBwIpNnLu8BWrib7kudgbHVGWDzTgBWnXhGeFsASsOk0P2dIAjyG25MP4BaIce5KXQx1KvvYcwZxUIvtoDNe3tWdrwJ/0xVYHeBMM4qzyO5UbIwUeQFmzxbiYmHvCGyZhqvsO0hHVcltLliAirC93G69BCtbHdmxd/7WSf7LSmn78ZR+U28/HsbXHAxpakSIjDzdi+UiMqQ2khTxA471hw6Dsc/TgdP8/24wdAPl5XZwcmSCXAz1A7C20RBsVQJV0SUwDZDpk+uiGMeZMBLH3dqmvyU+r6ow89LdSDh6wgF1c/opcEctqvthBTLTzyl8Rmh+y/SkFzA5Rkz4IzoHbh+qZx1Nvhgz3cbLi7+g5MC0pmvLKNNS4u5VKuRP8XqQcec67BAbCrbT17DfgcCaWfXTD7oYAunts4g7cDfWP78I82tFoSi7q046eoJPnFvDV09+o41t+rhJt1OTnVciYHi3/kjz+VpLuMhS/YjXo3eBssya2nhqi48YDeL7PLbqS96IvsvvkFjIm7y+REasOyEF8tss6Hg5B/kUz8BtDbUkcCKKFRNXsXRylq8qbKArSzMoBwLcDBdj42qPoHb/H903XMEO1yOwY/aP9lTSJE7FJfT4Ght6M2TBbu7dXBz/3Ec7GW6HfCAK29c43C1C5R98TROOltG/5YogtG5Ye548QHSN3vRp+UvefvyTEyRbMB1T7bSZZxHb5slyHqJHkhVfea6Vxf5b7Ep/HY8iIUxCtjdfxN9v6TCnIPDvE7Wkg+dmwJ9Zv48erEASVqnwQS5SD5ToEIXlr2AN47mnPToInkNmpCJnwTov9hAwc9foPGtw+ijLwDGErpwYY8tFd6Thm/u96g5qJv8hQ3Apeg4ybp3w82kySDkfZXLdgmC82EjMI7ZwGklXRx2XhQP3BKDaMd5kPanErMWXYHDpctwwp0GenPHDPxN5/F+XWWqq1BA24qZ8CnZmNpf3uJZR0JofvgeGPjkyBOXL4Tw1wl8a3kebpGWwhZrY7h//zIVpq8j72uzsXzSEPXnjWNVFWsOKPgDxo2y0CV5ApV3jwGb53qU5+/N93cJg3zcJ0wWj4QwkyIMM3dA2387OPdrBvn+kAPxa77slOwLvncc6LKWPIt6K3OrVjb5n9RD7bGNXDw6kU8LKYNcz0+M9AUId3OBuOIMXNCtSmc3x7OMjig9bvoARV8/wO3aUVB3+Sa83kCw01yOju7Kg0XjnWAt7qGHxdMo+Iw1kZsAX87VgSSdX/Rf8FYWsXWCpoB4VsyPofqj8RCW9JHW+Y6HBUMxeMV8KnyqKadt9+7Deu1uHKpxofcNzvxKQgt+u++j1JIiVtC8xOcCzCFarA0/ZMzCy59z4JtzFfynvwGMG9wh8JQTzz7I8LTHh6xVBSHZRwgHldvROzYSTm31xcdbjVjmbTXP2lOFPnMdwaDmFD9uVAKXinf4PrSeJD31wV9kC4wQ6+MHciv4pvwr7j43FTdqV/F9cWPIHdbgs61NWGdxhYb+RKJc11Ky8i6nkRLx7G58kRQyv7LBT1EQzvwFT8Zm0fO/Eaz7bz1q1I+i5EOXWXb6EU4IG8cv1d7iyRI5kIhNgo/JUTRhZzcUXihjlVP9mKEkxV7LlzM6evFQ3RicPGMkDKrXwZj7lyknvBoOyf3E1YMS9DTqGeovzoXy8784x7mb8ooVIDhkJxvcLAQJFznu/OUEcz32IaqMoF/Rj0F2WwNpXHWA+ENTwTPODH3EPvPwMRMeZzwD3pA92187iCtFXoDr5GVwVWc5Nh6VAJWqBGjfpMiWgifg19smehWhivFDrrzC9xK//SCEogl9OFFtAlRQLA5flKRik0N491s8Di2zY5ymDJ47ZuLST/Vo9dwd42sMwdi3FkSk/rLQ+WQc9fQDjFPZgHNdFjGFPsbazSe4vbAPb8aZgHS2CW49/B1G35lD181ycPtAG+rNvYcml26iqVEwr7TbyAb/DEBE8j9ed+cqwctm2lPih4rXuvDZrZFwpTYS18htxpzP2/DeCHOQGI4iy+nxPFdwG98v+sx3U1wAekJ5bIsGrNLK4d/rV/HjKbKwMnUZnqhQRZVNX2gOy2B7XDA+fWRLHeXGOJgZx2JFMhBeog3e74upd14knOhogkG7Tt6cXIwrbGN56cUivhGfSTP3SLLlXH0oKvxJGtEaaJWqg34uh3j/v27c8eEwHzgyGs/9eszde3Oxf8sUuJ0xg88OWLD7w2ektXQymemnw8nKuagqOkQnxzqQ1/L5YDtbH+oFNnPDwgF+fuwZOcQ/hscpnyjQ+QZxtzr0C8nwk7oJvFFNFzrXfuGT4ea8s+QyVz3WR1KQoXQTFbgm30EHlQeooj8a3meKwa8roZji4Y+b9txg+wlybH/oH4ss6EQpyTs0JHCXvKRbYJyyMfyds5RcvCejlasmpH1OwVLHS7THpR3l59+iK9ef4DSLE3AzRAvGz/xCL+32Y7SZDabZ36eflgM0T0GXaJI35e2Nh+dr1uHL9yNBxtAXnkiPxwKrR3j/mwq9SPvAc3Js+VcmgNS7n3jvjhDlWc2GlzbtvCmpkEsq30NPxiO2fdJNAUnXIeuEMtueUaNkh2KMWSsH1Zra9HOGG6QJ20OVeyZVqgawa8t5GJHcClHhf3BjfxAtKFMFQRtdHFkRgxd35YHOx3ugrU30LNmb2lZ+JauyySgZ7Ant3yQhvusoN6V14/PKQdjauQPcPyjj71Pf0C6onCdc2kzz1V1oRbguaJ7SglnZylxhIkj3tz+CqV4/uLnZlXRlWtlxPVO4/iV42KMNd98F4JL6ENbU3sfTdQ+g9ckimqL+hi2KMzFDcBwc1o3GB0xwLMyaw+bJYUy4BruGhbJX7hzQ/v6NpkgshnUHM6h/53GI95KETXsPks+zDfxE5RLk0Vfy7z6IGBrGMX/r8W7WGHQsuIgVK03gKrrB6aRFPHAriKM2a5NTfDuk7h/mhiMmrPVTndwFN0Ke12j4eTsa2kuEYMn7daS/fgBXHxnLJRrBIDLwjsGyHj7ERoP+SGWwLj7Fzyo2gER1BfR/E0cxdxM2XXsfxmcF4N/g3Xhe2grUrkiBWvIRUJerh+vn3OBu7FoUFt4OPw4Mg9Wjbayi8osbTz/C3FgTWLJCGn5oyoJjajruu7ETfmyuoU99tmC5IRxi+97hb38vPH8cYaMC86qE3WwbcxQmJy1GZ4dIKJ6ykJVPLSIDhXjoM/tHs/00QEvvD6S/PYe/Wv+DowFaUDd1PUWdFuFBnT6cqDSPf8tMw+M5WmA15Si8F1GBTXNryUauCkcKytKUXWIkubCKbfWySX5rNig2TgLvlHHwTmcpHxGJ5HIFZxb/aER73/uxkosXBcwNhc4NOyA50RzeVXZQk1MH1+xiWnnfAi+oTmFN808ktSSRP5YegusLgsn0wzj4a78HJcIrudvEBVRUN/ITVX30rXJgmUv3MGpSIC+Ir+aZRYLQfcyE9L86wuLr6ai0aA70DFiCWJsfZUitQc0RS6BM05zGZauBgLAcfQrUofb2EDj47yqtirJCn2o1iqslDBMOgYMVjVARowe/IqXBvlQE/gSuAKtmC9zo3IYSbh+5aOYJiMtchh4C++G2qxCMzptP03fHo0pnAqaELaBMv8mwbeJ8Vtf/zjus3tGOVffQ+ZAp7FT+D03m6KD6mq3YXFlMG7VeUfWeVpxWak/xq414+eNYdnOfAEWGafzsXjtknx8FHru3gveuAiw+Y4AGVq9JTsIThlpP0pFQMYh5EsqGVmmwd6IhnhvejEJBnuDvocpL1t/htugM6gg+S/N2ScPhRXPBM16FftRXA14EOh7QCjXrI+D4xtXgHv+E7l2UIkfZaVDxvAYHnBJ4uZABxIofgbLPtylKfB5caJlK09aWYWNwD8s8HwcFlbk0P20Y3v43Bn/MrsAKUU/2VpwNZfKOlP1Uhg8tiOYx7oqwb5okxPJRqsr/wTLP7VnVR5FNi8bS9bPyLFb/lnddvIQapVqw66YEJtwo4itZbfSy4B6UjinmQyOMOW2iNxSO/w2F11dB4ApT+DtyAtfdO4ihl6IJFXtA3FQMriuehXmnmiB1VBPekM6EHRMnQuS+6TjX/QDZBF5FHHiCF2WA+/Rvob/NLwiP/Q6Lp36G99amcNnvH502qsG6rYlwZqiUtUZuhDer4rj3aRCF/qig/XNP4cF1E+DxpVn84a8LT7yUBb/u38I9Rz7wrCvruOzua/Id/k3mi6ZCVJoRHN3Yx6rZRPe/OXDCmi1k+Xk/fVAyZjudFejgmgOHW0vgE8tC+OtzoKBZRPpKivj28H2qLXCDUflT0K7vNiW/Xwqz91awYoseCCdMpRnBm6hINANO/2WM9J8CeW1LyOcIoHv+XNg9/TrOspaFvDF3+ZpFMwVubsLIfz/YJF8GWw4d5qkaMdBaZQMXjoXiVV9xCLq1AmxNj8OVzy9pziR5TuT56KpbSKbhC/G5RT7fn6mKm7YLw5YThbA5pwKOT9LD/x6H8IiwPSD7qQu399+G0/rPUTpyiEuqtGCF8iSuSN3DvVNS4UpIGT6iPC7ccZOwWRoy5H3B5YAVdwfLw8wLRzj5mgM53HPAO4kuvHGFIvdUCnHC+yss+v4AWSr34t6cMbBT+h26vrpFIeXh/C2uH39ldoP/gSburdhEV6WsODjtHl5/bQa3h97QPOVyeHu7FTxGqdDJOi2WOrAVY299JJ1Zb6hQ3Q/+/VSGcQo/ebtALW6pF4fvL2PR+9INUGu9zB/jZ2G7nylG+8ly4WczODK/FGhyPWZOXAldJ2Iw3v8UvV8uR3aD18BA3YPW7GvHvUq6kPaggbYpn6ObbS34OMeGOxMNOS3xOXRENOG49q9wQP83LUkB0AjrQqft3RRbdB1MtAC+HNwKFzaG4s7y85h6dzy8m5QDEYEC8DWwB2aYXiGZjHFc0i5HE5Z8xRt/XmG2fy3YmTaTt/U6ML+sBB9bNnG7SzKfOhVIjktFMWBHDx4JHsv7PIZpWHkzRGkmgGWfPpDNAOgtKofD2/3A00eXdudMoOZ2V7Z+uwCdNXs5Z2s9bVqgDvPkl/IfmUh2PauN+36c5KfTrkK1ziVSTTXjipxwqjtrDD7rtCFuy0V+uHMNHXiYQSMEf4FXQwxcnzMA6hvfUOLj/0Dxihzo6euBzMcIgskSlF4QAa8/9vAYj2XU1fAezTzOUaSTCkWu2oU75kjC2jQfmNNoyNNdalk8pIviSsrBLjiFqqfbQH5xG4WUneDABj2YN3I1Pg2roo2Va8HAwxMenlgC8uFmHFA2miy1tChZbAy8L5eDsw8Q9SMl4VUiQYrvBNqwUx0uir2DR1YZpOETSw6dkvB1vBBkq44mycBOkPy5nPZfaaHWRdH0sT2Ck+2rUGPsao4oUsFH65Xg5PoamDOwGT3iVsPg4EK6vjgdWszSSSxxJZzZLsdZM8MxSVsIHKqmYJXLAohX/gNfX9jR8vF3SHDsb2b996z33QkWFwvinRvjwWBrDXxQDKDWie95jNFfjF86jh68+UXW7RUspikCUx9GQ0ipHITbFsAVnycc0pbCrVl7SePVNu6cMRemLHsEa8pewL6Ja2DZBCOoSBpE9zffQFFCHV5phNGV0EDY8n4jX1/1Cx629XNAdhvMT5wGT3d5s3T4c7K0v8tqM07C9uWLIeMMgmjcQTr77w82zvkNH1NFYdz2fNI+JUIZGy7Dzq8pEF/rDuN/B1LW1dNYLK/Lzk2voG1QFmJaF4C0fguW3/eEPQtekWzqLv5y8ggPqP0Hy2AvZO5rpt6FBF/mTYDLaccoUfgoFNhrQJfYSeooKaXcJakgV+YMJ/4uhcOtqlBwo4CORc+j9ooilB98AspdWbBafRX/2P0Oyix38ouXamzgPw0KRwqRs1QfC0yfzf3BUiScKwTfw2eg2f7/YKSYPVUN/ULjHXKwaN1yWDQ5mG5vtwfzhXEkGvCAjES04d3NcgjtuojHTsXBNgVVCCp5QtG3v/ISeknXTB1JqqIBRJrUsLImFDQVtpCAVCWnLtGFD/MHcbVCDqb3r8Us82kcKJ7LYZXKPG3xOVjhs4dTTDtxz/lJcGShF1yz7QK5H8qYcX0TnA/yBGfzDLArbme9PY6sHZONUkFm8P38ZFpjU4f3ij7BWxMH2i6AuGSRPg9vWchyzb0kvSKAcjcLgWCVGtgr76eDUTbktvUDJC2vIcN9I8DXbTlKHL9Law6n0S8WAvvJC7HPKwcPvXtPKqdfwZVzFnzJppFC8t3Y+HwSbZ9zlNovCENreR+JVUjAhOBaeDhJnF6v/A2bSyJhZEAz1x9XxrVvl6NqvQp8FrtGI2ra2ET2LrZuFiGPhFm4zuk89s7fS+eUmYTT/8MLFUbwauA5t1bUwdzXkWyb9xsadJppwFcGVEcK8JfuNvKLdqJjS2bCGelWUDM7w1Mf7sI+vXP8KnYG5H5aArYLO0DNcRj6Ks6il7sqUK4QJ6ge5Oq7GeS/fhy8EzZhAXMfwIo/OGbDNlrd5o6VpRPhhrUe+e9UQWH/aLzk+w4Hq0fi46FMnB+WSjJrt4LkKEfSXKwEru6mcLA8k4o5g2d/9OTdP++g8JMuuFXsCVbKhbRvYgKcP2gKoYeOkBGtAet9T/mfUyayZxSn1UzldIPFfCP7HcUa9sPv+dJwWucjJ+vrwAz3rzRmtSi7vtdmoz1j6PGlfPYxKUDVgWSSM5ADx3fv8FiMHtp7BJHHXyWa8fkNith3UbzAITqvOYtE4qdCeIoA1GxIo8Q5khxzwJfsynexS888CMocgWHTK0H9mTcOuTjgmmgzMHxwi1QVQ/GbwRuWnOwIRh2b+NDlhyjjvAmsbnxC1fhRmOQ8BVo+jWSfxSrkoNmJp6/9xZzUFzjZSIP7bRvpU8EhXre8GyNtBUA8o4kHG91w5etz3Lx9C//5sxErk9IxL+Mw5dv3MZ4Mpz3/BCBI/hsLrt2EoeZSvNBHiXqNz4FRzQ1MvROJkzs2ocaAMQfONgeh6MO8bPx6CitsoEm74khgxDc8vuw6Hn2wF4qOHAFnkoH3E2dD07jveLu3ijxmatCW8EtY0h4G5Z+n8NF3LXi2/QvM1hTnMw4jYMbxFxgxajNOVJuOlQoGmGaXC5nFDvR44wDjlDS6lRTL03JngXhWPKQ5BvLEF+YoPgH449fXYL3tN+75z4uWydqB0tjRvOyROBg+H0di1nZ0KVCGM15bs9VjFUw6EU1FurIQ+2077nWVZ3WeCSU3Vdnq6zy0On2ZfYv3oW7jQtp4egYUl/rRu/6xUDx1CsbOlYfgHn90d9nCvq5ytHOWK317t4TviDlhXutmcJE8huf+2OP6RZqwXN0QO41D4NMmdZK8pgHz+pRwtPsdPuhrh1VbjFlcuYFmewK0u9uT289r1P7vD5tfG0Gqq4NwdmkdPOx+BThpN+0tuEr6KoaQ3WHMVzozEXeK0u62vbTYJh5MK3ZSicxlFut4Qh+jtrLA+ZFgO30zVmxyIY2lAVQVEgSd+WPoY9gL6Es7C0njPXjZaHXMNteEnn4VeDXzMDXGl8AVTyeSEzPF4ihTsrrVDFty11HM9NXknSEInxMj8JT+WF6rVYd6wk/RSdCLwo5q4V7XCP7laEnPXFVoZp8uRC70BGXPMs5UOwfvLEeR38JX/GjnX1aNF6OSTAu41/iUgiZJwfx9Smz52I9iBK5Tndd/JL7FmrfgfhpYFMI2oaHQ7bgA5wYLwHeV2aS68T2ZGFvQjewQ0Jrhx2HB2Tgu3Zv/TYmmEXve49IkM/AOcwLlxZKsLNAM3dYhOK3nAVjbzMZ0v0wISl5Gs0U+c6i4EdgI/ICEHxcgaPozbt4+Gt3Fe/CyzllSLPxLCoM1GLBtJAa9UofP5e9J9991XJHcx6cfKXPOm5u4drY+7JkygEuEhrCs7gDsmqkHCoq5CCGVXLCwB4YCAEWaBjikK563xJvw2O91cCoxg4dSNODGJ23OaYhi9aVryND1D3+Je0A6bpZY3fKMmyfsplDdZyxwRgxEzhbBpIdtOLBmLL1ZfYScTwvSqYv2vNTFg4MWt2LZumrKR3OQHjsWWvWHWORYOl758AqTdgSTq3Ic/ax7Az8DbJH26dDaIjE4PyMJT6bWsf+R5fDQ3AwW5gA90jfkLSqaXPwuANPOZqHNg9HgqbgH6tWqONb/NCodvIMZdX/x195HpOsUTFP2+6F58HV+mq0F6/zX0oaMNCgzfAtXqwzI50Ej1CdGY57FZ1jkdhDPisWT9bnxoG7uRBstbsHooWLQ/S0MsVa36dYdJ257N4zh0c85cEMwCeeOgb0pb0DmywO6qVxIW5R+wZSXy7B1XQQGz3hDi6MeklZhP6R/Rljd3MPGe37xn9HHUDpvHRR3O3JF1XpwqprOBlka4HfJBI9umAWOmy6Q4sWPsPTRR9hgXYf1pgG0Ik4H5xgcoPx2bzbf7sFHXaTgv6EKGhc0GSceMKSl+85RJx3jmJN/0fbBJkzZrIB+LXdgQepEmN55AcYHmeLcvJe4NHE83N5uysErlFmt9Dkv3CIKvc2RpGBJEJTwECYr38X1tReo7sRCynS4znknV/HKGQqw8OFqaugdDQpnjSHxsB7O7bjLC8uO4qdlHXS8tBiVew/AXm8ZWhGlBH885tH6N6bQNdKbSzdJ8pvbJ4jfreebjTKgva6VPGKm0A/TefD5YB/eyjADy9yRlGh3BfZ4S9K/8Cl4ZHkoqi58DU/rB1BA0wAsYuNwzHwpqMYmbDZTwNeK4mBzhPGevDtZjP5DwmcWYLvaDTT2roCSzVNBsMsQx42V5+atxqSoL8pmjjf4xoAbd//4zMkjLKDtiwpM360HayTuY9JaDSw0Rn5sX8X21dnQ/FmIIpMGuDJiiPKWu3LqJ11QqZ2C60/W8nb173Rm1n606DSCvsutZJfaQGuShqhjRQ+/TxGFwPHeXG1hgvJnfMlZ1xiSyy7BK8Vi+NzkBcceOdKqu+Mo/7+RcFbCEpb6+KD/F3O2GCeFtQ0zSSu9AHcNetLxiTGU/GAS6TdrQ3nibr6wzYBfyDE8DflHm/QcqDc2A89IS6BRTDG0r4ymBHEhuJ0ezJ37F/O2mJv896cpGg5W4/fNnjynMwKaDkng6rJwMlAcAYkv22CRji4pP1gH7lZeFCC6A17PekaGgvrw1MGeX2ZKwYH/DMBALQrjEvShdkE6NTXMwZVFfnzjbClGWPdRVb8AbahzxQvzjCCtQwZcPY9A1vGzdLPhMN70uwprWmRgROQ2qLKShn+BFahnPwUCpWugoLoAsk65socngfHWvRy0wgb1Lm6kgIfZrCtTzM90hMBmXiin77WjmQu1IaR9D6qnl+KN4UhIGheLUZ5yAHvsQV9QDV6PkkY5i3LMalrAxROe0MxHupBTuYBfFjbArNv+fG/jV9BUEIDu5NkwPc8TxnT8x2PORvDnU/Ng8oZmuv1vBi5/Yc9Ndifx6LQJEO0tDhMnZFPC7ABa9fEiadh04tTrVbThMmFY/X2Q+XKIk93HQ7CDHCu+NIZ/m+bhi5793BZThyHfXDk/tRsufY4lxfRs3jpLBbKmK8HMGRNhd+cBViy4RNt6RlBRjyZb3SvgvVeMsWujHy6IBnhxcpBw1QU6muLNbhkKEJacyY6ag6DrfBMXFYbgRqsZZLZrHFybmY5BDiP5nbIkbVWawXOvJXPiIeb2nAS8MTCVpf0aoFNLBnxejobjt6SpSW0OtwZE0NRZwrDaSRGt3nhDUs1t3PrpIry9PBYcJFvByegYTfzYTi+3PsEF0ak4xzQEpCT3w5HyFipT9ySfEBNQ8RRmv7ZxoL4oD4ueJXL80G/I1rtINmbn8Oqz7bxLRgcUxTQhzz6e/r4aTbfro+jp5eMgE1WKvxeb0LZvVixooEKCbsM89sxMuOUsyFanmnBoqgMXZgpx2PGlFN56iD02TAWHKfIcpjIWglwYWtR8OFg/id/Pz4emHG2w5nDuqo/FmUrNaFS+C/RGxkOj6ijwTCtkpdZWKk61oHn/WaFxiwMdlAkgxY+yqB9tSNflZ1NXhTxsam9iJ1sxXikJ8HafBYy3sMO6YANsThAl1fT3cHheDNmsmA31QwO04Vc3uNdW4RpfS/pg54LXXtTD81JvEIMqfLqpmDUzCYbV1GBJyy5YfTIAH549T9qfDtP+6m6+sXsl1Y/5DatYCiaH60LuzSRqPpMM+4ZtqSP1H0wXnwIqs53IcstCyHRzR4fJmyHecQR8q/WGbuU6Omg4hGNUFeBd6XN4Pd2UK5evIpna67xppCtsOyABXyAVTTvG0GCdLqcX5ePhJQX0ocYBwg+OZLFb/rStsA98PKfDgewezF9uTpZt+7DBRZzeje6lCUc+sOVbJqeN40mkQhiPisvBy8N/MLFXGiUF5lDCvw107p0sxlk08bvxxFfmXuWZSfb0n7wm6Gufwj16i+BkwgeQP7kD7/idg4dW0ugTbU5rus7yhPkDmJ8iBZed60nGdjVbvkjh5Npz2Km3FAZ17pJyjRkP1O0Au62noNBgJmjp58O1FDWWTF4He7RlaPaGCdR5TJ3c6vsxcn8NjPGpxpLRUjBOX4TKNhfDl5f3YHvibPb/EQdSwWI45WAOOorbQOu5LIwQkAVjF3XOdRkFH1oewFBeD6XIeKPz79t8N64ZBRQ20JMd9yHwnirErPeh7NR/fPbzGugOyuTZrups6wmoh5bcNSzD8PMvLhuBYFk6lez3jQAzs3O8LFeb2ifocOhER65wHAecvIKmbVgLXvkj4UPUe6xYxUAuEVgaZ8OBTz25+PhufH/QFm4K+/LU1BnsEDUWNE63oVrxNryTr4NX8vZxlfxp3jb2FtU+daF96Yp4cJUb1obJwMxnzrRD+h4MRvjigSMV8GqSAz7YsZCkXyuhxrTVBCdH87lEBRg++gC63oTB4yXxKP3yPWoHauHI4mCaIKfIOtP68e/ym1g5dhqsnzAKltREUuTzvxBbUE1P18mgq8wbajNu4fO9KhgyqpL0WpXAv1wA+nfG4Lyek3xZoYgMKreQ6dT3YBs6CZ1DhUnhzAnwtZKGrn9R9OdzNBx+VAq+R2ZxRshSxEQp9teUoZSL6aD2WYSqrBRB2Hov3BcOpIz7dlB6thq6Hg7zXZO99Fv9NOeW7MSfkQ10WHwWlI0ox6gxpfyp7R09rA7g/SLOrK6QxMG+QaSzNYn7R1XCjdWyIDb4jaOzLoDp54Xcq1INb2VPk/PWQSgqOkOXUuXh1ihLPtFmBq3HLmG0pii97u2CtAly1HN6M5VsNQZ5zbHw4FgH/8Ct3Cg6GqCviyxb4/mWsyWK37bnA3uFaITnFrhi+RD6VFtwd2MOjlbQBgdVMxoOMISgGX1wf9JTmHJYmjr8LWGn1QN456SP417W8gi98SCrkojmh/uofPRc+Gx6m/e/T4CLu9Lh0eOLJJd/DO7YAfue0YQHShq8lXdwVt44enC6De6OcsWE502U0dnGLn//cXlECeSNF4K9Yb54qeE+Lz9dh9u3mROnj+QLce2sqnwTKqNOUfWvGgqbqgy1Q2tp/7JLUJKZgBfGvIVTY4z468ticDDcg8XG+jT4aTEOrdYF9YBDmPfyJ21uSIELuzewfbsU9q0O4oXtvUwn3MjF5TwuE5SHHxJH4U2ZFmRPacV5xQqcMfoPj1RMgyLpu2T2O5NN3X7SjoCpIGp4G+78m81u+uVsHbybZDpraM2t/fT3hyKP+F2J+OwYHDmsAmPNH8DGJVYgpCzPY4d70WH4DQSp3qUBQSMW1hpNLxqc0PsSgmT2HLT1Aqq/W4LxTg2wKuY9tDQF8h3nEnQ+eY9JVhIaPxpA8gYZPv6mBhbOq0V3SQ08HK5EqoaetPBVCzzpU4QJUzowK9YQxvi3YfJTByrIjwCVd/VwY7UnVHbHk/u03eAg4ot3pWRo23hxyOg4CpNi7lB9tj1NF9LAk9MGeJZADggrVvKdsw7sfsSUlympQ6WLEcWUbMaj1+NZyX0+P9uUQ5MniXCAcymiyg/q2ldHfmbjwfW0NzsulaRdjfP5QhKxgu8EknHOI3W/HH7h5IWga8vZseNgwfMneKnvKMim5sJCsf94beEcspklT1qvZGhOTBqe36gO56bOhI/KrhwXPJlK/j3k5R6XSOKlGOxaZIRJdzvw4akHNOwygXd3ykDha1GGDAFyfxgMb29spu1/h+li3zu0sPwCo3TE6fTr7SQcYgideQcg2HAIhU+U4O48Kz4hXsAKZs2UVz6dFQouU2tTAt4emgIK2xah1Isx3KdoAlOqrgGnCYJQ+DLe1yAIRoYOUCjhTjd9xeBjwQY8vXMxbpzXjSlCmeDf5sTLRDPwUmgo5ZgHcNuWHZg7XhCkl57gEaYOEHPnMlgvagL734NU6TOFMiRD4U9QIQqWfsWnZ02haLI3b5FdAKeLRbkx6jepJX7BKD7OLxys4a6UMQ+WXwETWxn4UBGNIisrqWDvbzQuiMWVrndZYrCflnzYArdECzH/uTS9ujoabDWz+d/6AZiyzR9WK+fDc6cy3jJjKsge8yTR1cgvhnbw2MlKsDEoG0tvRWFv/A36CXPhXOdxutOch81tJ6nCuh9DxFeCooAsrLGoRNeBj2g5qY3XzzMk+u1PXnaJtGRnCh02+ExpAg0w9shsMIgJ4OkrdNHp8Wf6uukftjV7IUlXwP518jy3QpxmjGvkNTnToHnOCH53zpBbjh/BJ86VlHDYi/pX36Z7c/+y95yJ4LI4hq+WzAK38BH4Nv40dJjYYM+1q1xbvxPBYgiNJWaicUw51fsdpZQ4Y+j/a8Bm6cepoUwABj30sfbIQSh+XwOVm0+g94w4GEfHKDZGEEZ5PKaaUBnQu6BGpsV7qWRvFSyb+ZP0JCUgPNCPVn5eRc8qR8HJ+g+Q/egZhI3ZjFcXrIGA4vPg9j4HLvvq0dvwC7xcOIoP79OB1Mg33JkkDXnz/ODvtgM8RlSbrusux9+bfpOYoCZKK42HJ51qINIdhZfOyqPGfRNM7d9LuY1LeL7aSMiZN58WmK/j20eMUNlSFC7G7QL1gCFa0NGG0rWnma//ZOv1xfD9yQOa9CaHvtTVAMSOgD+izlwY24MX5XfCyJHa6PA9BBaf+YMvDcRg1X0T2LFoGWW8HwNvZs/D3V2p8E0mnwUsLKguZTncuvqb9OVSMXmlM/qYtdKoFikYt6qPJh/3onT7+9QUfprkVS7j1Skz8Z5gMfSrfUeL0hXwafIoiBpTyKqyN6hSTB9fbNoKOGcH929JoGQFOXozageUi7Tg2beCcKhsDCa/vYSmXybhrvowzJukwLr2azDWTRjy2k/hV6U3+KtQBHaGDeK1hN90PUkGMlVywH7qHA7o+UK1QY4k35xNnjNbsauTQU07guy6xlF75EF22ZoD+aJmsOjWRhZccp/CkhLR2Pg1StsYQteT+9Qc+QHurnqB0Q/cQb++BeueCGGh6BoUTzSjZ7lLGb9PA19DMWr3WId1O4rJQtOPm0bKwscr32lx1jq4VhLEigM3WWGDIpyVqsJNnSp071o28/Z0GvGoBuZVSdNZ70f48twevOKdwG61uuC1sAA3qy+BA23fMb7eFJzerKFPlm44UDify0rFuNH7A1nmaMAXaUko0rmLRi7XqffWS97Rbo1004KbYDN+9HmNkx/38NRAKbC0GKR9CV60+sMOkI2QBK3n0/FdzAPQGeiHbjNTCu99zgq/JOHBo19snVsGycKXeMWAOB7MkwMXlGWtZj0Qi7nIX+PzaHHrTFjzOpkOnmzBvg0NlGAwg6dljoLIShv4GiGCO+3e8/cndiyjNh6kMuehruk8EHlyAhZ1mEJovAYobkgAmYBjNP1mKizxiqfC4wQ7GzdwwM3V8EUuG1JGxJCaXSsmVTlS2mMbMPeehOLoQFtqx0CLRBHHthaz1ddX4CL0A+vDF1D41mVYseIVajz+TXcCVFkzehpkiQbifqsGvlmLmC35AevddMFwawuFWhugEHtjcYc0pCwQBamdC8jF+xWmizzBguPi9Pu2E7yZkInVf8N42oNb/EjnA5yOM4Kd2ukQkPWIg3RbYM7KEl7T8RO17hzB0JZUDMh3xokKUSyQOwkUnaRpvM93LNmVBpdTdNHi/UlaXPKTHquo87hkFeiTk6bb5XoQ+vQADkgtgZQNFVT4+RbtCZkDBjet0H3qR9rfdYC3Tkyhnp/S8HK/MTasCGGd3c9Q3EwI96tdIvFtkVR3JwZcRqvDwJYs9rUZDW0H76PInKU8rv87znkUTK1LB+HF2rVoNesCi3SYwu1LGagwUx0Kw4XIcVo9DuXsxcE3Nfg3y4aW7i5m+U/78PyOkfDM5jl6b5YH62FXdBDsgfWmf0Bg2kVc9V2JJSb5E+ocALt53uiu9YBtJWZATu4ZMvoiDuIRM3DZcWTtitXgPthE/tUn4RXs5qBfOwALJ8GwxW16GeeHibpL+KZSGmp8uE+5F6yhUfM8VfEG/lu9F1cpa8G++SpsZvkfLu8cxq3jBMD+Wyod0vXG3sDV9EV9kMOCd7DCmtEQ+2aQPwmu48iECp5v1UzLVzzG6U71NHV4Os2e5g61krokwOawcstufJTuhh5dUlw04gs6femFw3uV4coVJdBTFMB/F7TJodUUVtS7gKOtF6SrmXG8hww33tAin7gkclz2GOPLb8DKmo84e8J0mJrUwtsGm3g+O/NOj0pOOyfBJVlyuKkwl0D0D284dZADdEQhx+wRr1p3nKP3P8b14pF8KnUIhV8MkpLEE/KY7gZNlxbTWpMR4PflBEyt9UCtC8SHVMaAslMQXZFVJjdtH5yR/IPL9t8j1WpzYK1Gyoy/jyKDS2hMeCmJYDNdFJfnrWG7+NCFAAikhzh5jza0uHdz0tIGNv+piH9sz2F+RA0aOo/Bb4rP0ST/ALbmiaBLtAgUPBbHO8rvMOn1C35u2c7GWVP5bWIVls+vJf952fR4jSsfnTsZfp9bRuP3q1P2BQ24Jm4Bc8KlqVSgGA67h4OG837aeaKD92gTJFikc4fDeFYy0CPL8dIwZjAUN+vO4GjX9fDnvAh0HvwJ+wQMoW78fXgrc4N66xFk/QRo4hoX9h38S9/KNLlssRk1X7IlnRbz/5v/ezBrFUuUVoJ7SS+31K2mZd8uYN3dALiXaAMnlY9RpWsj3X5oDusf7Md/Isd41qarqCv3iASNtmLnmwF+3jMId3cdQh+1IA6aOxY6WRUPXHUAza/zyeyXEJn1T+fF2Z/hmJUc++Ybk5yJESSsJujNqqQslQe8/1UZ5ihvhrfJaZyRMRPc9EoxLmIHvVmuxw/rjeH18dWcZdRHt0aso8sXnkDc8wjud48mGeujuL9Zle5oX6K1T2Rgz2ILlHtrBL0cCpn7b+PXeG98EyrHZy2sMf7VZx5/yASqDCeD1NxvEOjrATGdd/lo4Twu+72fBzduBL04Ywh5kgQF7ZJc7jcaSvPz2C3vKC2QqCRt+yA4GafLOqpZOK0hEtbGCtDyV84gFDgVzg8/4mW0A8xc4+hrlBk5+l5C+xNH+HxYNb3HatB9cwvmb5SFtptKHHV+F8xvqMYolbW440AMK+p/pZ0OiuhV44odCS7g36sCvjtfQG7vTH68Q5amuphibosenL1SSgqLJqNj9SzISw2gfj1RKPw7h66fKcBTX37x570Pqc9JitW/N9GJuQXQa1vO3gcjOEhaAZ7+/sOZGT68iwfpW/YDHn32NWZbXMOpwjfo2qiTILC5AKZvnwQSg40ke2gIls6ro/YNBAcfzSRb0b0wSsED3wrZkj7Wca2QIZiq3qCY5W/Y0C2ExzmnYmToAn49bYD2ibSgjNJq+ugjC9sTVSEzazQ2hhfAlVdW4FwkAaOTjMCz9y8JnCsE+dALcPbMaPxVZg6PWr5iyVFp3DsliTVlEOcWVoCO6CnUvHif9PISQeeNKawVEwHVb+WU56XLqqpfsGG5Aj2olQPvPlX4Pl2MasUj8N7fLlpUIQJWpq6Un9jCDl7zKU42kJuOiHFJ+C3+cWUCTd64nJ11l7BbvBZU+nnSqjMudCKhji1+qVDthwb690eRGl4uwNFGE+m/fmfS8NSHU49mMFjFk2P/Vkq++QZ7on1h6UVnmqGng30H8kDsTxUdFhcCoy1WKH8hhKqPXeNfE/WwR3Qxnqk7QWZJsqD54hH9kLoC+StMIXyXGPfe0cA1Hmdppks1LNtmBhGlZ6B/y0p2PyWExZtGYOIEQ7AZI4Q7Ui25qm08nc0Mh7SPY9ktMZ27J/2mF1FbaM/V3bSu3AB0FvTBizAPthzWw83acbjo7W7e3lnMsgop/E0+nobbMjFRWg6M4mphg5couXavQI/NJ5FeuPO2Y0s4oqaH9D5nwLEGZfTYSRDWfppsrxzBaO03OGd/Idmb3oDsxAIUTl7IPMED/v28DsNh5qCZ2kGmIw/SvfzDnCEUD78ykvC4GQEnJPDQ5ju8IS0HYzNk4L/mGXDy3mQMODiWTF9l0eNyGSr9I4drzoSC0/e1HHH1E3zbKQ2Dv71w48WPcLkjjxysz0P/imU4L2AxKo5ahCEJUfz4XCz9KpwO40apoYFFFgbe66HXrZoQF3+TJfSl+W7jGTaenYifogtI6YIQjEpcgCPle3DLjNsg7zgBoipaaHWZJI23EgaJYhHmI4sh6aso/HqbjmvVU3Df1NW8bkoJzV5Zwc13bsPV+0acOq2Zq3ZOg8m/zCBky3J8tP8ypil684Ux8px4YzLZ5p7m+Q49YHLBFA98zqb5xdNhVKgE+z+tgWs+X7FsrC+Z+wlwijTy4PgMSKhWwvBOc16JojAUtJp8/dbSrqkL4EZvOib1bGKvXWa0UDQDPmyRZ6Gz4/Go6Xhw+g+h73Qiepx6i7PMrWhL5jCsC6zBTd1nOXO4lfQEtaC0SxKsH9qgS4wdGTWpQqCPEDhnDiK9/YyX9dtgcVsq/Qvz493fxeDJ0u/of+M4rT3NtK+qlHqMauF9hSvqvTXhnIvm9OnqWpzxhGGBx1qYl93N++bdoKUl7iBU/RwXrkviEqNH+NZ+HG+z7cJ1+wj8chfDqM7PGLpMn4/FHKC/go9py0NjqosLoLV7r1JX/AzSKQDYu2MD90/4CKpLXuDzXn+ojPTjmClWVLC9DoOqXXiSx0muENCHA7VzKDc7iW5YjOUE5ZN4d9V9jJl0ml2npVNgfyXq2rqAc4cm7Nh/gZ/2hHKU31FyDurm3I6nMDvFgW61n6bfesaw+vJGdk8ygqvX52Pc8TJ8Na4Dbnuegqjnz0nUKJifj3WkEd0yHBssDsW/J0NgwBosD+0ltzubYPyZy9gs3AJuo0ewreoWCGnMwmpdOziRPBFK801A6o0eps08DEUqbpza0QpSYyZBhqwRHSnJxrUpZ1B8vCZcdPNiW+vteGTWH748Nowb8rO4JMkPQhyIky7KgbXXOhIcJQDnmtKgoO8ifrU4DlGzE9nUux9+fFQmp9lx7G8SQ/dHvAbtiyNBsvU47hUfpIL7s0lBpoHG15zmjrQrHDhNGNreBYK9qh9452tAygsT/tc6QFu6orBbQ4v3XH5Aa1ePALXhEZy6wpNzN5mxpbMmzCz6ALpFxzlgazqsaO8npfpejqtZBiPdLpL1cW+aVHqWh04zFF6fipH7RehdRDsI1J3lY4F/efR6eSqsreSSwqMYEabO65+bgPLhTryYYY2fgnxpXagLCX/ZjLu7xkDjP2tublyDa5YO8scUXajakcL+xStph4IBeBmksPzhW1DeGg0iJgS3+v+DhBPZfEFSDqotSnHtl5G8yGUF2gvp0eoFjayy6CLOWNeMs3MNUKiwE6UFDCG3TwWGYt3hteV6WGFvxVn3Z5JERQGczn3LgqYi7LrSCR1tdABrNtNLlZV0UncSj0o/C7Wj7WkN/YbjPg1cMv0OXdPYgkubhOGxCMDad18xozcF1igXQeAoX4iftgc8ooawY1s/ulV8xBAlTagIqKW5HxRYObyZzWz+oPTSETyUPETHC4CaM16TpKgzKstIwLMAW+i01oKte8qh/etD5KNy/H7USkrd1MSbHgrTgtL/WKFBBbz1okngsA197xPlSp0leOaXMb9aMBXu3dAgg+EEODbXHe7iCDCbsRKt60XIzruHH9ZbYndmJHbfNORtZ6zBTfMb7z6zgkrXToRnvv/BXpEz3B+zjXabPwCFz4QvFg3Do6IH0KdtDkF/l8KhKBXweT4depadxe8n2lh2+0SIKkuDSTM3wfi41SRbUoLX5Vrhg7AYDJ64Ba4/D0CNaSPOWrcDzvc9pGFhfTi2yR2Uvq2iC9PuwDo5ZVDU9+T1P/bwn18DSBVe/ERZBSeMHMEzfctxxaIDvNNekszER8GziP34ZMpcvN3lBBGBWSSwUI59QybSsXUxcGtaIF3yaESN5yKgODyL317u5PXQiIt6KtC50gdy5+6lkYcn0inHIXr5IR48y0fB1ay9/OyHAy7VGInbXt7hq3cqQOjAZy73zmXv9Guw8NVp2pavCAVBL2B+zU5eoBQAk9e308kT++hvTSqN8Z3OK58rw93aA7SkSxOuPQjD61/XUHL5fH6sUkULSi0h5Mlojhufxq3Ci3jr9gmc6jQWKkxPwJ6yCODnNWx/M45ND4yC4HGj4Yy0Bt6NqCELpZz/EQAfgEAgUABA/zCyE8pK9hYZ0YVUioaGBkpLJKIUKYmSUlIpIpWiKCVJQhFFRjRQhFCaFCmjVFr3MOKiILzfEs4eS+r5jVQaKsy1gNOL4tjyjDJ3tcQzm+mCRGIBD2uagNSOdBAUvogL7PIwxHUQtlefIMfe3RiaUQI+r0aTYvQmTGmdDJ5l0djmtgtkFF/SkY06LBSwBIyvi0HdlyXodzSUWrKO4AhRAP++HuwQ90LeewffvXwByce8OcqOyaezn2ac0YV7IZFYEKAIX1Yto/haF4jOPka/qg/T3xAZOLKwjzc1jqEdklZ4+/lDLqswATHJezhn1HtMOPOMdx75gjGLVkO67W5wHHMeDVs6yX7jSNxSZwFezwN5+tMHZLJxBhrI/sMGg3Mw/KAcxqb2ksfn53hzsg/LxtrAbZ95+Hm+KEUIKMC6c4vYO2ctf7E4xLZ7jTH3wxw6LKPEaV9tYJ/WF07sPgTlZxZC77NV3KukijP9FsLBTCTh5ZvJztsDHn8Xg35xf1z58zkv9XCANHUbSPlwiBXvdIDMgVHQaL8YvtXEovRrgrzjb2D4qR+WW7wEvzuXOUttBGWHzuI/oh3cPJBGV1yn4LcmeaDxxZioFgfC+APGagzwhZHvIOZND/3u18PFYa9Y2dSBBB4bQV23AlWU3ocq0T2QcU+Tdnyxpm2vCvHo4hY45WKF+hr1kGcxFtIyL3Jd30ra2zsH/VbE437bEt5sdZQFjrWDVW4N5g/vxJUh/8ERl0DY/qicnHAhaf5pop6CuVR6bZB/rNpM3zeuo3FWX8HMigFOPWLZCY/R1zGT1lA969xfQNkej0Gn7h3MaXGAL8ottGODOOxUvcd/P7RQkshcul2QTBZXQlDX6D2/UblGM8RmoNnwaXzx1xJu5AvR0tdLybmjnk003eHEKTFQr/SlLI35ILzxBL1R9aCidA1oE60FqY+29IFfs4HQVj6pKEezjumz1gZT9Ilfja9fxuEvI2kwjT1LF4d04E3BOnQc6ANYZsBKD3Iw8TrQ9u7P7FCaSvk/dUCm7yFHPDnJ20V9aONBAfC4nQPHXqlwp80S1PtuRP+tzKaRr/VAp/8PCs1sBz7yHTamO3Cc6DYoi2jg0ap1dMjBAyQDFrH7vhEQG9TLUuflsappH17Y5MQtqrpoZhaG3vuCAXf+hciWNXxPzQhCVZXgZOoJMPR/A63n/uDVFYHUN9QNDmMD8VBYLWb7nOWoIn2Y4OZIl/8FwAP11zD0NpALd+ez0jRT3jCeWC9Nl0WbtuOGrWMgPfA5jjg8Cp3FF1PMvTjw1TwHvlEKtMrmPZfMnIF2G6IxUAGhpGsj9cFXdElANh9lA0LlkZhc7ca51nr8KOoIWbV9QdlqJZB/Hg7PbohDQOwsPp2M9JmmYfemqdC8pIvvO96CaYPWeM5bBTava6Se9CQSCBZncbt3NHzwPgYdtqcUs0JQ3tILyn9OwXYlC5i7vIhNt2yH0k5THJ4whjcdEIam9Dxc5S7MM7/MpNKSpRj4RQZmxOTw8sVaPFD7h1KXfoCyv9tZfm49XqgwpsjBxdAgnMo/LglD74FpKDbdh/8OOOCRU0fJZkUxV4iokM7pULgz6xeKqv2lvU0AF2YcgPVKS2lstSc8TlRBsVhn9IC3ZJ+aBUbH77C443q6O94EChqD4Um/BP0abKCdGgug8kYOdZUv5fIYXWwZfxokCjXR5ocetMTn8UzrXFyXVYqTH4VDTfpJmj/zJKWduIBnBovBe/VuNp1nDJN8fsD+HQ9JY7CbNDNv8daT00DqyVQW2PgcjEv9OcnmFo/foAl6CtYkIG2EdOMUTHoTBLpCgni4U5x+RBpj6fY89PFN5KxLI2HkhD+4o0yLC69p0+3yn3iWSilB7iSHVdqS05hEVFewhYBzprA+/QRMNBzCr4da+JTBVbz77xPtTFqOiUILQfzmKciU0oArncawcMdpGNjQRXPiHnD7sZGwMD0bnAYn8JiQ/+hNXRlfflVHs3pM4HfdGl640Zp0yhHUMxTgqF47JBWdwed6oXT1bgFcWKhKk4xNYWuYKznPPM8pWWb467AG33W/RhdretEvqYizF9byJ5Uq+vIOYeLaRhRYv53f+L2G09HqnCVaDMrjZODHU0kaZzOO3HO1afrVETC56yR5/7uC2tMGYJe/EuTN1oXNJva8sS6WXh5ahaWnDfFSgwK8ckmGIKVEstp9mgqWrQero4FwqbmNZlYE4aRfIqzQKIlLLkmDaoUgtk14AO6vfUkjKxN1bD9xVXA+vNgdT1aRzhi2JI3WeBuDumkmeafY8nVhY0hcqcvvdSLpTrccbLR3oLXp8uxZlUenpqjDvvGRlPrDnyOaTHHr2jB29tuO0sey4fReEwqfaQzpz96SpLgwdJlNp/ljNMjJahO1FctB8AM9tqw4i5tUj6G6bCb2bVKDiUOmcHG6LtYuT8YDH/wwJWQsqywxx53zH/Dx/ENsd16H8i928idtQfiTFI3fsk/Q0PEVcMFdjjMWSUClmRro5t/ioKAtLLxlOUh+NYd763YyRerSguAFPGycSovHZ/OnwTAesomiqUf2UXn+A14xURyO3w3lcaOT6UvuN3TV9KeCvLfsKHYG1/bkYaanOSeuvwtZN2VhXfNOjF75htWMV8LHhSfo5KgzPP95F3ZsrIIdIqaw9ZYULRhjBF47/vL6QxPY0+kZNEXdg0Vb1/CaTx+pelUk3hDOw51BRpyaLAqOEuux72YX7y4yIPS8CTomNTxj2V2yniuImklNGCz5By3rVGFDmSgKPt2DW4WzuYYEcdfwHPTJKIXoiG/w6vtM2LNYBL2OS4Gs3TPglI307GElbWgOhrKDzjiYWwNZKnWQEj1MNvMUOd5gDDyP2o2vcgKh16qVxbxV0P+yNN44ZIM1hcG06lcCGAUHg6yXOLQbaYPc0gQ8s/ET3w88Tq2rGnC/51w6LrkKMy5E44+ySbS0bzRY/duPdfU6cG5qFM0ePRJjlcrZwXobfTURIAnBAJo1nImqTf/B5VvROO9LH9l4q0C6qxSKFDJvk2vFY5I69F6ght9a1/I4QUuom7OBjmhNJ+urB/jM3Lc0WeQd9LVr8GHPeDaw6ebVfo1gr6wDTsL5OL2riJ9KJaOmTC48fhXGPy23UQNFsIyKIC0YduKd0mrQ9XoUzvCfxdGvbtDQ8fkYsf8ft6XoQry7ACv05+GefRXwcNcooJQEsCn9S63fynD8xC3os7sbYrLeUMTcszzeQwmk7/Sg5Q9V2PLEm6/VtWDGZlU+OVIUtNZ1wwPoJjOUw1SjZuySugzHUg3A0j8bDD7uJaOgSLTLuo48dx0vW3IHow/vontHt3GEXB78XqIOt/0v4MYnTGdX7WWbuDv0zX0fH/o2jI/1ZlLC/XISoTXY90kXFn3vgqyVKrw605feP9TCqolvQKVVHL+pjcEtxxRZxKod6mrMYFCrDj0DHNDDbyGVGlTg63+KuMb1Cno+PkTxjsVcfq8FdHUMwWtYHVcGhGDGrK20rjQYYyo/oYgisd9XcTQ424GhTyyh0kcUtpz7xKrfLvGEoDryHVyHoz0moj/Z0Wp1J7pcIoEuO2xpn5sxCIUK4Tdhf24OnIT1xUcp4pw1P59ZzcLuUVDryCSStA1uvNOGK1OL6f2pvTjWRAQVj86nMa/f46j4KvrQOpazP12m2pS/uNXbGjTvDEPCuO1QJPAKfJKfkX7RAVyZ0Q8aGVfwpP0zHmW9HeZs0QK7rYPQtWUldByajOPOSdP37kZQOb2LHsjrgdUvSfo07RJrGejC+ruXAV3XQpvRU1DSrSEt3fG4RW0tpPplod6aHbxNyAOfv54M042Xods4aZz1KQdPy3timtpD2hY9H93V9bDcYRwXngomuDUW1l3YgFkWa1GnNgWbV9hgxyRT6LoozVkPcyk2KgOmNqmh3CkGZ9cg+rpSD75eU+Xe7kjctCcG6petBN2TLTSdl9KYN/vRa70oxHVH4ZXJeXR3zlty0lTGlOxTVHG/iYUlgvmQ5zaI3jiKjcZJQY3KDHpteop2Wi7idSnFLLvyOMcYrQS1RQo0NuIK9EVc4drLE6GiqJNnzjAggy3i7HG6Cv1OCbOzfAV/PpbISj6GuEj0NShFikGX2xVs5uO4aMpcmoremFP+nv9c+EVB+xNY6n4FfhBSp+piA/hIqhSQqMtyAlb4/OJKtgzVIEk7KdByRhgv2shJ+6XgSyfClw2KcPhALRXMi2RlnWGofr8LZZxXw56DGRwdVcq7f0TT6PUIrseu0HFvL1plcot15yeAzol52BsjzZHi8tAoqUjB7cdx/GMTcEiazsNaIRwRnEb9Cdt5n9YAPWsM4FkHBKgoGXjuzARWnWwCRbrK/Hv6a2i59BrErzpRi1M23x18h2mHJfBDawPukVDh+QFyUHNDFvetzOeECSvQTFqOJAwGeNTkAfiwbA+H2z8j+V1X8dZCIXg8wpHGG0+iONFj+EB6K741JdxWZo4aq2u588Mx/ioaB5ot/8EC01AM0WkgpV2nISorDYQOJdLK8wKwaLM+/XEtpfXJDlQvLg5HA+eS1t5O2lLXRPn1bvigVpYeJsSjjWsn+Rx4xDNOj2IfWwEY1fMBhCKewMTiYP64ehJMK87AQVsJfOk6A4sd76C1oDQFlE+B73a9tCingl0DDuOy2IVwNNYLNeqRZufeI7WHy3CvlzI8PyQKXw8aYkP0djIIfkZH5z8jD/8nJH5JjQOsEkhtzCN0GHYi+bEicMz1HinJZ7JU0DAe/9fBBckXOWpBGB6+6E2OfmF0d1k822XKAO8rBt+57Vjuw2Qmfpl+pGRx8tInONnzO+35bcqWG+7iaRttOBljiL2y8Xz7lgRLKKej7dMhXN10ELVTxpOheglaGyrTZBNrOBvXR1l/N+D+vSH8MOYSLAieinWiwbRFbTl79l5EvvIHoioNICHvJ+8a+ZgfV8vT77AOGPO3kLzn1sIKD29U/HQc7E/c5q2uavDYqZb77/pz6GSC+KXy7N3dQRGj+rDp3Uyub79MMT+7UPmCObx2f0q/R5zizmBrLvX0hg0deTwUt5YdM35iekYRzcl1gZkfRaC43Q18t1zHTy0Xqf4/dbqcIQ5LZhzBs3aB6DNJn48eruZzoADbxU6xrf8D1plN2P9jFRXdWcCy8/Ogba8Qqqqeg7UKq6j5tQLsPKjHP0WUsX3qTPpz4Dra7RLgpxYnsfTGZswuSUPP917kLDEOOoTcYeFtMfDfFUOhDin0/Nsz/vdBC0vnJcPqXFcqePQWi7ZNgv5Ti6DuTBK2mFjxmV/Z+DXPlBsF8+iYYhCmt8+G3DMrIUxeCi6GWMO5Ujmua3ahl5sayWl3Emu3+oGXwSDLtefR8VtnQf2NJky+vZGPZv2HaVfcYdnGSPpWE8+pfzbhGbcrOO/bCRjXUIcXqoSh2OwPexQ6crbYRBrYrU7Ri5Oxpm4pjZOOhTXCDzhW9hCkVQnA+9QXsHpENdsNNELZ03acPyQC/k3jQEJ9Oa3qPA8tO7bi+mwVmBhnwNp+d0lyylUsC4kFTc7FvWHT+f3EZbCtYDJ0tivQpXsSIJEpgE8ONuBaQyW00wnHUpV1vFXlLEuOKwe16s8QojcJrE5qgp/kIxaT/EQfBTPQ/Hg7LzKYDJYdhpTWlIlTfBt5pu5qNH4IsDJHHvRa06HoyHyuEK4l49u3qOLfPWx//pz2nvsLOQ1hMEJdAGqu3uVHej/hrlETLR9XDa57RuGL3j+sqmJMJ2eMgfCbF8CiQBks15Wxipc/rDrbye+GKiFYOQhf6LXS7Vl6dHZeAak4q8OIE6IQq2/DsgHXUfVRAbl9n0MNHV945YUelMoUAOdPOzAmIRGX7RsFQoF/YadRJjf9mgFBH9XAt28jeCbuhFx/C/x42gTO7kpCv3gL+NafRl3TnlPaS3H490SeL72zgd1PfsHptePh3d45kP66DUyC9GGPcAR0TrqJHsd/0n/Xo/Ge5QmclXmR4/Rnkk5hMLaWNZCAiCT8UvnCek4P+bV7NS6yKIR/Qw/hdIAgh86aAaIF+2nZYjvsGm8JHvvlsHaqArjP7eeFVU/RrBVQ0gxBr+8XB6X9JlXxBzBazApWJr/D5Qen0LsQFzKJfMmv49vAJawGoovlocjBDuZJ1eHvJEnAlFN07Vkkr4pKot1HtvPTMknSfBcF8WVVvDxYE19ktHDeQiv4tvMFnxyjCeEd66C27gAs+ByO6ZLD7P7WB/qGjOhRjy7qLpsCKaLNdMokHhWWF6GxWQO3XXChO5PmQxRP5dGXj0Lg1ST4K2oEtkMRtFHlNw7krOXU6hLWX2eIrVGLsUR8D6injMXaqkvw6bEGlO6W4/nOJtQok8l3DB5DZNU8PNKlTak58VRXnghyMaEkqCMFExTWQrtOGFQrfWWfwDPwVTOKmvJkoH/8VKiQjaJ70eP4ygU5MDl9DWZvaYInfwRBV6uF8soF2OD8a1x8Yi4orffi5AXH+f0YZVB7foMTRD5zTdAzkFlbRYGHTcnwmDA1Jp7igfowVFuzmQdrESgxFnRsGwCjtHFkjis6ZYwh7+/qePuIFPvL+WKo/h8oXMSgdjYOBpY5YuuUCopbMBIFP3nTTksTsB8nzvYbV9ARrd/8xVcMrjufg74CWxKv6sPk8jT88dWTciVjUWvUS2qMWo7/lF/S2SxhWLXJDh5HDoJt1w6SHhiN1YV74Y2/FGS2uOHFzIdA2kW89AqD3hd9HG18g8fZq/BZL3kKkjxDsk+e8/Wkbkp+n01ndJF9t1mCj0gYdoQfgov6i9H2RzyO99SgbkM7mFPeBqamalys4suyEaOhvagRr582RL9TdmT1YSXXJwlx76t5bKy+mwZOTAcpnyD4flgHJFxbacMSMf78SBlkHYvQM98bzGRF+Kz7er614xwdEJnM7vIScMU8lr4WHiXVRfJ4ME0Dfwf10k+TDlw6dJid/T1p2Og0LZcXgduHFzF2I06xaKVZq8zg2oKr7Pi1D6fHBWOtlxjHyNfx1dMaULL0EIea3wBtukpJJmHc9UmNdue104nEFTSXArAtpZaURpvA4IYoLhqMB+vh91T50JGmO6iR2CZVaPG1hJ6HtbxfNwpHEMPz/M8kflUZLlyUxY8TVbGEtWGd/TjEZT/oau9FCFnbjHkjhGDXVBWWLrPF2qWC6HppNgQsdYIkjY8gpX8YrNZoUFXUVHCs04frH+PoybkSaBv1ja/PWs/3LDZB78/p8PT6fLZp7MW3+eLo3SAKH+e1oIzSS3yY8RwvPQmitiW7eN/9TXz750YKPj8VBLqPgeTs0SBW/Y4H5rzmNaMvgKHbB5ykvxZ+FIeT2bp4ND6uy0e9dWHonyBcPb+ZDR4nccyhK6QRtZ7y6m3h+FAOC54z4qzAYbB46Q6rTaZA96VkMm+PgJKI8Vj4tQLhWS/YV/xBmT8isCXVhS5ZKpGtgzVU+Wpix/ZS+GDuBZnfr8GBEBsePP8BpgbnsekdBWi6eIFjY3Rhynkd+GLQg73KjbT66T1weDEL8UgKBN8NJB/HThSfdANCJo+AWwdmo2PYCwi0CacPK8agnVIjXJf34kg7VzzwdhsdW7IEn0dOgHLnLpx/cA/oPuhHi9UZ8PbuFPCs+Y7S205xxYvfNKDbTN/VFGB2rxKFSqynLYNHuHRyPNyRv8kyyeoQdOcC+k/zguYtqfApRxhytE7gCUUztte/xRdigLeU7ofGW/dh4idREtl9Bx75PySXDSOg98RKvFeTD8VXnMmuSZXT6n+DqeZbXi+2neSK9tBkoRCQazKHa3XjqKnBGdwvmoHO1GiqaI6FuTtdsKM2nYavusLalYgX3NXgaUIcT5F2hWGhdTCwwwXGf/KhRtkAau+6TQ8rUrmyNR2UJ42CjQmz6GdrOb2+fBpLG3pQ0ukwH7w6wEMf71P6gd8oWD4SV68aA+kZYnBEuhzD37aB1K1DYKz/ngtdTpKU/kvc/2w8r28Koyj3KfDwmiK7ZTTzmgliXDDyMISW5PJK2ZN8SzyXXErTMX/wFb5/JQwWO2rwu74p2Wf9B491RfBlB7FW1V04t/sn/f4bira+ovj3hQ6o5oajlWweTH30APsPLEA/y/Pw7KcX1r4xZ99bG9nN6TBu+ToaZDfmQs/p7zAnYRdlxItyy4913HZ1E41y+EtW9jl492sWkvFoSFL1Q1fhGyQ1Lp4isv+Q460zXP49AgsqoiFjxxCJbHTlsnfSsFalnn3DslijXpOXvE1hh2Ux0CSRAc9OjaUTCpbcf6GWzapVoNRnAILvSoDCNj/SyHGgBS1qPNfWnXUepaDmIR3Yrm5Po4UNYPXWrTQgX83CBwgvjb3NQmO7UY2TyHb5PtgRuZyv++qx/biR4HIzmWbfUKF6uWHcPJTPBip19Etcgdf8yyahJe44w1oRPGSl4UhyMenUyPOiD2l08lwvmJ+7RxuXVtHmxnm0C++QSrYLvlEXhdJ7+aSSUYyJjS0g9OQoqHx4Sm0TcslpigJYj/XAjVlhfE11DNzoa+FpCSpgmjkCz3k0097BA6C+Yz9kz4gCmCSATwuXweFiU/gt5YOCPb3sOVqGY64Mcfuuoxz4cx79fZRPOsdUqVH3PsUra8NDu2TysN6Dfip1ZDdJB4tqv8LuY71Ye8WCz58GsN7VSPuFhCH23RCHGlTTm+3ZeOHkOnQJLWHfcwvJ++UGaFolBu7/eWKoojZstVjNql+GQCa4gsb9HYv/oivp+6fLBHt8wE8pgoc6v5DBUhNQOX2B5Co+c8D9OaQlvozDT+aTSe0jdMmzgIX712P0tSK2+ywEj1O+8awJn2C7gCeuHjkA6sV9fGK3KdaZOfHKDnnKX/Madx+1gd93fuG9LyFs/O06jk9y4BLI5vzpAfDYtJM9j2tQ3JI0enlUFhzTjGmh9GZyad6AHTqm6JuVTXKZchD/R4u7ehfT9pZ02Kc1DiyTd6Fb71buGf6GFbe96OiUUTBK5xzWyHbDmqfxaNatytLhOuA6UhuCpIrBiyN4ybbPmFTfhI5VpZBez/Td35gWaYWR+kMlyA3by3bbjUji4g8c2fETw5Sr6IWFP6+2WM/fbn6iiidVUDFFET6mq/Plu5lsODzIWQofsVdpDXglfKSo4nC6KXUWrj75Qyp7RkH/lxqa92kKX1HxI7cHh0nVOYB3i8yCm5MBxKtv0W6/Jt5/WxWMbu4DmZb5cDs8gB6VjGeT9HqgJ77QrTVALh1lvOlTGYc26kBhsx8Y6EXA5/TpfEX8HF591geH3mfSp32v8PHdCyj8KZOO+RuDQoQGbl0/F/HCfh6zLRcfjAyiqpqH9EzYg779E4FRgsLQt0EFCnzy4KzGZFSMGYfbV1xgq0vx1DvaBFvyJ/KeCStJ4Mw2nlvOEO+zBIfnCkOjrAYNz54EZu26vMRxKvq86KS5f+ZDhOYQ3dS2gTKDMrI4U4fO/ZNI0aYDlb/tosHGAfKrfsEZob38aXQmvgpTgs2q9lT97xaoDNhT3+ifuO7dS9jeZE177evRVesUPigfQS8clKE56jYU7/7BR/bL0UXvAXo4rIU1549gs4QiLXd4QOPU3mCNhj4c6xODswfy4EDfUhI/tJobfg/Qj8BZ4HZSC5ZX5PG5nEpY8lcGzqq1wODlGZAz5w5/O+XM58VVMPJbFmSv8scn4V8491YwCHmMhUnX7pKtkhuErV/P7f1bqPXMQb7ndBCUpmdjS34vvvc5BbUtKhDdvBsuzjXE7RtW4PpVnvBs3E4sj/uDlrfSaJFmG8DXR6Q30gKeBUVQycdx+ExIHLXeBaPPkzH4QH00ak2qQ6X8Rjjc1g4HLkrDnPel0P+wGa9DG+16/BumTO8la+1rPPWmE+0dUKCMiIlQ2aYLDpK+9O/GZq5d9YVXno/kQuV4GL9JlUSrtCE59zO89bUndX8jEHP7TrNMZWn/+XUQfXEAhqvWkpt2FbgovOB9r4dJcsY/FkcbEHN6wp8uhfDRs2I09r9JoPpVG+b89sagrH+cV3qH/+t7Rc52kjBlzwwo7rajkn4xGtHSB1I3JvGTJZZ8r0uOJ015Ah/vZ3JlkQlIqFyge5nfoc3lPKydbUIZ2lJ47q8nl24h2De7gStyZwOCEbxqWkGfY6bw+1RZuvf5Lajn/ICtftH4ZdMxXBR1i+IT50GpzyRQV7BB/d0/kK0Fufk6klfOSjhyWZAWi/8Aj8FfNNVvHibvVAGNOZXQGj7IxnVlMCZ8Pa4vSEdH+z3U/SQZRwRpgs3mpSgVIwSfFbNBZdIQmT16BzbrfvDj2dMpkqzxdtgTnHOxAJ67baFdd8bDzq/vad9yL+i97MObj67Bo7+nQqamGIs3+/NP53eo0uCMZ1wIpikVks2Hs7jgvB7/21UCr9Cc5neMoaDdRig9zQTO97+FhkWyICHfQ7fKsjlCcZCr3X5zZIEM0p7LAFYXIaBel3YbHeGzPyWgIeg0L9cqJA87e8ryc4FprXZUJO8H1w47grXZXL573BhNTFTA5F4yrXH6SRXBB/j54juAqd/Qb9dVTJtUjs1zNNhuvgc1io4Gd5UE/mJ4n9w++FGkwgY8u2AnnbB+Twsct8G8ck++OmcFZbTrg5mROy39ZIimd2fj05XbeUDDlVcdSKFn07dS4ZNBLr9lBFMVtWDxpU50PbUa3DwW0ZjIVvybP4lW7NzEK/sjoEZtFKh/fwSjJshDgOt5EHHRRWf/KXjiyFW8nXIawqRHc8vnrayvmsoqDlk4PGQIu5Ns6PFeR3iBR1nE+DrtWvgYC2qFyUfmM5w97MGHln+g257icLdUDXL9UlDGrR6te+MgfOp+/vWtFb/PHaTcn6EwbXUU958ZA6uuVtIQjMKOE+Oo1XsSFbR50q71d7lyRxQ6ietB8DM1mBoqBIPpXjhOcAX7/xKFThdjOLxhGjo43qJBaytc9yqLj0jW8Vo1I0gN+0O2+RJcGGPOS9bep6t3IzCkXozKXn4ktx0PYd2eYgwctoTZUmv4Yk003xHfS26j1mOrnBXuMzHH3yMrKXKdKdXbXuOuA2PA8bAJxPz9DyNnXONZml6c47uURp2JgXPz03nzpkTUL+vhTCLYveciSaZfxWk+GjzOxRWbwqu5Z1QRjN40wNY33PHVWj1YtVMCNmzLgyizuxQ3Sg+Pa1fRyk4furZwCNdt6IfmJ2LwMS+Kt85WhyaPGL6d9B6jaQN1rN7OtwRtafCMCr16+RmPP9annguCGBuqBeuEJ4BVzx1cnxHJy8fHYY5RNTjdmAK5175RZfklUsqLQ482YVipa8A1lY+x8VY02AfvxbVPN0LP4dd8xXM6NY41wxOfR+M3V32Q3fMBpL41UlBiGBrv9gHBOQbgsX0sie/ZB0t/R+F0o3ucIC4GyTLX8OS/CtS7mwea6S34SFSH9rv84KLJW2nfn4PQWBKC/3aqQWbwUVoTZoUGd6SowBJZQyiEXh3XxqARlcDm4iTUuJ8L/P4D843juNguluJDavHb49t8A1NR9PhtvPs1lztzb/DTxNmgkKgPeyqbcbQCQ7tpK9gVuMK9gwkAjU9p4rvxXJmUDv0POuHoURn4/MeEp7+Zgl7DjyApTIDuSjlBukc+T9AKhDs7l5FRw0qaLW8JVnLvyXrFX1RMMyD7AhUoUw9gHdu3cP22Cdj2mfHEAzHk0oCQ1mCMw89n0YggHSh59opmTujDochr9O+6Gj+4tJwPJ1jjlAcqYL1SiYTNJPlrqRKWb06Dtlu7qLyukMPP21H8f1MpxrsAWjoJpt0pgNHtldApPY3meGwF0ZxQ7kj8CCXzPODd8kWckBRId4JVYNGnpywZeQNUn0+CBbJBNDstCQ7FmLHBuRu8Zlkdq2o9p8gKNbgy5zX+vnCN9j2zpWPFi+C1QxgWrWjhz44a+MXyGGgudcTcHeZgC4fo4Dp1+H5ID3c3duFP/5ccEKQD+fuNqf5FEWdu7MOGPE1I7LmCE1aO5fJjKpSq9xvv107kNumbeHMz0Yrthbg1t4lfusvB/dQbvNf2MJy6+oPkRheDao8mrT8rx1axnlxwaSv/s3PkLb4EVYYrMD9wE1W46FB6sQ8Xzh9LJ6t+cppZJSadDmYddVuyVBKB103FYDWlFqxfBMJ/d8tgvPwS1M71YvNhObTI3ENJIVW0pswcpE8dA4lkWd5SvRJebD+HG+UuYlyxJK3zMyOvC9Z07T85GiGrCGcDG3CHSxzNmLSavBdsIfHzW7m7+ihZTRjPi/tUQG69EoSJyoHtzC+k238BZzquJ63uTpobu4OD6wbowYT5dMR5Ba2u24mF+0TBMsKer3i8AIuTDyFKSoVcbyfioq4+FLXaB7JvfbGzzJnfRKuDv+x8lPmZjRtwN8tWvYQRbfdJveYyHG6RAQXjJJa6Jgm3ZUaDw15l/ri5mcTblDjqXyHIV82mMocV/LEpksofGkFC1HK65SIJh967k2vLJdJ6l89z9o7kOabf+fKbYLx2lPHBVFs8/cCcV8eJw/oThD97d7LFjyewp7gfJO+PQMsjslyjMgJH6PZj4baDFN+jBzsMzXGEaDbWz5hBgVH5GG+XxK92eJKhmwV7HHbCCu1mkHszGoxzRrDza1Na+swLE9bp4sVuoCSnRbTgSCgEyX2lKdXF0Fk7AfaPOsJfXGdAjdcv+HHiDMz12obBZ4Vg1YQBbNGdRIfSz/PjM6ZQ7bgGXcslYOzWSIredBtMZ7jT4KE94BEqhNbLlFCksgGWmwHU31SmW1sYsWc7l3acpJeLFVgs9QvJSkWQe8VzVDU6zI/W6MGEO/+gWWszy5Zp4tds4uAFL3Dnf5dBvE8QUzvnQL2hA36aoA9K5geg6uMPcKo1J0e9d+BkpsKy6jrsWTQeQhYFooTIHs6fbgh511OwLqeAv/sq49j9QfDZLo6CVz3CwuP/UDz4Dwjcn0eVa7Qhus0NFNtegYCkN5oUONPukjl0Pu8jSy7cA2Uijaib8xHDP6lBgWEbTltsijXTttKdSiluqT/Od3fJ8lHMgi2xTHnn3mFxlDZIHZxI1WamXN/9EjUtj8NnmbOceb+KT0WI4gq3+6xnP5evaRmBrP4jLro8irr8xqOkcDh8b9vIt7QryO3sC7o07yOtklGEvV0iIOmaCqPezSLViB+Q/DgLRSt6+Lj5THh/2Y9i5h6lLUfW0G9vG0gLEeJ9F+az3Q0bbHwXhP1QDqOik+nWBFMwMo5miWoH0G4wgvwDluSbW0jtdb+gvOkKT3hpSVKDGvB1XyJrFO4Cgd1vYCBkDGzX90G/m+Kk/NQfNwnfQLHsMzDxTybtDWvEpqIkXpERzTmjJsCy+pnwxGEFBFfGgel+Z17VuBCkUhdQR8w7CP/Wj4VakRBrIAPnHj2D8H+6KGAWgqOfnYTf9Qdplc100pmtBSO/bmGZOX5k06cBgxpV/FhRmgIcrnHXmUieZu8Gj2+vgx0Vi3GBfRh8FW6nUHMF2C59kH+uzacFf/xgTJkpL2ncBYeqn8Id7YU4d783RDw7xkqBQmD5wI7SjxzBOVYTQCnsOMj2/eOMkBuU8iWGi07VU6pCK3W9MYaAjly+8aselewC8I2ZGFdlWmPiiH6oOjiD7n8RpPYPt1BigyKc243kkaIHac+aIKNMnWpJEKu/bsIfyiEwOVCJhOxfclOQFNSv3g8iRyxpwHAbhI1/xpneD8hJwgj/9hvR07ZA7u9yB51XFmDp+hIrGl3Ya1sDnN3shhXne+j4iCKwnzzMxg8+8J4ltZCyVRbk/guHyTPzQfOdPJdd30pl9W+4Y6Yhyo1L5EkDWWhwYQDktuvAHgoBLrFjC58FqKd7GJMoghJPymO94kQ+fYxBTG8RdEsqQcr9yxh4bBELXk/GVWXOcOaFELWaSkKWyDwW2KoH9w+KweyyKRDWuAttF9+g3+HunHdLELR3JXDvge3wtasdInaMQ6ELwVyxXRq2PzZkhfnjcFtTNP/VO44jZT9g9ept8LJkBuckuFJ89iCbeytBcMFnophGDBObxorLvWDc1FS8JPsMe4vG8WRZ4M/d0dBQYQr+nR9g5RIVMoFEijDQJMkCJXIqS8aNc1Sxos+e7H2u0vdPyhBwxROrh/7yjA39XGNzji+ZS9KZa3JU7f4Z3F8/5I/dV2Gz6ljIzjDjxMdHcJ77AXbyToFLZxzglVoWy7uYcqffFhrVmwNzNAXA0VQNw/qteepwKE3e3Q4+AwncNf8Lfi7tYC+trTDf+y9ue2EFN0r/kP8NNdCMa6Edce6oNX8j2wuK4Zk7tXThzRyc6SJLEdJ6EHmnmgfl3+BDWzu4Vq8NQn6tYG/hBR5H73HGVjOeNNEdC2K1QPv7Q9iSHcA+zwvx67WxFK3ZgrFT8yklZR678QY6ntKD9mXKALvOkeLyBvyZoUJaxqIQez2JhU7c4WtOz0ns3GtWf7QI7wtow2nnPxgavgESdrwHl8n/oVX7R+KuHZgeWUDJjxYhR+2nBTZWUDppC3x4Kgzu+ncw06scJT8XsumKDjRQO06+fiU0RucYhmwQhoqgVfBN9hKHrA8H018+VDRUAIvFUuHK5QI4bBgKg2nBrICSEL/uMxmNUANtJ0n0KnxBPj+6IGa8PE6e20A/d0dCdEIOHhxpA4FXUiBFsYZDC42p68tjmqwfx5NX9kKIexwZpCmjldcQRB5Vg/uXdlGoVgQYVvlC+VFrUO5Zhm1mH6jyUjPkfl8PqwOH8UWdFKhsGsMyrXfhx7oCWpE/hf1VvIFSS1jRVQ6cDpxFsYXDrFcuB6Vfgwiqm2HKeweq3K6JoRPc4WJeK1a8N6GEsD7qSP9JjiXmkL7sHrvPnc3+Y7fTvjJV1P+5GBdLLqTze/VBR2gQfxYPwRflEfB7KI7ye+bD9M2C9HejDU4SnQOO8ZtpPGyA+crdmBv+Ge++0ARxsY8UoL8CrSOm4LsTO/G7RDvbpCrQoLMnKBldogN/G/ilswiE5zXB3Jw6nlyQwKs1XqNdxw1O1WSaXXaOjF+oUUaZCx7OMoaLrR/xeqgz1c6upqU752PNvSBsXxJOVdfv05Ypy8FJfAJe1xcC802/OeW/q9CUZgsPA0KwIcSafs37CSV1cjSnoY//yXuSgLMFfLZFLrNKwuObZ8IMuAynlyfCmvZKyJspA2qv0mkkFKP3RhsQC7xJGjND+Or0hVDg9YsWCMeCq+Nr3NPdyZ+2+sLNtCbUbpGHfuPLNDFRD2rswyhr+hC6ziiA2eu74cm8majGlfimaBosPSoOqSeK+NVPKTp00BFGmFhj9kldtNQp52W2V/FETzGZdRdS/lULqPzXDmX5H0jg6lxY4PkPYzY60Pjk77jBLJxm3/4G9rdDeJH5ZKhqCcXHw59RJCmePKobYBfWwMiRx/BWdgg8X18NLwXEWbpUH+YfCUQLt+W4ZFsVVUw+hxKP/sB8kELvrcOU+kwQ9vueJRfRSdDZ8R52Cvry2L4E2l/9nkeGNvBgtTO/SV/BeXPq4L9YX3TLZihcfZ9O5hjgjrFSMFFlLV002cUbj2jxlhn/MS1S5NsrLqGzjQZM23eX91wK5QVms2hm+FK6OFOMXBweQMTcYzg0woRnruuj/faKUL/Dj24+nQlL1rjwNI8rPFzVzBu0Z+GvFSvhZlQGq83djyMrZKH79z/QTkkEsbyLvLhggL0DS1D+jzp/UZiIxv2juab3IffF2MKXw19w5dvZODDbCtM1nlOvzBqyjrGH7gBrbpz2Eh/FBcILNz2opO309LoBN+YJ8n3LLvI3f0uNKqX4724ozA+4Dl6HP1DlVGMwHvyHzXGraYVgBVgtUMMnd79S6QoRbG0q5CeWT3BmRzrnt2vCVEtXvH36HnQdGKK2CnOUSthJi+xcQexQHBkot4C0/A0OUFeC0dfeguGfXro504xixRejRWghaIoXw4zSzfxBxJOXfx5L6ovHwdKEhXSjo5vaV3jhBzlzarJ9BGJG0hDomgBX9pzGHYVj6DiIwiKfGIxfMAZ/5HSh/ZwEwkA7UpUG6t/viz83XiNDZVkoXisCeTqLKPyOJGetKSFLrWoeHRuMrTbP0V9iEJa6WMGehQtxWq4FeIYFgujOYD7ZJsLhs5fhwz0hNO3bPRj5N4lf3jzKlrbnKWOcIey3nov/rk7F2f0acPXaDSjG5zhGZQLlxiXh6l+rKWnFA/jtpA7yZrMxY24u8MPNfH+CCxVs3QzdQZv40L1fNO5JABwtaiblnZLwo16B1fAiBQYP4VfLt/Dh6VvMSR1Eu4Ua5Ja6EUXrz9AZv9FwftUv0rZ8hR/iDoBhdzy//uGGM5eeoY2p+aBpMQGiXXbj2AV6cPvtXg7I/Ab+LRY4OXoRmB5QhKzbSGH+T0FkbxPs0B/L3mvHQu2vQVjFB8FbvgZys47Cwi8OMF/Kh/19EWLSxGB+42KcMxbAYK8PD2x8iu83bMcPpoW8Te4jCsw6y4ouDhAoLoyxRqJ096wBBHw6gseHpOFnVib1G6/mm6Nk4fvhHnLmIjKWPoZTXzhigogaDCoEYMsmERazmcp+80/AvvIq3vGrmQRPCkGCSA5ZdLSS02l9yJ5QQk7T72PGsu1U5BiMzuvSQDV5PNrXvEXncAGuiv1KS1ss4MuubFzf7EBHdH+AX+YQ2Ye2QKxJEyo/uYY/fueQ4iZP1u+RgD3PerG+8y1/nVTIFeu/g3iFMYcn/oUjry3gmEURFr7Qgm9fteGy0mxaqnCZhBeaEr06TQ2d+ZCdZ86xG+7Div4S+hvigvtU9eHToQUoFvSM5teIIx7rxeK4//hGjh3nKEmgu+AmdDXai6cXGsLl9UasbnmdKoK/4c7ZPTh4/DxdOvURPlzYQgn7J7OuznQuspEBidmdcC8on7fFLgTxxSF4R6GSdTOGQHn6CCh+MIL/jkjlkftk4HJND9t9KIUZXy1RXW85vn42BM26v1lw9TP47HUQYjfGQGKFDCyr3ATDXs+h1yqA5ywNB6GfdtDePQzTys9hlutpXNH/gtev+A8m/NCH7Lgh2m/yGiYlPySHDmN4v0YZB3/P4o5TDE6vf8PjcHOwzhvDawKaaL/mWXp55SlJhkiBz+lUfBumwQc8b/HK8drQIKcEXtUSeNpkMgvwNjxgq89CKyqoJ+onv5M/yV/k5+LPp3k4UXwUfBPJA5sPPZDasRk8eg6T1Po5HOu8mR4ckIXg9wMgQdshwUkXPOO/4eTdpehTHssjF7pD3ItFlDVdHB9dGosNMY3scEIW7U4qg4H5QbK5d54SVS6y2S6gPq15YDtyCkSkRZGF5h7ON+0lGx9RiJeSQvfyEiiS3Erx9635lOpzsLpiASfsXtED/32Q7lCFb4WUIMeljU3s8mnpaDNIOnuIWppGYmhPAba31MDR5BkU57qVZklZwnDCaCiX6mfF4mry/GPDda4h+HhTGe1rKOeWTfNRpVOdV46xgq4QHXALf42qQrJYcr0fFmp40fCV42Dg/xb1V01BvopsViYDbTP7oXzyH7y++S++edyCzlJ7WP/KH3S4akSajjPIIPId1SjIgl/4AFmXxfHSby30yqSFVh1YSS3/fDhp8mf6ZIaQP6TMx25KQn1DNgukVuKdzx74wugX3ElPh4cCj6Fs9Sa+vPIRtgQpkrKUMKTGryDXMV44fFAL5rcowckz40ml35fenHGFmw+Xo/Spq1hgIANTzqaiU9saHOOshsIi3vRi62+YPXSD+hsTYPTACND3auFKqzEQZDGNdQ5W8PD5DFiqOR+1LVN5t4cNd76JQrOS5/TecjcILDGHiWXxVKa+lfMOnId/5ne5IPksN+j8B1Pi7qJlagklBR2j9bU6YP5CHiwuJrJLXBR8/sDkq/kZ1lwKIb3pT3H7pauk1+VGN3YIgeO3QJ566w6/UZeFmFcW3L+5gkP8DqNUiAuWlZygO//9QHs3VfhtWYmKff9AeIoBiN5LhhPN32moXBNMu4NYRPoatOnupa45UlD8OgAdSzXJMC8PXxzQwW2DFTj++zuoGpMJJRP/QKiqCa48IAvJT09x8TlXSBz7Bi8M/qU37E+VUzfBlXVX+HHrbGx4sAlLtOXhymEvnPC5jc5HlYL/ws/oKRRDV5afpL7rCvD57DDUKlqQzDIVaAuyIsOs/TBstwP/Fsyn0XWX+da1nSwT6o5bKx6AQdF+8K4wgHL/kXBsNdOD+7GwoFURyvMNWW2nBrVePsnqO+ph9vtqypuO8OnqaGje95g2Gbqh62UJ2qDnxcFpG+CmhiuvSmmAkCQ90DKbDMsnRJHb3+n87mATDKRYoFDaIxb1iUOpN6tAYM9H6KlcS8nLxUF93z1otb0JZkHS5FWiDzJLRkBtlTK1P/3HMu4/KFlgM8dpCEBDUzh9jPRnDadm6n4SgG6vPrJp2zhesM6YLyZLY6ClJbpOEYKfTkXQrPOPFI4epydvLqDMGVM4ITiCqlvHkZh3Aux3KqX6wVEwKmUWm6S9gEVTFnHGtCwaO76UTKM6qX5mPy63KAfVOXdhdcgUGJl2kvI9I6EzxgEmZt7kEvEdlG0tT0uV0/nezSdw2PwhusmNBN/Y9TTyvQ43qsiSh00jzot8iItNAmDRrGWs1xBGH8buA8XNJhCX0MhbS47ii8BqvP6vHacdF6TE2aXs0K/HItPH0nDTdKhcoQk14r403+gLpr/QxnmuLbjt0wS6/l8NSY1aTz4BI2GKTw9NPWIFa/OtqfvwVdC7OQuu3QuDcJsATA/MAZFL2+i//N1QHtWA0zMQJHomsNX7BJrxwpP9zNo41jcBLfqauHV6H3HYA3ws5gvyT4xBqmMZTMkOZ++Hy+GW82X8q1qOuctycRDvgVbOcSy2GIMlw4owYqkVD5SMJZOMdWDH0ly6UJo/yb/E70t68UndAH4xzkSxSmFwKRWAeYU6bJ/zks+r9HCf5VYM+CFGvhpz0bRxBxnvEsWY0/pQ+uIdpur2k7nqQdp5UJF9Nd9wckM6HK25RVo1q0ByRxezrRSUC43BrGZzbJ0hgUPWrrStIwEGcpvBb9wYCjhdDr9+OnNPghYITH2N++0y2OrCVJ68RZCPyN1i/+FezLc6T/rHGnBW8V3WWM0gc2kUhak64HvlZZi09SrZLjlLs3ekU/+naJDW2AJaLha4JVEN8n8U0VqbNqz1Wwzw8jp06N5i8dYVvAqaKPpCCJo7TIX7GprgKW5B0lUMuzfHw5EaC5hlI8/3R4nTq/1CkCCfRn4Cq/GYoTyMHpkP+mq5bNtpzeeFjvEZ4W7KNlwIl873YhF7Yav6BBbYYw7PPnzhU6JT2TtFnFbM/Abm9svpEJvS8n8HaEvXS6wSW8L2waqQ8kgCSmZNh9IBeyofNY5adA14z6wccnC0B4/YIFhoZgZiU8aApb0rtBy9ymMSDXHxiaksNLWVu9xMSSq4B/f8eo8xBh0wvMAY5vgCaEibc7rAMVyl3IqyBx/jg5rHvPvXd+5Tleeg2Z9wx9B4eFGVyJMMa1F+XScsE9CG2NsS8NXqD3iVLuQbD6RB/dBs0l81Dm7UGeA2w3nUlIZsMcsXnL1uY5LrPPAxUISsiDVglJmDzyJkoC3ahCxtgb2b7Vhoezu2j/LGLWleqJ6egnu+eoBpfDbaTRKBIjlJ+nslDzsicuFMQS/KLduA29b205ufIuhWpoVnrdWxSlkDNp+bSUu8h8n0vj36TNVmsyPbaLXGPPjwthNm11jDOaHF+GudBOywecaG7WG88KsSflz2lSqfalCaszDNSvGnolNXwKpyIipbGsAr9yZOybTlor/3+WvnINXt3I2m/6Lo49sVYDglgm1XdVOKoA6c/psHq343UqG5K/cc6cFRf93g0r2xoHXAG40+KELLvocgkmgFQd8JppxppvipwHe6ZmLv5ob/ibsPhRAUNQDA/2hJ2glJW0u7pERDqQhpoChKJRRRiGxlNayUhLKSUpFQioYioVI4DbuUklBWhe5j3Cf5cO9aZ3AP3QK+uQ5kGzkA8TWW8IV16fuQDk2V+Mb+cfdI55ULHAnRhxHsSEprCD0X3eTUO2ZgFxPLbo6G6Ni3i716hlnpxknwX6hLeYeCMUvUn3r15SDO0BA8+okLBx1BQ+4zWfd30IFdTnzt6yhYsnYpnr8hzPckqnFVpC5Mjd/FPTpv+Dga4J0HbbzJZRwade/msYni7Hd/FDpUG5Dk9xEw2O2FcqsbKCziKGtMGUOfw/7QvQB52lIRS6d/p1PgnZM0f54pPCoNRbczHTDOXRWLN6TwOWk9XjuuCzT/huFryTawnuHKAU5jYMqVeBhOmcrro2aBovZKVLZ7jfPXutK2KUZY/nQMlHSdI/EN2iA1OQl9/JQpQNkXAr9nYdrNUSj/rxVeWxbiwGdhvGJcRlutVEGnRhFuNLlyd8B9mJbzFxZfEsWUFhW2e7AWHbfIcN52M3qtrwp7vVMYXh5hPWgAKYhC0dE/2dUD+MfhCDqxp4obW8o4vMMCBM/PJD42FRTbU/FgXCVcCL5BU2gtpMWO5D+BJbSl8T8IDRIC5cWbOK/xCKxTq8ds99mkpOyHG7q9+NxtS9id84+HozVYrFoNpoTm4ESnJ1R1ZzIp+IrToUw/8O5pAa0jHpS/uhMW/ROAJll5yBTYzZZS5/C4jhO0FOtDsJUy/X6pDfcanDFsvBgdlLyNMw4rQ+9tVzx1pQsC97/nNbPMWHLFGpy5RocT/Mfy/MAK7tL/jqb6QqCQM8Cbh2Jo3vpSvDl5O8b0TaeSa2OxbGo7d28JJLOn4SCcPxK2VeuRnok4fl70mPdXvidJw2i8HvqZq18XQVJdFR3YVknmziNAMacd/wvR5GbfQLjYIc8ivzfh2PPP8ZfUWZQ6OJccb0SDwolx4CFSD5McW2Dyg3YK1SzHI+uWc3VoDE5OjUTbpH0YHXQHXLXUwHhzLwf4FyBMuoMKA1KodW01ZQS40yqjEBqdv5nrArP4128GP4l3eO5DJ3ZFGUFNjDOoz7iMi4UfwdUJY8BA/jmVSXynakshWPLyEI/F1XzK4igsDTpP64qO4IqtvykY2zDukzvOr54E2ZmGoGXQi/sN6rA5wZvq613pynRzaAlXwnav8bj5xWa2ENRk8WfGEGH7Hh6OC+VnD3+S1iJdlApsIYGykyxUHsSKLjeoYvxeSNIxBXNuwaY6S9Z4Q5SxV4EnTl0Cq4dmg/vpKyzzzp/nHciDc/0TIahGmca4+eGG8Hz6LziXuz9ORKF9oyg+2Y0cZTtIN1Eb43eOh1PqPzh38jAsLbiICp9mcolbKE6R+UEyzwIwI2ktR2/Wh5dHLWGg5it6Gu6B0mXh0HO3CPWfC/Or2mW45mIdPvcQgxgPeQ4hhOiFMbTl0wU+/jmSp7p5cqV7PikeFmWZF5Z02iaUj6w7yAufCsGSa7201imPy5bncPq/+xQT24g/PdRp5To7/rvXCKatOQXj7ivBmbcpsNi7CfuXLob7K+Ph39gR9HJ5IC/++xL3hUyEBL0UFukShL9tL8gujbFcu5ULt93BjIfWdMNgB77ovY56XyTpxFlV+u6lDQt1hvHL0RIefvgLZ9y2oNHUQmMy37GJuQvsxUHcWxWKO29aQeepa/RRORUag70h644u5Ngqwfm3B+jU4DW4VjmXF0W/h4hTUtBs+R+G2H9jzU5RGmdWg73CtbDv+AIWn/oKquPj+fcBT3gSNAICPhmj1+BJ3r1pHaVbKbLVmVr8Lj+Wc43v4sZzZnyjlcE5SxzUTPSx9GUdHrLMptGiOSQ//xNMaNNEibUH4f0zN9h4xwNOORpC/D8ZbLxdzJGBk1BIaRvlPNyAVfka/GPLPpppdIBezx3JSk+nQdiMD1RvJUAriy7DwZkvUSdyDPp9jMYzL0bRmDYJkmvMh2o2hK7kGtbPiKS9G9U44fRYNlNr5+c/+/iQWDNlmUZAY7YUxK/Xhi2zLLm4XYfX9MxHyblHOPxcOxvI9WPWr3/s/esN9e7/DNN+6EOXqRCWj/3A0woCYY7/b1LeGo5Z5w/R3eY8/uY5nmNcgmGZz0iYOKzFPnrBOP+MNR59Gkatv27QqflupDtOjR1Yk1NDevBYlyxc0kgEmwViuFssnZOe/ATvwim8QPwdd2jncm6BLZ19bouCHqPB32sYFY/vYNPwMVQeNhkSqn+gSqkqGa4zZlmJALSS/Myzl0hDnJkXR2m50FUhX2jcvBxDst9iqkYI/KMMODxnFa+dcQUFswWhs7Wb5euXg3nUF4y5uYBW+W2B0vGWwDfEoXYest/1CN5XpAK+Tu1obydHGb7r+aGyNFYGlvIVxwgqnyoONgIN1KJ0Df3bFEC2UBSVbjfB/EMN7K9eipETszFrdRK/yvyPzBrtyPd+NUKyJRwZXQsDkz/wK0trHFhQSvdaBXDjiybsMBxDXpOfs738ZUi4KgWfIRq7LbpBzm4WF+e4wYI2PYy5dBAGmi/AiRdjsLpcDQoXqoLz9gcs9SWIvCtjYX6UEzwJXMlrP9/AApse0Jl3FX1rZqCboxUovFWEy7/UMPVHGpdbLqP9u59Da7YoXR0cgvMDIpR+Sgi1dBXh3EFx6s2S4EvV/7HV7+O4frsSLquciu1X1vKh+rO4w3Mj3zokBCHl5fSx5iQ8b95IAf+WweXqcOzMbEKjmn0UFJbDJy9voIizZhBy4A33/ojjFxVOePJtBoR0V5Nfqho/9RmD22Km8F+xMkjtZzgZbI2+4l7Ykx/A2/2D4b7Zd5Qdmk+jDixAbbXlcHA4iGTspWBHP8GRLZKo+6IJoh174cGIXI44rAZSPT7oMongeksciB7RhkbtHryYU0CVggfQ9mINyp+/yxdkhUnrcRfeadiKcRzMZ14awOWOWAx7cxQ2nZHj6w65YFNZAvOejsINs3Qpb8MFvnTOgSr/joRRlx+Q//jvPKBXzIbZM0h7ugLnil+m9lUbSCchlF2+teKiMHVYKZGDW3sCqTAwhRfevEsytnNZs1oO4hVv0Wu30djo50Gvl0+GslZXcLaWgIULb3PjmN0UmevD24dCQeeSKVTc9CP3/ZU0x1MAHl5Wg4ir52hUxClIrbIBBcForti1kwOnfICahzaQBnfhxviRMGqjPQdki3Nq013ctPcxPVclej13PdYohmF6nwnHTBwijU3qUHshBmzL+yD71SC+q9oNAivuY/H9UDCUDEBHhSlYAoL0zlsZdlun4IQDE3lgZzmk/rDm6eleNMaugAVuPaFFWyNpjPdHbAvXg20b18P4gCvYdOs9mj17iEtDPuNqk/lwqNQff8x7yv1O+SAhqQ9GGwf56PX/aMbWt3xuVSS+NczA3ot/8PFpfYhbXckV4z14fYsiSOavAKpKocTMPCiUUqbl1adwXbAxlx6UBqWQT7hv/1mYUysA608fwIoHhbTr9m5Sn9jIFr+GIXjBL+y19QG9+A4MNquB1kcI5oN2NDDHAmP/XSPT3vc40z0BtUzN6FTiOtY2C4H0jnLsV5OH6qQp8FjJGz57H2Uf7ztU1rmGrZrq+c+yeMyc5wdeG4pYO2IkSH/Rora3GhQ7wxgFDFN5wzYDKsNDWPbBgwOGhnh4fDOvK5WF7el6POpYF1y+o8k52/ehGxwg1x/r+U5zBzoIV2Lm3PvYlSAFsf11dHZRJzrHZ8M4vcW4MzuPe+cI0oj1Ljg+9C37PlqP066aQpK6HuisJr6s0QByQtvo96YgUHM7z/Uy7yFq6QB3uaZxrqgFvNkzh8fk3qAVe39iWZYSXpuhQwvWT2SX1fPJSjEAfv7SYFpiDo2wErdv2EBJb5ejk4YwlndlQlvtVu6YWwIDEarsvmch7KiTBJnDzKLucpAtrU7rZ5bTJgkpmhR0n02DLvGSoU+U5ZVJmYsEQLFIA1t5GtbYL6eVZRaYtUqYEyzmcsSWEDhhvBY3L1eG6qfCsKFbnC2r0nnSl8t4csCenF4R9g2+5LP9NjxSVJr74y1w/NwxUBIZjW8d1FE5MhSmeiixwcxeDtwrypu0v7NnhgI/Ou2E7btGwuaifxhU+p1LTEXp3aF2LJ3pjSsHWmH/PAW2H6eCvz1SecE3UZB0vASVJ5NpiW03RCxJhsXSqnh7nQKVDOXBk+/fwbPSF553SkHZWSKr3HfU5P2cr82RxLTmY9gWF0+Kbi28KygAp313oPuNCHGBvSDd8A57zsXh+rcN9NVkELVt6nDGhDSaeXMHvHj/kzL6EHRGXaF9HdGsJXyGNRzsIPHkZg6oHIIVMyRgdlMzXD21Fz656kHWjzIu2jEHNv+nBVbXfQm2NfNcESWY2POYvKwIH+iHkO4UPZj8XBFkjjrS9NoE6iz8Qld17OHvhxze87afe9y0oSzhIV8wMoDWHD94vKEV277q4UP/i3iyvB6Dtqpw5H8V8PCmHU6fsZ+T9k2CwENiLG88Hxe9DQafubvAb+IwuWRtpSNZwjzhtg56OI5jn2IzOPasDJQL7tGIE30kMSMUDbZro/axl3Dx0Vb62FDNSu5B6BcuDgaXJtDr8uO80PUc7Enu5pis02R1MgZGnDfhuVeKOMKylkNOW0D42RSaevUXFVpI4Kwj50juaQSmz/Tl0q3vIY1Worz0PsQeVfCw+wh//luCTx4XYWLPEzTtjAA1tUfk0JOMw2uu877aOtasUId2nYvE6ECWV5VBSNoIH+7ZTJ9Td7LhYUHuTfWjVJe5OOvNOLj5tYofjxhHfz58x0luF2jVO3UMvR0BDfkj0X2+ND+rP4JnPeThfD7w9OAymLa9FyVyWtllbCEUlsaSAfyg7A820HFDhmw9pOCFnBonW3+BDsNi0ti8iW+Za7GA3QH+rPMRRE7r04Ev0zh44xgo2f4fq/4zANXQv7R+Syk0t9ZDluceOrOzg45PyQYN+SzsmQkg/+44CewQwbEa32iR2i8edDGEnzrjWWzlKXYIfoqrQvTpppIxTBjaiTlvigl9vbDq3QM63/uYZI4G4x/NRRjoak1BukVwNUcKfHbbo11SHI82VMbzex35mWEDjzozzNLKk/BSyx8+kTBEYU3msMZHhabnVvK7yb/p2cdSamuToEmRJZB9P45CGiRovmE9bSyYDjIRBvDLfTHPXFYGJd/n8mqhbHheF0AheR68VkMID/5aSRG7VWDvly9k7KRHuHQFjJcU4XEnJCljhQw4pmaiZeoe+nxGEuwMLOD40QPw6cw0uDGkR5qeJ1nA9xvc+KwFH2ETvp94D5RGfsMl8zTAUP4jndKrwIwmB+i+HYwXYq/z0s/3WMDHHT/eOc35Ctupv3oE7FJIB/1fKbQt2BqqnNpwz4N86MvZRqqrFsBCZR8wEiqCoQOjYXT0cn6+MIqPXhwNzy3NeKZdP377UQQVg3I075gFiQ4Yc8PiaWAos5dpbwq6i23ie8bpqLnoI717IMOJao958bG5nDw4ipe8M4EVaav5VNx3vl9eg2tfXoPcS6uotOw4J3UsB70HifDlQDxdbRWE743V5On3h4yWFKNL0zIwPBWG74ZfQ7vjbOwRryErM4IdFRPgr+Uner/aFoV9P0HJ9uMopR4Bf5elomJiJn8824Ay5R7wYoECOAzo4fkJrlQZZ0Yms/fChsFuuDlqNGiaO2H06CX8x1UcNK6Lw+qTdShhPwqVNu/FS1HVVHBfl9UTKzlh3xDZjn8Jof6GfOq7BYyo72Whzyr4vuA1j3nmie1qhjh+6xbqGAjgqrFzSOjVfOh5rAAHO91g+5kp8DZUCWLbjrGQSx9t+e8dLLj8CC5qH4a2KUdJ/JUqqHwWgLkj/8KoPkloPTtIMl8l+KK3K2aHvgOv+ZP4IyE2/tKGW6/H8NLvouwuHQG5Ai7Y6GNDe7WM+Erdfdi7QJfk73bx8XeicCpQhpoNnlBZ1hPMfBBGqjMn8c4lxXC7+jMZlnjCvNozFAOG8EtnLVem2cOBnjZuUznEv5cOouTTH1BY0I0zhADXtWRxXTzDX6ceCJcfwX+uxFHwt9vcb+FH5wU2ccSbjeQ7Mx9s1keykZEB7L8riH61YlipXEVndIt5k/RTchubAKNlm7jjQDqsELnKryMkIL/vGpbwIoywGs2zX93HY+1JbDI4B/Sql9KNK/c4wkQPDsfKgb/3Yd7z+AI9sQzEumJFONy8hz3HeePewJU0RymW5QYKOdpiJHxrDIGo87ksq1ANi5YyGrn8AVy9myw67tIiWwn8uHgnlFwVBpveTSjguZr38AjyPS/Iqu7XYfXrjzBmbi6kPO0ElfK5qHoMIObgLurMtYA5Ne7g+DYJt4VOgzSLLlgieo5dn/0DjcibWFSmAsb5rrTi0GrYtGYcVd6ZyMkWtWyUPI3FzGNhU68Iuh3bSS+OS8N6mROQuOUU+8X28+M5Z2Ft+yaIaLkNVrEmmJe+BMcKKKLsHDHIqhahSU4RPLgwgOVDdIisqtlqSiSZqGqzbMhqDhjjgtMzFcG8MRy13ydRccRRkJ9lyzF3RPFDQyzk7TlDK5cl0hTrvVxnOgnOFczHbcnHyCFOgcebVEDnQxHSGX8C6wRL0LnpPGdcKMc93ydBwfI4cF5/i6bnnsBz91dx8JK7JHdxCxUcj6B9zUt4f883zB7Sh82lq6H2YSduiXPjPcr3eIbOM167dyrNCEsnvzNbaEqIEyblm8Obb/nQ+GcURlkG4OHuJdiqeBJXOlfARUcVvrpvFoZvew0P1iPsL77FE0wEOMwnHrcJ72VoGcPfrydz1t9rmCe8G3vitdh2rAWYt+uzxLpmfBUfx9vbjnGUhQnP3LSGukxH8Zz455z9eSUuLJoO+17I0NycalhxzAgPRFXhO55HCZ7ncLDEk5SmfQXQrSX5haOhxeYQPjlpA6IT80EmbAW/Xj+Fo/0fs8goax4+Mw9WyLdx0ZvRYERSuLRLgO9fHs0PF7XhrmNfyc2qGabe/gPyDke5Z7o7uf7RhOS6eBT5q0FiDuqsqd5C5slPYE59KUQo/+Luc89oS105XzQThsWXouDlxypoLZvD8i71EKrwAlNdL+GIubJskXuUk6f20Tb1KbDQ2Qzct7jCkTcnaO3BxXBJ6Df5PQkAu/V6LHzkIzSYbcaYbgb3MD90m+TJ1hIu0Lz/ARscWoTn1fW5vXoAaicIY1HwHPrtbQ2fnCejgVwbqty5TpP+zsJGlzpKCT4HR1Ma6Ef8EA4tVcCqnaoQ010G2TPUuSZAgrZ4a/Og/zyQf97HgWsk0eHKMLwyHAGvFmuApv0P3J1eSjkmkuTUHESDPxoo6IYq3VsyHT6WLMDw0EaSzxWBzROBL0U+4cnaX3FDuguJ196imMnz6IrNI64QbOWrn2pBpd0CMu724Yd6D37ZMQLSWu/AgofPeNRwGbxadxW7DqfwXb03kDdiGtSHi4BGqgR4On6FpT5LKMh7N5iDC2kOHgGph3fw1LM1YBqsC4bzv2LG8TT2VovGW8vP4Z1987FHuIibGy/jfOkF+Hd9M96ZoQCBhTcA/k1G14/f+NXhnzhLMh2MfQ7SuVpf4pwMPOZeC0N/5eDaRG909LwPs02McPajGvinu493q6Xzo51ePM72LX2xLCC9nCnw84EJLmrcgn2LXlBRZBXn5payq2offptQRcd3BUCnjhr3fJYC+ZvZ3NS9Ff/NMYHgmj8YfK0Zqw7vgg9vHaB7ow68+3AOi4pMQctCnj51WEEybiWBcXLQOm43FolJw7LpLZif283bVC0p8KElfPv7m+RG2MKM/kD+9laK2t/GoWZpF3q+6+Iz8y3Z8PElOryK4KfXXS5c2cr/Xf2PbJdW4aTaOKg6voCPz1mMy1fNhYzqrzTgawjLjvXh7YxLfNLGh7RLjvPGSXeh4cRUPCw1BGN+76AecTeWmjkRaKI49M3fAFJZj9DBP5xKXPup+EgUOZv+4eF5X7gnjWjDFBkYd2MU5heeIh+n/9i4bSb7K5ylkrrt7PjUgd4UjqdWkYv0K3M0JO3T442TdaFYOZIuDXrDrp/XcKzHeB73rBFWGDrTHBM7EputB7ELb1D2jwygsTNJZzCZ9DyryEbagipauyF1aRgJOe5n5/6JEPNMl9U1ijB9XiB3b73MP7wUMFakhAWk3KmpeR5UpWyHQAlpGJMmyFYybVzpbUnOspN5+KUgzQl2xMtxJhgmXQWfCirxTZg4uD2JoYWbPMCm6yQG++/gtpTVrCK4Hb3HzYezC9yhU8eNbj8wB33FHjg74zT9ez8fJni2QUR8HkyZ9Ax23J6PRWPuUfAyR1w7jmHfGgMwtROmrpxKiozZzBeudYFFtQN92HyIfbfdg9Unv/CTa0pw4d861hE7S93T/nH+KVF6/rMPDuytxrkF58GoaQw8f22FmW6yIBuVDSvuCdM3j5Hg9OIdmjq78N/tZ/HnrmWYvucJuhQ+5oXiDNraGWg+5iUvvnmBhEZ50Jd/kvzXIwUaTbxQyKwKm56M5mHtqXD08UGKT7xIHbUqXBeqi7gzC11sD8CdgLlYsDoLnxhuY5lmgLiHmnB19Ax6WPaJntg4QfCyY7j/ejOauqXhGIMYmHVxP/e+kYW0Sy+gxSSaN3VZYuL2YnRXbcOJdW3YrfoFZu68yoJNYRS93ATe2SXw/p0etPBDBAlvD+M+Pxtcue8GNDnu4qSIo3zrXB7V6IyAYOl+UvGfB8seubBZymSYouhDzUMCvE3Fi57Jx1P7NiF2sVMAw8Vl8CNRgcJ3DuAjHQ3OmrobZoz/Th93qMAa+34QDfrFp+umwTVHYfj2nyEn7uug3+dcQdx8JwStuMpN0rO4VDcGx3xupwxreRgz+Be3BHlCb/k6zMwrg0ur/uKOxRaoEHafZKsKSMRQBIq/SMFQ/Qio2qXMWgbeHO+yg/NmLYJbXTNgj1MEaV+v5pbyK6Q5PA6mv1FF180LSMXvJNz/kU+Z/JKaGm0gKigUXtpYUpJDMX+oNoCWunr4sXwdvvR+h49sHtCr2iGalTwb/3quonXGX1jOdQc6RkjB8jtxeKNdkEZ5qzOudIf0oAI8p1vIMzYvpQpawid8lHHoiBYUvjeBbb+Xwv5+e/oWsgdmzrqFhR6/KSdiJjsap9P7T7f5IE6B5Jd5KHh9GMx6NqBclzKv2u2JLbMjMSjmK+rmNkOniSJGKWpDwpdF2C/4HU8v7cdVXiPRpGESHLX3pZor7/hAghQcuW5ONrtGQ0GHMR/uOQC6mY3kXCADrjdH4ZQAU/KwvMGGUT4UO/cmrLPXgUtju0l5sw019plS2dwPfG9cDBSq1YHn/RWYYnkSfyeH0KozwvAiRJa3vTpBU3OC8O7HK7h++yKydLgEbt9m0Tzpo9z69Ab+EjKHkhXiaCIiBC8KclCmeD93NRjSgs2TIFF7FhSdMefye8rklKoGdpEPKWSHFhwK/4aC7UOkGhnBD8wewJUfL1jGpx3MNwxiyjRZ+LuzGUb1TUH1glf40DMCdxhfpq1TB/nP6xeUtmcemFVfpKPnJGDBWVfIMZsELunCKBiWhPK+n7CoyY5neS+Di1k+ePhhLr20FYVlFXHUt4voRkgTLinfzQPptjB5lREvvlLPyxcUQ+Ctr+QYbAqNi2Tgn+F/lOF/kX38lWjNtZ30bdJlCn+1A9OX6nBRaQz++jQKjvm7kcX0at45XIMf4iPI5ucd8nd35k+7G7BJdC3ZpWpSgY0uZCwy5zDbK3h5YwctTpoIi/M/skBUI9v3GENiQDE6sg7MmKsNXlNno165Lz7zes4jbFzANu0v//jbRNPfunLemcv8b603xb8bASfXj0Qp1Rn8rLUWU6dup6iYQDq4ux32jnaGFpEH8D1qOu+Mk4QLe9bB0YZfvOQTgkHmEIV9aKHLzkJ4ZrCO/f+7BssF8kmg0RwGIuMxwyiXk1Ln4q8Ld7D/ciMc23YJv948AmaBF9Fi000+XSsCu9ciTLgUhkvu9HHKop38LVAAhFzq6KqSPN3f/giFnjvjtJqxUFLzgcjLlkoqp/LjxjQ+evI9e0vN5Oz6Jrj5YAfAmlaY9WMU/B0Rz+8uy3N/y1e6dsIL3TZ7UxaY4cR/B+GugxQ/6vXGj71jwOH6eUwY/4ePvN3MyltiQe4SsbBoKZesAs5rWomKjupw/acZ6EM+JtwYh7IOT5kk59HnMG261H8Zr6vOhkMXRtP+4BRWbxgLtUufcailB/pec6egYGVeMWYUt18bD//JvUD1j65o0bAeb76WBNHG36R5J4juffHF4ktZuCbSG7bdysedT0LpothJlLCWwfy/KqBvfAOmpBfg+pl28Pv3Urx65T38ezId5+8/zYG3BLA2vAhCfgMs/TUParTU2bf7CdxpSqT3rbYUbb4cw+amo7t3L7QpJoC000RQsm3DVO9ZdLnACOv7EOXeBFFJlDGdlz9LLjJD3DNPGJ8+s4DV2sYca/AB4qQX0JnJIbCpxZ28Lv9k+ch+thnrSN+UZDn6kAxYvzJnqcAeEKcgbBjZTWNWdeJmsSKWuBsM8eov+ETKWjSQ0YCkw9HcLjaPbH2/wxdZLzpgew4M4/vBUeYoOPVZ8pOievD4LgFb/IhdIgygWaaHfps6oaKfFvodtKZrEUZc+/coR69Jxe7VE6H+qjrXd43i2+49cMQ+mGIUtlLZigAYVbIP963XwoSVmrzrvjVMTPkCCx1Wc32TN0sPX+GnMsc5SewmxN/rhS+PwmhgsAXMNk4De+MBOProPSxf/421zR0gc5E2KYfdo695GjTlTx7OEL/OvpW6EDFnA2wQ20n9kVm488FIdDDs4tl9/ZyXN5LNinv5wutHHCo3HTJiXdAxo5umdqljqmY/+A4kYq7TRLD6vZDTXI7CvJsmPK1eAMyK3EgdrNk3sBiX3Cgizbt3+fwXF7aQK0E3q8OwS/4nvN40CuA2cd2WDoyKigCLNR/ALSOddc4KwLVwPxZcVEd2G3eCicc4GC4pB4frBpjm9RDviuTw5rI38PdYGUmLZGHUCHtO8fmHkyaZQcffQrDVGcAPBf/ge88HSr4hByfvZ9M5YUU8/LMFVm4wgFuJ8iB4WorrMqZg56hsCIwShoap32i+2i5e86iR0/eGoXqXIw61yYNS4BFskr8DH03U6I18J+vdPIKTyySoxGEszz8ezNX2krQhVhlcRiwFNn6E0r7iYLVmAtYHu8IDsyQqtlaj1QsLyU4rGwplp8D2+q1gt3Q6tUhdZk9HF45FWXoYMQkezc3FjrKRXKGvDrMTBYAu/sDr/kW4Y0AMHAIXwL/iK7h9cQDFvH6DRx4cpl1G30hMchoUjVqPs3M/kO92bc4ptAY/i3Ja7ch447sYrE0bIPOT+0mvSgTggAo5PCiinFYT8DCaxo8dW1hNfDqf33OZi4ZX4yTZI5jhPwFEfSbBqqJZbLrEF1ZNeAn22/LY6fBS2qJQQB83JHPlnlOUowfAncdR/2IoBDfJkGZWLB8eDuDxWucw0vULfG4OpC6zEXi2ajrc7fxMQrYOJGWgy4qJj8E/NxmTVkxDs/FhfEzjMncYH4NFaACL8kpxVZMeSynKQ11pLB3VDublJloUJy4N53NWkliYCu2bIAmiGeKcv/MPlS/4SYk1Vbj/7WicVT2Cto6dTYrXtvILxy1wMV8QSrw0ecHpe/R9WJdvpf7h8pYaiB2VQRJrD2C+0SqM+KdMg+nTYPwXHb68/jdND0zGoOxXoCpbyW0fddjadBPfdT6IZlN3ktBBFThfoIEpGtPId81WEoz/RLvGv+bsvU404/Bk7g26CZr7GEQ1x8HRHf8oWf0dXFQ9yCaxo6FhZgEkvlIm1wuFNDRtgI0jQrHFRx5GT3OlGblXMFzwMdjn7ueZeysgcNgBxw+Usdz6AT46uYI6fIQhP9ye9hjeAZlzF1j2tjrM65GE7ZktECkoz5PU9ND+xnNYkzwC/OT/kUiqFARofAY3jxr+tTAWxcv7OGBOMLuPzqehjxqwMFsWxha/5me+O+mdx3HQPjGBrh5ZR/6WClxu9YYsX9znG3ucYMpuYTAZaKYDzsI83iCf2h57UKbTKboh7AJ4/RJUZcVQYqw6jngtBgFHvXjR/O8s8keapp7OQPt7jXBgrT3mdf+BwvBJMMIiCjvjrCHbfD06ioTDn3hxKvhGIHTPg6OsLXmCmiHI1L7kecoJeKVdFKy6LHHZchOaUBMBmb+mo/o1A7KL/4R+JdJwYv9mfKr6lpd5ToNFPXXslq5FRarHIUGjhLZMG0sG3+1glpIcCSy7z1C9GqN3KkDPm7uo0rcGFI72c5ivCi48a4FVToQR7xr46qZG+BMTz0prJcB7znfw3OtGnpJr2ThyA1c9HIlre29xrtc2Ot66jKfarMLH44Ug9nAablAowatvHkDnkq3wxPEFmuseYFhzgSjmPL16X4WXJurBgrurWKNpEIvG3sQVl5zwzW0TaBD34P3O91i/9xvKOF6kO0u04OoSAZx8uBQl7c9i3+pOFFJdiK+7f5D7snzcXNAJZ27Hw9MuEfikqwNfz5pTuacJf/5wiP0mu3OQqCdJvQ1Br7GusNn+Pl8YKwnynsTTNjzkS3qu4HtkDf6VzwXDoRbO2tvJwTFfqeyvDt27LwembeNAVGeQTGWkqXh6BdZdXI8r/5tEFe5z4I5gP5vFhMG9cEswOD8OWvbZ091dyZAoZU53FfwR4+Vh6NgdjAz14OAHttwyIAVHsqzoekIybwUTOj9cQBOb30Hdy2UQ0T0GrDoqce2IOzTSczL823uOFD/fBrvVE6il7wglZCjyXdEPsGS4BtNaZkH71idQ0aYN8zcL4cL4QczZYYPP6k7RidCZqKXpjNnDevjoUTxfVyjgMyoyYOMQwcI7dmBv3B5+1ZtDw20J1JK4hQ81n6FbM+Qg8vdnuO5hDSK3FCgsUZj6lt2n8PENuO50IhpKTgY5Jw9YdSUFbBcWQu9yUzjyMJiH5k2lW89H4LXW83A/s4ltDp1CX4E4CIMnELpqBAn/1AJF/2qSqEgDe/GTHOrjhIs+NGPrr3YwwT2gvcIR5IOPwZ87aiC/fjSZLF1Fg95DKDhPFGIb1GBDixkY5btAx4clJJA/lQLnjof7QQpoWmkJdGkkPjovx+tW5ePRs6tA9XIqZgkPQNL7q6Qy1Qw2Rhmx2bsMNElz4HOOXvjN5wMtjslm2a5xvOKfPyw82AlFeXpw+79AGJeSTKP7pqPgSzkOitdF51eASwPzcIHqbyh12IK1T4xh5/N6mJuRAvddZ7LoRVN+bSWAh6wvwL23NbxuxzHs63lD/mMt4KJ2LrbsW8leD6NAfLAPQkr68KBVB9l8CsGu7Zb0MO8Stj0zB/jpwoXz2qgq7iuvnpWKyydfgEMJHSjN+tz1zhazV1ZDRrQKxMk2Y8wcMSx4fxPai2PB92oXVsQeAvHJp0lzZjgeVqhDw2wjWJ32H2WEHYKlI67SbYeb6DxsDEI+C2FHbQYnNgeB0vzbZJs4CY7rHuD5j25ztKIn94acg1rPNrKwE0FH82Gwsl+ONu8us8pMhruPLbE/aCVpK00AfWd5qlc7QM3a+/BbQCesd75Erm6XabGdLgyXiHC/VSAXXXsArm93sNDiOdTSfBzzPMvo0fFI7pV5D5JSqrA7NZu1Lp3BJCklfDu5lCoqjPlnsQJ1mafATeF1dFqhCQ9XjYQnGx+i8bEqUlYSo9OLzqKCthg6jDbld3Z59KQyhkOad2B23P+N/4Wza8RovIgIGm3ezlvsO+nDZiNcZD2BThx3hpM5/SC14Dy4fFIB2WVSrHn4BS3z3YgCPqOhZ9pVXPdkHSZ0WoBpYxxMGJuNqUclwd/YjC66nGa1sk7Y+k8X7gtJsr9QB9Xe28JzmzxBVH01248bDQd+9dIPbqCrOtMguPMR7MyoIOH8bqSaKWA9fw4r7PJAjbs6EOR+C28GtcOmhinoW3YT++aX4T6NCSAPV0Bn0B1roBzWHJSFmzDE6/RdETTPI3jt4u3/XrPD6recMKUZZtt8oVd17iiVJgKt9fp0kMby9piFpMT9EBWajqkPVWinqxKaLexmLWM3cJw9BeRE73LCtVGonBYOlZnlMKt4JA/5h1NfSTsIWvfT9ABbMro2BZxnRtG0dRoY4x/JeYec0eeeGq/UXY8HPmbCuIw7FGcTSYWfZOFvQT5HWmfjaY8+Uud5vG2VE/6ZeJeqHu2iu5s2oEFmD3330YBVi3PgREMW3kppo75Pbjh2SS1uu9eK6cN3aGnTN9xj+geEE80gMzqWvx65Tq33GullWT6IPo+HZYVzcWXsMh6vOhvsm77i7hxJWDNkTm89nEFz234utajgVfrloO6Wg6Kbe+mKNfBlrVa4d2EK+M7ax+EHsvF07RUukFuL/n7X8IDtUVzj5AuJ1hfR6eBFsNQygZ/ha/lwwA7U2f6YDq/8RwFfrFhQ+gpul9xIdnveYJ19Gb1cqwp/Lu1A+bjZSDo/+ezXf7TsWzDa6MjTvfDJHNOpAj6ZYRC3aiz4SzfgPbjOYz6twKcnskBXaw4NSjjjgb1veG5dPhQ9VKBqfTVo8BvPujVm1PTDkWoGquj7DAHIvyPGuedMoeHSPL7cnoyjZWVgT6kdSngncsSF77ha8yoLy//iFn07euI5me5VX8WeaEc23i8Li+YV8tLz7phdUQuGb82hqPcpTfxxkUd3WWD4a1Fo6HrEKpOE4FebHChecYDBRm88YS3INy1T+HrCFlL4m8k9RVFU3XGKrY4Jw8DlD/TIx48sJq6jmuxSjuq15/KNh9j5VS6/kc7D8moxDM/Qhi96iNedjaBgrxFKVnwEr/nzSWb1Jpx0fhQEqgxQV+coeJCnD56xUuhfHwfvT35Cu8EFCHbK8D63hbekFKN+zVKs2DmVFP8awcr+uZzWfpBEbySim+oolh31BX2yz2JHsw1ZaSbT/KEYKliqC6mXS8kq8jXq7HkKC7SOweb8KKy9kAQLpmjg0odBfFsiFUJ+a8Bp2aU4/bgTTCZNKseR3E6+vHh0H8Wo3ubcTl2cnpCJry31YO73ehq+YAE/xkfQOK1JWJe7HUyPrONc4zb+7SGGPzclsFSHNpRulsIkoRQ4fsoUNc0uwC4tG5Q5n8JCd31A9vdC3Nazn+csmQ4fEmzRz/QJnLqgSd0qy+nEYDZeXapGKrQbUy/Vwr60Hv6ZLQXKS3/RSi9neLzOlI49l6XPmp8oI8IIBTJvwpOfyng/ejaPfykI7nHhsC1Pkmz+3AOBFn3oLJiIeT75tKzUko2FdnJ4+Dko/jQO3qpIsMy3cZzcvorX2S2H1icveNGGiShav42e53qQq2oD1OwSgrIYd1jRZ0sPDZTgz5e1eO/GYiiwNYH2Bzvgo2s02s6+xuMiCM78OoD7FX/jySOWaGGsT06Kgpj5cQh8R2rC9lVi9LtiPwvaToexvlOYf4yGB/7uJFsTy5Uz2wkWGyN7a8Evm6PsrxaAV9RHwbbFaii7wYM/rstF1XUG2FOsj28DElE4dyPpJ8vQp6QjsDBSAGKzFIAu+IPqnxSKNlLnXR/6KU3JhdefUaFPO85BSUQ4XhMieKfxAnPXl9EeL092v9oD2t9OULzMJij9vp0VOqzwwTcVKIjQh03rfFn5Qwh8UZhFqncDOBLNwTI6DR3PFAJMnAZ1DSZ0fJM8CIt54LOCxTz25F1esO4hmIem8TEdHT4m6scrno6kmK5YtKg2g6m2WzhCcTFdyzfiFwWnuUZEiT4HurF/dAqKf3Fizp8FB6MEIK6EUb/YCE8tOAyzF+SCK2bi4hZTfKNsyTB2Nuz100Q5I1kIFDiLHsv6YKdVMDVlvWQ/51yu1F1DY+XOYdGnAOibWQ+fK7UhM3s1qawM5bfCv7g56iWkLbxEhzeIQ2/nFR6XNp3PeJbwjyA5iN14Ft2UVmO/oidLRQez5AYrNPlwnH8ue0rDVw2grmMLRJeYgfBrH7pWLIrvii/g3U1x2I1vuGzoOo82FUV/LXvIspGEpPcaEFw0AG0Jt3FRBEOW53IoMuln25evQfhkLZyZNg0e5B+DFdk6oGidh2Z5Jnxhizov3CoNyqXGNDf+Dv6ZXEyWegvI8f4OcvNVBAHdyfhojw4JQBhHbxsGN9kOauw/BlcNd0FQsCmcc4rmA48sIJ17qVb2IM2QTocfzYYUG34VJaTSyMl8MyleFKbY8+kUpCMOIwM9sTZ0OtXFmNJh80ia1fuVzvBrNNn7mSeFyILZqCrWEhsFLxdtZJv5+lTrGcKHv1ayxBEzsv3yCCaOvARai4+AX2kH5z1m2HpVBAzr/XBkUzdmjavgPD8jzv9kyXPubgPfgq1gdTiLco6rwTRJB5hUuJ2nHRHHOv0rvNZQDfcmifC960n0/m4PFnc2wpZvCKFffrFEw3IOH1GBv4+3Q1LjZW4Y8Y7WfjQHr4sTyVlvKXgFyIGwdBA/FlfjLEUFqNGxxA4rQxzQW4jKR9exouQA63ooY7yRBggoIsIeUXrsW8K7Hn8D9bIwUOu7Twnfr9P705W46rIcW+82gM2fUkHtYxFt/ShGquPtYAWvobdiLex+iHDJmExUrYzBo98MYEGiL/+Z5wOppcmQG3sVTXIl+JPJT1Ca8onnznbhN6ucSOC2Ndh77afvYQ8g06iNRmychYqPhqgyW5p9Fz+llIop7PrVmKyMxaC3cCGp2XfjKZXnHOm3HT9tMqGhwfOQt+0ILYGNvGNGGa11lIOsve681PInhy5owf8UnsOx4qOoVLUXvBwfotbfxai+5x7NsNCE/34HwhxehFpXgGcnr2cl7zbQ+eyMr/zq4VSxOVW5qdHp86rQ+58XfioOwgCNE1Dx3A4OTQnlL/Y/+ULtfHAwVscJVd6gOjQJ3odoEjxu4QFRPS66tg3fzVjACj/MYfDfDAyY9RPGudyHiEhRMGzRhOwrmQQ7zKHvuDx02V3EDtc4cEzVwWKD7dA5dRbuvWUEgsf7QFlqMiS/0KczvQUcteYgtk6cy9/XCdH3Gd48k96Q6mZtcJg9EuQ0TMDvmB8nzD4NQkVSmNW/A2aOzQc961fUXR3Pn5NkIcF/Hrtv1cCfplI4wcSRul51w776tfRywB6vybdhWZYlF2/VhV8brtCRo+24dJMtNZ9056A/lbRMlKkss4LF04ClZwtDXLQI4DE5CvzVjU7Pb3L/3GWw7OMBrh75lXf99x9cn5zJSufU6aPZCMi7mc/zmt/jnDY1TPsWyNGXd+Lhw/qUO0cNJdWQn2xQYmVxRXg/IorDvoTh14F5VOpmQqt6ukjn1ySeeMoWEpPE+e/Ncs6N0IIbI2pYeqYe+rMnxvv8onGtzrik4iJkC3TTD1cF+lB2hs9Yi4P1STGQeOpMU7vnQ3mRN5o+ECDR9i7yWuTHB92XgNNKFWierAD3KRyuxjpzrD+j8DfgLRlaNLHCjKZ1XsOysiEaUs3B0D/y8PSzIdTLvSed9neYevIfxm7KgZcN2iwTcB1ed7TTm6wzXKUoCrcPdvOMSDmYpXGXxOfaouy/aFLK3IOfB17DrS3prOPTyfVSqhAb7QyudyIIPazRa48OCbXX0hGBBOyX0cHa2wkw4vwnDFeZBColb+HE7FfoI/wC1X6a4crydyBd+A0dcl6C2JzpXB+eS01T5cBhwSiqzlsBsgbH+L21LxnPcqALbc9Yz0SUmtcUcEFnHinHS8Ni1cX8ceET0F8XgveWSOH7La2QHDyaigV+UryfGr5wCoftF0Uhw8EMpy76xI8Nt4L1/QQaXpAN5xaPg6+yYry8eCdv0y8i73Rh8NpyiBP2lNL2rGJ+vf4TLqp4D54ppXxh3zDNzB6EzmgtniUoAH+mi5CQhR6Emduh/dNqst79kA7O+kwDq5toTrMYRoW/hHUTCSYpHmfdl8fJodKS70r8pK5H1jghepj8UARsC5/TCfXFuHWsGowZLuOvqoWUb3WP5ct/QkVHI7t+CsPBUkVKtkbU6xnLm8IZFMWFeevLbRiTG0vnQixQrEyOpEpEQSd2GbhPdsVZ34cRZeXhyFFl9rSspzHP57BS0UmaEHIJ1m2Up3mhDiD8JJznuq3lpxMYbE83cc3etThLURkr01MwY+MaHPWiiHZ/HsZ/7TNhxthBXpSoDkoi8lSxaS5vFyoFWZGLNM/pNfEVHy6XaYOYyX9A/OFUnHldAp7Omcope11w3cwHfCW1lcaUxJJwzUvwt03E0hYVWFexBQplJeGgfyx9OLWPrnc6w/ln0ZhhFkVVoMmGDXO5E65BUeJkvFIwEUToEUQtngkHtpXjcXOE3iQGz64wXjYjngcvBqJ0QwWXyghBg/gHCONd9HBEAu8eX0W/nr1Gt8Q/8CN4Py/rVEOpnAWkKywINy/48gp9f1YuTSbRzzvJYuJNqNighy/99MDGSo2V/ulwwEVVuCP9Edf4yrO0fQsfj7Jjd391MAww587wAcw/e5YT0wfgaLISzDO/i+PsncnRfiLOcc/i2JVbITW1l2PTkUbu7STV8Tlsmj4VOqtUWS2lkJ0nBHBn8z7udt2Ktp4WqLBaGsRXmEJOsTOG7baEzWUpZHZXFL/ofIe9B1tIulWa7+pchjOPbuGrjWfQNeAl/akSBAXfdZgUtIPnywO+Kq7DlaaD6LRHF/ubA0g1/ADNTLKFP9sMQbL1NYck6dLZoWo2OLWD9NpGkvH9ndz26zYa33pPhU3l5NckDIVikSBiehYS55eTeB6R4IMgknjcx2tenCHR5Pc8Z5UP26VLgNOmn3zezR1Sc8/D2NeC+FVQgU8L1aDK+DoYsTEYe2VWw5V4gEBdY3joXMDVx9ywI3wSGGITjtbYQ3dfuYFjahqn1ZzFB8lGMHp1Cn+oegxfEvPIoGUMaPXZkU93DsbYI7uN20J+A8/xYJEZaI2dwQ8uykOscCDvCdBEdeuzeLVdg2pHj2U1ZWGccjcKc6sN4FzgGXpU+QZmNW+DX/8e4NnqaXTGr48y45qwO7GG5vyIIuc76nD680O6ljEfbEP3kvS7v5wmUc/Dg4F8/E0rKX1SglLIxuCfynDe8Cy8WayL3bubOMMWqNZ0DQqOmYrrKn/x6rb9/Cg0i0IXT4ezec/oXNoYive7A0NejTgiyh1/HJzMI4H5+L0W+G4vQBKt0+G4hBQW3pKHkbcFOexJC5WWlFOi9U/YBB8ppXQem9WuwaLRIrAxbhhaVu8k5wlPsCMggqTqA1g/LJ23Ld6MmUrZYHI/DO6cl4KMaeHUezKVG985gdXK3ZhlJoaF3jXAR6zpX14zVQj+4bfHTcFYvBHlVMU47OQiXnkgBw/5Z/Kei+/h2NtoeCaSSpabPtPJa5bQu8eXn/gcwCxbG+7vGov5Lu2Q3PQRw78up61huZy38ykkilrD1noD9nrShDONC9F1ewlA/09aPiCCq8bO4LFdt1F/oh35ORrDZolD9KZ9C4kNplOTzTIk/27wvA+YEnqF0wLH057mN/h2YDSYqD+DzAXD6P1QGpKaZvLUnHJOe/ePhTzDeNXKiyx8YJCLMqyhJbINXuaP4Mx5yTh1lzM25vwFxdRrZO9YCdEXMinGaikbjJeHDwZz0aDKH2v/OYHJu2XQ9teOnWrTqW6cKMqsTqZj25L4zGQxCBmlx0vUHvGbD/WYbHOEw2dLcJLnBii0bwf911XUG7sQl6pMhIOFDpiHI+Gf0HeIXhSNWZvPc4b2UoibcYtClj/GRx8uwC1LAAflJhiVfg+0N0bCtDtZUJVkw8taZ4DErG98a5UEPgmqwnkGVnBC5REaWV+ig+QJwdmC8CHJhYKcU/l+wizYEFCNNx5+4xfRyhD5VJHWB60ne0NFWtk6zL9kNPjMvkVkTFE4+7YGfUzwAJcSCZgzUPc/AuADIAQECgDoHym0KUWlUmnS1NKSQioryiyhlGQTKYRCEg0hojiRJA3RTpQ0hEJKEZpSoqzIPZqaJkaNTzdxv1IQz8z4SKpxTuAYXA2l/q08Pt6CjlfpQ6pJME6IX4hHopQwa6sH9p3twAuikSBSOgbu/lkL50U6eOIjE3CKXYBT5zThaJtBfC38mJr6m7FzjR835/qz750LeMD5JEamCUBJ6kmetfY6CN9NoP44gkDH9Shi+hqsFG6gf4s3yPVY4xZHgude1SCh6g4c5Ejhtz6yf9UyFr9wH8xqbvPnwjWQnN4N9a5WkG2qyOUJpaDp8o0Pb1+HSiMbYeGwIc/MMSK3El247ucLtzcZQUnhHXqX0Unt0SXk/vUPHuuqpS6KwbXP70CwgTfuDSK8qz8SIodVKCPhKv/4tJ2fPdzJUrGToSV0E890nc+Ln3jz1B1q6JmuBj3aZ1A2qw1W5B+EqDM3aWCXMuX7juNrYavIky7TBBFT8nxoCVnm8hhUU4dLdkfhRYPpsPfLPDovNx0OzXgOdtojsTRtKYkq6YHCeAP8rt0Hz7Vk+O/HHJwXzeT2qJXLRIK519kT/10WQOUp0jDt7Bs+VqGKxToa+KLgNMcqfaTrh+MYgwqo79tX0Fj4FT5+sYbWVXk4K7uPj63aTuqHVlGz1Sz86zgX/g4PcI18PbmF+GKGojLc6LlOirq3uCZABZZcf0HOh31gsYQZWS0KwwT5HpBM2U/ZQwAFE/pp+pgc3mvvzo37RKn5oBjK2+vDq9fjQfBRIGh36LNduwXYK+TAPP82rLxwjsL9PFj8ahnUS5XQta1XcEV4HCaK/Ae9ypawdFoFri7fDN9C1dneUIFvGG2g3KzrtNyXaMOambhX9hmFrrQCRc1v+MLQDEd7POZyxWpc1NbIf6fMpoHabmi27ye1k8tA20ADXpZuAEWFT7hDKRGiRorxcov9kNLthbODn1NT427ojv2B9nmisLB4BgduuEyRPad58v57YBW7Fm9uGwGxJTv4rUw72oy8SymD8qC1J5UjPVfCU8V3dPq4NZyLTOCBQClYbnmGJq10g/OOwvRmuRV8F3BhyQ2rSd1HBQ1lMvmYhTda6Jygy5KqXH6okFRfXCOjlxoQ4GxPF7K+0Znvy8m3dS3c+rqWIw1UyHXhOxR84IU/j85ETXdZEBh3ivZnHuI+q9846aYI35NIosrgfZxk/xGCnp+mwoZswoFJIHrEgR+cHcU77O7hpY5IPFFVgfp9p6DceQXbHPmNZUF/0V4P4dxRUz7yUJXUfT/TRV03EHZzwQ/HNsOIyzIgqltPmS7WPDxCEjyTjvCaMAGam/0FbB1NcZn2Gphb3YRKDQI8a+kQOcQ58M+zI2H3gyjessmLNnX/4LgF5jyTluBLbweaIt+AvTun4OpPYlD7ZSQ0dQrSyCODqHStkf/tUMDakmN00+8MDLtsgda6A3wY94ORizxs2tADe/sSQOurPk0fGMt3ptfgw4vRNKalks6GepKY3W1KVBsHpgE98OpfHk3VU0cNZU9+dycE/+il0mBVEV44/g7MujqhWU4B7P5Iww+hC9T5UpckcSUtcpclJ7OrMHFcNe39ZYiR85bBV41pkOV7DA5GhOOmIxvZ2fsgpSrHs+mefloYcBTn+e6B3gdf8WI1wU7XC6gQshi/WSpA6dOl9OffHww7EkFnMg2ob6E0xo+dCr/ipGH18yreKjEGDju40929XbRzUIBNb+WQaeYTHvXNFwzuieHkeXLwe0o4dHYZ4b0eB/IxTcSV1dKgJ/EF5RbOwYkTQmCGqyu5S+qC6cgnlPx7Kg4FXMGL4a9ISEmSRs84CNG9h/m/gxrgKbGTt7Wrw2xfHfAc9KAvpX40Kq4IrnR38ccZfzHSYDF6T3XBOSF7+QpNhv2bbvGA3Tde99aCxty/T1vOerHs1i/o8y6cVNfco+iJm6m3RQyatCXAcel4cBGaBi+q3fFl00ouy91PjzwluUXdj1YFrMFP4dagXO3AMg1vOeL0SNjs6s87htrpT50bFl07xqvNpUGRjsKNPE2YtW0Xa7bvg6+Ssix1KxkDEyzgYf4QKiTXwei5o3lB5VpY+kAHfl5LY8qz4Z8LmISf1uA8JVPsmG2Pu58socnvlcH1wixelGIJjk8D8O3FcxQfsggyvNzg/vZ1XFNez73B3dz6hHhPwXteVmoGRQ32uPX0bpb9PIvGnNgOsqP/UvEUcyi1ukCKhlto/v569D41FZodBnlPzUVMPXSUVU/pwBQfORxjlAM91Vr4QG4umC0ohqUOehDzzoNlD+liip0Fe1cjapmPhkOnvfnt2V+sv0WZjs06TN2NKvBVNh1i3L/zqgN6PGXxQt4gW0en35/Ega8V9FvXDJyqRSkmxBRuWe4GpSvm6NYeQRWr9PFXXxatnv2CXWPzARuTwPzXLtpgYAlmJ2Jo2pJeOGr7mXan9fNe4SpYv64RkvMbae2nKaA0wYx7wwXgzdgY7CyUhSWzxvG9l2kUHLGBo40zeE3RY5751IxtahRAJ0YDFG2U6cdWpGr13bxILInXGnxD41YHFP2RivO9TuLRdGXQq58MKTZDcFKnlKBBHv57/Bht5k3H9qXvuEBtFygtvwylufKQmW8AVjrf4Wn5dHw2+SGaGvewl0cUC5+9Tbf+c2B/6+tk+dUcp52SA1XJh5Rmpsw3H46BJS1aWFt4A0wrjem/Jn048m8Oli+MxkpHfaheOIGeHK7ClX2MeQ9X8b/kYqTPH/CAjggLJsviSPPRfNlMGkQUl+F4v8McoLqYAhVU8WtKLd+cE83SEAvLYhjfHrPB/TunQ0ujOCe+vE/BBWl0t/QOFNnE0uKHIWQWuI9/Gz/izQpEF4eN4U/IWo5408z+1Qkoqa7MpljFl7WEqEx8E07YUYCzLo+lJAV5ED9oB61lIlA6UZq80l5Rfcxk9nlehVGVMlQpIcKvn8nSlaUq8CWxhkVMbeDGqTOw78cxxt8V/FH8IvVs387NtTtZ03gpvZARhe+bi7hm7Shofu7E84qduXGcO5bGxvDWOT0ko5NNl3b+5KHfmkCZfigQOw+qolvIpYFRI+EeRabk43uH57igXwr1j+SCnKYiWLXNguKmH3xt2l0K0vpLgycN8Mx4C2jOraAfUjPwxPtdWDJxKsSmufGCv7Eg1yHLwYURUDRmLMf/QfKSq2BpaGK1osu4vNgAjA9pcfXSepi9T4XWT1gIfr/tyHMpkJVAElRbJlBSjg1tuCoC3ldMqHX1bH4qPZnt1D5SZ20h3Vz2l168iqPYMW4gUzSfi48pwX+bYyB+uj1dr/Ii281ZkJ8ow97Xyih0xl7e5LyEIisHIeWpKfx60gERB4YxNHQMa5+JIc8nR/hI6mGcdcoaHPb8xqKjkWxqqQ0Nh93IZ14tF076zX/NW2hVw0t2aIhBd5VO1o1YwbIvrMivVAXqTPUZylW5zL0Nf/XLU8AKa9z/oYhf7urjU/cdUBvmUsUfI3irXYd3HIVAT3cevEz34iXXt/PLNxb07/dVvNMrQZtWn+fLYyRAJP4eGcm4ck6MB/3MS4ApFxjbXvjz0c+fUPb5LT4sL8yr1k+CB34y0GQVRuKyNbTgfTZdHvkfXBx9j5+1x9G791loZ/uMZjSKw4kV6+HbvSUoEq4LGgdmsvPnxzD25zNc2Z1AL15rkeOT6zDTXB38zLZAm3gLay22ZHEZCWhtb+AVr8LJ0iWW1W+00kKcD0mRktCtk8ez51tC/4AQKaVbg5lpFxmIH6PytS5QYHIcw2q+w4J4Y7BTroCDgbLw7oAIsasHXLoojesuqoP09E0c0BCJwhNfgvBTA9hjuYZ+mbTC5z16kOs8GULnBkBn2QT4nmnIgomj+cMuWSg8YQEW5oi+J4/DiB9TqfLuNBh7JQL2l6xA54fmOCRVgCtU/XDcZiHoOePK28N+sZXQUlbde5037HfnR0J3QCNkJt8QCuADl1Px838GUFE2FgSt9GDq7S/w5mIMCXTLoqbXR/bZ1o03nj5i+7fx1JOOcFvjBd18RjhBsxUz4t7iL9ev8Guokd0364PthLX8qfs3uRfLw4rvSpj9/RuMFwzD9XX3wXJaCaXPL8KVS83hbPUYWl+px3eeTYb5A12w8d4D1v4zDDMV5Hnrrk+wZn0X7e6yZn+JfXgg1ZZrQlUgrioUlW65wuzdI/BW7UX6PH8Bz3ggD1eVPiLVdpC8RC0kdgtAwiwT2jj4hsWG7SjjxmTKui9JWrKqkCNgys6BeajrPB99H4qBQ9tTTLx/n1b+aAAPoQO0s0kYW8aepMfCWRARtgwWiAhg4XIL4FWreIVyGO54UwjG37fB8T3B6BH5B9Zf0wAh/4t8+t9B+OusAdMvO/C0hI0Y/+gNp2+ciH9ubYeJiV9AZ7QRJ8TI4O26WJzzQRz2e+gCOnzm4nUTOPH8FW6cMIxXt8yEGg8B1pbqhAHbBNh3wQBGtyvwm+ByVHrQhjMv+uC2a04sXDiJogR34enD01GqvBkz3bVAM/QvhNi5YMaGuSCs48kXr+WAZecWOnmrEZOsAmmgfwKd+aIK/7gDaque0c0f+3BK4xArrrvD22c/IItiUZjvI8l3hmqwq9MaBC5eYeEN6fBn7HtwTR4F3h9CwPX9LioJKwfB5ttwPk2a8xTUIXeJMea9EEW58emkXrMCQxIjMS1wJzmbuePL7wpwyKuS/k0VA5GZVZTcPR9icj5y0/5AkFt5EIfv/0fv972D8VLFVBB5i2rnycKV1zngK30Nb32/DxbdM/mA11v4fW4zVqoe4PidQSxcq8vRI/VBeN0GXN/oixebLcknzJuKsi1pn7s3ucYthFNWrbDg1Fuyc1WDZ4+6UDfgBy+3Jxgs9cPlzocxp9qM43pWo1TQCX74tRYG/HTAsW8JD5e9wEuXvrGHXi4NbrWj3p/JlJFdTmHGEVRSrAk/AoVghPwOuiuciooV0VzzSxfSJg9DrtEL1mjSIw9lRVYerYbzjNUg6uUT0nP5TnMqx7HitwF+6+OCe25+oZ317iwoOhpGXkuCCHtTOLR+BY669oxefT+NRf+5UeA+G+wxK6dlRsuJSQGMzSyoxkgUXB2CMdT3Gc5yWoXiyW3w9N8RdJ65mp5e/0wwxQv/NK3nB1nGIO2VAkKlQjTixVx+lipJ21+JEr8eg5/D4vHoVi8sHKrEL/eswCFxFpzXM6E1Yo7gNlOcaz9Wglb0cTTeYcFrdtaT0/1+qsoXBXe7CO65tR50Z/6is2sm0vKo+/R1rgzEn//B3dGTQCo6B1MDFGC+Zzc/C/DEA6YW+O+rLJftLkSPeEn6z6gDr153hQnLz7CHlTwMWd8BxQdF1PegHGcJZ/GlD4qkffQnbrhRj8sX1GNptQyWlFnCt9VC8GxpC64zbgJx5bV41/cOb7TZi215bjhaZBiWN+yEolfi8E/UiQxiTtJUv3UsEXgdBGKt0FzwCsXt3Y0yHiUUP0UIP80zhUT3C9Tuuhx//jCE2uSzbOY0A4V33YVWkUDwz80B8W8SKHlcH56Mf4exgZtIyl2fs/psKb1xJ9nmJJP/PjU6ffg2KIlL0KTjE2D8Ojc2s7gE21R2UOalk6i0biycGfkQG56EgldOLE/P7+c9O1UgVkYQIgsC8FFBLg9+q4Wf5zzRsnkij+uzoeulrWjTtRsc/42A5ZOq6beFIu8Q+QYin62hXCEbwpadwXkzn9KT9FHw5JoC7X43ERaMaME1Ozai0cG5oGAXTr9y3GBQzIP9zedA8LF1rFT3DStDTOHZm6V8W+cNbA2YAPm+E+H3z25SShnAIRd52i29HA8Un4eDnqqgc3SA1r7cB/1afqz5aQhKDt2nwNh8zH5XwUGaldgiuZ7+zhgNj66Xw4kzD2Hy1SXQ16SMq8IdWVTtB5qPLiOoewIth7/yeAEZWJe+AgRWzkPFVH0sKkkgpaLr/HT4MD3cPMiBIzpYzboF9ghIQUqvHr9W/0r6JcUwIaSTN17bjxVdnzlaZoAnVAWR6cEhnjMPIdJzBg3VGoJhrB9/92/mU0csyMFdClYUXkWjk4HUoLwFx0chuLWHYcQBCawI305LQ4O5UHQNiQQhdgm9wv9Wz2H1x69R/+UoCJ+2nG8OFeKuTbakmpjEq0VVwDVZkFsPhtG1s0fxystmUOtA8NC/C1YFg7wvbgd5XqkApfv9eC0pE1s7V1Bp+S64af+EX9Rowll/D9i/WA3sj1jDuV3n4PfPmTTlQS+Mj/DCsaeteUeUHNx2N4Jzh46zZmAVf10tjsYRSmD8cSr927eI2+WM8cD5JvK9vIm6IiVAOvobp/vMo5rtyaw0Ph5eVC3jrqPAXUsX8ImABvwe9I9PK8mD+H/aPGN9O5mmjce4eYbwYrkCPVrgBrlLA+hksjSMqHpNx4QNoTHTlSOG38Ldw7/p5J5AkilZi88zG6Fo6zY6IzEb/N+loreoKgTtVKXYM+JsXT+Fpc7d4iduttDi9RE3WT3iqmlLaK7OA95w2xwMw+7ifMkGMrRbT0Uyymg5/wRPnlfL9SPl+YnNNJybtwAnTpoCfygPRVcosqZ8BX7KmAWaal/hvIw+mxZsAtV6V9zetppu/p4KX92u4/yplZg1JgokPAYhtMEbZm45hrLzN1Ls3TFo5ldN73+oQ8Lm97zv5lyy2nkaRi2v5+j4qfAicBqGRUTixVYn+KLaQX9cJ0Gt9ikeX/AObTrT8MAJCQyvbGL1yLtc/EQDHT9WUF1iF698KwGfO0NIuHI6TlKdhBMoH1pxM+CoDj6qfYMk7f+Cu04+d8hoQb7qNIo+kgaTTL/gr28H4L3xKzzV4QDSt0/whWWT+fNcQfKbNxneDAyx76Ij2HM+kdMzOlDabRHpO3rh3pR+yjjwAyoj5qCGpyLsvWmJfSyGRZfCscNbGDfeSOW/qwx41J+RlOTWStc+HaQ9+ZKgrLSIct5a80LRizyq/BYt0BuB36IPclDmCsjdXEomhcU0P0EbIg7MJCMtV/iQd4sfewvA9nt3+bfjWN764RBZnrjEWSFpvF15KoSkT0dNj5Ps11CJMTIrufpLFLYor8TScnNKPa1My0b3UW87wLVD+TRcI0KKX8bSvmumdOvOPEjTyOIV2/3gdM0lypNYSQ/izaAu+BPb/reMdU8rQIx6PscO3ySHfUdAdPYMOqhzA+bFFOOPzLEwU18bNJ4MUapdNbmvygeF7wtJcfEuvPjDCZYs9gfrzEXkeG4iBIzQZhtlYZJ6aMJK4v0YdawNgm+uBJGVgTjSaTHrHxFFKzk1eBDYQrdeHofBoz9h2ryVsFGqAHQ/AS44pAYPZOfQ8JJush4SguEVPrzqgz9nKB2Euw3e5COdwn91TDDvjCgprovAyICNKL1ZEPxCquDtiii8ZnoAlsaF8BGXI/jnuR89E98H5rrr2cmxEMQ2CEGxljw+f7yYSaUTZD/mgmzbRVAfmIjouJI8XMTgus1pSGA9UN+lh2V0kk+NG8aYiXaslWHK444s4aQEe/CQt6J6+UCcEWAFe5uX02ftc1DzLQGPxlrg+SfOfHzpMK86dxc/6M2nlwLyZGknDiYNJ7F5TyiZqe2iYeHXeN/ViMTWfaYr04Vw++wKMg17ShPuqEPAiGJqdNpIQktSIVxCDe6NtaR9e614wdIYWleYhT0FHeQjSbDQfQ6MTpXHlvRY2LvLFHbnb8EBpVKcf/sKTExQgZ+GatDZNwIqTQiat5tybuFESvx9HE/qSrH1lV8YI7WCJhy/COudhujI5Wmw2DkGuxRVUVcinPqEd4BHaTDOclaB+bcC4deIV7g4vhAjD4qB6o17cDf2Cs0ONsSvLrkwsdkQ5XwD0Gb0HtbvvwaN4mLw6Pc4mL7Tg2d8TMKEFDd0ND7BWmZC9PrbTnY4GsLnK9yw9pAuVigy7BLO5AMHUrGp9ycECdzCBybnaWvHFYwoCKTJqlLg6ruEfPqEwW2DNkX0puPqUwH4eMUFDDAsAtc7ylT+exhmmV3hphEHITdcBQQH5+KOnHwq/E+bSuQ96OOFHjxcuB4eud7l8/E3aOV7JUzfBpBkMhZ3ePbj7DPN+Lm/hQ5dm0IXw/bCpoequLylgvRXi9GDaWPB++8m/ndBFjSeZMPh6yHw4686zIq7jiWzn5Ok5VHQCFZkGzcV6D4eDvv+M+Mb33aSbYI7nCgb5GUzttBwizg/hyNcnq9E6b3msFezH25FbQe91em0te0cRondQMfmTPp9KYwmnA5lQ8sa2GE2EsYtEuM3yLx97F9uT/uDKVc+kYr/de681I7CrWPJ4PRI6LYyg6kODnjsrwFV9vwFhxBHmtPXA4tSE7GyfgN9uGkO9trDcGy2IJw/+RrauRQyBmdh4mUtvjpfgtP7p1FR2G2ovXMYrhcIYarvNEh7mQxXf0xhu/hllJtaTIqP4ti5N467lCLpSGA9aJwsBvlgNehf+QFmPxiJfiGrudc9BQaKfEBqKBEcdlnSqPsL+PeoOby3WgYOSz6COyG2cOObLa37VQczRuvzMvU07t3/ApJt1+Pu3lU0ZZQoFMv+4ok/jWFU0j0qXq8MZY+fg+exLfSl055/u+3E0WUr4cS+kSA+opdcAjX51iMf3C4iwAlat6h0fAXuVxXBxZJyND1sMq/aLgkPnB5CX9VqGJWH1By5gx8rNMH73YE499hBWqgoQN9a31PdURVILvVDq8kT6GzILHo35w/++ddP2ttV6FGEEDZcHYMHaiaC9hQjOCHsSRkub+FjXifefn6B4z5+wVy/PTA2YTkXHXWkSwVfWFlyPNR+9AFb5yJU3XyUOXEXVeSvwfePzkNUhjDkhabDnx4VsFSUgA2HftNpAXnuWLSPUUQO1haOw8MBM+hmiCn+i3nDArfN8MV1EVDv3kAiRt5wdMNmKDR9hR1PqujVj2iWDRSmVqFr8EowgxfrmsD8iw9QIHAf/n5sw9tWJ1HxK0NeohXPsWneIFY7kkoFk+mSpRH4ih3Er4/Ho8p6VXb74wxeBtOhVFudd9gia0z0wAd7osguzhB896XzN/k5HOp2nZfaS+OUT/dhs5s0KFR/pM6HK3lMdRFke02EkJRlkCskj3Fed0j02zuyC1RlXY9Ccl7ZhbvkDqKI3U8W0x0DPnu+kYW3JBic14bHA93kpR5JDc1/OG9cKhwMMcG6E3ngdEManILUuaQ3gbVWb4XYdjWMrj4IYwWD2NZRDcY4PAS1aVc487ccCC59SstWtPFG7dv8dNFlNP+yhzzuWuHazDp681eM48dVk2eDIai4DkJH7BbIfTOFB0o2wvVHBP0nTsCfD5lQ163NlRv3QsEiK2g22szSO+ZiS1MuJB19hActBsHFqQ9cbr+j+xuO8+Zbn2jlJEloKopnHrJhKzmC2YFh9G3mUXwUMYVXfNzFVmdusUPRMDjOEQHR68TyHubYYWIOmrJ1+K+zlqXKOvmORD8ccnnEe6Tuo4vxeDh0Jh80fp6l8WsiIfnwGxoal4+zbleS4fkTrOOmzgpz52P7YwVYXHUCjhil8dZlbbhlx3dMWSeGVl0vwOn9HDRblg3Z8kWwZJskLApbAAc3zKUjL/qhZ3U7lJVKYl5bOOsELeRTm+axQm4lvKmUBS+pdJRL+YVp9ftYUUWEYpuF6MbAfcpYep5O5HeR65Sl/HSkFRzb/pDd49RgXmUZfZU9QJbhIaTzvJu+jFqCnkPm4Dr3IjsetIRJoytJuH8dy34sBpPPf/H0qRU84o0EKfiI0TX1QEqXFMCuScLwxbSAftqW4WeXd+h0dAqmvlaGNwVuYJL3hVPsDFFLSp0FhywguOEp//1vGhill+K3cFuI29NNSkkeoLfkLA9O2gVTvr2Hu3PVYdPYDPRxaqaOmn14cHotWax8DkeaiuDozmzgoF2wbsF1yDIxApVTJ/nHLnO4GeNBy1cOoMWUh9z4XJHyz7hCjbU/cIcunFgsA+LrIkm5ZzVvHS9DauQJScnTaWbIcbqhPAu9tdfB0nXGVKmvAT9kPfGqtAjPVq6CthO6vLNmJ4r776PrLe5Y+OAGWo/vQvk5ljA0axUuzL5PCwO3sEK0Ee6NNeEvWXtJ4Gg55r+yIGXcQY6DUyFc7jyMHNKia8lasFOeaL3cW9w2/jYlRltittQIGHwWyMbZ0jCUcxaM9CbgpeEs8HEbRycdErmzS4CC4y6Bzt8V0BIeAROHdMBD8Cnl7zsGv//7AhLvXeBeXh8b43KaoJtDlt89gGvroa1CBzbabSJ3jwVcpL0KDh9awHuUsuG+bx2t3J8NMyQ8uHzkNkheZgTvmz6DdLcGBwjH4uQQfXg4aYD3jjuD0X4K3Fq1hs5khqL1g2mgcy6Pdcc84DsvK+jCmXDI9ZcBTQ95uj56E3RvvYcxq9ajnNEU8IlVg3MRjMo2rjyk1gAOg954TOIsVjsNw6GGqTxKrhG/HzCHu26zWHT/arZt2gXq0uaUBR+g91kDb/SWpJO2hfB0jQIffgvgAvKcNKWN1wyE0nTrFJx/8Dn7B3Tyy54rUHy1lT4VihKsHg1W3eLw7fBZuNc3jvfW/uYul9uQ/doW1+yYA1YvN/Dyym1Yny8HBluasOnjDlqyXp0uhl0ipVE7aF5rMndPSoVJ1h8pXQn46GVFOB4ymj6Hr4ZQlWf81EsEzEzscexMKfrkSDjjay9fj2+gJNEx8PUjQPfJdyDlfI5/hJ6EntqN3LI+nULbCmlt3UtIOhxGxYkaoOsmhzcHekDDLwome4ynHU676FVpCFPicU54NhrLSrzp/epxIG+5GVQdbtPK3Mdg7zEORlZmoEeEC67VdoZ6/2aYqFRPhbvGgeTJ77DhyXM6XjWbx0m/ZZnsMMpuKGc7juT+RVOp6upaXjqf4c7aGD47qwoqk9VQMsmO5ie2ouv1cppZ78svK2zhvnYO1khNAUP9eojQ8SeNL5vJ9oEzVS87BrBRifaOSabvtndRs/sTpewXhgipUSS2KRx2Ow/yp0X3YYSbFMvcKkM133d0OO8vnq2PgxXuEvDdqx6NHnqAUdcN1soypr6rLnAgpYk0f3yBOfun8+eJ1zD/40gI/RyChU/U2ebGHEq/Y0klixO4+H4yXHROAKPUPs61j4FdWwShU82axFUTWaV6GY6fHcaTf5niZ5GFrFflT1uGZdHWzZ3vaYyCveMz4JCVAs3aE8cyJ/XZ7+xYehNYiZmlpziyfCHUdN3gynmaoBPzCc8cc+e8qBiKN91JSwPFMc9wB19+ooaWyXbccrwba58pw8lXguCsK4guG8cCL7PD6Mil9P7sOjg86hh4iApBkZsNFlcIgt6GBna78g3v6TZg7YkKcHruT36v/mJN+HOcj2n4/bgSTBhUgZN+ivzOfxyH9SznxR5+eOXCc6y5HEKn6uZj1+Y1sFbrLonV6cKFu6NA61EMv54uTQ80fEH5iRQtXhLNyxduhyszn+GqoiK2mTISFoRuZ601chhvcptHURH9cOmGitcjOWLNbrpb/pRnGJZBfZYqnJtYQN5za8ApKQAbtvnjmD03aJPmP7ZwUcNZXQFwqPQIJ8lpwt/KJSRUKItHyz7Cs6HNqDnqM6Yfr4D0Vxf4s/0rbngqhjs+T4HgnkKOGrwK9Wsaedak53Tu7mU2X+NFP6LdkbxcSXH2JYg/IAqKt0dxmcg8uKYxik+L7ONzquN53VwX/pInyLuO16Dy5zAIix4P4/KT2fykIId1Z8GH8on0bP8Q7c7MhBVbXDBA2Jctt6RzjBCAcpQpLYQEmGO5jHSfCaPsgir2F98N6z6ewMvgSWdKbPnp3Ynw07iXHpuXcLLgNFb5105KFVpk8ryJLthMxy2zVcDEJxX/G0KI/2MFdzadwaq9DjSy3JZfmlhx6J1NpDQhkNYvN8NS2+MYYTkWCp102Gzbe9xjUcl01hAqE1rpw30nLh/upDV7/5CJzmRYHz4GXFenofIkc07Qc6XDz4b5hE4Hb+3+B/FzClAr0B4fbkRKyBaERAMPsqVCMD3jgZU2kbzGcBcuSApGt+E6VlmSz+pzuzgjXgveSXXD9mNjwXH9cVrxsZyLE8aAYo4Qji2PZ+8fA9wXOwqXNclDbfZkzD4qzDbZ9Wg9Wwzm9znxWrkU3LnXCm0jkjhrhyaPm6EFqm4n2L3SHVXst7GbVRDnJCWC9gUJqJaKpltRnrSmZBtanjWHLV59JGgewuKzSzjUzh0Ko9Lo3MMPWHD7BI9OKIU3/IJPiZuAa8QenjNsA+sFXEhICXhd00VKMumErPcyOLNwMiyYcIE96oyh+V04aFw9DW2bDPCRVgoJDhqBtoY8XL4Zwq+SFTBlvw2DuAQMPr7HddsiYf7a3aDyupjH/7bEqa778ezVYnqlUA6ybwIwqn8qbCxxhks5TVwwyoQrf96gZuk2XHllDCdIXsE9UW0UGJLKeS+E4b7WUzhnL8RXlo3Ek7vXw9gl+yHXyIPkHqfDvYkr8cz3o/yq3xCOGhWjrNccbEqt446sWGi+NJEfOp4C8clXUeGxJ2ZKn+VBH2nIH5yLfvd3o5VlCsGAF1TtNqPK6eOxtCqKJ97+StvFfqPIoBb86ejEc8p7KHbVEf7jZAAzg61gTGYlt1yS4SG1bmyx+0RPfwjCSW8XOmhWiHf0FbhHOQvOV/Xyx9AOmH6yEt823KakCDtMU5gECkens5RyDmx7aExrxaxgyNubNAONyaz6H2ckl1Ppx998940VdDup4vUjK/nsqRAKFc+FF/lX+NQfWzRbVohvy97TBV1mdx9hSA2cxb0V2ui+bwhNpJ9x48AKUI2zwTCLP3hB5xqGFV8Gf3Mz6NdYxJrjr/INRWtakXeSyouseK+hJJ3rmo0Kjg4c/3o8brw0EcrfRPP22vmYY/4M7U8X8DSdO7w76Ce5r0pChRvpaEMEbfHysGjQlryeXyfn4oswO/k+HzOMIKHZkpgWsxFKHk6lnqGfOHuKCPjcHoLRozdx1NQ0tPV/zwurN+GjL71QmfUWrf3n4sgTkhS9TxJaOlOo78FUWD/tAHe4nIVWiVe0q+ArJ89ahtsrdLiVQlBQ1RCWRV7kQidZTuxk2NF2irPfd3P68mbaeF6NFhetpj1Vd3iLtjZk3v/ABfIl9OdzIc97/BLWTd8N0x6thvT3rvT7gBN0uQ3T2BnKsO31Y7yQLk/2UZJkar8e7Nwr6fI/V7xU1sXjrhbRujdD+Bcnwfu1FbyfgiFT7Tm1V27krRUAs7Z7YqCdP7881UiD/dd5i606lOdexovrftGOyAiSsRajCYJnOcrTiW7pSgG62eFph6e0qEwapj8bhTd63aHnQjn31aZhyrZ6dsy+g97XN1BTpQ7NlnjFUv8IJo3UpLsLz4HW1F3wYZsGdd83p9N7L9PKoHHYuf4efFwcwKG7dKHx42VsWjyTurfZk1BLCrnLvwb1ZADPyXrY/bSZ1yibwp5QcZhUYw0G+qG8qqICZoSrYFBPChQM2dPGpPV8q8UCHecYU8puJch89xT3bcunwsvu5HdFDeytRGF02y4+n1lKAc3jQGudEpQ9Bth17jrtb57Mwt4LIW5xK2e+WwyLX45DF+HVaPf1CcWk3aSpUgRl4pO5/GMQOr2aQf8tGod1jZmgv9WXpl0ZRxOqNXlE6mrOOacDxakfMGy7DdWfPcHs0YKHZ//CobGCsHWWArqNVKE/0Z/47nZ90BEaBa8XlKHdoU7KV/rKc+xDuZ9q6YtAMCXZV+OnzBu4Y7cpvBuejxNfCcHN5rv0+HU7n+29zC83R/OYF0NQoDYPEo+00UJjQViu2Ylnc1w4J6aO9y6M4QGFNSjorgpXMmwhYs4qTqjXx7NZk+DyfFVoDO2gt6LrIFF7ESivlMUT1k3k99OPRxfcgZ+p5VD4RwfeB+fCW512eNiWRq0xu2lk+G04lPUB3IIMIfhxJ1udLeLAUkn4lhtFO4oX0X3lbhINbKI3uc5geXcHJl8NpowNwzQjIYruBInAyo0yrKEkTJK/CJemt5Hp9KeY4T0aRI0LUH5LK/R1SVPkRSuoWFmMk6YLwOMAC0pZqY27JUewlG4FJk/IJvE1r8jFu4ePbpYG79FHITxeFfXfDuHItf7U866Ct16dC71H+uH3vU5OTAVYamgBA4/r4IOfKnTH6KPxyy204fxeiJtzEWKj2lDgpSY+X/QJSn6ogJ5QI7VnrOaXBx7B4nd15FLXQ3b6t0nO/yB/nToKv+30pYLDgiA+IpCm5I4h7RYBcj7fTAFHt8Oyz/dhk3kUXGrfhZYfHqOxnBlY57fxN/23VJSRQnXq7Tzn7Q84cOYoy7x/yX0OM6mLB9B42AREXd6RwycxElUbDdGdf3n0GQveLXObbtmuod1zVoN9ykZMDbaET2ZKMHN+E//LNKCalYihBqLou0iHFFOZUo6fwkTNm2S8eQpE7H6LPUnZvGSWIimX1qP1UA1sD7hHul5G8FlZCkTvR0PGbRHwt5LDIz8e0ObKMegUcJ/TZ97CL5MdwP9DAkrFBGB/uzBL1o4GP2tJEpsZgXen+JDbf0Z4cLwLRgkqsfX4NppDN6Fj4TRS/U8F6vXXcHu2J3vMqIQZO/M4OcgXzwn1ku+aBnbepQnnSzsoca4KxJUYQ7RKNZ3f8wdtZO3JR6MRNuV54hjDC3i5zZEqH5zkpEZjULtljzY6Rnhw8x1cJB2E6VtGgJCDJNJqdcha18GHT93FN5UA1u8P4Y4LMyFzuwGanVHmw6lPyPzmawwdd5UMxIO5HTbxXEFpqP4eyHWJKyiiVJbMhFppk4c/bo1NY9m4KVBqeo6mvn4P+xVN4KSZJmysfIJ59nIgt6SJz6d+AN+wQ/w1+iI5rbvNSZlVGNgzFTy0fNin3hbWzIrGexf241DaMP1+2s72aMc9funoMcWZOkvUQPLTL1T1dSc7MaSJMUYkIZHLwWIibPLBk158S6MZaYZoGSAAixus2JW8eHZ6EJ16NxtiLMRB4VQdPfbspFbrM7z+yW52MAbozernn+n7cPuZOeB7oRV/RI7n3uD3vEpKmLc+nM2tKTaks2kSnBNtJ4HYUuq92UrXNg5i1/ApfJjhCTs+51LOhgXg7FpNGhOmwqM/W+mUtREWfhCE1+efwYWWr2gxt4AmP8iFguuudKnnLTyXmQpjnyyibYHKVO3UBiLbJuD38BrMG17LTfvGgGTdDewKlUafi/owcD+LRnz2hMtP9CijShBMJX6zhtYT7B19nf3OZ0HSLm34kiMBIyrUaW7QS6qdkcDhzmfQZq8tt6rv4oOfplHHKC/wzNCku9PNwahuNi9+8gGvCi6nI7saINz3Pf8nORl6AkxIXsONJGy8QfyoOpQ/X4Srnw7xIQF1vj3/CHbWjYZ2dQvc2KlHh4/rUo/gezq6Uwiu5MwAlTV2kC52D0x33sWmsHyOkuiitKlBcKEwDlY/2Y/FR0ZCmqsgFYUoY+mWd9A/fTYPZKzBLeO/48YoTyi4KchJN8/zmLNiMJDwCic8CkZ950z+VyvLiygHJSpOc4nBeTIsKyHbT25sOlMOym4pkYl7M8jcTGOZNA3SXhAHDXo26NYyEYr7FbFoVRitG5gGmzcyxbcnkrPhI3ac8ADzih5hyzg7vCt0hpafucjqu9/Tvr1j4HnCWASZEGq/5s3OI29y7pc1vDAtj+YqqrB3cSR/Hm9MViWakCg4Bm+MW0dfol6Tb1Q66hocgLg8FS6LnIG8+jbZO4yFj24ToN1GAL0qFVjPvJp88pPo9NuNaItOZL9eBZd55cGXe2Hw/JgxyJksxuQRbZDdKkpjP4xjrVJnzApTZMeYYjYxuQwjen5AazRC48x/NOAagHbzFuK3NkOcWH8ett/15gqdFfjotQQW3k7GexcmQq/Ffa6/hbi/6SZb95rSp6AAvJ77DvquZOEBmWcoEWkJYQfGQnuCLQr8WMLBMhfw/Sln+LA2gdTDHsHmN1f4wxsBVk7ohy5vhtaFq1HvzmJYeC+Pz5rmwhJrX16xpAI2/BTC1mOOQPHd4BM4FjTTvfkU9WF05Xw6eygFzPUug924VeDQshXlfVLwxQJ9WJooACpbzkJO1Sn0iG4B2fvtOBqn0xnrdHJZks9Dx/5yTtlyynw0DZxi1kE4x9OnshrIbI7nWu0oeC45BPevqpF53l+IKM9DTz+A6wH1uFUnA8HTAQe3lvGsOEGsVerDoc967NdygynFiHZLW0D8ugUcbXCV22Z0w1CiDdwPHqahOcuw6lwuT3WYDkvfPqE2zdGw860zC5nfwoDQAT6WKA7N56ZBtEE8L5uZicP/ZHHd2zLumykJLu3rOCKzkVWO7ESPntvUXTqRLn7dzlfvfIfdMp6svMMJ178Sg1dnb3Ow5Tt682kVl9avYoOSLlzua47bLDtYx8KOlhjPoZbPsiDcHQxWPvawyUWf2ndLg9vKkfApUZf2X5WD6bsFed9TCbpUJwhB8TmYPMsMYFkKq9wLJwudBKoI2I+erqp8/e1mCKuNZIe3CqBUdZwn8iT49fkiL3I4gPW6v8D04D3+KnkZqoWvY5t/H4eskIBxj3vYzecQjPASo78jgqHuZDL4FcigZeJ3nHPzHIwYsMXDZw3gVPB1VHrUAH98MnhqeC/HqMiRvqU/8IlaXjI4C86NimPPUhOQPllNO+JraYp3Dz/8WYHfRVVoQrgfWjzKAH0/d1rbCjTNzATWV8XhfuzEgLqpNDOmH5VklqH9YAPb9J7EExkLIejId7q12gB6XXuxUPARXllfxpMl1qHSvkHSzv6NyY0XULLWkJ2+lPJpRWsI+ilBy8Uj8PWlYP4Tbkt+ZkogHGeHBRVbsH9OFhpAGxo+U4dD/xTA+owQ7ttuTGkzJpJH6wbuPDqG5KpLYYKNEl34rQ9fRLXgVNoL2G14jpL9+3hFZwPoHXDEV0mEJ10u8S1dPZhEGjBiK8Pk/GA4Zx8GM3KHSXtLBd77l8IFs9ayu+sDdNs0AOf0o6BUdxrMayjD3+GnWLr+Df49Jc6P6yNwkmU/OO5JxlSf3/Tn5GF8d1QPwq8OkFpZLy8vUCPsLoH9z5LBVNQFWMGc415FgfYZER7bZAgnMrfR+C+RUDBnAvgukeADL+eDnG4dFTf30pMxaaQ76jSleowBCfc48DiqRVdWzUc+KwcjThTRtf2G4J95GvoUgR46qOPKcglY/EkDX5mOw80i5/jcsfMcpJRFWnbbaWv9fDgfEo0WU8tBKAXhiNgwlOQuo5TPzSgh9hCa9IOheIQPR6y+iqdDW8j1TzfOfDENktQysKVPCvaEJlLRQVHcntjEXjprYbRvGzbWBWLfFh2YvdEa3s9ZyNkFzymgX5WzMr6zul0fVnh8hYT9gzy0qQw23XQiA0ELEE1V56Vxzvy9Wo0TbhJh01gu8V6D3r4JqBhyicO//sGSNA0IK1jM6as3UvjsKDRoXQO6jzJ53LeLMFs6nfytFqG7N9Lmr0Jgq5gGYk/98VnbTHKLkscaTwHY9jyAHtu74o2G+TTjTD7/dJ4EHTl3SOuzAMkXivGEonVwwW8bfxl3HmurAQYPbmf1acp0aEgPrscK8L9FpRQ17yq4B71By/o2jl50E4fuAZ+R8aCY6kDy6hcF45DfeOiiETQvDSaTL768trkRXli9wk0+n8Ad67DtcSTEPhOBy3fMaUlHBbce3sQSuzdibPsBTKgUgJmSz1jfV4yXSBuBvIwpFJ6vgfz6D/Bcegw/8a3hDXNSYb77Kpg4MpmspkhCUeh6tlayAH3ZX3Q65SfpTXHAv+KBrOK+HOpOz6LcoPGwob0AmhYo4vHXunDMqIhEVK5Sdi7RqymDNFHEELWSJvHSQG9cfkoIpdUX4HCJAuQNKsO3XD2YFd6Dm1OPs8N/1hha+Jpzll3ml/U7SaXGjwcXG8NPNwe89fouW/96RFaRurQ+uJxz7I5wRuhr7I3ygC6bJzykbgAeh3WwwfM8dnh9pHdyqZC3NpttO+vRYGwS5AY2UeOefDi7TxtWWDShdGEWP2k/w28OheOzDHHUyNejrFHakOxjSWeuyYP/TB3w3FYLytvf0A5NO5a8LM/5khMxc8NyOLV4LfRnS1JDTBe4mhtC74tQOvkwkoICp8Lf7z/A+1krT9ssyysUplPtPzEQNg+CxsEpMPTyCKZmPIP84lH8fpI6WY+WQSepRKibI4Tp+6uoOWAzrzs4DqqbR6K+4ykWmGcEhgeyQDO4FCOd8tBYpIQ0vJ7QvMleNHa+IQRGDvDbhANcKeXHS2wDYXBJEYWXbOSmBb/4vHAI2PREcfBWJbBfeIO8b0bD1M0msD09n4euScFDjXJwNzHGlh4fMgpLoPZ9EpBgGgb24oP07/VTHi+thdc6pcB7pQx2GP/DgeZ6eHTYFaJ65SD3VzoG93yBGcuNYYJjNKT8zIKgJbc5bK4rTSh6ia5Wy7C8VByy+235t1c/vGIT/iOnwxuXz+O0TBloGaMGRZqG3KVrjVsmCsDYkI80/+lzmm+xhDePbqI/GhZU090Ekz9t5RxNQ7R/eBKsGoTgvyB9+jf2J7r8NCGr7Hx+e2c8jQx9hqO+2WCbuQG/2OaNMnWiMFdiB4RMv4T9Pzu4x/oZ2kTkcajtJYxTfMMHT89lj0x/MJ8gALW7C+ii1WbU/a+Znti6gq3LDi4NWYHD681ZOOQHpX5bwPsumoGI3VWsOzAGbQx24ailRzlkKIZ/nhbllnnHuVp6NHt/fQKOLqZw/koKqB3Nh4B7JeyYrEXSQXGcME4L5ToU6IV1I58yNKZZsmOgMegM6Fpupnt9DAHybtRbZgt3PLTJsL6dBmo/U835MPSeOwGOOB4C2au/ySIsmp4818K1w96YXWGD+31b2fqfGcSt7MCu5/qgdugkrFudzsq9Ang58SVU/9XkYwuQn147wuLnu/Dxzp/QUmoJs4NvkHnIUfTMUoRjtv48K0eUNu1MoqI5bbD8xAUM1TuBQdd1QPnNZRwu0mUXqR+8fPgApW27DGs810KeuBJt+qgP0tNqQLVbDjKcn+IDS2tQmJDLE/KkaPaRsxz1cA5pTLsDXYZf0KYqAXpWyMFKET+Mn5mDj5Y+oF11x0igqRSVhLtg4y4bgtstGCXRQ80S8vB01RKelqsNmw49pMQ4c/zlUED+mrXYskWfT6TX41mfxdA/DLBhx0H+Yt/IVftGkoWkC/cGhEDlYm1aVzOFLS6NRKv6x2h7XhqMTmfh44B0bBI8SYezDlP8igvc3XID/15UA+XYMvAx9+ICfyGoOh9HV7ILKFrkIcaG3ebvJ7Zi8O0g7A09hB/qt+K+l/MpcN802Hr/Bmta5+Do/T/gadIK0k/Xo/0qyiw0xpVDb7mT+fINKN03FfYcsKAfRTshNK6TBt4m0ac3GeypmQeWVl8oQ/ctK5kYcdk6NdAvy+YclWO4udocEu47Ecy8wbYLFfFUqja7zd1Gzpd8eYO7NJhJbiFVuxn8YpQqaGt+pLGWOdywMBZvdm+D6Cwv/NcmQrOrTWDxcBvZ7szGpO9L6JVHJW6pekHT30+EWJVgaokJYDehUDh5QgoSbG2oSMuFZjuuot4Ty1Fk6B3ml2VQ1stxtGtIgj1lblCNiiokvJXGMV33YHWjAKtnPUK9kCFszxvJVeHSXH9nG61SbYDrvRJgcFcc1tpFwYvMBSSREA8eLzvY9pAUv5m/iMuDn7DzzRxSC5aA716WVCqsBJvmuYC9wj28qt6Mau8iyR+HuLJ+Go0XWIjzPATglZoRTN4xki0vClLp3QaIfDcDtW700Z2x8WQ2RoXFTzmxpoEIBPc1UpbSdLJo/IXuV5ZBwOETaDVFic/W2ICCQQ5ttCxBVJ4Gx+R7qDs7n6lDkTvkltCBPm8Y53OLWtQbMfuKIViG7QFIFIL8V3vw7t0S8vfoJy+HDBZXfkTpevfgQoLe/8TdhyIQihoA4H+EUBHZoZQRmQllRkZFQhrIKkVFhTRkdNJQSEnSIqLSnjJaZkMoQiga0hCpKCXuY9wn+WilcyuYflhA4/0UwKJBCcoiHCC82wQnNBRwzYo+7l9kzmU97jTfcTtNWaRNDbNl4ZBxL4T/9uGWjjqqMdaEzCoJyLCeg87rfsHw3g2wa3g1RWdMh+MLAuj9Ajc6sLuH70Q2YWzPaVqvcAfuGSNqDR0l/cgPuL5PCCpy77IBC7CH/mpWlKgBzTN/6NTtQ5jv0w2qi85S58EoJn9lUJo5wLHzF9DYw1Kw5tlSCjq5jotiF0DM3M1UwJO5IGY8lxxSgbXtz0jumCg9uv0aXH+54aPlTO3H5tFhVwE2FA/mkabpeGOTAvgeOgmqtwugZVsM1Dw+haEmkThuigVJtCWjuMMOXitQTMemioKs10sYm15A1v924lzpcNR+U4UpN70x5FEAHna5xqpVG8jbRB+2XnLghKwotu2/zO09bmwnvgKXj5kCKrH+cN5enTIehrBu3ggwijnEu2baU+i7Ep6Qu5NW33oK7u9n4GbBTHBb/4stv4tzwHdjSH+0AAR/LYR3E2ejcuwX7tk4CKsKpfCteDNcvKQGkqYjoP28Ihj5b8HNDgOwylUDijd9Q5nlpzn79hwSLaph67YjOLH/Pxo4OgaenTpMtrV3OZdvoXpkE4xrjqbelgIujJ3FOqulME9/O4/z14FE/5NwUqGJSiiSHT/kkph5HdqGL4ddC/fzDb1ITjdqRdfr5rDd4S52PnmH7Tpn8ICYCplUarKqjBVF2LiS5j8ZwqIvUJYtDeH6Lzn+zi1YUl5KQ66/eebHhZimsh+Upuly0tBNdDMqxFM5E+FR2WHsEWIoTionm/m/KPZ4IHTc3cA7qito/9jdJC9zDXijAlxQaOP5j+1J3MgHOzWQoh5VQWfrAISk74XcQCL9J69giZsmnDmnxv6KfeDQ9gA8zTZyZHc53qktRtlvWSRZsAZPOo8F8edaMMotBkvcfWDV+gLqVZxLG7fbwO+3sfyn4iYJVX6EgS09mHlbHC7I+bLI0nDunllJFaIMxlsWgHyqLgT5RrPOAV9uUL1B2hkToXC6Jzk/U+P2fBfKspeiIIWZvKwnGkas1YSF/+5QQ6kvDUoQPMv9SiPF9WmTihG3JxfiNcwgabElaJyRACrZMvg4NZSFmoxgb/MU7LXZzGqFX1j80j3MuSvKMZtF4XhkOvd6OfCS+zNI3tECPBavwGtRVlh6K49bJaPY+64HmoW9p6ipubhvx324e0oclOKnwqySRng4XMSvToqx25I4GBmwlM4GzWObPTYY+XcZjTn6hIdRBW7Jv4CVX+voVkQbL03WwSVJuyCzPQ2O/OmgaXZ6fMvPCc3fGILG22LuN6rh+x67Uf2KDkx5F8/3HoTBYHgRbFsSQ2euv4GJ/4nDz1157Jq3iTW+PcZLn+Wo1zwBTniep+yTHzhpMIk3DRrglg/yMKvRifdvCUfr7ZPJaow6X/mQwzeWboVv602wRmAmOEyfy8nmqqC50AOV3ibhgWdF4HPuKFRuHuKE8DZcaRaMtW+r8bX0Peq4PgpmHZrKz0SCKKpjI4dOSsf1j+zgx1vAuovzUORxEm/7K4EzCgzgorsuOdz3x9tdf8hb7xIV5qmCfOpDrszeRX5SYqx1Xo12WCtB8UUvvD0mjr8+C8dQ9Xpe2Xacd184z0YTMuFZrTKGCXvAATt1mLFiKwn4/8fp1aJU3+rMCinAcWd+oMXzH3D7Wge0LqzgviQL8BC3IEu5v9xqvZ1zcu/A9puVEJx2AXepE95PfM6GyxQo55EMiCyTxV8r5Mguz5YWGiSC+dsYEHaUpNJZH/G7cCFsfmJAkhfGwZ6ov7yz2QWa6q+Dw+W7lJYWzCv0O/Dl2Fr+GWfCc+smUZutCKy/mMvDm/aybHwMt6XnUF3cTJiVXEpVfqtpa3kx/OhbjkZH5GD7+Vt0aGETnOow4iKHYH7d+ZcsnVWxwHkRh65LggcXthDbGEBQ2WVY+HQy9E+NwAV5p9DWRo2cX82jEO8wvrGN+KLYKKpt1YCoNhUId5JCPyMR/nt1AxdNFODs3x/hodgjmKHnRXG/leB6/mjIUeiDt/JfWTG8DhzmLIJOhy2gfG0/RZh+Y59rczH5QjRb2itC1NMqOniggvj6BTTUO48Zt+L5648zFD8ynFYFNpPb/kPk82cksNIpGNhbyU5Ugr3jHkBviRT8DNQGFfG5FGx0lGTFTnPoA2lA9TMU2nCFvRcns9Pa0bjs1Q+YKnwAxUsIunRDKK+kn6JbFCHk9i1I3jzI17smErmpot4kQFvHYnCQ+0SfVhSzekMl3/OdCVp2hlTV+pXahdRIS4S5K+ojvSy/Ayr71THI4hiYNmvS3svK0Ka6HxXy99POEG1OJ3l+c1KAZ61xAt1nvWhlOp66lzzAJl0lkG03wY/f9Mg89CtWLViCn9KLwdFiNjwaqYfCd47CkeJ1YPdJExYHBFHsoTUcsSEfl5dcQMPc9RQk8o49V4+l0VuiaehuEq4Nmwkvv6XRxCF/Sjy4C6U1lGjRuD9w2f007na+iT4X5/PMdZu4v1wR0vcAm6/7jTdfC9OmPf+Rx71d/EaykvjmLta6IAvLDtbAlvMG0DDoAp/GnOS3tydA79cJqGlRDX7rtsNs9yV0Wv45pgYZ4jpnEbh58hlvissib3NfjhPr4jthlqz5IoqHkifBs0eDWGL5i/5sE4SLgdEA79+hiIAfLxDwRVH7cRCtWw5X1bK4tHABjHkSjr6LGGQv7Cf3ntGUk6jFx4YGOKHkOjk6LuEN7cVUJrCHI6wVOUpIAZ7tvYr709WhKziAQ1f1wZ8FU2H0+zK6V7iXMpt28HRZM1hsZwlv4zbhx3biKw/CMeROJ87NW4d2gfJ4eMxaOPvsEjxsvs0r48whwa0F0x4/prPuQiS9o4EiNXay44gamvAhA1XTdalqTCZN8h4LSVErcH2uLs1/94fnB4ej1Ww5etX+EoyN/yPHVcUYujaZR8RJQJfhaTAVEiHRP89xVEs7/DTopDzBu4zhniz/dCdsSV9Bd7oVIUW8F1Tuj6P171TpUmQZ6kc0kQF7oa7WbP750oAGbfMo47UouOhvhs8jbVnw2QYY291A9S5voLL+P07NGYVjJWfi0tpTXG4+FaRmC0DH65900egWTfy5i3VGiYOVOuKTyXthSusvsE86QwECMyFPVhT8j7zBpZmXMXBLJ8q8EsFl7VmkJ+TJ05RGQMA2T1SzVASHdVmU4/KDXBVjwfHcL1DxcsL2x+5ssTgEbz8Mp90qTiQwWQpUJA7A74g9tELjJf7duhLPx1rRCYXzvK89BXJUuqnu02Y+omUONXunYPcJKbLpEgFHD1Gae1ofrXfUUK/wRzhne40704+S3RtRmNnshLMkD8JvvRPkEHOX/+RPgz/rJNl7egzqLX1H5gWrGYPMYPwsQ9B41wCHZEbj3R1nKcH5BVu7NEG85SE48GchP7IcR3/PzYDRNg+xTW8sLimJIA1rW1S7cBse5AWT3tUI0r4COD5pLGX+GAECkaNIKNAdq0sXwb1kwm+jFoG78hjeliBPh20OwuRUDzR+LQxrtG7jyapIPugxAYb1HuDh1lraICJH+37agHWCARX8mwUyvwzgo+Y7eN+Sz06Pf5JSnSSbxouBAzjQ5t1+NO1ZF7qN/UNGk8zhq2U1nZseSsbKPjTsZM0eJT+odaMPK/3bRv0v33OQ52vaYKoOnn0efDzDA522ysDzES28+NMulv41ipWOeNC/Z85g4yyCe5UnwsHx3SAkso81BLN5kn0Z7lj6Bk3rRmDM9kAQrBZkvRtddHcUQZt4Lgp/yEe51GSO0j7M4U2rUOzeP1Itl6J1g464zW0vil03gPoRT3htcDc2rErni7uWUvNpb1LYuIRWFKxm2ZdKdL8yk00UpoKRZyysXBjPvl6a7HC5h57a/qD5ArtAtKkC34wchYMDG2Frpjicfe3F+w85krTYOd4825LmZDzlfXpXoavgNL3rnkffLv+gMEcxGPnVhz/9cEZb8Sh4NkuVZmo7c96acjoeNRc3F+vjONt/PGedBYyZP4QTlhnB60pDnLxqCfb9XE2qjbfwsGw69lUcArHHY0krE8Cy4wZGqH1FA4O9tEJdgbSvBFLC6XoKcIvHLbv3wfP+hyCVJA85b+9zQ70FuWlN4uRvv1D1xC6yKV2CC1OOc3TvEM5NnQt+awUBcp+zlhlhA3tQ2DgzrJ4djgbfhClU1ZZTuxwo9fU0Ejo7HY5mnOZf/ZowU/Q9532pprZXn+mj9RQ8ozgeb5zRoFlNdVhpORGWHlnHWWteYdpyU0reUwv6P5CEV7jxgfdZZJ6XyY+XipLld4aupDV0ohtB8v4F3jwQzEUhcrRr+SB0Ch/ndSZv6PP2u5h9xwxaIqux2HwS/N7oAlo3QkGucjG+N3/IMh9+QrVAPp8r/UVXjqtAikMj9awK5BM/xNjr62yIOHYAhIYLoaBYnxdfCCOpxlGU990SJIb68Lf8Y67bmcYbZbpxreYwDPiPJNOonbhbMpM0OjrRebIJHDI4jslbnNBd3JwnKefyzhs/qFH/GR9aIsrWFceof5E1Dk4ThTyRWrIq+Apz78txmj+w7axGOlSfDWduHuIZm+rh9+IplLZaAnKVZ+LrNZE84WwO0zek+NNJEJBajjlbiaebh8KXy2dBWs8AYIscbcfDlL/rDTfP9cVSH0MWXvwYz04b5gbxW/Aq4CVP2GwJDW+MIT5eCgOHc8m36C0HLhuiGKX5OCxmAcN71aBPxJNsLwmCW0sJxfeGksbaIgjOnQ7Zq4dxcasIfHpsjo+NayCluo2VWgBWhG2mglsaeMBekbZemQg2MRWUMimR7/WcgdijevAt4T1cadaDosbHnOdmxloHX2PH5Xmw1P0pl4904ULl7SyFK2ifpjndvKEJJ4pMCAb2oOQiMX4r9I2dNP+ju1Y2MP/uVNj5aB93l83HS++loCHejpZf6OBpx2uwZlAaFdZehsseuiTdaA5jzubwrnIheLJSHKJmbIflfcm0a95b8hetxenfizBPSQxmekTjQte7MNnPiCcsHQky166zk/Zlitv7lqx2fiWtoUhcvcGT/yuvIC3n+ZgeLA6W5crAzn95t9Y/XnAonHfNjKM5Gz+zV+EeDuuL4uT2Qn6y+x53f7OARuNDeH7xW5ohK0HbLct41b9BjL3/mS/9/cGhX+ZgR9AjkpmqAolaBXhwii3OMUplv8lOZNfUTdKXR1CMVSm49Aph0r9P+ER5NGCzOUqVWIHMogY+XeZGUU07UWfLC8rUUgN8MoISmxfCrf+0ocTtCK78u4HiXWJRx9MLI3dasf3YE3hnw3ZY9MaajtxQgiUVavBs1WdIWJwJL9wssaf6G9SuDcKdHQfR+vg1Vm2q5hlJL1B9swwUbR6Esx2O9ECzm0a5XcLiNyfwXSOCOk3DRyblsKgvl6fOkIAT0Z3Ufr0Ivm60h7LFO7hzngdfG/scdKuE8OjpTHhpqMOyXhYgNNDHfhmV2PR0Io+MvMqvdHbj1drNuHnBOAz7RhirEQ5hIiowMCMdPo3ZzAZLgmGRsQ80/j6Mzzz2QrOuO0L8Ut4tr4tNrAeaFfm4QVaXTnVH0+XcGTz32j6IPjeXZuYXo5TcIrJem03xSSYwQTcWnXqOs//ECnx3L52MC5bh72Q18A+/h9bXc6H91yt+yNKQc9iKepcewDnJB3mL3T6MDnPj6FuDqDOwFw/M8iL9j95oajsG3sxZg4u376XVfwXAIvAETnQtxOSpc1FDKwBGXQ6kK76jeEmCAOibyoHj63Ho3LYG+ha4ksn7L3ysdBSHig3TjdQCTtsqxhnWI2BHQgeJuOZSzf61dFLwOv06vhUnlXdizvBJPNRkRpG/88GzWh7G3ZAm1aokSL+6HEuNb5B5ZQ4NPWxibR1i77HuNGVOH281FoVmhQ/0L9eW6peYcv6BMWh1S5oUQi/B6+FQLFk4iYraAjGxahqIXLgLv2e/pbPm8bRj4CgNljqx/X01Wrd8DKteqSTTpd14/ch4MD97C3eMaIDE9YsgQD+f/y55wZvL5vAspd9If/+jBr3J3LBkAuzxT4Nlz/axh3A9rVet5mk7foJneidOSA2A0qdZmH8mD+11tCFphx3Jf0hno7ZXnHJeBH9LisDjKEVuLlvNU/228F+1e5SgOgbqn03FgVoPPh7vTDdXXuYa35+wfmAOuV7fwL0BMtzhFgj3548B6apJfL12GCa5/cfRpUa4vvsOr7TXoUO9Y/nt+j1o/mIcfVYUgrigpzhc4UNXFi6ht2NUYbmSM2+o/Q0DV+9xzlVBuik8jEcKAJwkjXlOrAqmxQiT3uRyenjsN0VmD2Bi/jr06jpN1458w+NPJsNphbWgEiDKS0+norLnNBRzvwMtTW/pJvWRnsY8vLzwILjpG0KW1lMoPyEOwnE7OUYtCh49mYgzhqbTgWpNmPo6ll62HedoSXWIhzZYEXmInMRSQKIzHb09ynhDixU1GPrQxbm1kHnNFff+kQdJ2U0U8kUTaM0w2AqeoOfCALYLp+PtrdugzlOTnJ+kcFQ7Qbrec5J43oFunzNp2buTmJvdQdvFgmncQXe8b3sVE1L9gB1E4Ugyo+uuOXhJUZLPr7qIgVX3YP69mWRiR7S6X5P1X27E8x6WoFOZQd/M/HDv/s2UIW6Gh+9q8B/XanhrbovvKl+xQPVHcs3Whqr8x5S1RZFHfVhPD3yy4GdfJtgfms+Fi9dQy1ZpDhZcCT6pMvBQxp4sB19TFIliiNAVOnF1KxncfocNChLQZGbH8m2ttIVGQUzyC0y71IOuLbN57NybnP9RAlSzhijO/B5sFbCA9tddlNwkCP3ZItR4wohMo0fz5PdZfH/Hdtg/kAdHTxnA6lu+rF0zgRRyxQBOWOGTjmicZzSDLLU24bp/40Ep5htTkwtXjynC0892kGWOEYw+qcGpi52p/sYtGvtiL358sYbFzsSDzSNN7JPfj0VLoviB1CQIH/6D8qfXYfcBAdAp2YcyEy9T4cwaGmmugZ3L5HDArBXfn9GDXywGKz5lc+D1P3Dp+k1+e+QZeM+4jmNcpXD7okP0dvFEHlhtDqHGKVwYl4Y5bl4gahdGKV2FYNJ1EDZ4fcH1Ph8pqmkuSOhNgBs9U+jN3UoY/8sCPa+ZQMz7MEyOvQy3Sy146aJIsNolxJ+uj4SOak1MvbSLdl8xAv84WT46SQmsXORgo6wPTJlWhprXq7D8hAT0tm7jlu7naHgpla2FDajaSI0rKz7DjsgGGrafDfOOG+BVeUOYlXULjwfl4NQYbT7+1wwnZInz47UV5L0onDh+CxzZKURytpMgO9sRH+tK4nlZUaxQEIOVG81wrk49C+/5gw5mjrDhxEkYLaEMk1dp4+T1AZgU9YYcv1yhU9nWsL/BFP4bf5NiZ79F0bMV7HMQYfBsMI89tg4Stz3Hw0N/yTjZAEy27eWlR8yhm+dwy6FcmHdSENTTW/jetB5Waj5OfXlJqG+QAfNsA0grYBg6Om/g92Nv+fFTIfB554Dzxbzpfd49Msi0YivPyZQ1OZtlO5gnJ52hKT9scb+qNDR9XMmbdgdx9Q0xmFP/Bfz8PkKRdC4V9tXD9AE7NDy4hDrUhSHwaSMruh7gdTcVsGT5SYwQvw9uVdNgf8ZjTo3QwcHvfhhqJwBRlxdBhGMXDhXZYesiNZz+rQ+sa1W4L6SSDrRLU37KRzJYogw2Lp851v00y5/fxT2tS/naiXIOPrATrmv94vS1Q3zK8yN2HheC7HBV7Kh1QoX8ZE62msESFSv5m70J3As4xFvaFuLiFkcMDDGGB3vqOPDXMexouUBXIyfglj/uOPvhewjfJom1V4/D8Z+jyNZSF0qqTqFWz1QyPjcVs4O7SO07MzomUVLVe45ND6HUN+N4TZMapG9yh3/181ioLI2TL42EiFn1IHtmJmi41WDB50S8WVBAdt8MIbTHl4sTazGnHuFgQSZGNExgO3qB9+/10Sbr3SwYdwnH/5GGCeK1tErqMi9sDoKN/W9Z5t9EnGBVjC8OLqfA8hEsNK8J2dQSzt16x6a7flH2g2VUe/YMOz58R1OuzeH05ar4z7uKAqauweYbxjDNoYT/zWmiouixIDe4A++IbYUR9AguHtCiJw/l8HuuMh45oQjBgT3cdqkeos4NweshT7w1+BgaPu+AqwF6PFZuO1omD8HOc4YgQY6UMfsfRF75xk/7zuE+mYkc8nQ+lZltoCun3mHFhwA8IysAoDsGXqzIwv79u9F3xXX4VK5OXs5KuPTLUdZ2SMAt97aQtbM22G5I5y6XVjJ4950TolbBgqcXwGNmC/2Zu5ic9vqT/P4mmKwhB3dunGDvscDj+8bjhxXyYPBYnFTj3ThLv5Ef3xAkF5lOVg8hCN4eQl/bNkDe6KlkIDcGdl7x477eGlpZLM/D99Vpg9lR/DB/MjS5HwbT4lmgWniBdmxw5p4Hytzo2gduV1fxGbsbeHXVIRwggKD4UO5+asNv3lWT1uk3/PaECzbZb4IJOYvh/e4S+KG0l25JS8HnUAdSv6WGs8I2YCy30SOPNF4S34ELtmXCsPx3XuYtiCo1SqBzzRBSC0pZto/gs4cGD2ksJYnY/whNrYkbc+Hq4Cbwv2sKX1tDuD/PCYM/T2H7iJe4caYsQftYbj2fDqmC13iSWyzJ1MmCd4YdnJAYRK29qljuPMjRhzswV2UFmLgrw8bYjeSybYiXfVKF0LPn2WDVbcAnA3Crupai9YFcJgtAmngjWERZcueXNShxyQIMQlIwKHgOZI+eRTnjEM49s4CxmwUhbPUh+Ku8GeP+KrODnyD8K5uGD4d2Qvu4x3g50A+0pozGQ89P8JNLL3BGwkeYZmlLyy+PgU7hXNS7WEEjvlwD0wmZNKz1AKyMUvD9uEjOrs3CIetwOHFuLFxIrMYPzo/43ZA231njwL6OdbSwuQoXzO2mqJ2XWFfyJYcUWMLNxZtIYXIQnawZz3WLY3Fd4300HVtL4R8kwL23gZKzCkjIdwrUpgZRm8YRXDN8FaQnL8EJq43RV7WLx+Z7sLTXOuxYsZvL7ilAV+xh/BYyH3/q9sCKS+9w5Zdq3nzkDXwesxsErk5Cr8wfOKFCFtY9DwWXQUfweP4PDx6ypy9xXpAofgiHnaLxprMX+Ci7c+IhOVhuHISNJQH4yUAAjrY0wP0drZwcdwSs66fDR3yO/85cwct5uqDZIshh52/T0ZuWPHFGAZJDMXqGjIR9Ra/IfXoc738QTKcWqcH7eGk8PuTICnMe0pj5n+nm/j04IS6W3/+eCvcnHOOhe/+x/+fpkKiZBkkJGjzj3lq01OnGKfNH8QKvIPg59Rpm5VThx7AxNGveTDA7fZfsGup56YUVMA8bIa/3JNPP5+QcfY1NaQLGbhvkNVWGEC66EVy+KJJqyisItnuNO5seYWxLCMuZqdP4v4dJSUGcCr7ow6GAKCoudkJM1aOnom/w5O8Bntj/EIzypWDmykw88WUhSOiNBVVpBB+pKPR64sieTQb4U/IuwidJ/hW5jY9p/uV/9ZdopvsouLm0Fyv/S8aH62zRYiiAK3fdx8ZYLfh9bBi6Lqzh3Gnd8ExfF37OVaGEK23oP3oUhSQU0DXdc5BUmoYnX8jxug1pmBBpS2s8xOH573Y28lOCv2ld8DLEkd4b/gbnDFeeJ+EO1xrH8pc39RxRJAgtkYdhzZP1tMYwDlyil3BV0FYqn72LYu59Iqk1X/npvAqulZGGdzNKoEloPc4tO80mZqPhVsw0GPNtGVcbJbOg4gDP0vHDqv+UwP6GE9w0L+eBM+M5uPUP7xpbDMdv/sLBcntcEHsXw07/B2EOo2HR+wxuDFgPeyszQfLDJdi1Yg59nhbHXybO5UTZvfzT5BlUvpwEe1XOY95BX0qQlof/JN9TwWxz6la9iVfl7DAkt4qaNJ7ipwQlsPwmjJo9nbxFUxnXr7lJ47w/49BESXqYJAExaAw+oj1gs8kMHvoOsyC4Q2zcLFCti6HVDVcgzdoclyrbwpkvAjDvcSdM9jeHX7lGtD4E+NOkYHpX/xk8a4+C0dRcfBimzkZBG6jFpwGOPdGC8RUe8Mo3hfTKE2Fvogtki2yDRK1ibupSYOE5W6jbW5fPiE4EJRUrVDvwgetOTecez89Usn8XjVn0kV8N7YP/7Owowukwel2YCNb2E2BNuT9NNrlC/0n18sxcDZz+dzlO+XEVUx3T8VVDDSR/0oTSwk6K61yM+2r3YKpVJQl0usEyX2k6770dJttX8/zda8GuSB7kJHTw75y34PNoMgvpRpJnTgRdbZPmIrlcUNyVhnl/U1HxoBh0b12IIiFzYUuiGmv73+HygC/8ramZIgxjeNDxMX3/I4S+P2dC8zsrcgtxpJXG+vj0cx7pi58i+7vX4au+PwlZTkVH3YuQWTkK+lSEYRV+wVvefeS3I45/tqaA24kV8FDuJWU61KN20h1+1IOw+3YqlS46CAs2V/Ed9QLY7nIVgpfOhrNrz1HIoel8ynAOtx8WAf0ZbriH7OFWgRpmt8aCxMWfXLPHnzctXoVWJxxRpScED1arwn4TGVY4GsVP09vIPFoa2kd74+cvHjBf+giNmKWL4ys0saNVDiKXDIKe+FN8frGdJfrH0eGdz3hvUBva9Eih/wbAaPH9JC0kALHZYRi7cS457buKUf51kBK1GAcmH2btQTPIzzYkB7tKFgqVBOGFs3BsgRN22a3nWOvp8J2LYd/3yWiWthFu22vz5o4y+rB+PExIS+P7m/PRqmEO9bgdw8TIc/j8VA9VGS+BMR+bwOr+KlqyZzyMGvxLq+bWU3+oHUYnFpN/3Qo2tBmH8wYOgmTsUv4ob8V/47VAIj+IR51NoJH3ZGDMlGIu6lwOp29fRo0HS6ki/APP+rkBLmeqQtu8g/xneyPmh7vB4Po7IGxXCCP2XWLDP9chbEo+FUyM5NU62pDTIEc50esx5qQ/zkrThssp3XzB7DmW3nwB+YPH6U5wG3j0ToK8T3pUM+MH2MWN51Fq53n0+FaqrWzmqrXbIWfYHIyldFjbatr/zf89b3eGpr5+yPkhvdRRLEXBPeMhaEokfg9ZiSOURdlGF7hltxno3c3m+NsPoOCEI+nmzkPBoRyed8aDzd5rc9VeVxRcc5inNzMM7YmgmK23IWmVEZ52c+XAvtNgeqcEwvKToa66CszGe9DOZoDZlztB262Mbp9Kwe7X3jy/q5gnvRNgsTGr+bv7CRZUe0Afogxhmu9h9n98iH6erGVrxzcQbJQIa8gFNcwOY7NYH58Ytx8emiFsEd1KWy0kccEIB4y52c/qw5vJ3s+Cli3qAuc2J6iP/IeloqNhyKeSK09tpf6vo9B3wXGepdlEXg8OQ424H06cEwGp/hE0p0IYfJ+8hFlRO3lfaD5OydhB+5Qj4eNFL2jwDOOYSaH45PlC/PvWBAKioziq6DDqj9qHcYVenPR2P5s8nMMGZ4RoaMp48F1gzztqzGCSRBraPzGD1PZ4/KhfxLZnjbH/8hf6KLGOUpqy6WX0XJooPh1EIxX4xkwlOrV6EiZsQbBqH8R1k92h+9V4uLyCSMjJjk9dIHikmsHWz/zR+fFhuGu1kKfdHyQH0yRKu6SP5QnRqNL7ixZsFYaWQE9clb4TH8wTp4Gvklw69IOLNebQ7MspULfMHKZETSXz0WNhpf940jRwxEfjhHBN7msYXVMFpruW4aTYerC7cJafqXdiYJUu1Ms6s+m8bfjk+gVyGP2eq9PmQ9k7Hd5gKEUXA/pRZuQEDK+1hJ14jsRstDDaQpnObLaikWVyMLbQDervG9B1pSRw0PwK1ftNYLrTbDgsXczKJXrgaFxPWY6rSOxzAPlJjiSRhskwOrgKehslIFoyE/TiytgppxiKzj2jq8EmcNF6AS3ZIoPtF9binEA7ypo7A3Z8NgL1rI3gJxGHDdqiVGiWCjvmmeLF5Ve4Pd4Q9LR34DklHcio0USDL7f4zE5RdGn9RX89Xdka8jg+rZpMz4rAuC4Lfi+tA4kLgjjicT3+sXaBqxFGuDqogg5HNOIxG0WcIeVCl462wwfDibBbIgEkvfORBJMo5PxLzpY+TnkRU1Fa4QRMvlLPnSqIIw8ZQFLeZBypfwQXRyxh91RTjjrSx6othrRgzVhwmzUJe3xFsbZcBqRt99G8viI0PrMIOsT7+OhBfQzUAnApn8VLXMPpY+IU6IAx8Gu3NmwsdQKtJwxtQp7sfjGTs3Lq4F7HM+iXy+ZlkgZsWTANPhlaY/mkHFJPUoTF+99iVNVJkJeWpLYzCXj51xdQcq3l1Bc6EJs7ih2mGdLDmSLka5RJyXVzuVgvhpXjp8I83elkHJNP78qmwIrBZrCzm8Lz7xmxWnUHV33o5wrZdWC0eBunDqnR6a5J4NoAsGv4Bi5pdKJdPlcwJvcAXhxKgfOH3oFN1Q3YqNpHtxovYGL9aPC49AumJxxDlc8pGHi6Aqes9mSv3HJcGSFGXkffgLbqES6rFYRJ5w6hzw5L/LRzJ6Q3XaeIxutc/1YSKjIG8dyfv+y0TJ2EZ48DdVBC+7TbuEx8Cm2M9+NMx0mQ9EAGD7cVo4NsMmWv1YdMWWNwifwIY+yOgdyj9dw7fhNj00xcmVBPVw+b0b3zntC+qo+aPiqBYE0LZB1rpPZLspzt/xKDl6hiSpMehi14yNqppRw/4xaEvbGEoB9/OP+hMx1u+0cG/wRo/bZSODdrB4X+a0P5kDrQcLfhI+0TgUcH43eXLihrSab9l3bzDncL+GIqBxNkh2B38ny4v96QC6UlQeRaATw/v4SyjSZC2Tt/CjZ2Jpv5r+nhB3cMv/ME7TPu8JGWieAaeJ2FF2jj/tYPlNOzBbMuF9Cjv4JwbLgBfbgO/42pQ4FGUfhu0ISLfg7y+ysCeN3aF96HeJKrZhkPxqWT1YFs1hOtQ5u2CbD1fSHLTVSgXq9yUH32BjLaDKA4QwUbPzpAr/tupkXTwTdFBkYp6sLGV5ewdPl7erEgnb+5XuWhggdQlyrIootW48uRO+hskCToW8zls1fieeWhw9SXeIFPyzviDMdqavP8xzerw6jpwT/8958OxHje5oPv/WFp4QzWnF9IzT4FeLVdhHRUt9PVGBUM+n6T7l2Xh4dBrby0uwJcUmqx9uYqaNE8Bu8WpVBK0XKAnoNo4buFZboM4YXHEBXKnECN6lIweLQYJxkCRv/ypsLYcbDPZwkkVi2mrKdjYP+mcq4LL0HPI4spUtIF959axM9MLSAzZ4AHnA6Su+FOrDKdBBdrpbA1IQh8IqwwVvMvqbdkcfCRZlI4FkAbfp1gWiNJy+aMANGsbbhP8Thuq+2j/BNGMPn9Pu4uyiPfCgtU+T6AxfP/4tlJsvBE9z5kDpyHB8d/kNZ0c1SLk6VWB6aI7FcYObEHdEUvkbOdEqgnLKHksu9wKeEODJedAzNFS44S7KCr9x6gRkE1dBSMJWtxQajfZIYfbJ/j4g3W+MHFBCX3W/OejAc4C0dhSY0kTS8wAvudJrA9tBo/Hgymb95tJJwazf0qtXzr7iIwXfcO59zZyYNjP4CLrhwsD91EvVOe0EbprZR+3pa8WtM5py8WvZd60riBybDl2g28s14Qzu0/BpOqnnFwchwv9rbmG/ukwDhMDSV91dEv7RmoHxRDnwvj4I+FFqYPetOy8aX0YvQePnn9FNSPcuXXQUaYetYUO8XFOfiFAezd+A2swu5wdFUD37AZxNUVazhlwJCD1YUh7W09lY8LxCEhc1C+nAFO/sIYUjWZ13WsxbJhXZi2NofVqnxBd9odcJJ9S6f2CYKC7gi+s/0vJB58gcdjC2mkuw1KbFmJNd9q6L+bNlwZZs8SYdow8Y83LNpWwlWlD/mF025MzlyHu0Mi6GZLA2ub7uY8+XF0b+JI0B7Upn+vp4PfPmHcdXUCxlUZ8vkJJqgzfgU3hemS5E8RtlIYD6rKY8Fs81P8My8DvGJ2wtH8FNpj/AulnqZx4P3PtE3IgvaYCYO9/jDsXXoLClrmY+JZSzB8Y4rlmo54fFkNZAX4wqZ7D/F5khpYmc2G4vgJ0L5mBlWqLaO2B/tQysOfKuxVcYbWJSz4fhEMA6dB0ukvLBweSqWPb2PmZg8asMrA31cFebd9Ef033hh9vTfB3dF6kLjYnyNPSMHjOTOoSFaUza1KuMFtL/V/EMf/wsRgVnonus9VhAsx92j9qSC4mI6knh9KbTV/8WWuPChai/DWgfNs8uY1iY5WBKfp06Aq15Ya+93w+vUWHt9bA9VjdFhovAFFVPWis7Ukhfcqw829I3H75nwY2DqeXSuLsfOsM63do4W7JfZTzqtc+vpenc1YG9Z4RtHFHTvxs0clrBlKBcOKZaBvd4Ne6d3EZWbnOKZwCu3t1YCfixZQe48kLF/vyHsvfcVXd9ax/pwf4DU0jw/v+QKlaubspC0OK7rEKXPOTXyvchY3+DyB1zJv0Mv/FSZtrEcxdkSP7ZMxTUIBTPE3DknU0H8XdFljUxM6GZvwG/1tuGfPF9TT1cUf67ZCY6khdGi+o1drvNA3QYwrHqTR9KxflDdyPkl4xUHqsWH6JjKKzzqogiF3cckIJ5L5NwjnpWXxivtayjr+BjOip+JPvwA+VVSB1QYWECElDa1ir3n6WQHuDZtK3RvjcWe4P3V73+ZmsZUw+rUAC2vowSuJO3Q2/gW96VKGyC/JvN7kJEVMeMNhPcKwZclMLjRNoax5RmD6HOh1pR7cGNyBWk5xvMLrOPkFepK+3CE4FvmVGm4OUs9yDXjdUYJ5b+pw3wFxKpD+QdPPFWNDWBVHNpjQiv13wGZGHfyzFoTHrcu5qFoD16/K5gMjNsE7AQP68d4QvseqQmjKT4yrb8Cg1yNAx3QLZT4vIsGRCcgNmWDY9Ifc0sX46t5lVLffiLuvr2Wh7TKQqDeOhKriqa1ZnTafuYZtS/K4u0uS3peNxH71V7xF/g8NR02HaoF6POwVDFVXMuHt/EpwPjedvbdlkHjtEF4xW4uGTu2wNUceLB0kyOpPEQV2ZmOrwEnCYRGMdtnDaGsC7c9yyKZyLfa3aIPzWxVS7X6HCfti+PHpIkj4nIiOp8JhddNOWju/GV9HW6DKJYCcb8LgE3SMzhWshgDPf7xpjTnu6VCkk6/e8znJElK3c+Ls2hFQnKkM9srt8PU/TxRpdsGt43fw190vIFfqAk6438V2pxJRVG4mFFemIBUWcrH8eW5Tlees0nvwKl6Mvgt2scLncLD4ZgJpCvpQ67SP+yYPgXzBRvKaq4JH+47S1j+2oHpdHiZdFsPaPX7wzFwLxDtHg+mHIF7vm0tbP2rTuJTZdHquIj7LK8RQrQwa3r2Nv3QYQproAOFhHb7Q2wOP5mfRmEEPPL3rJ97Zv4H1ZjSy0pt6fHNqMszSGYnmwYTSglPgQkAgLpDyooxBB5RyqeG5P4LgRUgwfb9hCQ9aGslV2pnNe6P4y5yf1G7bRRXNO3BGxAPe81kNHFY0A57VgPQnfdy84ja8Vg2ma96ytKw1hRemuoLrnSfoGlEI2054cdiQDgQnbcVLOolsrzQVlJ1XwPRXW3HSKT8OT1emCskdJNuZh366BjDpqhG7vRVit2uGMP7APdI3fgITlLfwPKEkGDUvF/c/H0CpYXnQTBWHoyfs+OwsG3hfaMaTHU+Q3UkbXNUhR803zGHZmbfgoawDoxW98cXGf5z3fSaCZSe27VeCoZYEmr/HFi62GdKyjNO8q0gFdo8TQdUl47nHKhI8TmyEUbuGqb/mPhjHJqLqv8+4u7Ec/o3QAk33Ql6wpITaDhpCe3MJhv8nDJ8zUsj8igLqHvJG0f5LMNJqHJR+tafoK4MwWHsKeuR2U4HZLxi17huOv9YFqw5m0eYfZ6Btij4kpkbTCx8VTnqaAt9/jGP/CSdh+mRfDvHtgeDsej6vuBx+/NSALyYFKJhnAkonFtCE2k70L/vLZiu88YCvCkz/asg2Fbm4bUAbPJoTeXvaQxIZW412V2NIS/cSxyx1hPr+8/y68yetSTeFtTMU4a51MEz3/8njDI3Bt3wa7LbM5JojC2la7jdKmiUHTgoP6KWXGdx88ZsMc/JR4uQEEh2fx6q+1/HHHxFy/uvKo7d+5D4LJyg9PB72mrlzaM0vWBSZDzZWr2hKag3EV7pyRdIy/lUrSWdH+JP6DFXYhrF0PiqAL2Y85e8VLvDCPxaMZnWiiYMjbbv3iJKrTEjUUwBGNcazg8oesn7AIPvVCIsmdlHF2JfUV+2Lfzru8795hqgWoggX0xtY4I4ryku8peCsIXSueY6n/lyAks7FVLY9G9fhdky8IQKxKjo0dHAfJxX7A2jNQbfRM+k2tPG1ye5wIWYcxr0+hoXRWrBlpj3c873Jd5ceh7DWzaxXJ8rYI40mGSNxRNlLXn1/KSxSFoKFruMhcZ0ReRQlYE6hGO7IW4qrvUfQ74vV9Pt8A2tkFcPFfCX40TIbXtZMAaeldXgNx9DC262oPeozaJ95wEESEriiN5DDHmjDYpnj1GO+gU+oGcPc9MNk5OxIq9b1ULNZJ5bdvsue/kIsX2cOFg9PUYWIGN6HLLh2Zyn1NCLXtZfw45P7YNLJ8RD25y0u22oMhf0uKCOpDiajjWi+cjJ+mjqX636HYPLIdxxfOQ9mO9Xy859T4eKFFlCOmUP5aj9ghM4Y3GWfxRKj7UnH6TXJy0nisk/3aPUBVZixNhE/a4aAd9M+Hswo517/GJApr8H87HJWvHQSk+19SSsCYWiVJuWuEIVom3kw+dUecMYu8lCez+dDVsOvgXL+ZnAKnasV4P6edXRQrBadfirxyculLPC7npzk1uPFH+JcklUHuqURfP6KJJQ/VyDHtn4K8hjmt4U3MOpYNDycc5VdxqzAuw+/s9amRXz6mTYc+NIJUdGx9KxJAsVTJai1UwC+PX8NcxN/kM/Uq5S67zmMEJIDqo3l6Xde0Y0Vunj5yGzufNsLM3b14eBgGKe114JF+QB/vTkKNuxXh+01xnDn/XhqmCMF0l9y0X/aPlg54idc0JxBWsc86YGgBRz3+ACzV2bgWOu7sEhvA5c99eO7OYHQEqIOAUsdcHLmYrp1UAPiOr/Syamq9NSkFr/MW4IH4BXnRE3iCWODwPfcaEgXCCAvFxFIafjAh0USME+2GadcGkAv92BwjJWhgnObScx3OmzQusgpx4RA6GkFTRb7QcstgiG0+wL3B+pj2s0otHH3gdvqY7A+oZ3Cl02GgcUysMEmhNfsuYd9dZ14aB/B4o5NbKvrR6cf7IN7R21AccwEKHy6iRpsjnLVQkXsOFtDK85dADv7gxx4aiPtU68ltfxl4DtdFuz+66eqgD80kHaX730UgZ6rqyh5og2f3J4MabENxOvqwG+TKIx4YUsWf/zphflj+KX7kw/eUKRB2ae0f281V5pUYZugOHDvTIhxCMeslbe5UGSIF94xh4aaYpZ3XkAPVo8j44se6DFxNn9RmQ5NJkF8S+8IH5caAQ4WDWxw8QAkfTvHox8YUnvOUfK4GQ9Fs0RhveRo6Ln0ni0uIpc+GoE/WBjkSybhSD9xPtg+EtyDL8BNTwFoXfEUHB3z2bL1E+hX3UK4sR52D7qRS7IvxpbMo3sdx3nwggI4HBnNO12EccYMNSxtfUOXT+tAxQFVFPD5DPPvSmHp8wpQUDGHQKcEGCu+B1O0u0i5vpHV3WfSx7gAOLrPj3Ml//IKS3uuFTAGEY3N7H1lEDofRcCATg/N+KrLOxIO4LS3Q7DndSw/aQygE36SoN1tz5Xh82n8st/UASdpSVY0vPQWpxc/F0Ojz3iQUxyiFHE1OLDRFVvveXDZr6No9vEAVn20o/4efV5v04NCMbN5Sup59vs+EtwHhyjENAoUTTexVqsMbPzYiHVWb8FZ+BNEvmvBlsCpaDhzChS7fkZKLWPHy7fRYWUI6JWupIu/uvnAyC1orfQLz4eF0lWHSfBn5XNeeeEotij48xF3S7AdU4aNfj/gfk0LDO7YQV8/HOG6X5Nhtpk5tWQk4lFDNS5qjuaVdil0ZLgAot0zsDTOHU17W2DbrTFQ3BoME70ccVZ+L8iuWEWpo46yw6McWDfCFmNqgJyUdSFOVwPQLRCt5x/BMIc06H5XCs21p1GqXxjshOP4ZsRYWLNtEWc/mgISG9OgcGINGI/8CUMCZSQs0gb7rr5A68ePcOTWjSzYMBJFDwtCdOMMfvf3IyiLC6JD6k52WWVPXU3ZVGK8h6Ta1lCdXAqJfdSFwzblNBvi0aH6JWXP+QUfXXW4T96Vktf188raYp7bbUeyvWqwFQ9i1dSVKH5DAW8fEqOUpwtJyn8N+hWdRydh5rEl56AzRgWCKp/C8OvrlGssBrb2FaTisAK/h3fg8kflpP1AmI/OPsAfiSHqnS7+ySyi3jXhKNvznX6aBcAZs90wcXs1xI00gc43KtyySBEC+jXQx9WDIyQjqMxUjo43n+aVO2Xh3MG7tPjpMt5pfxxnS5jDDqtf8OFAO3RddKGEifUcdkoRsm6fosAnqfik2Y1bjM5CtKMpfPAWQ0m8zHPn7SPdUm9+8CKdusdOoZDwPhD2fs+20Z2QpGMA/bP38ReBzWiXYYzrQo5Ahr0SB8f38DYvUTqQYMBnjJ4wGo+DbMVmOFvZBjsOpWBdawc/FvhOAUcq+ZT9Ayj9OkTf9x4D5VyEnTqPMcD6FjoLW3Jw5nTSTq3j+aPvEtyX59z6c6zqvw00RyvAm8h+1AuPR5vOk3Bu6g04k6+E6r0IcZ2TyLPXhX3MjPntJR1QunAbBYPm0jwtGe6v8cG1PwPBWtud75cn8y6pWXywyghOyspAzo0DLOlugpCbyMst31G/tz0sazgJU4RrebyiAXQu2I6XHyH8ufgXXG9LoHCOCDV/ug7Lm9OppLoF9nmLYNavzewZE0DSf80g4JgaWHxRB5lgRTx7ZgLPDJ7GPnm7aF1dNVfIHIQpT/xZ9rEwmOhmUbVPK9+VE6dQkUUs1CzOqqbIfS6emLBwAG58aaOzfSNgxo9+cPv0F7ocN0LjmfUwe0cK7G4PhjNJFeT7YRRa3LoLC65qQ8+4ZswzdMIHpRtZSrKNltQeZNOlu2l9qCNqZcmQjnQlHDtrCP1vyqnqQSXtWehDr9UMcUrZXxwYFgDTIlss/jcTBGR9odhGAaSKV5Bi1UgM/fiaN88XhY/rEvHq5WROsUrkqQ93Y6XIfPQ7MxM2fMplv/dFoCx6B6PL3SF7uyxsb7iCIuanwMAqhAo7XbhkpSV4Z/SzqGAmtztuQ/3MbF63LAosZp7Ewd2IL+7/Aq2QLRwnLwefti2m/Fe+5KuzGMOd12HErRn8Snc7vEkWgtRTS+nUqu1QweMgSLcVLqa7gb3XZpA7IQO0/RtEzNGH1wa/YepFc3w1YzU9jJoKb2fqk9bDXxTkHERb3yWQ1PBDnv5uH/0tCSPdssNgkmxIxtfVYVmIF0gGNLKVxn1oOqRFufPy6X63L+xxDMT23m/oJ/sCH4caQuTyceRh4gKhx7oxsPEne+omYqr6bgh90ksTrW7jMkN1nn97JEyI+IKvOi6jQ7wOXlF1h9rBND6z7DaPidMiu+gS/nR/FW2QVoGx3jE4S7kGipVM4b3fRo6a+YLNyjxR3HSI1vy8wrdd4vHvXwMIu9YHUhv9KD/0PZg1ldDw3Wn4dVoX3/FaAPvTsnjh9tu4pUkYzHSksGuhDxoX++Hlaf0YJ7INAi8nwVzpVBibf5BfJPbDtnIx+BBtiH/OxcL5yN/YWuFGAq/kSDnBAYqujwb9d0pgmOjH4a5S4CN9H+5f+IB9vPB/FNOHOhCMGgDgb9gJZWZnhGSXUEr+lKLQMBtEpUiDpKlEKCpFhaIppUEobaMoREZLS5KVRJFKOM+5iJdTBhO5VrMRk5IBDK8GceHMfo78awKxmYJgESVJzV0TSN00ny1/F7N4nwnN/HAYFsVZ4JYsZUjV/Y+wmGHJTCOsyazmUndhdPDOh66Fpajr54f5Qtn0TbAcB79U4u9IETDKzIahi+YgaiyB4ZOyaWxfNzee+42//er4whxvDtlxlsZ3q8Bog50w4Dyf/12yxtD0AV7cW0h7Px4AyVx5+vjiI3auSmafJ9LAC6/DXvWN2HxVngR//MEDI99RjkMWHj9ZzK7R0VSy0A+FN4mBxKS3vMblLTqVVuGb3fa8RquCPHSfUszFV5AvUQr64d0QftccdP5doubOWr4tr8AqC2TYcYcyjjKzx/Ib8ZQ5ejSqpU+l5NOiMMp0J2e0dqJZozgrH52Bu+z6MWS0Iv6W96UmXk6K067SyVBrWGlsx9oNN+jg4T48GvuNng3HUZyQJjZ2FIGPZx9tPxhKI20nQ0DKNYpLt8UZS3/Spy5FVnhxlc4X3aMbqjL8uWgZXRXZxXoWulA8axQ/PjQdxzxpwCDIg1dLj6NTyHVAIWWw+a8Z57UdwN0XFEBbKwwS/hsBbdM7IG1sFYwXNeJJ13fRWz8BLGt4AAlPJNhMWQXEToTQQYPxMFdyEkcJM7+znwTbDvfQg5ByXj3qDy353IrtzsqQrLEMn0pP4/8KlnEfHKfcQwsxzc6RWkuO8ENJZ5zSJgWmcdKgNsGMaKYM3D+bxOdNA0j8/gF2+cmcu28BKXvPZM0Xj2nrCgtYE3wWP3ov5xWTbmHg43E4ReARG8tepfNOy+iJmCcYxr3AcmUF8EZF+nH6K0x3FiCNH32QMX87bRhbTd+KK2DuYwPcrSuIamkasH/ZT/Z6pUP91ktw0r1oLp74l2KuWfAEs3M8Nf8drs/W4SY9EShRbmTt2ANcMKYTRxrF0FolI7iWVMFdWsGsap5Dgw136O8ISxguSqHoD+3kqbYIB9tsWdVvEju/OIH1sZ6svu0hSIWFYUe5LKTPqQW198zHzkTR0gw1aE9dyyXHMsFIFUlsSjE5NHXCQRVD2HdmGE0EBNhyRjpcPCXOfcXD+GDxB8zvXAeGgyEsF/Od1SpGwH3LIAgLLeM9bbJA5S20LzOD1ota43TfRVQ6aE1rAraR1WcpeHXKDoMnR+Nz71s4csNj9u3+Sgd2e0P4iGJKaUzBWLs4VvsBsONJK4yNcwDtZbPhhcxrEt2njP8S1nHmujRwKATSELVGVzcx2HN2M80bWoi/boejUlsQeHprwa+XUZR78Tv9O/Ked4UJcd00YZi5dQuk5s/iC4OirGNYT/rT2ni+mAv4O+px+PIiTL84DJknx4Prsjba6ruTlKuP0cIxn+BonDgLlQzwI6m/XK7RDws9DrJevQR4kiXNG78cHf38YJHIAjhkRTDpuCB8vjSHazN6YdS1U9DUIwvfliXx1eYE+n27F+wjJTHgwGEotD7PI3zy6OYGS94cY0Jq/mYwtV4Cbgm/oLwCSUpZUwwrDkdgvfYTrm08gR3pE3jfUVvYPUMDhGzuYN2olbzm4DQwqC+j1a5hcOrAPzS2d4Pgc3aQEabF87VlYeH9UXjYqBG3vd8MPpe9eaCgm6O2KfAiMXPsyrKmX1LG1BqtAek3KkHOai0f3XOHjtU106aDahhZIYZ/7r3BEm116hh8Dy0nhaDp4AE833QJnjavgUjfYySYPkjXvglwVeBnfPdzA64NMCPlqUIQIlXNf5+7U7/uVnDaeJsuGH8nkbx3sOBKFFw/kE3qhj8gNFkUPBYeYIOj5nBi6lcy/9SLdY7XKOzJBejq0gCz6j24NWk8XNiiCLek54PFus1Yln2cJISbGb0zQdihjR/VtLDFA0VcEzOChA6bQ1dTLGnPjaGGfXosql3Hy4tC6deuQliYq47bN07AyrdekBUzAXoaX8DYvDQIfPuWas030iSnHmiwyiXXzxYwSv8WzGdLNCBFuHhKjG58eoTrXgtjwYeFEJDpwMoxrbzg9y1yzdYmG9Hn0CwkDX3ffVBEVBp0it5AglYdvDc2g4KfpbRxzVnIWDyRLylkwfnJmtAw+wxJ2N+A9DAbFu5spOf173GHmQUdnDCeqi944bTv07gmyRSCOt4AvSmFYLMmWrfdghbtkAG14VqUTBrGFXu0ODw0DTILJ8Fy1wbeOlcVLmm+5sPOxvCz1ISv9hWgk3oKC/k8I/Vrx8jO2QrKZ/vCwJIIalo3DsP3N5DMyifsbePN0aUhmCCvhr8u/+bLmsKwJuInXx32gTjrmeyx25VCu2fScxMV+rM+lpTunaBJ1x+y7nIz8JyrjJIzzXHq0H727J8GCv0qsG1uFZ13dYEbTknsY+zPJ1yMQVjlA9corsARn4LQcq4ezlubDxycw4N33tPhSSOo9qIxDYcj3Or5AjPHGuGO8mZ6Fjge/1S4w/AfCQxfegk9Px3mRFsh8rxGIB0RCo7Pc6B94U12XGIOQ7PsiR7EQMtrV0JjB8j/7wz/JzcRyiw6KchiJGdkLWS5KToYktWOz2gkuD49QTcuaqFGihjf/z0Gpo52gfgZ76GNYqnWs5h9rsegQlIMzImW421W38hY5SQftEAoUz7Nsw0lUTbwGV0YHYJncxJ4oMcdrlfcQ9NtEay27DfMjp0AxVrbOFtRGmttK/lH+G1K1XOgSplztOiPLK4JzGCdglCK/ktwbkEiN3R60V2cQ4syB3GlWDuMXavAXqHOKLauE5S9Wnj0BSFwueSCB+3GwoNiX8peN0Tll0PApNGT5K7+o0Sbl5S4TI5KCyaAjV4TnL/xAWtKpMC8aw5P9wpBi5wduLOokYJrp7L1eRMa+cQSHrQi9dyfQwLeRli2toaSPc358LlZXP3ZA074xKP1tz5wilOCg6tDYUt6B3QllqF4XBSvHCsJ6w8+wbfa0jg1ZxQ/Fkkmz0ZlSIuUozdXa3HNzmgaHPJk/d074JVLJVVId+Gk2tvgktLMfFsb9qzSBHHXEPLUc2Hn00DBngfA/pwJRHpXYV1TLz7V/sK1ZgowXvglq1rF8cOajXTtmBquVmnEuKB8MixbAmPCt8OB19P4tLA5TDVaAS3bNen2zDIYENrAa7Ytg9RKHYy7shyzTy3CpuZErDiqCJaN4zHCIwZPmF1A95TPGOVwBgVczOHRv9+0bNZZCLC6CEuM1GDT+ecsM7qZZv/I5nUVsiToMxEVRaLg5p4VmD7lCEqbiUGwpQFEeh2ipidSMPRrGfl7/eT7LqX8zKgTNardSMrjC1y2T6aNJ0xA6+RWKp6rDd7LFCBVex6uuZxIIms18a5oOHpu3Q36z0dw8SKAGvEbcPOQDtg6hUG+WzDMPPuAPfyn0ku12TBT5goL561D+Shp8FOQhbQzE/BJQRxoj/6MdDYMZEP1qGbHQ5xZ5QnTLbNIV1EHcvYvwmyfCpZx/4ZiaR9wZl4wZx4bAoEpjqiaFARjZn7BHxNNYY68OCWVzMGGex84Vq4Qy6p24LgzUaQ5Yxf5RBhR+NMXOMZGHeoHBmF97waI+GrJuqvk+PS3AvZNTSDxf+XY15tFN9+eoLBEQfjh0Eaj89rRT+ECKfZcZrPhV+xk+hvSDZFfzhgJGtc34hZFeYjN8qU1+cUwr3U3TC2VQqtJhzF9mx7vKBqmr//KOfCRFM9+YgoOu8z44Nff+N6wBq3UNqJZqC22S0iC6ifEm5tLsPqgAMWuVIGD/m8gIvor/PJwhF0x03CnmQDuuhTAR8IO4nD0Um6ymMy/bazAF6fwQ4UsbFkVxqPPSdFNu17Ye6KY/6ha4cDFQriKa+hsvjmMGjpB84Tu83Dyd2r+WYe3TRI4zGUah9d8pHE5KzFlbzr5vtSAjQIZfEehGcbFV+HxUnGU3ZmNs8Of8C+BeqjeHsZKs5p5XoYCvDmwnO5lLIBNl4NB8t5LypX/hpsDXmP9pumspGDBl0tr8dQtNfi9K5/Wf8zE6zf2kbdfNTpVL2TLMQvBoTmcFN1FaVtgLCw7NR1EtM3Iov0mCDi9hZBBP3hsY4/G8++itk0RqidV4WaJcviyRR3CbevJJ2k2HR1ci1s8pWmGugA87D7PclqC1Nq6Da4Ny/DrIDPQNbKl4EQVFNM9AT+VFZilZ3L3cAnuK4ynu5V/2MPRnkSapoO2QAlnTlRk5001uG2VAka/dMf7L1/h/bZdFCMcA2GWb2Cynjg4/VeKRy4OYZLeY6xWFmHVJ4mw6bkjuPrmsPyIcfBbzwEjpBRgUbwff9K8xBFnhqkvArGuejcJr70Gn1658HW9D6CplkGW1ZPgkbQvzbmbS4533Tn71x6IH7GISoquYsDQbWi/WocrNtjyPldRqDjQRD/mziCP+QrgGKLNMP813T1NYHa/EavH2YNq+i5oCTGCO18tUP6BGfccHITZjR2wVyuN/jkPQtB4NRrTfoYyJndh5rnxsE3GjuUtV+P7gdWgtqcUKqXfY+eO3+xpRnjMYxF3B36EGTMkIGhrHBS9f8q3Op34tnMnbLU0wJ4N5fhj7DxI0M4mWU13PuUtD8Ipc2lnhB4u7w3FFwn9kGveDlc2xrHe3zJUX/wShkb4kL2HFKzeoksz3n/FQ9hK6pVZVLN3EZQ5dnFcjhEJVl+Bk5V2cOglQMOYVlLrfEerjtZzX8s7XPOTET6vgdNud/n57Riwvh7Fz7VNoSOoH2vuL8IrWsK4JykL9z2VBUONbLbOegKKJ8/BmqtivCxZGzq9e2mvylS+fWQNuQyvQf1Zx+HkQiWOtCuH6R3FuMviGFrKm8Pilo38LFCVP34VgOZGAZjbW4kPNC6B6itFsqzw5q+hy+nbxSmw+Z4tXXJbTsJxqlj9ilhkUQm3e7uwf54en3r/HMd+OQpaMnIQOHc7KX925QtrbVHx3RX6ddoSNtu1Y1VuObQtCmVVJT2u3KgE+kN7gFNNeGf3O8jeuYxayrLpt2ASTQ8+Sm7farhdP5ZWrVWFms4b0FwejsUiyZT7YhMcWjqdfVVz0XNOM8zUEOFT8/7A3KcK0OjnQmkihiTeEA/TCyax2sI4eCtTgZcm2oNuyw8QFf1D+y+MhqfrFoGshyJFrCdYd2I65j47iKpKDlizTIFGiDGsqvbnp0paYFqzi+d3eYHF2suo+2g8fpmznTpL7oLPgwtYIeXAfc0fUOmWDOx7HkrGGd+wa9UWqHyejuVjNPhhczcanr4H+yfkEF1fhDv3CcBLv43oWB4NQt7r0MTBl3r1kF7E1mHpsoWwrHMG7ld6yZe9BSHslTNuXTcHH+wsQkfLhTjarpT9nhwFle/llBusBfpaUZDVg3Bi0wlKrehgt/knyee/bhJJu0g3+s7j18gwmrTDg7pKRGl9BsAGlU983PExFa79g+X5TXTr9WI6kZGOQme38NpPN+Fa4FlqPSMEvzSN+GzUTIy/osniiw+y7X/aMNa4kx6f3sbXNFNYcrI69ZcZwtf8l1jsvRsqf12gIYE99EEimizXN9L3kbvARqOBq6d94ahoQ5haY0t75RXZeOUmXqY3l5/F9mOzjTF3KN7D0UU16NFQRSLLtaG/25ModBzbvE7HEUvngHSECLzrXM31jacpUDKcS8sDKWCUMaTAA1a/sYcv2azAI9PfwtuX9wFFAnCmbTy7/LLE64anQPy7CLx4YU31f4bgy/QAFMxQhK753hTVUsJ1/fEcLXyOMlZn4SvdabDtHVH1qlDsWScNymeZdycuIBHXZ7js5RpYd9IedhQdg9+b9EDv9liuaZ7N8jLImW4xuMZtFtc4plH8t/2g/PwxKXom0mr3KZB3aA6/vBCK+wPM6PRGM7I8fgsf9o9k5YtH6KFBDT4f+IkVd/RB3SKSsg1v8K8WLxrd148p4uHko10IA/dkqGLfGv4jtBq1D48Hd/E3uH79SLzw8xudmrMJNqyuBn3Z29zsL8Fn/8rzxZ2ecERcBz5SGX495Q1ijmYYH9tNJazBQpP74FT8QQ5Va+CcP1soeacMrHC4RksFciDo83lYPcWILtuuoEPuo7igwZlEA+LwxOuXXLN9MuzbMI4LrmuASHcE/Lat46Ptb6i4LJxHaGZDYVs439SaTb22ZjDv6y5YWTCVEq/fxbmn3vP6wan4cbQXtV9+QM7LvtAWvxW8VlYQLH9EcLK8C70a1oOb3zVBuwcg5aYiVp5vQv2biaBy7gp86jSAl7+lce3WetbK7kKJNx1M87RxclId+sIpaq8pRNvWJtjUoQR+Em0828OAPh9/jJ0iUWijVIfun3QwvzMf9zd4odydQL4lpgx+D/swikbgx8D1NL8oEl77K7PEPjeM+XkL9i2Qo17tJ6TtYAoLR7ny96WnMdNqHY521aTJB0upQsiNkn4fIa66A5v9j7LANX2QUphJGaZ+2JpyGocLdkHN6vX4o6IQ9+ZuJZ20SbhZ9wou/6UIlWrh8K1ZkKprzuGNWU/A5tRjCn3lgHtjV/LF/JUYJGiFYw+Mg1D9LjYuWAAul0XZvnYqPLa6Q741gjj0WhuvzyqlOTmmEDJFEs4HC4LTzFZysw+igtQ42KIhhNPbL2GJ10rqKhejqsgCen3KEAZrQ3nBahEil6u4NaAAV6sWkuDYSAyN24fpnx3gXqkT/DmkDPMfL4HA5PNw7eBHElvjz++F3+Mjow3ocdiYf8fowxv7PNTyEATR483sNa2TKmI10c9xLS38bx1ne81gBbkHvHG8AD1IO46e303gyvKdZG91F2PPipBH7yeWXKQFOze04kvFdST+uwF/ztPBobCJkOlmAZNU5qPLwFfcEB4K2yPO8MSO3SRruIJfXV3P1q0nee00a8jZkg8uATN4z9nlnP1Nj7UFsrgv4yO9q3jOPT83slTmGNYmOTik+wb8fI+Q9KMHeOq5E55au4iltpyHvLXKWPBnNM9rMeKrVloQlnqXJwuls/rFw/BZzAfrQ55hcEoA9lzeA2dEXGiv/xaeO0EIKqGcdqyw5c9BITzeJgPbG9XQULuMpobsxcnFYynhxgJ8aTQZZmu58JzOfLSZaUYK5yqxxWc/nf0iyO+D79F6T38ot7Lin/0y8H2GALKXM6WVj8eErkISy42jhnJ7bpQqY51VvjC2UY4tioQhK+cOn7WXZFvt2fSKT4B9VxY+C+4EZWNffPZRHdYPmvHsUAtYoiALez3voVt7O41848zNSgG0MTUfElqy6F6HHeWnR9GBKnWQNVhLsg5LqHIbYX5HAPe5FfDcus+8IaOfw5+7stKjO5zTSNAk1EbscADTTq2kpuC/2KTmBpM2W/FRQ23KsA8BhSg/CLAdCdsbJlOHlA64BWaTbthn9hxhDbaGvfDvyB/M+hSDL3LL0StbD/yu9tO93Rt5vusRrqfrtHP/dD6pfoQvvQ+lZzkr+P6OE6y0WQ48Dr6ClQJH4Ht+Hkk0WlHRAVPemGRDYh0q+NdEHRSzBTDZAyAq4ym4J8ST3pJoPiJeCn6L3DFCwwsuHBrmP/scMb0tF7svGUJi9DO6aatLdn3X+O3XqRB50A10O5bCkjvObLRDEr6IO9BdAUNYuuUgxG6yhwiJWzjrTxP4/zJHs4r5+F/ZPq65/QdMF2fQiKPKsHS9LSzb2MWeqfH8Ws2N5QUdKTT6PKzbvw+OK1SxxVxv+LpuOmSMSgDf3K0YZvERF6sehc/xf/HLoY9st/gxnvI/R5LT11B7lTSkZIiR6PVIHFDs4zv7oli37wL2aJ5n0YIRpHv7Njnvv8Njn4yFD/byaCrzGasnxINxqzjlCehRUmkdvDkSy5UwnRPd/UHqzUTw3tiP+MaeHR96ckm+LSkcXg/e/2ZgsPZe4uhF8EF2H8hmTICbe5qwcf4HEne6B3zhITw3W4d5+3bA6Cl/qPpmKzY7XGODVbqQ+t4VUv87hieuVNAzsTK2CXyBxRYFYJ8nDpdtX7NqqBIUt0jAqd48uDF9PwQMuuOAiAkVj7KFVZZv+PbPYnqXksTH8AgXfTCFurFZ6LCrm9oqVXFJkBx+0NkDdReWQUw/Ydj8Bn559wE9vq4HW51v0W7DLjxdvIn2/UpGq1pr6v4bha/SvKl+/mhy1tvNDjKCEHGmD6JkgGqi4/jTyHC6JqhKGUf+g+0v7HDKv2SUfxDK1xTE4daYMp7V40pTBs/jzpXN9G/uJ+gPKkAD3y4KLxzNB0WnkUe4IhyeO4ljZl+l6/8VMX9YRxeLe0GtLJcWa/jhZbdgGvtjIY5XIOj9q8+3k0xZuMyF0hZPB2HxcM6sqYLtfshSEZu5Z688XlPSgnPO2piiUMALkitB66Y22hy8Bo3Gl2jjpXGk4bIRAyK9cYSyCfxnlovRYfJcrvwQbr9YzykJIvzdow7G73ZBbc+75PcpGaTGMNz/3U2bai/wioZ4Dsv5hy/9IuFjbwB86VnPJx81gsdPbdQNUYXxg0G0oM+G+54M8J4ZtZzmJkoVRzso+9Z5dj7aiZKZpSxmIQThvWpctMSUJKP6uPRMBDpqjwULVwsQe/sPBUs/8VeN5aD8dixsVRThBVdyweH7KLI5vBh+NTiTP3pz/+NY9P4vny8u3sfTqifBPZsYiDn1hiecGuAQ/4cUc/4Ff7o9Dpe+uonaVoC3XG9wboMVeF6rgwKHCrRJIRIIaOT1DtYwFmSgc/lmtDziAz0BD2nDBjWYfeEjJW/egAt3jGHbPxMppEQaIn2K6IpYKwrFHOUdJrGgo6gGY31fU9vWPJxUMRdWaUlT3d5RsEDuOGg3zaedWyZxzeN/ZNgN4Db7BsnU/UZDlAaZnCZQeLsHylozcNqXSXBGrIEbLKfwgxht0Ol+TbbW2hBuuALWf/fHwjmnKTIgnnaf+UsnkrxYpL6WFn62gm+elZR4Oha9uuXZOuwLKBzezRDxFIb+OGC7zwm8pRfEkwxHA/R4gnCvGV06d4YW4Ab67v2Sl6me4I7Ic9wRrIKOvke5ebcpqDS6sZ28K0QX7cGWpfLkG+UFU5YDbdHR4yvPEnmb3zjqOzkFXGIG8H5OJqhmrmbTlPGUPyDK379vpQOgwrbyyVS+zJXeD2nBQdmHZNuQCgdyP7JguAnS1GhYsmUtPlgqyh8yjbB5jRPYnR0P1TcKsWyhNweXtLLkrcMw75YkNUT24YfNnzlJfgosZFn0TZ8ERZo76I20OQbfi6ArR4d565u/4L6ui6SLxqLk6Iu4JPApj1pkDm+VOsj90CXWo7cwvbiIsTMLX8w6R1uSYqDu13ocUOomjxHqsMXUhgK2DvOeL9JgmHoF8m+M4/Y9E8liTju5Od5Agbey8GKGOdgN14J+pCt+C1mFZe/P8ND3eWC1pBjype5i2O4cDLE4gJsKFGC9bBVFzDFllcRqfDTOER2su3jV9UC6W94C0p9XoYVUBskskIK3RoYc/6SAJ4rMpk0aK+DIvW8sM1eLf113wuLRZbzC7AQcrzcCbVUvEnNXpwkxOXhQwJ0sBXfC6dL7cNLqEHjHPYN5HzfTuQ1WoH3Jno9mitLx5GD4sK+NTEbuxJUGVrjmVg7KmDXz9OdBUH2B4EdSGAQ52FDHtxjSXaQI5WvH09uZiynw6kzYtDGGH5YowrpoeYgsOYgLglropsFF2GXXgZ/H2fE0mVVUbjoFTw5+5eNaK/DdR1MYql0HuXeXU5ZGFB7epU1hv09Bo1wPvF4+i2apu8PiwU7Wv6IJ7zTfol9mMDdqCqAyP6CzYn8h9oUfzdrXwc/SRtP5/c/gQIo5vK/NhSPdhpA/upg1iiJB4oYEqo8T4tcl53iyQxBKbhZG42Fp8BDroK+HrtHri62UGqvMbxr3wX9KE3i90Hk8v08cxtiMogMTx0NTwBiYHLudT758yzu6ET5Um9BH+VoKLU6GlZUmOHW+M0yeZQB8zhpsw9VRXUmNuKeNFh79w2c+jMOXPzogU8qOI16b80YrPbA61g5FuXt4r3kyVMgDjPSPBpVNcbC2vAY2PDxDCXFbIbnSDMZ0BuLYwkGcZdHCB5PnQ3DlbTwic5refO8hnRxbuDWSofiYKDRFHuVoSRmKtX5BFs+DORz/wJ/kUbjn8AEy26fAuYXH6W69DoTd24rSckUkmsmUVxSBM+STocWmD+3Xb0WZuXP44+tQdpGWgKBWdZo81o5Wz8znHtvj/C/TAOtuzcTMiU68efsiEj+5hM3zp8PdFCF+MSsb4v9LxRcCUfx03mkgXIYtYUK4FEej1MhtnHpgFNye7AV+PiYkfkeLKy+Y474TLaRYEE6+Z6aiw6hJpHfoCddeVoGTOxjE1tZD/6rZcGCwBpIlGynp31IQzVsK8VKtMHwih+9sGwXHV2nTrN9pQCPaWHaTDkj6CFNFiSdMOPIOrmeU8TsHe/w9xxISirw5rPEQvL/SD7XPH6OabSdfvurGpg3W5LBjmPKtu4lURMF58lHU7kYeM2MSW0qNIilxLX7WKsJ33qbAM+My8pTPI28LOcjQEoQw6RFo6R7E4Z/NwarfGwXvnuElaojtLq8gFiWhT0IXphifAr269SQ7zx+mTMshrXlRcPGZKVqmZWPVhDUobKcG4XtEoHrfPAzUfc5q74D39smzzcM9oHmtiB9K38CKSAm0VpiEZV7mUCisj/MT7RjnnEStaB2sK1zPcxN3wcJzajxZrBlLB49AfbMpVCcK8ts1cfiyNIW/TFDCaQOK9G29HW6/8plVGgvhu/19/HpHBlSMzXi42R6t5zZD2GFHdoqRxG/77Wh2hS5/HTsCn7xNgqoSY+iVcQcHq/vQ6afAFO8Iy/QaSPVsMgpsyuLVSXX4WfwwbPCWhtbPBTQ524Qj5xejynPCaXbKeHvcLez8awjrep5y229fdIk2AVSbjWEfnlN06lLOD/nEWY0f4OVkQ5gGr/Gc5URSlnhDie+tYMgqGLZ3ZLJh1UOUc+mB3xf66aLyalT7z4s8kyKhKPwsbCg3BOtADz7cPw7v3X+DKvkyoGLvRrMe96BluCj2XpgBAeX/WHDvaFAasZifP3nP4TEWaCedAhMX/IOhMVdQJvYxdzd3sdyN2bTopwlMl7/Elw+r4vLgbSDivwD1+89B9UMXWmY0hDfgOe2OXU7jxzEM6NTi0nBBUL38BTYXpkFr22FoEJ9PciXRLC3ujyeKY8l8gg7Y6KtQ02MDfuNqSq03YlB1lTn8lpmBxrMEeGr0A+57X4UvpijD7x4ZiDBzgDeO99nWqBvNVszgFYbzoPCEDGQE27Djkvf0tdwC/gmWsnuaBbTXqFG53g1oePOIlC5ex2+3H7Pmrnm4Ky+JrYwsYGMxgvTtMG61eYnuSz/xtzOdUFh3mJdK6KH5jLE0YYc/pxgqwJuRHvC1UA2vJ2bzve49mP/xIs7Z1AR/k2QJUu9g0OUzdDlHBvrv3KKAtA9keDYAD4co0rr8bqp8MIm6wwxY/5AD2Y1azyo6ANcOGWEdWfDPfqb3SUXstUoBtlW0kcTpehBZth6XxI4AyVN6MLzSF02ubIeQjPkkJZqGn8u/wcMPO9gu/je255iRffp6em0pAG+F9HBWhw+eNRkD6SkKbCVC7PZIlJU2nyWlcBG+ln4Fj+/UhQ/TAN7v8cWHX+Pw+vMMXp6ngneXS4KuswcsUwnlKQ3lFPJQBITyrOnUdUM4c8+btwccBXthaQx67gFSh+Zh8RMtlCm9RNlaYtBYIkvuMcewsfIS/lQMp5uJ3eAUcpfOL1UkuSs/0U7bEzoOTYVHDbbQNn4ubK9YT+r1M/gc/SKfc5/RR/0knY6QZWnXCjYbpwM6NhI8GFhAkUsMuH6CEFY9WAkB33ZiZpkZ2g/MpukXv2FdkQCULqiGs7PugbpbFtTNsKcFXx0hplWPFz9QgwfT4lBQthfH/DMEnyIhFHg3zDsWDXBk00Xu2GRI1iuNKe6OLMTAKnxt/JPstazh8PoDmF+/GlaWSNKh5DyOlgtE+dM15ClmRCIrWvE/HwP65ToG7mhNBqHRm3koczuvNhSFHROXQ/SwOcaIZHF8sAAMLo7EbRLT4MbJY3TvwB84HRCJ+QV1eH+6A7XmhoFGsC74JlnD18UhfPCnLnjd0CUvt5f0ZFQByX7vgIY5orBx7yEo+PqY1QQc6JrUVqrXNQePJmWUF5WGu/mGIFd0hy2jT9H5rDeQQJvo9tRKPrXuJ52+Ig2ntpyD/vBeNnuwEu4ZxKL59TWs7WICM+u0QUrCgRXxMFuPHAkK54X5r8hI7qj+BxvN5elH0mosSJAmkHGgXBNxOixQBNaB06Dl23FY5RPJB77M5C2T5tLq+w4w+lgo9+9KZ8PeY/zPM4nnGxrCBytNDu11x729TtAaNJUbLI9QReY2NDa9TUsXVUGM/0r0PmsINmevwLMxgbSp3wb6SnzIaG4YjHpbj+aTcyD1/Sb6WZmFhRJjIGF4Ii/Z+JRuCnaR8BlZPLH3Fvea34X0cg8svJKLBeY9UDHKAPwemeHwPGGoWizLUut3wBZHO/51xwafBd+F817CYHXkDj/dBfAvcDtk2TxhlwVplPkxhyaNqsW++yVQcruUtc8Z0ZkpE9k2WQrqPITh0tPH7JRTA6P1f2Drqxjs+fCJ2iMLedWk1Xxm1ky8uVwIQnwLqVQ8iXTSzpPdyTJqvbcaK77dw5c2TXD062nACHuK9RKFwJI0ysm1wtfumpD1UxO+7pSBUfePc9lrEerMKgd7zXj20JWB7rQcKjXT4bkJ3/jpqQz6vJlgz6xYPvbLmgqq9PBE8GnMX2kG+wfyYfOGLZjwRhk+1gxC7X0reqD/FI2dvMnmdijq1+exxCZpeOgpjRoLt7PWgkngIqXN+zP2stfF1fxQ3wgXGaxC3XMz+UWqEMxoGoWtc6J4lsd20A04gmKLHuGPW19oc24ye9m8geQHW+EwTIXeWZVYeROJ38zGcZu2ov9fhgQ7F1JQlMH72QT5bY0oqkdQk32T3yZosM/AOl79WRJtfu8j9S5HODGsTLEmVgBtaeR8aBJ4HAEqDIvlwYoi6p13C+WuniJ2vYo3FxyDkK+CcCpxJryZoQrfazPwgbEeezlY0aNV53GdzlnuOTKWsuZ9oMlrndB/mjJtPiIPm6QT0SzoO82anwVkOhXsZoTTM7LC+YvPsdVgOHW9d+Ljp+Vhd+dVLledRufNv5C0bhpZvjLgzIh3UDZyAJfYnsGwqrl4v10I9smqU0uFPlSRCUxp8wB/rxTQip4P5qU1uPrdH1Q2DcURD4Xgu7QvLBD6gBYjA6lX9jQ7jdsIBtExHFAsRFsT8sm1lvDyaAmoPfmFfix8Bk/1/8LRRxcgPWk5qB0SgMRPkjDZrRadO67gk1FWoP0nGNq08kh2VRu7tMiz9XQRtoxexWtc5OjzNHUqOXOPf5wVA40ScZq16QctKRTjnOPe5DhGDAref4QhuWIYjNPl8yZ38caGCbBaIgvcF3rQkxWPOKNJloW1GilljiXL1F5gb9kZ+O/ZOqpykYXCmsV01TgI33yXg9Vjpf5vmGKkO3C+zFIIcvSiJXJr4YqhPqgHOsLIe87cNToVqjJ34cy1m1Bq7TOctOYjXx6dgktn+MG8bQCj1RJIUFcdDEXk8P7TGbQ74BG30Vna678WysITwGyrCcqVjoWxZ3WgLHw+zr7wg2/Hb0SF7Eosvh/DD87Z0M9Tu3lcmjkeeaEFjy5EsVSEHjz5pgW3hFfj47zvMC66l+Y17+Ddoqo8RbGar5I5vFo6mkUl3+L0zaep7jUTjiY8FqwNMl6u5HlMlCe/U2Pj9CnQS2/gimgl1gxMwdFLb+FQfBOXGkig75LRcH7gB+uFj2a9S9KQ4HSXIirOwTbFd9S7shniEhfR5z+bcPHNbkjStKIFokugrl0HzvdtgfGHh2CvwET6cKYUTlqP54npHSxkEsHbqBdcXyZwv6sRNN9I5CU+4ehzzBwaf9mjo7oKB1adpGnHq0AvfAScDj0EB7IZ2rZkYMsTE1jVfJFFL9jziE8vUF3BkPolNdjr+H18cWoRTpgoB8/YDf3/XUb13bG48movKG6uJJ/gH/Qqo5b35Pii6fV5mKiuApavPcnpP2+UulhCTpuVYMW3sdQ5PAr/9LbQh+hAeCslhBfVTWF7yX3+caiJWuLHMQVvpWiJxbTFeBd5jrzArWLTMfvGaOwuHwVfqhPQcN0FNMwtoc8tLeS/PJ0eKLaSjjDiv1WfYcHwXtz60BosChogJ+EFud58is5r59DxPmM4Xvoajtip81BEIjrWvIFIc4ae7NNQFfCKwpf+5N8VInxnbTYIat5k8YC/WLv4O9mrpcDH2QLgELcIBGsTMMzoJv+U9oQpU/1AcXEuyN2QIe+UH7hqSxTtQSGI15yMtvd0uNslHqcsqqVdkz5SoHYdp1bOQKPhHCwq7KJ8qxFwQHUnXdS1x9TuQt5bZwHWvq2ocmErhSn4UeyBbbTcJwH6+s1hyctx/EJsNVw/3sD1FUK4/eJ2yJmYgGVKZlj2ZTVPuRsLn+5Lg4iSHYpOT+GVba68IMQA33pWwJ7vS/nyiO+g9teGXqfuQvPfinBSfj1ovdCAkKYQcPaYxerj1tD3flmuMZNClYWL4OQxLVq5cwJcrt8K1gdW4qw/2zjKMpgWTdanqUUWvOzpdZCLC2XP5of8/eIkqC+bylaOUrDs2jPUsM2kl8OGGL/3ElpH7EftSw1YrN5Du6qtIVJHDL5LLqQ5xVXkfiQZW+WWUrepLn4uLuKPlw3pbFQSbQqRBy3Do3TQfgPl3H4J6/90YrLATZZ828eoGcWZDcIwPLKFrGQUYKOgNug/9eDlTjJwnLeBVMNd2hIUCUmvGzlmjjuYXinEWXHGsPHrDyg8boR5YjYkNf8qLRW7SyF+Y/BSvBfUpg0g+9aR6aA+qC4vx2JzCzjdeAKbjy+mawU/+VtZAIm3P+I290R+7XYDQ9+PgZajqqz1nxoJJLSyvfIorkhpol63SxT4wQNSBeJA/pAc516WBUPp+ygSIYhjyhQo2mEtGUy1Iv+5F8E9+j5rhBZjh89OOFY9FQxTFFlaxQ4yLk2hZYXfoDZeGenpFX6iuoKTLYTx4846+q/NGFaYL2CpUSvpdWE1iZ3ZBtX/iqjVciEcD77Iip99ubbyH3fni8IWC0sePOnG47q7yKZFGcJlnBDXxHOOeBJqxGmSvf9xaPUQhaLeJI4YkoSOAksoet7Gi2cfhDxPax6WjqNVl07AQFIpeg/JwnbLObgdb7Cj5RLqviIL63w8eEt2Gq5K7uL/BO/SzvBaGBNC8MQxkLJk73LL5BX84sFB+pBURE9S/tJAmzNfWNOIx+u/sKmQBMwddMG47UAqa2fj0AU5aPPeQUuHfWnJ52gS+30FFO4+hXep4yBzzhOYLT8ajVZcJPfqfKCJ+6lF5DRLRYjyPgkVXrNImA5YItxaF81BolWsufs9XFIJI+vmdHLzEIMgJRHqkHjHxzZUUHGxHlg2jqTipxrY/MGAPxZtQJNn1xGb0uDK8qegmFKIO89Vw8hkK7h5yoAWXN/GXxrPUkeoJcnaPsL0WAMOeRzH1Re/0+mCuWA7TgOE9eJ4f0s+bIufDxGebzEtywpeTjjD+W7JkO7eDj/dREjnrxQ8z98Ine27aF7YVGw6Ngty6teznvRiKhS7QYmu88BpVROr3pcE50EzyhZ1xbC/N9BPUpcc77pw/pFnMDHrAU2dq4U3sp+Dq4o6JHmY0B7qp2qPbDLStQVFg2jM6r1FFwNyYZVqCRTel2Sz96Lw9elxbpI9jUNhm6H2QATqTlOACZsC+eHqcDra/Brma28CDw1lqAgpg9Vvf0OGqwU2zZHl5idVaDNyOX/1r8XGSh18L/yMPE6PhdollvzCZym8b++CY95X+bXWSPxrns86d/dRSbQ4rhFPhurvYqD4sIEbBFKhZq0tvF2QSNjohCU+01Gw3xEXfYgjp2cTwPOdIUhLeLDXDD8WXbQSXL3aWMZ8B8y4dhdXC6liU1g/HHHOxT2LlaD1+k0+12MOgeukKP5yIT588IpHpf7jv05XKN1YlfWHVLk40Aqat97Bo23XSFfZgmOcptHSKc0YMcOeFK920cjUMJSqf0cp5xkKlg5h5YYEnl8zQDummoF71HlqCrKEKa+Oc/cnEao+NBlrxk2GeNs5IIeGVGt0BXwuKvORZ9No3L9Z0GE4hx/GhuGKvHtwXkMCXK/tp6H7eVAQXM0rN3TBkms7oNK/HduF56KlhwA6vxKG8DQj0K8TpoA/7+GpliX9kgvDQdFqnrRJnw8aHeb45DtYMyYGyoolwD9elT921kPh7d2Q+ymDlCRGYtdxR/okakFb/OXYTm0W/haVhsFAB/w+/IYTN2bhW9tEbnFywwkyH+HR1Upas7werss44tBTYVj96g/F5i/HH9dG4jzdyxzzZw+ECKqhSqIc6wSsIi3ZPJjnbgHLhcZQaOcBMBhxmgNX+OPt7lS+u3kfqG5g/Ol4jo681iOh6ZKg3T+XZCPP4NFWUfaaVM7RSk6U+k6eVmWnwrGSp1D2S5V0xxqCuV05xs6aBx0fG1Dt6j7QvliFA00R9PzoS/rTng8mnT0MrpNhjGw0xHhqgMWK+6D/SYQligUxPs2PT63wxbB7u2C/thMsGZICucEEXl6lQtuPa9KOTgcctbyEJiRNI+3jUyG3WA9nf/RD3RWmoLRtF/a8X84aa+5TyAbGrqPtcOeWCPw31A59Zlth/IRHfPIEg8BPYbrh/gxdpzqS6S9PfvT2EOtKRUHCjRQuqv2AiXlPOVB8Inz6IMx7tAp5W1suf6y7i2sn67NlWj188T8GmuLtLDldC9Q6GVbOtqeD17NpgfkW5EPOXHfdiqpmp1GFtyZvjLaH4F/psLdSAjZNWAGqrnPIwobQY3IpOypW8alVxhjlvwMl84ow4Wcf2LUqwPhRH9BBzhz73vmj2gtFHOE6C+XS/tAUq2qMHMoAk/cpUHBMCwLgEer46rO8nzpI3JyJRzeORme/uRSdrISaIiKw9vpnkK9RhEFjSVj9SQhN6kxow9drMHj8Oh+SP8h6qYSH/B+y3sMMWnVLCTY71VNfmSIOlytxSeQInvVgFSn6h2KUeAaPO6dLSlsPccRJCRgt1MlFA600/G0MpLsc5KcztsPITyKgFN2Gn8oHOE3Ki052I1xK/84REWu5eqsAGey9SzTyAL5z0WIZjSQ43LwW3VVNab/NWFCRjaKhp/d52pYymKt6ApfEziCrlVvh6w4pWDvpE9qJz4F9n83hcVADPotuw71jbTCudB2NPBeLgj0tlFyZD72i7tRjnc4XikfAvoUbYMw0VbqooctB9WNB4b9j/On8X5ArLcExj7NR/0coS8iqQIfVThq1rJvUvMzQvvoaar06gfoi22jikixy22BAztra8KTMGIZenKdAQ23+OSaY7cQPY2DJWbK5l4mxUzdSR6s51M6wQLX51mCoPYWHNhjBwRSgUWGf6O6IRKqSnwcO36ZwgulB4m9H+LPKOFB5rcXFWw/S7Ot94JJUxC7nImiR7kOa3tWEOQujeWtPGX9VNYAjH1LR/O9UmOBsyMu6T/Ivr43k/D0Er/2t4BA3H4gfNxOrF42GWe/3sPejdnQtHIuaT93Qv30CCbiMoR5Zc5Z9tQz2v12GgVNMYZxqKEnZhdHg0t+0XO4cLcx7j95+p3jOtkg4/jWLx2suxXwlHfCK3gXbbB5BZEkcyuZKgFXXOeyOyOHlqXPI+fMHvinTTr2TBME2cDVJX70CQt4zuVPUEXfsiaTrtsT3txig0cArDki4QXujReFHxz1w7N+BEvoGEJe1E2efPIeSggXw6nwfcvpl7GxLxBUNptBefgE8BY6R8uZ6vtPwgT27rlBcWhLk6SpAwtvZOLDCksZkqkPQoAZIPW4DgYmf6XMccL+nMVY9EaXxQ10o5ieMUTqf8fU4Adiv+Id2v3PHnrHVnLVhMZ65Xc+F+2N47xZNIv8xfMKhgm/lG0CPbBwppXxk4XI97HbOBGFdRSjRmExPWl5R/c7vEDffH8aIGcKNqVrsO6uVuo33kLPBMdS6vY6yNupj9JpnuCCii2uXuPF/m+Tg0iQHfjngihoDz3nKuHhavEqb1c9cwhEXF3BB5VlwrZkBV4dN4dTCMDC0/kIv4kQgdsgENkx7AHP6htF9+maKU6qk0rRh0GzQBa3+PNKZIsRrKl7SEOfg+KESuvPHkS56nmSTtdKQsiEXU1aowZkrpuz9Zhom71qI4QojoKMHOODDVfy+4AeE+o4kv2etdMJ8MtgkiVFLRDd0fA2EZKcg1npWjYJ5pjCc18SF172xceAP5BWNAPtRlaARdBb3fVKBJbNf8JSToTT86Cr90z+HZUFFFDh5CZvxBFghkorZZtshte46RFWaw7p1nihvPoizt7zmtOBeTvXyhJWRFtAe/wpaJ9zEJQbbuNPaBR5/H2Q/+zE4bZwmnRIWglSBGXBh/USwqPuJL8dPQKUfa7g3YAAe7UrDuh+vcHDDPXZMnomVMrFYmqAAH/NO81vwoJ4oMWhtDcBs0xGc+vgkFKmGQ2WJLTcf6gGJFElY9mY7LrkVTdKTp0Nc7xQ+nbqOts0a4PEjgjD3RDFq/VyNtiLCEPnAB/LGOvPZt1fB4O14Gvp2kA0yj0K8/QJe6FyKhXMKuX2GFDQFpZJeVwvkyjmS2tlB6niuCuf2v0ZvfUX6ejIZBSxd+cgrI5CQ/cr+HYvITUYcBm074cvzO7TfxoF0/iiy+L4OmhsrQir39EE+bj39Jz8GBY9r4oKcJrIxO8BFOnKwZ+saem43nvL+m4H3VunAk5/b+cZOBRIe84yK/c6QxteZoD9zJ8T4VvKM0OP8/WM6DRfpwLWHpqRV3UIQfR81vFzh9acVaJg7igb8ovly1F7yPTkTahsBXofk0NDaS5gTpMLTqpwoZdNP9LTejvdTXsOlkZ54fcEclr0tASgxzA80VejT1HioWtoMO3q3k8ads7S925ZETwfztCXEz5OVQCRmInt7uaHd3w76k+5BTQsOUefS+Ww6XRIXToqFmyMyOUN+KqhcVaBvSjXsBxI04ZEv/mtux5pvF+DQmVL6e7MRC8CTq95NB3XzPApwvASlW26iqoMjvvERg8S7C+F6/1o++8mMhSIPo8gXM8i7LYIr3M9C1KYR9M9iL8Re0GOvX0fg2uZLrDylGnJOp2He1qlgMiOdbjsXkOL4borf5oPnjMph6rZK3hi7klo+loBGmAqSiw5Iavaj1gYPmhulxfdCRqHRnLW8WSwItBe5UVbnJlIXl6e/T/XgwCMniNiqzVPO7MO7Ff4QZtZN9lqz6E/XRU7JvwKXWzfDds3RsGNHEHy4LU0X3AdQfu1h2K14Bzfu2IlVWstpoXAYe1UYwA4hNVhweoAySq5Bvu8YeJP6gudsb2NSSuSe1YrUX0Is9nAv3HilAyeTP6FlSzLflRmB87wnc1n9X1o5Moril21iS+EzmKPtC5FGyhBht4vNm+Zzll0vrRCOhzzfiSDQdQ0+eQRQeuY4LF/8lQzeGIPJ1BWQoxfPl59e4IR1phDvFAGNffagskCOz+jux3n10pT+wQJicv8Dla2aOHdFIGxa8pDD5wazaVsnPkx0xi7zFRC2twwWtstC7U5VihPfxM9WGdN/208i+NiRV8gL7MoQAWu9h1iTeBX09ypCxyc7PO0jB84JwiQ7Th/TZovis/3CeDzalNY7C0POpmZqSzSBbSv+oW95CsQ0JtCYI7P4k3k8yk1QYMfD7rzzygL8U3uPFNIJTlZtxX/jp9EipddcMWU8Pas8z/t1XeBouAt6P2iFgZKTpFI7AkrfSID9QiV8MS4Yf78w586mS/SvfgR9nFUGXxKbYenfq+Sm/j/i7kMbCMdfAPh3UHaDZI/M7K3MKBIhpKRSoQiphJa0JEVJ9NNQ0aQyU0ppqqQQDSQqpEiRBk33nPsS/yf5CMOs7FISGq5F3WMVVGNTxTbjjuGbi4ux66wtXT3jiAtOKbKX+Eh4ediY9nU7cMFrTfLO+cHnQ6RI2WkYUp808YI/Hmx3QZXFOjShyW0Bjcn3Z6WuOLaqHyKtSxth4MAV2P/VEKdtlKIGD6LEIQRNmd/koFwPW8tH0MY4cTLPrQOJlGa+LXgaR7lEsFpoHm+MlIFHO17jI51KnpodBPbLteiqbjQc3xLA9srdbCw3jWa0bIW38ZNA0i+QfwqGge7Fk5ys/YcU5EPJRigLbfok4ErZUSpQcMKvZlZQdvIUth0bQ3vO+cIhrZ/cM+8f5QoZYfgdDRL++Y+XJWvA0VSAV/NsYAkuJcWtAF6rPvM4fWtoK4yBY5zMjg8k2bTVnc3fGcNGpdWMu85j7fUGkpWYC6W75Zh6JDHsygkQ3rmId1Ut4u/5ctC7WpQu/dBCk/2XcdPS4xyT0IfKOdvZ8/56uv5oJLbPqaQtdsqwsFCFp6jYkFfYNuxSOUYV1gdwJTznlf1bWbu3CyeI/oKLa8ZBoYYYK8v4UItxFZ7KPgrn19fxmbtKvGt4HovYTcD0KmlO2joJWsWTePLSVVznPQji/ZE0/tNdrJEmjNWOxKpp97BEZz3+1JCAmVcAL0Zdx56dnfjv2xlYF1EFqb+SUVAvjt7E2VLAyBa00peF9kOTcUl2LdXGTkMll6/wYKMO5vMnXh1zlW0mjQfrK+eg5hiC2DI7qv6bwFFFeSwd+IKLHR7R4RvAX/+28oqkGywySRuHj4rDf8fFaMuZmeg5I4kUJp7FwwnjoZfyaEbpDXT+dRA3nDiGn2ONYe9zd1ovexmLA3sgfYoXPO+vJ9VrflD82BMKDxdg56iRuPL2CNhmsIyFRodQbuZa1JuaChdKD1BqbTBUDunRKCNJ6uz9DObPNSHrthHWHqljlXlfMHuJI3QtMiccTgaVGXXwyDgFRl3LA9ejCvCmfwtFfZ6MPWev0ImeXex0z5Z+aIjB51EdeGb/LtjaXc3vn2qD16Z9FNuzDEdeUqKsllJsrVzJYm8O45ggT7YKUYf0nCk4/T9jyE024CmKn7BaKJfHXXPkltx4UN6pzZHTgqG9+DNH9kfDD54IrqYT6PunMxgIy0k3ZTMs9G+n2DkvUfrOIQ7JWIMTprTzZw0dmPsxgaS/O7ObUzcL2jmRzBwJuLh2CwttawX3544kJjaGZORGgpifFli8PMSXE96B85ZyGKi0BtGwdhA4KoPlUmXYUpLDZhvNYKf4Gt4w3wndJ63EdfcEUD/7NZ96GsMnkzXBYuouNjrQzopfhWCETzXoRz6HCidx9LnqyylZRjxt7FjIaNCj4hHuuCp8Ar3ON4KaqJ8s+C6OpnrfwvelR/hWmDgvaWjHgOnrUch6NH2pO4MfHPVhaI8MxwYMgVzQd/Q8UA2H187A2T3nKNkhgIPSgNLzSsn5jjXcNnfGDuEOqFoYykMTWmDRRG3y21eB2qkIZkLJ8LG6DLv2G4KcuBNXDnRif4Esvr6yh2LInTe9zIE2iSjeILsOAl9dgruOoiB5fhYNd5zn27WzuV7Clj6P6uRVqccwOmgeyE2SJoXeJbxygRlIWZzF3kE/8N/VCB5PPqObwTVMOiuFHxqTaK+aGawJ6MXqSbLQqNGKBa/0wGS+BqYKLKTB0qkUvFeHd+gsxOkO/8D71ChMFlKGp7H7wTTkDWS8CGXZujS6ZUHgPrKCu7aHABxXxxfzXeBHngR8kFjCZ4XieI1KF1uHFVJCggtvleigqsmz4L/tSlQ6cTRHWCjDKwFfeN/lB/vLmuGkpS8ZQTFPPmtHl7ZcZl31XtTeYIxF60xg2c0YkBZaRmv+muPgKi3YuayXI1Rnc5DzXq5cto/90nfA5AY78N3rxKdyCIJKT6Bqzn2KNixj7TszwPXzTDIazITH3zXR64cs5K8IxHGL5uDNyD7wdxSGJWbn+Vx4K5lfOYYPDm8mcXNzFvWxgdK2TlDKnIt3U7LxoE8TZRQ8INmV7rgrZS48X3URT7l2ccQVApXNxuyprQ+GE5phrtNk3Nv2hTyk7blEsIYW1X6Gj17+mH1JDl4Zf0duu0xFiy/DqRMCJDtahW+6pWHKvFfcGnUKrMI2Ym2dBDg9WAK5bV9Qbr8BppxqpwNkS8JTelH28zKwfuUJE/ulqTrGGl44eKOd7G0y3tyHOR438d9sXfz4uQWNPy4FQYsE9Hl9kmalM0TcXIf11+dDbPRVqNTrw84/5Vh+25rHmNzliZsP0JjbjfzaVR2GW53QM/Mm2RXNZN2VjXxMZxhOj2LcmLaJjjnvRrXXr6mwfzTU3xPlNN0efmKbjmGOulzj84QNzMvoaqImmPR2453U81ijKgh5x8Rp+fEIXqBYC3NttuC5TS7sHPkOEhqVoWRWK0Vcr0CIFYS90QV8WCYFDpy/QMX73HHwrQFN+lZMDfgfiDa0kMrhRdQ5WRwsPpbzntMPYVPPMjwu2UVKB/JIaOs5mPp8Ls5RLyITZUG0ERwH7S6TqO74BDgQV0cSCqvQxjeYMp6U8loPaxLQ6cfTRk70cLMxLL1lD9qdC2D8/Lsg0GYKcyc20/U51tTWZYb7HmdRcHs5W38zg2uakjjSv4s7/p0noT9hdNVpKZ97bIOitcb43v8KfTA7z4+N9EHu0hfe067FiX6LyeV9BesZn6EvNpdJb/4aNn71Ea4mxYJSjircvLIHk0dW4O2mXxxu3QCOaVkw/0syHzE7CKKTYtCkrBZv37WC+d/fYkhrEMaOlKOS9tmodz+ERh/6SSVvToHlTxm0XRfA3z6Zg2hkL/zJDcbsSH1ePtWRLOdcJLkMBQwpnYoT1q3BArlG+HDMFnZJaNOf48L89JINRV2zY6mvYbBT1ZPtv65G/4oUTPUlmvpYBLS2pGHz4GSsr3eiR2ZL2PZIEd3SuEEmKzfAnYoY/qzfj6bHhWGzUwsdk2qE6QHplP7ag2P3DZNj+W04GaRNaz5FwVxvVco0N4SavfswUdGX1U9rw+4X+rRfNx99vWVpbsIRMFa1p5jeI7hzsw409XVTYHEZ18+9yane87kv4TYnjf/Ft11yqEOgE9f+mIcbMhDK7d7CEpev/D3zK04078NFudHkNtaaPgZKgdW17/ClxIbCuhG+C24EmRJ/ertuE5YHWUDNjX/4udUVfDd4s1prAkjCdRy4pQZ291oR14yEU3+i6WFFKR3fqcZKAjPovulj0hmlh1dis1FOczTovd1McqGp8KtjNAaPeAmu+cQLZu7hMPCDY79X8duqM1DuLwBPCpvhevh3PBAtifO/moJywTE2UVkOR652wWTpJHCZ/ozXfdUHpfEaGOb1BrLG/wWnYCH+cnQk+Rk6o8fxnVQUP5cKPzEHzFGAMQsaYduQMJf27eEQkWF8eW8LC2c7kmJMLDr/baSY50t5BirCo33m3NRwmz19cvHA8Wfo+qcPk0ZEsIROLAlFveEB3QP0bqUIBHy/g66eDXwgzBks11tR/TJTVHtRSYudNuOX9z6QKdlIGufFwCR9PS4ItoNlPw9QnUAUHDzTxg0rDThuSQUMW9Vj46VfMHuCAdQEPOMD3ic5UjkKXQyUUU4nk6Sq9nDh9qlQ29BKE0frUuoHSdD0McJT2SOwX9IOTXAhtnbvAuknGyi6EjjX5yjs+ttMhgWjIOLid9ZcIsENK/Pwi9ZbnB+8g1Stb/G2+bH40iuafwkV89niMdAWZcFzmt/j+NIuDC5+AXeaz1G/bwo2ZNbDiOhX3BjXz1v22cD7ptk87pMvzEvswuyUIS4JCmWVnK2g6HoEv854yEfXPSRPEzsYadDPyYM/cOsEKfhaG8e6I6uosO4evbnviS3iCjRtnyykS6qAbeUc/rikDPo+asJVP2FKMrPCmW82YLv9Jvi8zh3VBQbwh7AdmDm0UO1NOTI8Pkj37MzBbeZrPmRegK7vv+P9jan82fg7nBiUB6GOCbT6oQRqv7aENdaP+I3bQbrn6I2Ot0XIrdKc5028jPrSkyGlS4j2i+1Dv4+HecCjhi9LRHLWTSleYSTC5VlBeNz+Ha7fZAWuOzUw8G8zXQm8yAuWWVG2rgWKKazhCqkjIHzJBN22f+HSTn3YEllIaa46uPRoPfVOq2PT3XpkcdKVSsaV8eccPb4cqkXD57TBbuROUnNcCKM21CFavKVFI0/gioc6eMRvFV9SeYyLfluwyXkZmFGlxTI20zhaLB0+Cb1i+Vxh3OQpCwOfGsn/QSaGN8lS5wNbaHJR5H2iDyhpw2Xo8htPZaZp7PG2FEQuOkPqb2l6YnKUJxyygsedl2nz5Fgw+eyCmpZy9GyiFapF7UHPnmguW/0Vbr1bBjVv1QCqjOihwQ9cfyiE319phZK2e2g8RwQ8Fc+R3NR2enKtm1J9reDxuwj4VOLB67yzePqJ1fx5QijLtvVgjk8Hqk23JttzD9FJ3xRy2pRh4KUSNCp3sOO9PiiX8WfHUfJw8vo/SDwVCNnC72hggxHc8md0WeXLUo5xvHTzFmwaIQO3LDdymvEN8vl3iyWkN0OVkgKorSqhVYl6bDlLAx5Nl8eNh0PB1r+btojEwHD7eHiy1A1Vfk8Ao7fhNDit9//NjKXl62FZwmyS6t+ISvP+ozsLq0hy/Ay6800adNx7ULG/l24u+c44RoxHy+txRt4QGom0YN/ma2A3Yw98mq4KOeu16Pn0NywvWQIGz6uoUcmYCsbKcJ1HJVpEV6Ftszes/2YG0mrmdFgvmpQv7eezGcn8Mfg+zbsVj69Vy0D2YBfP6tdD9UqEsys7UMHUgd5xOk1a68Uyk59x2rElNDLhGW55kgeHz70FSUl9CGyYw5Mc9+I361QWfGNMlp/ewquiAl6fsRVSlxziT3GNdH2bOOTa9vLA5ePsq7+L7ifcIoGTunzENRoLFy/DU8lmYCX+ltYPjQTh6ie4vs8b43yf8SrbI8TrH+KICbvpvNd6DPw1hRqt4/lTpR2knXOnvHplUpWxpOwZ52GZgT9U2KlzxoVtOPaPBAZd3U2XT1pA7FUvcgiOQ5dpI2GV8QCXXrkE+87Xsp9qMd59tB4dgnbgsl4T2BpkhiEtOqjgaAbFms18wfggXZqwHmbFRqH01USs/mHDi07IQ9vudbz8ezdNCRSmUzmpmHXxEICrC/tMHUtv77rj9rJl4KugBU0NDbj/dTgV9gbQk38rIU5vMZ1++Zu/yLfCg6kOTAoXgIWtQMphCplm7kZXo4+0zMqSAz6v5XGehrjk0RIIfKvJYclO+OCSBQgMNXL7rFP8XD+CTO3n8pu8YTStjYRtacsw+eEbWPr9ECvoInBnG9mnmdNWkyhavLiVm7IV4Nbl91DzqIouuOvhFq9yKPIxgMRF0+GdzhcIez0RRi04QRpxa7m3WIEz3vlj/AInXBVnRa/LLcBqYh4lrB/NppPG8Jq+KhC5WUhNV07ztTfpPJR3iR7utOM+fRl45X2A+gY7YcEXS9B4FMxLnvaSfF897Hlex9KzJoDWVH0omiICO9Xf8rUFqvR3twu3DfajR95BlAn/RB8Mp8MkCkJP7RpSl1CAskXh6DY3nY92X8K4g0epfU8CuAhvh3iNPM55ORK/3c3nC7+lYWfwXHA8e5QfW12mEN8R2K8fjZ0rn1Hsjw2o7y1Ph70mEeZJwMOme1wT84z/aqqSy2AHDMpnk4qdGZ+7E0IcMR8Ey5/wih8CEP9JBOMilCFytiiGBElAzsF+Fo3aRoP9v3HG4BSO8jkNN/URCiedhNoPI2jlxkMQtOgaCwnuAFhhimE7jrPsnencGyHMQWfGgtHSNvJXkqerFgnsnurCBwXVYHqpAtvI65Hl4WrSPKZEt4f04OrMjSC04QmKBFVz9Pa9aHY6gE8lL+UXbdl8VN0Gh0+eZAdVUdh6QBU2bGiiyrp6WhphS4aDV0ixLZ+UWixBI9KAxPf+pJqPAIpmCLMvnYFdGoPonvcG/uzKwXeNndSSrEZb0ARMFLXZxkoapm1xZH28DV3bp6Hm7VDQGzuPD8ZkwriFU2CJlA9N/dMON1EW4q6Ycufi57h15F32eL8XRCQEyHzUO3qnOYS+q7vQ4U8xB4w2At/hDRSuO4W1N87CiYfiUCakBnd9Pw5iG3/gPMVbWGIlxMtUraBo0WZQMrTCeb+/4857ftw8ewGYJbmiSMY3CPhQSzKhs7DWQgfqD3XDhZdebPrZHNKD+/npq/nwweMl/SzfjuOKH8KI24bQ/58N3NBYD04pZXw/+SkMfWhB8eI8/pi2Dw9GhvNYx+844l0DxvhqQZnnStpw+TZNfSjMKR3WbHTHhZQXOsPcngqQ03dCpygH1gwYByN2NWHgASt2Pf0ckuSZKq39eWrGF95w7BT85zWXdh435Xm/teHucAHNX3kXP4vuxXGWJpDc/xVyfkljaOJJWB6ux+NHhZOyhAYI7brMdwxUOPrnMRzRMY89Er5y7DlGvfAwiMzV5+UnRkKilzm4HgrnpUZP2P3LZ+yN2YrnfIN45RsHfJ+Ri4nXvvN15W2sdFcdBDtN0NdwORWMiEfzL6tpTNMAjVKNoYVVxXR80V6eqxnLSr4mMN1XCLIvdZDphcOwreMD7HDbALXZ0my4yZJ+xZrDb607IF6iChJh46H1hBYMdfviVX0FVnPXJcmi+/R7bxBH2SdgproPrIxB2GEWTTFZ5ylpTCzUDazFO4lh/Cl/F9ro18OB1SN4keAHWBlsCp6X9eDHodsoEfGUNQ8nYnm/KQWG59HsjGj8JS1BQofX8NF9arA35wY932qBWgWtfFo4ia76DnDz40nw/hWwzo1YEBtbgZfv64F+Sw+s3LCJVfb20bQ/n/i0VR1KVTdS7yJJmpIQRCK/ZuPt5nGQ7hlIYQoHaULELTyl6MbRLn95lksRtvZYg9dbT/4Vawz3GizhpIILpdwXJTEag0cHMyhn22w87jED5Iwb6cKxQVohehbVPFTgywVx2rjrMe0ZCuNVDhdY3CSZD+0d5PdnTcD2cT6v+3oZ/daLgcvr1XDQdDEWvUpg28K3MKrUAE5K21DBIV8uejvMBc9aqVVaEc4MzYa5w2dxCaqDXMB7qnlLHClyhA5Z19CCoVdoWK/PXx2k4OQ3QR6Wbubcr0IwutWW1X79QD3XfcjDmixwYSwuHzjI398rgdCEcHo/yg+EcufAtwOn8GvtAKl/XISeD7Wx3OE6Jx4fD+ZXbWD8IYLqoTk4M/88eWidx6NuczHSKZzk1sTgx9qbqKZ9CnolRoLi/HJckihGKZrJfO3gVkh0GUsduggB+YksM6GEPUsIyz8LQrFsEv94vRJeV00mLDZizZ4LMOpxIB5c6w6fxdWhdvs07A80hc8RBnx/yUaozfSCpf8JgHX6WbiROhebgx1hijbStqS78HqmEIiPOgjHZmhTudMAXdROhYdTpuPNL4xpCY3k6LkXu9dJo+RCSzg3fw38OH+Q7OVEIU9wGY0WiMfBESGYtnUl7za05vmDl1Cy1wjgWx9a+izFLWYTSUmlHjWW74GzM89ifexu/K2bQkuLx9OYOlN4L7uRhdpaOGKeFrku8+BRQe/BA7fRQEUZygRdJalfiuB0UhamVv+BqVWadL3zLYXHWZBb9H/g2g14eIw+vYw/B6YbP9EYgxFQFeyAgeVJJPkynut2fEfLyYa43N+P35o04JaNMtzi306L+/QBOhSxV2wjn56jxQKNZvBY0gNvux+F2UG++EXHlz20L9KkYEkoiw7iZSVBHFWaxxqHN+DMpc1UHPqObX+EwkDmaNQLmQq7f4yAfqs5bF1/H4IH/0LYuBD0S17J956W4P5FmXC/vYD7FDroe7401A13wfusq3j4tCmNyzCiE9W+1JzfBEN55ewmtI0uuJfx+z8MP3cj5ieY8Y1Zs2mDEbNZ4CCYFwewtkoMT2sKZAWPibTwrg3gExvO/PGXtLyUkMu1uDz/Ffq9ugwKzTPp9UwHVhgYzUvXKsAIFS/uubMUlDWns4FGBKvqhoFzuSOMvx3K3buXYG6ZMRXZ6IF6TD/O8N5EPvePsMSIx7xWWgWu39HnzKoE3uT8AFOS0zh0hyWka8XDqphbdNrrIE6cr0ZVMy9w3IdraBbtxxj8kz8P2GHh9dEg/X0y57kwPB9pg7HtBfgiXxFUnYWgIcoIzf/pkImZM91PmQxpk9RxIenC1R0W4BGVyXO0q8BDTJRSLz4EHd9H4P6zDAamSsFd53VQuHkty9s8wDL/C1w4VQgNvM/DCykjEol7Rvr332GouA3EvDzJbu4qOEtjOjk9WQtcXQRKz/N5u04NTTp9jgqjdpNGiDVgbzTahdxAh5dn8O+KCTCluhDOBL2i2XHH6PODHVTEj2BSgAWYV1TCuG0FkPdRhWxqn2Pv3lHcM38kf5rgRm9mefGVRGFMnS39P/N//+4Vg10vkzj0eDD470jEurSfvDZzJcy7lcpbLLUZewLw2zyAmPZgLkmPgd/bF/CNKdV44Hw1zfuQhK98z9E/NWOqsl7OygP6IFTlygkODahtJMAPH72AUrdHfOSdHsQcugfbr2yjlm0XYWgsQGR1NLWmtYMJt6Np8C06WreI7VYkksecVso/ZADO8a9hk6M2xB1sIw2ZHj4wYyZVyVXg1Z4EKupshB+zToLh4FiMbU+CjkMGoG4+B1a/0KV3G07BCv95vN3pCkXsu0nTRk/DHQVKlK5gDE86LQDqdSlcKIm9xwXQzk3v4OPyK9A//jGGmC/EKaK6nDUmGR4420DHFikKm7UZ/07Tx9o1QmC0+xJJNVzkO35tOO3uV8rR6KHhwjGwKKyP/jRkwZFp3mTRlEIFIxfhup7XPHnrIGo8zKb527RxtYsEmK7I4COfLen91hW0o1uGDudsJ5/lM9H57DhIvxcMxuI/4MwZAYhb18y2do+hbFk52pzIourATL7x6hcnHCyjNj0JCDi8DDoVR8PF+9FQ4j2XRmreQMcP0vQ4YheUVTmh9aQTEK26HFf4icHN2lHQpeIPmSLOPHHWGXBdn4OGpiP5kVgMpkn68JGrw/hgTwXF7zQC69I7nBfmT+9f98P77x408eFlDM1S49kfcuhn2DY6Jn6GFTZKQE7DK9rwK4WN/xbAfXlrCN3uxUvu2cHGsDhybFwHgwGfOSFJHhqP9HF2oyEuHqkLU6Zqwo3W+Zy+/gwWjXPGHR0D4PynhUbo20FhqCWHL4nHN4nROCp2I//cP4jbb/6Bo/rDoD5rKsXqOHGQgyKkuT4k4ddMx0ECrlW+pZ2pj/h+aBZ7GHRyu+c5NCg1R4/L1hB5bR1sCfKmB4EVdP3hA7yleYMDFPLQd7IrV4c/Av+zL+D0oD2Ilo2jCVf8qdtZhy8dUiSL4AS4kTYEXm9PQuodQw5Qb2RfcXMwGxCmc+77qD70Ix3dfhmefLvHaYZOfPKBHM57tQcEWzyg5bY1rBesgwQrdTbJfswfTf9SY6QgGb/ajUu/acHfsfKYtS2PvttKwznnUdh05DUttZOgaa/LoXK2LtnXxFLyHmc4OOMennq/i1LlVKCkRRlFfy8FyZY4LBhRjypNuuh1RJtvSPpCgLs0T119A0b+0If7E5245G4qo9c/qlxpTRsFbsKWVUWoOZVwUdowdgRqo+kebRB5fo9tzK6yTGUKyDntp60vXeGE2yv4L6uQ9gWv44KIn7BwNUCa+SLYcsMFW7Wvo3X3Vy4QCAYV93Q6O/AfjZUVo8RncWBQKQS3Xs6Hcr1uSLLaSiYi97EkUR/mi+3gzVPmsoLqdhrXX4LnskYCvVgFX+7sR2WdALhR8Zzv3rhOGWPdOPS9NM58cIfHLXlKyWbakDVGjaPKX/Bm0QjuftGIM+deY7c6P55dqM7xyytwums19e+Wgrv3CqGw7haWFn1grYrltDtwFS0WeMPisb3Y5rqJxv8WAXcXFfBJGaZvgYu4MK0ZxsS9pmP7q+DprVE43k2UU3TK8Y6SIrY5WgKe282TVdXoSWcpmVXaguvzw6RmIQdf4+/hAYU1oPLIGax3ErDqdPpUmQAa3//glcX7uOuhFa2dMQWfunng9FVnqTr3H0ssVgZtvfu8fX8LapwrJ58eQ64VyEOBjEZymLUY7vy0xceT6mBXrTyURg7xg/1m9FF7At56ogURM+M5eO033nFrGzfsm8MrTdugJUYMXkjPQdt5hfjl226uxXdoscoaizJUedViY07Xl6HK+ir4EmoMy37s47p7ViQ7QQ06XUeAfM1vuKmnwokXfXikmRD8zR2GS93qIJqG8HJQAB7uDsGjs5pBf+19qAYfbL43H8xOKtPsjm20MMkO7t3wpS8NQzT0WJcWpNSzZJg2/FUaA08GfvKKTQk4Xc4W/mbIwzrtLhD33QCLtUbw9moP/mL4gSuFDVjjaC6Jihzgb6czudl0FJRu+sWSXl0o6hdJJ64tgcd9FRzX4ogTrw5g1u861FxogKMDJ4HCsxJM+meC3z4/xvNCkdwi/QSMFL9y3g55hjECuOTsIF84LwMu/32mY7NrwVYnkCKCXWj1T1GyyQvG6pN70fxGCm98UMkmmlbQ5ZFDp//lg5+3LaVDHTbnVnK4ggCrh18GvzUvAO6qc5jzJMi5E4IDKgVc53UYI27XwaTpEbxgTCXfum5PgQfKcLH1Zi6xsYGwrCzW78yCDlcTiMjIRcvzPlgecRsGzp1FJQdb3Hr1LMchgsYlX065rcNhzy+i7V5jEKP5sGDqWM7JqKFfRiF0R3Q/rxQzBMfsAig7eQHPpOTC2evHIPVALH2c+RJbLkoCltfTokQZFrwrAHU9mzE2KA7an3hh9/SpLFg6jYUkp0FcEnDytAroWJxHG0EDVGevg/zfy9DeqQ8MM+6hVZYeLtEdDenrS9HthQ1H6VTi7KNycEvKltM+yNHa/9T5OPSSutNKSjbqhuGtrliU4k8l/Sfx+WZdGD+PcME3Wew4qoB1UX+gdUiMX/03ljeFy8BA/1/SqSnmj3njwbPiIV6OfEUTXnxD2bNdTA+S8F/gFf6qchwOmRO37jbANU8ngv/kGPTc+QHGHn6JEe0q0JUZQ1VP19FXgVD+vXYcHzQxg5UZ5nBENYP9WlJQIPE1vQ8dgUfG70dz6xGQuFoXt+nsgITB2TxunDyU1yjTkxUuOHvKa0yeMBdl01fRKOG7PGuFEYTIhJK5zjiaGjQOxhgYg0HnEPt9b+WTY1eB0VMROrJIny9tPYHj6uNJeXUP7N6vCg3Lynleqw4eHbBinTvKVF6uiVXferlm4xjefdiRFb+48e9Ke5hx7C8qkhDnzdjKPY46iHfW0oWeGNoTnY4qTz5z3u6nWBMyGXJEL2CdbjYs/teCWxbbU1a+PXR4qqFouBS9OKpNMr3PseKKJczSzeKKvw4oV62F8r3ZMCvsIe9s6GHj8/dY59o/iF9WBML2k0BD8z/UMX2OJ/2HSS/sLTes+AMb5NbxtjffqST/GbwfzMQvymqg8PAb11yMhOjxsXQx7gPc/N7CwUXNMDe7FI7lrqULY2Xpvw/akDzlJVpXNKD27TckuzmJQhT/41Ugiuuz4uFh0mrCqcNoa2YOWqP3cftMcZAtHYKrI5HXOzmTfMgI9Nyjgx3yEhQw9xBl3deA6RfK8df4SAo5aM6WvYtxQWYljnogiv+pG5Kk7CY6P/QODF4RRHUhRR18DNeeNXDQ8me466Eot0WqU0uxJu6Pc+M1Vr/plepEuFP/hq2DRVB8ww/ueJZLvgtdqKXWg25u0ySb9cbUaCnBgp1aUNLqS64PxWlv8wfUk6/FmoIk/jdvDLfu+U57vK7j8YkT+UiZNfCwIQvfzaeCpbsxftdCkJ8gj2sl5ejAfWPY9voNf3L7Buf2CYLwQBldfnyA6yd8xqj8CLpwqRBO5nwD0eXJOPlYCYZHvuJppgDe2sb4Yv8/WvMsnOcIbeIAhVV0JkySlj5QghGpGWi1aBY3jVWDD7Xu6JgRxOHdvaC09wukxJRihEUJz127DS8ZXWKxnchjihRB5Jc1xwVNxx/nvODQmUTq/q0D5RO1YKlnKN49/A39/yjAz5vy8MLgGq7T+4aqu3fS5HB73KMaABX3HdCg8zZLdovhqdT72BOnCP2/c3B7oR8P+cTTUuPXZLrlIT/87YtTIhEu22+hobNBvFBXGHysD2GL/i06++wfC8n8A4/rWnD9Rg94fgngpr43IC29hWS2KsHfqhJ6MrMLUhV2c6/dZB4p4UhHVwejeXEEJbAvHu1oprCdFvD2rT03BtyFaaoNtHqfC7yzVqcWKAf7A07o67UYlaKicOi0EuxIngo2faPwet5RmOqfD3UfT7PRgDE9ub8IPSAC/vwK5PxWbdh9MQw07L9CRuEM0nk3AY+LZ/KM2vnUbDcdVorY88H2WFqbog+jVYrhpdsU7vBYxHIbu/hBzDjU9hRj4yOnUSRRlP5pH+OLD8bC9plykDTXk6dYrcLZ9xpQvm8jn14rxCsqFUDN7Bz6TfGHW4eM4UXOdopiH1ITm0o1focge7Mm/TGr5dEqOXhvsTr9ty2QJ39UgsiHB+n7oUY8WxsJ/Y9KKEN0ExhmmcBqj6cstK4PnU0E4U/lBChrkeTcMefhyRQ9LFqcjIJBndRQYwIrAtdDvIsSPz6xgtxEjcDsnjxkpCiC9qebkKunxT4jijj2qiGlTnsDTZOmoK3gfdw6dRIcFEjhAOk0ChDaC4antVjD8iwdXDmNQ874grFbBQqe1+CFKsIgLq0Jd4ry6PdpIxy/7S89tU2E5u0H+NyOUbws1RbjazOxY9YoeBV4mlrE4+lBw1e2OzcaI9zi+VeYPXeovuWCnFMopNGFX+2EoFbjH79aNAo7X/zhTrXNuDeqAQ+f7Mf9q7dhrFMpJR6xgzul9rD+6l987reVrAelIAxnoLz/YnjqOxUvjJHB7qSvsERyEAIeGYJA8UV8IC7DoseBClavoZ7VF0jtUyg9370fmvYvhj2xIfjV2wA8FFZx06UnvEouDqonSPDy8CewfsAUgp018XGxHL02zWD5RCWwHzqG58Z5k/mzLnCqrqRJ83bzdpHjvOKmJXtXSJDN9Xr4Va0De+6cpQ55JZRf54W1WbVwrnIu+7b18K59IWTQn4hC3U28vlYBNmWJY3nwAxbK34krnuxAm98n4JPuHcyObIFXh46AxBxTUFazgliTYP7hZ0zxs1xhypsCdpZxYEelSPZ7+BFPFT3Ft1EKOCfDDE7dcOeRMZPh4uUCeJBqTCumJEC6+Hro/SxA9p4DdOXVUQoZ1odC4x8U09DIrzePowP2gSz+I4Eag2M40SmNfdJtYWHFfzDtthSYCf3A6+Pj8LHbYUqKyuQ58cg/DgXh9+1+fEHCHtREAtg/2ATe3FbH1Yal+D7tOB1LKUa97H+o3TQD2/JPQf3L7TDHYDHWCGqDjXQAL/81EkwEvMio9ym0/YhhMYFDoFP2Cq+eVEI39ww2DBMA91/mLOP9Cxou6vD7eF0KONXNvfyZF536CI4TR2HjoDDZaJiB8AtvHOXgCD0q3nBPdySOD7IjHfFOLsyMI4mUN/S0opkkdDVgSeZmMBSNAhw6Qco+18mi8DvI7n0Gwx5qGBjXQZ9Hi6DRDSN4WTYOjFcXoGxgHfzL20DzzX9ioEws9AtFMt5YCvU7N/L8ZeLwKW8Tyg2/h1FTDtIen/f88kIfZav+o+YVoSi7whjjlp/gRRMUwTFrOk0Zc42efZQCxVmd9DQ2C9y1V9C/jwd5wP0fFfywo09xFpC4Yxj3GnVj2/L1tNgxiTTJBtQjctihZx3sevaV1Ev38KV0NdDbZU/a1UhZp+1o6sIhlNrtRC4XW7nuoTz7fPChlOzLvNXRErRK3oHhGlH8taufB29m49XcQdr88Qs9933LqT196PfuPmluU4EP1aFg/TQVU/cX0L9V8jjUtwqy05ToRtZFMKqp5bAt7Wy9YCSIClwjgdsbcfb8B9wic4hUkkfDaOe7NMpQGQMikknWP5a7fFTg8LcU+pj+BhaYycL5lj5qaIshldHdsLtGGH4LSIKI5xYuOGEDcd3+tCO5CFQWnsZAsSAOXXaaCmra0eexMsaYyaF8wRIYDLaDl9dHAfu2QO31i/hj/BEw3j4GVLNW82H3jZQ/bx1m/w3F+Q+V4bxHH2osdGUrYymoFSRc7nuXxUe14vSvwihjcQ1aN1nwk03q0NCay0lG0fw87ikr/jlEZ8Yt5Ydf17H2xwq8eXks6smoo4+5GuiEruH5n4DN91ylzlAbWKG3F5vbinnHhvfQE7ccZc/qc6u9Pfw4dIUKWv/iih9LUM8kDFeEuFG7+jM0XvyWtBdFsFfOG3huoQaPx/dC19WZYKB4lax/feGiCFMae/gyyyjeo8urrHGCwylSfG4Aawyd0G2pHnyXU4Wxe47Q4yE3/hmpS1/S1Wh27hI+LG6D87skAZ7ZUL/eDWq29MQXUi+4ujeBeoOn8145d3rZ9BFakwtwsEcVPhQrg11bIol5n4aW1AF6jN3k1FDF9wSvYNwjabLzecoJZ4TguZwDuF305qlB3ZTRX4pHti3AZZPLgCOfg1qsP80VKeSpqoqQM3kcLz24EW6OSYWAwBVgLKMG+V6WNPJoCD891cKrdx3mLUqC4KFnifb796PL1j1Qn+7FYyZJw+X392if8ikQiZsOeV96sXWaHbTVKdPWGWp47dNXdnupBXsrlmHzzk38/NAA5hZmY1bCYzw+SQ7+6jtBxNX5sDfMm7oMu+H30kskM38hqzz5woO5Rvz80ncMP6cOc9V8+Cv9gk5XYcrWdmG1mc1Ym5aCaTrFIPFHgwM8T/HvQTvYXfmCnunfgMcK0aC4QwRf3dqIH+b3YtqqFExfOpq+Fm6lDckS4NXoBIVCZ6gZflD9tzp4P2I/9UulwI5oRdYKvgJ9UXtQsEUakp1TcN2GYdx+t4W2H35K7Y9fsmVxNUWGT+R410MQcOED5VwXhNNr9vMLlV4EsWe4a042qM4fjR4Z6yBtRxX9eRBGGlLKHORkCc+b2sD66lK8X7KKi+JOwOROZah3UON1QxvxVN1Y2LG4humEEriHeGPm5Fz+tXgLqjwcSXMN9uB5QWscv3oyZsaegz/Wxbx1gxGonJnALn5vWMJViB5HXwe9u+5ov3MUVik4sGVlC6/JtcBfu9Vh/7xbdDYnGjpHTAKPfVIkozaHbkcPkLv3WzCx3AE/z8Sj7MVRMFb4ArVtDqbfE0pBsaebY9zn45JVP3nhq4ske3o7qgap0fYiYYgdPYfVmsNBySaS5TSn0angKeB/chSabj8Jg12JMHiwAsIdJ8Hi8YGkZ1ACl7vuwouzX6m5+hhmZSJtEdkLMO0L2vTMw4mTdcDpZDjDoR5499oXF5dkQmqSB67b0sKhOfXQkuqCied2wYeF6tAZrUxrFEVg28Br+hE+Ena0R7B1yHHUvHkb/V+Gw4W/a7H6pCwI7prOWmHb2ePWZty3KRsaZNw4YdYIlHZXhb1hA+S7vxIkJghDaN0+9vGoAM0johT36Q6efbgatJRScWvkTQ4wjib/B2Mo7KQogHIZqZj0sofaBXbbfwDHavXAwJtmPnM/H6bNGKTGshz+T8kGpGq9Ubykm5NcD/Hvmnc8P3gyq6beYvy4HWudF1DhYkca1JWEaX172Vk/FdsOS8LOsnn87L4Qan+pQsvD7XhyoJh017nyu2o1aNs6jI8FgSbVIMe9l8OCYDW45ldNE44PYp3Xb74WvYXWPDKB7X9TwXHoMBZbPmbJMgncOG0h7JdrIGPXVTwjpAzbKr6xUcxEiDNXoSebnBn21/KtjR/5vn0m2NjswZJ1m6nK6DdcFtoOowvsQUkqCSbsXAHRUpv425u9YHkzi5RbG/Gk2R7Kn59PUTSfQzergnd2J/mZfsdwsyD+xc00s/ItxHnGUY75PWyXD4UNAavpoPBIMF62GdKP2LJV0w78pvcFxb3cUEC/hTY7nAOTsky2uI+YeHoU0JFT3DTlCsh1WqHAgm7+oNZCZxauwSupnnDjxQRIPlpKm7ZqQu/SShj3YAsL7twMkQ8W0qMR4rDTqJgvihzi/SGXUO5kDOam6YC4ag+W2xpy6GZh+qgtBk32VrC4IRXCUo3glmYePmi6hkfMhGDSTDHoMe8j2bxHdGNBB82+XQg//nvI8r+bcKPCWWo7ncG/botCyPlQjh59hiqjD5DPiRN01+0rrQt1A46xhG/2rbRpRC4pohl0HZanx2VH6JDrXbiamwoBPkWwINae38TF4RbZFPJyeQDrWgmedi6EoDPnsNb0DNeYm8AH/zcQ0upDgUsaeKdYJWd1eGL8lnGQ/yiNNbvOwJGVkjzkfomk9svxgFcvvxNaST8y/+Ok5StQJ8kaBrsdUf3VAfqi5s3+KnPBtD8a1GadxfVpV2BD2hEUflVNNtmTQXLpGwqbVAxLk3/TsrfTqSFlDdnN0YJLr3UwtzSVJs8a5vjdUiBrY4eZ8cf5goMh/X6ZD8+MkHYrZtGiP2NwjfA3qLcZC2s/CkN+mCNdD6zBn9rFuKniNei8fAdFzqvQ3PkVSgZ78+XmQtgqIwKr2ruw6PF/tMdkMq99ac5/UsrxqV4laNe0w9mAZN5s843V5k0GiV8zOGDZX864sAsma0ryt+ujYYNiM69ebI+6f5R4trA4F1tMhsd6FbxaIZB/OVXA9euvKeBED0yM/4CbpHeSe2QEeA3W0Ya7o0FtYjwePXcNHyp/gL3H09jzUAbHbJHBkf92wHrbRJZo0kVPgTGgcdCMx5zrA4vje9hxsQGkV0lAyA55PLFgGXqf+kVXXWvQ/ZoATItPpKyoCHz/9AMfux4KX/UWsWTWHZy8Loz3NtXQIsdoylKwhSL/c3D8ymieZSZB9+JGwwyLbBxn8JSLtU3Yb/dW9Fisz0KPpWHqrkBcu+QXfiQRrq9dBV9uROHCgmF8cV+EG/PLcElPOEyMsYaOvijaWLofp/aUQ1yCKuyXv0B1JMCdjQVcatsHCVdjoNdbGe75aED6nQF29btKg8pTSc7FEXfX9eDvbxJ8qjQfrVaHsKm5EayPt+agzGQSXVRGSlpnqP5ADJn9KAchpxIyagyAXMkD/O+CMsTL50L3BWF4mXaKu35YwpOhzRhfMw/PGxvhnRkGoCR2DIbPMpwOcgEZtz8Ms/bCSrcFuGHNTsiXtWFnWQssDDHC3ULnoG3EJChSiSbH525QtX0E+8sXQtOGixi//DV4L+1lvZQ+ELVcjLZHxsHrE6PJQvQ4bW7soPCDjzDG+hFNsKyFDQ+WwJs/K6jqlQMFHLeETN/ZGDV2G1a+fgj2Adcp5sNTEP5VikVuuXilNhSCv7+EKQsFIUzbhjsWbMSRJRHgcF+IxgiWYddWorrhBMhfMJfbr07CQikbODrOmb/6nYDqlnvwekUOr547iePKvvN2vVi46qCKjS8egOUxCdgvHUmVeWd5REUEmJ7PpvWlXfCmuJXbCtLpTmgfZ5cTnZYwhxcGR0HlfCh/6n3Lk/7bgTK6Eaxr2QfBv3ox+YMceqnMozkygvCoKJP903T558Iykv9PinXFjnLSg0dw0G8u/OnQohfeLtAUaQtaO4Eaci0wOFqW7hepo5XFChwaWI4/D0Zx8V8xKLhphSOmTwTLcZW0YsZWuB04k9bOfgWjde/Si/hgyAo7B03zf6NvRC7YBBqB3+qFtEN3N+suaIPOSe9wbekV+rFpLsYEq9KCGm/SUanD3iIxsApq4J7G1WDR84tEF4iQgd5edtezZaPwf2g/Nocr0qV5o5klZKULQF1dDQRmJgLsEgcP5z4wiheiA9kzYUxyE3/wO4ieOwxgzPEQfJS2hjZLl+Dm8F66IjGB91r0UV3AH3yvdBZPfovh0i2GcASP8M2AMyhQkMwLYr34i+pcXBA3htr3CKILn6fdx0ZzZaoauNr/B98XBXOZN+Gjwj4Ud9HmVdUnsSzkFsw29uPahzEYXT4BHkXkw1GRVCp46UQ7Js2hvxO38aWZgvDN8AYf2n2dl9eXcWXoaJjf8weHHwRQJP3Ep08nYVTQZiwyqACt3HKUks4A45zjrLJeG/oPisGiPXvpb54gD1/RBuFvDuB3Zg213gqhGTiRfecpUtfvCZD73QemZ7bR1NFHqC6J0MEnDqpDO3CGXSiuN7zJieHWfG+1JeibKEG6cwlmxEmwz4gaKLJ4yjMe/wPHeavo13kLnpwfAhavR8L7q77kILSCtH3dwP37OlJKUYLWu/4wriucpunOxqen7VF5ykRo+uDAB9wzcbnGFcw5asfGCxpJ1CGef1WVwJLISv6nNhUMvsmBW10YOV8+Sem5o6BryJN++pRS7B5rWjsxGMExk8rWdVOXuQGYy4/nqR93c1PGC8zbNwe7NGK41UyIpDZ7kttla5j6QZZEimRhS70A2j89j00vj/Gdm5PYd5cbpk8+Ba+8luLrJ2YEttV82VoCbOXtULZTm7/ficY3VQuhcEEbGilb8eTtEqRwLBX912zCW6dHQMuRn7jWJxYPpg7Df5W+XP9VmOO1XtG0BqbTOWuAI90pwtMQsioa6VCIHXgqbcTzhdWcXLkNfcwcua46Am9VLYFlx1biiWUasOXhLrobKIFLDLbizMXr+WjiEtabJUxtWwmjfvuzblIHd/5RgqTUy3hcIRjmvPeEfzeDIK8qCE+XXaeCxHqI+BWD3Ykd/HKLDaz18QW31c60ZOwLbln0BmuW+7P/j204JGCPnbuH4EzcJdh8AeCMtT7N9DuI7vvUcZZiJc9y/csr/wlihoUfqf8TpIunX8CpK5IgnXACpX4GcPr1ABqzOgs1Np/l6/decVOTKKS3neHUojAQCLQC5cZUtnsnB0UuvuxlJQt+4+To9t17/Nwyg80LNuPjoqc4MUQBRPA+0pqlyCvf4qpH4yD+mT3O/DoF3rgfxc/Gd1lEZTTPjLSAW/HvuOPXLEhsz6fxDmkk9VSDhhzrMevFWlgTOIaj/C9A8LFJMMF4BlZ9K8aUtgdw8VoHZKoLc+2nZug+IUo3FLX52/Q8eJarC96rU0kKt+KC1lTSHTzDon77KH/nMCX0N6GzryftTKrjlGyAc332+FZLnaYIaMLERDGYER6A4W8loCHqFP2ueoX9d9q5cJYU6C75CAtq6+BicTTfXaeCyuPvcnJELM/dtgzPdbTR1RAHKE/SAuu5E2Fv5gN0TbEhIVXEupNIs2p/0YGbfRRXKQzNtUXYsU8IMnv/wOdsHWzuNoLWgQBYZVHPrjn+/P7pMB9p8SLLt4/QZJs1dFvJU4QJkMq4dti8dx58jYrhxcv84MfVYnq7wxlm1K4ExfxRoND9hELLj9EI/1WYqfgeIy7IcdLMAH4+QwPibq2my7HKMLtxFJQ7jMfV8iXskP2Y/ibrUfxxfWpf/opKTw2zgeVztAjSgK6VYlA4+TXcjLuLY3obYKvyb9KL1IYuhyGSu7YCDjdu5fy5m8ijSQV+hkvDEolMinVt5/5rYuh1xAVdOgK4w7UGcvVfU8bwDErvEQKTU3LoumMLHTEayzZ1gPr/VUGz1UyacHgfuurs4gRvC1pVYQpS/fPx+5Pl3PBVltbMvA07Ru+j5jgDuCT6kB26J9BNP1vWOKgKz6NHs27+NIrX30K3t1/EeZ86SabkMBpevcxhRZ/hjkQFkNJo2PV0FSr7SdAprdUgPiBD2r3bcdMiRz54xhTOHj0G9XVvoPX7aPja6k85izfBTKkU6Ftzl2viDnH7Gm/067dHEcN/8Ef9KYkd1oGfb6OgKWE3vi+1xc9n7pOXTwZn3dHntKcqoHHjA3RPf8/h1vqglLIPuh0vk/iJb/hp3H3svlNNdX8F8UzC/3FYH1whMGoAgN/RLpRSIu20VVJpUMiIyioro6gQMtIgFUqDJKkUIqRkRolQISRFQ4OGoqKUpK+IyD3n/ovHGR9F38NZUjVwNHgcGFz4BM9W7CH9kGLeF+LKCo2faMFQHI7Os8fC39qMo2pQRNIIjAwvovOWA0QzZsKdZWvB3/wk1M0Up2JRI3Rd+57+dWwmgWfWcLh0NZ67m0lLt2STbF0/znvbyjsypDlc6SZ6Dj3nR6lIus80wU8pCH739YJinQqt0bfACPdX7G70ihMWHqfb05UwaKU87HymB+YaX8ljXSZ1BaSDlIYBBL5TI0fVP9Sa44bD4eEsd1QcpB8gLHxQALstpoLx2d/so7eJsz6MweCo45De4MSXxW6QxjwfMNUzBJOvP+GvwWNuTj1Jvt9vwZjNudyfbQxfUtp5nsEnHNigzLmn5CGyvYgECxp4hMt+DJE4wy40jkc8ecXZo79Q5z1xPhwaTi69SpC4SoTsXy/jc28qaPebk/zmsTT5bL+M0Us2sO+hY/hkSRP83KAPaZ8Nyfx+Juyb7kwTK6TobdpYsn7SAWPDs8jVygdvaR/F48Iq4HJQi5uvfqDlDkf48+ZUCg8KgP+yKjmy/ScayyIfsRoEiyIAle+3oNbyIOMsQVKfcJfUXXfgEndlPtuZhiP7OlhySBgs94pA+51XpPJNlDQWpkHULF2IT02mvYc6oSPyGgiXleK9qRpgKSYCM8Z08O9UAxqdq0dHc19SQX4en7Tww/hZqqB8/wDdv7kdf8RLQIpMM9c478V7VcogGJmPt3QD8E+oJBsdm0ASht8gyv87Hiw3hRUuj2G+3EYK2TOZDi0Io7WZmoiFc0jR9hUFLLJEpcHPQEUC0N7hyVunbQX/iyUw+nEdDx34xY1u10Eq05JLvhtxzMp5PP6HJRQfuEGREofJSdKc/PqPkNDgaZbdvwLCfj+FTa9m4XllH2p6aQkLG5IoTbodQi0WgLKoNv8T2wG6Su6wplYY5iaqcFOqK+l1ToMblkvZsm4hZY+4DouOrefbtk9Rr2ESiuqf5PyZ0nCytAYjbBTAIOIUNk7diOYTxgOYFsOzDxXQue0RDYy9Q/qp1+lQmDcczBcAwcpBMnlZyr8rTNBNcwbWGftRvdATbgq+RI0HwlkrOIPOGctChrsuH5Gx408JxfhpwQbyt96JNeYuEBYuyPbWt0BhazwrXJwMq01XQsN0A/qTb4H+YTpQf9ids88K8ejnXZza5oazjiN+CxoJrb6FXKuazXaWx9BsuQUrPVNCnfcLIOniFsiycSLVRgJnHQu42uuEvXvGwKabC1CyLQKXr+ilU+nXsf99GxfOlMPYy0tw3NMpoD/Tl1I/76Ww+RX0ueoAajr8pop1EuAjVgyNO0txs+RtWPxNAu4IuUL4qAzYPeYY9V+NgMSqb/xdrgSTRvxjC/8QevWpG9ZeNoAR2wR5crs0j/3swE/MhTnGLhBsfm7DVkkVjh2wJ9fvQ2y2XRRiut9hiqk3ue66Bb5ZIhgxwhASH1aS63Mj1Ox4SM4/NHD9uulwZdsO0HNM5lMX0miPvQPdSCZY999YFpxmT9JRwpgxo41EdxqATtMA6eutBLlPLznZJ56+iXexudwgzRF05VUbxPCXhRe9DjEG0PPhbqFoetEFGK/hyuo/1mHpiNcgNHo1hykOA4lOZng0Hn58jCSWTYRfG6Jg9VIxGONqALvzvHC8wi0Ud7WklAE3/GikAwmFH/CTlQuHShMt3xAHkf4mWP2gCHIO2cFhU38uqrhMv/+KwKHlsrxdawo6V+ZQbsAl7tnuBP/FvuWdV2QpdYsOnTL3x8JoHegJl+Oo8QOw1foHHTN9iNueJpLUi2y8/vUjpC7Zwlv9myD9gwBsnznENsMnUOX6OjCXuIjvk63xt9o7PCj5lprc93JIlR9uHmMNHqpCEDOmjUIu3sHnEw/irPXFmDbmHZq5F1DrorP4tOUnnL1hBe3h87HU+zb79Cqy8INyWmvQjyvvb2MBbaSlraP5688OwmoV0Nt8k+XnHMfuXw7gl70GlpXk479jM0nOqoKOPHhLIY+sSHA2wsNvN1l1KAJMz2jj/nGFqDvdi3L391PytDP0d4cEYvN9aNOaABO+xLLp90I4NlGCtIou8Oj8YfY48JaLJDaT+bwhjk63om8NxhB9zQaNTyCr/JhMIUsX0tRGG3ofWstPl26DcWdu0/0iB/Ay04AWlSJKUxbBOYPq/PdMCi/6/J2fBmXAAd1Mem73A+/ffMb3d46FoSBv0nPYS4uj0thWKJ5Mk0tRx+w1Bv7wxzPy0bDv1iFoum4N2UES1NFzimasOw3dnRNoCEUxGwVAw1qfm/68Joug3TC/zhBGWExkjev6lEXSvPD1DLB+2AflnsRbR5yFEyHNbCI+hpsmGYGaoypON87DYuc+VmvcBy++emPQmwloViBMC86MhFZBRfa1HAOvXQx4x81dFL9kmDtDUvHreANKLmvkHdG3Mbz2Dt+a+QqditUAr4yi20JN/HPrTT73TIaPe2+nXokymD7vNsoFrOZB01i+/MsEClUN2Pm6I64drUemFTq06G0LFJ7Jo4KKMkgZLQ/P55+APPtR4BTui09F3Dl01FS4kUVsLRPIdX+yOQ2A350I5/4LP2m2rxJsWGHKv7rlMdN5J7dIBcD2GjV6cXk26jX/peWbDeGO93FcHjEFKr+MZZntzWBbshHPpp4lj7wq+iMYiltXuuMcBUUQGhtC0epaUGrxg9tXH0N3s208ZLmXJ5pUoVbQSFJp6STJxAy833Eekq2nwN60KFq77SKZ+M6jotMbyVnMEUZVvcSISVWQW2NEGw78pm02ZhD2OoEsk6ZB8Ku/7DF2Ag4/kGPHUyugMNMVTqw2B2vRTKy9LQc+C5bhJS0jDDPcRkteSuP7LQtx9gZPqD6eAztGLKRd/i84M1cUTh7RJfulOey74TqP9DDhSMHf2FX+DcODp+I/xbkwbYsQbvxjAaOrQ+Hstis0uC6dpL3/oqqXHtnZRZG2XxW6fBiA8QZy0NmnAHt+/YLhXa/Ibu4EmpfyAW7qq1JxlxonfR3F37/G0qk2JXzbLAnbF82FPHlJdh69kt6cnA2ye2ugNXAnva29xG2NHRg9UZwPekvDNszl9ClKGIl/cNakUdBiJgZlEUac9LSRBOJ+ULu8Oas4mEHzdHUKeKtI69fMwO7EHbTFU5nfj1pI3S5nWGXfbJj4U5YTdowG1Uku/C6wkjM3lmND5HP4ZvsfTnf2p65lXZzUloLdS0NxjKwxNM/WRqUHwjhxcw53jcqHN7H2zDkehC8jsD7hKZxUOw9d9+TA4qA+9T1WwoSRASQhEg52ZqPhmeoeKggb4D3WrzHvvTIlDqnDlcgkFLwJsKdkAkX3AH8P3k6tPUvA92c7dw9J4bKcalj+SR0KI96jYfA57qoJQLOGXlwQ9oImn5lDI3+4gI+pACj/N48CTMXg6aK76BFxBH+ql0JpxlaM+A60U1GTyQo5Yv9HbmgWpDXdluDUZMLqrQW0+r00ZX8Lhx6shQefpaHU2YgcLEfRJpMinqmnD622Anzlnyh9rKgnmf472HHpLJqaHwEN8x50k55Orwe6edhIEe5s8Ya7z1ZTXkcVJl7yZLWfP+CicgO6K5RyZm0N/SyQoifGYjBolsTxz8Uhe0Yj9Ga1UMzx0fxGOpH+SnRD7IAlTW2M4UhRVTg47zCmrzbEKJ00qnnnSwUdwpA1T48CvTfiLOs5WHnxFLaHa8H0urm8KSSJF4nawsZHG+jXzDic/DQPtc3TWKYtnvMswzBGyxAaMJxvrA1hGSFHcgnyRLctu9i8VYIyJHpBkH+Q6IyXYJOuBHveRFCBWwiZO2XBmhfiGK/jyhfnhJOxpzk2L3QGqdzRsLSI4anjexLQf87Pi/owXfsU6mywBd2Dn9izeA3+t/o6r3vvSCs6zUBQbTmc+LQbQry/w78zIihoNsy5/syDeYPkZNXJ1RVb+U+NIoQoNlJ8fzMVfNxG5Y4N8DIqhTIU+3CxtQNGBuhi69EOSJwhBYEdUfRoXzjPf6bPzQe9abfNOzw2UMWKb5aSedMsHDvuERRXTYUba0/x0bwKqMzeTjxKCGJM03jgtz5ZncjDkg9nSe1+OdzFMXDnzEq+9E+B3s61wuLal3BhiSfYbtkN96554XTZe9R+RQBsfwnBJc+5sP11Bz9sqqe4DxNom/Mk6Ho4DkzxEldVFsEH7VMUvc8cPrWNhprN7nAwZz5Q3TdeLTke3yyewJs8NlO00X2oj1Ol17HmcEVsJJr+8aLuj+Xw1/kyv3Yhyt9zkS6clobVrj0wZe07LipQh2drHCn4vCy8iFRG8exELnwtyp5aOfB9/CL47F4NFZGHuGOdDBh9mQmHAuLx75YMlq2byjMv78PlO5w5+UQn+46yoDNqA3D4/AiY83wHv8v+CSc33MCNJ4wgQECfcwyMsTa/ke8WA/nv/gM/H0+F3keVfKk1H8BhC6/T9qftX5ZQ6uIoCH01SMY6CjxrpS0/FFKCk7fkWO/MFbgcrk+jlXfR0cLTOOC4mEzqH/PpiYlkpJ7KhW7iEJnvSHdDBEhrjxhOEleF6+oi5Lk7FSt0zvHPGyUE2ZqstdEa/rMQQ9vHyrxqwnjyHNnM4h8P08ayNrRVu4dvjrjQHbUBWm49HSbvEAXtS38wxeEKbpVSgrqYaDpwaTcJu0hAe5Ie2gXqYtc+edj/zJ4nhF2BiKCRtNDsAT0/ZwDrpy5l26QO2t03hoUomoRDpcFo4ydIDRHkvgcLWdy0Cuzvp1PHuA5YLrsM689chUofBW67ZAmK35mCnupT2BE1mBxyCQoj1NDptBhdX9GN9+a9puXiGnTWRQIGspdCmGMQXk2eQF/CyjD9gwudfVtHgsJdWDQzAH4JbaUGHgvpT7Phgyng4ppHlHithK2n7OIMeUdudE5CvcA9cM1DCCpN5WBjWSE+LvkEsRZLIdDDiwJuxIJnZxs/8VKBKSEhUDq0B3QiJWH+nIkYvL8BFeZWU0i+FCcU2MOHb4dZRqGXnWZJwoGZ/rQ2Wg5eFq3hS4L9ZChjgztHK5DG6UhUn3sNVLWWQ/OZEzB3xmxckm8BZ8/7gazRGTySf58zPsyCbUk53DxjFFgnrUWh6N8kcGsH1aMGSOQXcmn9MXDz+kVi458C/CGSS/3D6bmO9E7FinJ9d+CXhVMhBt+QhlofCuc9g6lfdXlLxhLEy3doRvUh7gyvJplPH2FXpwk0H1lLflqxPLntNlnYZsJ4J0vM+zeeRgWugXmvUmjsSUsQVtYEnzMx+HdjCn+zj8cJGmth64FBul3pQU4tJliqhHBp/DpaOFMbJjRvpaNbjsNS5X7wigsh88Y3GOhQxhHPy1BT5SKtqJXGt6/NQaUxEhWnibP9OR/uKZnFz4IF6LaCPXxvKyWFWD1ImS4AO0rUYNLPHSjZtJGWxN7AdUvG0spvzxj9JuOVwWvs7DkaJm38gdb5E8AobDyd7y+kf0aStHiiObw13YD/3R5PL1dd5hE3u+n5hw76r98Q9s/35Z6Riig7/wdtKlvKxjJjOLU9ALqD3tIB+1Z0bHPhGZpW4LdYlvscy0l6cj8u+1dN4fsDADRkQCkhF8Wk7UjxhQkcOW0J5iJrwEFGjmSVPTlXyoDPPvLiq0VnqNbuFJqPluOMsHOg5KsBwa9HgkPHYVjzORA3/lfKIXGGKGF7CHtslcBSMAqnX4qEWdM14aWOPxV2uOKTeVas/XkGGY3Lo0RFU+g438c7T7jA2GvfcHaTBMz9Zcn33u6Du8HqICNkzTEGUqj0qRJuHrxGZVV3+bqaH6geNQMjy9m4sus/Ut1pi5JmV7hwrwLqrQ4GZRaEtxfP85uzwWx/WAucL+dSks8/SDZcAtFTXGnbwUiOeXmL3WbK4ZuX3vRPyZ49RKaDSlcpLmrfA2c9TXA7C+FrO0ls3t8Hff7EuWuIT7cpoP+gAVxfPMBZkfE0MuwgGrTfoghzaTDdOoX/LIvEA41+gF968MZOTWiwvo7n5J+CwOR7JO/qwude3KCWt1PhZ7k2zhwKRe8zP0AvyAz0bc7igWBZNhl9iJO0Lbg9o5ljDJgMVXez6mpDmEbjefwOA3je/pBai2TIp7SMXOxdQd5THTd7lMPNYUNImevBvl5KdKJWFB44ebD+hGzM8XyNU8JWQ+2NnzSi0I02jssD5/3TeQZq0e8zU6D6nxMeX3mKbpgOsdD2Zso4MppGVP7C7BWFXFi9mM8uS8Wz7QjHdm5AH5nvXBE2CMePZmPbdGH+6CwNF2begVEPhln+tCSFlepA5z0NUrnMeHFAF16sLsLAvHYWHc7g/odL6ETYO5jl2U4qs83gfnEqRPsE0cT6MzTmgw7OjLqIJ+3mYpJrGOn4dZJi+xX6L84ctG3eYrrTWbhUHIxKEmIQ9tcOR37L5Yaxojh7fT0cXCrOAT90oeOiFs5bsAry16rh5TZ/cjL/hd2Hn/OEHFfcPKqFq55aUfwtDUjpbGe7OS4gtt6K8wtGQUCgH7vsv0Prhu5TjLgCFa9cy2slNUGpb5AXX6hBpY4K8Hj8Airc9nHbpOlwt0GCSpKugd8ebeyaLAoOs/xQZeUvlgv1hsz9q3jkuCKYvc4UBM9+IHdPb0wqNsHTgdogdeMjqiRpQoHrK/azvMAPYvXZOfgA/PwoxC8WFrNKVD54rNCAW+WV1Om3GR7ZzyDdNREo+mM11RoH4rnWo0xtDhR4yBjt7kvActMA6NrUiVFSdXhc2Y6LAmyo0L6eL2Xs4SnHD3Ff2xVQ2WsMs7X08YiGPkSNi0ODcwv4i6USaowogpS5O+i3ZgTuahUAjTVmoB6zie7e1eJD3ql00jkA/jZ7UfbGZF7lpYszT1znzJBP+GuUBcTtmguS2atgb/8uwEEjUDm5lXKXyMOsXh/QmObCyzOL8cYLJah8E48LvlXgx73usPlQCV0COTDLmQWOTT4YGRHLLz5shX8ZwrDdQx9F4q3p2H9nMO98Ax1VPsnzVYxwm8tz2pgrCf0LPHGLkRhoquyj4NU1dMpfGOT6x3DALS9O9FPFzTPn0UGNmSSbmQKXdk2Cvjg5zir+B1maztQyyYmM61Jgz8Q82nP2F154rQb/rotCT9AEWPq0i2P3xoGTZhav2DgHn2zzA98DEVynqEOK6YZkVVlFe56JQp60I2j1uFJY4TqMEfeBwKJmGBafDrbezNvP59K24XTyrlCB0bbncVxoC41dpEuq2YG495cETfEJp14eQ57r/On1voM4ZpUcvJutATue/WYBiy68eiMOehIfUNQqAw7VauQKlVu4ReIkHBFWhe7fzqwmIwox545x16ohtI4yh0eeQZjkfAGuKSixT/JcGl5uAG+qtNjboY0lQsqxJ28Pry+Vw+EEI2z2VeKsudJw2t0KZvWIwZ1Je1Ff5B1fkutC1RQtnnJbHoK3uZNL7TPwaZxDMqfGQ2ClIORPv4pnjNbi6qWjKfGjCI/ae54fq5vhrGVNKJD6mp555uHY5VIwnJ9B+vfukF5JDFsF/uB178J4Rn0vT2iciIpf72HjwDsUE5aDiUKrOfjOcxJM24X+nhuw/lQQVV5zxwry4j+5UtyoJYFl343gTp0/n6kdQdMGHkBJ8gHOeeSNN1pi+Kq0Hl5Z9w0DfR/ywmIRyBo8TuPr8kjx6k68uT4OTpEDDe8oxoF3nRRht4wKWho5PmgyrDiXgvFDJaDsP0SDZ/6wxBIHrvDPZVWfVjjy8Crp+2VjzThdUJb+Tg+2V6H2hjcsHr0PaxJLsXnZMlQ9H4MN+3PQ5OwAlrgow46YeppVrY5S5xl7V8yByrp/ECfsgAOGd1Dp8yXayR9gUYMIFNy/xHV5ZykiMY53Xp1GcxP1sT/2I/51m0ZxD2+TQvcQ2uhMAY05+yB1Sg3sORgOorOsccTzJj78JR1TM3ewoYANB81QQN12DYhpD6FkiVCqmbMKfmyTwOXK3dTfZs8a3IVztuWg7Wo7/tmmA2dtdPkzvWHZT2fxwH1/fvd4EJrnBNPERFEKfSHN06IJv16UgJTqcJpToAYrdm+jSfX7cJv8Shj+/QCftnnjU/VmnLjzELlVq8KRp9H8JagHtV0TYbySLs/+Nw4zMATfrX/IzkGvKat2I7lunwiuu7WQGzTwTbgkzAvdTRpqovAodSXWrM2mu2GJ7KrZBqvNxWB1pRf6xxEC5dHJnHbe0hOKZ8xW0MShd+i4PJSt09rp0+B4oOQvPFE4HKTub0ZnxVJye+0DevIEwUf0uLtpDXmMLYOK34ag8DKd5ojogUv3N1DoHoErd7rS572lkKdzlHq/qdGS+GFcLmIF85YNYpXfM2zds5tuDDPMqGuhnLdjyWReF7yuG6L2RZGwXU0DNtqfwYKh2bhxsxDFW1+kDVdd8X2XLMWEXOb2ogZuUpyLSWLGsEZMFdpU0mmsuT1tzmrH6K85pDjKiRdVTuBzcePg/rQp4LFPALaJhkPUi2NQkKgE6l/TeHDXdvDJP8f7puWSnK8x379UjoNsAc0HLoLEIeBxecZkePkcKBW2gfTVOeRRcA2ylH0wMSyVJ3hqgeJ7aXQ6uobjLqfAYqldpCM/DW+WmnOIZTVcl1tHH58WY8TXsfBxai4+rvkCLTNWc+6P2xQwq5j3e+nxGd0aDipIxQqRaN55aCps7ihhY9MVHN+khvJjwsFmRSh88HkC0edWsIDxFPb7kwOJRyaDSsNq+JSVgfLqJfBw4gZ+IpKBsx9e5vVSwdR/+Dp5HnKllkqGz1PH03CHARm4JvCRwB5KeanP1vUHUflpCt/fk4j7feT4Qqs6dMn7kvK7LbR+SisbqW+l8AjANf4DdOJxN8c/1uELmVl8sZ4gbGA3rl18jZ4N+9Kxk7dp8Z9OsM12YMtdOdRUJ4G6/5Ko6IUMpJ2RBr0N09nezgvvx63nG49Pk3t0KmWJpNHK8DU0Cc1gtYYUiGWVQ2XbUwjUjMVNljvgqu8uimuwoXuJkhzlEwmNQemY4KwJzT9tyN/Rkpalr+bYh4dBLjuCjk8DKi8fRXeKyvnk0naeLTUGpDq/Ylm1Mm6f+4FHzPbkx6DNy74uopFVyVCRK8iaGy6AtcdU2BH5EZuHt8CBIy2c57oH5MXeUnXieQi8LAO1kYXE0g4YoCcPHQvWc9THdl7k8QLPi+7hias6QT6qDwLb7WFf2CC8PqBNwV9MoEfxPDe+08AD9vLgnT6XjI/rYt6sHbAt9SxeWBTCCTMAvr+3ACPTcWhTXQXmKnW09+UzvlGtgMa3hPmqfwWdKannXXO8SChEF352fQIfyUZOqVvBLa8+4aSztTxep4w0SQI0bk7Gm3dL0VVbE1Zl22H3V3G2DojEZilR+tDgzaIDz9j6azclNmpAYIAzHQhUBI96SRozVYYF237x4MJYnhJVha2wC98757KSzVryrnrFC4Ik4cZvY1QSyIbxDoYkrOoFy8QHecz9iZAZuA3Oa+wi+QYJMBYk0B8wpPcG5ZQzGMYr9p0jq5OrSX31SEoVOQkF+Teptk4Tv6eJwXnDO5Q3yYcbK1fB5+5TFJe9k2fNkcQPYblUOyoR/ATnkIsHgftIZIcH8rhZZycV1MmB1SZ36pe9zwpF2SC7dAM/l9WktAJTqJm5H1bRRzL6cA43uypxUN9L2hc4xAr7+7D38AKqSTPjr36TYcSuz6yia8u2x1zwsIwpmz6P5UiFRXh1Xjcuv78Hq9PlwS11Osj+/sO/frRh2Y5PuLVpLDZWG9KBjmdsu0kfpNee4QtfV+CR2nHQfyeWqr0+8cy1m8nbpA9X67yDgKppuL/KDjeWyHD7P11qu6wIo0QvcfmfChh41skC3iMxX2wBrbIToa0BEmS+6iR0Z87jRT46cKIkg1ad6mHT08WsMbOGNlqJkIhkHH69vIkLzm1B6/XbwM7OEMKtFDnX9DJnnyqh8u4X2GjVRDeNL+KkMSH4yMkGFy20wjdDY2GuuDvaHdLDPLUc3jx0Ev0aD8GqGQCiZd8poqof80oP81UJM5j5cSvVNFTiii4tdPCfhE1CcTRD7xb+mGlKPi1LqXTqBVY5ZA7vHdfz1WN59M1SFQs/faOXeXmY8HQQq0wzcb6zPAwaTcBlOgLQW7+Wpr43oomCNqR5Zyl2Hv/FO7W+oL78Iap5YkuVn25z71xNCFdZAxP/+woG7Y9oaNAXIktuo92mJL7cPgtd2qLAyyGFY7fLwd+I4zjYMpsefdnL644c5Sg4g/fGp7HCXF/Y0bSMHd29cUQSgZdRKSar5fDtx4e5IaKONiwKxP7DDnhz/hZOOr0bTBYWUHm8MfRNMqLAjzvxU4gvrCQlyroSz6W9vrRjcAf8WbIF1/cvIvv9lnBg5AleeiIAWnov4ZaUKNQSIdxdtYEbPiIMDP3HvhPeQ94JPXD4rU9xqrakJa2EzYdb+W23F/hf8aER+9thU08nt8e/5JhO5f9bMm/PIYyvrOA33cFUITEXtn9NxpG/7oHeQiN+oerGv2+YgqzUMPxY+hs83ijCyTcvYPXFT9yu7ciTBtrApDaNerPrSWSREuilFNH9K0Lo7jBAslW1JP/5IoiOn8x/H+RTZrs5fQzUw+eOUhB+8yaKJARxq/92WDrnPvVlycAWs9Eg+74NhUIP8uQ9a+j78vGwe2oyvdlQSJLrZNDWugNnmrXDoXeb0Hp4LU/pvAzVlwtwq/BkSIgSgNSH9tjpfJocDjnBG73P8Hp3Pa938KAx4xvxlIwkhU3TBvNHZ/GbayeNj/Hn/SsT6HV7G1254AuDkbqoO3UdFlnEw1oxCeirO81xzxHEJw3DvyuB2KJ4BSNe/6O3qTfZys6JWiJnsriZBsycVcbBMt3c8v4Hy9um0BOJ6Wgbu56Fp8pRpO5znHplFRhaGIGgoCfgrnt0WUiKppUYoWDQJarYdp/9BbbDaY1NKMuB0DVkCdPf9/MCkdssK5zMyinXIEssiapbCQsG77GEwSveknEPlsaPg/6VR7D9fRGHmNfBi3vTcJovw88AbbA5EETO2vko2duHutfE4aNrCa681g0JIkfAJeo2jGs7wKPUNrHVDX3e5LYeg9L8MN9VEmjSYjzZmQCKpc94OGYiRCdZkGnwHVp7PR9NJxWgR24elanogcmVBxh+NIGNWmbx7OE4qDdSQdd1+7HCaz0fKJLH/msLsCBEHt7OO8nFei/oepM1mLhu53uvP4Dwp62sZqgKty+o4K0FZpw/VgZeWabi5xMNJL+uFvxXtoJikBNpqL6iXekRMOJbHF608eW3uyeAt8BLeHnyGuROv4GRwo448vdV+O14Fy4WH4BC2WR45x7D+14xtIwPY71CHRJZuwoup5+DxTfkQOieG8qrF9Cr6GO0Nn+Y9+1RBe/Oy7TPOwVOJsSAj5U1Bm34j13HvuQlowtZ920kDY1eRcM75CDbZi6tz2QclouDeHEtWHY+A7VzhShx0WgMj2mgr+fXwaNv5vB87wmMXnqE2rt24MmtP3Fx02YQs31O3z4bsl+7PtwYns3hyxh22uei7OpWvNZWDCwRzEYzbsC6zQUg8WgLZImNgXXCCtDWNx5EkyTQ1lIc9OAGjkndDO/cirFc/ht3chvff93Fsj3h3D08Dr6cFAK7Q9nQmC+M0bf/g7YvoSxcEgQBNwbpQl8SL+/4RDfTpGC8mD1d/6yAhgY/WWVNLC7qvkp/PzmApFs6pL/oRqHzlZj0SR3qyo5gx+ESuDEjFQ5vnAy357vBI91vuPbLblze4sFjfg2xipskGD0tx1kLiqBBsYF1hA7yQ6Wb2LJgCG//3oDVQy/o65MwCvwoD/u2y2G2qBWsNDch40mjafCKPhhulqeZIlZwZ0Q6H6uO4SorBO1odRLdJsMfFSrI67EQbrJXhBv/qdD1qVHoGpTKwwulaNkPBVDwfQK65eXQM6gGVXO2sUxZMI94q06XnE3w7uQf+N52Bd7yM4BT5Sow8mM3tb3Zy/MfRdERBz3aMmYaiJ2W4NMxpyHMr4CeLjCBlPyLvK32B02XmU+PVDX5RlsvByaf5aaAGO4qSebM0ve0e5cqNO2TpholZ7ZfMIf+qBfg/VuTOeXyG14oPUjid3LgaIstvvJQBfz7Go2n60CCrRbt6TqIP9TK+bCULE0KsKA0hULIW9POHsLKEHLQlkd/jeR7A39wwfVxFDLzNrdknOZITz/kyPPYMv0qlu9SBdfFwiz+SYx2nOqAc3UfKTohD90SLvL+3gK6uqmDtnvI83bHETD61ixYP38VLjO7S4d6/GiXx12cqrmDI6J/UOKdtSBp6okSHmPhh4kMXBD3Juu8MWz/RAFHjskGxXxPKprwnCNEiznozRDpODJUan6nlfN18ZxkPK0+tp+rPf+BqU0BDG3Yw2rpE0jP1J86O6bBqtMlOCXlNLz8swIOXjan2zqS3DyvgaaGJbPwuVt06MQ31Ky2hoFxXVz58zhrrxqAvxm3aW1COidlZLLtt400VWQC7jmqTgVmohCz8TsWSOqSnWoiL18/hb0/HOEn0YkoMycEUwTekXVdGH6vFgbP432s2D2AFVli3HpnFFV6x3FV1AgelzCNf6bf4dOVO+FBohY0bP/Ms3xaaNPjEGyrbaDCBa5w2PgcCVwxgK+ZE1le9zBFNAvD8Dlh6H/+kBdm6pOr2AlOHjxK7yt12GmHNAvXKIHYuN987LMxvPjbi3a8Eyb7xHHSGhvWPe3Nj82dwbsiA0Q4kkb6lYDxoATAsQ8ob36IHOd74aJZKVCftAxDxZfCjtytuDF3Cy3a8gi7lAzB4akWPYiVo6UqIyHPIBa3rhXCZeU9KNWgif0bfGhNbRo+XyEIZ1YpQNkDNzKd2IXt1nE8yS4dNizo5rm+jrBPoot3zuqDldXykL85EMocTWj3DxsaWyxDbtX2LO6VCD23z8Ar2Ro+ue45PjNRhhefwvFOmjW/9XVlh64xkDZkQ1abVrNmzBOq31cCjn0pOG6SPBR6P6MwsWv8ujmfj9TuA5PuPfza5AHdjXXHD4WJeP3kRop9YA17g/fSLjM12B6jCeu+bWSx6FJw62uj64O1NFHtK/vJ2dHoD+PgW4gVtibnc61FDhi3LuT6oFZsyN9PWsrdLNs3DncJzMGc1wAjtMIoI/MoXJdYjdd9HoGN+nrIt9aByoq7eM5rGVwf58JPQyfDmgJZuui1mqqD4jnnsBrOXBBCumVS6Dl3kH9f+s3Gvgl8o1cGzkV8haYExL51MlRQs4c3rayiiyeu45uEavjrrECjMkNQ7YQwXF4zh3YNH+Z7tgvZG53pVkUQeVseo3d53rR74SJquS6EF+sNwbzhJdjs7oOlVmPZuFcTmrRTUT+vm8r+8wMzm6vULTUDeqxUoUTIjef7hNOplQ8xf8Q66ivXosCxilimXwNNNQg/hybhe0MjWPDkGz2Y/AP/bXxMsjMc6Z5EMYf/2QUjYtexbt1sXFEyGe6dM4U5LVdw3761LGJdTRZa82hflTX/OVmJQzqrSEOoBLaP3YTRY6XAqXsW3oywgzUSEvBWrhw87LZz4iyindVPaPk7Wdrlvwe7mwm2Lz6M/sIicFR+MZntYBhj40Aj0m/TYT1LENuzDbJOB8CuhIlgnmRDG/AqwJOt8OxWMERsseBX1Qibv7fAXjsrOOwbDfcmToH9sftI1G46PYpxYVOvxWD/VRquuuryjPMbICDNEKExnK6emgIrC6/xiVgLSl3pyUERZhC+QRfTRB0x/9haetv9gu5+yIOoHFmYNGkJaIXJ8AfZfhjlth/rvNeRwdttLHx9iAWbvpGhzh6s1JkOyYI36e5PO4r+JIpPJ56HH2Zj8XGmDGsIhNJQ/Hu6XiZEjydIgq7MbEgIOIh7rFtgwfwY1BhvSXuXzuCHElF4VkkEkr8vxkh/a3AyKsHPde9gv3cAJVtd4EK9F1C+TJQ0zzzHkw2dqL+8nmfdmAQiq/3w8MN8KPfyR08BNZyx4Sl1VUSAnP0wFtYtAKVfZXglyQJeeMnxhk0LQVtHhyTzHsP33Nmc5ivNDxetxldTB1hrVSW7ggnUTHGBkttbyHyuJYrX7wKH27XYrpABr9xNUV3dkM/n1OE5cU0wkptNKeqzsFTYiH7PuUOFYssx55QrXTwykn/lJ/H7te3cp2cItVnnUcplKgWfq4VNOWMp+e5KuP0lCLNdP2O8qgu+PfqVVF2U4Oa2PzTw8T1GBKazzabLaOXjjL1vtDHlyEmeuGYYgrOmMt7TBsegYNYbbqdTZZJwWfImzvj4AIT7+slHMRKPtkyEyYcLydVGAXo81+H8rAx4OeEoTxdB8P8cDOkx7vjT0hkU797jwJJ6/qA1FkqUb0Gc4BqWmF+Ooefd4NeV9ayy5DZr2CfAgmO/cfqzXLYvl4RVvoe4cXs/bpcLgO6RIyjC0gLWXBTE73gG/T1rMWh3MeUrW0Bo/WQm1x6aeGoRK4aF0C+129wTZA+b3FtALi0N1SXi6c+QJCR80qJxO6fQ30JxDirQZO8pPjjm+EeaGlNDO2dmkfngEn64Xg1e8Ht+82gPze0VgKCc3Tx7uQt/PJPGiZU1dPH7X5aO0+AFEoYQ9+sSxL1+w898p4KSQCA6rAli4dN9qFm0lP9ODsbynHWUXWICx16G41GwBccrIZy4ZBwnDEyAqqPfqL4qks/Yn4IrR+15R+NosPjoRjURJ+DyWmeG5efxr6IOeLbLYNEsLWoecZN05axpmz2Ck0ggrEuWZV1tAaoUOk833YxRWFeJ5q8oxyWv+nF/0GSKEFSGC2XToFUvhCSilPFzhCItmJPCPZ9EKHzXDHCZcALFypbB0xWGIAGv8UjFDv4T+oRCe1/Dv9xOrh8dBvWdp2FawAzuiAjEoRUERo7fSD5rGBJDPnOm11lyydWnwm9HOcp3C592ucUlwXJsV6wF35eV4eppTbQvuxRCqw7gGZE7bPt4N55cPIJ51WfCRW4467UUxA/XQ47+aV5xLJe8lWfhp0IpLlq7k9aMVQd5RQ96pBfLTxZPhtw5QIt/JnPHyE1UX7USfvpl4vvdOnQ7XRxV8kbB9GnuZCgrAjjwBy5saiCPt34Ua99LQ7onsOpDKPnMv0v/hf5k3m1On1+pQ2KuLPVF3+GS7qmY13MU3FufYft/S6h75k6S9i1kY3drqqnXhyttPlg5/wW7u6WT29/fkHTnGd1KPYuPTlzH5OI8vPTnCdf7WYL/1snU3XIbNjybxDPs5PCxUT/vunyax3l5cP3Xyyz1qoenlamBxK/zkJY7yOvsVMDnoQuO2o5kUTEPxbwPsN/EEHo1px0CCkThn8F5lLeaQR1ym9FxfzK81dWlmTGiGNOvBUViEeT0KQSSLafCorAmFqhBcHpShV+36uGS+Go8cO0fZd61gbjOjTjjzEqMfyUAPZdM6fzlUN6OZbxi/h7OWaENx/seQOuIXXznZyadHCzDzPej4XfucvS5e4mKQi1wgW8YT8m4Qkn5ifx1Rwg82pDJLQ/VeVeOGCw7bUDhueW0PC4QS5TGsLSoOy1XMILKF22k1mlOt4Pa6flIYTDYMpcf6d9HeU83cPvUjm/UimHb9SCy+OUAfy7Kgvn551BiMRX8XWWh7dU+3iVvDXt3Z7F6uQRMXg6cK+9CywVXQrzIWvBSnwRtyp4cp5YLpV3x2C/lB3PmfaM1k//gZmd7mNuYAl8Nc0BotiUcdBGB+ce1+Wx6MWtcu8EFP3ZR0M9fXPVXAZqPt8KRDn2ermgANUvO8fBTez5aLkDTbPdh73cnDCspg/0LL3HKu0h8OWUxGCZLg9OjWzDf9RCWO1wB003rqK/5B+6dvB8HMtz54CktSp8ym7dI6YL+E0OcsyyLh++d5fcPT6Fefg+GdmjByiAT+vTmO4WYaHLPLF0oCskGOjyV1hhGQKNZFnwtGaKSggn4YsE0nJMuAY1S/ThDZjq4jZPgt8Ej6NKDSRBzo4ISKy041uoCtpgl0bk3A6TyzhYkdGVg60gh8tzfTLGNyti5TwJf/diEmcJaqNkTiKIrx5DMjSW8sEUQynfOZ4Uibzh+YCuPH50MXsq9mLutFe8dus5lX95RX9sFTHHShJeKi+ifbDiFeqrD7/sdcOC2NH+sm8Iha9y4/0AUWa0o5vvluuBgG88yDyzh7tV+ylJaBfLuu1FKfj8oXF3IakdH4cr90XivYzTk5+TivPETUPiOKFn65fDWO/5clJ9BD9OKyCNrDHzpO8QbenXg/qhH/Na/nabpJYA2h+OU6RbclLGY9U3/0n/ei8Cs9ygdjBEBfePxvHjGGE4R/cyzj+yB8+6uPFh3k36dew8eAuPx3Ag7yAmTg+ULfemobCAM7j2Ll9Y3UP16Oa7dtZLOwCoOtnyHMkGLKC5JAfbNuEbqQ1nkIvGKBBWtQIIcKWfNcZD4bgzP0oFobw/KKpnCzimWHKC2DqcvtUDzhBN8YLYpxcp9JLcL4STQXIq9RwtgafJESC3dw4FeuznIOYyp9y93aI7BFY/W8sSrHzhZcC7bVURyzI5JcGPSI1o4rgFSrbP5Uakk2v4+zGUhn6BeNQcsTwVC3KqLfP+qDmSX6EDqClm+eXsKPf/ehpaf7qF4+gCGjGskFxMdCtlaQcUz5eD6Zz1iJ2+W0Wnl7wo3ueTyQVKUiwNx1bX08bUv/7Jpgw4pSwhdcpsl407DHs3PMGLRAnyim0JnfQdocFQb5YmPx+1QDGm1U2D/AWtcmfgabOQrSN4qkoQ0c1jj6y68GbUDKuzLsMsmF1IKZcAmwhzTTC05+q4suSZZo+VAHW212Yy9yWt4otN3jpOYQC8E5WGivCIbz19MuiISqOQ0HcXnpUCEqAk4DbyCL7p/+OC9Jlq4cywsaF7J2zUL8Gl1A7qfVObsRT9IS9UJU0rmwqzUWzSbXHDWVHNQlChjy2NpoPvPEhPSzsHeyGf4M+ILNoS8ZH/jHpgY/BCXBI6G/9Ku4/PmH+jt2subXYS4Qq+PV6x3R13RYaj6+RZaBkuo2UETzIN0KPXIBX41r4wnvFkNozSycZXHMypJ14Xzx+rA/qgIJsdYQObcm3ilT5vGvU0Dv//+cFZVGkr12TMbh/Mkm40wtOcKKowdDYc+qOK4p9LUYe8Ef8OJFxa/AId76uz76xDs3fcLW3Zqs36LAYx/5k8u2k/xkp48KFS78vfk06zmvozaTKbgOdODvFD4MKv/0Qev2b3075odLFOupns7dFl4N3LpqfHoMtSJY0IW48rNJqzRrQfvVqWRWs4V5n+qcNDKkyXUjdjW9RU2VX4mD9/X8OnHF7z42BxCvaaywZTNtFlEDlXlBGGH7gpIem8PZkLatP/GCTJRZHiRYwHqb0wpOuEZBqiHg7i0Miwp3o8anhv5wpxpJD4hCxPmb6L6gyKgH/qPo+V2QMqiMNgUegf05xMtrgvhG3AAl8QMgc3ld9zvYQY9GRMhSfMpf7i4GqIS1fDh0R0Y23yHnu+TY+dfo+HrvHMY890CHv+z4GrLSaj3G7FCYyn+k85j8duy9GbvIO2rmUetM7TINADhjupYljloBhXrR7Ga/wp8ueA8v5k4Bby0QmFb/E1ofaeHuedF4KF+JpwJXI1vnWPRcdp3FI1og8PXzuLi0afJ7fBTMqyYQh8txkPU/l9YdNMNq1YV8JNLK2nerw1U2zSbrhzTgrWdxCf0DqOUiQE4rj/Etg8PcXlCBd2bEs26a/vIoDeKJ3Q14/YF68DKu4+OJJhCcJ0KOlpVgK2CIT3ZtAgvhK/i99O0+UmSJs8ZtZB+PQgl951y8OC/ChKrOU5rNvxk5YVLUKnpB68L1uFlTzKp/L8xEPnvALq46EGUlicvGveVJI1HoNyTbhj63U7yR+eDwszHLHHWDW6F/8MJjiZg+mgCL3/7HEvmOlFjcyLH/s6jlMkK6FX4Dp7OLaLhYyPpZbkA7K8QhyQ6we8U7ImLqjG0PRYvFMeysZ4FLP4XzR2hX+HUCgVorTkBXstTWT3AD34L30frU0y3rq3kI3Ou8YLseRAsW4y1IuYgU1SOOveYPXun0eUvhVjgJ4L/MvWoZaE2dywLJd2g17x04jTQCJ2Map0byWetNXb5XKKQTjn09f8NW82EwS9GFG+fHwcB8yZAoVUBfd6sC1tN19LiGEM8WZbE36/fYffY1wyR2zi/zYsGnhvCmIbPsK9XCM/O38LxE7Lg98ivcKz5AMVf3wru/ddpO4qAvashbP0lz/XWRbCu3AJDyuTISUoelF71c5BqFp75ZQymtSvoir0oTH4tDI88ilD0mRklhV8D68PKePbYFnwoH4xfbJfRFV8F2v9MGSZNjCX/pw2UHdxOmwdf4JwbX+iKVh2vGGvLTgdy6I1gG5of1ASdo4ep/elRvHBiPvO+6dB6qptK9D34XGwERZ37QD+UPdkgShmkhB6yY34LuybPIckwNRJoW04svQEvnurC6Jg0Tnz8lG4+VoEVV4Dzjd+iWGwCnhAQgnUZQ3BtQyk12DTxCvcy3GDxh4pCxOCy0i5OHBeCCZpP6O0RM+5JOkTR/zLI/Icfrji/G6wtZNk8WQoa89Sg+VQSSXgvBYfWv6wxfyGPU1gCaT1KpOg2kgymHeXaWjNQ9vWn2GuPoGfcWNQNDWfvkz2YHEmwKyEGdsp1YXZqAbkdUIPHBTF4aLk8hBsswPnO4TTymymFFBth8ap7tNw3iuTq0rksVQp066rg0BpriOyaixahNbAU/+EBqSs4auggPBi8CBZDsqijh1DcOguDX8rhYsNmFL9ZTh1HF4LdaituVXxOq2ui+YicET1XA1if2U4yjyohw1kbe78doZa8djqpdJjELkzBXv8sLgtbxg+WWcB84S62X16Odr7zqLfmLy6RsoKpik8xsV0Mb2iJ4au8Shj1ZBSMK1VDGZU0FvnQxIJ9wuyY/5EKD52A8ZYR7HDmJtLWC1RZrAXSX3Ix4asrib+8CC+9AiDAMor13nnj7XIxKHycQxNjjSm4dgz4+2fB5yI/1NQ/C8es4vmPXjJeyIijLEMZ2OhfBbIj34LLiBEQIj8K0+/YYJb+aZxZEkn/+s7Tx9P+MDbtDK0QL8BOh/v4M1cYbDNK8epkacp7V8XHWj/wdfP1eC6pj43hD5ROyOSi4Tou6RwBz1/M4n7tMjjSeg7fas3mE57GXF12HdtjBChCRYqnfN4Gbk1S4Gn3FKWyJ7KM1mI4p+9E+98epS97rmFwYgbu/dTAPgmHIfLSGLBQe8wdCvvxt1M4h178CxGHO1HWc5AHaus4xlMK55+VghNy8jCi9BSa1S/AVM8wilddS4YLI6jrhx5dX5hBOgYX6PVwI/zaNwYyzfLI3vYQ9uVXw4i+LXikaxdklk4jId2ZtMRCAgpOPMTR9tpw5M4Ifh+1FuMWf8aA7DF8/eFxNOq/jWdlqwnPfmVlZ196ozsegkuXcc+Egxi94AE5jb9LXv+KwWFbBkjdPw6hX2byGkETuKglC/P63fn8t5WQ1SLDEh/voqOHJun5ZoJ3owgMjZKkNTYXcGM5QI7abExcWIgZh2w5JPwE932VIJkST3TanMXX5pZg2z8nTBkrCwI1DDLHB/iF+G40ybannN9Peeq/nWgzK4br75ajcpkCnsuXg2Uf92D8zvMw+asjt9y/hlKtfew7fR0ntouDnttdHDcngh/ES8LRKnPY8acSXVcOoburKHmEWFFB9CXsfuiKX5s2Y/yD95wuKArVpz+S/JcBnueVSfTuHm+pLcaUkR85wamY+hTPYtN//1BKZAL8l6UCK0x+w0q/XuwfNwkfuRTQ4LaRVJYiQcNvBajMtAe7OifDSOFyKn/xEhPWLaTwI+0UYKsPR6tnotOxNVRdZ0ynU9dT8QWCKvcXrNd9DU2a58CCkv8Rdx8KIShqAID/QUtbNERLe6g0VCIZIZUV0UDRspIVqaSQ1TKSjJRK6chIWdEeSpGUlAYiI6EUQvcx7pN8UwhXAKZrefOK4Xn48fVJdE9XIA03AagS2QvH18ewgp0MShUUgNdmWyYoBc0Nx3GuejweOSzM684qQa18NToccILwGV7s0hOHj9y8ca3VGY6vjoFdH++AreI6HBoeD7ufeOAvgxB03nAQ5Hy10GfWeFJXes6D78fQRYsbkLmxly//NxXSwoxgtW0Tmxnu4K318/GCzjDF9ZnR7volrNAgSOYe6+ieny7k34jhA7sdqPppN/6Z/Jxvi48C++An3J46F6YMPcdz7/rY8cBo2PPjCPd/SwZbv/u4sbwMQ4N2grlvAm57ZYj/rp3ABN3nKCMpDZIa+9gzypiXbRenwBF9aOTkzVZ2G/jqvWfgdY3ZV3E2J6uLwITeR9hSbMBVV20wxy8a/kZqcO4UA45KiMBJJXXQVDkfA3M04fD1Brhv3gAN+7aR4Il16LnZGS1WVeO5D+m0o/oVmx5ewPlaCvD2znLeeXgIvsuMxoWS38k98AO4j6qlu3HXMXbQiFsVpMAmVxqSmsRx/L0Uut6JvEhSl8tM62iKYAN1rrMF3fwW+txuC12/p8KIhCk46slxvpoQxaZT78G2qFD+NvgL+2f4ke+bKHSSV6XEWllwDJxGNb2eYHZrPYQ7yXJzzHtcZG+EtH0NTdRqpo8TfekDjoGW2dFwb+dFihP35853YrywZwV4mcjD59cN8HFwEbo23scCvanwUEmDXld64qOKCBJWz8YUj2WoW9HIlu8b0FNzD3tOaiYnMwOwtcqnRzfKwLHmDqw7Mhkcy+fRseFA3nxYAi9VJZBB8E1s6ZsAqvPj0Nl/Iar8GcuvNN34VF8u64hfxLc1MfhOKYgdInLpwyMVGKNyjkTk98GVnDxIHXkAGjfu5ZuhX/mHkQfqzdHG/pgOeuIsDHf0RlLbgWZu3KhDSWdWQLLhZ1ZTSGBPuEsr/ohitm0Bud3VBifrpXDU3htHP4xEr4OOeGCrLo9Baf5j/xVCN2jCroQZpHJbC+JL5lPiaClw71OkirVjeeW5RNR4e4vme9vBsdYgHpmvigMBsqAxVpD1DMbhoZ/NlDf/FToYzKTNu5vBYt4DfuBdBs9uHaHqHhlY/U+HS+f4UOd+Ad77xoFbikWxV2w9pU/2ZZ9UZT5+LZXxng54TkzBCseNlNP2FiUay+ByihFO+5RBJxOLYVBXm5yz/PFgtgUsn3UPrt2NZNc+fUrsXID6k65hw84BmtK7CLQa9vO44wn0r1sR6ktO46PA67y/qY5XDF2Annlz+APWY1WYDMTNigbzz0nQYqkE4LwRT083YVvFfbB3kzxpZVzmnR5KdE4eeWm2Cv8tnAfwRht2ei5gjRNR9MQulLwPDJKq82o6HF+Pv21nod55DWiVPc+yp6bBkX3fOfneHwyd4IQuVmpkGP8fDM8aoOlZTSTfthgqErvpuo86iG34A+NC/NFh2moenmvMgjCEde6HeamLHaHzS1D48gDWGJiC75zXJDq6lGpnZVPfTU9OT9xMI2xlyLNhGV/OmUO6sjnopCsNlkbL0GKONYQtlaI8mRpsGw7ndxnAdlk74WfcUxJsDGadFG1ofSOBlzAbn8YSdWiPwaXHVnHWqdfwfocLr5S9gWErQnBiG8OtlgauOqYJvoVhvMU5lc8fi8Kg5CpcuKMD1qunor7AT1iWqwwmDRnowSkkZ+4Evxt6QB5nY5T1Sm4tX8ZmSh/hP1M7ODBSCFZt7ub7unM5VWMETWybxCtmDpBjrwV2LqyE56st4P6BPWC+VhNmtrvADcV+Fsk4iC3THvKitUfh9+w9VDnTiiZ9zKQ/GXfJ9YwQ4JhP9ODXelKJyoLjqUEgtnIXdm5wgIJIP+yY7M6zvTNZPMAMZjUfoMjeeu5dXgh2Qpq40moFfxo3hk80x2C4xy5Kvt/KlbNEYdBlGW1e5IJzy+/AlIZ4VJpgSAY/N/JfG0JnM00u7HxJg/36sD6qB8SlP/E4OSvSmRPCerkZvKdmMj48twwmqtnQ9IrlXCUnCXMnb8K6r5dooa8JqOqP42OuLfBl9BBGXJ1Kxt8Xovsuad7orgd5Uw7R2CfHSP06cV7IRphZHwTP1ttD5pW/oDZsSu/Oi6CaFcG795LcLH+RxzrXoHOTILhXXuLWSRK0WccQBp0GUWNxIuxZZQS6UwZ4alIzCi0JRMvKWGp/9g5snHZwzNgS8ip6CgItVih5VAL0+07w5aPh1KN7DKa3VKHo+U6c3XcWfSdth49cBGcHJejVmilQdqGC7fzeorpTLvdeTMfwl9dZtW8yTNy5h1pX7AWV3W/gb58+GG+KgJViq2D+558wpToD1yo1g5jybfa+sp+Dtx7inzeFIW+FGAQXSFDHYBtE4W7KaBGnixIrcU1vBoyf14i2g1/oRthMNB1nCgtv19IMBSset7obhDaN4oyDHylTOQh3R8pCeWkIaV3s5KglkmCslotmq3X5qKQKHBsw5h+zguldfAfG3TwPk8akQ7ibE9XuMIe/8R+5+YUDWUgpUuWS+2jrvZ6/Uh3rzb8ODx0ucsnjbL610BAkN0+j4VWfGJx8wFhSHc1OnqORr8TB99R0vOupCar+jXDxhRx4ecrw5gWC9DXjGsXGOnPgzmD+uS0Rv91UpZm+yRzVNoNntiuCUa0nTQkdiebRP6nR8zNrWR+FEsUCTtBEiisSwTHRI8HIdDJ02vpiu9F/tHvdIVYWOARJxUqsIJxD7y1NUUfKHnIM+nmpiyX8m53Nhn/C2extFy89P5vT1srS4Ly7fFsqAdrrjfGuwH2O/KEEWaePw7SxraRbO4r6Z36iRzXW4O//na+42eOtBZfhQ+I6En+kAQal4jg3azn3CgbSm48xNCf5HFHRP9Yzmsfrry6Ci8LlOP6GANyo/oj3s+ZioO0zVDl9jNxOSNOCb8lk5D0dU3Y20fsN7eBlpwWzexrAZXM9Rsy1Ifef3nDtuCDpjfqMi+xHUkJ2K0xfBbyoXw923Z3G420JRwhlsuJvC8otPUAZJwPo84HDNFz+F0vHfYMgwdEQkNBOUhMEoF51Kj8X+EvZcx6A5JIOat21l64vLqDi0j+YnD4eVj/eQ4IX4nF4ykY88N80fOYcjatlw9nOYy1ObX2DFdKx+DVEE/7LIoC+efQvdyzuWP6D0nfsgpuuLvj7NqPu/TBSFsvCLBlL2PXBjkcJfueDVr/AWWwv3b9VitYPY3Fq+g8M6AqEijZ1cv04GfICb3OQ60YOcmzhffbD6LDzE91YPUw+5d4UlxMIP0OtWDRpCrzdasdt/rM4vUIXOztfg56JIPiuXAAN/V50ZX8Cb7YXRtfnE2Bs1yEW3HyDB+JdwG59Kw4+v09vLTXBqXIeWcVLgGj9OBwbSNDRtBLNhC5RxAYNuBeUS3KrV4PrQicoFOzGzqFiNBXfCpVnAcoOJlOsfwLdsBWmOeVunK7qSDlGL0D0hCaetthEPQHd9M5PEDxEG0A6QZ92VIjhLGV/uLfBDseO0MU7jWLotvYW+wYN0OV3IyFDXAvcnyTTqPQp2NFbDmGbamFghQo8yx+PLfuO8fvDW8BX3QL21O7nlpJcOql/jR/nr+G8hFK+eUsZTDJfoqjPB37ueZKl7itCtbMcdI2Zwcca3sDAaS+YcHgiW1su5RsqIpj3dSrIPG6n3MsMpytCOfHEDly+q5WuKUthVnsbFq1cQ2WG8/hKsgxqyVTwnMYx4NlwCm/PusEjLcNYeW4azv3rgA7n/tBqT1eOEToHEooe/HLrNLBTPoOFb1PRakM3tjU9ZaPcCJ5vLgeDCjI8ImQBx5S3o9MGI0gYvQeFVvmiu/JDzBqhiyvtTqHBY3HKV/nAabuvo0p9BfbaGwKNLaSHj0Loxr0e6n6ZhgWGxjR19B8UEhsGXc2LVNNURkfb5GGr7h56vv8JpyjmQkn5G/L/PQutlCU5Z/Ap73/2FXq8fsAWR4DtT4vwa/BcMsv5AtoGMRSe+wtWGKfjeYkQyn98kd79akFp07Eg8TIEYh2ToMV1EnT6iuOPR+3Yli2Nw+kFePeLA40954iKjtrglnMT7h99BynrbkOG0W0MEFnAbZO/4FUjbaqUt8VDa99j+UlhEHOyptwXd0BF3YgvYQxduKFHDn5m4FGWB91xjnC6RYR7hRii9x8h3fz5mFo/gqNWEG2+7QHTYgZBcZ4k3ZTrwL1zxShBThW0K8dTvFAAjVduRZmnuay8pRQTs6fQ9/V38NDBO6i3PYD2p+lD2lM//nT7BkqO9MNzyeI8baIhdC3pY+/Xejjiww74+UQFSionwXBmHPxTaoaJSzW4dK8j5CuVUVOwOj4ISoKfy/3whq46P9sKEF12DQOXIkXdCCJll7W4XceJtu7UY6vA8bRUcwMPXAes+CAAozKmsXjcE85bmE0mp6+CS/tq2LpgDKVUqpF+A2JqTTXeWKcFzW1zUKqmFXvjXtAi/gg6gV85WbCf66ccAOW8v/QK+vnESjUoCJbjuE5XPK2yFo4fC8Mqk5PYsew4bEku4MkK7Wh5roP0/yhBiG0FL61VxaXVDZiuuhtPqXSh1sxjcMRsPArgK9I9Ng1vRojBE6Fc7op6xvx3Mmq8iOXzppo8O96bn4+4wV9WFOM+1UaQaJYDM4s3HPo6k+RWjeJvXapwzHM1/ok5jAeFD7Py6kyKz3DA8a+lwdOmgWb/WIl7TiXw2OipIFRoDnOufqLwLxdpWs5K7or4CfPEJ0PuYByYas6nqOFRJH7jDr1/uYrXeBhyrOUXjnhTSwvqQ0FLdTLsIV1ehiqw5uAa6Ch6Q8X9bjh6dzd+7IqGixvy8EbcdoooMoAdkhbk2BuFo+97U3xZBW95pYcdmUc5WG8zx/l+ZR3pGrjyWhnkjRiEuo5CxTQDevyvgny+3kX1l6Ws5rMUkiZmYUC4CIXE6kKdQSFuVfmFbePr2WtqGFUNzALhdFmw15gGjzWOsGTVfCpfrwHdJdIsXxlLRdtS+N+ZqbA38x4F1MhAavJi+pJZAc1HtMDipQXY1uajuF01uvgUU/TsHjjY7QGzT5Xigy43nq/rhgUSyXDRVwa0rfJZNyeQHUW3UoZ+HHH8HsrRmAP3lg5xwlpdmC/fi6ZnJsOi5JdcFujA65wucXpiOB7/3klzP18g09Un4G/vTxi/zx+cAqbDd3kHSnYbxk/Od8hxbB702R+FdLUKSK7rYq2Phhxjegm8PA3gk74cL5MJwC7tjeRWn4rj9j7gL1tHkNDUHdCUoskxZTn0yEcI/BMrUTdnPBboGqJFdSP32KSgffZB9s2V52ce59g5Yw1+1xUF81gvdGpZCk59l7Bl0m9et38htd8uw9+qlhDxLxIsnafClfnyYPa9m4VybtKCLilwjT6J639KQVHyD/q7Zzu1eWWCarMFCtYpwNq6J7he5TEvczSjztsO3FPpgA1lGfzp6jMoU1zEEcoFpPpyIngd3EKfPL/At5/B8MfUjxbnNYKiXxslnpIj2w+f+VO4FQmZGsOk3Bw6SH+pesUwSUecZPCezY9SgknfZi+8/PkGt+Y8pYp8AWhbvpbceCvuqD7KXuobodR7JqSl3oagR+PB9cEKaowcw2Ga0lDnWsFDUq500Kkd508ypwZ1Va6w2Uq62TPh9sjxGPtQggrXAeQZSNPZt0vgh5UsZzasg5j7T0AqJJxS/ntCQjezYUjrI2+KM4TV4jfhus0lviexD1b/UcV/N2zh4ZpITpKditWXm2ijVx0mNOlA395Z6DI2BhyfiIF2tA2fv+jEvdeHMf73ZVDrCcF9zRWcYmHxf/N/lcviSFDqDyy6XEJbVqzHw6NtcPyOw/xdJRF8Om9hdZ4w9R+ZBOdjQ1DSU5O/yCzn9vOPocpnP1RdzYa5saFwM10d036/x/IXOnBhsTa+Oe4GssaRdD3XEcSvR/DGbYdxp1o73ln2jIb23uZlZrLgKuXA3mPf4SGHszymcQ4pX/MlgZzxNKerF5oW3oSOc+Kssl4CupODuLgvmYULf7Ll+SUkOfyBJ8xIJGHtxRw6uJGC0tbhdCdBGGM6lT0X2LEGrkWtq4uo5+ZT1LC4Qj/79+HzKgPuNPBD/yUCYH48FLrua1GqQTt3PpEDqteHlrWqsEPkGmo4qfKL4u2U+E8aTp+KwnxUoN33x6DrmwmksWciJZ/ZSRwnReV58vxp8yUyu6gJ2yJeUGCnIsfK3+F4mRlY+uA1/9uxBtHpM4rQAp488SKkfrOGcE1vPPDVBsU9vvJ7h/U0a/EKKCrsp9q3o+iQhSasGXJH9fPKoKPWTNd22MNYaw3avdGZjk55R9HR/ihd+ZB21c+mObtzeeCyLmheOkHpM6I4o8AZWo84wt2xHhivW07zp9/m7z/16fEDA8wMEoHEzlJ8b6+JmktKQfbbEfBoUoDkhY6waEcMHLnqADPnKdLWUF1oiVbGmwfu8tZlO3nfAV/QX76KNr0uJXuZZE76UEtO5oLgaiUFewLl8enfVijWuQ8bRTNxrlwyOGZmYVB5Jds73WTLwFu4tEAMzCcSf53/iuUeP+B5zePoaakXaj8MBK3sOEoVuEN328Ngo4UVXDx+G47cLgcjmWLsGf0BFCZ54RW5ZjROu05CnYI0ccFbNpMxBr9J1+Glwna+apCH8UvzWOluGb1OdqYQK3cQmteBHr+V4O9BFWiKDKJg9zHQ/FSbIy3/8RRJI67cb4RmGvvB8z8xanz0GyTddeF7fjlddx3m5sxVrHvyGr5//A6Phm/F6cE6qOR/Hi7OlcIXSyVBIHACLBLM59QdX2CnwxoQlPOCw41t4P6jnK7YrgfHCgf0aRWHX6WJeH5SPQmMt+FNk8LIcvlM1pRhHL/Aj/SunaLTunoskW8N7XY1HF40lyI2CfDWEAk8UquJf4+Y8bbT6XhPrBOkxuXRhZ1ikFqoRp9kJPlV23Z0/dADl1rbuKmtA4JObQU59xuoMXU7nS5AqI79AYVKl3F00U6u/fYY6n+MpvDRa3HMYDhP6Klhcf0CDPAdA+k36iljTh7sT8+CE6rdWHpRlDoGr0Cpow/5vbjAS2d30afJ6lC0+zE3Tn4B+31H8Jof1VCY3wrqo33wXNFeXj9ZCNWjxGDyXEtIu+EG/WY7aNxbb5BJLIK4GYvJP7OfE2Y9A4Nry5hzWyl4rQXcS4+FU1HrSdI/iVet9YT01RX0RjOMk7Pt8YvGZD6odoKCe3XBJKmC67/bQfDmXNxSVMzNygyhaSvhpdsv0L5vC/OXyvC4Hknou1hHxiL+kBQuRtLPPcDnsTSuTFrGOd5K/DriLP0Ln8dBjnpQaVjE/dOO4mS/LrARbMfWUa70/DSASdpq2H4wgmq8X5D6SW34fHYZVj5hyJIPwuVfYyljfy8ub7mILccl2WT4NTtm7GebRTpgv2EH3RRXgAnxz4Gb77FhjS4pyXZR/89VqNC0FhO/fCPza9YwLV8R6j+sBhplTfmlb0DR7DXoan4EmYg44jW5OGbNMP5o0Qcrxygq2uoGfr8icOyIqeg5PZ7fZZvy8YHjGDzRGbL7SvnAZiWQmbAGpBfIYH3Hcli1YwOaNrWDgesgY1UamRaM4dnFLiw1ygTWFOsRLI/l7mUHKWtwP/+rjIPx/5KobO5W3KZkRxuGOkF9PcOfzLeUJ2nN012z+YuXOUePMIVq3UoaVdrDG993olJDPJ78MQqEPRK5K24AjNaWQmftW7wTfZZ70gLg2ZtD2C15FKb5zYOBLD14vcWWv1t1YNWzLaTn9owHlUagv+larL1lgraOjhCatYY1VytB7owZcP9vDezZcIzE/sRCflIEtv3wpmqH69jz04Ut+stodqYiHCw9jldhJdc41fHu8wP0aJQMZW3Xp98DFXzi0xIu/FAG1lEj4YioNKY1j0TX325U/cIfn9r0cflQITrIquD8q49p5fmNvGKcOKR9282n5/7Gs06r4P3vb9x61AuWN5hz4n1TivlwlGrvZqGhrQX06C0GiflmlPJvB+EspqInLrhguTMuMqmCGrEgvPxjGC0trUB58wg0+7qe1y//xCMltMmK3/BQxR5s3dEBMzcB3/1aycueW8OSghw4fmc8Z9d7Y/PXS2RgFwHvPU6x2SUrtk4agXErLDCiRABu6hmg4Wlp3N+/CEMVtrG1zEk4WH8HNhtlkP6Sl/Ah4CR5auvDgjXTUelUIWnPmsTRanLYdWU+J4yro7Q9hrTZsB6Mzu3n6nMy0BG6Ao6cXkjhJo8o6m0ymJj/BrGDv1hNLgGstl7Bb2+UaUXBaEhSqMekk5fJ0W8lmz/5QQI/fDgsLohbX5bSjLoArPrPgLoEAPr3rIbynj4o0t0H2aXbcI/DKagI/4Jq01/BunWBeOHNXl72azScv3KIBNtuc6xOHC+rXcG9F1I4qSsBNgxbskqzFHvevMr96kbQp/cCjyaUceOtJ/D0pwcYpP7lizEacGHSU+iYFY6hc45TgKcxVIl5coCVP7TZReCILGdOiPOjh/rbyD7Vktbu6kXdiy7s8VoMPl0eiblu8iy/fDs9/20L7fuSMaQaWOeWME7edB2ly1XxbAzBhLD5cFMpmtbeGI+73yyEX9HeIFuzExwbcmCb0XyWeb0Tk7eNhfynD+junFZWkshkjdUzKdyxlsVOfwKefRcfd9TQ/OFbvFdbEpwvXUFL9YuoO3sdTRqlD6ZFH6D70ki2vvgLHxeKciZPxedyMvD53nEq7WoEAVtJzveupWdrusnbT4Lf9Bjj9qq9vKLpIHscsoRAQV8SzcrAinR7HmycigkbhvHxLguO2bsezoSK8Wi7Qo7TEICpP7vxsdcUDJ22jkX3mtOce4BabgexdOg2414DPP+iGr4+Vob5u0/Sia+tTKqP6db0Hp6pO4mv79enVV53qH5AmPMtlDnR1wIupCzBCSgEW+3H8RGhrTwvOZFVgwbgg7sdFgdq4GxTM9ARlgKHAmcOj84F/M8B7bX7qXn6RJr1S5DU2srBLzkAFXz/0JoaBqnIdphxcBc8PX4AAy4bgYv8ahgoOUIznxiwY8hElNppwm3j1eGziCKe8rpPV/ueoVnDEOunnQGN1kG2+jeC9Gzr+fUeoGXyltCyaCmHhf8kRdkXZDcQioa7bUBh6Drp3wtgd8t0urZ0Bt7fpQn+D2w5WFAHB5r7eZHuCvDI3YxxTV+4e04Sx4qlYPs0GfhnrAVLThWSgLs3libJgMyku+BcW89rRj6EtrwyDgzJhGXff2BHhBIcVb8Oi+XqeFfheErNI3TVD8O7KyfjpdUrgHKSyKFkCpY+mwSXG7JYao8sZoQ40X59Z5beUwU5B2ppOR2EgEXX4fqWd3TKxwyydlmi8nQdPjZJBE+peYCb6F2WyZnDkdtdQezbXS43DePbtQKw7EIVNOeIgv2Ef2wHySxab81PWy/x14J0vPfiHOn8fM0PugShp2ILnApX42uN2/gExKHCbVESfuXI0fHdkLYglX9vdaGYO+bw4sV0EhnZAZefltEV9TSgtiXoW2kP9nmhXKYTARrKHtwoOQFa7/7hkeJLcMIDZbio+hvWtA1hcHkq3Zk5hl3gFj78zHjw3CQ4o+jPg38X4r2FaXxRXROqNq5GzeRBkLskinMlf3Pw4ctkhXJwfWwRXwsuRIfdsbQu/zYa7KnjiPBtoOZcTy3dS9m8MpOU71gBuBqwwr422piTh/92TEKtrGCS+PyCbb3MseZBKqSfXgdn/NVhfskpSmtS4+iZG2n/GWGKbCli4zRTPtEkxwIZxznyjiENf5aCmOpmcp8oCAbBsnD8rQXJu9pSaMgruPLpGhxwqGAtG034fUoNzIUFcck7P+wKG8FlxWOoNlMUZ+Tn04OGAWrbuQpOZmtC7GolWLY7m2x+ltEtn0e0tWoqGf22xrBp93j/ojn08kMSndfo5oY5iqBV4IdZK89D/l5HUI0MAbmjnvQx1YODX6zFiumD+PUrUK2XMfyq+0dWGhmwxS8JxXdL4pbkFNhVfhkvHZZmiatF5HviJB67rQ99O5/Bjh4Jnhftwu8T74F92HWu91mApjse4bnn36nYzZl6h8bC5BgRfDw8yMFxRNlht6mu+x7dvHOPPFensr3+dLw58SX/Pi4K+1+dp/MZc9ny5y5uqQullY1mNLpxCM1PW1NMwmeKcFyF69z14bTeW479sx3zTm6jTKsLdMifScvTHMZsFIcgO3NIkZvJgl+kIHnbKFopWU3zwjbRqJx3oLXxES5dvpQEg/djqKoil0iuoIlDZjB13zV6EeULfvFL6VztRzzX5cTn/EtBSiqNBnx0QPyCGWeWa8CqLES/7G7YvqiNKw2D2Ph1Oigk3oYdXaroVhPBY6sdwbRmHFTvCob8VikwLN6CzireEDRzEn2aY093q17Af+QP20PCqPqpBWg7abNQrCCKVMXj8pgIWBt/D1I/p0Lr7I+c2h3Dke83UISiGqgIy4F9xWU4qHQVV0yohyWHr8Lvj7d55o1HkCCiR3eLPbC2Vh7iHYfYzkYArD4t4f0+n3Fozz30Ff2BUUJ9KPDFHZr2NdLiRTqw58BO6nf5QykzfMnUOIiFr45AkwEx9reWhaJtu8ltZQ43pBnDl//6kPL+YLFpAHR+2wwr5qujQnIh6PV9hy1pC7n7yBWc/0cLxof+oP6bLfBfdAVkCVyln36NPD63CNYtqcVtEWfg9StnKOwZB3HC37G4oxQFvowFTccFbB0rjdNMtEE1uA3dxv1lBcVxHH5DEbpNFKGyIIeUC9V4WPA39fq34zWZ2TznuBpqDR/A8TX6vMV5EtR9v8WcN5J862JQoAwpreg7LTmsh0eK/WHbsyg4E2iDDjIGcE5Qgb9JPMIvF/PBZ8pKPPKyAq64n+ew7uXwL+gjyZb8hJJ+ApH/bpF86gxOSTGkG0eQTkkmUWb5UThzayqF7pelY4PP4eFePTjTyzy3Uh1C3k6ixfYPOTNDBHL6B6jpbAH8mxAJI++b4SYJCzj0RRyeChxHRT8pXDWQDLNk4/HeZzcKv9SAjqciQbI0E6+lS0NL8kJ+ZneJ3voL0O5fixj3LGZjjV7s/5pM/f4COME6gtTrEaKuKdKoU9W46r01C5itpqO3tbnkQgv7h0Whza4VOEvoBP3eYARl/xrJpKqL5ZVtsMz0H+hKzgPFVd4kDkfpc8ZG2L6xlKbkGsK7ffNp7hkPWvXMGQ37ppD6umNYuq2frNYGwYKQ01y2Og9lMhh+h2bgf1lNnLclBud6CJLv41TIq2+FiacScG+MFcxmPbIpUoQst1sgIb+X7RV0WdhwJz2W8cbcyL38fF8d2n1PJAtdZcIMdTjqlgXXo66wXvQg9WXOwVtvL5PSvbW8WaQRLuoHU5WhP8y4pwICTSfoqFsR77B6hCNVy/G/pRk0WJaAy23O8vZ3k/hKoRJs/WUKvoma8GGROyhnfSOjwwEwfcknLhp3HgefxuG56FywXybLs+6MhgMZo0Ap4yptm7uGKkc9xHjPZ5CyeD0d+0+XXh9eRIcfHoYVo00gpz0KXMyMSdv6AxtWnqCJNauofc8ArVLVo0Pp6RyuXsFn506HI+0SIJcUi6/2heOlHWkopbcFuLOCVAX+cHPwb770MoeWt04BQYm9uHlBPuY9fc6vLZtx1ruj4Fl6gvrN1/OJrx00te4VGkgIwd7dVXj2RRUbF51gL7oOQ62/YNlxC7zmd5+1b17Gm4lKLGlhAmfS13OqRQEN2xzHBWFeXGhuQl/nF4DbHEmS3f4aIg0iKKhQCOYdO0PvJc2JJ2TCJjEdGtFlAxkxMiTiGkDSJTtp8YLVbFYoDJYLTPmp7gl644xUrlGJL1ffJkuT9Xiz7wmfOvmITF97cnqAHoxMngG3l89F95fquMOYabmuPSfJe0Ks7ESSdK/FqQb9ZJYoArOv2kKFbjcal8yimUFDpJe8C++ZxfJ/179QT9tcvqstDo8XSsAU3xcUmrsRfn1qwV3Kx9lnVCEOiZVDgZ4PWgrV8Rm3ZpIMsoCYyy/Z6boHGAX34dgBHdC71QVB7e7csbWWB+Iv475tEaRvMhHaph/GxJClYFgdQElmUrCkDmCe52NIbx6JQVnlLPXwEltYaMLzSGkcPnSb7f3V+cDLMIzcm8emlvNJ9NkoCip+Befua9J1l/Fg+L4E7oU442DbcXg8xgwFtwpDmEsjyS05RDB6L6eNnsP6lcYwTvkuGkoP8kTBNah7cTMtWNuLb8Yvpf0dLixQOwfxcBa5F0rB0kOfwPJCAT53KSSh2jBKWjCaLoovpiD3drg1x4W37dLB6QoakDw5lTuCE6Gl3JpGbEjG6eQPoQrZsLz3C793PwRLDqewj8cU+E8sFA78FaOv22OIna7iy9HyPOPvTBhB1bA9uIkiFSbSnd96cOy3JmZGv8J9Jceg/GcxZ33/h9em9kCbdiUn9i7mS1de06mdytC+dAvLP4un3cUbQC1+mPNLRWjccAF4nthIenWRfHHpIP76qQh6C0fTw/8SsH36Ycr/fIbOD4/m41+3c9nmFySyrZwX+hhCaP9EWCVrghI1Q+h3tZ237buE/nqPKORRO2o1A975FMarrlpy2lQjuFwXizGvT9HRKUzfllXgHtF7JFZylPf0q7Gk9Gy83K4HofHSoJOpCcfkDbB92BvsPjHZ3tdG9awkuq8ZzbNmvkXRW4KwtlQKokUPwurCOzwYJ023RHaRRIsISjyuoRE+3Qgr5TBYupASw0ZBv1wJaVtG0Y7t12iRUwrKnFcE3P+exyep0MebMTB2rT0r1k6GMvGl/K1kMUVumUdFL6bQu8JAVi0Lw7+f1kDkFzfmUH1s7R4JsWf+cpzsDczt2cWPqY1MH+zisHuV8GrGHHrmOYJS2nTpQ7k1fIiwBIm6uSD25AF22JhSSbwkKzz9wZlHU0D9VAcnPp0NP2osQPKSBh1v+geH5A5jvNtZnpd8EQcnTuWwB4246cgJDnkbhR4fREGtv5JF/XU4q+EV3nsZBOc3X4ArsdsoZOFujPKbTU0FDegiaAZ+6qloNrgQJXUXY5hyPE75oYoWc0bz0oFqsO4OhPgXKZBzUAHqX03E5gBX2DNjKkR+WMX7vD9AVk4zHLYOISvspIDfAtjerQNGug9p8Y+VIJ3bhQMtbrg//w42xExHh5psbnG050vGzVBcIwb7748lkwAb+l5cSTJaEdRxohh8b42iHXK3UE3tIBut3sWWpRZQPWoY0sbs4y7FsXS19wrJpgaT0NF5WGKpjrdNCigOdVn8jDiUJ/nRI6P/uOLrSLI3amXFra/J5VUrTpolQ+cOppOjhB4/9pSDr3t1SDJzPR2MfgRVMZNx7ylf6tPSgejQbLr86RJZzxhNGe+NQficDIyaHEf++sPQULUKw21tIbtLlzcYVYOPRTOtdb4LO87LQHPvDpw85i28q7WigGlePDNlPi6JXkb5ItL85tBTPjj0Hi8lKoNj4Ane5lAJN8SjuTnkGFhMWYkGgjO4vE2P/TfWgLZgMb47KQqjVddD26lX8POdMuSPsuCKKzsI/SfgvW5ZXnbUlDTlPNH0qhVkXVjN+10e8tqTLaS49Q4KLYyjnzKz4YLpCHi5zBLW1bbxvNsmsKellp/NCeSS0bOxU9yRL0Q40KSIp4BFx0jefQ44ZuVw8VdruBTaRv+u3maPw1o45cEqLIwcS3NebsIfc5dQQm4YagjLUdosSXhzN5T7MnV58YcF1CunivKOwWwXWgKTHhGJDN3jVUJD/ELABLbcr8PYAyfxxIdRfMrUHTpPdIO82mM8JPIPrL7owwlVIX7iYQbNAUag++wXbq/s4a0dxWj1PIzffjmIC7LScb2dJeYXJkCRlTIc1ezjtuOJeFVYgqPjp2LGpkC8YrATIwSe8Z7+UJpsKkdi3+RBseIhdSuNRz/3y2RWcoJdZPXRJf4rGSzZB8+fycHBUbHo+VYDhCAYvYbdUOBzN8np29GTG+10oPc6uOoipdoVs5+LLV+8qgB2pb0we6slPvwcCf8W2OLI7mcQck0QMv6eAy3Vd6C+JBvO7tQBMYsXeD0tig8cvwm/VwzjlMwjqHTAl7/UZOH2U+v5nf1CStCdDI9nrQSHBC+ecOYV/o5Qg/buP/zopBYv0AvhCZ9G83CYMfN0EQj9cpufdyVA16ZL7OOtAIXWo9g05Q39ST3FBzQUyF3CBGPuj4TDc9/iK5Um/DTbgX5U5PB6UVWu2u5BIHgLUkda4SgpLy7wswYhj24sSpuNY8b6wN7fe3li6Xdq9H4DRlLtePr1JrQc0cUOC8dBfOMnlpgvwg+KAmD7sm+4JKaf5olpw2QrcVZ87UBaXe9xS5gyhD88wxt0FrPLTE2e654CN7/8YJuyGLpyLpU6egdYacx6ylLQhQV3/AAv9sD2yytpx7gYkhCz4nj3DtCR8cKnMzvB0vUk1YSPAq8MGd4RGQZ5QrO5VieEDdZpc03OJepImIiBlSnkY1aMW6pN4N/9ZPw4v5LNX4Xzlhu+uFHmJAo3FmLA2DX4LeAkej3rgJsBhmDtYY4Rt97ALwUBEDbpAvsRPTT9yEGQVWxGiwIdeDXehc5FC4PDoTyQGzCHV0lDKHnZj6a5zgWTol2kkioCakuXYEd2NLZWmEK5xSSUNL6LDasuQUupFcnZ6vDyISM0GdqEqdbVdOHJPvJ4KQ9CG+ohZmgePFQ+CeEP3vNI4wCwmO+AEy5EoZurM/v07KekV2PANseepFVMcY1aPr3vrEFeKoOPP62FTYu20ZkeQ96R9IsnPheFvS5arHu/D3dURkLiq3jQau7ndTdioGBmDUWm7Yf7v1059601/BbrZ4kliEqXzuCgZAKpq1vAjuNHUFOonztHWsNbo2h2vaED59fMBosLKhw6EMXfw/JJat8g75XVxwt1XWz9sJWsnzniyydTwXWrHeaeToeHpdZ0+qs3WKTko2TOS1YcIc5HqizhQroCPHw0HVJN1ODm9DzevD6I36RMBYcV0bBkjD6tdtfEplbi+k8hPOG6JDi9EMCOdVNhZqkoBdbncM+VEv6muZEub0wn56B2Wu6fB/NLheDlshuw6uspNPy4GI61vsRF9xeDX5goRrgpclusIw8rFvIVaxMYQDd8ejIJr4facNnbHjq9+CHKrfqB66P+8YyiYBSRGgc6+togZ/iEwyenwdnhRGzQCqUDZ0dgR64D58r/4cale+HMvj4YDLCE+b5boCi9E/NnDuKDZ7/ZzSgM8xbn4AitBfRTqZMKfBVpkooJzAiIgJ3jemjBYV+aqY+wZqoGS22swpB0DYipaQL7gm1U1y4Pv9e/xivRttRzRRcmHrNDFdfDfNv4NTse6mB1j3aUaSSOLleDzney1KQRjsdXMZ8wKEdQjiHFpC0kf6yTE175s8rdRuqxloEDc73x2cndNPR5FgfWXeR989ZAdLE/3lsUy2fSkmHN0imsqTkWjuoVgwQ78KaBbPS3DcbKr/vJSe4XrV7bibMXerKwgC/ubZwG17+7QUF/JJ8ab02+gWq8e/lyap5+l4J/38dZh2zwc7EYPA6aBiLPXKhg7Q0IcsxiwZ//4cQ9J0nU4iXGf+rDlFtB+MXCC7QDEAyMvnKFWhmlvHnAJ6KCuMb8Og8Ij+YIqXVU/bSRo+Vn0yNHY7D2ieCgGVK00DKDmg7tZfPI7+g8ZidNyfnJR5z8uaCxibWEZSFZ8gIGtCaD7JvPlCGxlqPqR5PNTRWad0UNK9TXAjXk0wiPkXB9rjXLOcfi9MyD0Bd5DU2DwsgqZxwLC97A6Ny34DPZkEIDpUDh8C2u5cck427Ptp7/4OTraTzX/yH7qGSTwy9FLLRLxm/FyrB3rAdMbg1g4YOGYLhOiYcfRHLEO288s3UcH4gX4/XNc2lqlQpsjDiPXpFueDHsEfxNTgIpow6OkA6BiINRgOPleKlMGrqCLOwUesOD1XvRYM0GVnd8CErLh+n4m2pepG2MMQMKDDNsIE8TYfOWs/A8zAxFZfVoRl4SChgGwi4tW35+7gwoLysCv/QsKskZAccUpOnfTVuKDxlgYcExWLptkDZaKtB6CTk6W13PifXtpNSmC32OoyDq1HXsWrSfAwt3wcfj/tydXssBj6zx0a9t9NQ5i6QS1GHkm09ksTObQ3R1ePfKN3zokDV2yK2ldMt62qjEFFdpxclPdOGj5DhuPqUFA/uMSWHreTzcfxK6/PsoZMUHkgu9Cb6LfWleogp8fx4MzX1X6eS3t6yR0gSFapup1XwHiizcDXPXOsGP/WfwoJEorH/cQdM/dLDUzsd0KucTNzfuwhuWmaxdvI4mOOjDUN4MkPouCh0NI/DbvBIImdVDJx8IkFYz44LvM+mD7ywyXtFH08bfgq/PEGpiA6ky/Ags8EyGsc7BdM5QEM6mMUyZp4xX1MXYYP4wu8/QhWN71nL62Bhe7+pARsJrwPe2L092/AJ/2nwgq5Sp8YoLpYxESG6s5u0/40kydwaEdwVSeLQpHjP/AVNn+ZDzpSFQMBwLWZ+FIEliFFZ96MDuB5ZY9uMKzeiOo8vnJFBx+h9WyI8l+7PdJF4mA6IHyinV5CVrnNWitoECfn6DML16NhqoDHFAjAo9Nm+i2AtWEGv0l9Tc3+Gm/vugtX4xzBuMwJk2xbBYeCWn8UmWnD6TL5RMhP9ayyh+03pyDYmgvZOuQr3VDFjpvIiW7q4h80FxyD2kTx+2GkHB8zq+8+UXL5sbCG0sRqZ6dyj07jTUu29HTbsv0tVdhrABpCDNQJsfZylyxiZxXHVjAXanqnP/jCAuLNvMjgm/UefsOvx+WwIsHuVQT8I51Px1CCcceMQKjvkY/rYTgw9U0511l/Fkz1yMUROAjTSK9zcd4AcT73CSjRdb+sxhB/ly+CpxHUP8Q+GFiyQ9KRcHn7UFaJe/jBr01UkhOwd7H9Rg7ic3MAs6ynItb+lztjQ+XG4MQQHj0GqCKRSzD0zelAVKEVnsUnOcb89VhKHiFj727REKFUnCxXcDPLZKm4u2vqfV0xFPvZrGmzesA8skRK3yPCibsxO+H50E5x3suUmlhF4q7IJvhovxQNkHUImLotdPcuht8HseipTHWbO0QOf8TJiduRhsZy5Gy5SNuNDhL5w8W4KbSjNI920L5qaMARltOVD33QWG9vNw7GPAZRYAIuZ7wEvMnn1C1+EtWykadec0/hc4FrK3vwN1NS/+flSQphxJJ7u26/zfgeeY/DGJuxqaWF1FHWULjaDothxfGmPAdZHpuOO9LmYvWklUspOOb5TlreYX6JbQARyTOh5K9S6i25YmOF/ngjeMtODFZ1+c8NYAZEdawoSSGgoy8SbNOgFI3rSCDaAeTp1dhpqutTzbppbOSPXxxRhnSrmUBItzxqD0SBF4o1gHJhaiOPveCd6mmEhGf9Nh7nkn9pK8Q3+yYkDuxypSC5EF9emn+P3k61gWMJffJ3bgnF8TsOJtIGdfi2Ap/UycYL2HI4ZHgNzRElw8cwmkbK+A0XPO07NrgXBh13ZyljkP0W2epK9dD/Yu5tA7OIbC7fsg+tog7JkmjcFPnCG+fBvuGr0M/OPXw/dRyjSkbggDlfK4+vUx8r4kTh29kfDAaymlTv0KtPkIq3wJB+Pm7zT8XAPEjpwkmaP3Oe2zDRnvP8cSCyvhfvZxWhfphR9bbPB71XLWHRgJcbfegpxKHtk2C8GDZxGcmOaB406EYeGh9/B0lRhrNk8l50sKULz7OX789ZOjPh/DwHmb+Y3yO9506AQ9eDWaszLfkP5vd/ghhXBYoZo9su2x+lYxZze20yNNVdoOdXzhqiKF5C3Da++DeNnoqXC8qhlNRFbC0hGy3L6vmU+8fsphmWu5dfAR2/a3oG/JJJy5VRh2XnjJJ1+9hT8iqlyv1wk2Vw1oePkfchIIY9+t6tScYwvGxZKgd8+Bx1EHFeyfxh+Vk3j6mU669NQG6pJLMEx1Iyq5ptKf1omwUyabZ2AiS0etwYCl2hS5ZhxkaJwD9ae7eZtNLVeCBJz1N4Q1kc/pyKxhTO8M5fOT+rDuy250s3Ji8ap4MC+dyZdvP2ShkSPAofgXBIR+xJKuKJrj/Zjtn8+CjYmjaP3P0ZD3XQPGZS3GvDfKsO6nDJdPFqbjWxRJQNkT86UbMUZxMruTNCTpZnOHsyf6X0aQ//WOdwZPZxt7ETDVmEWF59dwdtgn8tnohOdEn+HUY0JcdV0K7n+3g1LxYigTGcKYoSQuXNaHi1Z60a83qZSjbkz/WfnRklujIOX9RTQI+AdrIrx54I4H8MUWStV2x1WCAqw2ai8FHE4g/7TR8OKmCpZH9sK1sVocEDEFQz9Z8bkT9lBlUUSvHj4l0yeerDFBH/I+70HHhFz89MwGt1qJoI+0GR+Tm8e67bvJ3k6etg6JscIEY/CxPcjm7pdhtkEJFSUawaOsSTycIY5xui/41moTujVmKoTlWEOCby/N26RMf3wq0emcNB4S1yHN8DIU132J3ZE10KbYw1GmopBe0wzDQVHocv0+qBxaiOItvWAb8AOkk87y5I0JYLX8AirVT4aG0SPodfxBuL9Xn8qVjTikrgOyv7fS9EN7qU5ugLFBD7arCMBP4adk9diGs3+9gdny73A4rZjKrTp4n1QIhPRXYYnBJjA9ogYf76jQmSwvPLzuKnmE/+GMeEnQkOuh8/JPqFFLkITPf6VRtxBuOmrAZkkj8Hj2kFqnCtMc4e8wa1cel66som4w43N3lyNGS8Lql/vZ1dgPnxi1gpT+NAydNAVj+lNh4hElOuAhjCINS+nh5Qlwz28h3/P6ygnKYjDxjB/LZDwl6+0fOG91IH/sGMnLnc7g2KuqUK13gxV/L6P347uopdGebxf9w7rklRB5fBYOGdij4EMlOLjSFK6BLm123w1L5kaj5jdtPFaQzzXtFjj3wRbe1O0IbVPq8Iq/ODRa+YKB4iFcu+Qc73wxyOu1rKC9xhLCNzVx5RUJ2v37IkSMUIZDPoMk2DsbVs0r5XPbf6LgFw2oHSkFl5qM+dfoz5gn6ooeL6xB70stLKoZzweyointfiIs/28M11n40OudzznxjSQdPbePHz4XgdFzEvj5qip4Wz6GL1uponuLMGi0f8NZjr34AF/Ccqkj5K0nCX6nftK45e4464IZ7VDthQlv3vPLLQrk5jKKt+1yYeUoBGOTCXBUez7fOX+C3Sadx9GpbWzp0AsGx//SZVd/jr1qzydOCgJHi4FYojfZVj7lfed24hlaxIetDsCZ6bMpb1sra/8rp/lfZOhpljoMRGlgSlIK80MVvLIrlLzGGYJz7UyIEoqEbXSVyzRXce1XHcicJ8cLB27SjZU+bOOwGPP+2cPRPhMYio3BkrHdeMZnHUZWGcMaw3Lo0X7GsWNMUHTAiMZOd6CWLQfpZbwUHKsK5gIXO/68SB+W7r3KSQ+342Hr2zBjxUrw/jhAm8/587V/jXCr9RalmPTBzHvmcK8vl+d8+AdJUpvgT7AV1/uZk/cfRkPd85gvEIQ/O8dRDUmCUHkWWLhvhw6fRRQm+R+WfHxKf+9H4/t/m2CtpjHdbdHAH7vkISvoHoWKb6UwAUec/0KRhn93crtXP+Tpy8KF8YLQ24W08/14EHFOowMqA/zeMB7P67wl2c4z9OqtHXlvucCfqwM4MVuAS2URAkXjeX3nL9LxWQifrwixx9ZNMOnaEXg6+Jc3HCyDcYXX0HKsLqyYL0Ui+3V452Z9eD/7Iux/O4b552kO0QGYcesseB00J9MFqqAafBnXDkfTtBvL6Z6bC7XnnMCRLTsoPVKOGh5e5maJNsiKmwbumv2s2H8Aozr+8qc3wjAu8x+d7s7gVa5R1KR5jfZVXMY7p/5HAHwAAoFAAQD9wxaiiCTZldUgo0RDqZyMREUZEaWhJKKiUCEaKlqijJKKaFIpNCgqUshISVREySr3TEC8eBcOJu5G8xEK/Mpdmwb4FNn1TOSy8Tb0M+wB3Zt4hhWQgTcdpZ6CAM6Z0op/a0/Qh+JF5NqZxN9yW3D19HNoYbWGzj6RBomv7uT2eJhuWmRz+Y73+Ln8M+59OYMM3n2Av5cuQVPiBi6sRFD9ewKXzHOh3WwCp9ALzuVmQEv8Cbjw+zfNGDSi5JFP8exmIXh4ZC3cODiaI+zLMezdC6g6Mp4PbsljQ58dJN5aww5a96lQURCSRHNoudJJzDN4BGO0dWj9rjHsf0oLAov08evPEti2zpSeHdKGN4oTYLKbBFsuceTngS84p2YZ317cgTf1t4CLfDmZ8gq0LhsHO7zfw9En5uThko3Oxx/TGAljfJV8n7oryqB0aCFufp8NgSt0QUt/FqitCsd5Ej9o6rw1XHsqjeQMCcuG/PmH+39wvswetj4YBWlHvuDHjydIXFyQ+pSO0tKbsuQ46gpcKSoEyeD/INr1Mcw2NwbtWf8w5/wp3pE/GcfFfaHI79YULiZLBreO8o1X38k9oRvvdWpB+IA2jrApZqMyFWgczGKtlHyesrmZ+994oGqXLGp9GoTw0olQFfcYK6L2UIj+ECVVaVHKwDosyt2IlpKDOPYdwi1NaQ7vFQPxrc18RWoDGgar0veOGuyIPg3rl4rRpdnp3KP/gKNepVB+pBQs3FlO5xcGUlv4PQxT/wm5XeewLbCPvYLW48JoeRJ5uhffxs0G6XPOmNFxAX+v/cGPkmbhqeUbeYn5T/b3jIB5o9Uh99hDyMsUB4+jFjzrOvD0umu8xaWcTabn4oTRGzEp7zCNS96KosNhkGQlAlXtplDU60DSPgVw6GcfPjlsiTqHbtHhRi2+NEUXx471wxfHjeG1oC0e7J7A8GIDTzo5hxLj92PtpWlsvbmF66pqqNv7JYC9AGTYjQGtZEmeP30FtwrP5mUxgfRs/xy4cXsmil/aA/oPXoCAtg5kXT8I2U3nMcAtEuJtzuL2kBqarbmZV81OhXqzOvKPPYeliSPB6bkDrrh8ELteCJJLRwMdN6mC7Z3XuOa/tVgaqcAPZfL4xxCD7JbnsCFtAQ5enkm59I6x4xjW2fyEM1OssFFEgLSiSsGuSBfuyrfDS90T6F21BMe/roO+JY3oPSGAfFuNeOhwGZw6Vw3GGZPhnsBJvLg6B8oW/8dPuy9S9NF8VCkSZmnfefz2vSLcFz+JKnlmYPrjBKTfvUbefz+D9IhTFH/QnX6Y53PlNRHa9Q85Ynga3HU1hZ6qRsi/LUajx22GxLVJuHJqJGw1OI+zy2Vx3MszIHljOp81EAOxX0m0r/cGLxCYQ+Yzj7O13TUuPSBNZ3uyYfk7exp9MZsmKBqDx7OD+OhlOuWFbWSRMgnM+r6ZVdRGw1EvghOpnyniZgbc/TIZGuyFefsbQ2ywSMWD40U47m0/bL4wnren+sO1iq1UMHEKCHUi/Nao4aKwfKoZMQY36N2HS6rTyKJwFec8/YC/nI9yb8kP1A5TAnNJQ/BbG4tbb/2kS9I+vNjsK3YUlnG0oCvara+DKSnxEKWsAW1aouRw7R0ELP3IFeXS7HzzIilYenJa3EXem+zGLW7v0TJZGrJNjrFRwiua/a8M009twnM/hNmlz5gF/i2ls8uc+NfIYt47XgOsTavhqnsj1SQo4OroLyBU+5MmTfQjiXoj/qpbAx9fLoOtvQYwdnQX19qthOlH94JYsBL8PgD8X4IU+3gWwZrbF+HznrusbMRwd24NS6pNRDXlvzg9w52Of2jEbZJ6JFL5HneadtDxd2Nxm7MozNJrQWOFf5zUvRUDP/3gSQen4PnX3/nSgQwolDKAp9dOgInlLDDVOEbFNz/zD4V29lw1GScV2/G5GILgFDGa4D5MEYPP4ew7HdC3CUKJrvEYLNsJXybtxvFJr7n+93WsMGwlUd8HJBh4gCRHqIEnR/LMcgWYLiaKuovn8celzWhslokaOfupzu8XegVt4pH6o0DU4xwNukbg9df98KFci0O/hUGxcy2qr5SkbzAT7/bI4U4TDXj67B2YBRbD+/x6zOnVQI49wGKmfvQ4rZn2fQjFSQfusUrVVNA5ngp+8+bDNNUYUlrtQCKJpSBfdxeWzhtBMTovKer3YfzC+pC1fAuXpr3DRs1oqg22pBNj3nBUUBFeUJ4FC9TNsMPgG8oKakOZhy/3lQry5o6nND7WDR+0bwA9NxeK053GzslDHP9wP1sHiIJTUTI/U7SnmIN1mL1igEK2PsS/zlLcPU8dpR6W4xyrP7wd1KHClWiWxyzwcdZjp7BtsOh7AC5YLAX/nG7Ta0F7PkOH4OBEAzibJEM1pd+wYnwIDtW2o0LkcRLtjUG9rlb+PXAE5uxbgB6WBF/WN9OHLQLww3cRFqX+4VeJuVysHExemlsgLTyC1pb1oMl4AdhYNY8XLwyCBYEJEHe7Cp2a1lK2wnaSG5PNaj9Po1/XcWjXVYPH715T8o5B+p2wFf/1rEeRV5OhIPAPw++DZGcSwG8r/Hnu8EwoOHYAY9bpYnn8dG4augEnesJ5+bP/sMjLm0a/sqXJ+/P4i/skENPeB8furuAnC9/x2zJLmJAtCx3WZlybG0kqKyLg1OQi2JVuBIlXb0PLaMb7f75g8KWPkCa0kBq8z9OX7p1w7t5D/KeiBH59ADoJQfB71w8K0DYi1cwcOEC7eIftIBT06sBF2Em/LDzJeOtEWCB1hha5r6A9kiGYbGuIrYFJ1Hv5DU/39MBjJn+w6qAoTRmlC/OkKrBnbxasOPCPQ6M9+EvvG17erACFo/0ptPcXLNnZCVdjTKBiQScZeyjjnVDAccl7sDZRAp/lJfDIxHyKa5VlJ8klUB2sB0sq3XhuxV2+MDUbtiUkorUkkerHaOC5Rym9aRtF7e3AV0EEsSN68L3dQQxU9edduoPw4vELGg7+BO4LmXTrlHh16Xn6MB9gzpIo9rpvyHYnm+nzqNfsZDvEAZFv6XRDIi9bv5geizxB7/8mwb4TSSw2/ATi1rixwJwluJQ+8PB/oSB3pIYEX4exzj8X/HpfDU7vdmPJUjdYNW4mPvBzZfOjQlwRGA3W67+DcuVMnJLyHHdMVYVRz2Tx0TkRLJ2qyPMPf6Gp85rozuBFXDN5A869fJPbojIg76YJ5Ao4ofil8bR3+CB8sxaCXNFm7O9Wg94z+aSZFoHn115HHZVJINVaR190rdDs8mf6MHETT5ZfR80l/3i7tgqVP1/PSlp2oKSiAkM7PtBI624a+bEVS/4toBcQiu5ddfy+5gf8bfcEQcGd6FUvCvkXAzn+Rxaq5UbBGelH5Pq8E+piT8IFxdsk+8aD363uIcuoGRB2azpbPHSFz6OMwNHVnXQ/XcfS63E8a0kjDRiU85kHY3lhtTLEf7oPh7flkU+ADe7xXsSf3S1wTnI1xu/LJN9jnjwYcZRUw0bA50wntHuUD2GnDDilWh025K9DldLdRMY38NkPf8g4cA1V0g1h8EIAery6Rsdm+uFNHVkWNVhMBa4WcEOglDxThqD1znGaZC4JSQJ94LP8HxxX2sQOZ0Wp4t1hvOu2H206FNH63jU0LfmMTHrQbX+OCkRKyEbqGN3rOYoqQl44cmQgm5q1YNbbIB7/oQ6vqxlCamUxp2VpYZvJFo53CSVP6TrS7DjB0odVQf3OTLwivxtvf1WAW/wCBebdYvPdTym8YhtOkN+H6ov8yNzZiTYNhXHHxBvYf3UEVKkOYbeXBayhW3Tj0w1aEVMARgOhuPzxYzYvuA//9m6kvnMaIDL+AFksX4L9Drf5rtF93mP1D4xP1/DCBfZQuOc0hd32Aent6uCe9ZLqpO/g0J80MBSrJuOwhWiWf4Z8NfbCGWsZSlU5BS0n5UDi1G4s9OvivYKfoEK7F6riRkPonUHcKKOLKa2SNF7RgIfNAI5OqsXKw3PgadIsiA59Dee2zaf2a4GkPM0V3w+lwfwPCWCmKg+5goPUeV6Zcka8xAdddfT+wjG+0FKPd2qaSHpHP5a7HqLqf4KgV/sdyluCOb/AgFbbiLDYiBpclS7NUyPdcP+jqRjh/w6/3DEHjxdW8FthB937JotlaicxdtIb/Ds6gbOi3fG+rTfiLym6JawH3jK6xLsrWbY7AapUNuGavpEsajGNnpuPRo1eL/ggXwb+FxGunHBGjav/UKY2Gz/URsDUxavZcbskVCnqsPqdPeD7VRfm54uBxhVVnG98F65pScDEYBn4Y+xE0rwTBGI/0T//u6yxjahvsjzcqkmnC2V97Jrtw0YVQZhbLw4bRhbBkIMfewYaQviandy1WAYcTBDzwrzYtOMNW7nZ8v0H7qBevYhnLzTlT0VbuXR6EPuNk4Xd5tu46L0tae+3ponWQ5A78j/2u+GNORPK0cNEBBtv7QF1a3nY6C7Bq/QeYef0IHiyVZ0NTe05q8WGiw4Fs5HESKq94s/qCmZQJ3yYZT2rIdohFh5O+M7n68tQz6cXFum8wnC7KHrjfQE7u0fANS8bGJi9jvarM/33MQxE0vNhwZJksF+gBIoKb+jLhk+wxscA9hSkwsbJV/FAdgEHy6Wjb9BFsvF5zxPON1JJXRE0dR0i600MMRbi+PTtKWxPkOK+1U088nAqN2gLYd0SJ2yUqsWYew2c8Wc0LHh2HOpX6tMWh350+5HG8uzF84qjud40g55vPwA7h3YhDo+ECKuxKJIQCO/DOnB0pSf98fyADt8L4PfmzZSq+IVWdDfT0e4x0Ke7hg5katFcnSc8LXgpLrZcR1/6f/Ceyc3QNKIQTosc5oDOyfDI5Rd21z+CbuE7UPLzByWVC1H+ks28+KQyhR4sQX1jdzJSZThjKcRi3IUHF1bQx6hZkP/zPcn8/UWp4yXpbMJBlvy5gGoCJ0Fo2mkyOD2Tv7eLoVSsOD5Pr4WU2zfY+YcrXe1YxjJmTWS4dgq8GeVN5x8pwqNjtzF6vi1neIqxET2Gnyfucfp2Efj2dCN5xc+AsAALePjnBn5t7+fmd60U63sFppyMoSg7HzyXKgPCr67iyMKpsFjFj/OdpvLc8vU4/fE5OLjhLgkq5sHE6hd0LFOEM9cacN1WSVA2Po/e9R6YPXMrP7tdg9Pb/sDA6XnYf0wOTmdcoqd/JPn13mmgdseIds+OwN/hF0FQSAGF+/R5wfoY3l63HReUL6beD49pmaMBPFIaj3c7/8Bk/RH8pMUHhV+6w39uH+lpgAM/iIvBP9YS7KSlAz8Pn6Sza/M5YO5r2P5FHx+GroRNN20g6L4sJBR28bH9UaSZpQ65l25wiZc3dX+fgHKfLnPaVTOYZFpHvaaj0W1TCm+3b6F0UQWYlRuHVaNGwc+KBj7dmsVKEvfJd/dbHtJczyvSvKjs901syCUw6ZnNFg37UF7Xi+j7bcwISeTdo4xoNLiydsQQDBxeCqLSqjBtrAIcfDCOdwkfwbUPbtKsS/5gWHcJMgp3sHqcD5r3rAQPKSlYovIc1BZ20GfXLtjxaA6U/FRjYX8XyNOVgWG8ALN8plHbGBX4u6wD4jLFYZHwbLC57AuUm0l3Zsyjrk/3SCnUHV+MiQRbc3kwM3iDvQ7/cNj0PBoqVJJoqh75y1fz0uR74FitAtJlOry70AAsO53woJch7JFawclOC7lbZCpZtgrBuon68OfiHDA2KCbI1ITYCz9xtrAMCGuvhgK5x/At8wmN+5CFH+IeoXP8blhluB/dZihC1ehWXH/XDb6PWounjNdz0aOjsNfQBJ18u3HKBDtME3zMZ+sUYWUJ0ienzaC0t5E+O1aw8McW2r3zHR4w7iHr7ZI4Mtgag85Kg77jOOhd1MP+cavYwUCPXh5eSztCImB73gKIlzCGnNGbabqUAgQJbiGn7mzInqCM1j6WJDYxircXPYb4NZ9xZ8lZipZzJInfmvC1xg4Olt/BAmUvum12Ft1uKVJTdBom2G1n+8uWqLTuDb97MgUcdxxAz7wCMNNNou8hjVj6qg9zfQ9h5q1syHi4F+dlqJPkfgbbyQPkYFHGogJTKHfBVUixzsfwed24VzAWvoa8hpb7A3ii3xi2x0rwgHgOOrW2YmBEEMg8s6dbmRPpoucb0pUsRoGKYmp7A5CiNRdkPPqgVHwefG/qh88HjbBsUiPcv5VCinM3QFzeXg7fIQlz08djtftonBx6BH0ax9DyjdJYv6yQndtF8djKBfj53gHM7pKAkeGd0LIlmn522tPHcFGYdLIQ+G8fXb4qjlsMn+Ke9Mf84Y40jK8v4T9jRlHbPyVSU3gPbrLr6NvgGNjoJ0OOHfrkn7YXNzurQmCBKr4/eIpNK39g+NBqrCs4hlO/70XHtSJUYJ1DTwI0ecuu8TB7uQab//CDOaU/0MWsGf133cTcRHd+H34S1m7N5ScPe2jpJwGQSrTmmv5ICFmdT9Kmzlgf9oilr3+EPwPfIaryDvU6T4YbrmNhgVo7BAhPgtpDqXRj2zt4IRLH350Ow9+XijS8RxgPT13N754rQUZ/MVZv6aHk8gpa2KoJb+xlcfs3MQr2WE/+nxV4jnAlp5hOgAG3Gv5X8YzcRu3Fgq11MHL9OXj0KZLXCatx1b4QPLD8GylriwO3LcRHhTd5cmEERR/P4LS4IbqQMJfThc9wWoIDBu6JRolpMvBATA++S1ujulYVfHSZBValBvjEYBHNCV7FQ91aWHI0jL8pi8Oh1kMkF5pCT/c/ZMXi1XjBPZNztL7xzqmHoLLpHEkLVZJDswasG7gC40ZEgc5qLfBt0ORxLpdArXoIVP3KcKfOQzybZMaLLptAqqIi99psQFvpGqiPkgZHqbGcovQOi38Rm4Y9ZfU1hRRhKwPHTU7T1yu/KbDKmSLjA0mgYx4kBaaTjqAs1244g8Ljj1KhlwjMD9mF1icTKb7sFL74UIHTZPKx1OEipKbs4sezHajl1Gus8RKHoJ6LFCe1ClY6tqN/Yih1pzhAW9gnlkjzpl+eAbCs5SLVL1SEe3J7OXeHGamEx8K3jOUUMeyGXkkhKLa8BTtEbXjurh2gkjUa+LApji4dxjNmNyjPrIi3NKagyPN6LHjdD8FeM/g9iuAjOzloKxMBj4+/WUjzL4yKFIaYsxZoExAKO+APasnkoe3yz8wHBEHBYjsc/HcSLY7uR5X1W0HzeDJV/jvNP3Ud+bBrJpyJfwA7EjXgW2ULLDnjhAntGig6eBlvdlXzutJ6zJpfgFekjtFD+21o3TEOdn/34BSZdnYWfsNz05wx/FoESJTGkpOAL5rHhJJUZDF+OmIKimFPedItczqqfY0PSTZT8AVftneS4/+EhbDH35cUzCJp8YAKjBUwQvmyU6j3yZbTNlmQvetEXla4m8zHSWOzqCAbl2Xy2WBx6L93GY1sduFN4Z+4QDICS1/OBQd7N1Db0IeL0q7Q2ElbYMU2c6irOkkX77ly6sdUtuo6QTraR6BV+RiEvDGC7A2h8NN3kCokteCd2Wy8XjED/pMyw/oAaXpg+pt9tM6T7lhBiJ2mhEEOMZx4aQqcfDhEHZVS5HXdECWEO7i6q5v+haRi+VMBdPFYSw8nDpDdDYDTmhtQ7ZgYRmx9S0+eh9OplI0U/8QWzs8LZNNISTj5JZaNvyuAfvQcXia4lnMOtOLZBSPh5hJtimsIo+RNqSQ43wo6XVZQe9QIKMTfHHrOAKYZJ0D4jXMk35gPsQ72tOrkR/xQe5wizeSh64oRWCyfxt3LKyHFbjeV1tZB5cshNkxRw+KqFxjT/IitBvSx84I5qEim4NIV2TRxjQ8s3E9sdnc2XkxWJIlmA5zvUglnE31Yv2oUaIiPxY+ffrNJz2k+UKdBn+7Hc/bdzzT44y9brK9Dvbv+xIoI2bU6lOYyH7U+ZEOhbRMoq9rizt5yVD8yGz7aV/K6iee5cb8kvBcYgozH/bDviiCfz6qnk3ejsfuUKeekCvOCa4dAufcxx+ycDjc3TOX4f7NZIl4Vyxet4qFFwnjd/hIuXfCMrsgkQtBZdS4WGAU/aS+8L8/GeMX5vDzXik9pjONYDwte77MezsXehSm+++HIEMHP1w5QoH6RHi8NQlXbzdj4azH1bLCEDNlftM6iHqbp7MODyjpQ7HAcV6gJ8bnoHzjqfhD0LjhKcX6R6JmyhAbv/KY+8ef09644WM/Yyo9+rocrLa140EKNmrf/xvY1a0D8kwaWRcTwKR9r2jhFD7IdpdAlywrvvI7nOr1WfHtaFf7bncHzP16CS915dH6zOWfs1YCQ+KNQ+FWZmwqSSCDACuQn98CJ7kR4PiOTRIuR3DousUmkCuTdmoB/bX6xhVgbZYf8Bd+PlbD9/kaSO/MQfvVPpPa10hh5ZzyMeC6McHsOauzyhmdjI3j7xVH0a9wDcv2+hjc46ODeAWVQM9KCT57dBHEteNtSCWJqTEDSxYvNfRywbMQFPHdqK/o0jMF3AppgHH+Ya07HYIDBH1yc48e7XkzjP1Vm9FY5hAYMAzE//hVG39aF0LqvOOR4gZf5DdHTw51kq6IPhtfn81hUhKYrcjDrVxtfzpcCp4a9PLZIkIvPP4Zev1VocX4F3Jz2hguL5sEX2bP0cqQqLNGVh73yS3FzyW3uTt7DdUvj4W76J8z+mE575ijwo6Un+bSvDd2uE4JvXmKQ22IIgnP70H5sPjfO/MP6J0JwWqEKzLTrwEt/rNDdzQC6aCLtlHAndztJ4Af25K0rzNcfSbBh72ZcHBMJakVB/PiQEOxQ2UAnb1qzTe4pSs8ez0LO99m5PgHlw4XIa1ELT30+EVdMMoZlvwA1sIHXrKyHQ6M7oVwwj+72enPCDhH+0ZkLdibl9Oq+OpRkPyXR3gFMinUnFY9p/Gj7Blz/ZAW1TNgDBz+OpDUT5kLPjzHQU/OChLRbIVHKiux2F9NdoWxcPyMbT8nqgWHhNVbLFyD/maogHxOPRicG+VJREE9/LoqTs8/jVNNoVIiUpLS+7zwu0Q0LLBk+Rxvh+48+5CTZRQtixXj6s5t4YIwUpaz8jMLGYyHmYzX22spB2XymLtks+BxXQT0hnmha2MZLlIrgwN9Arks2hP315/hhoC7Upn+C4tFCXLtoCtg9FsGGzWIwfHQx6XW9htj0JTD21ACkDGhCT148FssL8xz/GPo2rRgSv+TRfTDhD5dm0TqrTNA0GIubbkrCq6khJGWSjmEGRfDI7hZWH4nhsVGbofrmV5rsuAomCgrTsQeysD3zHCKfQ98xNlSht4OejJkPeyfHckDPWig7aE0iEvIkqjgT/g1Z45P8Cr555SR4bf0Fna770OCcOU0oWIVy5a2c+mkdSbuZwq2nJ2j2kmSMzv/MS2tO4acZV/DtzMvgdHkxDgWXwtTGVXzYYRKE3MvHveNS4FfFH1ynOpajtt6DOPcJuD8yEDPkdnKUnCCE1OqD75mNoC3YzL8W9uFxMOEZmwYwQjcHJPaWw7FMFxj1pxpXSWlDntwf2lS2lM48LqM/46RoTsJ6em3iQ08ezaAj6zaAmHY4+A4y+NiaQk2yNzrv0MesrXo0XGkJzUsvk/8tL9b+7y3sefWDZJ/pwmXpdPYuuYS/35uxlW4DzJ5vBxN9XsIKu0bMupBFSfPe4JIxSqArZcmNSxxAPmARrJ/zmy7MyKKDLp/QMtcI0j30OXPrJniwfCwsqguF2AXhdF2+kxIWOUCS+GYaknzPHT2mFHDfEpu2P6Hvu6Xgo5Ewa1t5suQWI1p8Aunpivv0KlyW207XgeUFW/RfJw69u+Xhrr0077MIQt3/jOhInj+9yC5DfpiEEWHB3KjQzrOORaHpdgmYsGcW7slfwnl3w9lgKbPKvwyqUrvClife4PuHWdTt/xQLTgD4JC4Dzf8auMheFWu2zkGZ2+lkZnANfI+8gDiBbTBQf4Z1ZUbAwXeT6eduxpuxgZwb5Eg6zhL4Zo8oJFZ94EmrjuLlw9Xgbz0eypfKkvmfw5wUXAsr1YQxdeVsrDJ/yHEjbTHpyBI4GqFKzjLSYOn+GEslXCBC9h8ERtykWXr7yWq7D+eIN/Pi2e6Ur2+MIq91QHx0KI/rbwCzTbI4e91u8h/5F8+PeQcDOhWgW3iKEgtEoXi0AeS8W4I1l9NJ9u1iotZa7kzJoM+HrSAvthx2XNTAD1ftud9jHCQ0R/KD8iP8cL8lyDsOgLC5KFXMrQGHOgtwml/NVjnK8HWbDtS2+bOL702afHoi5hZcwdu+Q2hokQbKvuYw/9AzCH1xEDtnzIClD1awatgE7JSeR5Z5j4n67nCvdRElvE2AgJ9rQObqPDBRQ7h39wJM015NEcEKlBkgSBFy/8hQ0Znc/r6A04/XQlZLJz1bpgd9tRthz8EdZHlMGKSWbuQel8XUbCAL26s1cam/B02IH4lJkgSHNdphm4AADWr2UkGkDk+5WgqlLQIw8/METj5fx6diZXj7GTXI9H7GO4wXwJeFq7HcrIUijeK4L7YdPIKe8r3YG9R+woZtHNWhccEBKtLowYbXDFMyHTBoYgNZ7lACjyxnbv+7H0s7heFFpwmIxX/gms36MKYjGWULvclLQYnlgjy50fcXvTMzhTszRqBguyossLPiBcFVIC72hM83BdIR6TxIfpRHcfFR9DxlC9uMqIITg3KwM7GYgr2LQeJbCiz2VeXjiXl47aIsjkuqoqnF+/DaFUWcdE0Ltu77SWeMJOmRaSqrN9ykY9WXCS0nssuzYR5oksQydoPefF2QDOyERZEjYVCjCGIHD1C77HTo+J3Ehx8SKaabY6JzKY+9Mxvmmn6DkpGNdKs8m27KXeDnbgV8XOAiruubTid6v+KU0aqw6bExNLr/oo9q+8BBLhWmRU/ilQcr2dvrO5eJGMH4DBNwMa3C07HisEHYktr9Cf6LnUW/NLvpe5ItvSmygQeNq0B6zz4UdnaGG8MA7wqEQWeTDFxcZMKnrx3m2i1RUL/NnDVCDkBywRRcIylBI6vFIee5F9SKBYLdvCgyFRTDrxM2cO58dfio08HnJExhcvpeXnvKDNomiOG1I5Px6IsBcFFeSz2pQnSqtpvPj7oN1rPvU/WRG1CwygTk5nniBI8R5KDlS64lpvAiNJvuxs9B5Yz9UBI/gW98yYdVt4zgWpUfmnrcovV/v1L1sy1QeW0eu5+djJNPpPCEsfngd8IbTUeIgv+hpazl1Ey6eZt5MGCAN2na4Yv/nvCbJyk4p/8hzZtxGMoblOGzmRnX2yzkhR/3cdTdOJpb/IgNezNBxjGGHfueYEOtMvgMjQIn9wXQGS2B++48xp31GzggRZMN8lbSzwxdysQrnLM6k6Zf0ISB6Ufw9JGtuDQpn+W6C1hzZja/G+0IM+yEMSN5J1X8m0sSKaaQF2BNwnpWZO5+Ds2tm+GJkRe67Rfia+2adGL/dGoamMtWnYqwXPEn3JixjJaUtYNv80u4/v4TD5x/CjeoBCdgJH/+0Q6/N6tBVOx1VKvVYOn2L+jbUIz6XdK0viQcLq+6QXKfx3JE9hyM9pwElxuugli6HexR3gCnrliS29hNPLxmEQT3qGFcxDdsFPOifuNJ0GERxKtP/IDMwK989X4dztrymR8rnUbXYAc0/nqCm38Gc1bvWKj3Xoxw4Qyez3+GoSm28E2jC08E3wan6ErwHcwm09LD9GtQGPxF7pDWj2Z0Gswi/7fzuXv6Ojy25xM46GqiRGgk56nOBll1QTDXm4JxAp9wo2EkX5J/TTbmF+H2t2/Q1jcK/xbkUsCrPSS/SAiyV03GrtXvqWSjEWyte8nij2aSxfoQTBqdAV2nhLh6xi84O2QK2x94wuEaOTr9LQHuLnvAaTuWcJ7fTHh8Tw4uTH7NUlaL4Rgpw+XKTv6lLAWW+9Jp3LUsnLZPC71uBbMuxWFKQReHDSazTZEwOJXfgv4xfnS9Q528fwqQ3vllGLZxB0gnudKexLGQl3yAB3pnQ0xhCRz3vM1RZsm4s8QLFbS9IXTPRyZre9h7wBOb925BTwcBSJ0VBn1tzyHr8VgurBRlVpTAqRsH2cjJmE+MWE0ykkshfKc8rJnSD7vEVpLbqj2Uuu83dpaWUv6keH5wbCaslx0A6nODKCNh2C0/mf5Z36fm5u+U9vsFbDsykz9e/Q4pR3zx4oTL8MbxHurF6IG+yW4UtG6h2WsCyf7eBvqdo87Ll2mivb08d8jmgKrKVF69QwxaNVfDHaFe2C/mRkoV0zls62+4uk8JM4OtOHPABCfvl8Xe8FGwer4Whcx0hmemdnzu9lN45S1HJ9tukLKlJR3XsOXuDfNZ/sNs2H5zHf81H8SL9cDfo4th25l+FP5QwgbGt3izhAmOOjYZVnXpgHtfKNwdFqEdgdnYLjePhnOzebq2IWzbKYOpJVOZha+jx1cC0XHvYa51CcjcPgx9UhMwUfAIbH39EXOFTqG8wEW+ODmTnPSlQZAUyXh/EJdNTuLOJ5W8IOkJFOYcBpNrz8B3+C2FyqvyNyVNMJuZyW3VRTzU0Ad1U8yxqdyPQk99wut/nsF/n2tBevEcvOcpA31G+2j5jSz2rO7FSwM/YO1XBmkNa9aadh2n7GomFXqGzSO1QO+gHfyy2sGj2ldS6al1+LzzOUnJfaU1Xno4wbUNEsqjyLuMIW/BIfINF+YXxXmYOL8BL9pdhIZ4c/50YphMmr2hdE0r7YkTB9fwEkxzrIIJG9z57rU60LeVIanTxuRR/BpT/irC+4Yi/u0pBL6nFcGtNQL2C86ifYb7UfduCXvuAZgTuQTDVjvzvPWuZNqmDEWNm3m7XAhhgifO8RxNEGZPrstV0X2mEJWpXeaPT+eCeIcuLDcXhMhlwD67nDFmViVW16Thg8sDWGJmxfkb1SHhlQLEfJeAJyrAiStm0JxdF8mnZDPsPe1LEaENeGFFDxqZ1nD9LUW6ZyMJvqFLqFrJFpdv9iSdkvUM6lX4Z1gHNf9Twg6XP7j8Qi6MnjMK6iZr0rrXClS3rov3Nvnh8ExFup/UC2tjkMJG3qApKd9o+kIBSJ+rjac5n7wzpOGHggaZbuykG5Vl/PVvP4e2f6CWvkpO2DQVpPOk4LC1OPtUHIflnqlkKZaMdnpeOOrbMYjOWond/+owOkkDQgZf85ScJTDg00nqASG0UHYlT3yWhaMNlHD2LG/yNB9m32nmIMp7OMhaAkbIvqXBEzMwcelnfP+fEuSMn07i3ys577APrg1VhAUbaul6Thf8qXpId7Y68JjoLSgy3xpa9e7xJV09eL7+F1abTgUNH0kUctlL91Nm4YYmIeYt0RQQNA1uq8+kdNcCcgpZyWscEIaq40Du6FT6HhJOhSLucGDFTrI684fEgpQ44u4TuF0oy7qKI2Bdcw9LGb6j89PfgExTMw31nKGzEwZobIoiDLenQZjyOPAjVVCSfQRBz11x1863cLUmnjvOD9MV4224M/UqGwXdpnEJw7hdi6DtRB0NjIqA8Sfnw7JJBrT1/UXMEBuFTUbB7F+SCK/8N5FumSyI5NhSuq4duRRlYVdEIaQpmEI3WpOs+Qg8PzSNTcscKcJtNOy8Po4tPheRS4cVWhw6wz1Xl/Om1Tdh34F2nHT1DM/90MvfVsrAYUjlog1bYImJDAUY6sHRld/x1wknrqo+xnIt+9FgVyMZZhvA8rQ/dGkpcmTyK3y6fzE9u70JxthIsNPoTOr5exYS7SrY5ZwczPOQg8VtlRRQshu1H82EC+yI+5qT+W1IEC3rauGADklIOD0DDEXbSIJ2UOTF7SBYoMjvV4TxnGg3nvokDU7Lv0SXm+5cs1IdPDY0Qf3UIegpECX3V+94xoV6rL/qgSNLmkDH+T9K3T4ON6/XBmnBVv4+KQe17C6i1f6x5Kz9BeelMi8JkaD3gn34QWgX3IpWhX0vMnDguik8PXiFA8e04QKLSjpcu59br8/AbYmv+EDzcux5IAGKhwLhiG0trhQ/gtf6Q3Hb8EWcLv+UbfLreWzzP5LdswYXnpaF3W0VKHXUFitklfhfQQk/Vc3C8U3D9PSqND46f5it28fg9TfqkJ1VgqFJayjZ/gKf3qRLo6Z4QnjZERy40ATuBxPxYtQOWvNMCU44O6FO7xXw/s8LluRuBSdFgFGR8/hpxXHWepGAVks/4LTNU6Bx1gEe82Uc4a6nVJaQBhV6a/hWxyusHXyCfo8XgYbTNHp2czbkzD6L0zX/oGPfdtxXvBmdLbIg6EYu6dy4QmuODaBT4TLQVTKBRe9f4NvEuVTeJYJ9uhKwMC2DPp4V5xVKX/CMliRlaRxHkX4dWCv0izzu6nP32gd4a4UXvdk1napFz7Bo5hR+PiEHZsn95kH3UbD8YxhXXQ+DffN345MqR5Y6qE9vDwox+rXQyAOmaJvmA+OtlKBEow4PtbXxhpx9oBnVDgcbpNm17TbrGEtAcP8tSC3cTUWZ6nBSXxJFTMfBschCXvg8h16CNjWEjoPM+R2U+2ASluz7RjWaY6F0hg0fORrCsw36ofzQLrDrq4DslllQeTyBbL2MUHdEJ2r6CMLiRwu4pOU2uL+7S/OQ+LhBBz06rci6AbNZJaMYo/yFaJOcIciLnEP1qyEQmVeNO7pvYn34OlxWFcWbhGPpS1EHJVzbyKNmmYFrkCvm7/1JLtf/4rClHrjuf4eGc5KoalQbqWY24yozJ4i9bwpm456x2ZY7MJq3cWDYQpLyToDeUg2+uTaQ90XXo/osFxScIA61GyJIunUjZuQvBI+PyvQrqYh7L2+AGa1RtDmknmxULFihUh9srYvA9Ig4LJJtZJWsYzRytSXmuzvy9PVmsP7OZbwqUIeLOkaAkd9XuCF2iR1dV0NfvzPPmqZAajsqaOE6I1JZGoSh4cfh4j8peDe1EX+qO1CV4Gq+M1kWBDK06G6rP06YuIzmRK7k56ELOWeXESg/vIBf4oxYQciRFmx+jooDL/n2ywb8O/4D66T4w+uoTxyTqgEb2jvJ53Mh8/dV3GJ4hApU0lh840tU8bYi9Cvgd8HvMMpSGX6enQaJ/s2gNf0h665Vp8THDTjCsp0mjxmCfV7v8IFAMLgenw2z7iSA53AtjNDYiZe2rgBDcyu8v6+Dvdct5pS3x2nlb1e6KmoCpxJeYJlRFV3SCGG33/rQELGUZAZnwKewJ9CeqsIPaudg5UpzCL0TSs/XSoGWtjIF3RWDJoXTkDVfDuTGzeJN/5Zg11hzUBxEWDstlN+kPGZ9HIOLdAPBUTqHP230IvHBpRju0w6un7pw1Dh12N4rD3fNbvL0D2u4MaOFbbX+4nHpnTC/pJPl7mvja7+fVPIS4PZHFWh6IkGLlz/CjyPb2DzLBSPjclDqixBz+ALsn7eabpEYLBoZhMXmi2iPkAmMXeHKDtdc8JjmIJyRdYfltxQxYtUaGlSbArN/3SGlJYMoxFJYUkf48dEeHhehwzY/N2CaVCkcEjVCNBGD1OdW3Bg1A0SC5+DqZldK4lYwK3hOY7V3gM2GozRyvRJ1uxnAFP1B8peYCwN3BeDqiWi2Ng/kXS+XgeLYOxz39T1lXqjieYEqIND2j8aOS+B3qWaYqakIj2YOU9thbRJ+/BF2fL8CG2O88OkOaVDyMUEXcT/wN9Chwl0vIEdvPc3pUOI4s152Gt0Bqn6LUHqEDMT0TOZ1Nx5h5IxmfvysFcpzJ9Is7bG0a+oT5BkXMHpxHs18KAbHvrihrvNvmHGrlTUeZsDyG8FsubOc6nwsoCzmNp2LTuS76YqgMqocrg5v4X0qmTS38AbJddvwY85CfdKmarXP1KtsgwnlAnDsy0V4dckBe/fl0fWJZ/l58k98YFgMU6f9AOUTn7nJZgf1XJ4A6oHy5GJQjF0L9tFr5yYIqFWForoboK55BNINZdFG+jkJTdKDlRXlvHv/I0wa/Yy9K06zcakjjDq1n4XLN8C7I51of68SpZQlwTC/F+4/98SYDwKk9teOns2uJu1PJvwgRgIvel2He47rsO2+EkisqqC9PVK889og7Hzzg0KXArzvaEfB/1R547XZ0JwbyJr1ChDyZQ2bvSrgCUYJ/H3tb9zjVsWFzka89kUZblxMoODyAjaK6IBFXBrVJQWiUdQk6hr7Geqct+LL0nxcJi+MV5/oQGj2FbhSOQLMrpRThtw7sAstgtkPgaddX0wvLMw5pS8Rjjl6wmfpC/S1cgLEeWnjivwuWKmpR/vmjsGta5bDLicX3lZ4iSp+daN5gjt5fgW4qVqF4jeMeNauNDT584WbWktIeYoGBOcagmSpKyrOa4MP/SagkzUSt4M6WY+5BPvchqjsWitpSoewnmIobxsIpcSjOvx59BSArAGO1wwA06Rm2DotFGJZgDyiT/Ln159Z5k4QW605iZtaR0Pj+O+UdeUZShx/hy0B/vDDbxDqds3F3a5GVDtimNwOn+TNb2RgfUoET4QF/KztED6O1OTjDzJo1w5lbMslOos3WLVhDuyplIIL59250P4sf8B/8CHaj14fCeLO0+vR9cpCqnWeggd2nSMtnAmuUrEc4rEFkrRl4UP0GFAMbcL1547Afi89qo8J4tMmBdC53QA0zO7AY/tTOAdeg+KyZEhNDSHP8JVw/8RyCJ28FPRqq5mPi4PmgbkY+y0S18ae5y+15zj4xkL+kveWX5sbc88tQ9ZPfgv9JcKQ1lJMfjot2BuQjJceHqXd7ou4Id4HIgee8n67v1A5nEXDMqqQseQ0aYx8zk4JS/hF0VVQ0hbFXPOl1PZ8BD9wXccGgz8g+648FDVq4Ht7S6482AaS1togIlIKUwuL6OCp6+Rt7g0VU6tphK8ObMqXpJtFijQsuY4EQsdB144tbDUphAvK7Eg+qhkWhK/hsway4NJ2C/RSv4J8yicwlPiBJyOasfnrLuoo9KGeyGmgZ5VHiXqaYD23gDYH21GE3goWUkhEqV511nbNwoEgBQ533wAtQlN5zpAmyMf2YbXaQRTOVIGEnGt05fEDuv5UBu/VSdDomhjY0OWMiywVoWurBnfE6mCk9Sws9W0D9Tg5MLv/B0fNVQaXraXspTiES+MVIf+DDe5raqAl0c85JL0LvkjOJ8nRTaR4qYK7d0Zyn643+cYIw2nH++xV+5XKRHZizuIWfP+2ge7ZyUC6sT6ae2hQ3U5djJIVgqitH2Hi9ETq9v2An4alaEzPJNo5cxGtbRjJD23vwPwZ8ugkMgIsJizjyy75dNh4NoxtukSXXRegqkkCSXRk0nnvRr56VQVGbRaEgbzHMJRqBZVTNhLsvY7zZ38gOclZ0IZa2CR6DNBShurOTIDJmz7Cn4ybPM6KaPqUv/RZaQQENwTSvE1xaLN+BqUb5/C6r2YwZ8ZCeBbkAZdtRvJJ4z3k/fci2R+xwi0Rm/jJxEKwt38G1objQDPnIezoXg+3g59zVEkB9g2FwYh7/fywPwda7reBeNA4fqEgC5HDdfiUMrlhfTB7aTyhl45pOM67CeKce7H4UDVsbrRAoUs6EPBSmHIFj+Mir6X070EZ5vSZc0vhdFZaWImlofEgmFgKSaUKYDFxBaVuEOOh1h388sowyh1hxkOllCiSjVP1nfBs0m58qm0OGc+W0MdRy1Fk6hw6ESJAO8EIbD2m8f15mfg9XZrNLzMV2upDceNRUBr5lVz8YzF3QB9Dpqriaf8O6oNcbEvvJwmjThzaLwbn/7vJYy608bzdeSR+9jgq/B1BsY8NSM7wCEnwFMyaJwjDXgIwLOhO8jVHcWfLLY7+sJT8xzVz2NNVcEf2Bz8S1ofC3TbsvJvBrb8FbCUkYaqlEppEpJJa4gbW2SoBunH++LXtG095uh8urRsDPRH9vGR8NI/oX4fTroTQUVURyDnWzPr37GF1sgO1KPjS+VkzYEC6if1/WIBs3mG+J2FBuSmxNMo0imwbG/GGtzyfaC+DE38FoXWeI48ec5FO+Umgb9062BkaRtOzTqLkmxFYduk9ergoUbDITHgjPJue//iK7073466vdXBkVw233pMESywiR9kl6LD+G2QMmUOndBJrQiatVYiFve0j8PYjW1aZspqn7LAF/KkGZ6WkeXM+w5sbG3B5zkF8+d0Yz1zTY1Z8DUnrSnm+5Bx2S36Fu2JOc9ITKUiq3AlWnr18OzEXna5MJPemLp7qncwGqomYrDkLegvkMeuLJPjv/Q5FwxOx49RxjtEIB5/N/rDOZpCbCrX5i604bR6rjEn5ulBVX4sqjn6oK9MEAjWV8OygGT3ffY50ZohQYcAsaluqiSOiBUF5WT3dPNPO6YP++GrsCfYduE7Jyf6YUxiF1xd8h7MfC7Hv0Bi4GreQKjod2bF6Betv2woVduH4I1IOs1+OQaPUxaD1IJPn5xrB/cEO9jh3Gy03n+NJ/2Lg5R51tlobyzfq/Chbrw1WhXyCW/2GUOoXApekWlli4WH8UvsZ1ty7jaP1pblg7RsQqTvJVvNtyCR8BpxbEUmzgh/i26yZbB+6gja+/ELqTytIcZU9pjtbY+zaA6AbOwEqNJ6Cul8lRzldo7g5lpS99BYpFiqg9hd53mX2hAMNf4HMH0WgYk2Yc/Io2cgdgPLFrbDV8TFov38NdTMu85L43TBXdDZaRk2BsitKoP9qCH7L+OH1y/vZtHAjJt8/Rpf7R1JT4Hq+Mv81G3wzAaGWkWjlGIThi07irP0KiKOmQPghI8wBU4x1I1RecIMt/yCsWiPA5T/fQDccJ4OUk3BzWgYsmudCxjobeX1LFNbLpvDUDwhq61exzp9CGtC7AIEXVuLMUdvI4WEOHjOLhc2bftKJtpk4xkcRrC5M40fdE0liyBHEfzrisfO7MPpBDE7NyCWnInW06w7EMQkioF4+D8u+V8Ksru/4sOQftwzuwadnH9JwkxeF/HpC7/0MccdqaUjv0CWPp/rgXpoOlU/KeaDRmNRSB7G4whw892fgJ+e7sMGWAT7Ww9w+Uwy7eoodOB4c04pJrGIbp9uLUs7BW3Tj61mMKROEwUQxbJVbwt1uxTjzwgf89Oo1f5l6iIIPX8GLOoJkX7OMJnmYQMfTRSS+1YYm+77gI4szSb/5KZn2/6SJoe8w4Y4mWUik4lkvE/CIXYCSx1Vo2advVHfZD7+uKKZ1op2YfvsnjWhcA12b6jhspCG482I+L9hK8TEW6N37CgzfOLGhegc1nLoMUmoK+FLXnUJficOoFVJ0IfU5jws4AX/s99Ge5w94rmYKlvhGQOAVddrh9AdK748Dr4BBfl0sj8feHEJlpSIcezgLC5y0IFVoLcyz3w4J126jzW8ZKJsuTg2KolC2yodeHYiHO7tTSde/gM7LGrG8QiG1LpWj996zQaReAGtvfeHTfhGoPhSAW8fvwqqKeBi+rwnr2mRQ8LYxbHooD7ds1cG19z301l3k87uSsVvCBlf7nOI8/obeN0phalotVm9TAJCsBGEtHfpPuAuEXt8lCbjMilWDvF9KA++rDdPGl1PwwWMRkE3bCftFrakg0Qj2xwXADLtent/QwxNXDUN4eDIpZ/dhUqMYxN87R5atp0hsKAIV99ryqtsm7JBux683WWJReQMlStSAxWlTSEh+zsY1E3Dy52w2nOpALjlPeKrlUT6zbxytfvmaky0KMd9IADyEy3jdnTuQ0JLENicbcEhNhuYv/oQxOf28elwT8Ih+vCOqBI84gGyFCtjyz3LetzecT1YqQUJGI0Vf2oXPHk2jYc2FuCh8DIQuW4eLPzXi9PaV1DXej5UNbsKoGXP40pccUHCo5HvOnhyfPQl+hN2lLf39nLlTiz+N7gShvdr8S9wJR2/SoOWfk3HnnS1k+0wfRL/rgPaBegjKVIC/8wGlXm+DpWsGaMy0bPpmt4L+e3GLnJZMhK6fP9F/mx9nvR3Bh0LseG93K6u4/E/cfe6F4PgLAP6OtFC0JGlpL00pkqSsQhoiMipNIyNEomQ2CClCQyWKBiJpICkUKX5EoolIoUjpfM5V/O/iefdcYxvfxVzs+IQzrIpJusoEPoqkss9hadzgPsjKJtG4ddFdDDMxxca+W/B6dS2uvdLMcwzNAfK0of+mAD48N48vXr/EjSpDmLr/NG7zsAZTbRnY/PMbjN5vCSGdKThTUp9Vn6zimz9+0eCZs+gcPhOcCgxQS1eEUicIUYbjFChzUQdDu7t8tvcdB72XwbzjMZC+/hcsjynnN/6WuGLEC9o5WQhELk2gSJVysLEtxwfmI6i67TWlrfsIU64lYPqwBusrOWM9asOypNOodqyWZgWdwsVznmD+JAWOLznOn4S+wcX5J8FHage0uxnBmNV9/Gx9K2Xkt2Hx5Hja8OA9/PuTBbdcvaDtrTX8ejCbmy0YHgX/pFwnPxbXFAXHgpX8LNGRKo16eW3dBfxg95MNrXbwEjVZ+BDhQB46n3DpTkbpk6tgnvhmbnm+FYt9fOiVZirueyYA50OVYMesPKgwlMfBjD88ccMMdjrwjDInAq4cpckmhTpQ9rYZJ8ePhpWuETjrdQbsTxTh5jJz2pPpAnrkwjzGGi/Gl/CBVdU8p0caRN4Ecl1DL0Xe9qDnIjv5gNdcTJUOpbIGAXacE4pmCaNZwtMUzv87SIJHpUHNehoIHDIDh0XvWG+PF0bmatJGiaeQqCwJ5lOk4P76eNiu9Rv75nuhWJMufztRB2KyJWQfk4ydH3pwypkwjkieDg9W70NNFS14/FsBd76S4KQoZUpv/c25rULUkvoT/oiV4d2csXC18AqcmrqPJXQW4JFlQtB5oZVCLLp5TOARPDHTAE7XRMI1uXFgHBDFkfWIorFi4FBvSEVCFZAkZs/+nu9p3+RNpCNdSBJrRkGUXx3vEL0JQfcUcVtDNnsMaIG71yC2P6yEKr3RoB6/H1USRGDWtW5Q/P6BbpvnwInNajgkvolnPXiMB4QIt2VG0TmLH+AVMxb23oyHgRUVIGZ6DP8UttKx748x+cMo+hJhju2jWrnX7zsq/5KD/Lk3UPhvGzq+PcPWvrJ4fPt4vjfflfT/q8ADoveo8tgCnFitC8/DlMBRdpAjVdfwZStd2JtQDBt/LMCz15fw95gayt6QRoceK0H3zyxYVTuHxPZ4gvdtFZATG8VbrJeC27H/GEbuQqGYbvhiALDBTRC8qlT4g2MSrT72AuJ87oJyWjGf+9HNpXVP2dv+PFSvHgU/tCzJyiwKS+pzMONdMWxeEcaznh7F6gonlD+9lUpsRvLNNcrQsDUexPRsOKssClZ2aMBwrTvE9xjAFHsf7BT7TQntJezbpAPPe6fwTO9bNHz9A/0Xk0CG6b9w07dVKCGEJFl1iHiWHyRtN4ZAiRI46HkR1PdvYNMXGby58SfKZraB27IaPKWwF33u3YBkA3koXjQAWy/owhtA2v3BGRu9s1D01l1cYH6ENGfPhhMSVii3WhlyvCyw7eZBmpXXBLvMn4JjaifPkLpNHy6I4ZGJG2nk3ePY4iEHCyoyycHSmQWWT6XhjhgqPL2W59w9jBPzlsEUzASf3e9xyTx1uGJuQyIffcFcQ4e4fD3+CciHd+WCNNCdRP1pLvC6ZS8eMCXYMvI6vP7bzOOMV/A05yGo+ioPMk9tkePyyWaNLY/wfsnFouZw0u8ElqxbRa9fncVbm7fhLj9tWn4plDaNyqfeuoe0d4UWzR8ygsi4cAgujgMLz32gnDgVd6ooo3mtFZtoV/JTEyP+WXGZvp6eBPfEvnBFpATkNOyjKyrPIPbGZ1hutpLm3lBFxZc7KLZKlF/VGMCD49fAYtprsnxQxBtTj6LwGQHeFx+EHyZ+xvNVBXDr0B/8N08OPgmagpz/MGhOVIGIrloQCQkFP4cEGlB3w7GXbNjwkDrqhWjDzcUW6Os9RBN77oJ2+2Te75MDeZ/aYfCEIo9TE6Rn9hfZ96sOtPYI05pwfzr7rApu6RbBCC9VDJvbCyWwjJ6vqSTJ5YNcv8UYXuY04m3Pi9B8Ixu6zadSuKkWPzYJRNvNRjzL8iXtb/3G9nkS8DbYkVVmmLLflm9sb3udQtIvs69rCglUX8dji5/ROd3leOOLKFQItNHewiUkuEoEi7gdzn8+B4YavnD+XhH9kExn/8xLYLuawSx8ExwViWHZ7W/Jwj+bYy/1Q9XzR/B7qBL7PI5i9pTF8O+MAkx6Lg/z133DmYdtUblOAD/fTaKczd5s0z2KM7PaaPziA+AvNxnS1pXzmOZx0FYlTFute/j7ozvIv9LJcG8tzX0gSAmJOnT8uRok2WSQ4Rpxbq//gT4+FqApsho9plhCrvdkLPCo4xkTN6F0rT44ay8lqbciqJD7EmY/8YE/c6RogbIuj102nzrPIicKqPAzJ0kYuBaNzwdL+al4FWVbqaNG7E+yGIvcGfoNt9X40hH9AH5jYA7pl4LB9dpcXtq5nCb9B6Dz8wU+zfkALy+twyVGCaz/fSZoe48GZwZ+5d1FM76PwD77eiqQXQP2P/dwYds1mC2HOOKXBnqf1ILzcVNhk30MJ7/J5K9NifRRupBay7PJ/k0upvzxoOOZ3+C9hAEstPaCg4mDrKTjz/HoCsM3gyHoxFFYFEc0vFaTpKq6sdxaApTfN8PS7BPo7r4S4xZfwzviTRjn2QQpIuKMMXsxVjwWAy7Lw5jjv/h8TTY+WavJD1+9pyFRMdq2dTdoNgfBl//3enIFeoIw1J+Lhesye6hlUwYtGr+aF9xrwaDcdNBSewz2K1xp/GE1mLJDAV5PS+a9t3bAiMnvcffV93hihRqOX76I1q/rxbddx6Cw/zn/MBOC2uDZONR8BS/K3kd1BSKtLw4k/WYVCl2xxtWGaRCZ5A+ZwmqwM/A0WE1toBUDmlCVMhUcRihQw4aLpCMnTLM3q0HxmFFUNaQOfHEmDAVEc1jOKtL2G8Np/vdo3PWZvDArBJfbXiA34Re4JY1hTP8l3jMqC7tuauHKNTdppN9yfqKsQHk/vkGebg/8wEkwQUkCvIN9sXxPIHh97qKiwRUY0H+QuxsugVgG0YbNO9nCcBtnIkPqccJBZwFW6F2J4VGdrNP/ErteHYbfW1Zzz4SvdGP8E/b9JgsJyedR7VQF3b7mz9UWI1EF1tBJvWrelTYfS8JTIbW2D3zmqcH236FsN8aPTNWLOH7qdHp35DoIiS7ixe7PUeZiMbW7/+AHiUb/s/9XfKUKjtrkBH0Vs+BEBnDAZmm41hSDF3+NQZsIVdifJ8ZB2VJQm5nHR6N0+eW1GIp4u47+7qmFb646fHtWATREDWPGTjPul5KDR81FdLVzEp2Ou07CWbk0Y8cKPOfogZYituDbnIvqD6Lx12l9sDLJxjyrjdxsmw8FE6fyoVVNXFp9mK/Sanpo5M3s9IwHhBDEYubxjwcj2ML0C0rkGFLKET3waCnkv7V3+bhFMxxr2sa0dSzkLYlD3/vNYLLSgNYO38WUXg2SGf6PAoPW4rbyAhp1JxSUq0dD09txNPrGZxp84032ByVRxbkHznysBqnvc+HnBx3WOelC4W8FwFcuEAY+3+OJ97rQQ3II1SxrwbJsIVlqG1OFtSMeedUBG69oQEmoB2xZ6ImeSm/JJbwCPZPG4qfI/9hivgHuuNvJCdLiZNytBW9XiPGaexF0/dJceNErS3qTR2IGpnLYxnJ+d3Q//bUV4yWGQuAifIZkTKfju+yF/H3iavys+IKuTlmDh9zKuSijBudVT0ed/ClwQiybNSr1setnA5o+m8Ln540i3CxNj4zP8T7/lTjBPZK01eXg/bVQdLNtBCXx4ySWngIpvdJsdjIE7veJ8XCcBtWdz4KAx2MhZPYHMix9hKvj7yMPZUPG9L3ksdgdZnYcYgcFLfolZ8sTHgqCtKoUjRXroOL+NyBwxRY085LJK34Pa75JxH0LIihxahRWqgBEnHOhuTcrOTHtD5rm/4Hej418XFEBI87+w1cye3FEiz6M+W4AT+2v4kMZGey+r8DiN2VhSdAQr5jlyN8VzOnx50/44OEWypkgC53HP+L4ujv0X40fvE2yhlHa/hBYUc+l6Q+46WgZfT00HWeWycHEmD14PqsYoz6/pDGl8/Gs7yWwgbW4NWYsNR+zgaLYTJi1dAKYeNSAyvIClmk2wIiGlSSg2kk7LpjDMdsKuDkymM/fBlivMR3kvlzCt9eWUmWcNOj4FlK5lBveM9HlTkwmv64RNKW4jGpmjoP3i6PhiON0vno1Hh5YHsbdTnf4x1Z3fqdbh54BapCpaMKrNUwgJdMdzoWPxFHLpeGBXTTJj5tMFuENHH8rEj9puuK3Il9scxIB40QpOGMZDIGeudDlPxmW0B4Oc7GHz1tqYel/T0ArOA9in2vBi7Q4dJk6zIIeYzEjfCFMcF2Bz+85Q/qhefR7lg0H7MjA/WAGJQORpFAxAu3br5DTtAEclnPn2xuEaY67KNp37OfXFmVsMmgCCwvNyXnlaYi/UMWGFxRZttCf/NKqYWtWDbzxuAo2DZqY81IX9oh204Hz57Dt50pyNTpAndb6uC63G0xGDLLCVn92CHfArmhlcLzkQWo+pjxnUw/WLXxGP8ZUg1Z2O4foh6DzsqfYNnkjHLmlD+4OvhT9vY8VdsfQrmMDdHaSCZ7xPwAR7YepxFqOVmWpgq6nJoi4+NHqK6chKNqaDh04SXS2iTbOSMWa2f+4f+lsjAsvob4nk6B6yIc8j4+iR3K34LrNVMi17oEnOpEUY9YLGS6Z1Ju7jF8568A095/4aH8LfzAUovtbi0B7zmx0F9pBv3z8ebn/bBI63kPS6wxAcoofSr/YDVVfrOFhwCK0i8lB6ZO9GDzWFQzOnaGSpGBYGmEGsh+6+NSVSTR435nuvg4huJ4Hk3vCCceI0MonmnxY3wNe9hqDYMslNjxvzIZBrWQjlwpCy+RJUEYCPwtthy1TjKhByp7cxYzgqu0/0KqQQS6Tp0d1rvhN8wyEDjnQt5ZeNLE7iL+2G9GnlfowbucOthlSpK/Tfbm4oIH9SpXRun8Pu2ZOglOnMuhVzwdS32gOfYbrcNSWUxgePQdnG/tj61Njepc6j7J6gqB+ZAJK1B9iizQF8JU+ywfFUuCY/Tbc/K0TKp+ngPMzwh9D6Vjup4J7/ZNBM08TdtxUwx2PjdkhZA/6jXnMNW9247SBbLit/A0vbbGFsF1bSdhhIrxW72Cxl+nY0zMAmaeLMD55O8g4iqLsnxJO7s8lTbdbcK9cEgLr4kBiQB+qMstRojqERqzug+fa7/DbuTYu2WZGMbVqJGMoBbMueOLIi4mkrvKdm40k0Gi+OI4UPsjbbhxFH6sgyngUCef0ZoDqOEkSLnbnHfsvo614Dqp+8oCYXYm8p8yPjdVU4HCeM48DQXhqwChzXYBd41dCyGwpUF68hDZeHU+T1vZQp68NRDzN49nH5OHGHg+y7shHvYSjlKRdTiPTT8CdpofAPo2odPg+Jpdc5cGjE8Go9Q7Na9PGiXqlWBxhTn9n3KEPpQ3oFLiYl4wv4NSksXyzfhqMNw8Fy9PLOLRnCr1I3sI48yq+uP6R7pXawIDzF3If6Ka5imMgXlaKHlsE0uY8c9CzvYH+6S+x0ikL7I59gDh9HxSW+EvZnapgUdZJOzu2wJxVqpAW/g9nxsiRv/wRKKqvBlWlsdS0IIecK0Th6C1zdkw9S6XL1pPa2120WGk/Jh99gS/PVFIl1OPETUFwsVkFJPZqguJVI1puIQZnr9Vj36nLvOJsO8hHlvPgZR0qvGPPWknTYWDXbP6RL05Xzw/Q4uBBFN0SQaNTQ/heQBbLht2FoeRGTDo0Fp7tDmXJuAkcEL4Gtb1m4IhRwXB6UiP8tfMlx8b7oNTzjJSe68GdH0e41SqRfTM2YP3AK1g9N4wLZS5i9sgJsG3RV0zh+TAXpWG9dAXx9w1oHVuKff8OUrPEGp4+ypdPepxEMe9p8DTVAjftNYezDtdhtucvfr59K38aNAPBQi9eeXSIw5/9xbARUbjE2hmyv4yGlggt+q3RSK55xG3bu0gkuQ6ic0NpcXo1164LpsalN0FigjKc/tmCM0NO8oqaI9gj+pmbamfxuPBUvrJ9Le/TM4KQ9lUY4GkELmau9H33WZq5klhXuZJ3FjyBY6YTUarXBVVka2jRuD4+JacFU0f7gGV5Ec9R6AKrLwM8w7eOV+I5VhV14vI8e46dtwKHt4qDcqoeSvXMBacF/vBAejO2X5Rig+4jZHrgMo6Wusoqrpdp4l5JEB2jiwOvB8jqxw4ykU7icSvcecfGB5Qz+wT0zjrNiVk7SahaADb82ksTAr+i0wszFJJ1Z4OQTGq7ZQf3z4mjXXAJL1ipRBVe+rBbRxu687Ug48Jr7J2vzG+kxPlhjw5Xr5uNed0ClB53ENckqcNLJSFcXfML5AfPsYBNOsV5LiD7+kYeiJFD+4iRXBLQQbetLSFRP5g+zy9EMJtGjXU9dNH1DX7+aMwxmADnL98ihzEOsL9LD3aGylJCVyg4bQhlg54O+iljRKt+R4DuUzsI7VeBF+M3cdiL8eBdsRu6it+iz4JxcDdrBo8YM4uXS8yFmOn18GZ1JYg+NuX/PhqAzZjZZP9lEqZPT+XMd5v5XOsd/H7HHyKumOFWxVF4vaIDhlREIPHjXxbcFYbf0vspsusXvTxtilKOSpy8vQI/aTfRsv9EKUdRAva6dGB+Yygm9M+AzIAUetSWTf80x3J23kHs/dYAs33Gs8I/E/jxpxMEDv8HOpMWc3p9IYWdi2f5GQkw8cYRmrKwgE5/iaeeUyLwNLgKe7cM47RpoyBl5AkqDt0HN0864dyzkrjo1iP6ptvKjvXGMHnLQTSYZsXGhqO4d3kWyNx6wMWWF2FHYhR0i7px5ywXdKqSgBET86kt9ihdLmuDZMOFWHbjFc9rs0Uxv8Pw99Q8CE+7A/ckVOC1w2QYPrQP670PcsJZb4pUdmfrr7v44AhjXC3gypfrrVinWB02xBGuruuiu55B8C9bnKavG0HPy+XAZGQ6V8E6vmIniGEgDWds7/FNvSD8lfgaBwrkUCNLGLOHFqCUz0zQqX2MX/1fkVreKNC7kcMGHyNAdXktb5Jfi7W5sXxIqgFGLvmG9p9S6cb1OaCioAaJATH8/Ywe9D2Qw4otv8lYZwq8jxKhKsnLOPaAKA90r0PTemlYsGwd7oz8SNFSL+jUdylW+y0E8cIJXLRYmIw23OebhcKgt10WJverkFuRDO+6ehdFzQzI6FEfHzN+jOk1UmTluBDab6dSwbbREHsVYdz5aIjWP8t3zn3mwAsmPGbJMvTpnAkyusNQU/mSMw5PgTNlyegmEgA9/Aivvt1BMc3H+OFeE3BvOszTxOtB534DKS/UA5fFH+nrsXoYkDeF/OYQevvQh1uPhVGydDCOFTwKOXbC/ENJEVJuB/KTsYGQMzUYNAfNcE2sF+4O2gp1S3/Ahe5s3HDvPFbsVwE17XWkfV0ARJQvU77rexpcFAg5Wb/JXL6dpp9NgJRaOaxJlAKJj4jGj8ZDoV0f24p0s17tdF41+i6eDbsLt8aEMLtY0KDkVJixqg5LH9vh95tx5Df+AAV6xPKZvgfsojyXYh8vBQhCMAgQBj23H1Q81govzm+nveF3CCUvwpkwC6htW4TV9ndxW4EbXVFVBZnf5/idvgg4zp8Pp+fPolCbCXD6fjh7eWTQyVA7+rXNEFZuR9jrnwObm4JgWa0zvN4URiebVnL+1js0ZYk4VRaUsMOqYrYZGAELxBNgUsEbfB75HjQ+NdHsj3d5zZWjZDDhLz8SU0MfkTVcuJLg08a7vCz6FKlLdmOU91s48befJJMDQH/VAnyg0gbrjYbpepoSOH2bSlHNt9F2WJymNuvSf8IScH3JftpgegPf6jymvzM3wob5EqB04xC6T1jLIu7jaOSJPWQuaUEGYyxoX6kCRg9u5ZTS7Rz7ZCxEt3+C9q/NFFKjhxpeNSC+rQbMTp5DwdlbMPqXFzj0OeDO+VPhhOBF1L8cj1mhkRAn4EiOT0NhOPY4j57hSl9c42n5zOmwulIF7C4/5tvSpnhyzgT0yJoEUsUraV+mEvYqP2OtlncUd8mGYkItwG7fMGX82wuGXyK4bkcMZ6+QxP1rN7KR5yCJxO+hXcue0MMV8tByahpvXBPCJzZsw0+dB7EzqJ1rE++C2b2/PCn6NDzacQ8T/8iBlPxJfqJ3gB62tpD/pVQMP1nL+QWGaLjwB37ojIPuz4m8/Z8M5AVtgCypQehLbYZDVoUsWqeDQy6aeP+/h7D13wAlKtuhaPNImF2xgvx3RXLYuZ88vSUL7s70pjGrxUn9sjD89LhBC8ccQP35qqAqfhP9dlliZ4YAiM3y59fuPdQh8YNvlMhwy49tJOt4jjsTTMHMfgWt9D3ODqXhsCBdBWZrBnLhh1vYFhKFUzem4A1fJzDJVIEFG0Lh5YLXvH54Cj/broUK/Rt5o8t4vD33IQj+WQUK595gl4oMNKr9gbsTZSHn3UeY9ucE7A0Oo0sXw3B+41Xq/lCFoxWLcfYEM5ByjuANK4VBafJu/OXsBVWLwumrZBXNj49mO6UgnCLRQeMDp8DVt758XOc5L7voBQlPd1P/l+N02dQND4Z/QrlvH9HZ6QP3aSmAcfEWWpvjwO4uCCXbItHWugl3f01jiWWR/MTlBH785YKPlwrDGr/JcPKZIj5czxwbOp061shjwXhN9BLfxstfDXKd0kLqrpcA4V26VHTNAmzXr8IZF8x4pch9OKAQDZ+6j6LVYCc+CezgKeN1YGHQE4q5f5LEB9/zyN3aWPRpCo1+oseBOt4YXesJ8iU/aZXHdNAcdY9IsAHq1g3SBYF7dFihHppOA6/7sp/j1l7jN3AEb3YArKowAJk4W9obGEhxSxoY5iLE/zLG4ImOEK4lQGonjlN/gSqkbuqiLWJ/6cpVUVbJWc7r8itJeNk/dFecyFOD7Lk38BbYfCWQ96yEjS3FqKHznI/Hz4bvltvIYN0zzD10h+2LSkhn2WnOPCcEuWU2IPYrh81mm3GRlz+9X9oIQfnF8PLSTHadX4rPop9j7EchkGzZC2nla2jEGnWY67Wal2/oxmd+SbC0qx9Ku5aSaqUvfhyrDDK3u2D2vj5yz3hGs7cI8iF/5CHBpXxvnC0NSkxh0ZAKyjwNEJ8ezsUj3XjIPBrCy2+gpNMJ6PtPFaVbV+PSxWK04VMwWh3QhimRGmTxcAVrz5jMfr17OSBAk5Lm6bHaYksWXeCHYcfX0uX1onB62WXORRnu+6NPRjL2OPSpDA0CfHjb93JKwMcgumMXdFrrQMfgd/46P4y6tgOHTfQBd71aDM+Uw4j2CFii34W+dZOpVdcUflrNhxX1EthjHAUPns2nLzJJ2PUvjT3GD1D67O34sNSTCv8AtEc94ybn83hwoAnn/NWiLqv5EPLkAl00NaTVVw0pdMIWrjygAmseGXP2rjd8e0omnGuqhDNFt3A4OovKjPQ4NFkI7CZeR48cE3B5PRopUJgE5m1Fjd5f3NtphtOy9gJ9Po09Wfs4REIK3+yZCDc9t9EZ2XNk8XgUrMl5iZcfH+Up2xIBJw3yTKtoUnLRYM9+K+juOUYe7X2wbZcvXZnQgS8rLbkpVhwVOprgmV8UjYkdDdr28lA0HumVbjoNb/fBWV/sQef9ZQw6fh9mixjC3aonUHTKhXurhaCvtgLsjafBbb8+Oph6C9S8LPCsw1U44nCTpiUfgB1SwyySbAFL7K6gw8lcuqXag6d8rPn4PSO60ajPMp2f8GxQNA9KFeG8eRawLrqa0qLtQbZbFB/8SQZzB6T+yW4otYX46bHPHHZwLq80NYRH04IQawcw8XEWfPS6i5mSsrBE2Aa/RG4A3duf6Ps/a9aaPgpOT3XBubvN4JilHgQsQQ7fNIaWu1+hoIPMKcUusLa9C997m8M+70iuefkdA62n8zJHR4i+Lgn3f2/DybMQ5h1JhumTFeHTZWM4MjuJgyxiMH5dKgyXWmHuaV92RAFyP/uSXYdm0GMTU/L/NRX0Qz0Y5gXwObF7UBKB6Pt0JXiuO0VlNw3B/ekOGgoyhMIkWVAapYo/vxRBqvtOenRpCu3X3cDL9vwgWvUa3aaFkP+IWWCvJAtv3c9yb5I1tIRPAYOzxEPWtmzmfw6fafujrOZ6KOzNAt3j0yF8eTG5LZjLN+Or6JyvKr6YXsZmzy3h/eAusqgrhOgQS7ygYAI2uV+wfHMWq2QcxLNfv5D8v8ksvXAfH/C7znFtgfzh81Z0GdAFw4Ek3lU3ly6kHsO5s8ay2+elJN8xCJVTbOAFj0Ux5zQafK0MoUp7IfjfTZwpWoOuC2/C+u0pvOXPCCrpPU9nDSUheHYG6lWPgr6Fp2iH/zVSn7WVMy0OguxvP66q74W3W0vh+6SH0LS+EJtOqcBQbj9O+LKGzpQzWfxzheutNmS+RRLSdS4BzNxLN598ZNEOY2hskKUJGxfD+bpN5P3Xk9aFWlLF72vQ+J8w21w25kiKoq0dktD0QYXrHNppBt/kiM9CtP+bAez+rAuOM5dw2DgjtL2hT/pzjKFkRSK9mbSda6SqeEisB8uXvULdnDrc5ZOIhf1IuxePR3mNSVC26RNPXV2KJxdMpYiDcSQpp8K+B3qpzEUFSotPUn+FHcwrl4bD2dNYutMGlDJCYJb+KbSp0qRJB+LQcYMUf7k2HZamD8CuYCvwiOjga/KWoJoZxcunHoeQEb9QpcmJXx3NYS0fxjwTZV6+1wSeDD2DLSvCSEMjGIrzZ/OklrsYL3wJJ1nEkuyVcXBrtAV2VU8EFaWPqD1zNddKxuGrcl3+ekES8iRcSMgwA+cUvMJ2xz7692QiLPu7G0Ke3cabM8ogwrOcffv3oPgxT054UUs1/wlComwNPfEcCdClhCctX2HGHyG261zCR/NlWFMxitxiiujIvj9w5ccbMM0SAL2YMVR9biSkKiRywYV06EoRpLnu5yhslwoP8iqoNA4CwxsTYcK9b6CgPYGbKwJQKX0bnZAYRQ/tY0jLqwb0PB1oxn8pOGBnBX81t/A2rWJ4CcKsJ+xHV3rFYfR3Lwq8now1tRPYOyCKE6pmgNeeJ+z//hOfObSMrr7ZTro64ZRXOQfPC/0HnUsF+dD4S7QvQACyH6xE/S2WGNMjBNOGj6P88ywKWbyKVI4tgxPBCyB8cAZ6+xlA1dIU6LiYCr8SRqLvyLUYbNfKH6crUs53KbD60wzbTJqpai6AkuVjuF2hQTnCtzhX2wtGv7yCSVHDfB1vgc6UbB4n3EtWTlZg0BOEv5Yc4wCNExR8dRY37rRgvQ074OgFJ848YoQxp0cDy8yAIyeTYHqkOT708oD6UUrE6kXUsk8PMw/oUcJ2IbB74spp1tPBP/AWnrPcj5Nbn+OIS5rQ8p8hXMg8ShmPZlFrwTuYefs7eNQLwD25ZMh6vA6b3YRIt1kc/l4OhnnH7ODEy90Y3dcH5VFhoH1GBoTWPoIzEAcZeUH89UsxPM89huP2u/BR/W/Y+/gCJfV3cKi7GWw+7U5Cma6gftCZjMT/Y8PsHeChZo6vA0x5wwMpKvpPihY2A3wQPQBnCtSgI3AdFUUvI8GeDr6zqQNfbdhDvT8fslNcLJwCdZC0dMFj2sl8vEkWk4W/08H7HvA7YBfb2Q/zRWsbmDFBFVZ0a4OK6mcQaO3AgtLzMHBMAZdWZJCzkyD3KHuQUZQce066So83iINIz1bsEnIlsfeVPLl5DshoXoOW0aUYHLaH62deg4j8RXjx3CRwshSDt4aT4Pd9ex7lJweXxdUof/FdCI42Aqfsw/RAIwpbzRRgON2Fb9rNYY2gV6RY58vSYcvRVuknXhschz1VOuC4IpHnlRuAUNtmNK9cRdtfO2OrQyY6jLbHTyvzcZ3SBwyQHInVgcN8Z6MR0DVrGvW4l7Z7v+SAr270+dFimvhAkxv6VrGHuiNkO22n/e3jYWL4LewVGkXhUh/YfPQqPl5oxgMDJ+B62Vwozw1hDZmF3K6jAOJCmUC5S3iyuidFbd8NUe0KXHX2J3b5bMHQjrdgK3+Ny/7TAlU9G576ehT+fBPDNdVh+PDgRShfGQD+cjdJ+4gNuo2N54VlglAzbIUFFp14O1wc5P20SFczhgb/vmMftyPw7nMsNZh5oqOwBIQ1/eKAb7IEltOh+IwtiA2K8/hJR3jQllFv3Ax8lGDJFe8V4J2dA/1cmAx/tL7SqE+zYc2YXKhf8A0jI9JwjtMpXikcA6URWhC4QZ7ydzjw1zcdeAz+cJBMI79aI0T/5WiRf+oWjquu50QzCfiQM5+S/46EOgFv2CRxnGY5tPJ67xtwueEq18h60rwAb6guRSjtcweHHw1kedgVzHx1yCRrKnbV1GLKJCkuFRTmosqD8NxLGV4oSfOJB2+woH05LtT5Q/+uG7GShT83F36ihAsGsOdFGOXt1gHx1Sls0fwAnIRKSdhfFscqu/FcHRdueOEI1XsPU3+2J3Y3GUCS9X7YJv+GRmwTBJthXxTfp8S6Ff6w19METZ/NwOfjdEHnihFI/VPCUxTMhi/y0F1hArcE9sHLhmP4tPEE68b1oKrBAN11tYCP9X5QJ19MS31+4NUkXcpob8SCHQVgEmiD3ys1eeGsjxgrawLKmQ9ZRroGFgoUchp0U9WLp9Dpfhcet/Vx1DJFPplaBysqxsJCFWXUyTKE0sGdIFF2g1855qLC4zwK+WkJRb/zgW79waVrhMFq5z5IrfhNh8/P4ecem/FTmgX8WnAY324aAbaV80D5dxmqjTCBO+/WYqb/Ejx4+zU9vL0edr1N5bmSJjjWMxSDP83Ha2rdEFvAcASH+WbBS3yXP4gbLw9hleghyD+eDqezNHlXWRP9iBrNAuqaML5Gm4q0c3H+13iScb+Px5LXstT+a/x+wU74d38IFhr/JI1vBmCWEkO25arwaX4W32/4R4r3A3nggw+sPnGUpG4CaFhnYIGcGLTKjqXYUcpUUX2Q167cwxaiVYy2KnxuxgFI3/ENM6wbsUheFCS/mKK8nTB7pc+C8IotPCN8Dus3NKFk9iKWfvaA367XpdebjCF44UjYHlzP3h/ksOtHOoS8fMfPqgegOW2QvA8OktGXo1zSKwzZk2fR9pp0ML05jmSnq2PgJzt08lvBqpqtVHdFEs+cy8fSqYbQ9WEDvbkdglVKs9lhwyV2fNRCfWcdscW6AKL7PEh9xW74fsEStDIvc861LlRa5YEtJ5x50qF2nFqaT9lHxpF3eiWm5i1jm/sE5QsNOe7CZXQOUeA80TXw6dEe3rzMBmpuHoZXLt5UdEoH3B7rwjGPdJaNlcYVmTPwYOQpVL+Vh7+rk3h+dD4pSE+HbaEueM1cErSidrGb5VY+cuMmuh35B2L2Bhzx/BPln9jGIfpCVPzuHAVqioCX5Sr+8/Ybng24QrOK2iDzmxRM7rqApqsYS5rzKG2RPvT4G4LYyjks9n4RkO1pOOtkii1finDFi11cqjWL8//ugHLLq6h+1QA2T9CDwrxTOPmfEcVNuIPiYMoWqhVw2voRGSamoYreJbLNUodD36fDfq8FHHqqnWZP+0mwNBJLqiwwpeUVmKdmYI1REIRdGQFP29zZcq0iP/L+xK3hR8nvRQwZpCHV/B6LA39PcbfEM/j6VBmORxbi4jAL2mdVxil1jrjCrZOWTwuAmB0iXOkxm9kpgT+sN4cX4T3o9uslVqcNwJVLW9G2MYsPWeSyy48c+s8R0XpNJzaYGUCv0g38vuIJ+LrvwLkfxdhE9CzOkXzEy0rGkq99IdwfpQLLx8mCf8VvXpwtxhuiYvD3jWmYJxfIa9OsaWJQNduftIXG7ck8o3gyKOorkP2TJqRdHWxQ4wUzX9lheoAkG2/LoPBFN+CV2nhc3ycG+S73aMXrQDQp/4I3/GP5z7xAXPOghpNYjS1+bqHa9BSu2iYI7xxDcPLKYLB3NgSrEyU4P02bNAamwJeDTH8WRlJXaxcHZGtC9PxK/m35CC5WqwP4vUHHHlswAzOsL/GippvT+fGKN2CiORrijnryG2EvOC8/CN9lFalNZxEpNS3lWI0X5P30KtU4N5KSpxb0ln/EW180+F60PCVPjKWmPlMe8cCH69IMIN70H4WX/QfusobQMl4Q7K6Zkf7EXIzTqqNJgbN4XiEjrVTFU5Pf4aJdzTw1TwiUn4zlcsMWlMn/hN7+V1mv8SDbPTvE7VkX4U5BCtuqNFJ9qQ5kbXJE5V4zOF+WCo+nx+Hkw14YMd4Ed1VtBPuhk7wpbiSuVTWB8sVWbPBZhXQ19ejaiwMwfr0BHGoMZYdr6jg1TANuTNsHw/YjoCNsF5TfF8Sd6nNo/apMcoy9CgJHajjV0IuHs/3J2quXzoweCZYhRdiXvRW7lxbia/tTPDaqjVMvVvKVLT7Q/dMRcq8/Ja/FkpARWcgqRzbBVMGt+KziO63R/Yxb5l0Al7vxJBYiitbdC2l5tTH8jp1GDv5XSKzvMChPH43zb9tSStl0DjCpxZiqiTRZsZyTHkrDfTElWtIsyjFVShDY8Z7k6i6Q28dYen7iIa47Ic3OM1PxQf1UKLp0Bj7XNtK8DxKUu7IO3qcF0XpUw5iRLoi7H2BXTBu+zRCEgnkCNMF7ASafPIa7TkfBqaDx4HA8FlM2SYLtiV109NUbDFUyg5WdKfBvagvLj5bGUYM17Lb7NZnY/wY6IAKp48M51/IxX6gZC3rPxWBX+WOIkSmAozk7SVk8i8VErGhy4VE+fHaAbBXb+Ny/UVB07R+aNexGPesgyNcF/FSwCIQ+hbN573SW2pZJlid92dfMFHT2TMO8CVbwuEKTxzkcxWrnYY6P8qH3rv18etlC0G5S5rw/siAQrcfxEyQJftpRVqs2D506SF+/ZnBu6Cp8B0Jk73CSPueMgA/hF2j4ujE2y1VBQVc9vWp7yeJGeugYsordz7XAVat/MFJODUrv6+OmVbZofu04mC4twGPvizDhjDqLvvKEuevX496WFJ6y3xjid5iR094B+rVeCiw1i3HrMgMK6z5F6uGTOM59LMl32KBn4CS4U+zJFwWAR+zYCQkHtPmq3HVw9T5LQ+Mc0WxfEgyJ7IPPFirws1mAxn5To8GNfdT6RpNm3TLBBqciChvw5gC5t1gQ/Zs27JKD1XNdIf7IBxwztxM6PQSpNHk/r95dx6tkDoLYxQi8f3kYb3gYQVH+EAo3Ixzu9od59wc5bt9ZevpVF36vNuE9f/Oh7X4JbJw4BaztSimuJResRrVjy31L0HnviPr5O/FR9Uj6HVyN6zssSK1fDb47j+H4XcfozOom9H3hSTuE7HjhvwjeNtodjhypp9Ckh+jrowp725X5VZQe3a3JIO3X4mwafwSutqzA6N4YuCQ2GpzrK3mRuCocForGIHUPuHq7hcUu3mZ9RQnelRwGyV6z6LxuMShVG+P+txbQ9XIxJy+uw2FPM/4uAeylFUHCpYupOEoSque18e3n9dhjNhnObexmqdeu5CDgzCXL2vBPqyq9H+XCezQKcImNN1aWj0G3o1PhxYoBdFewgKfbfsBTv1SWM+xExUkS9HBrLXWc94Mjt4Oh4/NY8NFuoVQXX/xxXZFjBSUwf7sVkeoXaF29jNPbxGnz11+wqG8afJs3CdNWGvI5TXMy/3iMNp8woc+npOHk0DU2kA3GZpUhGjFiBFy0c6YxftvhW6Q1lQV84xVvumifoBU+/HCUnSWM8S7LYWWrBoS41+CbkYv5LDzkqfKZbBB7EWZYXsTETe9x5aRXrNLxlRobJkHp7E00aDAGly8LYEv/EtR4sI19ZWbQyPfv2OOpAlDaYWySngjLRBvpzO81VHR9PjX1iUOZfyukNXdyVMoejOlUYVm7k6x4xQhML2kAS/hif2MevNoiiPdUl9OzzFiCtqVwq12Wu2ruwLsXUjBJ5BbPcbGDRMXFWKEcwfMC2lBbVZracBa4pkegvO066NHUgPTPV6HISQXenWwERePFvDtoFbc7qrHTpjG8YONyUhhzE1ZNFYaepCRomzibHH/Z4GkZJ3KbZ48HW8+SypdquP71HyddMKdTutJwY1o525VcRjpxjqqsnCHPwoBmL4iFoD9vOef0OvwhYY9R2mNALEcYFUYU4uqcO6i//A3FZArCiKBW+FO2lsjNgBRLtqCkjz7Ya4mil6caZjtYYu9Refxx6AR+kjvBncl38NJhEfYx38OuPoIg8mcGBNwI4DeGEvDiuAD8uPCaE561MooW8cLeMHx+PQ3r7o0A964UvK35lQ009FHYpIVvCE6gs7URNLyvAgadr5GvZzR+iDECzfgZ1DA6jRdvBEocOQfHLrtEskUK1LnOgx63FEJj8AvuuqsB843GgrSWIkza2kktTkporN6Ey53OQGXzc1CgEAqplGbnqWqwsqSR8hKmQMmLZZCzOAOnuwdhzwQJWlUtBe3bjpL3RQH+lC8Mo85rUOnIdZzGQBEnXFk8jHgAD6L/NB3akCjKyc2f8Px1BUiRPgsbPs+FhVuM4UPDAdwd/wwEM1bA77IMltN2Zu1rYfh2jzxcmJ5OX8NM4d+tl3Dk0Q42N99KMUdm063Zd/HHE3O+y5NxhfoI+Do2n36HfyPzntn0Q3E0r06NxF/9w3C1RZKn7qxn65A/OC1PAE7m72bpbSfgrvZFlHqgC1cPVZPNz8W4QvYAPQ+ezpE2H2hVuzxYjCdylmtkHwMHtL04B61VB2luswvDFHG+370F9ItSaNMBfVA4NpMvHUgHIZ1m6PvvBSbFNtG242KY5CKHT29644CtBP8Zrw8fUQYuXclHtyU7KW5gIk6yn0x/a0pocPpHthgVBwF9aRx3TQDm5nhR7YRE+LaEUKBNBxu3u1PMagecNNYFg5tk6G2eIl3xNwKT4VEY0XsR9EMZllpYwKb8WHx4J5+6L1uxxs4aZDcB0jcTgd8O6nhadgi/OC3iS0f8IG14EJP8rmD/T13cu1QWvq0dBaAlAjmVX8lL9yYEt2lTwt5cevcoHTIkKlgkimG0rw3e+VKAcNkIVD8WAAwu5bSZtRB/agmqCTRiW6MV28cEgG2KDim0PoekZwzN7VqQm1cFu98uwTTxFI5MOAX85A+Xpi3CoWmzIWt1GSwQGwPBuo/J8looTc+XhHn1fhi45RprOn3DaMkA+rA4Gx+cW8MXA0TBN3Ic/Nx/nMU/rGLrhyY0wUUBt2p/gg3++bjvwCzsqQvC9Y0iMPp2F0fPmMvF11pYNrsJv8o/ocbGs2CwRwjLEhwoLceYfdyEYFdNFamd6aD+F2XceuA5OBXcwPWvvoM2/6YFWu+h36ce7toJQ7HuPojzv4wz1f+SUNMB3OLdiYJbxuLy692cb67JN7ZegqDPklDaVIRaBjr4VvMNRPa9wDZbTdK3u4EyrfOp608DCD9zxa/WKjDvvzoY/a+G2v3KYb1UNCzNFKJTd2JIRksQ1xnvheAP55i3mYC72B/+UlpGJ8OK8fbHGaxyUJ9zA6/hpXEp5PT3KywLr2GjvxqQddQZ7T6MxjXe13mWZA64/Izg+qNunJMnhntrbsLEJ1fIZvc4qCjfydvPhLJn9RTOj1jMbv5iJL+gDwZ+NeDZRxmYfLWYRZ3lYfyRs1Q9VALzU+X4b/dR1LM1BvniMN7/bhEdGUxkF8fr5LRQHN5aveELm6xgz+Q3vOdRNP5VtaXCTkOQ/72BF7x3wq+K40hj8iSwMA/Dd5f8oFh9PZr3+sKFpSa4J7aasnapguXIDqi/ZoRHOsdC+fBmqrl3FqZdFkGFCXNo8r1BdDVT48K3oXBGUwyCtx4kl73TIT37MniiJaqbtXKs2m+2qliCOxV/wJ6Tn3jK+uWwtzYIjbdPhzk1AlzT1gi1zpko2ecN/q9307L4dGh93EpbBi9h1qzRcNhmBDySHIdzD/rh4shTkHTpMRUdOUT987/hrIZ+EI3TYivDV3QraTxMXn6N3bIt0AdkcVfCdv7zleHw/U0wc7k7yZrpUpKNDWsvk4WIiV4spboYVw9G0oUVm0j4pBufDBnDdjaXsXPxI7Bd7MWl7Zawr8wbl7U48YRcVfp34hR8bJDFJzek8eMIOXKwe88KhobkJzISbGbupe9rSmCBpRK2leSh4O5ECn1yG8aqr4HXwTIwRf096SerQkzeH0q5mk+2z1tJMKiRApRnUFm/M2w6sIvXDe2md6q9vGq/PJS/lIbirAa+NPkbBl/Rprcfl3Krz1WaL7ANDTPu8tqEfkw5Zgx1tseg7z93yvwmgWemD/GI/hcwqDebn3qZ4E8PW5RROsR4Wxp+bxqBt6Ke4FtRDVJQPgwP87aT0gNdVo20B6rXJ9tqZXihKgczXg6C7psvFJ76HqvbdMAlWR63jPjFL7yYJ5cfp5sey/H4OwNQaV+Fude3o355LD3JbcE/bs/x69wHXNt9Gx41N2Da/BLWeqcIufs6sSrgODxRnIDZcy7Q6J/FVNZ+iaZUmPLc94N4WU6Ns0EFqsIa6GO7FI8vSMJNSyIxs3sLHdMTZ5NbXmzz8i8WOZTTvjZJGN83ATyEMjg+YQ6JPH2DBxVbQcRWi86kLcFV/WMgWSSBh48oQ/13O9ppPA/vu3hiynl1vLlUh3/lV8Ev6e2gWRaHEbuCKCZaDjIqrkLUhhcwzuYgj1llBsWJ2yjiggGbmB4n5zmC/LXci+5Ea8KKWeG4WVAKAtevAOG6EgrO20Bqx5eT76M55Kp8Adbs9qbIGWLwtBspb7EWxVp78SKVOXCl14T6t+/jaDMd6PA+z0V5ejTppA5c0FeAwt5KjpL8BgYxC+jkie34b8kQVFyWhTVfXPHfjEKs1dGHlY/D4UdSIipvXgt/oRQfLpvPA8nrWWFCHaTsWE3tNi+48K0gyH35wDO/7gB9KRsU2KvKXlnVOCpxJojWGPMxcTl4FXQJ4ncgODZ5U+XxRFCf9whKZjzG5I86tO6SNXpqiJDV82reuaAKW0MEoUb9I60sucOn7M3waYwbBg/2QI6MEW6/fBetE/7QSGGk550joVrJFx9rdNJ4v2isOemJXS+3wrfne+BQaSW2v2vk7eMj+WzVDDixXw11/Sxge+csWG3ays0BYugVPRNEhQtYJt8Toz7L46KxCoBvw/izpCjt6Heh7YLemKAygRrM56P/7ufQ6tOFjs8q4XSUGdRcPEWdq4+SnKMGudr0waMz6igxJ4RSvPpwkexWfvNmEJxHCcBS/WRqT8vCMyFhXKWpwvmmh7Di6g6015LEjxNH0uVIXZIZpw6uIrkUXLwK/F8c58U7blDORWf83GnPfnevU1uKDPjkroHJiSPggeIpmicRzZt+GOC40hxI3huH5u876OBQCr7cVYWzHufhm9XGcPFvLoje3UX3D1fzE531vEWoi8aFZoJluwffCyD0KnvJgqsNYfuXFNIK1oZX4Q7oEXmQXeVKOaL+Lz8/OwyKbdl0zc6MvpdLQsrmBhg74Qk3pN5h/fQJ+DvyMrQ0aPLleUn0UNSDktoHeIzjJCg1rgOrSbP4rOdxCl/SCEm3Eljacgb4Gx4ho1s/gF6VkNsnA2iV7Qcj1Q00Q6yMTxcpwbtaHbp0bwa8ShSBhvnq0LIimC6vF4fM72rYJLiMNnc4c3RBPh8RisJDlS600jWDtT+PY9dzubzSUhFUFOXx1MLrPDLbkMqu/mORjm68FrWAR9vMJIEdE0lTdD88EGZIWPIZIuzHY9GSxRD64S58uKuNPV8Nab+nIqSbnobHX7+gdZQIZK1zg6hdb/nLm0b+KmSD2mJGNFk5EdZE3SO/eOQEx9+cNdcMFNecRgXZzTRdajl8PpUAH+/18MQeY9y8fyoUFe6jtnuS2J8kAcPXP0K/4VJa938EwAcgEAgUANA/EEJZpVIyQjYJ2e2FZCWVrIomSaE0KRqoREoLZRRaKkoKFZWKkp2Si5DRQJLuzU6meafMqCWwEi54eFBnoRcZ/PDDfZaCvGmSGuRnvKJXO7/DUTVRKuhz5ZOVihgdtYKj3p3AiXlBKKn8DOO1hSA9YIDeH3VjSTthFND8AD4Dyixy+xQFjajHBQbHsHj8GQ50EoJ+GQ1OstBnjbOLQGWnJp+uEIY9A3qcu24uTGtbSZqt78BkrjrEBEZz/fQgFuqdAOqT4zgx+COM2RKGuMGIRlzXIcEPObhwghSoP8qgw06TYdzy7+C/VASrd3WThsVjmlLqyvG9VmiQ7Yobc8TA4E8cXnjpABrn/pBmnQdfvyQKoTssyGPvQlq29wUHhR2jxkFx2Of7HtqWDfHdjWPA4eRjbp63glvKYmDtTXWw/R7IoxPj0DxBDoq01ej76yw8L27Gt1aZc9nRKpp+YAD1ytLw76sqChafzZebxIB3WoOO1WNObttHrjJ3+enQUvr45ABUCVnjlZc7sNMhjVJEZsCyo0Uk3SNC5uNucvfL0bh0xxocFhTioFc/uKJVApWzb+PKGC3wePwIWqbM4pZfNVwt9QsU67ag4SJlrtBWJq8le3D752a4njoJdi4R4fj2JqxMqeGl05/xQ37LDSN10C3xGn58PwMfXKuHxQkG8ERaG/rjykAxSR9fHzHlsWkv2bT0G7kfDkFV32G4LVBBMlcnAt3qB6yzhP4HBmjS8B6u3lPDPJcxoCPgRd++j8S/Lx/gmippmLq7AuaopMCqnHyY3F7EiQ0OcH3saDKLsWRf6c1kVnoK7ywgcFyaDuU2Ryl6lgI6JW6kouFhfucZideatVglaTKpaxVxZ582JG5xh18bvlNa2HXe3JXASdKZnGHVibOufOHAf6fpy/dDcIikYWr3Ln4SlkPKaVuwPisNmmMjSEJxED0a5tLK3WVcd3QJ5d3XhbipmSyWNpYFPzWx17Y8TBuOIh0FAS71u40qKzzwzYKFNKxnCE8i3rJ6Vxob/xxHs5TWYv9WI8yo20lZI6RJZMiJXI57kv1vOciHMIjUZQyQD6F0qUzeqTUb5vtcxj9xdazoZQHND0ehgo05mB0Pg9PPWsnlaxvYDZ+l2XXXOXJzOCtOXMZ7hiWg4tdogBxVMGJ/mIty8NrjNrkPJFCc8XPQO6lEiUXiUNrWwbW7oyj9kQysUnTG6aG+pJc5E7wjjXCPzluWyCjgxI92bDd6CsTG7Yb5fToQOTuItJ0bUF9OC99rPYDsmjc478xLTogdwQo7BdlleTmet1WH9J4htJR05Dh/A1qyrQArV1TBHpNyLHTPhf5JzrCs5CH+2GEO3pcF4betA1wd2c2VImdJapYghk0spvW9UmjTK8wj5Y6Cri3CEsUL6HPJDFbc3kMb547iTfZzWflVAuxZlsJ3z3dgcM5d8sbJoNxtyRUh03FQpo6tt+iz08M4mlrRi3K/NuHmxFQMPHIITFYYwYSFs/l3ijjdTdhPS58sY7N7W7jT7D4WRnWxWpQROGWLYrezEQypzmKFXw/RJuESGpYnw6N9a+Fk2VtaOOsafXB8RnJPhyjX0QqEX/+m90PpsPb0Nw69VohJeU9hf/dccggUwCmvLvEFr0+8+50oiBasYUfnXHjmnQE55UtIeH4LemTsg2Tb/ZD+IRbnSN2BegcdiNbN48/OGtwjcAs/1f/DP7+8+K37RH7125RPoS+fmhNJ2jcIqrvXo3JnGn98KET4vQLvjFsDy/5G4+4za7kj5xSp7KxixWxBsN8XAE31aqDhlE4iwrtpjIgTjVsXTBudFcgjbzzqbTuDQe80IczDCU4oO8LxuYawomEnb7POgaQkN/oai+h8So+mdrjzreRpsPFjOyWrSFIt5PBxNARf8Zugl6oNJp6l9D7+BO1ed5BHCU2HtaL+dMxRgFFkM9SO6OZ9zVlwtyYNHxaMgjLjU9i3qRIO2ehAS14Bf7i+iyRFLuIGfS/yL2hE/vwSX41/ijKe4WB/XRbDU81gltlHPBJixtKlx9nOoZx6rP5C3OZLmNu8HzzWnCDniYv4x2mGFVNyWbI6DpdLd6DszQy+K1FALw9s5ve7l1KHRxL87pkA7D8Nzk34yaFXfPjlPS0+7P8cjSqboGJFCi8OO8+xX2+BUUQMHVqjDd0H/+Nr5w7DVdGPVHDQiU7mq1NeuBgre8bgsrYL+HXvHB5nZw4vh0ehnvEhtDz4FUY4ID9bsgw1OseCtO4p2FF+F3VNUsHvjyH0H9wLXn8kYJzoffRrXEPbDB/hN9kMnj1dit1Tz4DW31l89NcIGOotIg8vTapcFMHi3IPlk97RuEf9eOylM1unGvAqx3J8lToOcO4PnNr1GvJazGHszgm4L/0hvwl6xOtrz8O0vZtoe8Ii8JLXADO1pzDqxXMs6rOl7bYdZLwwBGD/CLi4IwJe28aDyNlTsP/beHAwNMVZfqY8JV0Jp5o/QI38VZCRUMiBb5shacAZneYxJ200ht/qjigh/ROMbO7BgrIntPJ1LHC0JJetvw5tk49iY3M6rA6SA90fj6AmbRZuaksjmPKaf02V5ZU79nKP+ltWDJgPFx90cLfhDHhxvJzXRe/CMdMsqMzhBjm/L4F5hudhoWYwm0Y9x7FnDMBUQRouKa7DlWLm0JH4FCfPM+O8xasJhKI5c/snyFH+wKnLFrHPTjM4eaOWWiQn4itROXzbLgLC1apskpIHHdvSeF9rO753tYd9UdIwQvAWegmfp3/JsjhzRS+Xj3zL9j/zaZ7WEVjkok/S8wdpzlQL+PRwPV8YvxGNd9dBZPUxtDbdCoeFfrJbnRjULU3h06JbOGzBKPg2cjcdHtfLwXIusL37CSZqT0T1yDzoP5UDQ/dD4OfQZphgLwhy3q/oza9aNDvzC8oLCvnJuE7uzTuIk/+7gG8XfaVDUxzwwxUL0Ph5kW/MvkSWe5fTi/BpyG3B4H3SEl3CgvHY00+YMSaMXKoFoP+NPEpMMqVjt+XJaN1MeOSXz1tPfcWd1j78NXQhfJy+E0LdVWDl2lG8dNdVLOl5zX/ez4fxD9/ypfpddOfsMb62XBXPyb1CoTWqkN+3Bv+pGKDRw4OUt2Ijtva3Q8zdMWgTb8XB8sfwtoAb5oWPgRWSy/n0vj4Wfu+Acm/i8Om4HKxTWEAvXNZDWqcvR3uNocWO+pB7phQeC6/F7DHzMHrVajwUGQWBS8/hwx911D1PEiYHydKZQiXYbrQKV2Vdh+asVJqtWAlLX6WjXOY8/jNCn7xE/6FmWQJCryL8DvbmRzZzyWjiQeiTFqKY5lj+ct2BL+f5Q+BkgOPizRSbxZDHn/jnYmMcPPocS5pdsD/iLojr+dGP4L1svekT7jpzEwUWG0Ncaj8Nuw/BqAZxGFJsoPuqRuD+L4iMAorQt3sCFCi/R0sxcTh62obbbO/y8sgd/OGgERz9OolTXofCUbXPsK32AS8S/Ut3GtVgQsNifuv8idTetfKcai/WVg2nfeHpJNeZgntGqvBICSEo0NWEo6PDuKctnG/mj8JI8Vz4XlUNrWvG4AgTXVrQo0bw+RAo9MnDuhuFxLeVcIeLNJQ+qaKxr1poXp08jClPw5NnM8ltjijfWTUatpyMo/sFAfDJTgaDYr5wU/Aadm79Q1GLhEF6YjpLe0xgyZOqsOnRFWj7FgiF346S4W0fPDqrip6HxPEr0R2o/6Gflrf5QeVqUVAwauTEXn1IVFXFXzdG0IX0+ex4sB0EW4fZSmUF+X9bRCY+ZlB/8hFt2p4H7XstoaB8NJ5bWU3zitfghD7GQVVHvvm9A2e1SIHv869k9FWGL0w+jHsmKLPybj26M/MtmFy4RKv/C8EnfcVo5TgGBs8HsG7LIH+32kWD0sfgo7kYJY/0wlaOhQvjnGFgphaVDxtC/5UnMCZpJ9TmqWHw3ZHc9O4RPVMkfJNUie4713O+az1Y9yLctG8B99ZuCH5aSzdOJ7KSigZZpXhir1I8F59+xu7dq6ltkw5Eq+Th8dbpnBgghP/dWYwGYufx4YsaPDnTjwZ62qHk1HcYrBeB5x7GnL3rCBfOnUIn5wXQxPOIPmoPcP4hG3zQV8wBh504UEQFuvYkkrxJMe04agm1z2vBaPpYcFz8Ay6kJGF8vyCfKZ/BfTIaMDZCmr62LuaxTw6yh9IZfJaThnqZ83kJbKbOcE+MPvmJpwkTJAzZ8npXNfDTlqHgBS84vPQB2mpJkFN1DB+xjyd06MC+XCEoUxAAttoEKcE24CixHdtXncONZ3bhi4unWWZzM16VccF/++RB6/tJ/Om+Dv8EKPD6ybGkefo3Lp74HTUTm3COoCBF1udDtaA5jPq0DCvH+eJv4xq8UxoFl0oUaKSBF1+uPkd9NwJg4op59ExZEU69b8E5URv5ufdJuqOjT6Ff9tKbrVcx9kI3Hhk9HXwEfWG5mDx09W2hyJWW4G/ohmnfxXFcRTpsTlJA06iJgLte4eVRZjxmSAvy8DmKjPyOBs83E6E6WGh3wVrVGZyQoU6mK3Nwx6i54PlJFH7YxKBp7CxQeKqBF7Z/Bq9rxeRHMyEpGGjV45ss3mVD9XusYE/1I9z9bB/NrxSEIYtruMAjB2xj72KqlBas2GjIM94VoGmkHoQ//wGbJkwHV61bGPc4n8a3rUeZhXpwsXAdHBTOZI3l0ahkIQkBUWM4VKyK0iEWvET+8hVpG1AZugxKw9NxluM+mProOQedRsj41IDJWavpX2gDSRdZAyx9RdkjRuNZ96O8tNubDR/q4aMxCK72Tvz9ijr2KHtTTd4pVtoL2NO3iEe+audFa/Zzf/IS1DlkCGav2snIeAV1GF/EW0GeFDVpJXjvW0jX/CQpdWMhNss9ZMFN5vB8kiqtihjG7wqfQN1sAIV8lKBzox5+XVkOHVfcUVXwGLrI6cK2Kk3IUFCj3PfTKCDgDFdLHwCTgXN49d5ZkMkYi/JLiimkTwlgpAyWpJ4CswM3WMl8Prn2l5LXgguQKLcVXXdJIsbnUNc5Mygcm4t9nuNB/0UV3EhPpYYtK6FxylxSubyNRF/1o6DKRJKpIpAse0KTQvxhva8BP3NzB3elUhC3V4bwNytpX14cqyiGwK0AAXD5OwM2P63B8d8LQXdLMezxv0JC3z/Rlj2KWKM2D2PV/sHW3XIg++0NDaSYQrzYAlLMv0lXRFfQoTHhmGRQRBna7picVsQiMcbgId+I1sqd+L0yEC5mX6fPOS6QNMELNeWs6ZuRChRMOMDxpyUgYIELt0hvpDI5f8otvgYeRV30Z6Mebw3vprBKU8o8F46fppnDTArE4I934UdCCK9v7MfjU3+g2ScZjh1dCB3nPeHsw3kQ/0oEwm/o4p3TwqC/1Q00bFzJ6t9nSDx2gnQ1ctBkRgVYzLCAytGTQavtOeSrx/AI6RAYb6gLKRG9KLT5Dz7f18S1mkBjToqC7ZMZcDpdDjeecsITf1JAK82Jjhjvh//WHuPl6pux+89EthF25aJXFpCw8ws91zRhbZcrnOI4CxSMB2Fh3DKUCc6BOyee8/KmD1T6ZDKYnwqinNIt+M1Pm8Lm2pOidRsdaQmhPd/m0zIPDXh+bxrv+agGVeo3ES510qmmpbykQxhyXK/TtjtvoNbVCC9pRrFEgiVs7hYFkWCELr10+HLcBefLXQENYX1Sy1oNT5dvprCwDWhSHQ6Nm83hqLkTrpY8DM4bd8Ln4H9sle/Ndut+QInVRdgW8gFDnsTw7yE5SCgKJrc1lRSgpYnjTpijVNEEuNHui1r/nmHgfUXa1vwZV7gpQ+uj3fD4sRarjRbhZQ3GLKh1kC0lDKB8thguObcYOw/qkZm3BUTYJsHWef20wDASlxwQR9WVO8DjbBHItNyFJsomM+uZ8KFnPPhEE1oauZPGbjvs9LsDqeHfqNf+JGxJXYCpvqrc7DoTtzpNg/MnNkIQd4Gx1gFMPz6F8z0v4PbcCLiS0sMosBpz942ktokM24MDCEMOQ2q8JGccK8TyNzWcucEDc2dO4Wqtm7CvcBRGz1aEg9sAlA9Wk8b27XzivzVssrgZS02GYaDYkxdPHYEhF36S3t/RMOpeKnmXngKnr6/hWMYznCgkC79X3AH9f6ns7HwJNvw9Qi1dRrDRtBPctv8G9boT8FVxHz2TX8rZ24U5zGuQfNMPUP3G/fy7YDpMKOoHgUwBvNI6DSu9VoHHzB/QmOhJvVkEF3LOQsven/js8GiIuC6AJfs98bXyRly+8zPZCmrRRLMG+pUxF+vUrclL8ycfWWEGR47Fk4BhFW9qPEbCmT8hXXg5mWd4E3jHQlIao9nNYPZsMQAnk2UgsV+ejPJno5TIdFjv/IT/rN8MT7dbYrZyIjx+m8T6nw3gqvtGWic2CgKLoumswia4c5yobMI8NnBL5Ey939hfOB+b49RgyYOvvKjkFe1KW07uwzL4d5QRvbp7k6W2XQIsWUkdfrrgYKgK9w6uIlqUyS9K/qHlOzFuvekLd6+noOiQHyplNmK0WC/sujMdBizj+aazHZtdacUx0xuwMksSbl/y46b3szjcZAeqBumAxwFt2PkoB98POmOF9HcW771Fpg/08VrGODLedJXfvTSm+tkruEtKBR6JVPF7veVUHFaJzWGBIONwhowmvsH6+lG87cR+eLAlgwUPz4Ctm69C7Z3FkHN0JsFLJfTQ/MSZQ92gK/6FjySKkt/lpzTilyFkPJ0N+3Pd8fDTVjDr+YyxyxKwdbwnHzP5jUrvr8KTeYvxipEMrE7NBPnBVXjSQpZSXztT4/h3vHnhCX7fe44uvHXmwPZdVB+iA+4ds6Fu0IrWqMzAszZbofrqVbyq95KuHfsA38aqQJquMLzNlYTihj9UIvkNNlz5Qe61lyH/1CuQzvanq3eD8bF0LLieluQII0VIKjOka28e8ZfQbewcKAWb63/DYFo/lFqdwl7bRn63S4x3FEiCy1FRujbxMl30WEbJJevRO2cEHm2+TIKzrVBv4krMO/UP9FfIQ7n2JdyvXs/H7Hyhbs4aWrC3iRbFKuD2Z7dQyPoXv1aIxIjVBvD7RBeMPHAfLzo2sejf8fy3LRyv6QiiwfsjJPV2Mau5erK4LEFyTSVDzma4ZTuRhZVDcGLiZW5//RzZuxk87Zx55snRuHuMNEzVsMK2Z99IRr4RIuYZQcf9TpxyOZeHb70GeR9HNrw7g1hIGUwcBdkn7x0LXH/LDhWLIGmPM1UiwbeVRJp/bKjTLI+9DQEWDdzhXqlqGLwQT1+0j2DPMx1IaOql9beiUeuDOSdfDcT5Yyxg5/3/cN0RedA2t+Oh74vYfXQRKfg85fADhzCg+DHsKvlChv9EwfWwDp1buRupRQsT9olzodkdtBWw44J7VhRS10mOW9Q4o2QGBGUKwEDzUiz/VwVy99dSq4E5Ld3/H9bd0sKU0G+0M2cewXFx2CrTz8XR/VCp04XRK0dRzvh0KCi5Dx7NXhgjlQtuXSk4u3sMlOuZ4hmjD5ht5Agq6QinO1WoPcyYhpp/s/N7RPVWEcSZmrDdeoBv6QlgZIEdnUn8AvpLGeq2ypNk8DK+kFwPs7w30p4L2vAn/ipt9VeCv1eOU4+ABB1RDucj1V/gc/1k9EBD/tuhzaZzVeDZhess3qSM4vsvcPE7Vdw/5QgFC62FrJTf3CN6mGfYFtL+0inwK3s0yS2vYIXCTVDRGEMGtJhm/fzBR7Ir4Y94EogF7UW5JoC4VlfAsBe0V/YuHvzwDhN+DFCV1RUIOe3CJ6/O5eixQzApUw4iRe6hzZIrYLBjBDqPfki9ctvgg3ESxuQI4/W8QDaxm0yjoqaD7t86fuH7C/XKlKj1nirLWy5Er2tLuSx7LG1YJQ3DYsYUs1YHnJ8thdX6fVgF6lx/8j1EZJ6DkeveYcDuaMr5vZ+/bWjC1nRLcLR+BQ4ls2iGzUxoDi1i/cevQf9hEN566YKTHcvguvdb6BtUgZ8TdMA7KIZrlh7E+hgJnty0CtPzNFh+nTd8tBnCuEXtsOCtCAwMK1JNyQhIOPuYXV8Pws6Yi5wkcpGidm8H+bAyEuMCCPswA6bmVGPg3XJ65/sI93rJ453Ys9yb484HAx3RJL8Cxs3fSSO9VOGCrTDt+BmDh+9qUGKeATp0vwP/Xh/IXXeVjzoGUMUJV1zvZAKjN+ZTyttqTN/9m29LnaaO58vh4rLj+KX8Lb8fNiSzGe40XA0wb5QfX04yBNFXybRaM5B+2/2Ehv8m86YzgfC79wdERpxFyzJt+PTrCRb8sqWKegvInnkZ479Ow4MONjT65T0UWtHOWi+M+GSyLvyLEGONmtlcu/g/evtQFdXfxfKRczc4bXsOVhddhqSWO7B7jyXkBs4B0yUlEPu0gi8Wa7OC3xBKvJBG8zA71jKfil9qRCG7SAYWwQgqvhhMztf0qTG8C8RPdoPziYPwRkAUxCbup5A0gjeXzSE+fwFsPaCK53UNySA+AJbOD+Q/4gfo58cqToxTpJoHnbikRgEaZgaweKI0bLI6wOwlyHGVPuRSsRIuPR8G74nnWEB0BTzwFYQvwi6oozoKlh4azUnX3LjvVD5c+D2V23tK+VzpXHKSSsd/53Tg68FWVolcwFEyuex6MIuF901C4XmVJC0/g5rHnMbagwGsfGUypHmIQ7qFDXg/Vqax5ZNxW2sDrXx9lTMLf6HjezFQ9BHk3eljoU74JhSfOc+rb11ksxo5dLt/A073qOJWuySC5wfwUt8tSgkVA6U5jWR5yIzPRt5jAVF10J2ugNd648hd2RKt+2tJ+bgG/tOzgIQn7dB2/gZE6JqixfXLeJo30GV1b47aeZ+uTNkBF83iSat1GsigMe3f2oRnYkrwhed+bjk5iVpEjPmVlSfO1D7Dz2sqQC5LHPbM9yLN/m46k3GNXgnE4rXkv7zceiyt2jaGZr3WxqNpaXiLLMHTYxrJLorA8yFl1CK3DaYZ21OpbC4pxnRQ4edGsPUYj4otonD/3WW+4t4H+o3H2V+PMUwlgT/9p4rdVseBXv+ke2CFC2ZJwIbYepLYIYAg0UxX707inf4ncXNELu0eHYyGF0eAcvl3jvQYA2zdx+c0rLFa8S7G9pyB7ITpZHlsJjinqOKcO9/pxZIwWjhlAuweWUxje3RQ+1ArztMZQzL3EjlxtxGX3lrMcVk5uNloL2b8lYc+6ziclKYFaTWRtNh1DN0vrgONxe40768hxaVnQZlePs6fJANCigVweYQV3PlPAguf6UJFYBYWa34By2+tvPVjHttX+9JA1zToO3gOkp8nQvm43fTkSCgM+9vz/kc3uNhWi+9/6WDpgij6bWkETbfyuPJSGGofUYeyqF+cvHgLPHmZzVlFd1HxtCj9V7ADlKxl4eNeK1h3cjTmqnZQa9Fs7hIqoZ0/T7LsAjc+Ov8/2ioUSGHBkmAmacdvOA4D5ebCQmcnSE6qJFo8F+MOtrHWfnukiSGwyV4eXg0lwFr98+ikZEnOmApLyISid+2A4Il3qXfLe1xqkMHTXoqDSeJ4DpO4haEx4eyuvRDWrJpEdQUGfOZNDN89fIl3TejHG4ojIGSMJHumGsO/rJ84e70DqNc6YL/kAJcOSfHa2Udxj+Ua2tBuBPqL2mB4/C1cUyOPDjP2caTYMJmv9sX8e/dg+f0MmpVIvGfWKPByqEW7mWv5w81QSGt+RzGVs0D/sjvsEAZ8seQhv9vVyUbWEiByew7GzL3HLxPladW+OLg27zPkvtkDkdUhcI8v84uaAbxjoQir47aw5vYYviu1kB++IFLeuY0liizQZVc2H46fCTcP/MM7seLQJbiX/rMzpQM9f2DCvaMw3SyZh2tGss2U3WhrfJtaLXqgYrUgeJSu4o6Yp9T0NJZLlGeSjaod/QmIpohzi9hvzV4eWbWMp9gLw7t58XBo7HS6/ykN8hsYj+ZIUG2oD8WrPEO1w1Mw7IQGNvYawNeP22H2HkFYdi0LY/Wtcb3ZSMo/vhqDSv5Rm1scTY0qxbGf5UD8gCuvOGkGe5cAClbOxhuTfsKqMGXeUtVCR5augYjE37xjxCiQiFWBFo08uJPLuOCQP552XsnX/ihQhN1serE8A3vKroO7liwklZbytsnSGLENYU5nH+2xWw9RNpn88e03VnyiDi85BqrvjIfn6T8hP3EpXjFQh8EHEXjbJAIHgm9xYKIp/lraTqNe/OYbknLg21FNJ2NuktefDfAk8wZ5rwllp1vZtGWRC25UfwovDs6ht0kqkB7sjpzzl9XmKvODb73wwWs9H7BoYCWZp6jYpM8Kh0bBKJaBy90ZXPZBCw0a9sMZXyEYV5EFWyWX4RThY7BV4gftvroZvluOB5cQWb705ggXvNmJdt4tLHBnP+n1N3C0bgfJhnShpNc1cF+sB2bJq6Bj6iLobujAhG45Wu/qgLmvlGie/z6obbaiP8Od5GE2BfaH95KA4Vu2kqvnRxtEYY9TNie1AErctuPl+2+Tr2gCKX0bD1PdL7PkcuBb/W8gocaZPrYXk8iuXlz2RQvlOs9zZq0A+F5XhSflBiwm2wRFBvHk9NgPslr3omfdPdBV1cYAo2l0TdgMvdVmgKFiIX6Yk4rx/6JgQakjn1boAaY9KP89gOb7BvBkMz0u/qgAh0/LQNoHN15QU0n+9Z08sd4R80ZfYd+jfeD2JQm09hyAJBdlSLKyZfvETzy5uIIchPbyI4c/vO7ZHBA3s2FVaYKJ4bpwQ0MY3pzJ5gTBHlxQ1AXjVmfDhfpMtH2zEsdaXyWjrw8o/Wk4kdcEwDchrKaihKKz7bGrcSS0xFwAo6cv6ciudFJvKyff2m8sFCcL6mp9eO+vDHvLiuCOt/voqJowxOv6gtozCcjLCuB6/wWQ0yYOuiuq4ME+Pfrct5133YlGIav7HDHZgPTaJFD97Bnwtynj656isNewnG40OEN4iBwECD8iqwILln13A5uHGjDqkzrN3XWRf/kLwgpZQXZauApv/dVF72QLXOh0i6e7fQSD5jTId/0LfxsBGkMkYIHvVxon/xgarPMoWlsOhvpDuT40CFV8NtOuHy7w2/ILGppOBLhdg/MfaNEP/UWgOT+HJzsK4nP/a1D+2QwX3nxDY+KtcLOaIJwevYM//l7DU+y3YFv0c/5w7hmrHoqnxfvScG1SEa2u/QTdatKwpVSIx7beYnWfA9ym8BAUHwqgwy6AawfLyXZvL/iH/oPZw1KgEr8Ol28vwAP5nSx2/zHyoVp2PvuI7P8qcNO9s+Dg9RBlz8wAoSWd+H5dHO5134QN9X/o6Fo7+Pw6DtVnrWX39iIQaBWnVwHaYPjrJ3smt0Cb8EVOzzzOZybWgNyIKXgq9h6eil7G0UZ9+G62LJQeOIp5qbtgx8hpINYchls715D52+kQPOEirqz0w8CaSfglzwoGMyei5pNx5Lo6E7R7npD6mABI4Tk8xXQxmOu6s9ZscZ68Qhtq3s6jusdRjCemomP6Z6rJymKbOfYc3LUS8ga3EM2PBQuYBiv/iNKtnmH4z9ccf5prctqyBaCVWgZXjd3gz14ZulE8kgPbReC/tfm4RXsC2BSMx3NlgxCZtpDmfxrAlofzsLnaDpTjC1DSXhvun3TF9Zmp6LWtDrrEkeuv3qb018EcuteNWSaHS5oP4oR8Uyjqq6JSB3X822CJtXckyDbgOjv1jaAJo2vR02IfDXufI9+NajD3qSt9GDcEn++YUuusieD/qA/UJi0E9Grku7HvoEXVnWYPTwLVLSPxwOivpEeapCJWCTqmn2hNkSmcqZmAJnKLeV3MbpzrbQXxd/QhKKyepcZ2wpPjlSRqVkIzz0ej2qqtkCQWjK8jouCehRVMPjea55ZL806VFFAbO4natyznYpX5/PbAHErpqeSIbGk8OmgFuUuXYPV9R2gO/4are7twuPATCzZZQeRWV/zs0k4+N5to1AtB8ND3ht8ql1m3qgvrT2XR7sX/UZ3NbfrdGAUWj8RwyRMTiLo9BlJa5lNw5wLcW+DNWw0tqXWbHFqFpNP9/H0wtFoVCw4fQj6gA+WLPtIF22z4FikPu2XdcVg+ghe6T2SZq49J0VsVZwsX8RRlAVgYNBNkXq6h3HWmPKJkN5+uBHbdFMCyieIsqjmJz8V1wkC6IbSu7MJvX9eyrcRjkM3Wgqh15TAzNB+k3r4ixUO25G9DmOgrBv27tSi18SnN0VZmjdH3IcK3G0csnc0/DHOpKiwOcpueQZCfLqhYpXNxXSH0qo2lR24VnDH7GK99a0DLgybg/EExuu45mWqyTGF03Fp+PXMqtF1dwrOXKdPlrAoWODsfDA9NJi9IgfHq90FQnGFN6CUqPikEm55fojdrF0PBql8kdbedz6/exF5Bw5TipAt3zosBV/nRhXYnfL11Oj1+0oQxL9Xp7Lk2fvBsC/8sUYAN0ltJsMkUfMtvYIKnAH+kHBhcXIuDIyQwNuk0XriaA1liS2jRkTV4rnsyXExYD84+2qSels23FmbiV1/EsBs/QC/CAWYFmNBQtSkKnBYFc8fJ1Pd1Pu7U0odfpbOh1Xchz9/1gR+1fubNt64TGcymSAt5UB07l2WG1uIOtzoy3idGyf5f6OTwbzIYc5Dblyvg6UWDJJCjAbEDHjwo/gcaVqqiMbpw7LXxIHBNksPmTUSFK7P5UtA1EkhSAonEIxillo/DG/OhayCU1kimspnvDXxX6M3TpKqxZftHfGegCdef2rP5f7upbnAmzc9/hR8e1ECGcgL097jxdKdBsDYLw0dOilC425JRXpzmOLpAaG8JB0lfhIyS+7z9si6Z//PEPXuc+fBUA1iQNBZL1l2Ex5r3SOhtDb/QOQsGJd2gMfsQvpm3Dt6IucEJNQ3AKVG8PvYdnFfrgkCB8QD7b/KoNSewqngZLizq5+InkZBzWwFkyl/RhehF9FVnBe8WTMKSSXm8/KYT35VK5X+26Ww4VQnOfEDQaThFjiJlmBmxn37LSLPkuQNommvIt9YVQmWGEH6/Eg4ewsowd4MpDN3qwfEHZPiDViI5mZ7Bl6mb+FOPCE/tQNJNUAJ6LAFmMq4UNOkFWkRtg5fTCrCk+Dbc6KkD+SvFvNxSEi/P0eSHW0RBVO0tdB3OYYmNQvRP7wGvebSVhid6cID9bnbMTKKBkigqqhQHq5kC8NvnOLjPiEVV7XB2WP0Ptoa28sfkQ6Apmwaf9p3Av8GKEPVYB2aGOqC2WQRfWW3Nk3wYD+zZyq9Nz9IUakDzJhva2KkBAena8Fx2LH24W0m/fIW4/vJmWmgYybln9NjsSBV6nrKDp0OKsHhIjcd+V0bHrZk40y8dtPYdp73JvaA434eFpY2pw6CKtLuVQGmwBNIOjWfHZEG4o+fNM69ncXB3MWUfDcKIuRd4W64dtqgIw3KpMPiyKQuiH0diXXQlO1rIUqyvJr5Sd4OLR3Uw9uV82Cs7HqS6EO1a9/PaRffY8l0i/zlfCgubH8LPzy3ghhPwv2Qb3pemBDWFPqzdXoYH/uVR8J4RJHJ0J6d9zuUShVbu3mdK674cgk2XZOC94ysMcFChz+uiYZuPGN1+UsULdB5D7PZCbrwYC7lnM2BgshEYbJaHO/7n+YThTTCPPks5fQ2Y/foxVUkuw6V278nhUAENjDYA3+YneEhVCuw9HpNOfBS2NGjx1m+DENZ3AlsCykm3/zBt3jEZ9h7sQefBHG50zgf1sgLKFNOHpQUr6MStWM73K8c9MpXg3wRwun4JZ9yaDDrmZegekQDJD27SvMwUuJHmA9oZ6VRrtIV9QRsmqjmQju4laIz9Qus2HcBdQbs4Zu5o6n00l5WOybLkaWkqWyoH5frqnDuwgD2td6NDkjaekh0JtpvO4+B1T/S+LwATyuOhS1MS/D2WwXLxKD5s6gYR9fsw7gTiT+FE/NirAaquj5lLTelSiAQIHpkHvRU9+LzRDRO7fGjN10u8s/obzSxWJ62zYpzx9jRad+mA7M/ZbPjPgmInSUDKlUL41iKODw1fQU6cF8YnIoaLe5JPsCxoqS3Bo40O7DZkxwWDURj6ZwscM33KzRWqfKlBAIX8cmht2hhQmFSNneXreIFlHM6o3APOQVvhTsI/VD8YBIc3bKPXPzaRnOpoqJ3iynXjDrJ4VSBGzBWg9VUSlF0iwdp3UiGks4IDJk1CE0WC6f4p3G6sxLMnJoOcyjHuG7wP7hoNMO+KBKX9XYF/Jr7lCFuE6V8u4Jq9jfhpcA18K91JDbn36G6VHzzrfU9DOgtYWusbi1gog+z4ID54dhIVvdxJku/O0yeFy6hk/IRDa0rZI0saK9Zo0+oaJXDZOpa6Rp8D5SMHQDD8EktTPy9uGEM5pi7QFDoKSmN/8FQpWfj0wwr8X5wC1nwC+vMT4WLtDnpXUUaOV3qoDeP5fc1eXCAlAjG1v7BVyIU1Gp5B3+u/FDD6Pd7MrKOXWc/xz493ML86FIw2acMB22gMt/0KBww/klSdPzrcr4L+C/9QWWckjRNcTqVCW2HASAneBT7FjAuteN7Hn8e0r8DOhXv4lNBxnO4czl/uDeC9p8OorKcHJ0dW4WGhIRpcXkNFUSk0+sY9vi15FOvKVdn4+g04LBcPcVMMYTg9AQ32a1BgRBE/3taCTkXacKNXBiPbE2jDTeYdt2rJ670SnH3pCjdVH2Gk3g1UMP/DdkuugMn8sbTr0Ub4pPiS847JUoCEIqR+YTZ9mYSay+SA03xwffxUnFPzCwYma/JZiW8sbGrOo9MRyo3EMe6IIWfGhUDrtWC6/ziSepTtcE5MAIbN70LlI1Mo1tQc+o6EY2pBF5tfYIrqOkFeFWUIB/aDfqsU188MJ31XOQwV0IP5r8XhpXkTLrW1o+BLpfBBvggobg/pmHlDYo8673+gRp0x40G33waWWiA2S5ryop3pZFm8GiwC1rGrxHkck3aGVOQF+baACTwem4oTtTzIdPNSmpWhS/s79tEL+11YNniIY/48h+SBfdgyTgvURJ/yPFNJiFzaCK9103Gy0l00XaOOi/2k+YHHR45uFMGbq60g+doUDPZt48U/jMk5tITzL/thjJEC3r88g73DMsn03mWy/KoAedfOUr6bIEkcnsw3oqPQ+epNNA/4jj72czg55QV4p5dh8jFT6NjmD29S2+DCP+JkGRuue7gf5zsooJUF0zu1aOi3PoMxPWPBobAbunTsYcHnINpWVU0iFqporyMEkpZdLK7mA+f6pFh+rjwM1FtQ9U4xfvVtP09tqOfbyVG8ruw3VCnZs17CIdh1swGmbhGC8qjNrGg6Anr7nmHAmAr+c3spjfHTgQvnq2G9uR62lEWg/G4l8DtdChbhL3hzTAf5Ddbx+pRiUnleCU3fY8n7ujyA3GYsXAsQ8KWJPrXEY+eVTWjGm/CEuiuVfMrBihMWtGPdBBKStsXse6NglZU06uqt4gUnevlZdTY9kPXC0NYrdOJXAWYPRaCmkAiv/W4Kwk+14NDthyisF0YnK8fDlRX5OCb8Mu88PkxZDZu5eF421mVqQdDlT2jXsBRdLCdioHISCs9cgUlW3/i4nwGfVnHGbElFcFplCuP/S+X5G4eoW2QxuGTeY8M1Uyn+3y2I+LwUxylupPcGnhT5SQouTJuByctv4V23Z9Ra0QQGxmZQJTCGs+f0U9MPZc7y7Aa9W0bQ4fecavZI07iLiahmIsMbGhVAyGA0J64LwqpVc+HatAJemS8K6gXl9MZVn3MOqZLnKht4mmwAeVOW8Kn1vdCR7YORMq7kcmo0LLG8zUs2mNO0TE/KvzAL7A6VYNWcN+jasA0Fjw1R8lVrvnFeHrw17HGEVRsqNN2jJq/LcO/yDzQIaYUjZ/bSiFHy4GK1CtwDZcAtfSXWR9/iA0qZ+PmsB4S6KKFSXg1mJe6F9KTXYDNqB3Znm4PXjJHotkaLztgqQMIbFx5VI0bF58aQ7ngvrjZL4HsPZkJaxVRQvBaKmw7PgfOpL8G2SJ9nWPyjj/3tdMq1AZpmTsPEy3dheFAE9gT/BYGx0fRrmHHFOxncd2YTThJP4tL/TlP93XsknZbKTeVaMFY0BIWz7nPMInsSu7GB/fVr4OX1JTxt7xOc3SEOnQYq7Ar6sNxuEc9VUyThgVIK8N5AMR3leHOLAxtZLIZXvz6w/X+5uHWVGCgOG3GGxk2ebpGFXTHd/CnxNYq/2ccD5r/hS/I/bL93FDUCpGGN7DVwLlGjxf6H8dTVTTiNia7WueOP+nr81GnDCxt/wBM9ZZjgaIfJhcdRZvEzNvzZRh9frAOFl4FktaUDLf5loevrVBSdKgj5HaNwWeY89px0kZRfxLGcUh3XkiO1ty6CmmpndppxGDbqjYJnrQP0OfAKeoXLg5HJAA0M6HBVYT373D4OCfdrMHcoE/R3jIRupQt0XbWI9i56gY92OGLr7+2wIM6a7M/9gmktN/FRrh9MOKUHPXqP8MYqFT4Zs5VkY7bAkHcDKb+2gh0ZS0Du5zDoO+nj/T4t8M9/j81pa/jnvKvkvCmTct39UeazC3bOd+fkgXxUuP0ad02bDLOq76P9eymKrn9CxWFOtKHaAleukyUXUS0ek5UCT7b64vXkUTBVNZI3jL2OQyYLUVW6gXNnH4Glww5Y+vknpowIxfxfi7i/RxCETjmw3wNXMHexJ79XohDyXza6nTGH5qwTLNmSgl+s49Bn8QxQSNWGXREBrBvwneadrUH1lFZWVHKBuSF+MFkjigyVL4PnZXnoNHyNf9cJQdNNcTqn/B+ZfCmFL9lEOxxyQFKoGIrMOjCnUAOeXi2DtcELaVPrLd571Rq6yrbQx4o8+DxBlvqnDHLh+B7w61WETWPycNqbGLw4IZL3P1lFqn8n04qW7RgcIU22hx4CpZ6FcBstCLQtp5e6S3jF5y84LycTbsXtIvm1S0htVAQsb/1Iyc874UDKZCjJWY5q5qaU+9UOhq4s4vqv4yhsSzA0Kf/HVW+bUfx3A6xxHwGd/QvR5q4mOH3uJr2OgzxbpQBK5/pSwK7bJGhynzVra6h9gyY03fwDOYlLIbY2GT0f7sOn01rAz/gnXHx4kbo6quBkQTCO3ycLX7LNsV7uBAeskKHNuJpWP14CqQsfUHavCnaVfeXaRjNy9psIhR/baMnF63zkfDrInPQHq/4eKs6P4cUKd+hex3by9xwg5f0KECe0EOPn2NOetjdwiMRxcLIaiahGw/6ENyTwyx18RqbT3ZEAQtMGofuxBdn4nMRRltXUXKgITW5aaHslGXY42fMnhzMY2iILujuX8YsXW9hqdA14DCvhL6cp9GXkFHYp14GW71v5qF8kZOoS1B4JxVmmk9FTsJ+yN9ujpYYYFlxWwpVSWnR+sRRfiu4hj9Pj4fElW1qtsQnsfxxj+xQTGlp2jk9q+6NcSAkv32bCYNCEtzulYdb3RBqVIsFZ6upUZ6+BmlHLqKTsPH0u2EoWEbbU3mhEis+1YCCwGG2+z8Xgsc5w7WYDNT/+xXJX0xHG+bH1wUA+ojsbj4yVhZAdAbhDTx26139EjzXDPKx/EacteIwHPP+DCaMiKUnSixuPasP72nsoGO9Dt8p7WdxtH9hMekCx1UO85stOHul5k0dvEOfweEmoasjjxOxxoJtljlHZ7tgeeojrZ4/GT+tvs7dQHZ9+YwfzTWRhua8Uyut8Jzwpx2/lg0nMyobb5qyAQ/d9adqTn7zSP4zK3XTh35cYmPDoLbsMBfAMlS+waNQSrD8ylqe+XkXBZ4DeTRKi00MA1gkPWcSzADTt7NHv22f6aT2IAe8MSGCqEyj6ylKnXBBcAVEwfqIM1cXtPHGkP/xKiuPUpkBw+XWNbfsu46OEZPjg9hyjdMXgkGwQziyTBu2OxRw6vYaTjKTxq4Y6CH6LxbJPLnzj9iX43CkAQ8e8aMIlU3yodJ1TdBeD5qFrnHbWAVfsqEFL1QIa/7eTDRrU4aPfQtz4Zi4G3z3BhbO20oWXj+mrVTlduS4KE7bb0eu/+8ngtCIsv6RBXk9a0btYDmdkPMXBinXUPDcJW67/hBZhIRqRosHPj06CnRkD9Nm+DjwSZsCVm/l8fm8edbd/wGFHF57neJGOuU2j5wpjQe8JUOQua/oVYgGVflLcFi1FIYU7oXTjEZo+fx3JvSuC6KJJILT8OLSWqaCSjTE0L22k1NyrjMXbuWaXFO85NIIWNQIePTYJRCb9QZRXwlDFQhqvXUVfYSl6Xi3EF5s2Q7jsMzbSSoYtGaNh9wYnFp9yErjmGbysq8Xszzbw7O0cds3NZB9+RvlZQfzltxH8LRfkaPs07vvdRt+i74BmSRtl9WyHN3O1eJVuGzfG14OWiiV8nBqET+SEKEeomP9WhlPFidGoZL2Z0jEQekLOo9a6CLwpbQhndEay20lHbP+uCu8+jOfWho3U2fGYpD81YaKxGxZmjYKjReLwpewC5wYl0Fv5fprQa83+Z4YhesiQTGcqwJX6dzQcX8DZaRZwdPcNOvvVjosNRmDNo1kY+fE+1I4VowV9S9Dk1G14oVyIf/sI3O2TOTHpGJqsT6argweoduZBfLStE1L2RNOJqmjcXfEQDiWJwsNDEhhunMxhte2ob+mEGeP1YJarPLs8GIRWp7G8U3wePtaVB/paR0v935H4cmP4XvwaS4S7Ien5Hyx90s9/Ts6i6ojJUHZYDfIi00nQP5aGRdZioKktLzNbDHW+M+lZTAQszz9OEaLHOOOLOLwRfwDuqmvp1VhrspDeyQ+E49H/6Tvs0GcMKb6Mx/Xr8N5jcXicl8W1/x3EE+KB9CBBi+rG6MObOYu4KlqG8u5o0YxdjTj3qDT8SHpF3X3JPOAyhXXlJ/Fuma+gufYqiv+o4QMTimHX1hjIFdOBiutTIF1DC0aWFPOjajuY8qyar17/DZX6ZzFUiEHQxgOKGg3hvpURVMw9yBPK2klF8Aa/z03nU+9/wKYzbVR7+hF2+Ymg02xtaP/8Fp9IueLQ7yxW9r/EJhqjWPKIFVzuFaacGdewb95RCJqkDDnumXxD9i9FpGyFqpPtLHfRBzt049H352hWSRKmtpcmbGavAIISYpQlX8yB/5KgbJkvW/+nhbYhxeSw9gvLqY6ARUqK6Px8AkxL+8E+SetIWjiBvCuUyd7+G1sc8sKnzaEgeK6OLhx3Q9dnBuCzwgRmSilB/sTZuN7lESqprYahVXk4q8EOq/WyWXiqDupMMgM/NVP8+mEWXfBexOG3NoGRcQJtVXkMO2L7YSAkmo0rGvFxpTa8XrmPk06MYqFzZXQp9T0JhvmRuK0H9oXeY7neJgxzW40pj1WBT9ewe/knujFtD1i9OYKO/oVk/L0ZPDzq8bCPLCcKu1HYPzWIHHUetXwkSV2ujS9Fref9dUh6PQvxrd1Szlk+H5dZr4B+fwlYITOVQ6YOo5VpPLkM5EOrzT5KWBlMEdfvo+jE1xTXcx2/BmmDl3Mr3zzwgJq/FIOX7GM+mOgGIwoXw8pIX1r67ScaJRnDO2OAxHAT0ioqgcI5RdQo4I9/uivBR2wFVaqHQpLUXF62XoUF5KUgEIX4qZgk/bs5n2Lz5GBDpAlby/VS3J0mklqnDNeLBPhIhQpMjz5GV8e848knboL9tF4YMriKm7OG4NdeVxAerQg92ddo770JcOniEixP6KLxfpH4qe8kB82VIL/mXJzR2kzZg/+457oX22xSgO1bPuONr0N45E8zZqhUcv/1+fy0dgHN3PANBH5Lo+ieelaPmAyeIvaogfdB9eE9fm6bTjsPN1HQnemw4aI8P/A8RZOsrVDTQRWU7z6n4Osy4HFlPdiLvaDSD8+45/5dnlZlwn3z8vHAJuZpYyfAhnnPQTOxmrbYWMLSL6vwkNciajT4RdPWn2PvpmaE/4m7D70QHH8BoN+RNpU0pKKkrUJDmhRJCCEqIUrJCmU0FFnJrJ8okhHRIFktlYyMoqmhFKWMhEra93Of4v8I5wmOzWxMDNeDsAcm/F+oOvccWAxvnp1gnTcLufZnKT8rvYWLVwtj2+wCqDk1FiLiRdmz/jhU6MxCsyx9uH90Ppk9OkuCXeKcfrkEMk7thuUiMiBbFEVBvyyod+g0yL2Tg/A3VylCIYZNbvXT48t5fMJuD5akKoCWnAFsLvkIATdGY+reAajVrOGaMiG4VxIMdyQXQZNBN34+qgWNv1vZf34T46ov/LFbln2eD/L2djdI+5wE/wk7U7F1N07cKwRlwx58sDEe1bc/gaCkVlg8t4rmb+liv+YTsHLPb3ZdaYXDQaKwdvs8mmb9ED+sDgOUruVbC/dTj8swz5x0mINULWl1JtI9P2H4oqaIb/weguG7Itjb+Af3Znrgp6vzsWEf8avNuXjaro4EHglCdYwFrD5dBAI+xhhy4wsYd37D73Ez6U6XNOmeqmRRs6doH24Frc2HsCEkjuZ0ScDtkr9c6biHHdIjqXiqCX2bJANnhifQTj8BGKr+wDpywiwo/glmT2WwsX3AD+dIQfCpjVQ7MIva6udzIP7P+l/4s7Cd+jSO4tvzNsTbPWjS3gy4FrCU7Y86YoKcCg4NfsaOHm2Y+i6PUws0uaxiIVz7KY4F/dUkrnwTdym68IqqBBj+Ow8nWoyG3bNnQdh4c+6YkwA5C0dDg78Mh26PZtNV5qCdvJO/5+3GjdrS4D6nhHnxKxCnRaCm7gb3Lkuhr5Us7x0spvbLJyDXNoBs7IxAO7IKH6ntgrXzRqHWoxGQvl2QZ5mFkdTMDtxCAXihwpQeihL4d2/BQ4GD/Lw5iMv3R3GrnDrXisRz7eV+Un2bARERf9AtVAUcTh2F0HviZK5qCz9ebsVG1VJ+2HoPjqVF802dabjD1YACZSdA0cd0brbsAD/T9Rz39gDIBLpRVVIuHDPYQIuWeNG3hp3Q2moC5/Epu0y+DkOJsXhtxQAtzz+LOd93UOGyFRzzWx0MpzXh5v7RcF79FNm4HyaJwBqAab9xy6hy3t3rxA6tKqD+6zKf2lsGn0K1oGbuOpLGLgpPnc+P3xXAqquHUWq4iIPzoqBgaDv5TVAn0UUm8Hjza1bb6IYhkZvo5rUIVilyYUuJJ7DlSTDI5Z2EVr8wsHZShW/tGiwcsJoe+t4ltQQPGBFuRZGSkWBZEoHKKtNA3L0FH2jrwvlQhlv4hPyOBfE248XovvQNr1ydgVNuh+G44li4WSdLn8QNYJeYEB6VvAIPlt6B1VJd0CoRil/9L+HN5M2ck2CGWyZGgXXteNjUnQ2bt4tRw/1XnJ0/E2KFZ/Pelc+5ROsen8mZwEKvh7B+vT6oohjVTQ9llf5BqJWbSz+WjqCAKnXIylSA4imOMBjvQ4HnjOHyf9J8RdySlmyNo+6M01AxmWiMaxWkfa/jDu+nJHJ0Ff75YgrWP36z34slJKSuSPomo3HG/Bn05IwuR6U9Z6G6ODi1VoYeOUyE9FnnMfycNyzc3AikIwaex/Sh0GcGRYsawbNgA5rQ3AH7lUdBf4QaaVTU44egBlztq0zpy1L547q1OCrwEH33OgKvNxlipaEIZCg9YaXpndy4fS7k9+Ry4Ypa7FZbS38bPTDG+g2tsv6A/VIm8NLjLl9qz+P0mF7UfFcC+afUSd++jRpidpKAqicuz9HAJgEriE92xpX6IbjCFdh2egvIpu+iWLvLsMZqAU2tj2Lr3B9wY4wuxC6Nhe3zT1Oc8nc+cnEVl05bwEf8J2P4ZWFIHvmP1eWFeekKEah7ugAbpUbRst8dvPbdU8o/coN2nciCoPw7qGPnQPb/XqOf3FhQLkwl/cN/yP6fANr3ePK6XRb8NHQHnLo+hr90voUnpbmQtsEEdFWlYaz4H+w7W4sS/Qspe2UHxu/+SE2ulyCFutlbbRQovxwPCX6H0O7Yam64WQ15eYYckB5Fz2u8ydq5BiyiF/CPnVvAdAGCz+Z6qs6w4IwP2yjRWYZS8AMkrLqG//7EcKf/EXCbFYyu42eATPhcULUs5Y6BTfTi7F6Y2glgc6CEDpmrcm3IbBz31JWHZghAyKvPMO06oe/YxfzvjwjaHW7Fh4UvsbMmje9pieCCQH066GEOg2dL4fefTzip/DVFjY2ltpEq6OT/lscNDNKzjQJk1/0bRdOkYbTVXI7Ts6YPa5xoStxqaPVzxMkVUujR1A+7y0dgx7e5ONHADIJnOFDbgDZVeJziJ9piLFh1CJqVrlJ1rTNsWz+F3Wdvx9FKSvDyjirNTAsnm1wBSr/mioNvp4Fkqg29/FvLVv6T6WdyDt+skYf763eB/nktqHrfQ95j4jkYP/Hr34e5+cwwpZff4FWf2millDp0SdbgD89+6Dt3EZ9HDqNrqB6/K9OEk8o6OHj3G8ZI6uLS2MnQeeQr9NSWYv5HR76eIYZixoXw/fUU6r+6GsWtH2FKSBdvmWQCH0XG8JQFduy3pBumCDijtEQvmdz9Cd0vn3Dto0qcO9GXDI6YwM5X93FitDye3/kQ2HA62o53xlWRh+DxrFs4Z1MDfpmRDA9eqMB483gsvB9P5l3OvP7UMwbl/+CGQwAbeYeyXWk7u91/jQo0AfYJiqHrfzL4464ilFcIcmv7PdLaJAd7Lq8kr9QJZHGjHHLHjwNTe0kM/RhOd7eZkv8vfZxu94r9SpdA0BQNDpVxoTzHD5QYpAJh8W8x66U/+Zb1YVeKBW7b3Ug/YibS934d/rgqnivW9ZBavRVUul2G9Q/vU0D7IrJ9GgETdN7AZS0jvpBVhP9oBE96YUw3rPQgunc2HC6Lwr0NyE/ej6AbIimoq+eE9VdX4XE3G6iO6OdwWxkombgcnlR1cfuHBPq7oRePLkrhjCFTLtRNoZHfjrKG82j422AAqr+a+fU/e8qvq+fszCUcPNBEV6qsWcRKitsth/GioxyN2a8JAsftWe5iMugGlPID/z209/F+rp3XgG7+/Ww/+zBobt7K+X2C4PTehbcZ/uOXUULkNU4a0w7mkEyJNbZeWgMn9JPQY+Y1nqdpBVG6J/j+PC041rMTv2XW4oh7KzgyVgDT9miirY0mxrne54ClYnAocAyUL+iBC5YWWGy/meNAldykH5LX8FqGt0jdS4rBcaESlGydCDN6//GKMzG0OW4VWtV6ovaS8dw0dAaML6Rxrcxt2OU8GS7eCeZW9bdcqNwDdU+1qV/diLaH24L3+olwYlEoBbydB7n/BOGRrB+Uaowgp+uisE6qDF4EzQPjJgVqK7bAQD6Gr3+7kcNZUxgXWAprDurwUNdWnnO5n46HAXstsqa7267B5Dk+IGO/lqa7CEDG1AUkfSiJBRTfcZzUTJ56dQ6vktyB+/SnQN/5/SB+fhbayc8A7wOr6UDIX9i12pOV6p1h3F4DHLvbG1/dzcZwx07c+rcVvTbrg0n/SMhqVmOpmj2gPk2HNt1So++X3PFksgvWbWvkTZ/t4MlbMRCYFQdq58bxZe073OyYhs/ep+I/Lw+2qSyH5qj7cPjZHN5dJApw2QgGZzWDVbcxb6n+yc2jR5JJ8DZMUr8AdhU+mLlyDS36OQaCTL6gyqHjtHTpLfRbd5Yz9yZCzaFSenlyFPTWPIC1ZYDFHwkW2I9HxdIK6CuW5n95QdB8z5nPZv3BrMhxJNaoR6f2OZGcqxzUPz1Aoh83c/lTKRAWd+av+fa4X6wMdOviYK5fNl48OZqy9hlAf5QqF2VugsMh99DeOhyPjSomm47/6Mf9BlJIuE/ftl5DdSdLeBpzmye43cXwq12wqfkSvxN9xZ19kShV8h/LPlMivpsAk8wlQXZ4O4tPegrKLzVJrVIA/htwwTGLq/lBeTguMZ3KHRv/Qoz2dHj8SoTPBp/HnIdasEgpExq/Z7BQ12recLeVdALSsOnpfHq2biyMz/1GaisOccqL9+z7VQ5mCR3BsGddEPpwPJxfpI+3BsU5aYQBPAypp/4Ls9gk2YNY5gY17orjp0ZtVGrzmXwP1XCcbR/pHjCGgun/YIZRJl2N9+emijo6kGoHSvWEj05Gs5X0CxpeakC/RURAJLICH9h58kUDWRiIDuHOCf/IL0ONpta74VxdB0oeRHR9NRYmm7oj6W8Er9MamJdby5u6zehS4BmSuVtIgy/EuFfKHD3WacGjsZo0ul6JE7fewlmbD6Fzry/ttOphsZMAcvlbaKdTP9e2qMOBHX7s4WNGrjvbaGzSP6QzR/BRpCHev6QJv+5U4WD5DlhXJgqf6pfhil/HKe2FE02ykcTl0qqg0HQMlY5kYoSjLii5r2WNr6Iw/wPjfwt+oXHYYq7TmEcVOwto96YGaGu/R05eRbTkZBfbnZWFlE03SePARbyWs4LEQ8I5+XwP8bcIuPHIBObOmctPYxdyQ44QnDnizPvCpxPUpcF0gWbqWv0Hb0xfRyPO3WWjQysw2vocj3XSBEv3FLiRFUPfCk9y+MhE/mLrAj/P9XD6qsOgIitMr/02olqFDjyZdwCfRFxn0wFzyN9nhrUbtuC9FV04feUa/FL/i5vfP6eWiyJwySGdKZHQLE4Ko/tEaNDJCYLFqgB19qGWiR2mxS7Eg9ctQW8/48v6u7hfNAqU4SakTXamy/rpkFJlxMedS1m9RJJ/dcqD8eexFHtZCcaNqeVjj9xBiN+j7ThJHtPewv6rczm+KpyjOg3g2dZ6Kh8qY/dcG16VvY2XjHoP7dXzSbO7kMsNc0h8lxUf6FWBcl0BHDh1jMY2RVDguCxctT6ZrrVchllDy8G0YDKH7VxAZY81QeKsMyc2n8Nrv0fT4Xlm5OS5F65cYlQe9uLNDT9I4Y0mJRYB2HbLECrpwtPYGGw/GY42IhtQslidd3T1kvS2LDh5bwqVtslBsMdz+hn/DwqN5sCa2SexcaYNdPs14+X3Z3BrehcabtwBJ41lIO9ACE1MLOFni4ENfJfS1kuX4IfMPFr09TClHysiA4OfOLdEHNTVXnDyweV0cVkij/idg513TOFPihzkPbjF8xyd4WGDIUnVCkFO/h/qrm4mrVkStP23GK98Pha6F1ax9b534PbtHVeqHOevOTLwY8lC9FCcTK9PSnJGwASoDu8gcCzGG84E7gNhMDuwHkzvGcKHgfl8eMR8GL36MIwYP5HjbjyCG6UzWDJDBtzPR1Hpop+wf44aLC3yRoWTSTSsWYc5Ydtx7yVhfKO0BladjgZeOBtvNTxgwf6RsGiGG+9LreOM4t2kGmGF87oYuzf7wkfbm3g57hZO3LGLNAQmgHJVPX1d70Trr/fC3dPpHNSUxUEuNWy/Q4t7Nidw70NHTlVVhiP/DpDr0kiWFj2Nny520rit2/D2igfwS3gZr+8bx9uMvnNtgynoXehFxZ47NCI5hm55R0Ox8zScsfI1P5ceDRly+8isWQjzdk+A0y8q6aasBCsnVpP2DCeQabPlExfd6d+eq3xk3Woo746nmmUW8C37Oz3RecaKMpv5Z2AHu5zcDE0qApQ6uhYj1myHmxtT4KafKJjMXs1P7x2G38v34YPuIZANuwxrBBJocf0V3CusRI926MPmp+ZwIWEyVk55DPnLHaDigjKtLQzDPfcX0IphS66znUbe1RNYbI0OeKw4Rw5rZ9Nqw0fk89EJ3n3UpAC9cNbxlIbZc/4D3T5NyN2iCA8WKpHPrCHcF9PP8zc/YtfTDqB8IwKuB+yhVTNFOK9pmMy/TwHjXYwPBGOxZrky7bWPpgPV4fiRBFHykS/4/twB6/Ab3InVhB2lJmwxUwUfXroDLvL3oMR7Px11/Ev1f9bC9dLFGFl5mMZ8mgKKf6VBpn0fX+w5QaVlg/BjSJ6T1k+lXbkxKGyfDvlLb9OyWwj3lcvp5c0t8FzDmHWn/geL2/7y86fe4P9gEy8QiOSgzAW8bfMkiPe7D7f2pqDWAhXIkvFgh3YPtFs6h7VSZPCJwDLwyxei9fr68FFGEtplZ4H9xEwaZVlPAU4OlC2ygLYdduFJQt9Q9pQbhToLgt3dH2Rw+hFYmneQtl8AOn1wxdFq1/Cxz2Tocb8Lsesu4TkPS/ixRg9iY7dDlLIESca+gDKvBPznsQM1k73p9kIhXGZhRosPGcN09VH0dW8FDXIMnvnXACv3h+DVTzL8VSMVLk2fwp+qv3PYAkOwf/UNTs1OgnDF1VBV3ofeOd9g3aat9GKTG3WFv4Jly7Zx9GUlcIBr2BRcj9JiBjx7WQSYjJgGaUvSuD13N/w3LQR/Wx9k45fy4DYwQGZjz/BK0yt8y3UubbmjSuh5gx5Nn0hZcZXYohvBnTaiMOVmG00cP52ETEayWGcQP2wyoVt7ouFUTTSnL56Nuq+248RxmvB35yu4bXUbRwqO4WbjMFB6mA5/006y/7U9rPV6OZ/aMQE8tQXg87NH+DN1IqxQXo2Ju+LocusC2Jq0gEdWNPCXSbPAuyYYn7QbgO+FcmrvMMLJo05idWECXaN7dFTGnlPuxnDZqy+goF6O6wzE4J3VZ/QX0WJ7gVH8120LyLz/CMJuKZRS0IC9EpOgtvg+Up8CJJxQ4bRZydjxnwHLT5qMi7dZsWtNLk5e5MkjBsR5TJQCfcsRB5X9mvBaKoW//dkF2qKKMH9jLEcEmmKxSBQVVy2Al1l5aH5zGmhorUTLDzcx7n4uwnVPULapoLQQOez2VcSui9boP+MLrFEfCeHLpnPH+FDIeXAHdk1MJf2I21CZWgRXCh3gZO9LWrrvBS85QbDnaRBInHSFDx+bydS8COYe/smli66yy4AijjF24LC2DpT7Txg+h/ygb596ebJXL5wf2AzqyzUoZdtFbjVs4fj7L9gwfS6eP6IP7zo8MbWgHWvO/WEbo9PgOLCQV0V8AJOi17BNPQ7GPKuAkCeWcLDMGGLytfCxbDBdajdmJ4O9HNojhaM6gUeaz8W+A+/h7RoF8NWcDErNepTqWE5uZb/oV1AAKj0NZ+WOkVBk8pxPLt9NJ2+KwID5JHpZcR0UGt/yqqs/+NKR7fTzXgFmeb2BUZcucuYaV1xxZDxMN6mCXXvU+cj9PLI4LkiPvzSzi2IYet0Jg9+rStHlnzvEuiqBZGU0lC5SpvGijnx6fiQfeyNEr0zkscK6jhXGBmK7gBEu/CwFzu6zUSrxHzjUPgcd3YcY09MNl2r30zqdBi543c7S6YRlFWOhPWsZLazUhG/JAqhz4B8fmWcHSy/dpvk3+ylt8U/08bGg9+us4PdjHfi9dj4+WecE0T6ToW1CCpc/VwC9qle09LEcrr31gU9+0octA25s8PIVODSu5WsR5/jBPjt4MnoQpn18Dj9/bOHXw3Yc3yIChq8vwROBeHi7/w3F+Ipj+dRD+GUFoM9UFaxfs40jM0RJY44EfC/9ipV7tpHZg3/Yfk+WtxY9hMiGw9jrkgZ/BbZAW9NvftUgDvuGXpGz7X1KVvehsQZ6kLu7hCXaovmqYAtcXW4EuvuDKExOGb68uIOZX0bjZ8/5cGKpDHtPJxaOKKH4S7vZIeQMTrj2naLsrWCU42JSStTCi/rxdKsjhVJcMnil3WG8Wn8Qmzu8ODFuHy1yNoaOUS2gWRHEf136+cmFfVgZ/JSPXN8Pa+qek5vGGSo8vx46p8nA8J+HHLNYF3yWl4CO0AmWujQJQkYbwPBJbb7hUkc5F17Th68yYB3lDYcHsjErxYly4itINK6AR7kdxo5af9QME6JeKWGODpIElm6GZbeD6MGlCdQtOhKDlTRg5K8X7K10A2nDMAgLtOJz9bHQURTOf1vM0Jb+QmpZEqt8uM8HbM3hdtoHCJn5Gz/EHYOwJm1Y1HoMNdLPokaFKAz5LmRdqsbVgzsgstuU3/znjeFnxsLIyWNhbqYy+efcAE0rNwpjJyz+2wiCv6XxSswOWj5xLSToKOIawXGgEZxLO4IcYePYT3zmWROo+hFX7SyhC3u1KXL8anDx7scVqlMhsf8clN16h5UWTFMOFFD11/XgH8tc/WokVGxxINmuODxoqwRD1hqc51+Ivt3jyGMNcETCUby89QgNTJrFvqkzOfHZeq6sNIXhj0lgYXKEqpcdInWlPTTNJRc7M/eQyWAQ+9+x5D1Fk2isryr8PRvA94PG4K3hENj8rRYPnqnFK8cq2HXqPsz0TuARMYvJsh1g4fY0Dn75AOpFDShbbi3+dS3kiFNveKvDKrjAq6hffhgOTpwGF38lsOa1EnoqthiW+SPErJzH4560ECn9ojM6vaTtvBjVOzWhfk0arJScTvdOu9O4STMwU+Ys7S9dzvdEneFsihyPlkjipnkGsM4yF0dP1MIBgf9oS9sZfihznaeZzOCB/Uhr2rIh++VKSM2dCLv1omjx66/oFDUCfCcbk+YdK3A5lIFzpgThHOlqzJ3yCxXnWcJidKZzu8Xx1GsHCGveCNbLj9Lr3FzwzwhCp/gh0jHJJ+1eNTDI30yXdbfjA8s/IHR1LQe6FGP+poVQY70UImOTqIQXYsyWCTCcbQH+O66BgPNEDDZqoVCXRr578hV+e+LO4wx/0ufbZmyUoQp4RxK0BRfCfj9r+LvTl7uHP2FjuRWvm+fKr+4pUs/gJjz33RxuPJxHY9t+UY9sPBXdS4H2DnMcq+KF244qQF6WJi497oaHAoVhvOlfOmJygmNFzXjReHfaegHIMG02vazfhu4CovB5iia/qRSEuU91qPXuLWy9/ZQrkvPxhog9tuZEoMNDJVr2Yy0bLE/j+HZ9sPxxDCdU69Hdn37QIFfAFSnS7D6tkd07hKEk8CCpiwexe7EwSHu8oQdx/mT0wB9/HimDJeO3QKV9MhyfrElSB3Xw9LRS1JlpAkc9UvB2/2S82H2V5zg246THH6DeE1Ey9hYKHxvijs5mUq2dCptm99KViovw7nEzHji3lBT07vIlP3fcWWdHim4d6P2fExU7mYKN2Gt6ukYNV1hnYaX9CppeNIPET+xCscydFLKxlSWqjrLDJwF4uVyK6obFIc3mJPMrZTyifA0Ov9bgHv9vVBB8ms/vzmGTNxZwwfgzTf/SzcsvbkKb/1yxPWAerN2liZcuEAifsqJRX8fhYmUN6PWUgq9zm8DijzW/FZ2Pu+YYUuoKQQq9MhNPSKXC7nPt+OrKJOgbDIcjlboU+8aKCyqOQ8jUfHRJliXzZmEq65oPzsZOcG+LIIyNFkNBoRhsCRKFUbWh6HP2E8qOl+Hs/OPcOvQWxxukcG2VAdSXBfL4EyvxwMQhPPQuDKOPO3L21EIq+H4PnmWagqTper4wcQqsadkFix99p4TPX0B35W94EHSMu0YU0sgjuZB5wpnMvswnewMDML+ni+VqF/HIow+gqSDGb4VUKErUBkLjOij520guCdOihJMEtflzSe5sNj/Wb+Pm/TKUMcmZ7saep4i7ybRmvxTGp/zk80ZWcNzblCNSDlPtKz3cd7WantI4bqjPY2hohxUWALOm3UPX/ZIQp5XC321u8k2oguLsxXzSRA22lU/g5cttwPDfH0zpGIflQgSKDZ9g6Zi7kDpqIztZZsPqfbksr7EfX2texVefzKgr/gHdmSoBsX36MOvNDT4legn87gXTuQ2NtO6+DJm/+czHJS+QUvZ7cIucAal1MZAzkI+Na42pxbUXLG+9IePd4bAgcAJOEZiD78UsOPbjCJiZeRcqxhlz1qAldTvm0AHpOzQtqZtNJrpC25JvZKw6nybIaoPXiSskk+PEQTs30rMTB3j/ankwXWNNjX33+aDuEfqbF0Cld1SgeJwuS5bf5eACAdLcMgTqyVIUOdMOvs08ClWV4cBzLSjEfTocnPEdj3zcwbY/XOlzZCdbXjxFpXOqQaNMGfJXr+TxFyaR0JAuWEmMZdPkLmjQ+EnfO+z57ahKvmdylEznqzDfcQPNntscfFACpo/ro+kH2+jntGUQfCcWRvYGs86R77TA6xjG/myGMV1N1FyjBfriraD81Q5epbTz+ObJnDowj1q7R7DLZT3snHkdyszteecDfRiLX0mi4jz90hEl1LzIG98agrD0QmqyGsuTJmSjmvcd8l9uBVfe5dGArBOeO2MFf88k87MNQUwXvrHn4QG0fzBEpV5f8dOEkbDDXRj/vK6HtIHR/MP9BO74tJO3qvTh9Vfi7Fq7i1Uc35PiNmVIG12AIyv7cXHHPwpUDQXp6hE0aUIl/klypi3priw+xZMXeIrBgXc+aHnsGBXuyOdlUZe5jMw4a3Ul+FWtpInZWeA5WYvFjk4C9W3xGPFYmJUfC9Gxl7oYMP0BaT9I40AvMexSVcZkowPYYioIEaPskGdb8dmzs3la5HNIWLyBT8/IRqOBQyChnYpZOl/IvVoQQrYsJgHNDTA69BE9WrODb8Ah6jVV44j3RzHr4C22DnjEX+KF4fb2e1CbXIDpA82wqdyPMwwew8xZ/8jRexxpa3jg+YAanNRnBBnrfCE13QHavRtp/SZjmuxmiFUlOqDCN9FvhzdcsEukVFsD0HazxRI7G7xTrMs7LQ/y+hYxFPBx4f1tmqx25TqOvrOS8tZKwYhUF854NZI8XQ0pS3cKZtcdpvkx43BvTRYk626kTc1WvErGGHyDakiXD6DZ1xWkv3krjN17C8KlIvlXqies9u8iHJXCAaYC8GrkClz0+C+UiEVSbq477HF4iNcFLGh5rDq+ztGnlzIxHDxNC6TzvFgEa8i4LBWlTj3nGgkzrprbjHRCjIt3tkOZ/Gn8fHYqBNQkYsTKQNJakIELbl+nsmQD/rMjis/4+IKRcRDUaXdQ0DNNSHh9lRWuC4G2LVLg0BOS7z4GM6vLWXCcJx1+XkD7W97D7ANjoUY/jvW21uD8kGCKLI2i8D5XBldTnhnvTXm7hUjZoxuGbpjBlR5bOvBiFdr5+qG6w2NUyHwPtT9n4aR3tpx9TApsvjjyT0Mx2JB2iH4lDNPCn4HYpyLLpZvkKPXDe7aXcsWyp60wRs4H5l3QghsRDdzee4E8I6X4R+VhXlnWQvJDxei76DGUp45A1csqGBakCJ5KgmDxeTRdtKhCWVEfPDQ/GI6NkYDsHV7UYpIFPxZ5oWewONx+5oPeg9N5uXAL1DXsAiWxLxTakII6xrVwSiwaPsrdpg750eDTXQPydaFosGY3rPiZA2aSxnhOJRaEKjZCz8sMrBE7jye1DWCaxl3+4f2FvRqm8KeTDrxoszB9fbKJ27f28u+3DB9Wm9G9MCUwd0rn4R1xXH3qKrx53wsX84s59lsw/tWNopbAlzQ6djnPe6EKWdnd+COrgFTv5HH13Bb+OihPnoeL+OXeTM7s0KQ1Y+YQLxKFhz/f0dMwKez794299tpBydJuDPxjh9t1c3CH/VSKPDwLQ7+aw5cXI/DeoBToiRZAb9ArkPKaSxJrq/HpFSX6r/MVN3nKQXaoDEjl64Hix0reZuPPP96cRgjejS/WJoPTuSP8dKUi31xtB6/jhWDWy5fcVZeLfoOTMHXVU9zmt5qPrFMA/zHraVXgAVaL2koF/VJwo8yRrJ9FU8CyESRSIgkvdyyhilcxZBYpjtG7i3BnrxL9/SwBhgkbIfD3HfZS/Eym9W0QKqNHcebZ4GI/Cbe3pMP4A6s5SxWB9jNy4jV4mmHGdNaVlIs14PiPJ6z/azQIGiF3CJijirY4TJ+hjKu+SfA7iRyocz0Od5pKaMLvcdgD+fy6qZp9zQ7BrJ368Pj0HkzTUuWCjYYUr7iFHwvuI6WwDvBe+Jsr5lvzxjN+fN1eB0aNPYYGJrNQxzcRPid7okLJOVyqsw5uGTTi2aW1rKCSyEImBDO/qGJe7VHseuaC1r3ysMPzCI+xnc0Ffd/xfdNfuHRgJLnNFIepM+fxkRk6/MKjBx0WH8f3TkGoLW6IGybWUPVZB7Z7q44SSWIgUKdIO4LMYdTdVvxet5EN7Dwh1H4TrUsog2u7N1H5+SD2kxoFYc42gGNm8qhAB1hpPg4TFZRJPjMdNJsVuHlTCrrPlqT0RXJQJCIElyQLIXffFXozQZJfbi0mlaXb2dX2MB6uECPpYEd8H2EFb/rzYaF9IQeZZ+L96ve0b20HTTV6QuVpNpBYUUTmPW5wWmUaLFSrB829oew0/Q8brbiCPwZ9yDjKESxNrOjz6I8UN1uYi0NHQerZP+jwbDXLuqtyad5GPvUhkKTr3lJXxmyUds5AzaEwuLuMYZnsJUp3e0SKXoag5W/JfVvf4++W+WQ8/zlO5n0UJ6KPXguNYNEMMbL3fk3TPsigwvqDTJuzeP8XXZQyCsVO9yUMtnkc4yMED/+EQumK03RMwoxmBCfB82g52PXfO/A03EHvHCZz6sUHpNI1DbRFtCEkwBQuZPrDwvdP2ev2TVydVMiOWs8xyfkcXBIwYt/bkqC13piXxoXAvHnCuPjEPlRo/Ycld1+AV/tBPCiVCl9tI3nUPxNwlsuElAFT0HhyHoaPfICYoHAKelsJYZ6psOepPAvJjqclZyRgw3OkqgddgEfq4VLidr7cOAa9cndC1JlOeBcwk1x3SPNCZ0sYU3KRxyn24LePSjC2o41OvvrDjpuTuG9BDUizAmrML0e7BkWYN/kggF00NlIHeEn4wefaPXR+InHalbk8YcZFKFmykg93TgblHk9eO34lTkhUoZOjI9GrUwJ+JUwCf/VzfGtMKu3ICMZpeoJwYVIxD4j7oM8DIVws4csbxzWDRuZ5kFIUAb3hOv6Wc4I6Z02AC9NWsoelH0vuHwsBShfZufQo2jVbg97XZ3DnTyEO8XP+bSAKu4M14Kfxafwhbw+fSpLBK1ke2hxb8b+obtqblorO5ptwwQUJMJs+nUILqtnI/iffH95Ip3X6cIrNJvx69jjkVOykaMNIOB49AzDxKGf/O8cR3z+jFX/nK7YzOb9oLxhPN8Ds4jzotKynv2WS4CBXySv+DcP9h9oc4jDEetZb8YPOO1JKbOTNm5wgpsYOzzSowXQped7q20hm75nf+FwElcKb3Lgrla48uQU2Jua0NuspjZolCbvavXmL4WXwGPUBV6b6sl/ONpT+rocVArv52nhJqu9fT90twrBxSR8fXnEHLNv+8O22LHhU8ZNfTL1P+TaxuDB5BfS0ZMCKCUowu+YImAu2YY9vDX48qYDGBT587XsCnd94DdQ/FuIr/35adsYSZvyMBGvjnbzLtZ29llfhqT39UHVFgn77viKJ70UUkrUfUt5qwsY3ofR61lqIal4Jp1cmwSWDA3Cq/g+eyaxhBbep1DjRHw2LZGB2ficabV4BMbOkGHIC6FzuFvjRPh9jHxXx3gh9mFThRZc09cDuzRq6kqWBau+iuVpwL/wJZ/zasonX/FdAv4zU+evsx7Q3WhmKRFdTQHYhXTrzHkj0Bt/VWwbxSfE4eciX9e3fkWtBAF810YPo5RvQ8/4qDvGp5QfGgtS4tI8bFObzfb8XrCSXBQHD8TA2SQfCOnZiv/YSPB3lxyXGHRwRdx1ss/tpm/0SeFowGSsqXECgUBv23Z0N37tP0wKHTRTQ00ONtIGPbH+HEwRvUfSDVJCV3wjp6eMhZ/8pfG+hxXVF/bAlPApa1maTVJ4E5+/s45O3/uFLSRsUHJKA0NlXcVFFHf8yHwGzEkV4U0U57TmpwCLhDmg/Mp76P3WTpJ4yYOVEvvFZEA3MF3O+8i+06XrDGqot7LOnioOuT2Vnz91UocqADjMwtcOeZE3u4Yej57hSbTdGiyyltGNiMPqtNs3JXsULP2nB0xUP8dCSBZzgvocvfxzi60/ewdHoOnaXTYIlPe9gyqv3UHHSHLLkXvAqnoUN/VKsktXAx499J16/nq+vbUCF0e9ghtBLssvSheKJQ3hHbBmGWSxD29pg4luGsM24k4tsJHiWYiQlNtzE0dYyEBgnjj9JjxWWO+OUtbHUJztMrV+NOHrVC9ro5IxOUSOosV8evH9IQEu3G6VUHkG95AzKt9PHSPnP/GdXKXg8XcpZ0ZZ4xWQKSFan0+3iP+w5TweLX14j8dk10BB6CDzfnuUkSUe0XhDB0wJkQczeAkeWXeIXYinY7CfBhqUbcKuLOixrCuOTWS5kdm8TSdxVhxWPklDuRxwpHFVGF41+OGT0mL/MzyeBg6vpbOYFWqiWRovMLOFFdi9+7L2Os7c7oELrYzRq/ktTZqijSlIQbtfIo+FPhPLDytBiIYUHVp+hTUdy4IXwJ9z78DiNGpaiEwurWE4oCd0Hjen4KSPY8/on7hTMo85vfvy35wVqThTG1iY1GL+sC3dqRMCViniK+KYPZaay+ORvHpg3q/Kbz/7YMjyHD83vZx3F9eBY2sIfpVYyDErBndGaGPpbgNaMsWEBqRLKvGoFVVADsjcsaSEuwMGwubhZTwAyX+4DzwdVvGBsOZXb+UDEig6w9XfDkO0EVm8y2MvkORVNnAp/H1mS0Ckp+vvxBk/pcwR3DIN9YRXUvyiJtjhb8LQD47mzlWHPhgCoc9mGtbW9YJUsBt86/rGgrA/taCvlf0NaZCI8n+e3TYETuqU0J3QF/1IYJjNJV9gj6wATN9ZhxgNPXP89G53SpNBxgywsNxoF41c9oSVVfvwlYzoW3FxAMRadEJBYDFnlAWDmOMwbzshAipIjNpyphFvX6+jkl7eYoFYIHzYlsel/Zaz68TjpzL5NtamWsMU7B4+tyqI0tQYasdGFRzbmwcWarTzPuQ41T1tSXoEY1HmNgOgEf6iLzyWfykO8bcMNlNdeyNEpB/CKxWx8nCzCcV8KMeG8JDRWhZCP2X7sWFYM6+fGoHW3MzbtmU+31NvI0bQJAvd/oNi2ieAlv4rjvM/CwlvbeWzEJLzn+5tznv7B8enHIfWdH+ddcAVRPRno9tgMV1eI4AZLCxwKSUfnb5I8uEuD7hmMgj2uM+FulhhMlRkDM7cmoDfJopSTN8d+daeJdudggl8EqH5SJbsXZuyWYgoPRwpDXao9iFkV8O4v1+jyyiLS/JyHm/w+8rJScSz0bcXi23+p97Yi/BeVT1FlArB7nB6sd9vGCpHBNPOrK4oUFWPDHSd8LZaAJ82nQ8vpHDgy5TmvdljAz8EfzZzTMPrEctR48h834RaMPHof0q7IgmHEZ7raaIQWEyTo4lcjCBR8zMq5N0DQfS1cdZalkYvqcJO7EciX9aDXgnH8RF0cY+p0uCQnm1bd34mWiQ+od3gmZIgexYaiqXDlZRMcdxvkA9Z3+HlWAfjrJvPbKYN8L1kOmnxCcPX0CdD+wQx6Xr4iCadAatwRCWdlcvHFtXKu3zsdyz5eAsXA53B0+UGsFRQB5yujsDfiKz7jX9Bsu4iqwqN4dtlpio9cTRUKnigzHIyO7qKQLPMSwi9fYaPCHyA1pMx7ZmWhg9AyMvUpReeNDSAzT4fO/7/XaQVah0bSMysTir6azdLV91DneQ+FqK7krFxH6PUX4Br3iZAcswPSWxso9/BasvLfSyW/RtGiJa0QWZcA8x/lg8qiSnolCNAlIgG6f48BsCH80q7mgKlxcOriTCyTacN1nY/5ifsArHSVhnMS1yHichrdDTPB2qYcEm55S5OqdtHeQjuIOSOMoHOK3RW04W9eOOtvaoSnor7w564zGgouwjDohCX7xSil5xheO/4Sq/MUodk6iDZ6RnPZxUv80cOCP72Mgkn5Tah7oo9W/n6DHya9IeOzhrBrvjdVHrXirykXaKHrOtJTkoTRNRl8O8EPtyzRxJKMENQPMoS4E7+4dokZSffsIO3LOfTythK4LNMmpQN91LT1EIYbDtMkRx2YVrSYpyn3ctr1STBPOByzNCvgUco/Ep2ly1Ybf0KwWC2JtOnCG1cX9gs6j7nl/jDrwQYeXdGOA26POG3bSjq10AUC9OK4XE8bKp9sg8dqW/F0qDEJSl7nMQmLoMHLCH0jbWjMmgB6MfUD7guVgH9Zd/hgWigbCrym8Yuv05R9b/HjqgcQ+KSLk7adopi547g4Wxwyv7dSqr4lCTpko4fwM2j6fotld4yD5Yn7qbB8L8M7Ez6xVgyuyd9HwdTJPEpLnJZH92F1UgZlp+4FvciL/Oj4MarYJMnb3kwFsc0h0L+nnVdOUIOw2lSKrmzmwFPLYcBjNL3PvQa3d4+Hc68FQDkiBx2a3TktVhiqP0eDlGkLn5Py5anqB/lLyQjuMJHG5/7yYFlnhDdW/uS/2WL0ZEAFL1RbkprMVy7cugClPu3hCw/V4FftOLiQZEMCx1pxzvlG/m59kkruLwNtsz80OGcHtOxbAGfHTMTX9hZQ4hDMTW98+UyIJ6jrvcEZ6gYYopTDYx8dh1nPDmLx800onCUEk1NfcWPbCx7SzwKh0gPgtHwZ22Unk/naCbiRVHnDM+L12gj8th/7hu+x0pc//K+lmr75iZLfxgs8+KibS9ZKkbe1FOgpq0PFslR23NzH3sf+sn/ZU2q73Ulat1TpqsoqVEtUxGPHp1FiNMN/V07wdT7B74JqIcTIFTXHfuR8b3ecEnwXLa5dpnUD82nDXYaZC63JdoUEyOu1QtGCeSD4LJVmRZ0gkzUpnPrbnwfHiOHC0WqwS+UJWLywpigLM/I98RGyol+DcZEY9WzwwAPd4hS8qYfG2cqDhPJ0PFXxmZ5VCYNbSRc1+U5nVRLCtMXP4a9ICxypXoGut2ThT0Q8Ov6+Revl1FGh+DkbbOsmD3dVzo1ox5ESS6inVYdV5QmeX/gNL5pqUXTpNn7tl0ePP2/EmMkvecHNLby/Uxguufhx0wMGJ78ojIpy5H3pc6FybRyMkf4Cbb7DJHbwG+/80odzfKXRQFsK5vrI8SHnC2z+2wZOWxnin1/LIHnEbPotsQ1usBbHyQ/Q7gIhqFB7yhPXeKBtszr7bCuiIJxHuuY53L31P5CdocbyXqnw+oA63HiTyKGnVOnYkkGal+vK1c0doBD7EM6tPwUBBgMkWxWO3mMtYJLHKay4YIxTXPqgVeQrb9/gSbYhv3FFTQDnHFoKX4o/kt87hF+lWyA5JQHUzrzgr0XWMCFAmMQe6WDRHllcM34VRx824e/LVCExQ4fNxQeoUTGEJBW90HYok45HptNg215Y0mCI636MgX07daBysAfL8vo5LMYRvGrTcOfXZI7b6MHH0n7BYZVp+HXzWQ57ikDqPiiVd5OF9KPpaMJ31JXy5LvCsuwRdB34zE760a9FXx9KwEeJXlbOsaFzkzbw1Op8nvnSGR45xKCvqCh5BC0H07wM1JpsCm1FI2HDKAXyuZ/LOzkIv24bx5OtHFFkvgco7HwH4n+2U9s9hukV93FidwtfSBkNhzL2g7vtKA784M+HKtRJplqIrqRqgKvHaJDYJcMRseHwYTgFRY474luL22CV8QgWTZiAu7z+8OTeTnp5RQCGnDQhYe1cCgpux+ezvcjmaD94zX/JdpHRcNN2D8zZ8IXedUmBcX8LPipWgZwPNjA12ZFrHkRT9owJpPDoN3osGcGZRyNJ2EMH1G/aQkvLZDA8GMwKNSoYuGEL7twLJJqxBcZob8BZHZvp7JAFBH/0xnafRZxS7g1JmWcxUNadDRbeZW3fCDzpH8UFmRb4oVMXZliW8eKdPSAc84iNjAfhWR9D4yU3il91i76GFXB8rx715ApCmmIuxx0q5LojDSSQNIOVwlJx9Hl/2jKilXb/VsDtrm3gNcMA1iTJofWLyTBuzGouCvaB3JkRnFCWDtUfzoG9826o3T2WB8Qs4eGzn3T1wAwYCjjI5lYLcHVoOh/V8kAfkzsgbfEMN7r4oayDICjJ+tOjJiOoKGjjmQ0zaNSjQsj9uwCcNT6TTFEcpZwP4w55NdB4NpsS3IbRSzEaJt67DKnq2nw48wrGlfyja0nJ9MPFmcOrR8H7Ef/AsPo9jXYsYPmlQ7zATg9n9X5mqRu5bJGwnm40hPLeIjOoWXIHZl2Oh/sCtXjL3Z0W2Fohkz522kZSqWo6Z1ot5YmCEqAQp04dV2dy1+5WOn13I8wOcKd1H5Xovrg+68mOQWUrRwpKMoBt5+xRydsMqh6ugav6UdRrOBnjTMRwsv59CE835W3tK3mCpjJckOvltSFaLPLRgjS89pNtwkywPuXHhYvK+JfCAPXWTodXcgw1DjdZb+kpTD+nhVdlruO4K9XYu66E92c/J+lMCdzdOAwzPs+A3KhSuJKoS1tVbcEzZQx07ImGuQ2mcOCdDq1NkUax7W8pQUMctu+zhqib6bA81hRbPiVi7oEeUHoNkLvjJt7Ps8NqlwR8c0UY+Hs6mN6+iZUkwju+GWGY8xDEiJzjlX0FsMXfBt1UD1OBuREYGy7lE726PN8mHuxH1+PU9F+0bpo8hp9UwVt/5Clm/gDtKxWARQ2NtPhkINu0roE188Jp7ebjaFidjzHSjeDvosJFF9dRpZYeLE/XBPGIYhqsa6QUTkf70GN4RdGQUrJP8SfdOFjm24srxiOYeHTyGKXPfGIv80GVIkhInYWuog5oIr4JNOsNoLLHG2/MkoDK2yM56UESG1ik8dBAINnZPqRFsuUc0qaEohtn0e/GQGh6bgLXbIIxW3kSR3+PB28nLVineJzPJVfR1PganrkiE3xPnWbfpokg5BcKjk8Ahk/64NS6ODy6aioeFbYmxfDryFr7eEhXAwYbdGCSnSH26J/C6l8bsLClEm+qX2LJzhz6JP0LvzisBoPeTzxULQ9iZ6I4aEIRyRss5dkOT7lRrBzt9AqRFK+y0JlAasscpJliM+BglAa/urEBrK8ms826Qzxo3EqRoT9B87MRjm7qALeuQrZfPwLWBVhifNtCfiSdRV3dYzjo9AjsbM2CWVYSZG6dB4V76mmrmhaULx/ElddG8CgBa1oSq8vjUsaTZYETNivehe6lP3Gx0TLycNeBhDlzyO3cLriz+QMcvWXO20+tYuM5EbgpRIgu/NShPp9ECnwvCJ5O3SS7RQxlH3/jEWZR1DlNGUVL0lhETYn7KpdzzNJrdGWXBPx+p8PCG3fR5iePoTpUitan7mWB2yqc8CwG2kUK+PmABj+RmQL58JzsevbRk3ebOLMxCervWuDspj/YvmseKNTpQH1mCrp+tIKcvt38olkEPO7vYSGVvaRffpwdAx5Q0/In9CziF10vOkK5D0dCb/5WinWMg4CqQiz9bsdh4+dhrfITaJq4CdzmneCTS+tJLcgMHss5wY3Ji1jsljhf6tOBRNs4nvrfDzpmdYhWyw7gbRNH/O46DYJ+EU/LP8eXVJZwcVAiKja85ZnHkL4XzEX1jA9w4e96StrKcJ7XosyWuSTpegjfXLxH8qE+3HFIl22DNuDM1igSufkexb1Hwm3POxS3JBivtduj/Y8+OnnoHC/aGoezPSOgINUd3M2s0DpKEOQLayhWYDHnqf3APfvyMfTHV1gb2A+4qhy6phRg5ZkHNOq7JLRsH0HRyp/RYUsJhO+Kg/sz5CGyeJinLKvm65lvsfTdeO42N4JPGdcA3y3BxEte9FJHEH9uWQJZRn3gt8uHj+kfh3WJ9XQxkGD4RwicXjtIBh2uFO4uwN57b6JX0z5Q+nwGmz7VcO7osdT1QAYOOwrwob+r0WJKKcaH3KTZllPo60zkeNdgOlo1Hz5pTMBat5FQI3Md/5WrYln8MLxYfRPs4s5jCktD2xUxqPQ0BkeZObCjVQqONBrz+wN93HSnFcp1H4NKiQEXHxgJEqqFeNXrPL0hT9jiZQWFme48UrmP7k8dwVlhURhUP4l2uAlA9Iwv4Ko9EiwdeuBToRZ0/m4g64p97BywBOwU5WiZ23I0u5PEx2tcsGrnVL7jUgk79PQg8cxUXLP9JPh7edEGdyOcdw3xyKAWlbYK4d4LRrC5y45F5GQhdqsfPPc4wxe22tNbz8/85ZI6+5z2op23d3LSW0Eom9AEz7SnQ6T+Ub5/X4XbwpVJ/JgEanSOg/8j7r76gXD8QI9/ByUzJCmyIxkRCRmlQUIp/ZSGFioSUipSslIoESmlHWkiRFFIoUgyIspIS0NREp3X/zyCc3cewufmc/v+PioWP1T9ofGKYZgWthhji2RgS+Awr9rayZoa01gl8zM23tgBDWM38tsZ5eRWmoeyE80xqUkAfhdlUcJP5Dez80D90HuID87iwnmimJWRgg2KJuC9VBqvdY4HPdcnIFqiwZ0b5GiMfz49dhUgu61faEJ8NYXeC+BfI97w6UcToaViNE06foBkSIFD9hdjjO5dFFlnh7+/eOPOC1tYvTOa2j+JwcpFz0G2J4YdPE6T+PkxeKayDmN9p0Offhm/8DyGqll9mFM+EbRuOsJPpS5SWn4Sr9ARfuf4njYNCcEvlZ9kOe4kbx/viUWlxhDwYQKNeLGcKg1m0vbSfHh55AraXQnjsKmL4VzRBw7LskPjXdNhV7saFWZnwvmuOCr67oOnRVW4rMSMxESW05g3T/jxfyq8gzSgw9aRV6juwHkVs6n7xVSUna/HOUVjWffGDY5cowkRdAcl9k0B47gBfn7hIf9wecQD5k9hX1Azf39xE0OX+ePB36ngU7IK6urlYEtkE4fWp1Ot3znapOEL9/Xuk8ubJKr69w+NPi8Dr+BByro+Ds7GveXY/z7CXENTVrhyCj3f7OSQKeWY12MIPxouwJxxxRA/Sxz06q0w0+kBuLjJsO3vWup7/gB3zcihxfc8IMiiG9bVRpLybEVQ7lrAbpb5cEz0L5/wW4Lcbk4jz55He/M3HLlxATUsqcZWK4QHh25jYu5EnjV1Ig/+esWnQxvp9PVM2LVVlvNLpvG7jhTo3mIEkok3eLjwP8p87sHN65Ngt8R1/F67h5umx9DC3t1kPa2Qf2iLwaW3JdyZkYK5C6ZAXVkHynkchGmf83D09DiwqYyH7LdKKN8xAqruqpJfeANZvGmF/fOCyUJriH3m2NOUrkm8qvsEP31ry2t/iMGJOylslSABPz7ac3d6MMTlRXFrniEtvSkGk2IF6E2yI+2xkoGut8747aIvN8pLQoqbCGo+WUoTzaej/KOF+Fr9NIkqVPGpVwrQ0PIFtG5epnv2KewjZAxeh8zJWG07X/cygY+inqw07jt99BEDTZMQePTfVIQpx+CN01g6myEJF6vaufHRPh609abxUhu5ff54OGqnyh1fYmCORRq8eTKb86c38fLyFk5puIxcYM40PBurUxgura2Fsg0bWGryXda0PEMabs6cdF2KA2fOxfULT3J98GK43DwONkvlYcPvh1xpfQg829VowMoX3mzQxcoOMazdkAbpWQ+RHmmA09TdvFDMF8/vXYvztNRpVEcsLTJ9SzNm3EB19zl81XgfeGSoQdOs0SyZe5ufJfhAYsMSFAk2pq2Dkrh8vT7rP/Clbcdz0UdYFar6jbBmcwQknXsDwpPC0GNBExwXzGaZmCWcny/Ms+//A+GxlvD0eBKt3bcUVayn0PpvsvhGVZbs/jXD0a/RXGd2E/QPLCDxeZKQPt0FZ79ezibmryhfsQy7jO0h3W4kmES8Qeulz9nHbD84LNCCMeO66ceDHpBx0IGFo7xg964FFDo1g9Wu6LGIqC6dThfHJoXpcNhan+JdJuD8v5H0Rw5pjMZGlHUwxwH5WFZS80PLAXPaZ2oJ/VvGsE7oS9qxaDV5rxjBf+JcqFzTn51iz6BS8V0Y7bmT05w1Qf62A7h/no9z9vWQTftlWhU1loVjjXCEfxNfHhWFccsPwMXl0tDpPQitWz9ST+UlLDZtooNpkWRd2Y6tv6VId9NHssjLxL5dSnDB7yD/vigEz68cxikxecQh98AnZxHqtL1ns/1XeHOFBxbrGoBkwVgOqv6NjR47KUR7Bs3r/Eq5nUVUPs+Gvng9xvvr9oO1zTh47ZAMZu6+/O7edjBSVyMBaV1yPtwOv4LnIAercvNQIxxZLAuflI1hqXoQRif9ZJs/D9H/uAI6LKzgqJZQfDpiL9c2nqM0lengPaeMG3drcshVEY7b7g97dnaz1bytHN81iNHJF/hvogso3tMHb00jaDUd4PkrRoHx8nSY6NUM/eYn6F6MESpPc2OD6UBmpSrQdOIBzBsZSks9HNhtwnKa/zMRbD9p0g51K94otRKPR3xFv91aYJRgQA629pQ0KZZt9SVhhyTiWSsbaHFdAjpay0lLvY/Se3XBXXwd/vAKohWCDTCj5DC7jNiN51tW0omtYvhJ0BECetSwa4slFGqKcaqhKy3ruAxducgVQxYwSnA/tWS+wBbBpZA67IXRQpYA3i9ou/FnnH31PHw/WgYX01bAVIjEJ1uMUHWSHYoMX4SEiyNgpkUlTytKApVAOzQZnE+iCZZ8qv0z7L39hKYLAq3w1eVZ48dBa3wdBbanwCiDGG7p/sspMZ/pm549S4y7RIJvN/DgaBvU7jOE4sDz6DK+BI4WrMNzWZMhyT8EHfZuxGUfulFztgpr568nm1ljIdHbFjZENKALdILmiRU43/MxaUjPgWl+D3mSvzgcHSwg/6+WEFX4niVK4zH/nxfs21zErQ9i+Ud2Ba4dTuH2fm98tnYy5d+dCIm7TvOrCZtZtFoQf4xugZRtclwX4kNPjBTZ4mgB0zp3jjWYCnJXZGGpvx1MOOLLziNPgKj7fdLf0cMzD0WTys5RrPIjHjdVT4UbT/TwzdptJL0/gq4cyITG7gCQc7KBgu0RWDNQjtN+28OvVoDzPAEmCs2i5GgnLGmUBcPSjZRcaYXDF25Aj18wvDGz41+LZ8K4JUrQ/DIaDtrKcUW1M8fY9NHhhQWsV1aPo9LHcPmq47x+kyAsCfeFZwn5OOi7C3+5JUHGuhE8++lxnrbxGWa5LYW1Gj6gLy8PMrnaCCMGIa5MDFI2drHFj1coNcKF/bAGbaQzYLbZEq4TN4TJN6qxJ/sDFtd2gpGnI9jsb8ILh7ZBiMQWWPrcHzyCa+jtLU1IvNYM9nqhbPJ2My/qnIYk9YNNTepJakcGKQq5IM+Kw1d3ZsLTjzuhzVmArHK7oXnGJM4+txKsGh6S8kAeBd3byg43mBI3ysP7XSXoNsmdJGTL+Ku0ESqY9tMO9GblfWEAW97zU/Nw2PVMA7qV0nCB4gFgmy80/7XX/zUX66oes0FEGou71ZJt8juQva0Mqz1F+RXX8qfhRtrQKc+3WuTxaMMutFndg1sPpsKniEBeFSQDP0Uiyd3JDx6jKRgN1vDldWuwT2QfPM4sI+wZTWqnHDi2Uxb23+qF/ySy0eFjEu+cmcw9LbEwrr8eG3YHEf78B/YCB+CblTCUP3OmayK5vHb+N4o8NoayLUtJom0W29Ye5IWHOsDoczL/kpGG+j+O1Czrxr9KP8CsN0PwwDobt9zdxxo+Z6FYtAQGZHux3dgIZsue4QXJUrilvR+Wz+1FNwcvDh57nG52HON1zUup8p0A2V2eAlPGd8EJxe201TsYb8ve5XaLdnQaXwVBxxbQh3ZRuPl8BdiFG0GLdAiFjIqjNr4LtqKFVK4Wg6PtNqBcpCJ9nnKW1Gp0+JGXJAx9P4lPcSvdGjECm8qLYNoqDYp+nw8LN1byLyFTVPZwxJNrLKEj/DId8fMmhfSxcO9PCNXlboStY/5QcX89iy4VQfmirdSrNxYeeGdjZvlUsrozmbXHrYcI52ZOmXYS1Wo92FtakmcV/eThqeOhWPkHZ6zphb7qQRS+F0+y28MwLn8xJyldo8reR+AysIx37hkPpzrPo7DyJV4wbQdui10NT7M20GBkCLdHL8a7rZFwPS0CrHIlQDpjmL3nv8dQQ18qWXQJnXZUc1N4KH/beJ1UFo1k1csaMP7fSBCXXQRrVcZiv8RPXB81li42nwIDhTYUWtwGctoxtC9oCD03aoIiOdG5lhpqspSHvOmOdKWhHHounEYPdxd+enIWq9f/opM75CEg9wEV3hLDKIf3dFL/B54Y2ILhBgX8xpVQcps9V1/2xZ9T9CD/oTUHTlqNIgUK8KpxKnUVf4XcMZ4wL8KGvvU7I1kvgeZSMYj2P0jX1d7RF837YCibCHUll8Gg8w4L8BSoT96Eq++EkH27NuxVEsBHKVPo4sut9FgyHPN1O2CCSwE4SteB9P1leG9dKvrck4Stt5vo0lEbyhj5iz9/P8AultfxYsE4jq+zJglRCWi6OYNmOGlAwf4TEKe/iWxLvXBg/CAvfDaIVw7ZwlczMyjvUeblazUxwWYaDGn9ZT+zdDBLmgsu4cw3O8y5yz+MPQI3opFbNW75/A9zXwiB55RCsDzzgK05h+6te8iLaAfJfUvA1OPPeVmPAhzf7Y+f/qhC+oEU/m+tOd5JTKePtXGUc+IiJ5w5Ah73G3D2UX1alRYEsHIirKu6iqNqYjB5bDWNzXhNdu8/cVrIMASmHQf5/HqIkHeAWUUjYcW0XJ5c8hgHC2ZjZ1E9LS9YgCKOv+nUg9HQvXcMX+lexG3zNSEoczn5ftxKayV/k8FIY34x6wl+ftvFJaVWOPvSEugfp8H7tshClnA4rUypo/eyGnTlZA2KTVODcS4p2DkhnUfk+5Fwjg0HNgjA+JByvvtwJv+vu3l0IKc5P2bHrIu4bcpfNitmyvQ8j1mmBE1RQHouwvRotxaWpFqzzc4Mrotw4ITil6DqFADzgq7C5M6xsGLZZfp2xwDL5kpR61kFnl5wj6v8yqjniAHdOnwTT8Xq0JxMQTiZ08qP85LJvSKKw+um47sKWZ7iLoAu9cEUNqoVttdvhXlPdGHoWyzcmaxEIsbeoPY5lguqTHjeTyWa0fqD1xZNpNm2p2nlLUmIvfSZp+0owYh3QagZb0CSwSqY0vaTRyZPhu6XM/j9DSVabY0gVZABWnUqmDtkDHrxMTiwVQA+LFxIXT77Yb9FJzhlzaARU0RgVakECxsewXlbrqNg7CqYr3+H0ty8IPa8OtqG7+dT8UMsvXcUTLOdjTNah1CnbDLO8pLB0VXJ0FAsRiLx1jxSQgY7dquTtbgxdM97xOMGrHmvRS/XF9+AXpsO7Kk+y/6gR2NOIzVvy4HWrpFQJa8FAo8Kac7LD/RH9yQ/E+/A+CxFfHqkktVeOpCDdjk21WuBoWYWLJa9S9W5t2nhHF1SlC7F55MKoLd4LiiLa/A83ZOQ82sm/HM+hxfWP0JJawtYkpwP/WeluUxuPMr98GWpJT9ZaqY1efynBNuODFOSyRm6OeYMV0tYkXWqBT/dF41WII9uX5zoxJwlFN4sAJkfp5GXbAV4L8xg57aLWCxhA2H/DaDprHs8LPsGj26+hq3Dk+D5kz4MSF/OoR/mwcXeHLZt00H1CYE4V+s75Pjdw+hgN5gwShIKz00Ak9CLUOKhA09z10LPDSncUbOPWrcpk53vWZBqiIP4A+JQGnMHJx0SA6HK1zB4zpgkL4Xg3g8SVCM+jAF5Q2j7OIyCZBTh2RNf+OdoQPNva0JJ9xEqiY6hu6+O8+/mbH41FAVhbVHkMlkPfi0sgN5bI6jIR40nsh8qd+vzjyO7KfFVIrd0ylPa1M1gtW0EGGV2QvRzFVK21qXpCS74N9iMR/iNIcHx7TQwLgsKWQgOj1ODiweLQb3pOZo5fMJXBetAuTGDDw6pQ11HGu7taoO+XRV4wEgdMgRjWGFMKV0+qoRRDwpoyuUJ/PG8DkdKnEK3kAg6lO1Euj2WsFD9Ca9Zuh4WTO0HlUvfGMT6Ue3RSDBTUIXueeo4OW0GxIpPgc6/anDkqDQsVgvj+18P054+aZL/04eblriTTLsFnvdZSe+TxsDayBA69qeNNs6oYiGB/7j28FhIdghmX90uFlrtCCXGGeAvowppy96jzMxu/JQ9SI1pT2n313Cw/aZKDkLnIKWhnG62BOCWOgnIDW4jqfoVtPaeM157pkV1sp7woiSEA/MzUNLjJ92tDoBv0YpwUkkWlix/y3rv+sjlyh4q7EmC/S8/UNvxxeSTEYEOP23RYMFE0H84hdKWLuOs+T68WWMLSA6mgE71TzidEcXZD86hb0kvmPwYA8Fp+2mXzWPKKtPgFH7Dfz6vg392u8FhqRSmPhDjt2Pm0bWXRrDQJ5ZFYnfDu9W2eOdzEGr058CmRYFQ2DaM27WOQblaFwaWT4KETWW0UacD18do4CuFYMj7T5s+nK+AP8ayJPsnkho3WUHqXzWgWnmWMPIDa1Ndfhr3lFtTn8Lre/1gPv8TRiqb8Zn7m6h4kjbEq7hw3vRSqupcC0uqtkLfkWM4RuE6HPr+kfuqV5HTrhfw5qYwXH/Wi7v36PBV7wxwN+vC3yuD0PhNOUz95sSlPe/xcs0XSnggCM3CzlTReYPkB3x4zMhXdPXtPZyqWY9Cn/ah+PFhOMar8Zn7aPjlqURbTKPo3ZRrqDr5LZY3+GC+5T+42KTNUSUTOOZkBfSOFgRl+3+YcLoUwq5NoG2/F2HSyIMw8NYCXmx0p75N3+Gn4lh82GUAP3r3oP2zeJhut4D+fPLGmpOSKGeyi5PtnrN0VyT+/hVHoroMgXc12e63I6qEvoI9wXtIeNE2PuToSat/GMOZ3hu06LwRKI/UgnVC9/lv2jb0vLSWdSODYMa9V7TLMRy/XVtFpXqq9Lb1AuZ2i0Kbli0fBkGQlBlNN0uv4/glN+CouRpM2D+dn7hN471P9oL8bh1wkdwJqbV6tMH2A/0N3wsmDcnYebkPG+cfgHftCqzkPB12HRKBL3L28OmdBF61GsK0/OWgnlIJ1hu7OErkNaz7ms/RwwO4algRjt2XgXGuQ6SkJE6LDAH+vQT2CdwE6x1Owb+v7/m9+QG2ODIdfHf5splgMyenvKe166/zoOgpNghexXZ+3jD11CPQfOLMy5vEwKpnEY1uWUqN4cfxy7FIfHE5CC4q9FFBeSfolkpDvKgEH9IwA4vKDbT+yVKY9EOLOySeQKOjO9+sGYXFhl2o9yqHn6WuRH9XKVitrQxvjHdCTeZBjDK8Bg4S2/jhilCe2D/IO7avRoNzp/jX/ImA6ZsxMakV9kRf5c66YPzrKgp24VmckhQA0r+Mocr2MsvONYHV36uxPasUniydjGY50ujutB63HzlNZ6W7KW5+DcU/CuQadz04XhMOJslTYfy6LXxfDjjh9jjYpZRIJztjwU5KHX2MroPnBW2oU54AFXHqMOMIke9UNxrlmogNLt0w9XA5vz0Zgi7rxHFzoygsuauP2bEpLJt+An/+3kU63rVQWzIC68R+4j+ZMrymkAsK38fBmwOSrGy4lB67fsGBtfm47qwX/CpZDyfrv8GRA6lYv0qAhHTEQHjHBProdp93aURTUWUHSyduhZla70BROpBbMxU4co0L+X2QBN3D7nD5YS7vLb9ODZbi7O+qDM+lnEG/ejOsvSMHxyLOwQ8fgvWfNvKAqSNeGTqOR4/owMivR6ir/jvMKQrCwp132cjJEQ2RodUqiuaOKafY118o3z+Adq6fglOq3+GmLQrUGv6e4mgdrxrWgFn2p2Cr+SysjNnFhTUTMLnChw6mTcabtyRot6ATzbkpgvuJ4dCTrVjgbop74mtIVuMQBxeOJ9fx0jBnsxI5lmaDUO9DfDFLAy6cHUNhDa50wmoG3bixk/fIleJ73yI8UOgOv5K6eFr8NLaZJwLLb96HfJ9ptLLUEt5qT4GDCTfx06//KMMjj7/M9aFM6Vh8bSgO96TX0e6BAFrnkoo982/S4bcX2PxoMvxco4C7TW5QWpwNH/lhDPa627HCaTw9unkVq5on0tsHYfhsrxx53r4OwymKIFy9hJfcFgSzYGXc+jME1obVkd0EHX71R4Da5o1igdnyPDihh27XjsBTReMh49g3TvhqzsImKWRafZUCSqTQ591pOPL1EMoIPuZ5MtK4oGYSxIhcZlq7BtPHuIPUnkiWvmOFPafWwVoDhqqCFCxXFyOnrFEgIuRJvlvWgISOHd9b5gInVkjRzUARPHe/Gm0OHaBxAon4x0oRCm30WUKlAVc+LAWV3zvR7wnTAQ079DK04fXiK7F3WgUv7DGCBuxnR9mJuHiZC+mneZG4tiyZw3oU61rFVWMJBP/GQv/XSSDjowhOVgls/1mfo7XV2XNdHKwqFqf0v0JYuNAIqr6n8EsdPfBIM8Tn3tE0T9KKZJryWXRpGm0sUyXzR6owa/9HrlbbDO4piqB11JrK/G9T+LcnkHNnJFS80wHlPDccfdwPTnVepacFPqQeLg/Z7yzArM6C2+1bWEm1ij703MfTuByLZ/vQR4WxdOC7KSSn6EFAcAOdLhaGbxGz4ORpfzaUeEmTVkpQ7dYjEF6aiXYiGTjupghYffemdU97YdRNNb54VphXNFjRgEQQPdLVJPdTQfxv4iGqfD0KZhc0g/vUNpoZOIV7v5ZSa/csqgr6Q4PVaVT5MYBnnbVjm4hxoHRJBT7Z2PLRLltK7a3AptY6KDGZSDPMMmC/chMej97K5Z6aYJfrSI9mhVFrlwc5jrjBex77YZj+Icqovk3P74TgKmVtmsPjYPmxLfhnmTete9VIh5fs4M3na2lnzxH6M3AUPpd5sMDGGHYJGg0jWRFjMqfjxN92NFTwBT2EDnLXP00Qjt7Aaplr0RLtYPigOrTv6YfjH6ZgaX0eCWnZUb/LREw9VY0ySeIcJdwITdc3wZqbsuBflcNCUQ5gvTOSIOc+fu/xhCsFGix3djdN1b/I7SKNZHpKHfSmBtPMwEjs671BxwQnw/Xn62HlKn+QVxnNMl93k0ffXhgrZAHn5swDUZk7XLG3Ddb4KtDRX3EoJBsODWXiUL57HBR41LIojob9d3VJZXsjrz/0i/QPfETbWxPw7r8IrHm1EW66CNJojuJi+TGgEekM+TMs8fVDRbJPyuO2G8Jc+mwP+UjOo8z5k2jW76WU/lELqtvLcWTCL9g2eBdmB+yjyV+TwP6mB/VMc6UntWIwM+s7hh5QBd1tP/li0GLSTJLBcw9/g9aeixzUVEte5pux/fk1Lv7ixOenjIBbJSNYZI04BQidhyDRvxDfpsalM+bAmB02vNFvJLy5VI8Pj6mBo64JuMwdhzNK37CfdR5ai/qR0opnOGRbR0JtW8Dj/jHSd2NwvH8S0m6XYWSxKn8JC2OhNhUQWiKIjSflad78GDxW6MQbZ6hC+OpCetegDU19iylpdwCf2PyVFTw/8tJ3YnBFzwum6d+l5i1GELP+Nd1WXIgnYnfhN8dqzomZjJ7ffqLhTzd6tC8YdboE0UtVAtoqZbhh1gkWUkxh6zRvVOy2wRV6Gngkr5Y03TthVMlVun1XCv5lfIXj++fwv/L7vOT7ItBe8RQqdv/Dg3eLqdLEGg+cGuCWE4pww+cZrzzuz21v7Tja9Ad/erUfD1RsB+FPiZRxPgp2JRVDBJjAskmlcPfAWPRYkEj1ApJwK4HIOaGXP8m08EqJQCyftYhe5YnAoYX5/FvsJE+TegMqebFg4iaIg27H6P7Uh3xklx6tVX1D9mPGwp9nzylzjjH/Un6Kt3LmYmnqZrxb04J1UjYcM+sOJX6IZrUwaXgxuYxkr0Vj91VvsM605Dlm76DRw4k1+TZFTFmJa+1HUW/CRFAqcGEXn39QEtRF86ptITV6Iq9Yx2Qu78B1r1L51pxhGr1ODuavHc8XNkigfutJmpgpCftVZOBFpgge+JzJ8UWL2drTip43K8CcR1owdqkANS14D2fdI/jPr2d88VE3vR2cyjK1y9BLtp97rwL8sH3Mq7aq8oNnTznmnjAPyS5mV8d0mu9oTj9imsDFowH/CVjCoMEHnOo6nzMvreaZ7/6DbuscUHgcTAuWulO6mBdOfLsNVv2VgNcD/bgxR5Js79xDxcvdkCg4Gjrf7YLU0zKku+MAL5AdRpMeHfjlNIXVBWL41arLUHS6EgW/XaTl4l/YPyeJJO8ewFHV/rCjUQ1eNpdg99WvJDx+GhcVTCLtBT6cecyTzgRH8lnrDizONMF32cZgM+cYJb1p5o8fVlKVxETs7k2iEdmLWPrkMr59JZmlnCfSQf2x0FXei9aJzVT+biG8vepLSXb6IJojwQ6XCujruv0wYZYCOBgLwTW9ZtA5KUoW6Sm42aGPfc5b8faPVzj2ngo1Fgag4vkOsPgxHQx996NhwBJubt2PAWNXc9jZ0Rgzwxzkx0STy/q3+HEE4MYsSQjWEQcrDMcreXGY3a1Cg7cOwRSldXR0dzvWfrHCIDUnmtAmD1UFrlRnKMfqNQdIaWkBvx6zHYK1qnACX2GlB96kVGFHA+cN4bDuZ7wqJwT9a4JJdIQ3qN39QDtlrfjBtkZ4qTwaS6ut6T9deTALfgwagrbQeamMrK74g1FNAMs0zqdM43+4xlSOW8fpwIz2kaDX207P9V+TkfF1KrneTxvvTyOzve7QqvuKfGWe8Kp9L1Cu3QDKd80h8eqtoJtrxPmz7sPoeGn+MGoZrDyWQ1kz9flRyHFYWzIBvFTSaK6WMh5ar46mL/U4UTUZvoZKkb6KJrfvDGLhlgj+IzQCmix/0zMZFxIIqCbbw+/QuiaHHZrKaemd0Sw+qITtYbPoyCcJOFoxBOZeEznKpoQmtFyh0EEzvGRhiMkv1HFDQhfLzq4D1xIJ6NaeQY7mwrRvtRkF2x+j+P8e0DffR9BiuYVHhV6hGVumgkG9HNhlvAbTvVEUolRPqUZlEDphKxkLHmZtz/P0M+wwDISfAZ9IYZAI/0W9tgFUOLoZd7/4xm+uP6EPTTf4pYkf176oI69LD+GrqDDcmOzPd1IXQaH9M9IOUsKgkm66cz+Dr9cHQ/n27zT1ryuaHAWQD/RGm1gB2mHdCReldlLk5cvYEFEFG5sPg0hOOUqdHwPeKzXg039f8LblCn4xUxIGr2iBcaY2bylJQbXhUZi5vYEClBM557QpXLzaBkdaozC9SpGKXNeB9Ml6WLMlkPY8bcKUQQlstQylKn9B0N21Hu5qTwH3dGXeZT2Xnk69z01Wqtw6JRsqBNTp/NQ8VHpoCpuKlFDv2G54dmYC6HfXQoWMKK43a8essokocCgeb23eAF1FFhB6+htzqD/V+MnCsRlPQWivF8vbJ/Nz5W2sW1TMP8SD6NtVCehZNARX0Z7MLjay3eL5nOp3FWvOrkKfjoMkJXGUUj2XQbjdZBB1G+JzD9+Dff9Hfm5+AKdLmJPCshpoWrafdw+68bYf9jzqlCU0yU0k9a0pkKdWS5/2pVBJ0AayfXybn++aQF4jzvGUrEf8REYMfNodKPTISvYzXQONHv+gaKE8WV77jA8Ha3izgAOsfnIb3HkcHF72luMUpsPWrU+IPENh0OgSzXO0xPW3rPhe3h1+KCBBWUUC8KA0llInnCS/mPGkt/UlF1qthWNScbg2IIK1X67E9spaOO6pDdZKBhRReon3jgvAfuPRoHVhHmVGLiFVTVFK/DsIAg4l8KJPE8I6c2Gu8F/ojkjH/rABOLXKnsMadKAGLCnDYBKPkxwDXV9NoXjeXj60eiL7L+3jmPAa1txqALq377LCnxjav2ss2oYawnMTWahzz0Vdoy1wc0ElpU9/R8puA7SywABGrxzJY4qW4OSvM+l5oRTYXGyAZa9+wgdPO1iU4Q8bqm/R2LAfvPqRP58ekUzGeWtoIHEMLLESpaY/y/ieSQ9aHjpDQhkDbMmCkH+rBbVE0kmn0olnrpCHybX3OGfuQdy9cg/5Fpbhsb4mjN/1ETSaqnG1jR9cT28HgesIgt+2o2TOR1qYcYBWHjvLFe9XsldKHmZFCeE1SUm+4ViH1XMMwMzMF9VlGNvTD9GInatQ8b/DFDryIjssNsHjnYW83fw9VLhowpIf0piWs5qnad7D/mmhEJm3hdPHl4FfQiGGrzrIPXaRcEzBCDabipJD/neMatyFITmKlKsyAhp/jOIFk5bhzh1COK/lHzSnIAQaLeNJeZPw0rFUtsdeFNY+B9dWIXlJXKC4Ch8UEXuPg6NGQmKsMdcsKaaX9VvIJr0QXuY2w82IG7x8Wh20ndxKXpJt1HhQD7I12tDiiyBC1VX6OqhKX3sSWLXejQwNzgAvnUtqpnvx1Wcp+KXcSWONqmnZm9dYfloMrj2owIXqmmzieBtcPwnSVYElbKFgAo4688lkWh1kp/+jNLXfvPvDOJq3upAKo5rwgmwGWM+1IOVGfSA3xIRjenRMowRyko5D0Hw9ivy2BEQdxuJyZ2P2d5CmebfEIFZgJ70QKoAJ2im0vtQCLzi8AaHgEWi+sY9UzWqZD3ficlsTKL6STEGe70FKfxzELwsC0VBn+vv3IOjm7qbeg7sRox5TXMoEcOsyxNcJfvhZ7g63vv0LIqu62CWhGNL8ZPFw6VVyvG1IaUZTgMbGgPL3eEjfqc211Xto7rQ7sMKvijbFXuJLHr3wQXs/L5k1FnzGNFLjt3pe/7mKkv0vcsgeG+6b7QNzat7hWpECCI+5Ts3VM6E59Rz+dbOncRtzKGF+EU1qzIL1x2bA/QUb+JfDGdAyFsTMGlPQebMK0/+GwtD6SBS42YoLY6+DtPBudj+ymL0/zgTJjtNcu0sd+sffgsiRy9h42VWw+HYMFVNWkLhqPpcFbKOHx0ZD5zo/1Js/Cg7Gz6Epwl8g5NwBPrEljlsmDZH/iQr4M0IbrRQWwK4dydw2SROK1ddh55y/6NYiCOCtyi8PW2HbM+RnJxBDI9JR658+xcVLwubz3nwr8B82t5+lmIfJ6KX9CHKnp3HglMkUlGMBinUC5FAsDm7Pd6LSri1Y/M2XnCNek6y4D4RY5lPBoj60Uc7nqDFH+WH3TFCPfEkpWdYE8gfwmlQLxi9OoaLuPO62+QQn3pSQaW0ZdeSJw4K8DVhr2g1OPU448twoTJsqA5pbhbimPo/yvOqxSe4sORoCnFZVZutdu9Hi0kjS+LaPh7yjwPDKNG7+2oEFzhtYb3Iv9/tIwE6FfvKd8Y5AzoEt1OPQ7+s25Cl6/C5LhOadUyEl83e0bLwkrPqSjqnX+vBf6iF66PsKJtc5Y9bDv/xocQJWTzqMAsaPMarfCMqksjErO5k/Ze7kN7XSaN0Rxiu0v0OrezX92RaKTp4zYayoNOw68Zr6ahdhSMUNSrMVAF3d7zR9QTiUZ0tQ7LVRtD71CXzxN4ey2Dd8yakRT/svZYX09Rx4tQtUSwy4rFuNzTtCsKJmA6cmjoXNkX/os95SPjP9FRXvOIPl9+1Belsr/4QuODzpEdhM96N9huNAzmw5fB7Ty32hiB7mcZgNdyAi+T1WnNrLcq4/8eE+S3wQIQg/ng3y6coE/DXuP7LqKqQ/7rXsXlsF71/L8I3kt/TICXjHI03QHbgG8QMiUBC/B7QvZSLHfqLaGadZzmcm1Wgk40qvC/jhvDKI3twCl/Zpgo3HAeoxj+MRgZ/g3Z1U6n9QDIe0rpJh/ReeOk0ffMxz4P3Z2ZxXOUBqZaaYFJGA2qjH31qruV/jLFqkNXL0E4Q1qcdwlOFVyqmcSF9FfTn3xiha4TqfXl69iL6zenG1fwOq7zUH3VAB1lOMBSnduXg4dS87zbgNrRv+4QI6iBpXDoB/ZRD9SNaCz2baWB0Vwj0xVyDZXwZe+6iwiYomytUuwym2M9nYpA+jpUaBTtwBmJU+B/6MGoUB9yPQWUoRynVtIH+tNi0+KAoiNuPRLcUcdi5eiq7nrFlQS5jmDy+hBZMescd+N9QK6+bZE0/jjdZ5JHNz8v+ej99lsyjQMx1D7mwArRfLaE36E9K97oyVBXZc1BLCJ6o0IWf+Om7RvMiCp6RIKqAYKw1dSMvPG7Yq3MUUN0saS8JwNkAZfgq/5UGzpzjyYAH9fHAfZm5htEqPgyRjUXymfYWrZkmgRdsIaLx+jM4WjgSBeH1YKPgExH670eELohizv4ISckVg809dEgRT2LbVHxac7AKZ1/7QXPoZspZ4Ev0q4NY5Hmi1/h3VvNjPx8Ms4eJtSWz5eA6yny6hhw2joPqII1uHjuBJckGwLzOHmkolST9BFKY86af1s6Lx0tVT/HjRX9r4OYkuLxuPBeudqOlLPDxAf3btMQHx5FxSAEVWTt3Ez1rD6FvHfXa5w3TtiAXf+eZNiq3n0cpTATYcBYp7/AoasiuhZroytAiswooVXii3qR02diRg0NcJsGOLLGQfyyFD5yPYEiePXtqNEHihh7a+egfrEneg75IswKRI/nhcHcROSeFYlZOY5JaPZuc9sabeBlI3ieGnSSNALTcRRCdewOIWefi49SZEnlrLHwNHgdDSV3hg3kxKmDcJyK8Mu3cgOZvMo4L8qXD2mwxNaBWiGUaBoDUxEA8ODmPUO1Oy1DyD45/aYeKifRTrJAtDy0sg3NcYnTQu8a/gJvK27CGxq9k08osXXMzxpKQlZzhRQBHebbLFGCE7Njc4TY32v2j3u41oJ/ob/9a38Ps7UTBXywGP+ciBza5h+HtLiqd7iVCQ9lho65qOXxbU0B3Lag77IA+HT8eQwAx5WDNmL83JiMGjjzo4+3kVPT/3B2Ir75NOUhQcC/1MSwe7OGXOaCh8E4ZFp6MgWiQVmxRb6YlDPC+/pM1pd9aTkXAZP8sxQJGFo4AUvnCQ5RWarbAS7+l4oVKIJaivEwCfJB+w3+4G7T7T6aUIguEDBRwx4R54ioXA8c7rdEhOnz5HV2H4THfUvB/M3bmVnKE0FcJP/4Bl0VmUZ6fCfl8CqKrlGek+e4eal1tAe9iSR/fKUvtReXh1E2HNQjF0+noWN1ENJ66dDNKZLTh38QpYqiaGY9pD8OFTTbj1VJ+rBseQYuxifFC2gKyfJsKT4BrYPIEhM+wKJ2oZUlkgwZxABYjbcoq/P1aGoMSrWHDtF1dmisDa25Pgpb0p+3o34oCIGrTZuXJlw0lUsk4nMaXjIHLgNrVlPCCn2720zSwWWyp8+flLbbj2fYhPdOnAZ3MTCinfC9/emJGPozptP/iEul+Gccn1OJJLZngZHctfVP+xYXgYdzpfx9osU6qNskN1x2rUX/CAXj+7wwYhslD2SRDWm+7EU5OrQGiDIokM9oGw80k4XbAFpz0a5pwlIzkzdBR4TVFlBfNNcP/lUrI/XsIm261pT10fq61N5RO7Z4HEuhjSNxUEXTkFPJO7nztBmZz0l1Jn1xXYnX+f599Xp1teaXR+TS7NuK8AMdKdIHzYgLf9FoDrjZbcm70N63Z1Uc6yaBxrVo/i8V5UlasOT5UWwUaVaVz72A+u1CdjecRKMpKYxL9uKZPrJwdQSlXC9yViEK/6DMIS98G5Eyvw6K8huG+WhVsk63FF+Tc8emUsDv/4jc8XC0F98AlO/GPGvY9cyUNRACYN7QG1tniev2kWex67BRv+CwKVK8LQO1CGC10lMf75RNARq2HPS76MZ7XpfUcSOGl8ZJHU1dRtrwPDc6bzufIj8HPZFfq3eiaT9HcIXe0FoaeaIPCQKb59lc7nygwg4N0TGnJN5dnbFHFnwkyKWBcOM89Kst1PVXx6OZ9SR7fjlBRJeD1xLqm3bIbI1SrYe9KRehQzqHebGc84KAKdP/XB6vFsvrSH4MbnXBjzPgwLC0MgXzIS1lTPgF47CYwov8pheY1our8f1R4pwVmTNs68PIA3ixNIRTwMZe/bwl77LBK5coc1j1ZSxLdtODTNEmyi7uL7ntcoe/EVyW95wYPuO7nQzgvlfz7kyOFmeF0kBgVfR0JwhAT848/g/TILpMaeItfjelhvLIrz7tdyRNRD8AkHCPlmACUqy1GhfwIu8a/gUZsQnr8Wx7z2j5h5VAjcP3/ly43ifC54DNzMdwH3zUvp7n9dlH3pJiWunkyDz8z5c1Muv/zvBhh4HIGL/Yog/jQB6802UVnfX1rg0UPLJ9yCw/OvwXTBybw3yQrrX73Bi2ET4cPGh9gOi6B99ylq+f6XgrIDoMjiN+w3VIJbhfn8vHAMXRkvDD+1q3hMniUvkM4l3y1DdG9eKCdVRMFRuQh+1RpI94XH0dguSzh/8w0s2n+eR9Z+Jt/5cpThbsMPtj4hO8lAerzmFX1VsaNiHQvgT4zNjxRwUa0RzM6aSx3Xo1g2fxx7Ha2i1McS5P/oBIOtGWx38uT/UqVJdsidLqhe4zr/h2ixJhXUCl1piuwn/s8tEw48nQpxC/vhtaQHfDn1gezOnmIuSKbDSQM88DSaOjd7UPzy1/yhUhomaOaRfchLcDyqDVK9b8lCKxxWzN1M9lcHIbtuN6g5v+XNQzNBW+If3wprhLHi0Xwu8go4vcqGcmd7eKIYBx9CI+GEziUoX6wNYVEreQpNogsyU0m5Zjxn/RXhD2cE8MPma7z/iBSa5M8gmfyxILZeiW8tEqREMS2sXtPPKa+7WSrwFH0dquP07jTIcLAhq2JVkE4Wxrevs0k/pJ9URRshJEsI/HKILVbV02K13eQ6eiYJX9aHIyUzcV3bdrQ/4g2tHy3Ruc2YZQS8sa0ygfMMdWiexXlo8FOH09Zj6HVACYSfreETf79CbdZYslPypXLDieA0bis/G7yGBUoT4fMvT4r1EaSQ6BZ+ecGFdl2wow0ep/nhyHiwkziGi4I62VxWH6IihPlqx0He15FIEdp2YGg7HmdfHIQIhUUsVjKWR5cu5bdFI8HZKJDfGXhCXKUR3Vv+meJf5EBWjxPKna2GCVFNMFX2JPwTVYGJCUMQtWs9BsgH4KUd0VC4/yt5J2WiyIl/mNawFcLD4+GThxgEvBXBFeeF+Pv8I3xlzB78rm3KsdsO01KZRKzTUGc/lWMIJwVh296F/Gi5IJXsr4FR0XdxzyFrfKfew+INp0H17HiQmiGOATsN4fOoWbRObYiOWDuD1fhWvP3xMIolxVCI3Quw9YiCgdfNXPDGEGwXnma90fPIRHs6B3bvhALjRiwuPkjfBUI4V9yQVmhV8qIOHbAR0qdLPRoQvuIWFx8cCcF293DkvuekGbSVDzxHePH2D/uYiQHWdUDk1B48kRAHs/eX4abFBTB65w5IeO1KswZXoeHoiyi1YzTImK5iUJxI4726Kf34P5L4K4Fpwn/I3TUY4sTGUXu2I5nMEIOa2Q78LjgP+b+jsCBoGl7BKVjouRayjZyoZZEt/TBW5VJrcbg6x5rSrj6j8iRLvjJYSW8e29FIi+tcEqOHo6+Pp7yYJXjxyST4XYIooOsNXwv08YDgQYio6aFWI2PsfyXOHePSMU/ZlusahMDdWJsXB20hpah/vPdLDGxLfgn3/k7Bz5kfMK0uDfe+NILPpUJgl/4IT2wt4jWyc9mnuIQFhKNJQmw5zbuZSt9qJ2PxahsI+qEI1VHlPFK8FE7r2ePHLa7wYfMMis+cgQ8uyYDshxAu2TEXrXJloKLZhT8skIOigZcwLyOZYhIfwed9cfTBoBnAoh0WHh5m41NC8NWugQIMdjD9G8Lbzs7oMqxMnZc3YbD8Snr+6QzUy8pR/nsVaFqwgYtyDdBAxx0Xld+GA16D/CX5Pmv4BJMOiOPz0kJ8lSoHG576objoNVwcuY9tTK3hQ9Q3Srn+jrLLomHun4Wc2ONJd9rNYHrqQrC1DGQVWScUXzoOzL6t5IBX67EjugsnjTrLK1an0utrBjA59wPUDZ6GQK0UvLP7FIzf5g5znxnR45+ePBgwjV0bn3LvT2Oo9/NE49RlNEGunR8tVqbRtZmg91ielu4whBPn50HIan/6kKkKviq3qTMpgfYcleAaOVcq28a471wTfUs8CM37PtJQdBaXzjUE5Uofyr0kRRu/zGHVPjFqzXOl4W5NzP9yizqyxEkuuBmDlAwhq8sGXzc/RPWVZ1hyrw8YbcjmVzH7+VhCOi0IRkzWaAOzMDFwK//L+4qu0LGKfBRQmkOZ/fegI1KSHsu/4mvfFtG4H04Yv3/y/zf/N1n2N5UtS4MziTE0I9eL/54kfvDwLK+cPIKW3fpCLQN76YTPRMirG83Dqj+x9MQslElRwWzZIdCaHcbFRY60I1GSz0/aSXfEpeD/lTJ+eGMja0siKuzSpv9eDXJU3B18ueMjP7cehxHbIvnKRAGwm6sIzZXXWG+5Gg2HW4KD129YX2RNtdMb2W7vEN57rcrafbaw7IIMbEtXpqH57zlq2gHSMpxLnnp/cGmYEO8POQM9Wqo03/4LeCuogdJaFYgz2o33xaIwauxyfmvcTzOFOnDxBWusX/yJcx68Y/F0UXh15AtlXtdAlY0PYFH9MAS5WuJ/YzP50dK/POpuBraI3OS/OSNAvWA6Oht1kAhNxl9S9hwifJC7ur25fpY9/lNQQAvZGRisPApGdF+irwa+2OlxDdpsJTkw2I4StV9ihet62pl+ktdmuuKhT5NgtZslhUheotsJnRj6az4p7/kK1yolub7uI0Z/ZX7+ZT6+sRADp1kbKTj6HFpX9LAeCLDBHAPs25oJ2zsXw+cnlbBlfS32PJkKNjyS1Ivz2Cz8O5lUtfHJUB8YmvCYn4Zfwxu/9OiNVws5T1WBIMdKMHwiQpPHmeHZ/XvZu2Ml7Bs3TBU73tOmqfNJO3k6rEgAUBZaBaGBj3jVMQn4vYTB3NKf76IqfU9w4D55MTrx8SwHVqmCl6gy9IWdhBBRNxxoWc899XV0evEtsCl2xXGDVyF5iwV8KLIAuTXz2UggAxtX+YDJtH4aKlACFdGXsK/PBMokFiJW/4RTzupg/vIBe9rlY+N1CZzZfBQNvE6w1+vHqHYqn+YVXuS1tatZ+qoMvLC4y2dm1dPubavwQkY4zNJpxr4Fe9nNsYADNbWosOYEGvQJwqGlxVTncYc6Cpbw7EnaKGlhSzUdB+nXDFP+LrsInk2WhTolEbj8+DUWfVzJJho68CdLnDbmqeOptvs8tLuGuu+Vo7WGBzsJacJARhIEdf7mxoBT+PVgMK2y9KFNDrrwapM/nngfhWGu7zCkfyQI7GR83MtkuX0ETdx8An9MuYEP//iBwc1hHqgMIF/phxD0Qgfe1TD9eRtJ/61dzGZGl/hbdwM9Q11+t7YMYz+FUuqFWMpOE4GBZURWFifwkqkCpF3ZRQGXRtMGax0s/LSBXSRn8R7xIPp4QBzOB3fA6KQgcD7xg0t8fsMXtVAK2XOQe9bMovjAS+R1V42MsmXh69Aa+rnNjFJDT9M+NUPQOh2NdnWJlGURDV+eycP40fncbi4CYnE/yenldVjHYsSqu6Hg1Fk6++A4JxTcochTK9nJsZbTW6RB2SYPlbxrUG3qXhxv7gORfTK0OP8Ajd7/mDUUT3HZQ1nwuTgGmjcuojPrCnnR1Ris+tTPZWaXIDsIaIWSNbQrHAEb52F8vW0abKsbxD+bhdi8KwifvNiN7qlFMHd4D9zjaHSrO4zCB37A9QUCYDVrE0p/cIB6Og7XYrXo59IAOB7UD5O0i3DNyPlsqDNMxuIaIHRXF2wcDeCk8Qpe7tTJ+t5t0JGrjh4Lb+GyNXugoPUeP3YXB+1THuR3vpSytQZxSch4dFJPpooxa7DXdBnXGtli8MAE8HmqDfZFi3H0UW9od03DvHu2eDNYnYKmxYBHy1f+42APAYHuGP93Ikw9FIPnnZ9invstlugeAaV+YRgwcTz/nvABXmg0YlJ5IaCNODgfVqNtTxvxScZNrDU9TPdGOOOv1/KQVXsQ7QNE8aXMAa7YrAc+RbnQZ/yLlrVbo6n2CTI0H0SZ2+tYrGEhTkxQgt6fWXBy9mTodAtmjYoMbnV2xLebmjBkXg9Ml34Lz99spPTNa+BT0DN2PWABN317cGTCKL6ocQtSQ8+h8NQANlllw/ZzXKlmuA9fvohFwQ9KEGN3FDtWuvO4qD7ec1wei3LMSafiELlWjWDBh4G08Xssnf40AR4O1+HjM3tozadgyvRuoeHve9DqzXK4Nn0Yr458C3HSN8lMhmDg9h0uiTfi6BUVKKozH8/8EuN8+xrcN02ZZBb8Bz0LxlNAjgiImKqhdmcbiVgponjbGXz+bS6cu+8M1t4b0DL7M5eq/ocy1kag/2kYVrs/RZ/6Qaj6PwTAByAQCBQA0D9IlFUiyc4mKxKKOqRdpEFlj6RIUqmkaGiIaJCSVTIbor2EKBWFikpkREUKpeTegx6af3oMF2dagMrzcCq5S3As3Q32hyiA/Mq7cEo3Fv8F/sVr40fAKGFNHDphxB0Nc0GpQYT2BqmzWbI65HycB1ZJweSy8SOo5CyDmnvGZLXxGzhavYUP2oP05YkDrFspDMVjRWDgqRPnuqyElUMJ7DJzJIoFmvBI5wkgcvwlr0lwh7TpOhDvuZdqO2fQDBV1ltUtpZhziVSaVsr1Hy/RwIwPbCHUxEmSU2Cop4YPrbpJU+TiIFlHiFb5+cKHSlf4XqiEck636EeyOZjXSoC7lySJKV3ihd1hNPplDv0TvkvHXc3448RB2Ni9E4wuhsGIYDkQ7wvmJS9WgZ2cOnrsKYe+tyJQpijBkQbaMHkRsN5cbXwXMgKyQgvon/QrfJo/QJueeqD54GcOaoylVTN9KC7iEur/tsbNuQowgB/g5qwknPFagBqeJtKpiw95VdMMFJGxBOFhcRRZX4QRojrwSaOIxz7ooKNKNZxsGkXjDdJ4jJ4z3HWbDuOCWmCJlzH+JzwGuo6ZweUTAXS65jXcv1+B2xcwXhHaSzUtwdQv+ZIjhndg80URmLcmk5MXBJCmowvul9kPG6IG8NS6leB68S4cXLQB/XWfQbeUAkxI+I86z/7hyM3RtFI6A57Ju8Cy4okAhrthR6Q7GDvuoBdSlqBQ40FT7NJAuP8pTtC2huSwdvwSJQZbnmpA74pWzljzHKY/mQKh6Q/o+9L5/Mh4O+3KEaWSAGuM8RBkcXCDgcEWdBPyxZ4dSmCY/JWK1x6BOKGFpHnfEDN8PWh71S4W0KmmWUd72STxMRYKy4HGxU9UpWyIJe3ToSRqL9hUlnDi1DZcd/Qq3zLJZJQYyXf3KEGdyGycNSoHKz0m4NwxY/F+iAEtuxRM1ZNVYV3rR1aQuISvDQWguXIOhRzzwP2fl2NaIPNrpbO86Tfx4VfF3GAwDiYMqcOD8EngNSabNm60476kkWgetIdPK8ji47o1qHR8I7eq/GHVnLGommIAj7rFYNWu49hTWoAF05xZJqKfNd+sxWNfvElCqghtMvOwb4MirImvRdHZqtjqLIkhauvY4O0S/vVqKQm0CmDsxvuo0WND1VtVIXvNN3gy8jeIz7bFNUI/eWltPOdLi1Fzhhy/L3oFfw8aoddsZZCcmME3t4rxwpkW7BmzAfsvr2aRXCOQt7mEOmfOQMrgRxI8NQLiv9rB/J42fJL8Fk0PudKowhs0WfwCFbVHIO3bxbY9kRClKgkGEi0g/tuTp3UJwKRJz1DvdRwFWIykoVQZTi9UoWfTvVlTUwCUV75ng9RAsnsiyLvVTPDnMn98/LCZZ7RncFduHWzVMKeMYQMYlnAF37w0XKpuQzsPx3DiszscnGlJB41DaLDkMhs87WVxGRXw8t/LEXMqecnuHu6VbIbUH4fxmWUTG0/rRH/XQpiSV8V7N+nDyDHl6Dt/Joy+dAgWtM9hn0sfuLClj3bOGUHjg5bzzqI5BCM1QW77MVyaN4MKDjnjvGOr+eLBT3xv4T8M3OTM4vLHmNsruLtkLBTNH4+rJM/AIu0LrLLFiGZ5dYDf66WcC60wobSIFExG8I+jlqAbvhZLT8iz9PbTkL1qCUy/E83T7v8G+dv74WrBIcy21YW9rQpQ+/YNnDOrhkvOImA2KMLtGnvpl4opPu0/RD8zEuCDeBjp3BwHHy/ewcy8FaBb+INMP7dgbmQVziiqw1M35lKgogOi+DI6KiwOt7YpgoP0SVyc0QNJiY/4gYEAXdh9jctcoyDZUo02zx7BjcojoMr7EGl6vKKxB8v5m9Y0WJ11lOoDluKhRY0oeegU51c8p1GRIjAvdi52nbPDwrD1rKA0h4NzpTjNeikrdMez98cQvBWwjhY8loR908fQCbMD5L3VnZJ9F+LVJ5nwfXQbm+w0BmcVJT7sG0xx+w1APOYLjy6Spt3D/Sxx4BY/2+bO046MRRd7SW6f8ZVC0ibzbkcTWCu1jRd93Yev/P/Rhy3H8eimEZCZOhomH0oGw1W7+MoUWZZZMg0s7q+l2juxnOt4kW1faeJTAUEKGw7GLY1fuLEik0zfZED6VguocFagAy06sMFQCBSFbrJuQDQL41ryG6mBSlIqnPJXFB0SFGBJrjCJNOlDm3grJcxWhqlOYSC0cQ1cb7nK/iH+rODjybVDJuC6cJhl561FmdOt/GN4OS42FaGj7es59tgk3Cj9F4ai3+JyGSW4l/Ka5yw4xw/HdfLdoeukI56LBU8VaX+FOzwu2korg5JBoE8TYuYvB4UDx7HftRba7IIYGqq57/FyuFgVhmuPGIJnURVOyRQFq6+6PPtDO2WldWGD1HTMGjoMuyLO89Xwfzx+6DDIRnfiurXm8Pm5DevYXUKhW8rgoGdOxvNuU5tWF3U47eatI0NgjOZ+Ohg8BqTqe/l4dC2uqXfAOZt8ULHgEqwoFIHxW4wh+ijhEv8onNABoPl1GUw70o/7y//wAf1UbpOUZMsp1zFvxzj4vrmFn8bHAf4zhsslD7gkNwpSvc6j15GD7KXbh3faPsOx8+o4MGEZbkzVwVMDRpDYK0i/3NPoemwwVXafpX1atWhv2klNWx3oXsd0LC7y5g+ho+G90QL0F/Vh+WIZ2Pd7MW2Ru4CB4j00T7aTs0I3wOklLUQeupAoAkypitTvLgALDqrCp+KdbFLhTXuO+GBL5Qu+dTQBtk0yACHhQjBbGYJytilsN3CANz2MhZmPT9CGPffwitwECp20lS5UMBgaF7CWvAcsTzWhRzNH4bzgPpYpUmf/tfdJ08AQJd5vhr7/1GDb2cPcfjSOV434SZsepXJodB6KLjFEFd8e3r44mlWHB3m+mRhYaEzFCszDKs9AbHpfyy29R6BjTjOMC69Ht+GbsF2olnxXCcLX+nzoaj4K7oETedO659gbo4jfTMpw7qRqVll5GDIL3xDaToZTx0fD8z836FimAytdqkZr/2ZatDCZ8xsSUXLCCTxX6MZPHinCjnLAyH4ZnKm4n0v1R5GUfyhbTfjJzqq3IOyFFHzx6iLhq3pwMvoiv/6zHfffieLr8km40VQao9JMSS/kBao5BKBNXDu8rZMBm6kdeGfBPX4w1YETWw25oFIbv2kYkfOfX2TYfJhCnX/iMkBQk89Cp5MDrJO1Hi/06HBP7nfaN2I9jL//Gj7ptIBD4zusSbOEV1tX4rmGbEjtV6MaVWfeZbSCbDkPPa/14aOSalw+YhdtWKYEIimL0Ox0Nav9C6bN1xyw1zSXBh8gtGSOB6dBa/op/5qmC2hD9fVy/BWzgg2e+aKZ6jQeNWyBBmYO+MB8KS7OvIMNKyx54QxJkIjfSOpdPyEyewWFRjZii1w5WSVuwH2KW+mGiD0KJLRC/F5h0MlKQbFKKw6pEMaYruN0alcC73hMNPrORZK+tItmNc1mmacTQbtvOZ7ZUMirvtfRgV9T4X5BBp5tvUY2P0v4xJE4aDlfhH8a9KDAU5H0Y5nfpK/AmZdX0YL2A/Q30B6euI0nvzmd1DV8H7PfjwaLDaFwfNUHmvcEqVLPiId0+nC09ynQHtvGR+Z74IdbJ8HrxHgwOaSDc9pCuelGK4a+mA6fx+XTwgsjwNr0IJX43uJE/690MNsCDHrDuKajH2IlxkBFzEHo8ttIrUfF4YpBFi+NCcD7AmvIO3Ey2L5LoL4HGbR01nKaqmxLUeOW8vGOqzxeToijl1pA96yDKN1iBItmdKFqSwidE5qIxT0SpJRjCNqXMlH5tjioPA/gPWef0ptfYhAW3M6jm/1I17eDqq65YfANQbwdWgnDT4oh/Ywg/DbL4OXjJGD5C0dIkjCgnfnH4c9j4rzXduCn8pALfu/Ay49nUtPOM9h2eiooClnz46qt9FvIjmX9OmDeJiv0CnnGoc9m0UUrMdpbrkJjloyBi1kO/L4yjp9rbsWPXmfwaHI3Xcg+wfE9Fux8/Aw0CGykZ93CcOK3OqS+bOYYg+90uLoewkxG8kDNLFIYtqBjxqFQvnABznQg+F66kFWmScK98Tns0FYC+ncrQbgtG5LujOXHUcQnCuXAsVAQ1E2U4d9MdVSYkQSvx/3mUoPNqHG6GLVYAcyPuqHk4ntc858sXG5Iw4o4AbyV5o+Jtnq0daE//5efSmkvFkOo/2JqflSFufckYf8vZVp0VIQ7Ov0hvcGeM79rkKxeGFlOl+ISD2e8oJxAfxWnQ/dAOreMd6MutVBw2SROT+9PQCthIZgoKYXj5rtAe54r/owYAWuU18GvATls/DKWlNTGYcvUDp4epw0NDwvANKWADzgNY3OILOh1LMWGhEASWmKFW16PQ6nVt/jYbAUqtm2HOOeDbOgzxAaSI8Cws4eHu9L4zOsCcHurwKbJt0ClbiIG1Nmxg5Y6bZj9ksvNx8CmEBu02XedqnXtOCY+Fk+v+81P1l8EMws/9FukzP8W2fG4Ldqw+rwOPXWVBsG/1lx925cC/NLBaiAXq/7ew7/tgqgTvoy/OMrA0asboH6GOj117MNnqstZ+aQ7HzqdyssGt9DCHgdqmXSOthXOgD07BKk07wbGOP7DGDtZ3qnuwmnlB2n/4ct89dlVPBQfitorBaFuey+NFpgAU0YPo5KgOf5V1KTNP+rQo1+RjQZC2O5jJE1bNgNMck6w4PQ2PNaxCnfnD8Dt+tfkp+CIXu4nqGn2VpgwOJ2XfpeBkQ3McZQCIntyYPKrWVR95gclNxfD1hfDfNp4D/occqSeQ9pw85QQOqodIEXejNa1u/hX5wOY2BlA1qsUoTpoCP8svU/t3tIweliZyqZO4N6ISbhmrBzEnumk+NH9NPXEBApXrUEcVYfhYkIQLTsXJpm/RPNRE9jTXwnS9r8A3hUMOVGvOa95iGz/PmaPGENIznjPNQPzWWpPDzSF54DkwQi0oUSQnqiHlr/n8xf7Pla4LQiP8ny5tLaB9fgxKYV0UkntA9qScI+Vva9ihJkcztzWA8pxIoBC9jTj+m7w/zOEA/e0aaHhZxz+Moq7Jxbgz38BvLuxgKtlZ0Dj9NlUtP065J7ZRh8MyvCW6QmuNQ+jmvH3sG/9Pvj7ohRUDUThvrUtZq23hoGB75R/KQYflf/kBwXJdMZ5JOd9UYPZCZW03XIq7PdLwx+3m9BQWxKEF4/DTdrX4b71dUif2Iox4UEgUikFS0/oQuxKhB8PJ1LSmMd4SuoIvOmegPeTDUDG4R2Y5ujx7tOtoP97FDgtNWO5qcE4X24xKvY140SJfhps8KELR1pAaJMsSncngPWQGKx5owCFO4+CT8ggZr9Txu+rH8PEupOssV2DZ+8kUBUwo/haApm3Y+jiei28I2lFqy/tAr2JP8H4cCRN81DHjk8TIVH8IQaeRqBD/1HeNRnwiVDHANkMTlDLIZVrw3CXx8BNj32QujYZirKNoedIE9lHhPJEuUcwvECIs8yCeUjzMi/IyKbpk/6y3TUHGMg1gSOxAC927+L/5rtT19SpuDv5HpaGmKLgokT6sUERClbIwN0oUzh6pgECvmui1AQn2FPij/VL5sDl4g0s5vaXOtQFcGTqRvZUHA+F75zZxu0FLR76iDDSHcpCYvn8nEn0otYTN2M/XTwQB28iheDWo1Pge6KAXs6w5xwjN4raIAHLtjnQ1tunIOTIe1p8xYHyguXB8tkUfFKyC+c4itNN6VB0fepJ7akruWjRFpjb6YUL9u3BM5OUwCqygY4vGIvVd8/hO4dDaKd9kWzdEGpvdVC2TDMuG/+DpX9ZgfvwE3q40w9i/2Xge+U80C97CaLHVlLajEbsy3lAabUzaXqEJpzKEeQZHaK4tcsKbT3S+MLhR7DoUxO8iM+g4wvyMUZSiL8JG8Gp9MU8pfQJxC49RNGTXtGKADuSvf8ELmw+RZoHRbgw+Cmcc9MD/6RIFJ+xlwx8jvOuWkForjSldZdG4ZzzhugqHkCC5UGUtE8Z7FmF3mTugK/l8+DuShcqST8Igw/ewe+EItb/MotO7btL7f6WUHA9mD5MmECXjdwhfJY6Ba+cTwfeDJBFiCHm3HgJ893mYtpXgOPxebjsoB598O+i/u5f3DbjM/asq8BaD8ROr0IOEf4EDuGmYHT4MJ15H0ffNpXQnOkqsGm6Ovbs+I6blwTjpCh1aG0Vo8i748HoZxlOr5ZDzxBBKl6xhyJ3HeYBMwvQ8pvF8QfWku24atI20AajkcX01TeD/JO8qN9MgPlhGU5feAOVw5UwUfUfjzxrgNWtU+FC3zt0j7DmjKGf7P0mh+Q9O7hmmiJsVs3G9Yd28DurGHCZOAUaNcR5k1sPrh+TBOl7x0LYNHEujqsG3epk5n8OYOPEXHx7FCT79ePHmD24+tpkOjDBn85vGgHr+C5XOpSQ4nkD0hooIfXZkqBRfZZO0ylMijQFgYAUljvxnISaPkPW/atkU3MF7i+ch3ndmqC5PBz3/xKC7jVC3Jjyjx63hNBJFyeek1zHD3bOxTeOm0BAewzo/bnIW/0NMGxXOO7Wv4/fz4fQ/IA6im5MYe+Y37y3qhO+OJqB69QGWl1/A5zP+fFZxUiK6B+G+ZOe0MuULvrvzV5ce1CJycYIIkXnw1vT1/j41VcqrzmLImWjIf36Ns4vtaFHZyW54PYs3n6Z4ciifzDy8Bd81LIXRilow6K5f0FS9QdYGs6mxpmrcZ2cPHcenwGTFwqhvPdydtonA+dy6qC5sJDlBwK5fX40CN7t46fac8C/QhRk1udhhWka/73iB53xC/nAYCx5vNvCcQECoKbWyVKpNyitRwTaoqrRbPsNXP1xM40dnsMbI07ADZtMniXogTR+B+hecoNpk9Thy8cHVN2QQTPtU/hzrjKcvdZB51aM5tWuKyg2bhKN7cuDLwwwzSWSAqUlOX17BHjkP4Pvn5bwqvXrycvVApS2LeJ3Jf9xf7cppAqc4iu6ahC4NwMX/v0JpSP9qV9pFUaWZPL7BW2w8/YOeGpvALvuWqODljKonvCi1hmqsLjKBKdtV4MhpxryNZsEq8yMsVraCkR/CNOfWXdpklg/T4o0QT37G/Dc9hBvDUpBe/kgqNIcBc2/jSAnNIu77EWh2eYxy28t48lW8dBo/hKPxgWz888EXBF0n7VWGoJV3ABf7noPEkdd0e9+JX0+Ng+N+rLw1nYfOCkVATO3rYeyaAs4U32Cel300CjtCpm5WPGi7AVw024zbp82iRdeUkG1gq8sPE4Ddn6r5YRDT7CnMon/mF3GgZIazt0dBG2Zf9it5S1dqE/iLeOkQEvoDovfNIdlu+pZ4mwPdEfNxC0yZ8im0Z0kTE7SND7HtvmS0HnSFWQvuUDn2IfQvl8R5q5VpGLdQJiVEocLZXwovjSfh1Kk4ZRnN1mtXc6rChrR1HcyfI61JDe7ReD025x1tlyjlMdr0e3MeHDj5Ri/6im8zXnOicZqeHTHboobfxz2LTGF3z/sUOZmE+pJyAPGXufduUt5d5YkbWi1wS+JW8lnRDb87rtKq05Mo6jvb9G3TQ8e9AaC35rbGLehCNYsfsNDdeuoXasXtv87S8OuHRQfkk+3eyyg4+ASnNxUSWPDfqO3VQE41nVjZNYiFClLYdWdQTC90omEps6AgCInMg+s5KubppJcZATVDeXiiFJxulN/jiwzXeFJymJ656UC+a6i+Naihv4WLMRrfr5gWawOp/do8vXN7qCZNB+sn6+GbklDCNHSpcuSf2hu7nrQvJJIcaWXMWdFFR6OvQo5uBeqP/XTw206MPFXBiZszKfsdhlsMvxOLRcOo++vpbRuWTgcEdtAalp2dEVNGIbH+9NSV0Fc+l4Lt7xNIwOtDhx5fpCKo5JwQXIdCNyxR4Gf+iCtE8EnwZILriJ901/ADWuvkaZFBGmaJdHyhtUc0lkPdQoaUKylCx4WSfjatQ/VblVj5cw78CE3kfIyHajgwQ54LKMI2kvlIdvJAWZIWnD+qQ+oJf8HL3gK8+6OU+y96QD4jusER8ml1Oc8FdB2I6vnNpKeZT/9+WSA6jFCCP/m0/ARTzZfnAdsugO/J1mCSNosnrB8JGrtr+DrIXksdSGL2gSiOF9fFE1WRLHF7CgQFDYDH6nHdHpnBb5zHY+O5x+Qn6UihE4dwg1HHuG73lsQKXCFRZdYQLSTF892EeCsZz+wdJsKBxofhw2aa2hRcTltabnK/k6bSXXOCEiyFqO/C+7jhV3zSEr5MU3XzKBdpz5g5z8FVkV9kL0yGjeOBygSCcPP+v60M7MTrvQHYOcDO/iw0ZCfdb7DfLNG0M4axd3iklBWlw2HfTJo2+wXYHbdD/LVJKglzo8ELKfB0FQ5qA4f4nU242HaqFCYm1kKJrOGeej5RXIv2wDuc8Vhdsk5sNqdTU2f/oDiI0noeg30fns0U2EBbbmxDQrGWiBlVEPy9m6QsrGH1rv28GC8DljYe8C3QVP0CqqiarsCqLjpCVGVx1BoFtGZviOw7EsQyYnMgCfD7yDRcB6OXtlNUz1d6XMFwh7fq2jyXRieFZZy5cZS9HwkBVEOeji7RwFejZagN38/w1mLn5T7wg33Fe4iy+lraLBjDexZpQM9oAXhVwJp7+cydr2UD/+FWsB6VzMyeDwZZE578otLFyno5wjQmduEM5be538PNUG8PJXCpn0BL7sZUJb7koaNa9B87Ef0Wj8VWoO2gb++EV/ZO5kLRn7ljFFGkAXJELmkl17tT6Wvu30ppEwaLmvPonHrV6D3Uhf4EVlMJ4vnYW5KKsrfHc0TK+5h9NP3cHOeIqybJkkRhwZpOF6TRzvYkUXmalZJi8as7mFu/xhMoeUjSVjEEqZ+reJfGmtpR1woTnaUhaItz+n58lpcd+433xIrg/eBw+xjaQprh95BsaUjSP5Tx/f3ajjjxku47qVN+Qfb0H2qNsV8rsW85VIQ1RfEX+WbeUTQYT6S2k25q0+h5QkRblz3lwQeb6DV7EaxgmIQsvsNXRUahjlLjuEE8RgqCfTiRRG6NGevPPb7JoJLYiCst5WEwjIJHGxpo0mfI3CnyWIuak7hVxvm0JcfwSCUrYtfXt2kN+mT4KFXNAld7cVNptM5WCqQjD6U4KKgSmi1LYPVyScgU9KTIHQMDH95x/ZmHnzu8Q0ojlqM4TvGw8KT7lzh+YdXPK3ic3E5sE97HHw9sJc7ZhTDV2sHGhvvzGfr7PlB8H7aqWvPoSYVrHy9B6a3ScH4WRfJZ+8J+J6SDxs+PAG3oHNo7rWbRDNnQBaf4/1GT/CCnxo8/jzINkE9lJM0jm+oBqFkWx+du7mc9rVlYnX8LD6w4QV6p1mCrRKCzpAMTJY+yWbS99E68hEViJ9D9fH6wPcGYNSXV3gyWRtmrr2JPwR2gVmcFZcHCdBx33woLN/Ektpr6FnfKfrubQz/HE1A72oBj93XhULPb8OnLjEKlTSj4fRKtJMRIOO1s8gozhBz5inBbu8Bvn7hHR5rluCnpTa4tbMAz6xfzopOAlz65CdU6SRhuLc29DWvBb2Rv0n9SB0EbPeks/9Nw6rjtditbwzrb24Ev4hn5PqdYGTJJ9QM98DJ+Qh5e9JA97w4xj6bRd4iV3Cu7GiqHb8VYm9Og8lPfvC0rzEg5WiNeW8P8r1KGdYtNKezHtJc2jSZ3lrIgmS5JLw4/hPietrIwDkSR++IYf07R8HnZiufHv8FLaMrebSWGtgJjoUD85dwbYEYmPy9w4uzM2hlx0pMHlCgKW93UbXLROyNqufZA1oQfvQ5bl5cQFam/6j9bz5s83DH9ZJ/oGj7MMb3GYGGqCQY6TMsTdPElZt3Ecr7ktS2RFQ6GUj1bwQpxf4gnvmqTy1VKvDaWwN+/PIkGckzNFHsCQwtS+TXLffooUc+/ld2kfWv32KNIy8weudEKJ1bxXMvuNOyFjX2qRiJu13/YyHF+RxXL0TRP/LJS7Icf68bDc3xkhAgWw+Or+X541IBOBF7Gjc3rybXJCe8m2AF6b+d6HaeAKz+4kgNF/xYevk5rmx8yrLrVrJ23Vm4uTgVHn67yuGvFLm8Tgn2nFLFQ+OkSGHxe9hjtwHyJxqB1fq7FNeqClbhydRcH8X/dutA7rkokHzZBVFyhvC2pwy2Dr+k59Gd5Db0jQ7NNwEJlzD8tkQSsr168OSY3zg3YxHHPR1EnWu5oJd7jAfuK2LXmlNgX1JAqd/GQXrWTDp/xIyHOJYSNv+mD4W2ZPmqDFU3m4PK4o+okPiD7xmbwaUmA97WFEzbXl+F6xsus+Cb47TVOQuWpHSivNYXED6+m8NHCMC16RXUmphMDU6nsPL2KD77Poym7LhNdtDNw8mWPFUjAN/Gq0JF5n+0MiCI9jVpoLdTLTvubOWavyIUKzWZPzZ8RsVju7jDZgrILPEBY51GUq6MJlnaRH3XNHDhf5I8v+UdLm/+wBdM9SHnmjDsMPBFp7/idNDdFZ6u8ObqttMg+HOQX75qgDqTDnjaZow/T0+CA18bYGjIHsUW6bOozRL+IrAE3bziyTj4DFvce0d+3oIg0ScDd6ABZt9+SlsMbsEie0NUGj7De6TuYEbEV5wS+ImELHx50wVRmH/bEhaoSqFrQzwMb2jl+32V/Lo6kLo6zDHY9SnG6j7h01U6EOZ8G58/A65LeMYXb37CT4LC+DbbCFYdisLpQb9Y70AC/h2QhgljZGHr7YV4rVoWFU7L8zLBTfRcaQaNvfGPRpxZDjvWq4OoIEGzcifPeqfFQYfcqezbIYwt0AKd79M4X8+FllgtxstmRyn0kST0pa6AES5ptC7AA931IiBh3WMSnbUJNs+OofrHyfhs0VUony0D82USeJa9IllJjYcdExUpqc6aBKZpM9d30YNtgrQlvg22R5iCc6QfLG0ZosDp/vjc7gPGxKzARaXf0WRJHYZ4ONDczBRK/WoCdb8fwlT7edA2ewBXLdLiD1a9pFiiCL0/G2G37Qt4Z7Ecvikpg7DNVy58cJHKh9XZvW8N1ik+hLp551DR9B3b2JWjbto79nGxhPMP/eGupx5BsTVLuRtw04b3KB2ZRbXptzB1zjS2XqbI39rGgH5lNSwtWYLD339D4ekw8vHRYKlJLnS3JAn2RwdDvXMaL74yBmZ736Gi+nu4utobd2uEo1ebLsbe2YLX1/5k7ct7qW9vJr7LGQ2GHbXo5rkf3RpC4H7tRbwl8hhS916FiCn6/OuIGsy9L861h1ShZ+8VnqSRyu15PSSsto0k4z+Sp1wvjag1pQkfyshhth6lHTCC/gkFYJNwGFr0UrCnbTwnOkqxx6swjJN5xImz5UHwiBesbzWENV+78JBjHM6bNwN2nerDKSEDqHKwm5bMzWKD7QWg7dYF8c9VIcJRFaXHCYHzllkw9EMGtlsfhlZlHXQPS6dJN/TxxeFf/PKWMExwNkWhFis2lNxNaqOc8YiEAIT8jmQXdxXudvPGQZiLY3EajBo3E7LGOpPtia28QvcE1WrV8aPwOvT6C/jq0zG6euEUi7lrwMZRt+n5o98wpfcomzzSxFTham7QFgXJhbdxwyN3uNN4igcmGMKwzkM+cCoAOycfgzOP2+HSEQMK/iTGo118+XyMG5z95k2nQQLEZ6ZCU500JbpLw7asd7zVTo9bS9PpvwmXIKmniUu1vpLvXFP4bHefiv4uQROVo3x6qjQ2Ti5lrWxR+NcbAiq9DbTCR5PyXkrBQPBVmiN4j9ouWnL/0HgUlX9MRgnhFJuXy/lF+vwg3RHDVk6DvfZzOSn5HvWnG9OkDe/w55JkNvK9zj8jimi1URuvqkghgdpRUJZzEtIlZHj/ehW+1ClFx2Y/INyZwOdWBsAd5VQ4tv09+HVYQElIKYh4ZkDf5OvEZyfzYPNqci9tge29a6hwynU2S3MhtUpVOH78CIzLygJxnds85kEbSjYWga7cAFnPtQUvpVCyP/KDm5PV4dHLaaTY+xiOHnHmiPMH4cpPB9B7Ek5um7+hY9F1yFT+Sd/yDSBDfhFsO+6Ftww/48NRO0i8r5idYl/jnbvnycjxE+a4JeJO1gBxjUGYmrOE3+wIxKbMdBw12xrf5M/D/YVhINgVAZmnFAgFLCDCbjv63VQm7/iNuPbHPNJZFIq5U3+B7rMtmPZlPoz/MY1WPBAEmWcHSTZjC33uvUrjhxfgEn0hNoqqxhbxTejRvR4UxNfzqqQp4CZwnUpD3+Cz9/f4VPACNEqr46aqc2CstpvKLivxDNetGHdzCjQL1UH/jUL+vu89tvysx5nGmaA4QRV++RCVb/OF31floe7eeFB5uIEtR73l0XtT8FHofY67lEgVrvdwk40W/7plzWLd3mg1WwS2r3iCJxfJ0VO5QRi3U5aSzshDo4YuazQ5go1JJ3r2atDogxbgW7OTytvt2O+oB0Q7n2eXxG3kd28Hiv3NolTlX2RyeyngfWEoKNyCZ1UJfcu+cNLJNpAr6uNvG9/CZ78mdnu7kKv1g0Bi9ggIPbyHzjzJAvOnyFfX7ibZDCv+NlsM63ua+cbwDzyXXMoehpaQf+YFnHkWT5Z+hlSouh/9ipdR1ZUDsPHQWezveMFP5pXT3Ao5wHmfObA+G8yS9DHyw37KOabEkP4W49dFo4rbCdrWdYmTv8mBu908WpfgCorZd2jUjga62zGC/WJL6ITlA3SY2kiPVzbh6EniYPRtARxvWA3O8nu5JKGf9a0PU0dYHo4Q1MPeAmNSeTUPL88BWBJ9jvM8VOjwjR4QqJXABNnNJPJQg+o+aWF0I9O5799YX1ISjjnpsNtIovo6VTYa9YrPNdXTa/0XJPlhEL5qjoErf05x+V5pyKjuglQVZehrPMIF+9dRaU0TrKrdSJm1U1hPRJjaDo3F7gmSIPQ5lCJ7l5LIvHfoPRTOAsF76WmhKs0WuUY9e6pQqdmL3vsAjB/VRX6F5ewUqgWJ0otBsK4NrL/bgI090s/6cA4J6+NLVWPh9uZwfLpjCobIl1PnqR78o7WPxSM0SDi2izTTb1HPiwBomScAhacU8b+jpayoHARPhH5Q781mfux+nF4rSHGJ4WH+FGmCufEK8LY8ne94+NLEqafJ7lUFfDELo3XXc9l0VyPM1ZsLCpv+UrGlKYgm95P65wJKcA0h99DR7JsSxG63C8BF8iaElfThmOQmrM80gjWiB7h8zQ6wKyxmpa9BLF81m0aZVKBpymjW9dkGk9d3QWCkMVy8Ek/D517xjJcbccHlPG44spB6k33obWAoHtRzpUWnw/h+nylYfzmBewx76ZyEPblLl5NFayCqy49C/1f+uM3QB1CkGJpBHoz/vWS/dkXe4pRBbxfeh7sdGjhZNpRDLqVQSm0cCo+upjoRC7iYswUEbmmRtEkUrpumyFWGyPWbE9he1Y+/ee+GzY92kFKOKXy8mkBRFVbo1SDDW/Jv03INcxr+XIvpcsLQ9mUA0wSc6VuFAUzwiaMn6meQRZF7HplCY/FKGnswGDb8ucI3Zz2gsS8y4NJvY2gTkaD3CxV5V8JD/iPWC7FlovAm3BPd7n6AjTcNOPrDPBLjCbAs5RJs3OVO5cL5KFQfQbmvq6ApbwUU/X4LVLGZXrsPwFdvdTD4lkkJ+60wP+oLPNMewE2NP8jQ0hOPHv7N89vesdSwKt2NnAFfPpRwSLoXmx3fQc+k5wMMB/ErkWQS+2uJ23cd5lfGd2HqAxH4t20kGqSd5Wu7M3meUzhMtD4Hund/QoGaEV+o8qe5Wy/inMnTIbwnhv0+J0DWaTvgf/HsmC7P/eN88PgZS4pKK8f/Bt6TTrUMeHtm4cxhL4g+soUK5Lbz5TG+5GfpAK31I5ESLsN7s2uUIq0FD8+Pwyu6YyH/zFuyNX0Oql6TQbS4G0pHV1PPy1rOuttBPkajYcTfeDS4FQgj57/FbdXbYavdAAynC2PV1gPcm+6J67ImsJiPLITe6KO41R9on+17nhsYQKy+HEzG2YJ11wNsiP6EVgZlbFKhDPeCt0LC3YWw2nwZN2ytpR4dJ/6U8hFfXzKiqSbv8WFqKRzIGwm5cV9hoaM/STkehl0Xd0PVgnxUktnDnunivEYuhUJ2rKOCMVbQtlgdVdYa8psZPyn8ni44mrVwUPE23FlwEFIfVpL28c/w54YOaGuO4Kvip6le/AT0LHiD805shIMKEfDnTj7GqJbhx+SxPC5XFlKXWOPbxCU4q3EBV3XtQ7JajC1JZ9F7KInXPosG3ZZgFLFCGG2fTEONTXSoUgbW5twGG8cTHB15Gvde2sdlhzLAaV09GShOA70Cd/BfVAjr8lbCr9nS9DFoM7rEy+PLr7G0/nUp1CwfRNFvelC7pxjk+RC1bbBEfl/Iwba3YGa3BIrlyJGe8TPetV+YTcSV4cF3DZrQdobrBF9TvHw/aNdG8f7Ho/GH2Ckc3/EKzz61ASfBkWCUtovTpObBq5e2dO3MdSqL7ARjyWOo/G09rYn4RguiC2g6CcDvgARwEUsmsSt7MH7Oeprcfgyn1cyGESrzKSHmPxi3ZQNOWSQLF/rOcnh4DYnsqkDDLQQs28oDZaq88cwUeJHeQrISL8FBVAVuLWng40XToaNNmFzXi6GA1l+e7zrIu9LdUPXOQpy7MB0iVQl2tBjgJpONbL/7H13elkYbVheR8gN70HCugOffKujddD3M3GYKXVfi2W7lB9xyWAITk6XJbEwM7wvrpmHDEDg90ZMKK4Lx0QdFiAycSHZ3kSwy6ilXuYmeyVuyu58hr3fP40HLX7ji3kSQ/k8TLiuKUryxOBmreWB24EFOHfmehl6swK4Xg/xv/xWq2qENg/lK8HxQGHYYPaRzlyTofPxDalz1GS9eecgzu2rpaqAU6rZ2kLaxGiyct5/fHFoC7TvXU+fvGNp6o4n1PWQhe64xZ61UI/vng+i5imDozmde9XATdA8PQajeWY64c53e200CPbNyDuwI4pibqphVqA8/4kbjmdQSDLr8CvNjV7IQO5LAZVOQ0Shl58zflL76CiYZ6UPRdVH6EPuYlFbthcQDP/n56q1waaQPn5k6hRUfjoGDUTu4V4EgNe4srQqLwryZk2mB+XQ8W7oaH2t+IQp6RtFJS/jpp/nQtEgN9DIe0X+kiU//5pPo2EO8wsgUf1QkcFSLNf+pmILXnhYAuQtAyJN3dO2/Plg/4wOeCrCgl88dIXG9Ix+SjycS8KdVm2RA5ec4ENjZjH6vLuG0xw3ctsAJG7vcaa1XHA/mXYPRdQKs33wTf/pqwsrybuiySsOEhz0cZV5Lb/8FQtN5OeyIuQrny0vh88AC0E4xBe1uUbw44RM6tUniwMFWlqkxYpfkz6hzZg9cO3uccl74U854SVgVH0AKq6+A8NkWuj4viU6NesEvx1pRy0llfDL6GFO9FrWPNYH+19HUqdaO+1rbKMNoG+aXPYJl86Lx3bFFZJAxwHR0L7Z0G8GWrjf082scW57VAjx4E4oLwiDqVRYU+E7Dc5aBnNebDwH3rWCEcQ2VdjRxxppo2KsaAtb/qWHj+ge4NkiJPhZZo7nQQw7pM4bISCMIXt2Gu7tf8b9XM5kWz8Loler4IHMhPax+iusDkkCvwxRWjfyOk9Ss+fL4GGw8vBDiVwVz4yp3Lg55RYo1g7Qgdx64B42APbKWkB19Bq5fBPZ4Yo6ygWMxzngTOk++xRr2wVQR9oBfm+rDHpHV2Hr0F/87Owpv5cTgiA1X+OD+2XRi0TD/9NxCs5p6KXesOuw1y4FT0j7w6PdJ/ngnH9sbMsm2KpA1vntSzbLj4PLgChc1TQRDWTu+XvqMn8+ayBZHp8H25KWYc3Ui/k1JQDPBTliY8xvb/0wDibbpsNjFmOjkYpgSd4vkHCL5fqI+SUdnQPTTSXyKCbJNhMHwuw8dt93O01QyqabsBsw6uB+3JurSjgtJnPh9E759WQClG9XghWA1L7a9yWOdytFpYDTtkYiA4vhxYJV5lqvyHGDV+1ho/TICTtiag1CMIlu/msNvQvpYJrKc9RzvQW+cJOX/uYTxbU9wZdNIeFBxG9V95+KBCA88rddEuhHa7HajDZKLZelqTDcUKpxDx4zpMHjQCRN35OCr5lV09HsaNpqOwvMFR6C6Zhn/5Rq8rPcSfs3UgcS+2TB2cwbwg0q6nH0cpp+/QSWW78jkzD9YlixPWSWh6BQqB6ErG2kw5wuplYjg8V8HoLf+JjdvdqTihXPoQu9ztH7ZDdvnjYKXskF867YKrHgugENZs2BC6y5AvXw89+UQaa6fD0YZ1WC60gAyRe7CDQU3zhl3GoO5Bnt9u8HS5SI1nm7n6POVeGHZYt73aAqISJby0yUvKaBZmyKL1mCZZjrcjFclbwkjHKMZS8H7svm8ij7c1vPH7+a/uEfYg0Oyn6PkF1dMefYc1A3X0oiHlzB0yxm2DJsGSyI/8KMCK4hYmk/Je++zwxchlAdj7HGxBf/rR0CjM4TX5wrDq702/M5WFh4pRUL2kB/ckVmOB8LTeMf+Zmy6toLWt+wgFWV1mLXUB33uToGziw/SvalOuOjHeTCaI08jMsoIFhehtcMmyrDRhFk7tuDlpnJsdpLAj0e74OHATbbePAuy5Vw5jJNxUMkanG+pw+cD5uD2Uh3vffIGp/lruOw/bej7Uwf9i/PwonUuyN91RnQVhervmnxfZyqpXDDAsafUoEShC2tumZBu81Javs8IwyctoNfdVrCjajY0xGdTuEwK+IV+wCWe+Wy0Np3DTGVg46Y+DNS1BXUpHRjaXkw7ezqwudqI/r3T44v77WnCWim6lTwFH0TVg+42MxSJ1oaznQtBfYUJfzD5zbtIB9O+uYFzznN6GNaLVcn2hMLGaN0rBcvPt1PcpRZK9x/PvLwEE1pzafy2CHKUrsMbKSI4si6eGlfIQdOYA8jtlpyankA6l9fgSL/n3BtXRndpPO/ZAdBp8Q/g7miIfmNOM1LtYJ+tIE+/dRbeJO2nF4dEyHzudrpu8gjNfLogrEoJ4m0fUHRKNBr+WoFixSs59NxmaNvQBh4XXKiqKAa9he3h6UQzMK3ZBxH+28gh25U5bhKsavgCNSV/eGzXPkzRcKbOLiP8T8wcltYVwTbztXDb9gKMUfHms2ZqpOhpDHEtAZRXmAGWWnt5m8FUCPleAv/pCpKvSzYf3NLPn6cl8OrNDhyvKQk7DbZAg3w0ickIwAnxbKRzkaSwaw0k6AqR3SZHHtX1l808zGCjfTC0L74Ln++Pgson/rB6dDV2zXQBeKbA6WtvgE72WvbAbHyhcIBcv3nBqHQ9eLu3EPmKFJ0QSgWvwZtoVv+DN2Mzu25xRxfbJDR7fI2lc43h2JZHMLRzEik++YCNKxZR/7q3HFaYxH7e5mC5PoXqy4shZd4UuPx2mEAxGzuzPOiCaQ1fy1ek/I+9ICOkyOfG1mBHaSehrBWslS3lw4ajMEgiGD2DyqHxMZPuryjcGd5Mg9ZiGD7XgXzOiMKU3W0scNGUwrqOQVFGJg9d/4sXnzjTrPJ68Ax+iFJjFfAnjQT7tFmYWkEU8KmIfMa+JtG5G9hSrhIyA//C0ZhcGi7eimE3lGBqyQy+oq4ML+uC+IZRPjf9q8bGFyWUGqyKJ608wP/fWrglPwLGSW7hxMhn8NJqIitedWfHkqWcuSqOafkcdPo0kzS1H2LWP1U4/6GGLy4apgcFy2hc1QBVBqqyRYIQiB7bD/22X8l6dTPI90+BFwea8NvhLBbtXoiSft2473Qp7pcKwM89TjRy7TWIGRuMZ66rwiPhTaw3/QeprO4HEbE99NfiJJ6684jNO1zY6ednnvxlOwbnKEH7iXCofKzO+fcq4daJrXRITgNvVqfy/J9H2GL5Gw7Tfse9gbrwp9OPzu2rBauwA1DkZgMhcx3xRaAgjXk9C60ud1JK7FbujlCDW50RdGHGeVxXlA4rph5na/PTuPrTVoxZvxdVzQtxursRTQID+C/BEt6K1cPQQDoWX4yFiQZeWCv9hJ3fBXKyXjkOS+RR9iojCFV6zyPve+HzxJ+kleYESw+KcorMP15cVES5DkYc+skTxk2YDjrHo1lj2IXuTFwMN56/QpF923hduS69ejyLfmkvJO0saRZ8owDT7FphYUA4arrPo+E/obzbVhmU2++Tnv5dlhEUBcUJerBvviqIO86A4j5HiJjUCNceruVr6vJwWkUINnVvRu+nV+D5lh+sc1UMZjZUsLGTLr5Y20Rf/G9T/yhxvFabgfUCQWwbOxGUyyTAVUAHZOTDSCTgACzWUKIwsWHU1fABz6Qw3m/nAhvDimlG0E2IWasNF/Oy6KSQMi5vTmHv9xsxf34I1Mz5wAF18rzHP5w5q5B7XqvBmDs36LrfaHh9Rg//DN4CgfPymDPTCJ/ZjcGhVOC0Vlk2n2QOH+5uo6VvFrCW7QI0S6ynv3l1MLX3GOxx1cUbanOg6PFyyrfVheOH+tEv1R6OZL2mfePGgcSPt/BboRWlypu4ZO13Ni/uh/7zE6FqtgCNkdDm5exLETdu8d6NZlww/yDaQC18EF6L4akpON9pIvg5HeQdq+7hg2VfMfujJEyp0gPvMf+BQbUHHPk6k360/6UqWT2w+PiNFp8s4Q/fG9n2mBEU6WegwDpZLjiYDtktWSzhfoOzDeShbcY5sJ2ejcceOWCZ91Taa5AKYpwMuOc1LE3wZQnVe1hYPgGWJuTySZ0u/NTwhhqE5PC8+Rhym2mEx2J/cJiSM4j99STxc/rwtG0564WXQpJNFh4XycflK1LhtPMeUhzS5WGjN3h1jwkPTFGB9065+EFmHJe9DGARmTYIslKF8Dp58tU8QrGO7VBjbU4LnM1gjcAGShJLxITb0TzWwRZmORzDmrYqrFLyo+9aivw8Yym0zTWABy7CMCxdSGuHTsGBujh4MzcAjO9LQPpWbTax0ifxrwqYVzEGxu+cRzV7QqDVczzJ7T/ArkLFsPRTEkxy+81ZK4gfFLWCfYcReK05ioYW19j3biw9jXaBfDVTyNZ5h+t9JOjkZ6blP2ZDopUwvDikQrlX7WGz7hCucPrJAq+a2P2wBymDMN2WnEA/PL/Q2zJ9EI/xwByleyDqvBQ/bbWGTeLPuM/2GO9dokQhySu4Qu82vZunDC11KrjC5hqU6H0FkZpI8Fn+DHfoxWOS6RZUPjVA27d9535nAZixzwbebJpHQ3dqIen3V8o6f5FvrDfFq702GOd0myWevIPVG7Wg6z9jFFVrBAmNW1z2cCTPHf+IK9X9yeZICj2cJIEBDtboOGMUDH8TBLfE9yzfMYMvCNVjcYswBL7cCZdeTIFgm4cY61TA2m0WcF50DMnlh0LvqEXkMfcH75xjAi/kvTgubR2P3daK84KTIS1/Osz5vAYVZJ/w31FhsFHOi44d301y8emEnmr4cPAvbFJXhoO54pA8ZT8OdQDbO4tBw+ZV7FKiiXvX5eOIqP/4YOJ13HDJCy9IT4IV+62plP9BZkcl/htzhDdPCKDj7gyTd9aArB+zaYgIR4coguysdHRZJMvfBjVI6vhO3vZ9HAQLT8LdWlFkf7aOv0V9pzU1GvAo0guv1Fxn0zYtnqs1mdUUI9l3mggF6y/BVSfTwa4Uob9UFCT9n6PHoCl1d/0Hl1f6sMaICmo/FsNmVguhPfMEHM1ZC2kZaqD/eA9MLWvlIjjMg1+uUVTnalxhZUbn59dTWE8ouhp8prRCSXiv7ACpLmPZrD+QFaaqwovyAozx7iOXyh+oNUKSoi22ssQGQXhz3p8DbQ157cm9MKcuBpblRcHV2gIUWtGM2oU3adnifVglawjitI6+a9+EyLAJbHNVnh3atdBhnxd8VKyiORfWocKaBhhtowXPfHfDwlZtNK9To4yzH9nGxxJdptzgjNWd+C5ZEwOverPK/wTAByAQCBQA0D+UPUJkRfYmSUaiTZFQ2iJRUZJoaKhUkjKqa6DS0KAkRFFKKEXJKlkRRUJRKUXdmyoDa4e7oG+fA6Wq+nDhikw+Kx9O94x6IEBvDn9tm8qXV9+HgA0icDIkHXt+70eztBg2VNtJeSYrQEBxCXuo9cCh1xfBcKIxDLcJQH+hNTy6pYRKvyopLaqcPxon8JfARFhnE8ZLNTLpe349zfpqCXeq9Lji2ArYYdEAq7KE+FToW8wN+A3Si9qg8U4jrR+242WWlvB3zguoUH/GlxqmskHDa1Ct+oOV4rV8620SLdz5FG/YavHepTLQe2M2b222Q+uuf3g29wd4WF4lu6+DeGH8Uz5ZvQNe/VWBzW+sQDvnHdzXWcFvzX34TkAJZ5ld4kbFVto41AvR0eHwadsxXnJeATbf3QCCGVOJzWbwm/AZENOxmp8oaMGSp5HsaJBIsyZpwk0PHShY9JJ2mCpDWgPgt2sHYaDkLHquy6cHPUexa60Qv0zchrP8JoPzcBQsrNvJwbiCJHdkonyuH4e1ZnKlrwCJTVRjbcNXOFtIEswfAb2c8R2XpTbAioox6HlJhQMiCzk0+SaVKxyjoNM3yOSQPnjoLcRn+kt4VOBR1J/jB3JHclDpxzPqTzDh8DVd9EpqEKalyoJlQw81fk5mJ2sxblozEpbHFcGOt6uxaHcSB/e6sYl/CJSvHwuLSQ5aw4/gukmh2ACjeD9UoL3nA5gf+w2fx//jW59iseiDOSR3rkbL6EQoL7pPBW/aadtLWYwdaQvnU5TRsPoH1efp466LCjAlQZtm9O8CEZMfUOt1ii8mheK1tC56NFuKly3fjcWZWyh800hYE1OPw49z8ajTFhJ8N5Yki33w5fFMOHBRHFJuH6a/z46Qn4UBFC2cxGJHRsJoeU00VPmM1qoPMDw0CddvdML/NhnD+zxBqDaThUe96tjoXUHfbqQi2BzEl2Vq4EWicOHtfnRXlmB7oX74ZGUMqx8/BvtV+njgsB6dPvkNAlz2crViA9QpZeOk+lm4Vnwtv8ydDIqxR/nbg2ZYHhXIZgXJIDHhG7e7fqHAm3Gw+uc2jqqXw/nDGmDWbI+/e/W5KUqWP2XLsWBVNyy8fQ9iMmswt7wDmhO+oMtzOTBLCYTVh7MgudWGK4sBdMJdIcjqGE3ec5nkU8pASSUBF8wdBU0/avF2piPLDlmQzoVSmiT4B+XoOxzMNKSxUvK0ZMN9WvFHDhz7svnhbi+6a6KNAjlupGFcC3ZxwbylJpkUIor4vPVuPmRFEH0ki0LXXIHutT2QEXwOL2UqsPt/knTLQJ2V/y4EdxFXHqyQg+gRTyFhggfqiU6gbuMh8qv8RhoVF3BX8Wu2FrIEl9BCzO3RB8/+Zvg59T+8Vd5Cy/e3o8bYUsjV3kxtTid5TZwqd0wvxHoHO8jvseUJ8efR8r08b9uQCa3BCSQT/gTF562mgoTjoJL/lCVNbOH9kTRoinqFtq4d2OS/nZTe+uGlBd4g7tcLBUEKEKS8ked+HAc289ag11tHvJIsRI5l0fAiXQomperCbvNb3PGrnXyXKeCWKWNgnaIFKz2sQR/9HxTq/Q/E+1sgYtRt3L/tO4he2kAbVF6Q9vPJIKjxHtfrBHHZjzlglxDDqb+XQMrOtfjOIwHXbRThEt0J+HqSOrzw+EPtl+ZQi4sD70qQ5RkW63nBJ29SX3SCa8N9KbWwh1SaBMFGuJw6Pdzp7dhlpCX+g9NOpbOvXwSsm72J10/4gzbKx3iUrznYdv9F14oBsJ2eSW71j2GBbD65DASC15aNOHFkP6cr7AETZznQ8K5D20g51Js+H4SnllJBUz+cbHlIuz5vp4TAJnAtcyOjNmX42qSCL7pe4YLl8qBaYQtd91Wo8t4cmBIWh8nVrvCwa4CcujVhzfticDgcSmYCS9BHrIRbyy5wZ54Av4t1IrOYL3QgbRds6h8Js2yv8Irq42ifvonaHbfgv2PeuEb5D93wmIdzW9/jhKWXcP9WNXjmEgKWAVF8/z8/ei+8gSK3p/PQziQ8c1eTM1SV4LhuFLtemgybxtlyW4YITkt3YxVvUd58yQXeKT3jh1vHUvbzIG4qWsZPM5Sg9HodRcc/hN2jw0j5aR1t0jzN6g+IlQNnQ2bsd7xXqEdddmKQs/Imuj3UAu3N++iIxQjePqWKkoRUeIXaC2rOzcPPS2JIftNECB5rDq3WzeAeNQJ+ux2nWPsXoHA6hla1f6PBkSooLBvOx+UNwMZwLiS/moTZ1l4cEwP8aGQOr584lw6PWg8/192l4FfxdFlJGLbmX0Kzuqv88uEQXApW5b7uWE63DcO/165SYNZlLFGfS3Iy2kACvXDhRBq8u/CKt8Sb0IfpERysNhFEG+350qYNmKTxiNMG1KAm9Dt6mQvjdrMIWjxoDS4SWRDlbUxq3yq4okgLag23gpc5gZX7EZY8lkzlwup8cu0U1it/wP2PN7KCRgqkP62iH0n/ABVFQChsGz0JPQv7yzIxW2McznU7TCvSHpN9SDqWnnmDycqnyGqsOiQIXaAFzvNIQ9SdHA3MoM1tO+ddvQDyT7Ng5GNZfPe5gHTix8DaAGvyDrTClU7NsFduPcfVK6LqPEc4GpOCUeOLufahFluv1YRDKdLosfQ+G2t58sxBKVhQUo835NfT4tKbgC8/cv7xvyz+QxW0K/XQ3dSaPCrH4uB6X9YLCeew5M84beYQ5C7WoTrZGJBLNASDB1Gw3riI2vN38MJ9LdC/Yx/IzhAnH9dfbPminfIbptCaOeOgd8sdVtqZgbn1nXykoxr3L91CJ7d1wtQHBvjv730a/bgU5IItQXDzePp66yMr346mMbgGXeY8hbkejuhQ30LCR97zf9b76XiCAVjVS2OTnikFJbrCbqdVZBN7gWUkhdHt7CU4bZWD5iUh5DIsAxsjD8NBWs7thlNRa9pDnJxaCCpPwjhssj/Krb1A7/r9yShYH4YOLsAtP86zzfQ/dPxRFk29VMgnf1hRj3cKZCWKoH7NZbrz0xQMmsfSP4W73DF7DX1NVKDxcZUsmDKRNUuk4MvresqpM0VYzeAstglOVYShvpEiPa9OgPiTShxWHE9pu5zgxKuV/NpHjUOjlWEozg5+6mzDQ7Kjecbj3fD8lyjrKq3mMNmf5F83ByYvS4C8PAW4PGUPuMy/CbOnjufs8bPRLqqX026Jwa8cN+j3VSffxyKcdU8ITjW1o3l1Ne27NRuN/r4EQ48aSLDL4B1mBqAmKEF7v1yC4m9mcHHPazwVX4jCDvp8w/Aq1U3SJRCYi+L7jPhpwVaYIezJptFmMNchgH7nvAelaDv+WxMLptlWmOgYAHXZoeAbNh0uHP5D5ruEIOP5E1gZUMcFjyPo3/dSLA7ZAk1lDiTzspO0VqaxwgcL1h2UBd02O0qZswKqBOM5sKEJ15jm07qCxdg75jdnL4pEy03WtELUDuTrrrP8eB94RMB1ab78StwMtgvr04fTgbi18ij+ih9Gh4Pa4HFKFz4XfwYtcOOXalPRIMuAHTIL2crsH9SIOaPcAeKRkTIQknSXCncL8hmbAtwpdQ6TNStgWf4FuJG6F2UFjCguw4HfrRSFf+X3YFKPFE/Y/hjFvv/ESy8u8fOgPSBkaIl/VybjOjd5KJUwghlel/FI9jA4qxez+pwB3i6fRFtbnVjh+WyoWnqTV1xXZd0CCRjRGElrSt6yk+QmmhlvQ7Y2S9hQewkLqLmj7d4KuLPYgMd7yMLaO3tg+sIefHd+A38InQ6LPknjiZUhuC07CjZKzKfC3Wb0QH48uCktoV8Tb8AGcX/4YDOOe66pYPO1p5gss4HFVfrw56vRYOOsCRZxZWg80QZVvobAz73OaCV0HpPHG3H9qnbsC+nEo4HbKU5cDtw+JtJLw0QSmLwKpy00AL9TXrTz8C8IG5blG5FLYMp5ZXhZKgTDyzLZY2w1hAd58L3BAL4VWQv2P+bzPHCAjw4vQehcHT4yFYXrf05A6dRPFLtdiqsT0sg3wYvUx8/nzzenwb1Vk3C5TjuK5mnDDdF86HQM4YUd0sgDV9Hc7yZXN97nLtet/EtKnDKMMrF+yAjaeovh3M5SKtx1AJZpfscq7xdk0mZM9y7qQ+s+W0y/vQAGnzGkdX6nkqsvwFv0HrjqrICne09StIEeykdIcXHmFGh8kwFzu7XBedlDmlS/lkft+MDf17WArrYzbtwym36balN2fj35LZPBaEVJuFZTQXu2X8RJkv4gXl6KWXf12dRGkM1yl5KLrC0YSgWA9SiEdlZhi0tbwPHjBkyLvwBOwZ/QauwGSpP1wCkXCzG+cD0+dBeEp1UtNG+VEEp+DeOD0wxpf+xoqBONh2Mtb9CrsB9Xbb4IA1VGoHreF3ucennkkBK2fIjgTeM0aI5OK7TMSsM/EseodXgdRKSMB6dVc1jY8gyZVtmR+8o/9Hkonx7OKSEJD0+eUCXPjXOWw8+KMdBSOhfVtvyAH0fEsN5Rlc5pe6HlrSEeNNKhIqH9gPHp0HBrImh6aoFQ33NMV6skAdkD6CPzmBY2nMeXeUM8sfQujyoeAyKrZGC1uD63Ly7iJ2uekVBbABkpTeOQjiN0+cYi4r460E4d5i328pC9yYiSFkTAA89v6P0+lBx3XMEJBwxBff5P1KjMoyukgW9LTWCe5iNcNS+OnAKCOTM8i/fnbIBpdV2474oKmHxbxkuu7YXVk7XARXgE3ArNw28Jx/GwwV54IvofLpxnxULVCRBRYMN/FxdR+xlF+C11Ch0EEnlN9TBMa1LHeXEJLGH8jAUktBnYHCcqBNJ9HQVY/E4I4hv8oWDPJjhwVQrKdG5QlUckfbjwkKU2TEOxpL1YWakNkSOkoCyoEf89nQWHxwXg7vGeeKErD1vHHiPtvBlonDSAZDkSvlekkIjWIhqXsIr2b7PAIlExWpHsQ6+jKrhxZBJGxY/gbzvHwBFBHzhzxwYuW5yGQzsyUEdwPRou7scC3fP05ssY/OM5BRU6FOGIwXhyv/eZi7yF2dtYGBL7jDnI6D3MShriozr9OG5DP3UfkYcVjdG4aZMiH//cgrI3xTFv/iPIi26DY5ZHeJT5E/QYK0RKlcbwxfgNLLscx/1Ky0H2uhSYXB9JD05ForPpdlIZDkLlY9rw0M4UApSauajRkGecHItlYWXwsiGRJ+7VwTSzRpSWzsfqhHEQWGIMb6svYJyzHHFlAstIn8XGTZth+FcszhdaBLvzL4NOcyM/j9IE3+CnMLG9E9+fOo3+Rxfy7CU22C2/EQcO6dAh99nod9cZeFgZoNuWxcTP4pcbR3FAvhels7/QnS3XKTgpmmReLGQj0WLsJx0QutuPu2Y0g8IHe7zrKgjhsbdpScpsVHw3G/eMDcejxZJoWiUMa5PecpemD+gaGZNTVBTHLWilcyob8EdsOIZeqcCpxw3xEguD8tP9rJ/kRT1wnuwdhDDJ1pIn7XpNDTfOQP2nNti6PI/PCYuBws1A2BtH3NJ7kTGmny6O8MMrayyharYHzxeSRStPB+7YB7C7u4dU4qU5tSCIRZZ/pfFnNvH0me6cN/SaCjV+0cMKTRhXqwv7qvN4RGYD3fcrpYMlOXB2SS19tSmFJcJ7yLxnMowNEcOPRQpQcms7JhUlQ6q7Oo3edQETNuwgqXYJ8rvsBL2S97Ak8SacTDeHwTwjelC2CuyWncCMYRn89cEU/pNNwm1mJqC5bAXnxetgl6whSCZrUmX9J1hp04Ens2bj4t/SHD1VEPYqLoIaPktzrJPh/EVdkG78RlXYyduLvfmM6gPwNrLjkc/X4F65KDIb/Zju1c7GGrPxsEHOknJSMmDYcxk/cW6By7fe0M9HapAzqwTak1tw2w53HiGkDVGDSvSpNxOdZ5TjztGBNHOSD2ULKtHdMjPaUmCE+Zsq0KxpAjj99xPe5gRT+axudjuoSG25U1H5nx/5SVVjfZ4GbDJL46m7VWDF1DxuVb9EmZHOMHnoN0qKfKLK3u9M+w9gSM1t+FGczeWCQnCk2hPnen0Axav3USJCEq1uvafUBZspvGSALLz3Uc2aNgjfSLAxCGHVywcUVnSLz107wW9n/oaGaeNp7wJxGvnsFUs8vspPtUaAj5gLqdtOxmsdjZQxIYKKhmoxZhHQ0dAJdNAxld2+tuNiH2OYtUiF9U9pc4/QejZsM4VPiT1wcl0BzD1yiabPiEI1nS4W+m4K5gs+cpC1MZ/4fA4+xM6h74/LyXbhDpLTnER+mxN4l/sMeJ05Htq196OIqz/tOH+Hb0AiRe40BC/3T+DeHgR7xkdgilAru6loQIz1crxWYEdhOgIwbc1DnjXtMXhvLAbH6dkYtXUceJu2QZaVKKRryPHIDAuS/BrNe5zH8WahbHbX1yRl8W7eciWffJPzueunLCz9/Q+uartwxpm7eFQvHqbUzaPOjhKU9G4ig8oqlvY9xdNdtMH+4QxOjOzlBu93lIObYa+BPp0/GQIFkSE00dEA/8udTh/uisO7uAl87etPxKTVlCiNVGjZAscHj5Nx73FcfLaadxo8wkPfDGDNhEHU6bkKxR9MIFFzHJ7aNwsTS0s4bp4WbV87h1edzYajP6zA9qIICxqqQPvSOtodMhVOtljQgjE58Nf4I/Q/D8HWyg+Ymc4QvTMbPzSe49lCR+GSeAQMSwmhpbwftFr+hSUuvxmOiYJjhDhsnl0HlZXVgMYCJPJuJA4JJJLXXCs48XkAnn05j0+z9/GjSDtQMw6nwPY83iW2kbb0b4LWMCGyq03CELdo6LuSB8/PBUOPgDQ8OHoYcGQwSGq4Y/O2BdBqvQL+rFPD77bfMH2eNzcYucL3jYawc7CDH4zsY9cFjM0fI3j6nJu01PAY7LdI4XMm/Sjk/Y9rq3XB7JUbltzxYuGyrTy9P4HyDV6TWbM+v1zhj6G6XzH7gCUekzSF0pirMHeFHvzVm8g5GlvoqoATBSYewZbwWTj9jjKs+n4ZIh5IwgE/ZxAP/QtGEhV0+oIvzn9vyisC/lKGgBzO2pKN9gOjoO6nGIw4Jsqfq+N4+TxhVItNwqt5WfytZRvLla3HgIsP8YdeLP33Sw/O+g+SQsw1thwTzfuWKGFPSCOcUnWEY3dlyWK0GE04XwTD4ZKwNnQiU6QnVGpWYbrlXYqIXwvWduKov2gf+EYjtXRkYh+oAw0+o7LyJRg3UprK9xylBrFWGpPWD6lXD/GwRC7kvBekgmhVGC64jbfCjoF20STSC37Ibq99+IO3N/+bUwZrdQmjjB3JI3IsqKvV4lJQhBUH+zl4VT8XRV7GnWPiWS7rHSW/YLbY1MFPlytC05oP6KbsRR0RUazGteC3QxGfbE7n3l37MCDXD/c+u0h9nROg3HMh/7gZidPllbBVsYoVnMshcd8QPbMLYbXOZRz37xMqu6rC6bS/0NeyG+6GPYCeu0qcnJKL7YMzQVBlJsbCZCyd9BknjDIAoXk/yCz0NlkMXaOZoo0wyyiDXEuUaWTMPLim9gS/hMbj8pPikBV3kKy8U8C1fpC6x58FuX4P3JeXCleES2nd91b4urAfl67WhN/5PTxp0h98PLMaw5ZOo1dvFvLNGAWIUqvH2TOY1fSVUCxeCCrLVaFWZ5A6hqpIefdbHhSUoblK/ij09gy/smvlmPmmsKdfEkbXHad3TzezcdJUEH7TCXzYi+8u8CZV4eM00FXDF6oOotMYUQgTTYDjhsvgbdFsCjhlCSOPunHSnXWwdsFnrqi7Q6vzkilpuSEEBsdCy8UUpEOPcU36MxTt/w43x+vT+rfTuPvFAWwe0YGGPrLQd6uBglJTcXRTO73JysXuvmo8MK2ZZec/Yqtx1yj32xI62jYGDE8LcM4g8azx4+nElIeo7vAG135bBTcSbWiBZzGoZWjAeUcZqF5nj7fVFqNW8n7KuvYNAusPk/i6W9ireY/CJNeSZGExrPYyhaqJXbQde+mLkTQLTX8Ipun5NDXiOE6Y7MvhA9bMoaMp474IWG1swzU+5/Dh54Oc9XgR3lIRYt0vX3hlQBbXTTsJavNt6EQ7QVCbM//3MRYFnX1Zb+w1kthoCQenO+LQHxd6VYh4+GMSLHScAB5a4ly13RVud72Ge6HSaG0xh599vMCFw2f4jcUN3nJoMY5ZORFyn2uhwfKvOHnQh8LcrEHxajp5jhpJerHtEIaPWHWaKdw/bQI7AvtBbLINLP1ujWmb9SHLspjX+DQi6ciD/jUFOOZ3BxWfiMFrlYNY/7qLln7PoUVDwfhwZh+ph+bhogVHMdf+CKTPHAs+qAkVn+X58qsj6JfSyldvboHCPns88iYXrnSls5VRAf365gNzVhmB1cAN+NxcTgd7t0DZlUMwOl+dZ8tIUMeQK975Jcornkzks9vHgunRFRigLUB3T2rzYvlwOp2iCr5blvIMmT5Oj0rHBaP+wqhOVdBZlkGJBkb46KIw20o78xn7DPy2PA5OiAxgSpM/CHjs5IopE8FgYzdJTPlN5/9dhI4d0dS0C/CYQzOKRFeAodMsVLcagiYRfWhw2gXF130x/9w42rBTFS3GieO4g8G03uEsLwyMhusTT0FY0AjQmX8WvolupoXpt9lKsgltpxiggUszpammYcjYeRRnfJ3jAxHeKPyhvEUidHbrUtre9I0PvDlM6Qr3KaHgFoePOks9m1eiep86NBtcwneREaStbQuzVkfh9YNOrBUvg1KhTaiXrQIFEav4qo84vD37j378nExBy1344JlgyGrqofzDw/xeOYYDO27RexaHoJ0EE86U0PiZC9BCUBO0N0bT321fIBGmU/tqeXKZIkXipaPxhbkeXHxpA2seFJLKyiYeF5QARdtmwN7Mn2wT8RI1b8SB7Tk/2nAdIKAzDg533+f9siLY+qiPCtTCQHtpG2iNCUPjSCMOUb4H5vKGIOX/G0Tcf9FmrIMJOubwfONeUG9PwO5pr6Bo8j9MF6kC/1264OUJUBShChPujUWhqmJoNzbig/MKeb5gBIgNhZCVmTcmzhEEq93+dHqqPlnm67LEhAyS+jgJ1pf6wovOSXhGZRdOejyWkr8qQ4VpDOaZW0LaKCk89bMMVHbvgnX5Tylm5mPKjUkAoak+GDjDCM5eMgGbjBf8LlqKRpvM5ZtHwlDx2xrsOb8WervmoLxYJnhMFYc3+/24LG6A91St4RXXTWHWY0+03bQARVa6gvqufCr9swHvLVKA24lAYxa3YfluRr3vq3GpTT2eETiAOc9EIPaZA848Vsw3G0Xgi8h5qInfjyVjjfjyuDJWn6OIR7WM2eWhF2fs16PK9ACSppGgIahBm94vwWIxadpRaUwaXftoT/c+ck/vw/6xwbxmszwMLDWAX52eEGsxg69JfeDGsxegW8qYTU+bQb6BPZ2oOsD2d/dzoLwV7Dw5CzxjxXlxbCovK0NWLFEG/7xVVB62ktWFisikeSuaZ4uBpY4Nx7zrRe8ga2y3GANO6mpwfns/a2vXclDHJRboceTgXdIwSb4U5Vsfo5qVHr0uuIT7yvzpiWAt/Wgeib6rF4J76FPM2W4I6yWmwRcZTVpU+RJv7dqPtxd2UvmDPDjg44nmB37gL4F5UB+vB0VHz8LMgDF8oUsWjatW8fGuizxzqicKy+eAQMtc8MnWQZMWUchfsJz8Tyzh6qgc7O2M4ZvRgiTh3Ugqpd+4oWoU2TvIsVaGGVSZyYBP8AVeqz2Em06dQV+TGHR1P8Yzj1VCzMlPnOf1iy5nC0OrTSRs8HDDs+Eu9O7gOVSN0sUTvZJ8zHo059lmYeH4t/DonS1scYjm6RHdMEdlMXlbjGHZlGgYrbQN8hylwTTiE2x8J0AuvyVg7PsCUq4SQYEXJ2FhlCOcSRjNa5TDMaXUAUxt1+GArjBNbVaGBU86aZnnZHATnIQSrYdo84ZaWPDRij3jQknW5C9NqFwAt5+NBCnTRZA21xdNluhT3qbbNLriFJcY1HKb2kdOaczAz9tS6YH9CPh36BaZaCGKdotR3/HxeCZ7AdS2ROOfd650MG8Fz18zG4Y1zOHlnrfgbGtNC15psZX2dpY76su/nM7yJOWzpJCtDYuCImH3Oz3Q943BcQLf8d3JWVAhOJqlxEbxf/7afHbjINyMn8X/XIfwyWGGGcqZ+GF7Myv2fOHFe35jzBQTOjdmAjrnB0HNCR9WK4vEpQWiEJotit1mT0nPKZQ6/WtYV8Oez0h85ab9+1m+WBzmat2jpcu1oKPFHzSM14OBiBvNu70VuzZu40UvBeHpaTV4dVSNe+LT8XaPCZxuecTzJ0vx4UU1cN3xNH5dc5qrpHyhrWMY5549gAn4EeYG2gLdicbNO+3xtJM9Ct2Sgd7ly1FuyiBnhxmQj7AT9L4xQtFLBpC+bhkPPAukIImT6PU2GWxvz+YydVG6ZveE1dRdcIJbOTx6YgBjlnaCqNdBzN9JQEIKnNEgRdflrlFb1ypKlHhE8entZLtYGGa21sAGu3NwNG4rFXyVIwEW4UXNtjxNYj21bdbkXcLXWUFTFO7rPsenSy/iPZs6eHNDF0ZEbMNkgSM0qiia0oaX49X0GnbsVwSza3Z0cYU83JmyiL9WLONDD1Jwbbo8Nrga8M4dq7k0YSsLliPEB4uC58xIPv/pK4nmdoFEENOYQcQe3+t0/247Zpy0pic9+uAtLYyFj0IwyWsqG8mmwOXDf3HS+gosnt4LzXuVcLjHHz9ekgOLJZEc1aTItioWaGEmDEqNAlxr8R6tI2dzx+5gerZKifpemsKb/hMU7KlEN75cxxqnXj7g8xx2p76FsjN34Nf1LNrddhzEgsVgnMIvHp9VhE7//YFP3nNwhIcpftPSpzJPSSh0MMEQqxwMaDaCd1L+ILLWhRWOP8Ph42fYSO4LbhyKwc8nJoKh9DHKQn+weiUABbquuM3Vh3aNOcCFX+NBd8ISTDy9E1Znm9GElevIsOoMis4XgI3TpiHFdpJE10VyvtGPNlqDXLPFERuXLobRrc6gNM6Fw2aaQsoze5zl2kB1ne3w3uYDra++Cp8fhGJF0mmYumOAV7mZYZaSHoTtv8nffolQTJoC71Txw/7PciCfPR98j67g7i06lKamh/Y/VKFXvgE6awtwg5cQ2334TCkFzggyCdhoPRVElLdh7jxRMN8mCwYuGeT1p4kjrT+gTMpqfmL2m879NaRlq65h1Nc+Pl5jx1LLxUDvjBi8OhZH+3zO8rimJBopco7OBfjgtM0WYO6dASodHyB2lTUsdHTFCfHpeMcokAuq/PDjNmN436eKF5QecHNgH4d8d8AlJ/UhovYu/NxyBFuDnUEmdBRXXFxFExp2U9GAIE24V0Ju+S9I66gkOIY+R6MbudA7bQP+celhs3pzdI+5iZE7Cvh4x1c4aOPDyuUy4J2jAceSq9FvZwVNPi0Iq4JC0TusF8dY3aXjbY1QEDeSUk6JwOqu5xxxUpIixIM4qdYLJv6K5JwlspC7L4JP3SE88aGGXe1UIdBxImpYCuO/0aY8V+8s2FZ7kXGbANt+UqRnmR3w1OEGjvwtCmYHFOFV1lI02XuYpL7fxEl/FLj16AWcOSWbJl2U4D79JZC2fDzME9Tlux9+0HmezZpKKfg0MJfGXE3iv6WZtHH4Kv6atoiPi1tDtMcxmiwuhxsj8mCpsAz7LTdg3xlvIMg4iXcujMSbs/eDssxocL8YAhrhi2j9mbewuTqHRDQCYGa9IMuHO+B1fTtWu+xJ4/aYQvudFxDg4MjvC8Rx01JRTB/o5RdHfdl8azTf2r4S3r9/CiGjzKBumQSp6J/G9+sS2cB5LkV1v+D6pd1k0h7PG28MwOzva+nZu/Hg/+gFClMG7VZ9TQPOXvCzSACjUm+T1aIsgvBeGiEWRIeTZWC/6k+e7DofN1ilgvcuEbq/9hzP0RTAs0GNcM3fDw/OreM2cQCLAGMIPbAC7suFkt+nVNrqbgCRLQ3w+8kQSPg7w+HIPMxRk4W3y03Qa5QOBjvF48SBVSj6rAWW1e5BF+lkjta6hx4fJuItb0soEV9OneOl4J6oIb4Z2UPzDkrjR98XlPNqEMfeWABp1/7hi1Zj6DWYyfXLdMBzfzR3fvjDM/vaYYwdk5vVccgJy6fuvTfJpUYExlaEkfbYSJLJ/kH/ldxFCWl/Eir8CcWLZ6CLQx2lZk8mwaMTQf7NEvLAL1RbYgi/di2Gso1q+Fxfi4+3FYPJvBaUSf3CKvbaELtdiV5E9qHp+kDwf/mGJ+xTg8lm3aA6bhIvSJ4Ko8MqINSCwFJmFLx3mUtRPj4UGLwbI94sIKtRW9H1y1zY8MuCxihc50cn5OHE23NceGsn7nYWY40Lc6BwUIR1Sq7C+6IO/JabS+sLvKFBVApqBvZj7SdjfF16GXRKM+HcsQpW7HPjKUN/8aK5O44b+Yy7pC1B49lEHkp4is1jRiB9qQC3bg1SkWil2+f6wO+sHNhcXE2qkxEKpxWwrtdL7DJB/htynFx+OoPc4W6Kgj4+s0cLZugfQ+8JI0G0xZqgqQFuuCzBMYG7uMZxGUHoeZ6ZcwOvuMxC3W2eqPrJFsq/z2TnIk16k6uGeqM+wOhlDny7fida630jjYYsVFpvRVxiCrXvBsmtfjJNaeulirkS8KRrJ2k/l+YllyXY53cKXX35CaeALEyaUg6686ugZdIdvPCqnWqsknGK0wdw1u7gr2+8SC91NqVuHgkHVtTBvWlufGiDFW3UvIvNsVGoSLLECSnoMF0RLi+fhRLBOmDX0QCvNxrTiY6XeMe7hmK1EDOf97BG7yDPkc6hsi2vwCjWFLQKDvPRH0tBTvAtbJJx4j/is+CK8yFSSb2NBasHICxQmOd9VYXoPat5+QFV0BrtzVHBU9E7spty6p/DbUkfzHQRJGM1eyobLwlXCv6gq+liDOpcx4oTZ2Hz66eg7WJL+kH3wGveayoIOUWlaZpg7jmH/kZXgb/JWUpfngA/pa9xtfFhHCiSpvTUz9T+ywxvCErC8+Ba9N+chymRCyFRdQNnf7vHD/52c7OoIzqszsH1Inas6GwMdYn32e3yOTa6fAZqGmXxh7YaJ+/9A10fp8OpugUwKU6RyVwY5lVb0IMqf7Aw/oQKr5p5RKUJqMis58hN7ZTquBT9uuvBevJkeKT1HCazA/4eN4/3bpoBY48cJoNxMagdHgNZHXf4z956iLQ0AvnHfdAuGUbdE1Uo9sgzePuxhE2VYrBt/TpUmLqTput3wdZcgmvuM3nrOndIS7uFKu+nkuvS/fx0dQu7pL6GQuMfODE4B/UVFGHHTUm67G/HjvbhrLjzKmyq2o3Xgg5Ce6gD2mhmoGt/OFrqy8GFutFUnfqG96o00wXbq1h75yOF38+kBScJXO9Zwp2sUyTtpQfPzC6yaL8vWUp3ob9JEs/doQKL7Q6wyKeFZFzcDkGq5bjpDkJA3Wp4cGYyNGnIoXT3Y9zWmUlbNL6i++Y2/vJQjipdd4MZ2AH6roKbQmHsWbAInnsjfg7dx3uGD1DOXTMw6dnJ3eta+VCqEQTVxYPKSQc6fteBFrtdp4RZN/nh42GUeDKTh6J8aGHMBVxUIgbXDB3g9L/J3DznOCfaJsKm/ffxTZYuhr2zxMX6U/jXQALqfkLwv7EFbm48hF8nRWKhgTDFH70K1zVD6KdMPVVpXGT3zQU0y0AI0jZYQPPXNWwYIYvCvpfI0fggRnhMJ33Rb2wuJwxzhkLxbJkcDEoXcMBnFzqx0x3kx0SCW/M6CF/fSTIjv+KYiQYsfP47zb0xFvZKdfIh/0V8RGsxvC9yAYUDCjDJ6i0FH9tOV69Kg09nJ+7Lk4GF+jqcuqsByzdEsveiaeC0fZAcHrSQWccfiK7Uwcj0QzR3hhD8Xn+EIyPVKXvhEWiaPx9Sd4zmA6vj4GrudSz/PBOayi/w3VEGMO90L5VmPkPDfU28/cQ/dn6+GQO2fibP2HX0yfog20f9BzqVI8Bhai4VLYqj/+wFsFF/Cl5Sd+cr05Iod+MZUkh6SMk/y9EgTg56y92p5v0q/vEXYA+d592/vtNCpyl8ftx3mrF9PSa1pdN+aU2o1RjGJZWhaNUhRgGd/pCgY8lpX3ax7u51mO8ViTX64ag5YAzr1UbQ4hp9vFbrRAemhULeGQne7abHlyd5cndpHVpd/kHZKdbw8d5ibu/xRJHN11FghR6o/ueD1/TtsWB3LbU8OoxmRXvohusIgKhYGnGoBh99r2XbxE78vPk09gwcw/0hy/hg1is40dQAYZEGsLHIEqWPbKVRDUIgcWYuSMadw2HzS+ClbAdeIW2UJl3FkX3joDToACwuHMPjNlzmobo0bAjThYX/bcBA5VZ8676TzKV+gUyAAiyJrsZFy6JgpvE4Gp0eijNRCm1TlvHH6nrePrWTrx1xBPkyM1C6NB7tLTPRIbuQpyzei5lqOvQgQAouBLzgZx/VsHF5M8WU6wP7d+Khrr/Y6LgEVQZLeenoEbxSWwCsAwXxy7UQypr2Ccl2LPh9bYW3HsUY7duJBwP68GfNNmoLGcAdxw+S3+1yEDOr4pLvACV7p+Lv6hMceTgXxG4EUvGYlbTtSSnXVhzj2G8p3LJ3Bn4cpQl+C8/wxpDjFGkvy0X5vZDmJMHqa7ayRogC9/2VRt2XP8m8Vx3WKtzD6R1VMMNSCt2e6UGZRjNePGbD3V+seJuRB9b0jebeHmsYJf4d8841Y3vKFjg6qEvTVapZXuMA0pq1cKxiPF1TMOC4cAVQ35UHGeaVuEl8FqW2KaFQ2Wg2HS9Lj5P72f0Sgbv4YbJUGQGk5YnDosAZgno4/0IR7viewjdUnaDEdT0eVAiHBuV38EPdCBZYHKN0sxbcluqBThafQLtaGkYvmc34wR3/KGVQ9OMd8KJZA1pf3IHKnlc40GUPJxR68fHpVZA2WpIyqp7QxHxGwa2VNDzNHM4O7uJxOZW4dutH/qdoRY9HFUP71c+86r4HPr1OfOJSJK8lTYgojSWJpJ/4cPN7xCszSObleNQYsqSsne0g9ryYFXwu04FtE8B090i472KErgY1/LAulAPEhkEl/hsKRQXDvg1R1PdMhlSujYc2pUxuvLUXzfe4smhfOf/xccbD2Mo6n6fDou5EshddAX9nKMP/AQAA///vk9pB" diff --git a/vendor/github.com/btcsuite/btcd/btcec/signature.go b/vendor/github.com/btcsuite/btcd/btcec/signature.go deleted file mode 100644 index cdd7ced..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/signature.go +++ /dev/null @@ -1,559 +0,0 @@ -// Copyright (c) 2013-2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - "bytes" - "crypto/ecdsa" - "crypto/elliptic" - "crypto/hmac" - "crypto/sha256" - "errors" - "fmt" - "hash" - "math/big" -) - -// Errors returned by canonicalPadding. -var ( - errNegativeValue = errors.New("value may be interpreted as negative") - errExcessivelyPaddedValue = errors.New("value is excessively padded") -) - -// Signature is a type representing an ecdsa signature. -type Signature struct { - R *big.Int - S *big.Int -} - -var ( - // Used in RFC6979 implementation when testing the nonce for correctness - one = big.NewInt(1) - - // oneInitializer is used to fill a byte slice with byte 0x01. It is provided - // here to avoid the need to create it multiple times. - oneInitializer = []byte{0x01} -) - -// Serialize returns the ECDSA signature in the more strict DER format. Note -// that the serialized bytes returned do not include the appended hash type -// used in Bitcoin signature scripts. -// -// encoding/asn1 is broken so we hand roll this output: -// -// 0x30 0x02 r 0x02 s -func (sig *Signature) Serialize() []byte { - // low 'S' malleability breaker - sigS := sig.S - if sigS.Cmp(S256().halfOrder) == 1 { - sigS = new(big.Int).Sub(S256().N, sigS) - } - // Ensure the encoded bytes for the r and s values are canonical and - // thus suitable for DER encoding. - rb := canonicalizeInt(sig.R) - sb := canonicalizeInt(sigS) - - // total length of returned signature is 1 byte for each magic and - // length (6 total), plus lengths of r and s - length := 6 + len(rb) + len(sb) - b := make([]byte, length) - - b[0] = 0x30 - b[1] = byte(length - 2) - b[2] = 0x02 - b[3] = byte(len(rb)) - offset := copy(b[4:], rb) + 4 - b[offset] = 0x02 - b[offset+1] = byte(len(sb)) - copy(b[offset+2:], sb) - return b -} - -// Verify calls ecdsa.Verify to verify the signature of hash using the public -// key. It returns true if the signature is valid, false otherwise. -func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool { - return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S) -} - -// IsEqual compares this Signature instance to the one passed, returning true -// if both Signatures are equivalent. A signature is equivalent to another, if -// they both have the same scalar value for R and S. -func (sig *Signature) IsEqual(otherSig *Signature) bool { - return sig.R.Cmp(otherSig.R) == 0 && - sig.S.Cmp(otherSig.S) == 0 -} - -// MinSigLen is the minimum length of a DER encoded signature and is when both R -// and S are 1 byte each. -// 0x30 + <1-byte> + 0x02 + 0x01 + + 0x2 + 0x01 + -const MinSigLen = 8 - -func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) { - // Originally this code used encoding/asn1 in order to parse the - // signature, but a number of problems were found with this approach. - // Despite the fact that signatures are stored as DER, the difference - // between go's idea of a bignum (and that they have sign) doesn't agree - // with the openssl one (where they do not). The above is true as of - // Go 1.1. In the end it was simpler to rewrite the code to explicitly - // understand the format which is this: - // 0x30 <0x02> 0x2 - // . - - signature := &Signature{} - - if len(sigStr) < MinSigLen { - return nil, errors.New("malformed signature: too short") - } - // 0x30 - index := 0 - if sigStr[index] != 0x30 { - return nil, errors.New("malformed signature: no header magic") - } - index++ - // length of remaining message - siglen := sigStr[index] - index++ - - // siglen should be less than the entire message and greater than - // the minimal message size. - if int(siglen+2) > len(sigStr) || int(siglen+2) < MinSigLen { - return nil, errors.New("malformed signature: bad length") - } - // trim the slice we're working on so we only look at what matters. - sigStr = sigStr[:siglen+2] - - // 0x02 - if sigStr[index] != 0x02 { - return nil, - errors.New("malformed signature: no 1st int marker") - } - index++ - - // Length of signature R. - rLen := int(sigStr[index]) - // must be positive, must be able to fit in another 0x2, - // hence the -3. We assume that the length must be at least one byte. - index++ - if rLen <= 0 || rLen > len(sigStr)-index-3 { - return nil, errors.New("malformed signature: bogus R length") - } - - // Then R itself. - rBytes := sigStr[index : index+rLen] - if der { - switch err := canonicalPadding(rBytes); err { - case errNegativeValue: - return nil, errors.New("signature R is negative") - case errExcessivelyPaddedValue: - return nil, errors.New("signature R is excessively padded") - } - } - signature.R = new(big.Int).SetBytes(rBytes) - index += rLen - // 0x02. length already checked in previous if. - if sigStr[index] != 0x02 { - return nil, errors.New("malformed signature: no 2nd int marker") - } - index++ - - // Length of signature S. - sLen := int(sigStr[index]) - index++ - // S should be the rest of the string. - if sLen <= 0 || sLen > len(sigStr)-index { - return nil, errors.New("malformed signature: bogus S length") - } - - // Then S itself. - sBytes := sigStr[index : index+sLen] - if der { - switch err := canonicalPadding(sBytes); err { - case errNegativeValue: - return nil, errors.New("signature S is negative") - case errExcessivelyPaddedValue: - return nil, errors.New("signature S is excessively padded") - } - } - signature.S = new(big.Int).SetBytes(sBytes) - index += sLen - - // sanity check length parsing - if index != len(sigStr) { - return nil, fmt.Errorf("malformed signature: bad final length %v != %v", - index, len(sigStr)) - } - - // Verify also checks this, but we can be more sure that we parsed - // correctly if we verify here too. - // FWIW the ecdsa spec states that R and S must be | 1, N - 1 | - // but crypto/ecdsa only checks for Sign != 0. Mirror that. - if signature.R.Sign() != 1 { - return nil, errors.New("signature R isn't 1 or more") - } - if signature.S.Sign() != 1 { - return nil, errors.New("signature S isn't 1 or more") - } - if signature.R.Cmp(curve.Params().N) >= 0 { - return nil, errors.New("signature R is >= curve.N") - } - if signature.S.Cmp(curve.Params().N) >= 0 { - return nil, errors.New("signature S is >= curve.N") - } - - return signature, nil -} - -// ParseSignature parses a signature in BER format for the curve type `curve' -// into a Signature type, perfoming some basic sanity checks. If parsing -// according to the more strict DER format is needed, use ParseDERSignature. -func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) { - return parseSig(sigStr, curve, false) -} - -// ParseDERSignature parses a signature in DER format for the curve type -// `curve` into a Signature type. If parsing according to the less strict -// BER format is needed, use ParseSignature. -func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) { - return parseSig(sigStr, curve, true) -} - -// canonicalizeInt returns the bytes for the passed big integer adjusted as -// necessary to ensure that a big-endian encoded integer can't possibly be -// misinterpreted as a negative number. This can happen when the most -// significant bit is set, so it is padded by a leading zero byte in this case. -// Also, the returned bytes will have at least a single byte when the passed -// value is 0. This is required for DER encoding. -func canonicalizeInt(val *big.Int) []byte { - b := val.Bytes() - if len(b) == 0 { - b = []byte{0x00} - } - if b[0]&0x80 != 0 { - paddedBytes := make([]byte, len(b)+1) - copy(paddedBytes[1:], b) - b = paddedBytes - } - return b -} - -// canonicalPadding checks whether a big-endian encoded integer could -// possibly be misinterpreted as a negative number (even though OpenSSL -// treats all numbers as unsigned), or if there is any unnecessary -// leading zero padding. -func canonicalPadding(b []byte) error { - switch { - case b[0]&0x80 == 0x80: - return errNegativeValue - case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80: - return errExcessivelyPaddedValue - default: - return nil - } -} - -// hashToInt converts a hash value to an integer. There is some disagreement -// about how this is done. [NSA] suggests that this is done in the obvious -// manner, but [SECG] truncates the hash to the bit-length of the curve order -// first. We follow [SECG] because that's what OpenSSL does. Additionally, -// OpenSSL right shifts excess bits from the number if the hash is too large -// and we mirror that too. -// This is borrowed from crypto/ecdsa. -func hashToInt(hash []byte, c elliptic.Curve) *big.Int { - orderBits := c.Params().N.BitLen() - orderBytes := (orderBits + 7) / 8 - if len(hash) > orderBytes { - hash = hash[:orderBytes] - } - - ret := new(big.Int).SetBytes(hash) - excess := len(hash)*8 - orderBits - if excess > 0 { - ret.Rsh(ret, uint(excess)) - } - return ret -} - -// recoverKeyFromSignature recovers a public key from the signature "sig" on the -// given message hash "msg". Based on the algorithm found in section 4.1.6 of -// SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details -// in the inner loop in Step 1. The counter provided is actually the j parameter -// of the loop * 2 - on the first iteration of j we do the R case, else the -R -// case in step 1.6. This counter is used in the bitcoin compressed signature -// format and thus we match bitcoind's behaviour here. -func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte, - iter int, doChecks bool) (*PublicKey, error) { - // Parse and validate the R and S signature components. - // - // Fail if r and s are not in [1, N-1]. - if sig.R.Cmp(curve.Params().N) != -1 { - return nil, errors.New("signature R is >= curve order") - } - - if sig.R.Sign() == 0 { - return nil, errors.New("signature R is 0") - } - - if sig.S.Cmp(curve.Params().N) != -1 { - return nil, errors.New("signature S is >= curve order") - } - - if sig.S.Sign() == 0 { - return nil, errors.New("signature S is 0") - } - - // 1.1 x = (n * i) + r - Rx := new(big.Int).Mul(curve.Params().N, - new(big.Int).SetInt64(int64(iter/2))) - Rx.Add(Rx, sig.R) - if Rx.Cmp(curve.Params().P) != -1 { - return nil, errors.New("calculated Rx is larger than curve P") - } - - // convert 02 to point R. (step 1.2 and 1.3). If we are on an odd - // iteration then 1.6 will be done with -R, so we calculate the other - // term when uncompressing the point. - Ry, err := decompressPoint(curve, Rx, iter%2 == 1) - if err != nil { - return nil, err - } - - // 1.4 Check n*R is point at infinity - if doChecks { - nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes()) - if nRx.Sign() != 0 || nRy.Sign() != 0 { - return nil, errors.New("n*R does not equal the point at infinity") - } - } - - // 1.5 calculate e from message using the same algorithm as ecdsa - // signature calculation. - e := hashToInt(msg, curve) - - // Step 1.6.1: - // We calculate the two terms sR and eG separately multiplied by the - // inverse of r (from the signature). We then add them to calculate - // Q = r^-1(sR-eG) - invr := new(big.Int).ModInverse(sig.R, curve.Params().N) - - // first term. - invrS := new(big.Int).Mul(invr, sig.S) - invrS.Mod(invrS, curve.Params().N) - sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes()) - - // second term. - e.Neg(e) - e.Mod(e, curve.Params().N) - e.Mul(e, invr) - e.Mod(e, curve.Params().N) - minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes()) - - // TODO: this would be faster if we did a mult and add in one - // step to prevent the jacobian conversion back and forth. - Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy) - - return &PublicKey{ - Curve: curve, - X: Qx, - Y: Qy, - }, nil -} - -// SignCompact produces a compact signature of the data in hash with the given -// private key on the given koblitz curve. The isCompressed parameter should -// be used to detail if the given signature should reference a compressed -// public key or not. If successful the bytes of the compact signature will be -// returned in the format: -// <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R> -// where the R and S parameters are padde up to the bitlengh of the curve. -func SignCompact(curve *KoblitzCurve, key *PrivateKey, - hash []byte, isCompressedKey bool) ([]byte, error) { - sig, err := key.Sign(hash) - if err != nil { - return nil, err - } - - // bitcoind checks the bit length of R and S here. The ecdsa signature - // algorithm returns R and S mod N therefore they will be the bitsize of - // the curve, and thus correctly sized. - for i := 0; i < (curve.H+1)*2; i++ { - pk, err := recoverKeyFromSignature(curve, sig, hash, i, true) - if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 { - result := make([]byte, 1, 2*curve.byteSize+1) - result[0] = 27 + byte(i) - if isCompressedKey { - result[0] += 4 - } - // Not sure this needs rounding but safer to do so. - curvelen := (curve.BitSize + 7) / 8 - - // Pad R and S to curvelen if needed. - bytelen := (sig.R.BitLen() + 7) / 8 - if bytelen < curvelen { - result = append(result, - make([]byte, curvelen-bytelen)...) - } - result = append(result, sig.R.Bytes()...) - - bytelen = (sig.S.BitLen() + 7) / 8 - if bytelen < curvelen { - result = append(result, - make([]byte, curvelen-bytelen)...) - } - result = append(result, sig.S.Bytes()...) - - return result, nil - } - } - - return nil, errors.New("no valid solution for pubkey found") -} - -// RecoverCompact verifies the compact signature "signature" of "hash" for the -// Koblitz curve in "curve". If the signature matches then the recovered public -// key will be returned as well as a boolean if the original key was compressed -// or not, else an error will be returned. -func RecoverCompact(curve *KoblitzCurve, signature, - hash []byte) (*PublicKey, bool, error) { - bitlen := (curve.BitSize + 7) / 8 - if len(signature) != 1+bitlen*2 { - return nil, false, errors.New("invalid compact signature size") - } - - iteration := int((signature[0] - 27) & ^byte(4)) - - // format is
- sig := &Signature{ - R: new(big.Int).SetBytes(signature[1 : bitlen+1]), - S: new(big.Int).SetBytes(signature[bitlen+1:]), - } - // The iteration used here was encoded - key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false) - if err != nil { - return nil, false, err - } - - return key, ((signature[0] - 27) & 4) == 4, nil -} - -// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62. -func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) { - - privkey := privateKey.ToECDSA() - N := S256().N - halfOrder := S256().halfOrder - k := nonceRFC6979(privkey.D, hash) - inv := new(big.Int).ModInverse(k, N) - r, _ := privkey.Curve.ScalarBaseMult(k.Bytes()) - r.Mod(r, N) - - if r.Sign() == 0 { - return nil, errors.New("calculated R is zero") - } - - e := hashToInt(hash, privkey.Curve) - s := new(big.Int).Mul(privkey.D, r) - s.Add(s, e) - s.Mul(s, inv) - s.Mod(s, N) - - if s.Cmp(halfOrder) == 1 { - s.Sub(N, s) - } - if s.Sign() == 0 { - return nil, errors.New("calculated S is zero") - } - return &Signature{R: r, S: s}, nil -} - -// nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979. -// It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm. -func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int { - - curve := S256() - q := curve.Params().N - x := privkey - alg := sha256.New - - qlen := q.BitLen() - holen := alg().Size() - rolen := (qlen + 7) >> 3 - bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...) - - // Step B - v := bytes.Repeat(oneInitializer, holen) - - // Step C (Go zeroes the all allocated memory) - k := make([]byte, holen) - - // Step D - k = mac(alg, k, append(append(v, 0x00), bx...)) - - // Step E - v = mac(alg, k, v) - - // Step F - k = mac(alg, k, append(append(v, 0x01), bx...)) - - // Step G - v = mac(alg, k, v) - - // Step H - for { - // Step H1 - var t []byte - - // Step H2 - for len(t)*8 < qlen { - v = mac(alg, k, v) - t = append(t, v...) - } - - // Step H3 - secret := hashToInt(t, curve) - if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 { - return secret - } - k = mac(alg, k, append(v, 0x00)) - v = mac(alg, k, v) - } -} - -// mac returns an HMAC of the given key and message. -func mac(alg func() hash.Hash, k, m []byte) []byte { - h := hmac.New(alg, k) - h.Write(m) - return h.Sum(nil) -} - -// https://tools.ietf.org/html/rfc6979#section-2.3.3 -func int2octets(v *big.Int, rolen int) []byte { - out := v.Bytes() - - // left pad with zeros if it's too short - if len(out) < rolen { - out2 := make([]byte, rolen) - copy(out2[rolen-len(out):], out) - return out2 - } - - // drop most significant bytes if it's too long - if len(out) > rolen { - out2 := make([]byte, rolen) - copy(out2, out[len(out)-rolen:]) - return out2 - } - - return out -} - -// https://tools.ietf.org/html/rfc6979#section-2.3.4 -func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte { - z1 := hashToInt(in, curve) - z2 := new(big.Int).Sub(z1, curve.Params().N) - if z2.Sign() < 0 { - return int2octets(z1, rolen) - } - return int2octets(z2, rolen) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/LICENSE b/vendor/github.com/btcsuite/btcd/btcec/v2/LICENSE deleted file mode 100644 index 23190ba..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/LICENSE +++ /dev/null @@ -1,16 +0,0 @@ -ISC License - -Copyright (c) 2013-2022 The btcsuite developers -Copyright (c) 2015-2016 The Decred developers - -Permission to use, copy, modify, and distribute this software for any -purpose with or without fee is hereby granted, provided that the above -copyright notice and this permission notice appear in all copies. - -THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/README.md b/vendor/github.com/btcsuite/btcd/btcec/v2/README.md deleted file mode 100644 index cbf63dd..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/README.md +++ /dev/null @@ -1,40 +0,0 @@ -btcec -===== - -[![Build Status](https://github.com/btcsuite/btcd/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcd/actions) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2?status.png)](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2) - -Package btcec implements elliptic curve cryptography needed for working with -Bitcoin (secp256k1 only for now). It is designed so that it may be used with the -standard crypto/ecdsa packages provided with go. A comprehensive suite of test -is provided to ensure proper functionality. Package btcec was originally based -on work from ThePiachu which is licensed under the same terms as Go, but it has -signficantly diverged since then. The btcsuite developers original is licensed -under the liberal ISC license. - -Although this package was primarily written for btcd, it has intentionally been -designed so it can be used as a standalone package for any projects needing to -use secp256k1 elliptic curve cryptography. - -## Installation and Updating - -```bash -$ go install -u -v github.com/btcsuite/btcd/btcec/v2 -``` - -## Examples - -* [Sign Message](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2#example-package--SignMessage) - Demonstrates signing a message with a secp256k1 private key that is first - parsed form raw bytes and serializing the generated signature. - -* [Verify Signature](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2#example-package--VerifySignature) - Demonstrates verifying a secp256k1 signature against a public key that is - first parsed from raw bytes. The signature is also parsed from raw bytes. - -## License - -Package btcec is licensed under the [copyfree](http://copyfree.org) ISC License -except for btcec.go and btcec_test.go which is under the same license as Go. - diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/btcec.go b/vendor/github.com/btcsuite/btcd/btcec/v2/btcec.go deleted file mode 100644 index efde8d6..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/btcec.go +++ /dev/null @@ -1,41 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Copyright 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -// References: -// [SECG]: Recommended Elliptic Curve Domain Parameters -// http://www.secg.org/sec2-v2.pdf -// -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) - -// This package operates, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) -// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole -// calculation can be performed within the transform (as in ScalarMult and -// ScalarBaseMult). But even for Add and Double, it's faster to apply and -// reverse the transform than to operate in affine coordinates. - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// KoblitzCurve provides an implementation for secp256k1 that fits the ECC -// Curve interface from crypto/elliptic. -type KoblitzCurve = secp.KoblitzCurve - -// S256 returns a Curve which implements secp256k1. -func S256() *KoblitzCurve { - return secp.S256() -} - -// CurveParams contains the parameters for the secp256k1 curve. -type CurveParams = secp.CurveParams - -// Params returns the secp256k1 curve parameters for convenience. -func Params() *CurveParams { - return secp.Params() -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/ciphering.go b/vendor/github.com/btcsuite/btcd/btcec/v2/ciphering.go deleted file mode 100644 index 88d93e2..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/ciphering.go +++ /dev/null @@ -1,16 +0,0 @@ -// Copyright (c) 2015-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// GenerateSharedSecret generates a shared secret based on a private key and a -// public key using Diffie-Hellman key exchange (ECDH) (RFC 4753). -// RFC5903 Section 9 states we should only return x. -func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte { - return secp.GenerateSharedSecret(privkey, pubkey) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/curve.go b/vendor/github.com/btcsuite/btcd/btcec/v2/curve.go deleted file mode 100644 index 5224e35..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/curve.go +++ /dev/null @@ -1,63 +0,0 @@ -// Copyright (c) 2015-2021 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers - -package btcec - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// JacobianPoint is an element of the group formed by the secp256k1 curve in -// Jacobian projective coordinates and thus represents a point on the curve. -type JacobianPoint = secp.JacobianPoint - -// MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z -// coordinates. -func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint { - return secp.MakeJacobianPoint(x, y, z) -} - -// AddNonConst adds the passed Jacobian points together and stores the result -// in the provided result param in *non-constant* time. -func AddNonConst(p1, p2, result *JacobianPoint) { - secp.AddNonConst(p1, p2, result) -} - -// DecompressY attempts to calculate the Y coordinate for the given X -// coordinate such that the result pair is a point on the secp256k1 curve. It -// adjusts Y based on the desired oddness and returns whether or not it was -// successful since not all X coordinates are valid. -// -// The magnitude of the provided X coordinate field val must be a max of 8 for -// a correct result. The resulting Y field val will have a max magnitude of 2. -func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool { - return secp.DecompressY(x, odd, resultY) -} - -// DoubleNonConst doubles the passed Jacobian point and stores the result in -// the provided result parameter in *non-constant* time. -// -// NOTE: The point must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func DoubleNonConst(p, result *JacobianPoint) { - secp.DoubleNonConst(p, result) -} - -// ScalarBaseMultNonConst multiplies k*G where G is the base point of the group -// and k is a big endian integer. The result is stored in Jacobian coordinates -// (x1, y1, z1). -// -// NOTE: The resulting point will be normalized. -func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) { - secp.ScalarBaseMultNonConst(k, result) -} - -// ScalarMultNonConst multiplies k*P where k is a big endian integer modulo the -// curve order and P is a point in Jacobian projective coordinates and stores -// the result in the provided Jacobian point. -// -// NOTE: The point must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) { - secp.ScalarMultNonConst(k, point, result) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/doc.go b/vendor/github.com/btcsuite/btcd/btcec/v2/doc.go deleted file mode 100644 index fa8346a..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/doc.go +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package btcec implements support for the elliptic curves needed for bitcoin. - -Bitcoin uses elliptic curve cryptography using koblitz curves -(specifically secp256k1) for cryptographic functions. See -http://www.secg.org/collateral/sec2_final.pdf for details on the -standard. - -This package provides the data structures and functions implementing the -crypto/elliptic Curve interface in order to permit using these curves -with the standard crypto/ecdsa package provided with go. Helper -functionality is provided to parse signatures and public keys from -standard formats. It was designed for use with btcd, but should be -general enough for other uses of elliptic curve crypto. It was originally based -on some initial work by ThePiachu, but has significantly diverged since then. -*/ -package btcec diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/ecdsa/error.go b/vendor/github.com/btcsuite/btcd/btcec/v2/ecdsa/error.go deleted file mode 100644 index a30d63b..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/ecdsa/error.go +++ /dev/null @@ -1,18 +0,0 @@ -// Copyright (c) 2013-2021 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers - -package ecdsa - -import ( - secp_ecdsa "github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa" -) - -// ErrorKind identifies a kind of error. It has full support for -// errors.Is and errors.As, so the caller can directly check against -// an error kind when determining the reason for an error. -type ErrorKind = secp_ecdsa.ErrorKind - -// Error identifies an error related to an ECDSA signature. It has full -// support for errors.Is and errors.As, so the caller can ascertain the -// specific reason for the error by checking the underlying error. -type Error = secp_ecdsa.ErrorKind diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/ecdsa/signature.go b/vendor/github.com/btcsuite/btcd/btcec/v2/ecdsa/signature.go deleted file mode 100644 index 092e4ce..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/ecdsa/signature.go +++ /dev/null @@ -1,240 +0,0 @@ -// Copyright (c) 2013-2017 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package ecdsa - -import ( - "errors" - "fmt" - "math/big" - - "github.com/btcsuite/btcd/btcec/v2" - secp_ecdsa "github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa" -) - -// Errors returned by canonicalPadding. -var ( - errNegativeValue = errors.New("value may be interpreted as negative") - errExcessivelyPaddedValue = errors.New("value is excessively padded") -) - -// Signature is a type representing an ecdsa signature. -type Signature = secp_ecdsa.Signature - -// NewSignature instantiates a new signature given some r and s values. -func NewSignature(r, s *btcec.ModNScalar) *Signature { - return secp_ecdsa.NewSignature(r, s) -} - -var ( - // Used in RFC6979 implementation when testing the nonce for correctness - one = big.NewInt(1) - - // oneInitializer is used to fill a byte slice with byte 0x01. It is provided - // here to avoid the need to create it multiple times. - oneInitializer = []byte{0x01} -) - -// MinSigLen is the minimum length of a DER encoded signature and is when both R -// and S are 1 byte each. -// 0x30 + <1-byte> + 0x02 + 0x01 + + 0x2 + 0x01 + -const MinSigLen = 8 - -// canonicalPadding checks whether a big-endian encoded integer could -// possibly be misinterpreted as a negative number (even though OpenSSL -// treats all numbers as unsigned), or if there is any unnecessary -// leading zero padding. -func canonicalPadding(b []byte) error { - switch { - case b[0]&0x80 == 0x80: - return errNegativeValue - case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80: - return errExcessivelyPaddedValue - default: - return nil - } -} - -func parseSig(sigStr []byte, der bool) (*Signature, error) { - // Originally this code used encoding/asn1 in order to parse the - // signature, but a number of problems were found with this approach. - // Despite the fact that signatures are stored as DER, the difference - // between go's idea of a bignum (and that they have sign) doesn't agree - // with the openssl one (where they do not). The above is true as of - // Go 1.1. In the end it was simpler to rewrite the code to explicitly - // understand the format which is this: - // 0x30 <0x02> 0x2 - // . - - if len(sigStr) < MinSigLen { - return nil, errors.New("malformed signature: too short") - } - // 0x30 - index := 0 - if sigStr[index] != 0x30 { - return nil, errors.New("malformed signature: no header magic") - } - index++ - // length of remaining message - siglen := sigStr[index] - index++ - - // siglen should be less than the entire message and greater than - // the minimal message size. - if int(siglen+2) > len(sigStr) || int(siglen+2) < MinSigLen { - return nil, errors.New("malformed signature: bad length") - } - // trim the slice we're working on so we only look at what matters. - sigStr = sigStr[:siglen+2] - - // 0x02 - if sigStr[index] != 0x02 { - return nil, - errors.New("malformed signature: no 1st int marker") - } - index++ - - // Length of signature R. - rLen := int(sigStr[index]) - // must be positive, must be able to fit in another 0x2, - // hence the -3. We assume that the length must be at least one byte. - index++ - if rLen <= 0 || rLen > len(sigStr)-index-3 { - return nil, errors.New("malformed signature: bogus R length") - } - - // Then R itself. - rBytes := sigStr[index : index+rLen] - if der { - switch err := canonicalPadding(rBytes); err { - case errNegativeValue: - return nil, errors.New("signature R is negative") - case errExcessivelyPaddedValue: - return nil, errors.New("signature R is excessively padded") - } - } - - // Strip leading zeroes from R. - for len(rBytes) > 0 && rBytes[0] == 0x00 { - rBytes = rBytes[1:] - } - - // R must be in the range [1, N-1]. Notice the check for the maximum number - // of bytes is required because SetByteSlice truncates as noted in its - // comment so it could otherwise fail to detect the overflow. - var r btcec.ModNScalar - if len(rBytes) > 32 { - str := "invalid signature: R is larger than 256 bits" - return nil, errors.New(str) - } - if overflow := r.SetByteSlice(rBytes); overflow { - str := "invalid signature: R >= group order" - return nil, errors.New(str) - } - if r.IsZero() { - str := "invalid signature: R is 0" - return nil, errors.New(str) - } - index += rLen - // 0x02. length already checked in previous if. - if sigStr[index] != 0x02 { - return nil, errors.New("malformed signature: no 2nd int marker") - } - index++ - - // Length of signature S. - sLen := int(sigStr[index]) - index++ - // S should be the rest of the string. - if sLen <= 0 || sLen > len(sigStr)-index { - return nil, errors.New("malformed signature: bogus S length") - } - - // Then S itself. - sBytes := sigStr[index : index+sLen] - if der { - switch err := canonicalPadding(sBytes); err { - case errNegativeValue: - return nil, errors.New("signature S is negative") - case errExcessivelyPaddedValue: - return nil, errors.New("signature S is excessively padded") - } - } - - // Strip leading zeroes from S. - for len(sBytes) > 0 && sBytes[0] == 0x00 { - sBytes = sBytes[1:] - } - - // S must be in the range [1, N-1]. Notice the check for the maximum number - // of bytes is required because SetByteSlice truncates as noted in its - // comment so it could otherwise fail to detect the overflow. - var s btcec.ModNScalar - if len(sBytes) > 32 { - str := "invalid signature: S is larger than 256 bits" - return nil, errors.New(str) - } - if overflow := s.SetByteSlice(sBytes); overflow { - str := "invalid signature: S >= group order" - return nil, errors.New(str) - } - if s.IsZero() { - str := "invalid signature: S is 0" - return nil, errors.New(str) - } - index += sLen - - // sanity check length parsing - if index != len(sigStr) { - return nil, fmt.Errorf("malformed signature: bad final length %v != %v", - index, len(sigStr)) - } - - return NewSignature(&r, &s), nil -} - -// ParseSignature parses a signature in BER format for the curve type `curve' -// into a Signature type, perfoming some basic sanity checks. If parsing -// according to the more strict DER format is needed, use ParseDERSignature. -func ParseSignature(sigStr []byte) (*Signature, error) { - return parseSig(sigStr, false) -} - -// ParseDERSignature parses a signature in DER format for the curve type -// `curve` into a Signature type. If parsing according to the less strict -// BER format is needed, use ParseSignature. -func ParseDERSignature(sigStr []byte) (*Signature, error) { - return parseSig(sigStr, true) -} - -// SignCompact produces a compact signature of the data in hash with the given -// private key on the given koblitz curve. The isCompressed parameter should -// be used to detail if the given signature should reference a compressed -// public key or not. If successful the bytes of the compact signature will be -// returned in the format: -// <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R> -// where the R and S parameters are padde up to the bitlengh of the curve. -func SignCompact(key *btcec.PrivateKey, hash []byte, - isCompressedKey bool) ([]byte, error) { - - return secp_ecdsa.SignCompact(key, hash, isCompressedKey), nil -} - -// RecoverCompact verifies the compact signature "signature" of "hash" for the -// Koblitz curve in "curve". If the signature matches then the recovered public -// key will be returned as well as a boolean if the original key was compressed -// or not, else an error will be returned. -func RecoverCompact(signature, hash []byte) (*btcec.PublicKey, bool, error) { - return secp_ecdsa.RecoverCompact(signature, hash) -} - -// Sign generates an ECDSA signature over the secp256k1 curve for the provided -// hash (which should be the result of hashing a larger message) using the -// given private key. The produced signature is deterministic (same message and -// same key yield the same signature) and canonical in accordance with RFC6979 -// and BIP0062. -func Sign(key *btcec.PrivateKey, hash []byte) *Signature { - return secp_ecdsa.Sign(key, hash) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/error.go b/vendor/github.com/btcsuite/btcd/btcec/v2/error.go deleted file mode 100644 index 81ca2b0..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/error.go +++ /dev/null @@ -1,19 +0,0 @@ -// Copyright (c) 2013-2021 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers - -package btcec - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// Error identifies an error related to public key cryptography using a -// sec256k1 curve. It has full support for errors.Is and errors.As, so the -// caller can ascertain the specific reason for the error by checking the -// underlying error. -type Error = secp.Error - -// ErrorKind identifies a kind of error. It has full support for errors.Is and -// errors.As, so the caller can directly check against an error kind when -// determining the reason for an error. -type ErrorKind = secp.ErrorKind diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/field.go b/vendor/github.com/btcsuite/btcd/btcec/v2/field.go deleted file mode 100644 index fef6f34..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/field.go +++ /dev/null @@ -1,43 +0,0 @@ -package btcec - -import secp "github.com/decred/dcrd/dcrec/secp256k1/v4" - -// FieldVal implements optimized fixed-precision arithmetic over the secp256k1 -// finite field. This means all arithmetic is performed modulo -// '0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'. -// -// WARNING: Since it is so important for the field arithmetic to be extremely -// fast for high performance crypto, this type does not perform any validation -// of documented preconditions where it ordinarily would. As a result, it is -// IMPERATIVE for callers to understand some key concepts that are described -// below and ensure the methods are called with the necessary preconditions -// that each method is documented with. For example, some methods only give the -// correct result if the field value is normalized and others require the field -// values involved to have a maximum magnitude and THERE ARE NO EXPLICIT CHECKS -// TO ENSURE THOSE PRECONDITIONS ARE SATISFIED. This does, unfortunately, make -// the type more difficult to use correctly and while I typically prefer to -// ensure all state and input is valid for most code, this is a bit of an -// exception because those extra checks really add up in what ends up being -// critical hot paths. -// -// The first key concept when working with this type is normalization. In order -// to avoid the need to propagate a ton of carries, the internal representation -// provides additional overflow bits for each word of the overall 256-bit -// value. This means that there are multiple internal representations for the -// same value and, as a result, any methods that rely on comparison of the -// value, such as equality and oddness determination, require the caller to -// provide a normalized value. -// -// The second key concept when working with this type is magnitude. As -// previously mentioned, the internal representation provides additional -// overflow bits which means that the more math operations that are performed -// on the field value between normalizations, the more those overflow bits -// accumulate. The magnitude is effectively that maximum possible number of -// those overflow bits that could possibly be required as a result of a given -// operation. Since there are only a limited number of overflow bits available, -// this implies that the max possible magnitude MUST be tracked by the caller -// and the caller MUST normalize the field value if a given operation would -// cause the magnitude of the result to exceed the max allowed value. -// -// IMPORTANT: The max allowed magnitude of a field value is 64. -type FieldVal = secp.FieldVal diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/modnscalar.go b/vendor/github.com/btcsuite/btcd/btcec/v2/modnscalar.go deleted file mode 100644 index b18b2c1..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/modnscalar.go +++ /dev/null @@ -1,45 +0,0 @@ -// Copyright (c) 2013-2021 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers - -package btcec - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// ModNScalar implements optimized 256-bit constant-time fixed-precision -// arithmetic over the secp256k1 group order. This means all arithmetic is -// performed modulo: -// -// 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 -// -// It only implements the arithmetic needed for elliptic curve operations, -// however, the operations that are not implemented can typically be worked -// around if absolutely needed. For example, subtraction can be performed by -// adding the negation. -// -// Should it be absolutely necessary, conversion to the standard library -// math/big.Int can be accomplished by using the Bytes method, slicing the -// resulting fixed-size array, and feeding it to big.Int.SetBytes. However, -// that should typically be avoided when possible as conversion to big.Ints -// requires allocations, is not constant time, and is slower when working modulo -// the group order. -type ModNScalar = secp.ModNScalar - -// NonceRFC6979 generates a nonce deterministically according to RFC 6979 using -// HMAC-SHA256 for the hashing function. It takes a 32-byte hash as an input -// and returns a 32-byte nonce to be used for deterministic signing. The extra -// and version arguments are optional, but allow additional data to be added to -// the input of the HMAC. When provided, the extra data must be 32-bytes and -// version must be 16 bytes or they will be ignored. -// -// Finally, the extraIterations parameter provides a method to produce a stream -// of deterministic nonces to ensure the signing code is able to produce a nonce -// that results in a valid signature in the extremely unlikely event the -// original nonce produced results in an invalid signature (e.g. R == 0). -// Signing code should start with 0 and increment it if necessary. -func NonceRFC6979(privKey []byte, hash []byte, extra []byte, version []byte, - extraIterations uint32) *ModNScalar { - - return secp.NonceRFC6979(privKey, hash, extra, version, extraIterations) -} diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/privkey.go b/vendor/github.com/btcsuite/btcd/btcec/v2/privkey.go deleted file mode 100644 index 4efa806..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/privkey.go +++ /dev/null @@ -1,37 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing -// things with the the private key without having to directly import the ecdsa -// package. -type PrivateKey = secp.PrivateKey - -// PrivKeyFromBytes returns a private and public key for `curve' based on the -// private key passed as an argument as a byte slice. -func PrivKeyFromBytes(pk []byte) (*PrivateKey, *PublicKey) { - privKey := secp.PrivKeyFromBytes(pk) - - return privKey, privKey.PubKey() -} - -// NewPrivateKey is a wrapper for ecdsa.GenerateKey that returns a PrivateKey -// instead of the normal ecdsa.PrivateKey. -func NewPrivateKey() (*PrivateKey, error) { - return secp.GeneratePrivateKey() -} - -// PrivKeyFromScalar instantiates a new private key from a scalar encoded as a -// big integer. -func PrivKeyFromScalar(key *ModNScalar) *PrivateKey { - return &PrivateKey{Key: *key} -} - -// PrivKeyBytesLen defines the length in bytes of a serialized private key. -const PrivKeyBytesLen = 32 diff --git a/vendor/github.com/btcsuite/btcd/btcec/v2/pubkey.go b/vendor/github.com/btcsuite/btcd/btcec/v2/pubkey.go deleted file mode 100644 index 7968ed0..0000000 --- a/vendor/github.com/btcsuite/btcd/btcec/v2/pubkey.go +++ /dev/null @@ -1,51 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcec - -import ( - secp "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// These constants define the lengths of serialized public keys. -const ( - PubKeyBytesLenCompressed = 33 -) - -const ( - pubkeyCompressed byte = 0x2 // y_bit + x coord - pubkeyUncompressed byte = 0x4 // x coord + y coord - pubkeyHybrid byte = 0x6 // y_bit + x coord + y coord -) - -// IsCompressedPubKey returns true the the passed serialized public key has -// been encoded in compressed format, and false otherwise. -func IsCompressedPubKey(pubKey []byte) bool { - // The public key is only compressed if it is the correct length and - // the format (first byte) is one of the compressed pubkey values. - return len(pubKey) == PubKeyBytesLenCompressed && - (pubKey[0]&^byte(0x1) == pubkeyCompressed) -} - -// ParsePubKey parses a public key for a koblitz curve from a bytestring into a -// ecdsa.Publickey, verifying that it is valid. It supports compressed, -// uncompressed and hybrid signature formats. -func ParsePubKey(pubKeyStr []byte) (*PublicKey, error) { - return secp.ParsePubKey(pubKeyStr) -} - -// PublicKey is an ecdsa.PublicKey with additional functions to -// serialize in uncompressed, compressed, and hybrid formats. -type PublicKey = secp.PublicKey - -// NewPublicKey instantiates a new public key with the given x and y -// coordinates. -// -// It should be noted that, unlike ParsePubKey, since this accepts arbitrary x -// and y coordinates, it allows creation of public keys that are not valid -// points on the secp256k1 curve. The IsOnCurve method of the returned instance -// can be used to determine validity. -func NewPublicKey(x, y *FieldVal) *PublicKey { - return secp.NewPublicKey(x, y) -} diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/README.md b/vendor/github.com/btcsuite/btcd/chaincfg/README.md deleted file mode 100644 index 72fac2e..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/README.md +++ /dev/null @@ -1,85 +0,0 @@ -chaincfg -======== - -[![Build Status](https://github.com/btcsuite/btcd/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcd/actions) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](https://pkg.go.dev/github.com/btcsuite/btcd/chaincfg) - -Package chaincfg defines chain configuration parameters for the three standard -Bitcoin networks and provides the ability for callers to define their own custom -Bitcoin networks. - -Although this package was primarily written for btcd, it has intentionally been -designed so it can be used as a standalone package for any projects needing to -use parameters for the standard Bitcoin networks or for projects needing to -define their own network. - -## Sample Use - -```Go -package main - -import ( - "flag" - "fmt" - "log" - - "github.com/btcsuite/btcutil" - "github.com/btcsuite/btcd/chaincfg" -) - -var testnet = flag.Bool("testnet", false, "operate on the testnet Bitcoin network") - -// By default (without -testnet), use mainnet. -var chainParams = &chaincfg.MainNetParams - -func main() { - flag.Parse() - - // Modify active network parameters if operating on testnet. - if *testnet { - chainParams = &chaincfg.TestNet3Params - } - - // later... - - // Create and print new payment address, specific to the active network. - pubKeyHash := make([]byte, 20) - addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash, chainParams) - if err != nil { - log.Fatal(err) - } - fmt.Println(addr) -} -``` - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcd/chaincfg -``` - -## GPG Verification Key - -All official release tags are signed by Conformal so users can ensure the code -has not been tampered with and is coming from the btcsuite developers. To -verify the signature perform the following: - -- Download the public key from the Conformal website at - https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt - -- Import the public key into your GPG keyring: - ```bash - gpg --import GIT-GPG-KEY-conformal.txt - ``` - -- Verify the release tag with the following command where `TAG_NAME` is a - placeholder for the specific tag: - ```bash - git tag -v TAG_NAME - ``` - -## License - -Package chaincfg is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/LICENSE b/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/LICENSE deleted file mode 100644 index 23190ba..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/LICENSE +++ /dev/null @@ -1,16 +0,0 @@ -ISC License - -Copyright (c) 2013-2022 The btcsuite developers -Copyright (c) 2015-2016 The Decred developers - -Permission to use, copy, modify, and distribute this software for any -purpose with or without fee is hereby granted, provided that the above -copyright notice and this permission notice appear in all copies. - -THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/README.md b/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/README.md deleted file mode 100644 index b7ddf19..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/README.md +++ /dev/null @@ -1,41 +0,0 @@ -chainhash -========= - -[![Build Status](https://github.com/btcsuite/btcd/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcd/actions) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](https://pkg.go.dev/github.com/btcsuite/btcd/chaincfg/chainhash) -======= - -chainhash provides a generic hash type and associated functions that allows the -specific hash algorithm to be abstracted. - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcd/chaincfg/chainhash -``` - -## GPG Verification Key - -All official release tags are signed by Conformal so users can ensure the code -has not been tampered with and is coming from the btcsuite developers. To -verify the signature perform the following: - -- Download the public key from the Conformal website at - https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt - -- Import the public key into your GPG keyring: - ```bash - gpg --import GIT-GPG-KEY-conformal.txt - ``` - -- Verify the release tag with the following command where `TAG_NAME` is a - placeholder for the specific tag: - ```bash - git tag -v TAG_NAME - ``` - -## License - -Package chainhash is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/doc.go b/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/doc.go deleted file mode 100644 index c3eb43d..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/doc.go +++ /dev/null @@ -1,5 +0,0 @@ -// Package chainhash provides abstracted hash functionality. -// -// This package provides a generic hash type and associated functions that -// allows the specific hash algorithm to be abstracted. -package chainhash diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/hash.go b/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/hash.go deleted file mode 100644 index 764ec3c..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/hash.go +++ /dev/null @@ -1,198 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Copyright (c) 2015 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package chainhash - -import ( - "crypto/sha256" - "encoding/hex" - "fmt" -) - -// HashSize of array used to store hashes. See Hash. -const HashSize = 32 - -// MaxHashStringSize is the maximum length of a Hash hash string. -const MaxHashStringSize = HashSize * 2 - -var ( - // TagBIP0340Challenge is the BIP-0340 tag for challenges. - TagBIP0340Challenge = []byte("BIP0340/challenge") - - // TagBIP0340Aux is the BIP-0340 tag for aux data. - TagBIP0340Aux = []byte("BIP0340/aux") - - // TagBIP0340Nonce is the BIP-0340 tag for nonces. - TagBIP0340Nonce = []byte("BIP0340/nonce") - - // TagTapSighash is the tag used by BIP 341 to generate the sighash - // flags. - TagTapSighash = []byte("TapSighash") - - // TagTagTapLeaf is the message tag prefix used to compute the hash - // digest of a tapscript leaf. - TagTapLeaf = []byte("TapLeaf") - - // TagTapBranch is the message tag prefix used to compute the - // hash digest of two tap leaves into a taproot branch node. - TagTapBranch = []byte("TapBranch") - - // TagTapTweak is the message tag prefix used to compute the hash tweak - // used to enable a public key to commit to the taproot branch root - // for the witness program. - TagTapTweak = []byte("TapTweak") - - // precomputedTags is a map containing the SHA-256 hash of the BIP-0340 - // tags. - precomputedTags = map[string]Hash{ - string(TagBIP0340Challenge): sha256.Sum256(TagBIP0340Challenge), - string(TagBIP0340Aux): sha256.Sum256(TagBIP0340Aux), - string(TagBIP0340Nonce): sha256.Sum256(TagBIP0340Nonce), - string(TagTapSighash): sha256.Sum256(TagTapSighash), - string(TagTapLeaf): sha256.Sum256(TagTapLeaf), - string(TagTapBranch): sha256.Sum256(TagTapBranch), - string(TagTapTweak): sha256.Sum256(TagTapTweak), - } -) - -// ErrHashStrSize describes an error that indicates the caller specified a hash -// string that has too many characters. -var ErrHashStrSize = fmt.Errorf("max hash string length is %v bytes", MaxHashStringSize) - -// Hash is used in several of the bitcoin messages and common structures. It -// typically represents the double sha256 of data. -type Hash [HashSize]byte - -// String returns the Hash as the hexadecimal string of the byte-reversed -// hash. -func (hash Hash) String() string { - for i := 0; i < HashSize/2; i++ { - hash[i], hash[HashSize-1-i] = hash[HashSize-1-i], hash[i] - } - return hex.EncodeToString(hash[:]) -} - -// CloneBytes returns a copy of the bytes which represent the hash as a byte -// slice. -// -// NOTE: It is generally cheaper to just slice the hash directly thereby reusing -// the same bytes rather than calling this method. -func (hash *Hash) CloneBytes() []byte { - newHash := make([]byte, HashSize) - copy(newHash, hash[:]) - - return newHash -} - -// SetBytes sets the bytes which represent the hash. An error is returned if -// the number of bytes passed in is not HashSize. -func (hash *Hash) SetBytes(newHash []byte) error { - nhlen := len(newHash) - if nhlen != HashSize { - return fmt.Errorf("invalid hash length of %v, want %v", nhlen, - HashSize) - } - copy(hash[:], newHash) - - return nil -} - -// IsEqual returns true if target is the same as hash. -func (hash *Hash) IsEqual(target *Hash) bool { - if hash == nil && target == nil { - return true - } - if hash == nil || target == nil { - return false - } - return *hash == *target -} - -// NewHash returns a new Hash from a byte slice. An error is returned if -// the number of bytes passed in is not HashSize. -func NewHash(newHash []byte) (*Hash, error) { - var sh Hash - err := sh.SetBytes(newHash) - if err != nil { - return nil, err - } - return &sh, err -} - -// TaggedHash implements the tagged hash scheme described in BIP-340. We use -// sha-256 to bind a message hash to a specific context using a tag: -// sha256(sha256(tag) || sha256(tag) || msg). -func TaggedHash(tag []byte, msgs ...[]byte) *Hash { - // Check to see if we've already pre-computed the hash of the tag. If - // so then this'll save us an extra sha256 hash. - shaTag, ok := precomputedTags[string(tag)] - if !ok { - shaTag = sha256.Sum256(tag) - } - - // h = sha256(sha256(tag) || sha256(tag) || msg) - h := sha256.New() - h.Write(shaTag[:]) - h.Write(shaTag[:]) - - for _, msg := range msgs { - h.Write(msg) - } - - taggedHash := h.Sum(nil) - - // The function can't error out since the above hash is guaranteed to - // be 32 bytes. - hash, _ := NewHash(taggedHash) - - return hash -} - -// NewHashFromStr creates a Hash from a hash string. The string should be -// the hexadecimal string of a byte-reversed hash, but any missing characters -// result in zero padding at the end of the Hash. -func NewHashFromStr(hash string) (*Hash, error) { - ret := new(Hash) - err := Decode(ret, hash) - if err != nil { - return nil, err - } - return ret, nil -} - -// Decode decodes the byte-reversed hexadecimal string encoding of a Hash to a -// destination. -func Decode(dst *Hash, src string) error { - // Return error if hash string is too long. - if len(src) > MaxHashStringSize { - return ErrHashStrSize - } - - // Hex decoder expects the hash to be a multiple of two. When not, pad - // with a leading zero. - var srcBytes []byte - if len(src)%2 == 0 { - srcBytes = []byte(src) - } else { - srcBytes = make([]byte, 1+len(src)) - srcBytes[0] = '0' - copy(srcBytes[1:], src) - } - - // Hex decode the source bytes to a temporary destination. - var reversedHash Hash - _, err := hex.Decode(reversedHash[HashSize-hex.DecodedLen(len(srcBytes)):], srcBytes) - if err != nil { - return err - } - - // Reverse copy from the temporary hash to destination. Because the - // temporary was zeroed, the written result will be correctly padded. - for i, b := range reversedHash[:HashSize/2] { - dst[i], dst[HashSize-1-i] = reversedHash[HashSize-1-i], b - } - - return nil -} diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/hashfuncs.go b/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/hashfuncs.go deleted file mode 100644 index bf74f73..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/chainhash/hashfuncs.go +++ /dev/null @@ -1,33 +0,0 @@ -// Copyright (c) 2015 The Decred developers -// Copyright (c) 2016-2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package chainhash - -import "crypto/sha256" - -// HashB calculates hash(b) and returns the resulting bytes. -func HashB(b []byte) []byte { - hash := sha256.Sum256(b) - return hash[:] -} - -// HashH calculates hash(b) and returns the resulting bytes as a Hash. -func HashH(b []byte) Hash { - return Hash(sha256.Sum256(b)) -} - -// DoubleHashB calculates hash(hash(b)) and returns the resulting bytes. -func DoubleHashB(b []byte) []byte { - first := sha256.Sum256(b) - second := sha256.Sum256(first[:]) - return second[:] -} - -// DoubleHashH calculates hash(hash(b)) and returns the resulting bytes as a -// Hash. -func DoubleHashH(b []byte) Hash { - first := sha256.Sum256(b) - return Hash(sha256.Sum256(first[:])) -} diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/doc.go b/vendor/github.com/btcsuite/btcd/chaincfg/doc.go deleted file mode 100644 index 3659adb..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/doc.go +++ /dev/null @@ -1,61 +0,0 @@ -// Package chaincfg defines chain configuration parameters. -// -// In addition to the main Bitcoin network, which is intended for the transfer -// of monetary value, there also exists two currently active standard networks: -// regression test and testnet (version 3). These networks are incompatible -// with each other (each sharing a different genesis block) and software should -// handle errors where input intended for one network is used on an application -// instance running on a different network. -// -// For library packages, chaincfg provides the ability to lookup chain -// parameters and encoding magics when passed a *Params. Older APIs not updated -// to the new convention of passing a *Params may lookup the parameters for a -// wire.BitcoinNet using ParamsForNet, but be aware that this usage is -// deprecated and will be removed from chaincfg in the future. -// -// For main packages, a (typically global) var may be assigned the address of -// one of the standard Param vars for use as the application's "active" network. -// When a network parameter is needed, it may then be looked up through this -// variable (either directly, or hidden in a library call). -// -// package main -// -// import ( -// "flag" -// "fmt" -// "log" -// -// "github.com/btcsuite/btcutil" -// "github.com/btcsuite/btcd/chaincfg" -// ) -// -// var testnet = flag.Bool("testnet", false, "operate on the testnet Bitcoin network") -// -// // By default (without -testnet), use mainnet. -// var chainParams = &chaincfg.MainNetParams -// -// func main() { -// flag.Parse() -// -// // Modify active network parameters if operating on testnet. -// if *testnet { -// chainParams = &chaincfg.TestNet3Params -// } -// -// // later... -// -// // Create and print new payment address, specific to the active network. -// pubKeyHash := make([]byte, 20) -// addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash, chainParams) -// if err != nil { -// log.Fatal(err) -// } -// fmt.Println(addr) -// } -// -// If an application does not use one of the three standard Bitcoin networks, -// a new Params struct may be created which defines the parameters for the -// non-standard network. As a general rule of thumb, all network parameters -// should be unique to the network, but parameter collisions can still occur -// (unfortunately, this is the case with regtest and testnet3 sharing magics). -package chaincfg diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/genesis.go b/vendor/github.com/btcsuite/btcd/chaincfg/genesis.go deleted file mode 100644 index 73d2861..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/genesis.go +++ /dev/null @@ -1,200 +0,0 @@ -// Copyright (c) 2014-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package chaincfg - -import ( - "time" - - "github.com/btcsuite/btcd/chaincfg/chainhash" - "github.com/btcsuite/btcd/wire" -) - -// genesisCoinbaseTx is the coinbase transaction for the genesis blocks for -// the main network, regression test network, and test network (version 3). -var genesisCoinbaseTx = wire.MsgTx{ - Version: 1, - TxIn: []*wire.TxIn{ - { - PreviousOutPoint: wire.OutPoint{ - Hash: chainhash.Hash{}, - Index: 0xffffffff, - }, - SignatureScript: []byte{ - 0x04, 0xff, 0xff, 0x00, 0x1d, 0x01, 0x04, 0x45, /* |.......E| */ - 0x54, 0x68, 0x65, 0x20, 0x54, 0x69, 0x6d, 0x65, /* |The Time| */ - 0x73, 0x20, 0x30, 0x33, 0x2f, 0x4a, 0x61, 0x6e, /* |s 03/Jan| */ - 0x2f, 0x32, 0x30, 0x30, 0x39, 0x20, 0x43, 0x68, /* |/2009 Ch| */ - 0x61, 0x6e, 0x63, 0x65, 0x6c, 0x6c, 0x6f, 0x72, /* |ancellor| */ - 0x20, 0x6f, 0x6e, 0x20, 0x62, 0x72, 0x69, 0x6e, /* | on brin| */ - 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x73, 0x65, 0x63, /* |k of sec|*/ - 0x6f, 0x6e, 0x64, 0x20, 0x62, 0x61, 0x69, 0x6c, /* |ond bail| */ - 0x6f, 0x75, 0x74, 0x20, 0x66, 0x6f, 0x72, 0x20, /* |out for |*/ - 0x62, 0x61, 0x6e, 0x6b, 0x73, /* |banks| */ - }, - Sequence: 0xffffffff, - }, - }, - TxOut: []*wire.TxOut{ - { - Value: 0x12a05f200, - PkScript: []byte{ - 0x41, 0x04, 0x67, 0x8a, 0xfd, 0xb0, 0xfe, 0x55, /* |A.g....U| */ - 0x48, 0x27, 0x19, 0x67, 0xf1, 0xa6, 0x71, 0x30, /* |H'.g..q0| */ - 0xb7, 0x10, 0x5c, 0xd6, 0xa8, 0x28, 0xe0, 0x39, /* |..\..(.9| */ - 0x09, 0xa6, 0x79, 0x62, 0xe0, 0xea, 0x1f, 0x61, /* |..yb...a| */ - 0xde, 0xb6, 0x49, 0xf6, 0xbc, 0x3f, 0x4c, 0xef, /* |..I..?L.| */ - 0x38, 0xc4, 0xf3, 0x55, 0x04, 0xe5, 0x1e, 0xc1, /* |8..U....| */ - 0x12, 0xde, 0x5c, 0x38, 0x4d, 0xf7, 0xba, 0x0b, /* |..\8M...| */ - 0x8d, 0x57, 0x8a, 0x4c, 0x70, 0x2b, 0x6b, 0xf1, /* |.W.Lp+k.| */ - 0x1d, 0x5f, 0xac, /* |._.| */ - }, - }, - }, - LockTime: 0, -} - -// genesisHash is the hash of the first block in the block chain for the main -// network (genesis block). -var genesisHash = chainhash.Hash([chainhash.HashSize]byte{ // Make go vet happy. - 0x6f, 0xe2, 0x8c, 0x0a, 0xb6, 0xf1, 0xb3, 0x72, - 0xc1, 0xa6, 0xa2, 0x46, 0xae, 0x63, 0xf7, 0x4f, - 0x93, 0x1e, 0x83, 0x65, 0xe1, 0x5a, 0x08, 0x9c, - 0x68, 0xd6, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00, -}) - -// genesisMerkleRoot is the hash of the first transaction in the genesis block -// for the main network. -var genesisMerkleRoot = chainhash.Hash([chainhash.HashSize]byte{ // Make go vet happy. - 0x3b, 0xa3, 0xed, 0xfd, 0x7a, 0x7b, 0x12, 0xb2, - 0x7a, 0xc7, 0x2c, 0x3e, 0x67, 0x76, 0x8f, 0x61, - 0x7f, 0xc8, 0x1b, 0xc3, 0x88, 0x8a, 0x51, 0x32, - 0x3a, 0x9f, 0xb8, 0xaa, 0x4b, 0x1e, 0x5e, 0x4a, -}) - -// genesisBlock defines the genesis block of the block chain which serves as the -// public transaction ledger for the main network. -var genesisBlock = wire.MsgBlock{ - Header: wire.BlockHeader{ - Version: 1, - PrevBlock: chainhash.Hash{}, // 0000000000000000000000000000000000000000000000000000000000000000 - MerkleRoot: genesisMerkleRoot, // 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b - Timestamp: time.Unix(0x495fab29, 0), // 2009-01-03 18:15:05 +0000 UTC - Bits: 0x1d00ffff, // 486604799 [00000000ffff0000000000000000000000000000000000000000000000000000] - Nonce: 0x7c2bac1d, // 2083236893 - }, - Transactions: []*wire.MsgTx{&genesisCoinbaseTx}, -} - -// regTestGenesisHash is the hash of the first block in the block chain for the -// regression test network (genesis block). -var regTestGenesisHash = chainhash.Hash([chainhash.HashSize]byte{ // Make go vet happy. - 0x06, 0x22, 0x6e, 0x46, 0x11, 0x1a, 0x0b, 0x59, - 0xca, 0xaf, 0x12, 0x60, 0x43, 0xeb, 0x5b, 0xbf, - 0x28, 0xc3, 0x4f, 0x3a, 0x5e, 0x33, 0x2a, 0x1f, - 0xc7, 0xb2, 0xb7, 0x3c, 0xf1, 0x88, 0x91, 0x0f, -}) - -// regTestGenesisMerkleRoot is the hash of the first transaction in the genesis -// block for the regression test network. It is the same as the merkle root for -// the main network. -var regTestGenesisMerkleRoot = genesisMerkleRoot - -// regTestGenesisBlock defines the genesis block of the block chain which serves -// as the public transaction ledger for the regression test network. -var regTestGenesisBlock = wire.MsgBlock{ - Header: wire.BlockHeader{ - Version: 1, - PrevBlock: chainhash.Hash{}, // 0000000000000000000000000000000000000000000000000000000000000000 - MerkleRoot: regTestGenesisMerkleRoot, // 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b - Timestamp: time.Unix(1296688602, 0), // 2011-02-02 23:16:42 +0000 UTC - Bits: 0x207fffff, // 545259519 [7fffff0000000000000000000000000000000000000000000000000000000000] - Nonce: 2, - }, - Transactions: []*wire.MsgTx{&genesisCoinbaseTx}, -} - -// testNet3GenesisHash is the hash of the first block in the block chain for the -// test network (version 3). -var testNet3GenesisHash = chainhash.Hash([chainhash.HashSize]byte{ // Make go vet happy. - 0x43, 0x49, 0x7f, 0xd7, 0xf8, 0x26, 0x95, 0x71, - 0x08, 0xf4, 0xa3, 0x0f, 0xd9, 0xce, 0xc3, 0xae, - 0xba, 0x79, 0x97, 0x20, 0x84, 0xe9, 0x0e, 0xad, - 0x01, 0xea, 0x33, 0x09, 0x00, 0x00, 0x00, 0x00, -}) - -// testNet3GenesisMerkleRoot is the hash of the first transaction in the genesis -// block for the test network (version 3). It is the same as the merkle root -// for the main network. -var testNet3GenesisMerkleRoot = genesisMerkleRoot - -// testNet3GenesisBlock defines the genesis block of the block chain which -// serves as the public transaction ledger for the test network (version 3). -var testNet3GenesisBlock = wire.MsgBlock{ - Header: wire.BlockHeader{ - Version: 1, - PrevBlock: chainhash.Hash{}, // 0000000000000000000000000000000000000000000000000000000000000000 - MerkleRoot: testNet3GenesisMerkleRoot, // 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b - Timestamp: time.Unix(1296688602, 0), // 2011-02-02 23:16:42 +0000 UTC - Bits: 0x1d00ffff, // 486604799 [00000000ffff0000000000000000000000000000000000000000000000000000] - Nonce: 0x18aea41a, // 414098458 - }, - Transactions: []*wire.MsgTx{&genesisCoinbaseTx}, -} - -// simNetGenesisHash is the hash of the first block in the block chain for the -// simulation test network. -var simNetGenesisHash = chainhash.Hash([chainhash.HashSize]byte{ // Make go vet happy. - 0xf6, 0x7a, 0xd7, 0x69, 0x5d, 0x9b, 0x66, 0x2a, - 0x72, 0xff, 0x3d, 0x8e, 0xdb, 0xbb, 0x2d, 0xe0, - 0xbf, 0xa6, 0x7b, 0x13, 0x97, 0x4b, 0xb9, 0x91, - 0x0d, 0x11, 0x6d, 0x5c, 0xbd, 0x86, 0x3e, 0x68, -}) - -// simNetGenesisMerkleRoot is the hash of the first transaction in the genesis -// block for the simulation test network. It is the same as the merkle root for -// the main network. -var simNetGenesisMerkleRoot = genesisMerkleRoot - -// simNetGenesisBlock defines the genesis block of the block chain which serves -// as the public transaction ledger for the simulation test network. -var simNetGenesisBlock = wire.MsgBlock{ - Header: wire.BlockHeader{ - Version: 1, - PrevBlock: chainhash.Hash{}, // 0000000000000000000000000000000000000000000000000000000000000000 - MerkleRoot: simNetGenesisMerkleRoot, // 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b - Timestamp: time.Unix(1401292357, 0), // 2014-05-28 15:52:37 +0000 UTC - Bits: 0x207fffff, // 545259519 [7fffff0000000000000000000000000000000000000000000000000000000000] - Nonce: 2, - }, - Transactions: []*wire.MsgTx{&genesisCoinbaseTx}, -} - -// sigNetGenesisHash is the hash of the first block in the block chain for the -// signet test network. -var sigNetGenesisHash = chainhash.Hash{ - 0xf6, 0x1e, 0xee, 0x3b, 0x63, 0xa3, 0x80, 0xa4, - 0x77, 0xa0, 0x63, 0xaf, 0x32, 0xb2, 0xbb, 0xc9, - 0x7c, 0x9f, 0xf9, 0xf0, 0x1f, 0x2c, 0x42, 0x25, - 0xe9, 0x73, 0x98, 0x81, 0x08, 0x00, 0x00, 0x00, -} - -// sigNetGenesisMerkleRoot is the hash of the first transaction in the genesis -// block for the signet test network. It is the same as the merkle root for -// the main network. -var sigNetGenesisMerkleRoot = genesisMerkleRoot - -// sigNetGenesisBlock defines the genesis block of the block chain which serves -// as the public transaction ledger for the signet test network. -var sigNetGenesisBlock = wire.MsgBlock{ - Header: wire.BlockHeader{ - Version: 1, - PrevBlock: chainhash.Hash{}, // 0000000000000000000000000000000000000000000000000000000000000000 - MerkleRoot: sigNetGenesisMerkleRoot, // 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b - Timestamp: time.Unix(1598918400, 0), // 2020-09-01 00:00:00 +0000 UTC - Bits: 0x1e0377ae, // 503543726 [00000377ae000000000000000000000000000000000000000000000000000000] - Nonce: 52613770, - }, - Transactions: []*wire.MsgTx{&genesisCoinbaseTx}, -} diff --git a/vendor/github.com/btcsuite/btcd/chaincfg/params.go b/vendor/github.com/btcsuite/btcd/chaincfg/params.go deleted file mode 100644 index a6d8d3e..0000000 --- a/vendor/github.com/btcsuite/btcd/chaincfg/params.go +++ /dev/null @@ -1,875 +0,0 @@ -// Copyright (c) 2014-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package chaincfg - -import ( - "encoding/binary" - "encoding/hex" - "errors" - "math" - "math/big" - "strings" - "time" - - "github.com/btcsuite/btcd/chaincfg/chainhash" - "github.com/btcsuite/btcd/wire" -) - -// These variables are the chain proof-of-work limit parameters for each default -// network. -var ( - // bigOne is 1 represented as a big.Int. It is defined here to avoid - // the overhead of creating it multiple times. - bigOne = big.NewInt(1) - - // mainPowLimit is the highest proof of work value a Bitcoin block can - // have for the main network. It is the value 2^224 - 1. - mainPowLimit = new(big.Int).Sub(new(big.Int).Lsh(bigOne, 224), bigOne) - - // regressionPowLimit is the highest proof of work value a Bitcoin block - // can have for the regression test network. It is the value 2^255 - 1. - regressionPowLimit = new(big.Int).Sub(new(big.Int).Lsh(bigOne, 255), bigOne) - - // testNet3PowLimit is the highest proof of work value a Bitcoin block - // can have for the test network (version 3). It is the value - // 2^224 - 1. - testNet3PowLimit = new(big.Int).Sub(new(big.Int).Lsh(bigOne, 224), bigOne) - - // simNetPowLimit is the highest proof of work value a Bitcoin block - // can have for the simulation test network. It is the value 2^255 - 1. - simNetPowLimit = new(big.Int).Sub(new(big.Int).Lsh(bigOne, 255), bigOne) - - // sigNetPowLimit is the highest proof of work value a bitcoin block can - // have for the signet test network. It is the value 0x0377ae << 216. - sigNetPowLimit = new(big.Int).Lsh(new(big.Int).SetInt64(0x0377ae), 216) - - // DefaultSignetChallenge is the byte representation of the signet - // challenge for the default (public, Taproot enabled) signet network. - // This is the binary equivalent of the bitcoin script - // 1 03ad5e0edad18cb1f0fc0d28a3d4f1f3e445640337489abb10404f2d1e086be430 - // 0359ef5021964fe22d6f8e05b2463c9540ce96883fe3b278760f048f5189f2e6c4 2 - // OP_CHECKMULTISIG - DefaultSignetChallenge, _ = hex.DecodeString( - "512103ad5e0edad18cb1f0fc0d28a3d4f1f3e445640337489abb10404f2d" + - "1e086be430210359ef5021964fe22d6f8e05b2463c9540ce9688" + - "3fe3b278760f048f5189f2e6c452ae", - ) - - // DefaultSignetDNSSeeds is the list of seed nodes for the default - // (public, Taproot enabled) signet network. - DefaultSignetDNSSeeds = []DNSSeed{ - {"178.128.221.177", false}, - {"2a01:7c8:d005:390::5", false}, - {"v7ajjeirttkbnt32wpy3c6w3emwnfr3fkla7hpxcfokr3ysd3kqtzmqd.onion:38333", false}, - } -) - -// Checkpoint identifies a known good point in the block chain. Using -// checkpoints allows a few optimizations for old blocks during initial download -// and also prevents forks from old blocks. -// -// Each checkpoint is selected based upon several factors. See the -// documentation for blockchain.IsCheckpointCandidate for details on the -// selection criteria. -type Checkpoint struct { - Height int32 - Hash *chainhash.Hash -} - -// DNSSeed identifies a DNS seed. -type DNSSeed struct { - // Host defines the hostname of the seed. - Host string - - // HasFiltering defines whether the seed supports filtering - // by service flags (wire.ServiceFlag). - HasFiltering bool -} - -// ConsensusDeployment defines details related to a specific consensus rule -// change that is voted in. This is part of BIP0009. -type ConsensusDeployment struct { - // BitNumber defines the specific bit number within the block version - // this particular soft-fork deployment refers to. - BitNumber uint8 - - // StartTime is the median block time after which voting on the - // deployment starts. - StartTime uint64 - - // ExpireTime is the median block time after which the attempted - // deployment expires. - ExpireTime uint64 -} - -// Constants that define the deployment offset in the deployments field of the -// parameters for each deployment. This is useful to be able to get the details -// of a specific deployment by name. -const ( - // DeploymentTestDummy defines the rule change deployment ID for testing - // purposes. - DeploymentTestDummy = iota - - // DeploymentCSV defines the rule change deployment ID for the CSV - // soft-fork package. The CSV package includes the deployment of BIPS - // 68, 112, and 113. - DeploymentCSV - - // DeploymentSegwit defines the rule change deployment ID for the - // Segregated Witness (segwit) soft-fork package. The segwit package - // includes the deployment of BIPS 141, 142, 144, 145, 147 and 173. - DeploymentSegwit - - // DeploymentTaproot defines the rule change deployment ID for the - // Taproot (+Schnorr) soft-fork package. The taproot package includes - // the deployment of BIPS 340, 341 and 342. - DeploymentTaproot - - // NOTE: DefinedDeployments must always come last since it is used to - // determine how many defined deployments there currently are. - - // DefinedDeployments is the number of currently defined deployments. - DefinedDeployments -) - -// Params defines a Bitcoin network by its parameters. These parameters may be -// used by Bitcoin applications to differentiate networks as well as addresses -// and keys for one network from those intended for use on another network. -type Params struct { - // Name defines a human-readable identifier for the network. - Name string - - // Net defines the magic bytes used to identify the network. - Net wire.BitcoinNet - - // DefaultPort defines the default peer-to-peer port for the network. - DefaultPort string - - // DNSSeeds defines a list of DNS seeds for the network that are used - // as one method to discover peers. - DNSSeeds []DNSSeed - - // GenesisBlock defines the first block of the chain. - GenesisBlock *wire.MsgBlock - - // GenesisHash is the starting block hash. - GenesisHash *chainhash.Hash - - // PowLimit defines the highest allowed proof of work value for a block - // as a uint256. - PowLimit *big.Int - - // PowLimitBits defines the highest allowed proof of work value for a - // block in compact form. - PowLimitBits uint32 - - // These fields define the block heights at which the specified softfork - // BIP became active. - BIP0034Height int32 - BIP0065Height int32 - BIP0066Height int32 - - // CoinbaseMaturity is the number of blocks required before newly mined - // coins (coinbase transactions) can be spent. - CoinbaseMaturity uint16 - - // SubsidyReductionInterval is the interval of blocks before the subsidy - // is reduced. - SubsidyReductionInterval int32 - - // TargetTimespan is the desired amount of time that should elapse - // before the block difficulty requirement is examined to determine how - // it should be changed in order to maintain the desired block - // generation rate. - TargetTimespan time.Duration - - // TargetTimePerBlock is the desired amount of time to generate each - // block. - TargetTimePerBlock time.Duration - - // RetargetAdjustmentFactor is the adjustment factor used to limit - // the minimum and maximum amount of adjustment that can occur between - // difficulty retargets. - RetargetAdjustmentFactor int64 - - // ReduceMinDifficulty defines whether the network should reduce the - // minimum required difficulty after a long enough period of time has - // passed without finding a block. This is really only useful for test - // networks and should not be set on a main network. - ReduceMinDifficulty bool - - // MinDiffReductionTime is the amount of time after which the minimum - // required difficulty should be reduced when a block hasn't been found. - // - // NOTE: This only applies if ReduceMinDifficulty is true. - MinDiffReductionTime time.Duration - - // GenerateSupported specifies whether or not CPU mining is allowed. - GenerateSupported bool - - // Checkpoints ordered from oldest to newest. - Checkpoints []Checkpoint - - // These fields are related to voting on consensus rule changes as - // defined by BIP0009. - // - // RuleChangeActivationThreshold is the number of blocks in a threshold - // state retarget window for which a positive vote for a rule change - // must be cast in order to lock in a rule change. It should typically - // be 95% for the main network and 75% for test networks. - // - // MinerConfirmationWindow is the number of blocks in each threshold - // state retarget window. - // - // Deployments define the specific consensus rule changes to be voted - // on. - RuleChangeActivationThreshold uint32 - MinerConfirmationWindow uint32 - Deployments [DefinedDeployments]ConsensusDeployment - - // Mempool parameters - RelayNonStdTxs bool - - // Human-readable part for Bech32 encoded segwit addresses, as defined - // in BIP 173. - Bech32HRPSegwit string - - // Address encoding magics - PubKeyHashAddrID byte // First byte of a P2PKH address - ScriptHashAddrID byte // First byte of a P2SH address - PrivateKeyID byte // First byte of a WIF private key - WitnessPubKeyHashAddrID byte // First byte of a P2WPKH address - WitnessScriptHashAddrID byte // First byte of a P2WSH address - - // BIP32 hierarchical deterministic extended key magics - HDPrivateKeyID [4]byte - HDPublicKeyID [4]byte - - // BIP44 coin type used in the hierarchical deterministic path for - // address generation. - HDCoinType uint32 -} - -// MainNetParams defines the network parameters for the main Bitcoin network. -var MainNetParams = Params{ - Name: "mainnet", - Net: wire.MainNet, - DefaultPort: "8333", - DNSSeeds: []DNSSeed{ - {"seed.bitcoin.sipa.be", true}, - {"dnsseed.bluematt.me", true}, - {"dnsseed.bitcoin.dashjr.org", false}, - {"seed.bitcoinstats.com", true}, - {"seed.bitnodes.io", false}, - {"seed.bitcoin.jonasschnelli.ch", true}, - }, - - // Chain parameters - GenesisBlock: &genesisBlock, - GenesisHash: &genesisHash, - PowLimit: mainPowLimit, - PowLimitBits: 0x1d00ffff, - BIP0034Height: 227931, // 000000000000024b89b42a942fe0d9fea3bb44ab7bd1b19115dd6a759c0808b8 - BIP0065Height: 388381, // 000000000000000004c2b624ed5d7756c508d90fd0da2c7c679febfa6c4735f0 - BIP0066Height: 363725, // 00000000000000000379eaa19dce8c9b722d46ae6a57c2f1a988119488b50931 - CoinbaseMaturity: 100, - SubsidyReductionInterval: 210000, - TargetTimespan: time.Hour * 24 * 14, // 14 days - TargetTimePerBlock: time.Minute * 10, // 10 minutes - RetargetAdjustmentFactor: 4, // 25% less, 400% more - ReduceMinDifficulty: false, - MinDiffReductionTime: 0, - GenerateSupported: false, - - // Checkpoints ordered from oldest to newest. - Checkpoints: []Checkpoint{ - {11111, newHashFromStr("0000000069e244f73d78e8fd29ba2fd2ed618bd6fa2ee92559f542fdb26e7c1d")}, - {33333, newHashFromStr("000000002dd5588a74784eaa7ab0507a18ad16a236e7b1ce69f00d7ddfb5d0a6")}, - {74000, newHashFromStr("0000000000573993a3c9e41ce34471c079dcf5f52a0e824a81e7f953b8661a20")}, - {105000, newHashFromStr("00000000000291ce28027faea320c8d2b054b2e0fe44a773f3eefb151d6bdc97")}, - {134444, newHashFromStr("00000000000005b12ffd4cd315cd34ffd4a594f430ac814c91184a0d42d2b0fe")}, - {168000, newHashFromStr("000000000000099e61ea72015e79632f216fe6cb33d7899acb35b75c8303b763")}, - {193000, newHashFromStr("000000000000059f452a5f7340de6682a977387c17010ff6e6c3bd83ca8b1317")}, - {210000, newHashFromStr("000000000000048b95347e83192f69cf0366076336c639f9b7228e9ba171342e")}, - {216116, newHashFromStr("00000000000001b4f4b433e81ee46494af945cf96014816a4e2370f11b23df4e")}, - {225430, newHashFromStr("00000000000001c108384350f74090433e7fcf79a606b8e797f065b130575932")}, - {250000, newHashFromStr("000000000000003887df1f29024b06fc2200b55f8af8f35453d7be294df2d214")}, - {267300, newHashFromStr("000000000000000a83fbd660e918f218bf37edd92b748ad940483c7c116179ac")}, - {279000, newHashFromStr("0000000000000001ae8c72a0b0c301f67e3afca10e819efa9041e458e9bd7e40")}, - {300255, newHashFromStr("0000000000000000162804527c6e9b9f0563a280525f9d08c12041def0a0f3b2")}, - {319400, newHashFromStr("000000000000000021c6052e9becade189495d1c539aa37c58917305fd15f13b")}, - {343185, newHashFromStr("0000000000000000072b8bf361d01a6ba7d445dd024203fafc78768ed4368554")}, - {352940, newHashFromStr("000000000000000010755df42dba556bb72be6a32f3ce0b6941ce4430152c9ff")}, - {382320, newHashFromStr("00000000000000000a8dc6ed5b133d0eb2fd6af56203e4159789b092defd8ab2")}, - {400000, newHashFromStr("000000000000000004ec466ce4732fe6f1ed1cddc2ed4b328fff5224276e3f6f")}, - {430000, newHashFromStr("000000000000000001868b2bb3a285f3cc6b33ea234eb70facf4dcdf22186b87")}, - {460000, newHashFromStr("000000000000000000ef751bbce8e744ad303c47ece06c8d863e4d417efc258c")}, - {490000, newHashFromStr("000000000000000000de069137b17b8d5a3dfbd5b145b2dcfb203f15d0c4de90")}, - {520000, newHashFromStr("0000000000000000000d26984c0229c9f6962dc74db0a6d525f2f1640396f69c")}, - {550000, newHashFromStr("000000000000000000223b7a2298fb1c6c75fb0efc28a4c56853ff4112ec6bc9")}, - {560000, newHashFromStr("0000000000000000002c7b276daf6efb2b6aa68e2ce3be67ef925b3264ae7122")}, - }, - - // Consensus rule change deployments. - // - // The miner confirmation window is defined as: - // target proof of work timespan / target proof of work spacing - RuleChangeActivationThreshold: 1916, // 95% of MinerConfirmationWindow - MinerConfirmationWindow: 2016, // - Deployments: [DefinedDeployments]ConsensusDeployment{ - DeploymentTestDummy: { - BitNumber: 28, - StartTime: 1199145601, // January 1, 2008 UTC - ExpireTime: 1230767999, // December 31, 2008 UTC - }, - DeploymentCSV: { - BitNumber: 0, - StartTime: 1462060800, // May 1st, 2016 - ExpireTime: 1493596800, // May 1st, 2017 - }, - DeploymentSegwit: { - BitNumber: 1, - StartTime: 1479168000, // November 15, 2016 UTC - ExpireTime: 1510704000, // November 15, 2017 UTC. - }, - }, - - // Mempool parameters - RelayNonStdTxs: false, - - // Human-readable part for Bech32 encoded segwit addresses, as defined in - // BIP 173. - Bech32HRPSegwit: "bc", // always bc for main net - - // Address encoding magics - PubKeyHashAddrID: 0x00, // starts with 1 - ScriptHashAddrID: 0x05, // starts with 3 - PrivateKeyID: 0x80, // starts with 5 (uncompressed) or K (compressed) - WitnessPubKeyHashAddrID: 0x06, // starts with p2 - WitnessScriptHashAddrID: 0x0A, // starts with 7Xh - - // BIP32 hierarchical deterministic extended key magics - HDPrivateKeyID: [4]byte{0x04, 0x88, 0xad, 0xe4}, // starts with xprv - HDPublicKeyID: [4]byte{0x04, 0x88, 0xb2, 0x1e}, // starts with xpub - - // BIP44 coin type used in the hierarchical deterministic path for - // address generation. - HDCoinType: 0, -} - -// RegressionNetParams defines the network parameters for the regression test -// Bitcoin network. Not to be confused with the test Bitcoin network (version -// 3), this network is sometimes simply called "testnet". -var RegressionNetParams = Params{ - Name: "regtest", - Net: wire.TestNet, - DefaultPort: "18444", - DNSSeeds: []DNSSeed{}, - - // Chain parameters - GenesisBlock: ®TestGenesisBlock, - GenesisHash: ®TestGenesisHash, - PowLimit: regressionPowLimit, - PowLimitBits: 0x207fffff, - CoinbaseMaturity: 100, - BIP0034Height: 100000000, // Not active - Permit ver 1 blocks - BIP0065Height: 1351, // Used by regression tests - BIP0066Height: 1251, // Used by regression tests - SubsidyReductionInterval: 150, - TargetTimespan: time.Hour * 24 * 14, // 14 days - TargetTimePerBlock: time.Minute * 10, // 10 minutes - RetargetAdjustmentFactor: 4, // 25% less, 400% more - ReduceMinDifficulty: true, - MinDiffReductionTime: time.Minute * 20, // TargetTimePerBlock * 2 - GenerateSupported: true, - - // Checkpoints ordered from oldest to newest. - Checkpoints: nil, - - // Consensus rule change deployments. - // - // The miner confirmation window is defined as: - // target proof of work timespan / target proof of work spacing - RuleChangeActivationThreshold: 108, // 75% of MinerConfirmationWindow - MinerConfirmationWindow: 144, - Deployments: [DefinedDeployments]ConsensusDeployment{ - DeploymentTestDummy: { - BitNumber: 28, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires - }, - DeploymentCSV: { - BitNumber: 0, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires - }, - DeploymentSegwit: { - BitNumber: 1, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires. - }, - }, - - // Mempool parameters - RelayNonStdTxs: true, - - // Human-readable part for Bech32 encoded segwit addresses, as defined in - // BIP 173. - Bech32HRPSegwit: "bcrt", // always bcrt for reg test net - - // Address encoding magics - PubKeyHashAddrID: 0x6f, // starts with m or n - ScriptHashAddrID: 0xc4, // starts with 2 - PrivateKeyID: 0xef, // starts with 9 (uncompressed) or c (compressed) - - // BIP32 hierarchical deterministic extended key magics - HDPrivateKeyID: [4]byte{0x04, 0x35, 0x83, 0x94}, // starts with tprv - HDPublicKeyID: [4]byte{0x04, 0x35, 0x87, 0xcf}, // starts with tpub - - // BIP44 coin type used in the hierarchical deterministic path for - // address generation. - HDCoinType: 1, -} - -// TestNet3Params defines the network parameters for the test Bitcoin network -// (version 3). Not to be confused with the regression test network, this -// network is sometimes simply called "testnet". -var TestNet3Params = Params{ - Name: "testnet3", - Net: wire.TestNet3, - DefaultPort: "18333", - DNSSeeds: []DNSSeed{ - {"testnet-seed.bitcoin.jonasschnelli.ch", true}, - {"testnet-seed.bitcoin.schildbach.de", false}, - {"seed.tbtc.petertodd.org", true}, - {"testnet-seed.bluematt.me", false}, - }, - - // Chain parameters - GenesisBlock: &testNet3GenesisBlock, - GenesisHash: &testNet3GenesisHash, - PowLimit: testNet3PowLimit, - PowLimitBits: 0x1d00ffff, - BIP0034Height: 21111, // 0000000023b3a96d3484e5abb3755c413e7d41500f8e2a5c3f0dd01299cd8ef8 - BIP0065Height: 581885, // 00000000007f6655f22f98e72ed80d8b06dc761d5da09df0fa1dc4be4f861eb6 - BIP0066Height: 330776, // 000000002104c8c45e99a8853285a3b592602a3ccde2b832481da85e9e4ba182 - CoinbaseMaturity: 100, - SubsidyReductionInterval: 210000, - TargetTimespan: time.Hour * 24 * 14, // 14 days - TargetTimePerBlock: time.Minute * 10, // 10 minutes - RetargetAdjustmentFactor: 4, // 25% less, 400% more - ReduceMinDifficulty: true, - MinDiffReductionTime: time.Minute * 20, // TargetTimePerBlock * 2 - GenerateSupported: false, - - // Checkpoints ordered from oldest to newest. - Checkpoints: []Checkpoint{ - {546, newHashFromStr("000000002a936ca763904c3c35fce2f3556c559c0214345d31b1bcebf76acb70")}, - {100000, newHashFromStr("00000000009e2958c15ff9290d571bf9459e93b19765c6801ddeccadbb160a1e")}, - {200000, newHashFromStr("0000000000287bffd321963ef05feab753ebe274e1d78b2fd4e2bfe9ad3aa6f2")}, - {300001, newHashFromStr("0000000000004829474748f3d1bc8fcf893c88be255e6d7f571c548aff57abf4")}, - {400002, newHashFromStr("0000000005e2c73b8ecb82ae2dbc2e8274614ebad7172b53528aba7501f5a089")}, - {500011, newHashFromStr("00000000000929f63977fbac92ff570a9bd9e7715401ee96f2848f7b07750b02")}, - {600002, newHashFromStr("000000000001f471389afd6ee94dcace5ccc44adc18e8bff402443f034b07240")}, - {700000, newHashFromStr("000000000000406178b12a4dea3b27e13b3c4fe4510994fd667d7c1e6a3f4dc1")}, - {800010, newHashFromStr("000000000017ed35296433190b6829db01e657d80631d43f5983fa403bfdb4c1")}, - {900000, newHashFromStr("0000000000356f8d8924556e765b7a94aaebc6b5c8685dcfa2b1ee8b41acd89b")}, - {1000007, newHashFromStr("00000000001ccb893d8a1f25b70ad173ce955e5f50124261bbbc50379a612ddf")}, - {1100007, newHashFromStr("00000000000abc7b2cd18768ab3dee20857326a818d1946ed6796f42d66dd1e8")}, - {1200007, newHashFromStr("00000000000004f2dc41845771909db57e04191714ed8c963f7e56713a7b6cea")}, - {1300007, newHashFromStr("0000000072eab69d54df75107c052b26b0395b44f77578184293bf1bb1dbd9fa")}, - }, - - // Consensus rule change deployments. - // - // The miner confirmation window is defined as: - // target proof of work timespan / target proof of work spacing - RuleChangeActivationThreshold: 1512, // 75% of MinerConfirmationWindow - MinerConfirmationWindow: 2016, - Deployments: [DefinedDeployments]ConsensusDeployment{ - DeploymentTestDummy: { - BitNumber: 28, - StartTime: 1199145601, // January 1, 2008 UTC - ExpireTime: 1230767999, // December 31, 2008 UTC - }, - DeploymentCSV: { - BitNumber: 0, - StartTime: 1456790400, // March 1st, 2016 - ExpireTime: 1493596800, // May 1st, 2017 - }, - DeploymentSegwit: { - BitNumber: 1, - StartTime: 1462060800, // May 1, 2016 UTC - ExpireTime: 1493596800, // May 1, 2017 UTC. - }, - }, - - // Mempool parameters - RelayNonStdTxs: true, - - // Human-readable part for Bech32 encoded segwit addresses, as defined in - // BIP 173. - Bech32HRPSegwit: "tb", // always tb for test net - - // Address encoding magics - PubKeyHashAddrID: 0x6f, // starts with m or n - ScriptHashAddrID: 0xc4, // starts with 2 - WitnessPubKeyHashAddrID: 0x03, // starts with QW - WitnessScriptHashAddrID: 0x28, // starts with T7n - PrivateKeyID: 0xef, // starts with 9 (uncompressed) or c (compressed) - - // BIP32 hierarchical deterministic extended key magics - HDPrivateKeyID: [4]byte{0x04, 0x35, 0x83, 0x94}, // starts with tprv - HDPublicKeyID: [4]byte{0x04, 0x35, 0x87, 0xcf}, // starts with tpub - - // BIP44 coin type used in the hierarchical deterministic path for - // address generation. - HDCoinType: 1, -} - -// SimNetParams defines the network parameters for the simulation test Bitcoin -// network. This network is similar to the normal test network except it is -// intended for private use within a group of individuals doing simulation -// testing. The functionality is intended to differ in that the only nodes -// which are specifically specified are used to create the network rather than -// following normal discovery rules. This is important as otherwise it would -// just turn into another public testnet. -var SimNetParams = Params{ - Name: "simnet", - Net: wire.SimNet, - DefaultPort: "18555", - DNSSeeds: []DNSSeed{}, // NOTE: There must NOT be any seeds. - - // Chain parameters - GenesisBlock: &simNetGenesisBlock, - GenesisHash: &simNetGenesisHash, - PowLimit: simNetPowLimit, - PowLimitBits: 0x207fffff, - BIP0034Height: 0, // Always active on simnet - BIP0065Height: 0, // Always active on simnet - BIP0066Height: 0, // Always active on simnet - CoinbaseMaturity: 100, - SubsidyReductionInterval: 210000, - TargetTimespan: time.Hour * 24 * 14, // 14 days - TargetTimePerBlock: time.Minute * 10, // 10 minutes - RetargetAdjustmentFactor: 4, // 25% less, 400% more - ReduceMinDifficulty: true, - MinDiffReductionTime: time.Minute * 20, // TargetTimePerBlock * 2 - GenerateSupported: true, - - // Checkpoints ordered from oldest to newest. - Checkpoints: nil, - - // Consensus rule change deployments. - // - // The miner confirmation window is defined as: - // target proof of work timespan / target proof of work spacing - RuleChangeActivationThreshold: 75, // 75% of MinerConfirmationWindow - MinerConfirmationWindow: 100, - Deployments: [DefinedDeployments]ConsensusDeployment{ - DeploymentTestDummy: { - BitNumber: 28, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires - }, - DeploymentCSV: { - BitNumber: 0, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires - }, - DeploymentSegwit: { - BitNumber: 1, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires. - }, - }, - - // Mempool parameters - RelayNonStdTxs: true, - - // Human-readable part for Bech32 encoded segwit addresses, as defined in - // BIP 173. - Bech32HRPSegwit: "sb", // always sb for sim net - - // Address encoding magics - PubKeyHashAddrID: 0x3f, // starts with S - ScriptHashAddrID: 0x7b, // starts with s - PrivateKeyID: 0x64, // starts with 4 (uncompressed) or F (compressed) - WitnessPubKeyHashAddrID: 0x19, // starts with Gg - WitnessScriptHashAddrID: 0x28, // starts with ? - - // BIP32 hierarchical deterministic extended key magics - HDPrivateKeyID: [4]byte{0x04, 0x20, 0xb9, 0x00}, // starts with sprv - HDPublicKeyID: [4]byte{0x04, 0x20, 0xbd, 0x3a}, // starts with spub - - // BIP44 coin type used in the hierarchical deterministic path for - // address generation. - HDCoinType: 115, // ASCII for s -} - -// SigNetParams defines the network parameters for the default public signet -// Bitcoin network. Not to be confused with the regression test network, this -// network is sometimes simply called "signet" or "taproot signet". -var SigNetParams = CustomSignetParams( - DefaultSignetChallenge, DefaultSignetDNSSeeds, -) - -// CustomSignetParams creates network parameters for a custom signet network -// from a challenge. The challenge is the binary compiled version of the block -// challenge script. -func CustomSignetParams(challenge []byte, dnsSeeds []DNSSeed) Params { - // The message start is defined as the first four bytes of the sha256d - // of the challenge script, as a single push (i.e. prefixed with the - // challenge script length). - challengeLength := byte(len(challenge)) - hashDouble := chainhash.DoubleHashB( - append([]byte{challengeLength}, challenge...), - ) - - // We use little endian encoding of the hash prefix to be in line with - // the other wire network identities. - net := binary.LittleEndian.Uint32(hashDouble[0:4]) - return Params{ - Name: "signet", - Net: wire.BitcoinNet(net), - DefaultPort: "38333", - DNSSeeds: dnsSeeds, - - // Chain parameters - GenesisBlock: &sigNetGenesisBlock, - GenesisHash: &sigNetGenesisHash, - PowLimit: sigNetPowLimit, - PowLimitBits: 0x1e0377ae, - BIP0034Height: 1, - BIP0065Height: 1, - BIP0066Height: 1, - CoinbaseMaturity: 100, - SubsidyReductionInterval: 210000, - TargetTimespan: time.Hour * 24 * 14, // 14 days - TargetTimePerBlock: time.Minute * 10, // 10 minutes - RetargetAdjustmentFactor: 4, // 25% less, 400% more - ReduceMinDifficulty: false, - MinDiffReductionTime: time.Minute * 20, // TargetTimePerBlock * 2 - GenerateSupported: false, - - // Checkpoints ordered from oldest to newest. - Checkpoints: nil, - - // Consensus rule change deployments. - // - // The miner confirmation window is defined as: - // target proof of work timespan / target proof of work spacing - RuleChangeActivationThreshold: 1916, // 95% of 2016 - MinerConfirmationWindow: 2016, - Deployments: [DefinedDeployments]ConsensusDeployment{ - DeploymentTestDummy: { - BitNumber: 28, - StartTime: 1199145601, // January 1, 2008 UTC - ExpireTime: 1230767999, // December 31, 2008 UTC - }, - DeploymentCSV: { - BitNumber: 29, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires - }, - DeploymentSegwit: { - BitNumber: 29, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires. - }, - DeploymentTaproot: { - BitNumber: 29, - StartTime: 0, // Always available for vote - ExpireTime: math.MaxInt64, // Never expires. - }, - }, - - // Mempool parameters - RelayNonStdTxs: false, - - // Human-readable part for Bech32 encoded segwit addresses, as defined in - // BIP 173. - Bech32HRPSegwit: "tb", // always tb for test net - - // Address encoding magics - PubKeyHashAddrID: 0x6f, // starts with m or n - ScriptHashAddrID: 0xc4, // starts with 2 - WitnessPubKeyHashAddrID: 0x03, // starts with QW - WitnessScriptHashAddrID: 0x28, // starts with T7n - PrivateKeyID: 0xef, // starts with 9 (uncompressed) or c (compressed) - - // BIP32 hierarchical deterministic extended key magics - HDPrivateKeyID: [4]byte{0x04, 0x35, 0x83, 0x94}, // starts with tprv - HDPublicKeyID: [4]byte{0x04, 0x35, 0x87, 0xcf}, // starts with tpub - - // BIP44 coin type used in the hierarchical deterministic path for - // address generation. - HDCoinType: 1, - } -} - -var ( - // ErrDuplicateNet describes an error where the parameters for a Bitcoin - // network could not be set due to the network already being a standard - // network or previously-registered into this package. - ErrDuplicateNet = errors.New("duplicate Bitcoin network") - - // ErrUnknownHDKeyID describes an error where the provided id which - // is intended to identify the network for a hierarchical deterministic - // private extended key is not registered. - ErrUnknownHDKeyID = errors.New("unknown hd private extended key bytes") - - // ErrInvalidHDKeyID describes an error where the provided hierarchical - // deterministic version bytes, or hd key id, is malformed. - ErrInvalidHDKeyID = errors.New("invalid hd extended key version bytes") -) - -var ( - registeredNets = make(map[wire.BitcoinNet]struct{}) - pubKeyHashAddrIDs = make(map[byte]struct{}) - scriptHashAddrIDs = make(map[byte]struct{}) - bech32SegwitPrefixes = make(map[string]struct{}) - hdPrivToPubKeyIDs = make(map[[4]byte][]byte) -) - -// String returns the hostname of the DNS seed in human-readable form. -func (d DNSSeed) String() string { - return d.Host -} - -// Register registers the network parameters for a Bitcoin network. This may -// error with ErrDuplicateNet if the network is already registered (either -// due to a previous Register call, or the network being one of the default -// networks). -// -// Network parameters should be registered into this package by a main package -// as early as possible. Then, library packages may lookup networks or network -// parameters based on inputs and work regardless of the network being standard -// or not. -func Register(params *Params) error { - if _, ok := registeredNets[params.Net]; ok { - return ErrDuplicateNet - } - registeredNets[params.Net] = struct{}{} - pubKeyHashAddrIDs[params.PubKeyHashAddrID] = struct{}{} - scriptHashAddrIDs[params.ScriptHashAddrID] = struct{}{} - - err := RegisterHDKeyID(params.HDPublicKeyID[:], params.HDPrivateKeyID[:]) - if err != nil { - return err - } - - // A valid Bech32 encoded segwit address always has as prefix the - // human-readable part for the given net followed by '1'. - bech32SegwitPrefixes[params.Bech32HRPSegwit+"1"] = struct{}{} - return nil -} - -// mustRegister performs the same function as Register except it panics if there -// is an error. This should only be called from package init functions. -func mustRegister(params *Params) { - if err := Register(params); err != nil { - panic("failed to register network: " + err.Error()) - } -} - -// IsPubKeyHashAddrID returns whether the id is an identifier known to prefix a -// pay-to-pubkey-hash address on any default or registered network. This is -// used when decoding an address string into a specific address type. It is up -// to the caller to check both this and IsScriptHashAddrID and decide whether an -// address is a pubkey hash address, script hash address, neither, or -// undeterminable (if both return true). -func IsPubKeyHashAddrID(id byte) bool { - _, ok := pubKeyHashAddrIDs[id] - return ok -} - -// IsScriptHashAddrID returns whether the id is an identifier known to prefix a -// pay-to-script-hash address on any default or registered network. This is -// used when decoding an address string into a specific address type. It is up -// to the caller to check both this and IsPubKeyHashAddrID and decide whether an -// address is a pubkey hash address, script hash address, neither, or -// undeterminable (if both return true). -func IsScriptHashAddrID(id byte) bool { - _, ok := scriptHashAddrIDs[id] - return ok -} - -// IsBech32SegwitPrefix returns whether the prefix is a known prefix for segwit -// addresses on any default or registered network. This is used when decoding -// an address string into a specific address type. -func IsBech32SegwitPrefix(prefix string) bool { - prefix = strings.ToLower(prefix) - _, ok := bech32SegwitPrefixes[prefix] - return ok -} - -// RegisterHDKeyID registers a public and private hierarchical deterministic -// extended key ID pair. -// -// Non-standard HD version bytes, such as the ones documented in SLIP-0132, -// should be registered using this method for library packages to lookup key -// IDs (aka HD version bytes). When the provided key IDs are invalid, the -// ErrInvalidHDKeyID error will be returned. -// -// Reference: -// SLIP-0132 : Registered HD version bytes for BIP-0032 -// https://github.com/satoshilabs/slips/blob/master/slip-0132.md -func RegisterHDKeyID(hdPublicKeyID []byte, hdPrivateKeyID []byte) error { - if len(hdPublicKeyID) != 4 || len(hdPrivateKeyID) != 4 { - return ErrInvalidHDKeyID - } - - var keyID [4]byte - copy(keyID[:], hdPrivateKeyID) - hdPrivToPubKeyIDs[keyID] = hdPublicKeyID - - return nil -} - -// HDPrivateKeyToPublicKeyID accepts a private hierarchical deterministic -// extended key id and returns the associated public key id. When the provided -// id is not registered, the ErrUnknownHDKeyID error will be returned. -func HDPrivateKeyToPublicKeyID(id []byte) ([]byte, error) { - if len(id) != 4 { - return nil, ErrUnknownHDKeyID - } - - var key [4]byte - copy(key[:], id) - pubBytes, ok := hdPrivToPubKeyIDs[key] - if !ok { - return nil, ErrUnknownHDKeyID - } - - return pubBytes, nil -} - -// newHashFromStr converts the passed big-endian hex string into a -// chainhash.Hash. It only differs from the one available in chainhash in that -// it panics on an error since it will only (and must only) be called with -// hard-coded, and therefore known good, hashes. -func newHashFromStr(hexStr string) *chainhash.Hash { - hash, err := chainhash.NewHashFromStr(hexStr) - if err != nil { - // Ordinarily I don't like panics in library code since it - // can take applications down without them having a chance to - // recover which is extremely annoying, however an exception is - // being made in this case because the only way this can panic - // is if there is an error in the hard-coded hashes. Thus it - // will only ever potentially panic on init and therefore is - // 100% predictable. - panic(err) - } - return hash -} - -func init() { - // Register all default networks when the package is initialized. - mustRegister(&MainNetParams) - mustRegister(&TestNet3Params) - mustRegister(&RegressionNetParams) - mustRegister(&SimNetParams) -} diff --git a/vendor/github.com/btcsuite/btcd/wire/README.md b/vendor/github.com/btcsuite/btcd/wire/README.md deleted file mode 100644 index 8660bbf..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/README.md +++ /dev/null @@ -1,113 +0,0 @@ -wire -==== - -[![Build Status](https://github.com/btcsuite/btcd/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcd/actions) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](https://pkg.go.dev/github.com/btcsuite/btcd/wire) -======= - -Package wire implements the bitcoin wire protocol. A comprehensive suite of -tests with 100% test coverage is provided to ensure proper functionality. - -There is an associated blog post about the release of this package -[here](https://blog.conformal.com/btcwire-the-bitcoin-wire-protocol-package-from-btcd/). - -This package has intentionally been designed so it can be used as a standalone -package for any projects needing to interface with bitcoin peers at the wire -protocol level. - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcd/wire -``` - -## Bitcoin Message Overview - -The bitcoin protocol consists of exchanging messages between peers. Each message -is preceded by a header which identifies information about it such as which -bitcoin network it is a part of, its type, how big it is, and a checksum to -verify validity. All encoding and decoding of message headers is handled by this -package. - -To accomplish this, there is a generic interface for bitcoin messages named -`Message` which allows messages of any type to be read, written, or passed -around through channels, functions, etc. In addition, concrete implementations -of most of the currently supported bitcoin messages are provided. For these -supported messages, all of the details of marshalling and unmarshalling to and -from the wire using bitcoin encoding are handled so the caller doesn't have to -concern themselves with the specifics. - -## Reading Messages Example - -In order to unmarshal bitcoin messages from the wire, use the `ReadMessage` -function. It accepts any `io.Reader`, but typically this will be a `net.Conn` -to a remote node running a bitcoin peer. Example syntax is: - -```Go - // Use the most recent protocol version supported by the package and the - // main bitcoin network. - pver := wire.ProtocolVersion - btcnet := wire.MainNet - - // Reads and validates the next bitcoin message from conn using the - // protocol version pver and the bitcoin network btcnet. The returns - // are a wire.Message, a []byte which contains the unmarshalled - // raw payload, and a possible error. - msg, rawPayload, err := wire.ReadMessage(conn, pver, btcnet) - if err != nil { - // Log and handle the error - } -``` - -See the package documentation for details on determining the message type. - -## Writing Messages Example - -In order to marshal bitcoin messages to the wire, use the `WriteMessage` -function. It accepts any `io.Writer`, but typically this will be a `net.Conn` -to a remote node running a bitcoin peer. Example syntax to request addresses -from a remote peer is: - -```Go - // Use the most recent protocol version supported by the package and the - // main bitcoin network. - pver := wire.ProtocolVersion - btcnet := wire.MainNet - - // Create a new getaddr bitcoin message. - msg := wire.NewMsgGetAddr() - - // Writes a bitcoin message msg to conn using the protocol version - // pver, and the bitcoin network btcnet. The return is a possible - // error. - err := wire.WriteMessage(conn, msg, pver, btcnet) - if err != nil { - // Log and handle the error - } -``` - -## GPG Verification Key - -All official release tags are signed by Conformal so users can ensure the code -has not been tampered with and is coming from the btcsuite developers. To -verify the signature perform the following: - -- Download the public key from the Conformal website at - https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt - -- Import the public key into your GPG keyring: - ```bash - gpg --import GIT-GPG-KEY-conformal.txt - ``` - -- Verify the release tag with the following command where `TAG_NAME` is a - placeholder for the specific tag: - ```bash - git tag -v TAG_NAME - ``` - -## License - -Package wire is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcd/wire/blockheader.go b/vendor/github.com/btcsuite/btcd/wire/blockheader.go deleted file mode 100644 index 9c9c223..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/blockheader.go +++ /dev/null @@ -1,128 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "bytes" - "io" - "time" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MaxBlockHeaderPayload is the maximum number of bytes a block header can be. -// Version 4 bytes + Timestamp 4 bytes + Bits 4 bytes + Nonce 4 bytes + -// PrevBlock and MerkleRoot hashes. -const MaxBlockHeaderPayload = 16 + (chainhash.HashSize * 2) - -// BlockHeader defines information about a block and is used in the bitcoin -// block (MsgBlock) and headers (MsgHeaders) messages. -type BlockHeader struct { - // Version of the block. This is not the same as the protocol version. - Version int32 - - // Hash of the previous block header in the block chain. - PrevBlock chainhash.Hash - - // Merkle tree reference to hash of all transactions for the block. - MerkleRoot chainhash.Hash - - // Time the block was created. This is, unfortunately, encoded as a - // uint32 on the wire and therefore is limited to 2106. - Timestamp time.Time - - // Difficulty target for the block. - Bits uint32 - - // Nonce used to generate the block. - Nonce uint32 -} - -// blockHeaderLen is a constant that represents the number of bytes for a block -// header. -const blockHeaderLen = 80 - -// BlockHash computes the block identifier hash for the given block header. -func (h *BlockHeader) BlockHash() chainhash.Hash { - // Encode the header and double sha256 everything prior to the number of - // transactions. Ignore the error returns since there is no way the - // encode could fail except being out of memory which would cause a - // run-time panic. - buf := bytes.NewBuffer(make([]byte, 0, MaxBlockHeaderPayload)) - _ = writeBlockHeader(buf, 0, h) - - return chainhash.DoubleHashH(buf.Bytes()) -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -// See Deserialize for decoding block headers stored to disk, such as in a -// database, as opposed to decoding block headers from the wire. -func (h *BlockHeader) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - return readBlockHeader(r, pver, h) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -// See Serialize for encoding block headers to be stored to disk, such as in a -// database, as opposed to encoding block headers for the wire. -func (h *BlockHeader) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - return writeBlockHeader(w, pver, h) -} - -// Deserialize decodes a block header from r into the receiver using a format -// that is suitable for long-term storage such as a database while respecting -// the Version field. -func (h *BlockHeader) Deserialize(r io.Reader) error { - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of readBlockHeader. - return readBlockHeader(r, 0, h) -} - -// Serialize encodes a block header from r into the receiver using a format -// that is suitable for long-term storage such as a database while respecting -// the Version field. -func (h *BlockHeader) Serialize(w io.Writer) error { - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of writeBlockHeader. - return writeBlockHeader(w, 0, h) -} - -// NewBlockHeader returns a new BlockHeader using the provided version, previous -// block hash, merkle root hash, difficulty bits, and nonce used to generate the -// block with defaults for the remaining fields. -func NewBlockHeader(version int32, prevHash, merkleRootHash *chainhash.Hash, - bits uint32, nonce uint32) *BlockHeader { - - // Limit the timestamp to one second precision since the protocol - // doesn't support better. - return &BlockHeader{ - Version: version, - PrevBlock: *prevHash, - MerkleRoot: *merkleRootHash, - Timestamp: time.Unix(time.Now().Unix(), 0), - Bits: bits, - Nonce: nonce, - } -} - -// readBlockHeader reads a bitcoin block header from r. See Deserialize for -// decoding block headers stored to disk, such as in a database, as opposed to -// decoding from the wire. -func readBlockHeader(r io.Reader, pver uint32, bh *BlockHeader) error { - return readElements(r, &bh.Version, &bh.PrevBlock, &bh.MerkleRoot, - (*uint32Time)(&bh.Timestamp), &bh.Bits, &bh.Nonce) -} - -// writeBlockHeader writes a bitcoin block header to w. See Serialize for -// encoding block headers to be stored to disk, such as in a database, as -// opposed to encoding for the wire. -func writeBlockHeader(w io.Writer, pver uint32, bh *BlockHeader) error { - sec := uint32(bh.Timestamp.Unix()) - return writeElements(w, bh.Version, &bh.PrevBlock, &bh.MerkleRoot, - sec, bh.Bits, bh.Nonce) -} diff --git a/vendor/github.com/btcsuite/btcd/wire/common.go b/vendor/github.com/btcsuite/btcd/wire/common.go deleted file mode 100644 index 42c1797..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/common.go +++ /dev/null @@ -1,689 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "crypto/rand" - "encoding/binary" - "fmt" - "io" - "math" - "time" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -const ( - // MaxVarIntPayload is the maximum payload size for a variable length integer. - MaxVarIntPayload = 9 - - // binaryFreeListMaxItems is the number of buffers to keep in the free - // list to use for binary serialization and deserialization. - binaryFreeListMaxItems = 1024 -) - -var ( - // littleEndian is a convenience variable since binary.LittleEndian is - // quite long. - littleEndian = binary.LittleEndian - - // bigEndian is a convenience variable since binary.BigEndian is quite - // long. - bigEndian = binary.BigEndian -) - -// binaryFreeList defines a concurrent safe free list of byte slices (up to the -// maximum number defined by the binaryFreeListMaxItems constant) that have a -// cap of 8 (thus it supports up to a uint64). It is used to provide temporary -// buffers for serializing and deserializing primitive numbers to and from their -// binary encoding in order to greatly reduce the number of allocations -// required. -// -// For convenience, functions are provided for each of the primitive unsigned -// integers that automatically obtain a buffer from the free list, perform the -// necessary binary conversion, read from or write to the given io.Reader or -// io.Writer, and return the buffer to the free list. -type binaryFreeList chan []byte - -// Borrow returns a byte slice from the free list with a length of 8. A new -// buffer is allocated if there are not any available on the free list. -func (l binaryFreeList) Borrow() []byte { - var buf []byte - select { - case buf = <-l: - default: - buf = make([]byte, 8) - } - return buf[:8] -} - -// Return puts the provided byte slice back on the free list. The buffer MUST -// have been obtained via the Borrow function and therefore have a cap of 8. -func (l binaryFreeList) Return(buf []byte) { - select { - case l <- buf: - default: - // Let it go to the garbage collector. - } -} - -// Uint8 reads a single byte from the provided reader using a buffer from the -// free list and returns it as a uint8. -func (l binaryFreeList) Uint8(r io.Reader) (uint8, error) { - buf := l.Borrow()[:1] - if _, err := io.ReadFull(r, buf); err != nil { - l.Return(buf) - return 0, err - } - rv := buf[0] - l.Return(buf) - return rv, nil -} - -// Uint16 reads two bytes from the provided reader using a buffer from the -// free list, converts it to a number using the provided byte order, and returns -// the resulting uint16. -func (l binaryFreeList) Uint16(r io.Reader, byteOrder binary.ByteOrder) (uint16, error) { - buf := l.Borrow()[:2] - if _, err := io.ReadFull(r, buf); err != nil { - l.Return(buf) - return 0, err - } - rv := byteOrder.Uint16(buf) - l.Return(buf) - return rv, nil -} - -// Uint32 reads four bytes from the provided reader using a buffer from the -// free list, converts it to a number using the provided byte order, and returns -// the resulting uint32. -func (l binaryFreeList) Uint32(r io.Reader, byteOrder binary.ByteOrder) (uint32, error) { - buf := l.Borrow()[:4] - if _, err := io.ReadFull(r, buf); err != nil { - l.Return(buf) - return 0, err - } - rv := byteOrder.Uint32(buf) - l.Return(buf) - return rv, nil -} - -// Uint64 reads eight bytes from the provided reader using a buffer from the -// free list, converts it to a number using the provided byte order, and returns -// the resulting uint64. -func (l binaryFreeList) Uint64(r io.Reader, byteOrder binary.ByteOrder) (uint64, error) { - buf := l.Borrow()[:8] - if _, err := io.ReadFull(r, buf); err != nil { - l.Return(buf) - return 0, err - } - rv := byteOrder.Uint64(buf) - l.Return(buf) - return rv, nil -} - -// PutUint8 copies the provided uint8 into a buffer from the free list and -// writes the resulting byte to the given writer. -func (l binaryFreeList) PutUint8(w io.Writer, val uint8) error { - buf := l.Borrow()[:1] - buf[0] = val - _, err := w.Write(buf) - l.Return(buf) - return err -} - -// PutUint16 serializes the provided uint16 using the given byte order into a -// buffer from the free list and writes the resulting two bytes to the given -// writer. -func (l binaryFreeList) PutUint16(w io.Writer, byteOrder binary.ByteOrder, val uint16) error { - buf := l.Borrow()[:2] - byteOrder.PutUint16(buf, val) - _, err := w.Write(buf) - l.Return(buf) - return err -} - -// PutUint32 serializes the provided uint32 using the given byte order into a -// buffer from the free list and writes the resulting four bytes to the given -// writer. -func (l binaryFreeList) PutUint32(w io.Writer, byteOrder binary.ByteOrder, val uint32) error { - buf := l.Borrow()[:4] - byteOrder.PutUint32(buf, val) - _, err := w.Write(buf) - l.Return(buf) - return err -} - -// PutUint64 serializes the provided uint64 using the given byte order into a -// buffer from the free list and writes the resulting eight bytes to the given -// writer. -func (l binaryFreeList) PutUint64(w io.Writer, byteOrder binary.ByteOrder, val uint64) error { - buf := l.Borrow()[:8] - byteOrder.PutUint64(buf, val) - _, err := w.Write(buf) - l.Return(buf) - return err -} - -// binarySerializer provides a free list of buffers to use for serializing and -// deserializing primitive integer values to and from io.Readers and io.Writers. -var binarySerializer binaryFreeList = make(chan []byte, binaryFreeListMaxItems) - -// errNonCanonicalVarInt is the common format string used for non-canonically -// encoded variable length integer errors. -var errNonCanonicalVarInt = "non-canonical varint %x - discriminant %x must " + - "encode a value greater than %x" - -// uint32Time represents a unix timestamp encoded with a uint32. It is used as -// a way to signal the readElement function how to decode a timestamp into a Go -// time.Time since it is otherwise ambiguous. -type uint32Time time.Time - -// int64Time represents a unix timestamp encoded with an int64. It is used as -// a way to signal the readElement function how to decode a timestamp into a Go -// time.Time since it is otherwise ambiguous. -type int64Time time.Time - -// readElement reads the next sequence of bytes from r using little endian -// depending on the concrete type of element pointed to. -func readElement(r io.Reader, element interface{}) error { - // Attempt to read the element based on the concrete type via fast - // type assertions first. - switch e := element.(type) { - case *int32: - rv, err := binarySerializer.Uint32(r, littleEndian) - if err != nil { - return err - } - *e = int32(rv) - return nil - - case *uint32: - rv, err := binarySerializer.Uint32(r, littleEndian) - if err != nil { - return err - } - *e = rv - return nil - - case *int64: - rv, err := binarySerializer.Uint64(r, littleEndian) - if err != nil { - return err - } - *e = int64(rv) - return nil - - case *uint64: - rv, err := binarySerializer.Uint64(r, littleEndian) - if err != nil { - return err - } - *e = rv - return nil - - case *bool: - rv, err := binarySerializer.Uint8(r) - if err != nil { - return err - } - if rv == 0x00 { - *e = false - } else { - *e = true - } - return nil - - // Unix timestamp encoded as a uint32. - case *uint32Time: - rv, err := binarySerializer.Uint32(r, binary.LittleEndian) - if err != nil { - return err - } - *e = uint32Time(time.Unix(int64(rv), 0)) - return nil - - // Unix timestamp encoded as an int64. - case *int64Time: - rv, err := binarySerializer.Uint64(r, binary.LittleEndian) - if err != nil { - return err - } - *e = int64Time(time.Unix(int64(rv), 0)) - return nil - - // Message header checksum. - case *[4]byte: - _, err := io.ReadFull(r, e[:]) - if err != nil { - return err - } - return nil - - // Message header command. - case *[CommandSize]uint8: - _, err := io.ReadFull(r, e[:]) - if err != nil { - return err - } - return nil - - // IP address. - case *[16]byte: - _, err := io.ReadFull(r, e[:]) - if err != nil { - return err - } - return nil - - case *chainhash.Hash: - _, err := io.ReadFull(r, e[:]) - if err != nil { - return err - } - return nil - - case *ServiceFlag: - rv, err := binarySerializer.Uint64(r, littleEndian) - if err != nil { - return err - } - *e = ServiceFlag(rv) - return nil - - case *InvType: - rv, err := binarySerializer.Uint32(r, littleEndian) - if err != nil { - return err - } - *e = InvType(rv) - return nil - - case *BitcoinNet: - rv, err := binarySerializer.Uint32(r, littleEndian) - if err != nil { - return err - } - *e = BitcoinNet(rv) - return nil - - case *BloomUpdateType: - rv, err := binarySerializer.Uint8(r) - if err != nil { - return err - } - *e = BloomUpdateType(rv) - return nil - - case *RejectCode: - rv, err := binarySerializer.Uint8(r) - if err != nil { - return err - } - *e = RejectCode(rv) - return nil - } - - // Fall back to the slower binary.Read if a fast path was not available - // above. - return binary.Read(r, littleEndian, element) -} - -// readElements reads multiple items from r. It is equivalent to multiple -// calls to readElement. -func readElements(r io.Reader, elements ...interface{}) error { - for _, element := range elements { - err := readElement(r, element) - if err != nil { - return err - } - } - return nil -} - -// writeElement writes the little endian representation of element to w. -func writeElement(w io.Writer, element interface{}) error { - // Attempt to write the element based on the concrete type via fast - // type assertions first. - switch e := element.(type) { - case int32: - err := binarySerializer.PutUint32(w, littleEndian, uint32(e)) - if err != nil { - return err - } - return nil - - case uint32: - err := binarySerializer.PutUint32(w, littleEndian, e) - if err != nil { - return err - } - return nil - - case int64: - err := binarySerializer.PutUint64(w, littleEndian, uint64(e)) - if err != nil { - return err - } - return nil - - case uint64: - err := binarySerializer.PutUint64(w, littleEndian, e) - if err != nil { - return err - } - return nil - - case bool: - var err error - if e { - err = binarySerializer.PutUint8(w, 0x01) - } else { - err = binarySerializer.PutUint8(w, 0x00) - } - if err != nil { - return err - } - return nil - - // Message header checksum. - case [4]byte: - _, err := w.Write(e[:]) - if err != nil { - return err - } - return nil - - // Message header command. - case [CommandSize]uint8: - _, err := w.Write(e[:]) - if err != nil { - return err - } - return nil - - // IP address. - case [16]byte: - _, err := w.Write(e[:]) - if err != nil { - return err - } - return nil - - case *chainhash.Hash: - _, err := w.Write(e[:]) - if err != nil { - return err - } - return nil - - case ServiceFlag: - err := binarySerializer.PutUint64(w, littleEndian, uint64(e)) - if err != nil { - return err - } - return nil - - case InvType: - err := binarySerializer.PutUint32(w, littleEndian, uint32(e)) - if err != nil { - return err - } - return nil - - case BitcoinNet: - err := binarySerializer.PutUint32(w, littleEndian, uint32(e)) - if err != nil { - return err - } - return nil - - case BloomUpdateType: - err := binarySerializer.PutUint8(w, uint8(e)) - if err != nil { - return err - } - return nil - - case RejectCode: - err := binarySerializer.PutUint8(w, uint8(e)) - if err != nil { - return err - } - return nil - } - - // Fall back to the slower binary.Write if a fast path was not available - // above. - return binary.Write(w, littleEndian, element) -} - -// writeElements writes multiple items to w. It is equivalent to multiple -// calls to writeElement. -func writeElements(w io.Writer, elements ...interface{}) error { - for _, element := range elements { - err := writeElement(w, element) - if err != nil { - return err - } - } - return nil -} - -// ReadVarInt reads a variable length integer from r and returns it as a uint64. -func ReadVarInt(r io.Reader, pver uint32) (uint64, error) { - discriminant, err := binarySerializer.Uint8(r) - if err != nil { - return 0, err - } - - var rv uint64 - switch discriminant { - case 0xff: - sv, err := binarySerializer.Uint64(r, littleEndian) - if err != nil { - return 0, err - } - rv = sv - - // The encoding is not canonical if the value could have been - // encoded using fewer bytes. - min := uint64(0x100000000) - if rv < min { - return 0, messageError("ReadVarInt", fmt.Sprintf( - errNonCanonicalVarInt, rv, discriminant, min)) - } - - case 0xfe: - sv, err := binarySerializer.Uint32(r, littleEndian) - if err != nil { - return 0, err - } - rv = uint64(sv) - - // The encoding is not canonical if the value could have been - // encoded using fewer bytes. - min := uint64(0x10000) - if rv < min { - return 0, messageError("ReadVarInt", fmt.Sprintf( - errNonCanonicalVarInt, rv, discriminant, min)) - } - - case 0xfd: - sv, err := binarySerializer.Uint16(r, littleEndian) - if err != nil { - return 0, err - } - rv = uint64(sv) - - // The encoding is not canonical if the value could have been - // encoded using fewer bytes. - min := uint64(0xfd) - if rv < min { - return 0, messageError("ReadVarInt", fmt.Sprintf( - errNonCanonicalVarInt, rv, discriminant, min)) - } - - default: - rv = uint64(discriminant) - } - - return rv, nil -} - -// WriteVarInt serializes val to w using a variable number of bytes depending -// on its value. -func WriteVarInt(w io.Writer, pver uint32, val uint64) error { - if val < 0xfd { - return binarySerializer.PutUint8(w, uint8(val)) - } - - if val <= math.MaxUint16 { - err := binarySerializer.PutUint8(w, 0xfd) - if err != nil { - return err - } - return binarySerializer.PutUint16(w, littleEndian, uint16(val)) - } - - if val <= math.MaxUint32 { - err := binarySerializer.PutUint8(w, 0xfe) - if err != nil { - return err - } - return binarySerializer.PutUint32(w, littleEndian, uint32(val)) - } - - err := binarySerializer.PutUint8(w, 0xff) - if err != nil { - return err - } - return binarySerializer.PutUint64(w, littleEndian, val) -} - -// VarIntSerializeSize returns the number of bytes it would take to serialize -// val as a variable length integer. -func VarIntSerializeSize(val uint64) int { - // The value is small enough to be represented by itself, so it's - // just 1 byte. - if val < 0xfd { - return 1 - } - - // Discriminant 1 byte plus 2 bytes for the uint16. - if val <= math.MaxUint16 { - return 3 - } - - // Discriminant 1 byte plus 4 bytes for the uint32. - if val <= math.MaxUint32 { - return 5 - } - - // Discriminant 1 byte plus 8 bytes for the uint64. - return 9 -} - -// ReadVarString reads a variable length string from r and returns it as a Go -// string. A variable length string is encoded as a variable length integer -// containing the length of the string followed by the bytes that represent the -// string itself. An error is returned if the length is greater than the -// maximum block payload size since it helps protect against memory exhaustion -// attacks and forced panics through malformed messages. -func ReadVarString(r io.Reader, pver uint32) (string, error) { - count, err := ReadVarInt(r, pver) - if err != nil { - return "", err - } - - // Prevent variable length strings that are larger than the maximum - // message size. It would be possible to cause memory exhaustion and - // panics without a sane upper bound on this count. - if count > MaxMessagePayload { - str := fmt.Sprintf("variable length string is too long "+ - "[count %d, max %d]", count, MaxMessagePayload) - return "", messageError("ReadVarString", str) - } - - buf := make([]byte, count) - _, err = io.ReadFull(r, buf) - if err != nil { - return "", err - } - return string(buf), nil -} - -// WriteVarString serializes str to w as a variable length integer containing -// the length of the string followed by the bytes that represent the string -// itself. -func WriteVarString(w io.Writer, pver uint32, str string) error { - err := WriteVarInt(w, pver, uint64(len(str))) - if err != nil { - return err - } - _, err = w.Write([]byte(str)) - return err -} - -// ReadVarBytes reads a variable length byte array. A byte array is encoded -// as a varInt containing the length of the array followed by the bytes -// themselves. An error is returned if the length is greater than the -// passed maxAllowed parameter which helps protect against memory exhaustion -// attacks and forced panics through malformed messages. The fieldName -// parameter is only used for the error message so it provides more context in -// the error. -func ReadVarBytes(r io.Reader, pver uint32, maxAllowed uint32, - fieldName string) ([]byte, error) { - - count, err := ReadVarInt(r, pver) - if err != nil { - return nil, err - } - - // Prevent byte array larger than the max message size. It would - // be possible to cause memory exhaustion and panics without a sane - // upper bound on this count. - if count > uint64(maxAllowed) { - str := fmt.Sprintf("%s is larger than the max allowed size "+ - "[count %d, max %d]", fieldName, count, maxAllowed) - return nil, messageError("ReadVarBytes", str) - } - - b := make([]byte, count) - _, err = io.ReadFull(r, b) - if err != nil { - return nil, err - } - return b, nil -} - -// WriteVarBytes serializes a variable length byte array to w as a varInt -// containing the number of bytes, followed by the bytes themselves. -func WriteVarBytes(w io.Writer, pver uint32, bytes []byte) error { - slen := uint64(len(bytes)) - err := WriteVarInt(w, pver, slen) - if err != nil { - return err - } - - _, err = w.Write(bytes) - return err -} - -// randomUint64 returns a cryptographically random uint64 value. This -// unexported version takes a reader primarily to ensure the error paths -// can be properly tested by passing a fake reader in the tests. -func randomUint64(r io.Reader) (uint64, error) { - rv, err := binarySerializer.Uint64(r, bigEndian) - if err != nil { - return 0, err - } - return rv, nil -} - -// RandomUint64 returns a cryptographically random uint64 value. -func RandomUint64() (uint64, error) { - return randomUint64(rand.Reader) -} diff --git a/vendor/github.com/btcsuite/btcd/wire/doc.go b/vendor/github.com/btcsuite/btcd/wire/doc.go deleted file mode 100644 index b8b8c56..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/doc.go +++ /dev/null @@ -1,162 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package wire implements the bitcoin wire protocol. - -For the complete details of the bitcoin protocol, see the official wiki entry -at https://en.bitcoin.it/wiki/Protocol_specification. The following only serves -as a quick overview to provide information on how to use the package. - -At a high level, this package provides support for marshalling and unmarshalling -supported bitcoin messages to and from the wire. This package does not deal -with the specifics of message handling such as what to do when a message is -received. This provides the caller with a high level of flexibility. - -Bitcoin Message Overview - -The bitcoin protocol consists of exchanging messages between peers. Each -message is preceded by a header which identifies information about it such as -which bitcoin network it is a part of, its type, how big it is, and a checksum -to verify validity. All encoding and decoding of message headers is handled by -this package. - -To accomplish this, there is a generic interface for bitcoin messages named -Message which allows messages of any type to be read, written, or passed around -through channels, functions, etc. In addition, concrete implementations of most -of the currently supported bitcoin messages are provided. For these supported -messages, all of the details of marshalling and unmarshalling to and from the -wire using bitcoin encoding are handled so the caller doesn't have to concern -themselves with the specifics. - -Message Interaction - -The following provides a quick summary of how the bitcoin messages are intended -to interact with one another. As stated above, these interactions are not -directly handled by this package. For more in-depth details about the -appropriate interactions, see the official bitcoin protocol wiki entry at -https://en.bitcoin.it/wiki/Protocol_specification. - -The initial handshake consists of two peers sending each other a version message -(MsgVersion) followed by responding with a verack message (MsgVerAck). Both -peers use the information in the version message (MsgVersion) to negotiate -things such as protocol version and supported services with each other. Once -the initial handshake is complete, the following chart indicates message -interactions in no particular order. - - Peer A Sends Peer B Responds - ---------------------------------------------------------------------------- - getaddr message (MsgGetAddr) addr message (MsgAddr) - getblocks message (MsgGetBlocks) inv message (MsgInv) - inv message (MsgInv) getdata message (MsgGetData) - getdata message (MsgGetData) block message (MsgBlock) -or- - tx message (MsgTx) -or- - notfound message (MsgNotFound) - getheaders message (MsgGetHeaders) headers message (MsgHeaders) - ping message (MsgPing) pong message (MsgHeaders)* -or- - (none -- Ability to send message is enough) - - NOTES: - * The pong message was not added until later protocol versions as defined - in BIP0031. The BIP0031Version constant can be used to detect a recent - enough protocol version for this purpose (version > BIP0031Version). - -Common Parameters - -There are several common parameters that arise when using this package to read -and write bitcoin messages. The following sections provide a quick overview of -these parameters so the next sections can build on them. - -Protocol Version - -The protocol version should be negotiated with the remote peer at a higher -level than this package via the version (MsgVersion) message exchange, however, -this package provides the wire.ProtocolVersion constant which indicates the -latest protocol version this package supports and is typically the value to use -for all outbound connections before a potentially lower protocol version is -negotiated. - -Bitcoin Network - -The bitcoin network is a magic number which is used to identify the start of a -message and which bitcoin network the message applies to. This package provides -the following constants: - - wire.MainNet - wire.TestNet (Regression test network) - wire.TestNet3 (Test network version 3) - wire.SimNet (Simulation test network) - -Determining Message Type - -As discussed in the bitcoin message overview section, this package reads -and writes bitcoin messages using a generic interface named Message. In -order to determine the actual concrete type of the message, use a type -switch or type assertion. An example of a type switch follows: - - // Assumes msg is already a valid concrete message such as one created - // via NewMsgVersion or read via ReadMessage. - switch msg := msg.(type) { - case *wire.MsgVersion: - // The message is a pointer to a MsgVersion struct. - fmt.Printf("Protocol version: %v", msg.ProtocolVersion) - case *wire.MsgBlock: - // The message is a pointer to a MsgBlock struct. - fmt.Printf("Number of tx in block: %v", msg.Header.TxnCount) - } - -Reading Messages - -In order to unmarshall bitcoin messages from the wire, use the ReadMessage -function. It accepts any io.Reader, but typically this will be a net.Conn to -a remote node running a bitcoin peer. Example syntax is: - - // Reads and validates the next bitcoin message from conn using the - // protocol version pver and the bitcoin network btcnet. The returns - // are a wire.Message, a []byte which contains the unmarshalled - // raw payload, and a possible error. - msg, rawPayload, err := wire.ReadMessage(conn, pver, btcnet) - if err != nil { - // Log and handle the error - } - -Writing Messages - -In order to marshall bitcoin messages to the wire, use the WriteMessage -function. It accepts any io.Writer, but typically this will be a net.Conn to -a remote node running a bitcoin peer. Example syntax to request addresses -from a remote peer is: - - // Create a new getaddr bitcoin message. - msg := wire.NewMsgGetAddr() - - // Writes a bitcoin message msg to conn using the protocol version - // pver, and the bitcoin network btcnet. The return is a possible - // error. - err := wire.WriteMessage(conn, msg, pver, btcnet) - if err != nil { - // Log and handle the error - } - -Errors - -Errors returned by this package are either the raw errors provided by underlying -calls to read/write from streams such as io.EOF, io.ErrUnexpectedEOF, and -io.ErrShortWrite, or of type wire.MessageError. This allows the caller to -differentiate between general IO errors and malformed messages through type -assertions. - -Bitcoin Improvement Proposals - -This package includes spec changes outlined by the following BIPs: - - BIP0014 (https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki) - BIP0031 (https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki) - BIP0035 (https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki) - BIP0037 (https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki) - BIP0111 (https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki) - BIP0130 (https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki) - BIP0133 (https://github.com/bitcoin/bips/blob/master/bip-0133.mediawiki) -*/ -package wire diff --git a/vendor/github.com/btcsuite/btcd/wire/error.go b/vendor/github.com/btcsuite/btcd/wire/error.go deleted file mode 100644 index 755c2db..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/error.go +++ /dev/null @@ -1,34 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" -) - -// MessageError describes an issue with a message. -// An example of some potential issues are messages from the wrong bitcoin -// network, invalid commands, mismatched checksums, and exceeding max payloads. -// -// This provides a mechanism for the caller to type assert the error to -// differentiate between general io errors such as io.EOF and issues that -// resulted from malformed messages. -type MessageError struct { - Func string // Function name - Description string // Human readable description of the issue -} - -// Error satisfies the error interface and prints human-readable errors. -func (e *MessageError) Error() string { - if e.Func != "" { - return fmt.Sprintf("%v: %v", e.Func, e.Description) - } - return e.Description -} - -// messageError creates an error for the given function and description. -func messageError(f string, desc string) *MessageError { - return &MessageError{Func: f, Description: desc} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/invvect.go b/vendor/github.com/btcsuite/btcd/wire/invvect.go deleted file mode 100644 index 1e70664..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/invvect.go +++ /dev/null @@ -1,86 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -const ( - // MaxInvPerMsg is the maximum number of inventory vectors that can be in a - // single bitcoin inv message. - MaxInvPerMsg = 50000 - - // Maximum payload size for an inventory vector. - maxInvVectPayload = 4 + chainhash.HashSize - - // InvWitnessFlag denotes that the inventory vector type is requesting, - // or sending a version which includes witness data. - InvWitnessFlag = 1 << 30 -) - -// InvType represents the allowed types of inventory vectors. See InvVect. -type InvType uint32 - -// These constants define the various supported inventory vector types. -const ( - InvTypeError InvType = 0 - InvTypeTx InvType = 1 - InvTypeBlock InvType = 2 - InvTypeFilteredBlock InvType = 3 - InvTypeWitnessBlock InvType = InvTypeBlock | InvWitnessFlag - InvTypeWitnessTx InvType = InvTypeTx | InvWitnessFlag - InvTypeFilteredWitnessBlock InvType = InvTypeFilteredBlock | InvWitnessFlag -) - -// Map of service flags back to their constant names for pretty printing. -var ivStrings = map[InvType]string{ - InvTypeError: "ERROR", - InvTypeTx: "MSG_TX", - InvTypeBlock: "MSG_BLOCK", - InvTypeFilteredBlock: "MSG_FILTERED_BLOCK", - InvTypeWitnessBlock: "MSG_WITNESS_BLOCK", - InvTypeWitnessTx: "MSG_WITNESS_TX", - InvTypeFilteredWitnessBlock: "MSG_FILTERED_WITNESS_BLOCK", -} - -// String returns the InvType in human-readable form. -func (invtype InvType) String() string { - if s, ok := ivStrings[invtype]; ok { - return s - } - - return fmt.Sprintf("Unknown InvType (%d)", uint32(invtype)) -} - -// InvVect defines a bitcoin inventory vector which is used to describe data, -// as specified by the Type field, that a peer wants, has, or does not have to -// another peer. -type InvVect struct { - Type InvType // Type of data - Hash chainhash.Hash // Hash of the data -} - -// NewInvVect returns a new InvVect using the provided type and hash. -func NewInvVect(typ InvType, hash *chainhash.Hash) *InvVect { - return &InvVect{ - Type: typ, - Hash: *hash, - } -} - -// readInvVect reads an encoded InvVect from r depending on the protocol -// version. -func readInvVect(r io.Reader, pver uint32, iv *InvVect) error { - return readElements(r, &iv.Type, &iv.Hash) -} - -// writeInvVect serializes an InvVect to w depending on the protocol version. -func writeInvVect(w io.Writer, pver uint32, iv *InvVect) error { - return writeElements(w, iv.Type, &iv.Hash) -} diff --git a/vendor/github.com/btcsuite/btcd/wire/message.go b/vendor/github.com/btcsuite/btcd/wire/message.go deleted file mode 100644 index 6d3147a..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/message.go +++ /dev/null @@ -1,444 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "bytes" - "fmt" - "io" - "unicode/utf8" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MessageHeaderSize is the number of bytes in a bitcoin message header. -// Bitcoin network (magic) 4 bytes + command 12 bytes + payload length 4 bytes + -// checksum 4 bytes. -const MessageHeaderSize = 24 - -// CommandSize is the fixed size of all commands in the common bitcoin message -// header. Shorter commands must be zero padded. -const CommandSize = 12 - -// MaxMessagePayload is the maximum bytes a message can be regardless of other -// individual limits imposed by messages themselves. -const MaxMessagePayload = (1024 * 1024 * 32) // 32MB - -// Commands used in bitcoin message headers which describe the type of message. -const ( - CmdVersion = "version" - CmdVerAck = "verack" - CmdGetAddr = "getaddr" - CmdAddr = "addr" - CmdGetBlocks = "getblocks" - CmdInv = "inv" - CmdGetData = "getdata" - CmdNotFound = "notfound" - CmdBlock = "block" - CmdTx = "tx" - CmdGetHeaders = "getheaders" - CmdHeaders = "headers" - CmdPing = "ping" - CmdPong = "pong" - CmdAlert = "alert" - CmdMemPool = "mempool" - CmdFilterAdd = "filteradd" - CmdFilterClear = "filterclear" - CmdFilterLoad = "filterload" - CmdMerkleBlock = "merkleblock" - CmdReject = "reject" - CmdSendHeaders = "sendheaders" - CmdFeeFilter = "feefilter" - CmdGetCFilters = "getcfilters" - CmdGetCFHeaders = "getcfheaders" - CmdGetCFCheckpt = "getcfcheckpt" - CmdCFilter = "cfilter" - CmdCFHeaders = "cfheaders" - CmdCFCheckpt = "cfcheckpt" - CmdSendAddrV2 = "sendaddrv2" -) - -// MessageEncoding represents the wire message encoding format to be used. -type MessageEncoding uint32 - -const ( - // BaseEncoding encodes all messages in the default format specified - // for the Bitcoin wire protocol. - BaseEncoding MessageEncoding = 1 << iota - - // WitnessEncoding encodes all messages other than transaction messages - // using the default Bitcoin wire protocol specification. For transaction - // messages, the new encoding format detailed in BIP0144 will be used. - WitnessEncoding -) - -// LatestEncoding is the most recently specified encoding for the Bitcoin wire -// protocol. -var LatestEncoding = WitnessEncoding - -// Message is an interface that describes a bitcoin message. A type that -// implements Message has complete control over the representation of its data -// and may therefore contain additional or fewer fields than those which -// are used directly in the protocol encoded message. -type Message interface { - BtcDecode(io.Reader, uint32, MessageEncoding) error - BtcEncode(io.Writer, uint32, MessageEncoding) error - Command() string - MaxPayloadLength(uint32) uint32 -} - -// makeEmptyMessage creates a message of the appropriate concrete type based -// on the command. -func makeEmptyMessage(command string) (Message, error) { - var msg Message - switch command { - case CmdVersion: - msg = &MsgVersion{} - - case CmdVerAck: - msg = &MsgVerAck{} - - case CmdSendAddrV2: - msg = &MsgSendAddrV2{} - - case CmdGetAddr: - msg = &MsgGetAddr{} - - case CmdAddr: - msg = &MsgAddr{} - - case CmdGetBlocks: - msg = &MsgGetBlocks{} - - case CmdBlock: - msg = &MsgBlock{} - - case CmdInv: - msg = &MsgInv{} - - case CmdGetData: - msg = &MsgGetData{} - - case CmdNotFound: - msg = &MsgNotFound{} - - case CmdTx: - msg = &MsgTx{} - - case CmdPing: - msg = &MsgPing{} - - case CmdPong: - msg = &MsgPong{} - - case CmdGetHeaders: - msg = &MsgGetHeaders{} - - case CmdHeaders: - msg = &MsgHeaders{} - - case CmdAlert: - msg = &MsgAlert{} - - case CmdMemPool: - msg = &MsgMemPool{} - - case CmdFilterAdd: - msg = &MsgFilterAdd{} - - case CmdFilterClear: - msg = &MsgFilterClear{} - - case CmdFilterLoad: - msg = &MsgFilterLoad{} - - case CmdMerkleBlock: - msg = &MsgMerkleBlock{} - - case CmdReject: - msg = &MsgReject{} - - case CmdSendHeaders: - msg = &MsgSendHeaders{} - - case CmdFeeFilter: - msg = &MsgFeeFilter{} - - case CmdGetCFilters: - msg = &MsgGetCFilters{} - - case CmdGetCFHeaders: - msg = &MsgGetCFHeaders{} - - case CmdGetCFCheckpt: - msg = &MsgGetCFCheckpt{} - - case CmdCFilter: - msg = &MsgCFilter{} - - case CmdCFHeaders: - msg = &MsgCFHeaders{} - - case CmdCFCheckpt: - msg = &MsgCFCheckpt{} - - default: - return nil, fmt.Errorf("unhandled command [%s]", command) - } - return msg, nil -} - -// messageHeader defines the header structure for all bitcoin protocol messages. -type messageHeader struct { - magic BitcoinNet // 4 bytes - command string // 12 bytes - length uint32 // 4 bytes - checksum [4]byte // 4 bytes -} - -// readMessageHeader reads a bitcoin message header from r. -func readMessageHeader(r io.Reader) (int, *messageHeader, error) { - // Since readElements doesn't return the amount of bytes read, attempt - // to read the entire header into a buffer first in case there is a - // short read so the proper amount of read bytes are known. This works - // since the header is a fixed size. - var headerBytes [MessageHeaderSize]byte - n, err := io.ReadFull(r, headerBytes[:]) - if err != nil { - return n, nil, err - } - hr := bytes.NewReader(headerBytes[:]) - - // Create and populate a messageHeader struct from the raw header bytes. - hdr := messageHeader{} - var command [CommandSize]byte - readElements(hr, &hdr.magic, &command, &hdr.length, &hdr.checksum) - - // Strip trailing zeros from command string. - hdr.command = string(bytes.TrimRight(command[:], "\x00")) - - return n, &hdr, nil -} - -// discardInput reads n bytes from reader r in chunks and discards the read -// bytes. This is used to skip payloads when various errors occur and helps -// prevent rogue nodes from causing massive memory allocation through forging -// header length. -func discardInput(r io.Reader, n uint32) { - maxSize := uint32(10 * 1024) // 10k at a time - numReads := n / maxSize - bytesRemaining := n % maxSize - if n > 0 { - buf := make([]byte, maxSize) - for i := uint32(0); i < numReads; i++ { - io.ReadFull(r, buf) - } - } - if bytesRemaining > 0 { - buf := make([]byte, bytesRemaining) - io.ReadFull(r, buf) - } -} - -// WriteMessageN writes a bitcoin Message to w including the necessary header -// information and returns the number of bytes written. This function is the -// same as WriteMessage except it also returns the number of bytes written. -func WriteMessageN(w io.Writer, msg Message, pver uint32, btcnet BitcoinNet) (int, error) { - return WriteMessageWithEncodingN(w, msg, pver, btcnet, BaseEncoding) -} - -// WriteMessage writes a bitcoin Message to w including the necessary header -// information. This function is the same as WriteMessageN except it doesn't -// doesn't return the number of bytes written. This function is mainly provided -// for backwards compatibility with the original API, but it's also useful for -// callers that don't care about byte counts. -func WriteMessage(w io.Writer, msg Message, pver uint32, btcnet BitcoinNet) error { - _, err := WriteMessageN(w, msg, pver, btcnet) - return err -} - -// WriteMessageWithEncodingN writes a bitcoin Message to w including the -// necessary header information and returns the number of bytes written. -// This function is the same as WriteMessageN except it also allows the caller -// to specify the message encoding format to be used when serializing wire -// messages. -func WriteMessageWithEncodingN(w io.Writer, msg Message, pver uint32, - btcnet BitcoinNet, encoding MessageEncoding) (int, error) { - - totalBytes := 0 - - // Enforce max command size. - var command [CommandSize]byte - cmd := msg.Command() - if len(cmd) > CommandSize { - str := fmt.Sprintf("command [%s] is too long [max %v]", - cmd, CommandSize) - return totalBytes, messageError("WriteMessage", str) - } - copy(command[:], []byte(cmd)) - - // Encode the message payload. - var bw bytes.Buffer - err := msg.BtcEncode(&bw, pver, encoding) - if err != nil { - return totalBytes, err - } - payload := bw.Bytes() - lenp := len(payload) - - // Enforce maximum overall message payload. - if lenp > MaxMessagePayload { - str := fmt.Sprintf("message payload is too large - encoded "+ - "%d bytes, but maximum message payload is %d bytes", - lenp, MaxMessagePayload) - return totalBytes, messageError("WriteMessage", str) - } - - // Enforce maximum message payload based on the message type. - mpl := msg.MaxPayloadLength(pver) - if uint32(lenp) > mpl { - str := fmt.Sprintf("message payload is too large - encoded "+ - "%d bytes, but maximum message payload size for "+ - "messages of type [%s] is %d.", lenp, cmd, mpl) - return totalBytes, messageError("WriteMessage", str) - } - - // Create header for the message. - hdr := messageHeader{} - hdr.magic = btcnet - hdr.command = cmd - hdr.length = uint32(lenp) - copy(hdr.checksum[:], chainhash.DoubleHashB(payload)[0:4]) - - // Encode the header for the message. This is done to a buffer - // rather than directly to the writer since writeElements doesn't - // return the number of bytes written. - hw := bytes.NewBuffer(make([]byte, 0, MessageHeaderSize)) - writeElements(hw, hdr.magic, command, hdr.length, hdr.checksum) - - // Write header. - n, err := w.Write(hw.Bytes()) - totalBytes += n - if err != nil { - return totalBytes, err - } - - // Only write the payload if there is one, e.g., verack messages don't - // have one. - if len(payload) > 0 { - n, err = w.Write(payload) - totalBytes += n - } - - return totalBytes, err -} - -// ReadMessageWithEncodingN reads, validates, and parses the next bitcoin Message -// from r for the provided protocol version and bitcoin network. It returns the -// number of bytes read in addition to the parsed Message and raw bytes which -// comprise the message. This function is the same as ReadMessageN except it -// allows the caller to specify which message encoding is to to consult when -// decoding wire messages. -func ReadMessageWithEncodingN(r io.Reader, pver uint32, btcnet BitcoinNet, - enc MessageEncoding) (int, Message, []byte, error) { - - totalBytes := 0 - n, hdr, err := readMessageHeader(r) - totalBytes += n - if err != nil { - return totalBytes, nil, nil, err - } - - // Enforce maximum message payload. - if hdr.length > MaxMessagePayload { - str := fmt.Sprintf("message payload is too large - header "+ - "indicates %d bytes, but max message payload is %d "+ - "bytes.", hdr.length, MaxMessagePayload) - return totalBytes, nil, nil, messageError("ReadMessage", str) - - } - - // Check for messages from the wrong bitcoin network. - if hdr.magic != btcnet { - discardInput(r, hdr.length) - str := fmt.Sprintf("message from other network [%v]", hdr.magic) - return totalBytes, nil, nil, messageError("ReadMessage", str) - } - - // Check for malformed commands. - command := hdr.command - if !utf8.ValidString(command) { - discardInput(r, hdr.length) - str := fmt.Sprintf("invalid command %v", []byte(command)) - return totalBytes, nil, nil, messageError("ReadMessage", str) - } - - // Create struct of appropriate message type based on the command. - msg, err := makeEmptyMessage(command) - if err != nil { - discardInput(r, hdr.length) - return totalBytes, nil, nil, messageError("ReadMessage", - err.Error()) - } - - // Check for maximum length based on the message type as a malicious client - // could otherwise create a well-formed header and set the length to max - // numbers in order to exhaust the machine's memory. - mpl := msg.MaxPayloadLength(pver) - if hdr.length > mpl { - discardInput(r, hdr.length) - str := fmt.Sprintf("payload exceeds max length - header "+ - "indicates %v bytes, but max payload size for "+ - "messages of type [%v] is %v.", hdr.length, command, mpl) - return totalBytes, nil, nil, messageError("ReadMessage", str) - } - - // Read payload. - payload := make([]byte, hdr.length) - n, err = io.ReadFull(r, payload) - totalBytes += n - if err != nil { - return totalBytes, nil, nil, err - } - - // Test checksum. - checksum := chainhash.DoubleHashB(payload)[0:4] - if !bytes.Equal(checksum, hdr.checksum[:]) { - str := fmt.Sprintf("payload checksum failed - header "+ - "indicates %v, but actual checksum is %v.", - hdr.checksum, checksum) - return totalBytes, nil, nil, messageError("ReadMessage", str) - } - - // Unmarshal message. NOTE: This must be a *bytes.Buffer since the - // MsgVersion BtcDecode function requires it. - pr := bytes.NewBuffer(payload) - err = msg.BtcDecode(pr, pver, enc) - if err != nil { - return totalBytes, nil, nil, err - } - - return totalBytes, msg, payload, nil -} - -// ReadMessageN reads, validates, and parses the next bitcoin Message from r for -// the provided protocol version and bitcoin network. It returns the number of -// bytes read in addition to the parsed Message and raw bytes which comprise the -// message. This function is the same as ReadMessage except it also returns the -// number of bytes read. -func ReadMessageN(r io.Reader, pver uint32, btcnet BitcoinNet) (int, Message, []byte, error) { - return ReadMessageWithEncodingN(r, pver, btcnet, BaseEncoding) -} - -// ReadMessage reads, validates, and parses the next bitcoin Message from r for -// the provided protocol version and bitcoin network. It returns the parsed -// Message and raw bytes which comprise the message. This function only differs -// from ReadMessageN in that it doesn't return the number of bytes read. This -// function is mainly provided for backwards compatibility with the original -// API, but it's also useful for callers that don't care about byte counts. -func ReadMessage(r io.Reader, pver uint32, btcnet BitcoinNet) (Message, []byte, error) { - _, msg, buf, err := ReadMessageN(r, pver, btcnet) - return msg, buf, err -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgaddr.go b/vendor/github.com/btcsuite/btcd/wire/msgaddr.go deleted file mode 100644 index ce945c8..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgaddr.go +++ /dev/null @@ -1,143 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MaxAddrPerMsg is the maximum number of addresses that can be in a single -// bitcoin addr message (MsgAddr). -const MaxAddrPerMsg = 1000 - -// MsgAddr implements the Message interface and represents a bitcoin -// addr message. It is used to provide a list of known active peers on the -// network. An active peer is considered one that has transmitted a message -// within the last 3 hours. Nodes which have not transmitted in that time -// frame should be forgotten. Each message is limited to a maximum number of -// addresses, which is currently 1000. As a result, multiple messages must -// be used to relay the full list. -// -// Use the AddAddress function to build up the list of known addresses when -// sending an addr message to another peer. -type MsgAddr struct { - AddrList []*NetAddress -} - -// AddAddress adds a known active peer to the message. -func (msg *MsgAddr) AddAddress(na *NetAddress) error { - if len(msg.AddrList)+1 > MaxAddrPerMsg { - str := fmt.Sprintf("too many addresses in message [max %v]", - MaxAddrPerMsg) - return messageError("MsgAddr.AddAddress", str) - } - - msg.AddrList = append(msg.AddrList, na) - return nil -} - -// AddAddresses adds multiple known active peers to the message. -func (msg *MsgAddr) AddAddresses(netAddrs ...*NetAddress) error { - for _, na := range netAddrs { - err := msg.AddAddress(na) - if err != nil { - return err - } - } - return nil -} - -// ClearAddresses removes all addresses from the message. -func (msg *MsgAddr) ClearAddresses() { - msg.AddrList = []*NetAddress{} -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgAddr) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Limit to max addresses per message. - if count > MaxAddrPerMsg { - str := fmt.Sprintf("too many addresses for message "+ - "[count %v, max %v]", count, MaxAddrPerMsg) - return messageError("MsgAddr.BtcDecode", str) - } - - addrList := make([]NetAddress, count) - msg.AddrList = make([]*NetAddress, 0, count) - for i := uint64(0); i < count; i++ { - na := &addrList[i] - err := readNetAddress(r, pver, na, true) - if err != nil { - return err - } - msg.AddAddress(na) - } - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgAddr) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // Protocol versions before MultipleAddressVersion only allowed 1 address - // per message. - count := len(msg.AddrList) - if pver < MultipleAddressVersion && count > 1 { - str := fmt.Sprintf("too many addresses for message of "+ - "protocol version %v [count %v, max 1]", pver, count) - return messageError("MsgAddr.BtcEncode", str) - - } - if count > MaxAddrPerMsg { - str := fmt.Sprintf("too many addresses for message "+ - "[count %v, max %v]", count, MaxAddrPerMsg) - return messageError("MsgAddr.BtcEncode", str) - } - - err := WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, na := range msg.AddrList { - err = writeNetAddress(w, pver, na, true) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgAddr) Command() string { - return CmdAddr -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgAddr) MaxPayloadLength(pver uint32) uint32 { - if pver < MultipleAddressVersion { - // Num addresses (varInt) + a single net addresses. - return MaxVarIntPayload + maxNetAddressPayload(pver) - } - - // Num addresses (varInt) + max allowed addresses. - return MaxVarIntPayload + (MaxAddrPerMsg * maxNetAddressPayload(pver)) -} - -// NewMsgAddr returns a new bitcoin addr message that conforms to the -// Message interface. See MsgAddr for details. -func NewMsgAddr() *MsgAddr { - return &MsgAddr{ - AddrList: make([]*NetAddress, 0, MaxAddrPerMsg), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgalert.go b/vendor/github.com/btcsuite/btcd/wire/msgalert.go deleted file mode 100644 index 71c4e22..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgalert.go +++ /dev/null @@ -1,407 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "bytes" - "fmt" - "io" -) - -// MsgAlert contains a payload and a signature: -// -// =============================================== -// | Field | Data Type | Size | -// =============================================== -// | payload | []uchar | ? | -// ----------------------------------------------- -// | signature | []uchar | ? | -// ----------------------------------------------- -// -// Here payload is an Alert serialized into a byte array to ensure that -// versions using incompatible alert formats can still relay -// alerts among one another. -// -// An Alert is the payload deserialized as follows: -// -// =============================================== -// | Field | Data Type | Size | -// =============================================== -// | Version | int32 | 4 | -// ----------------------------------------------- -// | RelayUntil | int64 | 8 | -// ----------------------------------------------- -// | Expiration | int64 | 8 | -// ----------------------------------------------- -// | ID | int32 | 4 | -// ----------------------------------------------- -// | Cancel | int32 | 4 | -// ----------------------------------------------- -// | SetCancel | set | ? | -// ----------------------------------------------- -// | MinVer | int32 | 4 | -// ----------------------------------------------- -// | MaxVer | int32 | 4 | -// ----------------------------------------------- -// | SetSubVer | set | ? | -// ----------------------------------------------- -// | Priority | int32 | 4 | -// ----------------------------------------------- -// | Comment | string | ? | -// ----------------------------------------------- -// | StatusBar | string | ? | -// ----------------------------------------------- -// | Reserved | string | ? | -// ----------------------------------------------- -// | Total (Fixed) | 45 | -// ----------------------------------------------- -// -// NOTE: -// * string is a VarString i.e VarInt length followed by the string itself -// * set is a VarInt followed by as many number of strings -// * set is a VarInt followed by as many number of ints -// * fixedAlertSize = 40 + 5*min(VarInt) = 40 + 5*1 = 45 -// -// Now we can define bounds on Alert size, SetCancel and SetSubVer - -// Fixed size of the alert payload -const fixedAlertSize = 45 - -// maxSignatureSize is the max size of an ECDSA signature. -// NOTE: Since this size is fixed and < 255, the size of VarInt required = 1. -const maxSignatureSize = 72 - -// maxAlertSize is the maximum size an alert. -// -// MessagePayload = VarInt(Alert) + Alert + VarInt(Signature) + Signature -// MaxMessagePayload = maxAlertSize + max(VarInt) + maxSignatureSize + 1 -const maxAlertSize = MaxMessagePayload - maxSignatureSize - MaxVarIntPayload - 1 - -// maxCountSetCancel is the maximum number of cancel IDs that could possibly -// fit into a maximum size alert. -// -// maxAlertSize = fixedAlertSize + max(SetCancel) + max(SetSubVer) + 3*(string) -// for caculating maximum number of cancel IDs, set all other var sizes to 0 -// maxAlertSize = fixedAlertSize + (MaxVarIntPayload-1) + x*sizeOf(int32) -// x = (maxAlertSize - fixedAlertSize - MaxVarIntPayload + 1) / 4 -const maxCountSetCancel = (maxAlertSize - fixedAlertSize - MaxVarIntPayload + 1) / 4 - -// maxCountSetSubVer is the maximum number of subversions that could possibly -// fit into a maximum size alert. -// -// maxAlertSize = fixedAlertSize + max(SetCancel) + max(SetSubVer) + 3*(string) -// for caculating maximum number of subversions, set all other var sizes to 0 -// maxAlertSize = fixedAlertSize + (MaxVarIntPayload-1) + x*sizeOf(string) -// x = (maxAlertSize - fixedAlertSize - MaxVarIntPayload + 1) / sizeOf(string) -// subversion would typically be something like "/Satoshi:0.7.2/" (15 bytes) -// so assuming < 255 bytes, sizeOf(string) = sizeOf(uint8) + 255 = 256 -const maxCountSetSubVer = (maxAlertSize - fixedAlertSize - MaxVarIntPayload + 1) / 256 - -// Alert contains the data deserialized from the MsgAlert payload. -type Alert struct { - // Alert format version - Version int32 - - // Timestamp beyond which nodes should stop relaying this alert - RelayUntil int64 - - // Timestamp beyond which this alert is no longer in effect and - // should be ignored - Expiration int64 - - // A unique ID number for this alert - ID int32 - - // All alerts with an ID less than or equal to this number should - // cancelled, deleted and not accepted in the future - Cancel int32 - - // All alert IDs contained in this set should be cancelled as above - SetCancel []int32 - - // This alert only applies to versions greater than or equal to this - // version. Other versions should still relay it. - MinVer int32 - - // This alert only applies to versions less than or equal to this version. - // Other versions should still relay it. - MaxVer int32 - - // If this set contains any elements, then only nodes that have their - // subVer contained in this set are affected by the alert. Other versions - // should still relay it. - SetSubVer []string - - // Relative priority compared to other alerts - Priority int32 - - // A comment on the alert that is not displayed - Comment string - - // The alert message that is displayed to the user - StatusBar string - - // Reserved - Reserved string -} - -// Serialize encodes the alert to w using the alert protocol encoding format. -func (alert *Alert) Serialize(w io.Writer, pver uint32) error { - err := writeElements(w, alert.Version, alert.RelayUntil, - alert.Expiration, alert.ID, alert.Cancel) - if err != nil { - return err - } - - count := len(alert.SetCancel) - if count > maxCountSetCancel { - str := fmt.Sprintf("too many cancel alert IDs for alert "+ - "[count %v, max %v]", count, maxCountSetCancel) - return messageError("Alert.Serialize", str) - } - err = WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - for i := 0; i < count; i++ { - err = writeElement(w, alert.SetCancel[i]) - if err != nil { - return err - } - } - - err = writeElements(w, alert.MinVer, alert.MaxVer) - if err != nil { - return err - } - - count = len(alert.SetSubVer) - if count > maxCountSetSubVer { - str := fmt.Sprintf("too many sub versions for alert "+ - "[count %v, max %v]", count, maxCountSetSubVer) - return messageError("Alert.Serialize", str) - } - err = WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - for i := 0; i < count; i++ { - err = WriteVarString(w, pver, alert.SetSubVer[i]) - if err != nil { - return err - } - } - - err = writeElement(w, alert.Priority) - if err != nil { - return err - } - err = WriteVarString(w, pver, alert.Comment) - if err != nil { - return err - } - err = WriteVarString(w, pver, alert.StatusBar) - if err != nil { - return err - } - return WriteVarString(w, pver, alert.Reserved) -} - -// Deserialize decodes from r into the receiver using the alert protocol -// encoding format. -func (alert *Alert) Deserialize(r io.Reader, pver uint32) error { - err := readElements(r, &alert.Version, &alert.RelayUntil, - &alert.Expiration, &alert.ID, &alert.Cancel) - if err != nil { - return err - } - - // SetCancel: first read a VarInt that contains - // count - the number of Cancel IDs, then - // iterate count times and read them - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - if count > maxCountSetCancel { - str := fmt.Sprintf("too many cancel alert IDs for alert "+ - "[count %v, max %v]", count, maxCountSetCancel) - return messageError("Alert.Deserialize", str) - } - alert.SetCancel = make([]int32, count) - for i := 0; i < int(count); i++ { - err := readElement(r, &alert.SetCancel[i]) - if err != nil { - return err - } - } - - err = readElements(r, &alert.MinVer, &alert.MaxVer) - if err != nil { - return err - } - - // SetSubVer: similar to SetCancel - // but read count number of sub-version strings - count, err = ReadVarInt(r, pver) - if err != nil { - return err - } - if count > maxCountSetSubVer { - str := fmt.Sprintf("too many sub versions for alert "+ - "[count %v, max %v]", count, maxCountSetSubVer) - return messageError("Alert.Deserialize", str) - } - alert.SetSubVer = make([]string, count) - for i := 0; i < int(count); i++ { - alert.SetSubVer[i], err = ReadVarString(r, pver) - if err != nil { - return err - } - } - - err = readElement(r, &alert.Priority) - if err != nil { - return err - } - alert.Comment, err = ReadVarString(r, pver) - if err != nil { - return err - } - alert.StatusBar, err = ReadVarString(r, pver) - if err != nil { - return err - } - alert.Reserved, err = ReadVarString(r, pver) - return err -} - -// NewAlert returns an new Alert with values provided. -func NewAlert(version int32, relayUntil int64, expiration int64, - id int32, cancel int32, setCancel []int32, minVer int32, - maxVer int32, setSubVer []string, priority int32, comment string, - statusBar string) *Alert { - return &Alert{ - Version: version, - RelayUntil: relayUntil, - Expiration: expiration, - ID: id, - Cancel: cancel, - SetCancel: setCancel, - MinVer: minVer, - MaxVer: maxVer, - SetSubVer: setSubVer, - Priority: priority, - Comment: comment, - StatusBar: statusBar, - Reserved: "", - } -} - -// NewAlertFromPayload returns an Alert with values deserialized from the -// serialized payload. -func NewAlertFromPayload(serializedPayload []byte, pver uint32) (*Alert, error) { - var alert Alert - r := bytes.NewReader(serializedPayload) - err := alert.Deserialize(r, pver) - if err != nil { - return nil, err - } - return &alert, nil -} - -// MsgAlert implements the Message interface and defines a bitcoin alert -// message. -// -// This is a signed message that provides notifications that the client should -// display if the signature matches the key. bitcoind/bitcoin-qt only checks -// against a signature from the core developers. -type MsgAlert struct { - // SerializedPayload is the alert payload serialized as a string so that the - // version can change but the Alert can still be passed on by older - // clients. - SerializedPayload []byte - - // Signature is the ECDSA signature of the message. - Signature []byte - - // Deserialized Payload - Payload *Alert -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgAlert) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - var err error - - msg.SerializedPayload, err = ReadVarBytes(r, pver, MaxMessagePayload, - "alert serialized payload") - if err != nil { - return err - } - - msg.Payload, err = NewAlertFromPayload(msg.SerializedPayload, pver) - if err != nil { - msg.Payload = nil - } - - msg.Signature, err = ReadVarBytes(r, pver, MaxMessagePayload, - "alert signature") - return err -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgAlert) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - var err error - var serializedpayload []byte - if msg.Payload != nil { - // try to Serialize Payload if possible - r := new(bytes.Buffer) - err = msg.Payload.Serialize(r, pver) - if err != nil { - // Serialize failed - ignore & fallback - // to SerializedPayload - serializedpayload = msg.SerializedPayload - } else { - serializedpayload = r.Bytes() - } - } else { - serializedpayload = msg.SerializedPayload - } - slen := uint64(len(serializedpayload)) - if slen == 0 { - return messageError("MsgAlert.BtcEncode", "empty serialized payload") - } - err = WriteVarBytes(w, pver, serializedpayload) - if err != nil { - return err - } - return WriteVarBytes(w, pver, msg.Signature) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgAlert) Command() string { - return CmdAlert -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgAlert) MaxPayloadLength(pver uint32) uint32 { - // Since this can vary depending on the message, make it the max - // size allowed. - return MaxMessagePayload -} - -// NewMsgAlert returns a new bitcoin alert message that conforms to the Message -// interface. See MsgAlert for details. -func NewMsgAlert(serializedPayload []byte, signature []byte) *MsgAlert { - return &MsgAlert{ - SerializedPayload: serializedPayload, - Signature: signature, - Payload: nil, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgblock.go b/vendor/github.com/btcsuite/btcd/wire/msgblock.go deleted file mode 100644 index 4172949..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgblock.go +++ /dev/null @@ -1,290 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "bytes" - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// defaultTransactionAlloc is the default size used for the backing array -// for transactions. The transaction array will dynamically grow as needed, but -// this figure is intended to provide enough space for the number of -// transactions in the vast majority of blocks without needing to grow the -// backing array multiple times. -const defaultTransactionAlloc = 2048 - -// MaxBlocksPerMsg is the maximum number of blocks allowed per message. -const MaxBlocksPerMsg = 500 - -// MaxBlockPayload is the maximum bytes a block message can be in bytes. -// After Segregated Witness, the max block payload has been raised to 4MB. -const MaxBlockPayload = 4000000 - -// maxTxPerBlock is the maximum number of transactions that could -// possibly fit into a block. -const maxTxPerBlock = (MaxBlockPayload / minTxPayload) + 1 - -// TxLoc holds locator data for the offset and length of where a transaction is -// located within a MsgBlock data buffer. -type TxLoc struct { - TxStart int - TxLen int -} - -// MsgBlock implements the Message interface and represents a bitcoin -// block message. It is used to deliver block and transaction information in -// response to a getdata message (MsgGetData) for a given block hash. -type MsgBlock struct { - Header BlockHeader - Transactions []*MsgTx -} - -// AddTransaction adds a transaction to the message. -func (msg *MsgBlock) AddTransaction(tx *MsgTx) error { - msg.Transactions = append(msg.Transactions, tx) - return nil - -} - -// ClearTransactions removes all transactions from the message. -func (msg *MsgBlock) ClearTransactions() { - msg.Transactions = make([]*MsgTx, 0, defaultTransactionAlloc) -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -// See Deserialize for decoding blocks stored to disk, such as in a database, as -// opposed to decoding blocks from the wire. -func (msg *MsgBlock) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - err := readBlockHeader(r, pver, &msg.Header) - if err != nil { - return err - } - - txCount, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Prevent more transactions than could possibly fit into a block. - // It would be possible to cause memory exhaustion and panics without - // a sane upper bound on this count. - if txCount > maxTxPerBlock { - str := fmt.Sprintf("too many transactions to fit into a block "+ - "[count %d, max %d]", txCount, maxTxPerBlock) - return messageError("MsgBlock.BtcDecode", str) - } - - msg.Transactions = make([]*MsgTx, 0, txCount) - for i := uint64(0); i < txCount; i++ { - tx := MsgTx{} - err := tx.BtcDecode(r, pver, enc) - if err != nil { - return err - } - msg.Transactions = append(msg.Transactions, &tx) - } - - return nil -} - -// Deserialize decodes a block from r into the receiver using a format that is -// suitable for long-term storage such as a database while respecting the -// Version field in the block. This function differs from BtcDecode in that -// BtcDecode decodes from the bitcoin wire protocol as it was sent across the -// network. The wire encoding can technically differ depending on the protocol -// version and doesn't even really need to match the format of a stored block at -// all. As of the time this comment was written, the encoded block is the same -// in both instances, but there is a distinct difference and separating the two -// allows the API to be flexible enough to deal with changes. -func (msg *MsgBlock) Deserialize(r io.Reader) error { - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of BtcDecode. - // - // Passing an encoding type of WitnessEncoding to BtcEncode for the - // MessageEncoding parameter indicates that the transactions within the - // block are expected to be serialized according to the new - // serialization structure defined in BIP0141. - return msg.BtcDecode(r, 0, WitnessEncoding) -} - -// DeserializeNoWitness decodes a block from r into the receiver similar to -// Deserialize, however DeserializeWitness strips all (if any) witness data -// from the transactions within the block before encoding them. -func (msg *MsgBlock) DeserializeNoWitness(r io.Reader) error { - return msg.BtcDecode(r, 0, BaseEncoding) -} - -// DeserializeTxLoc decodes r in the same manner Deserialize does, but it takes -// a byte buffer instead of a generic reader and returns a slice containing the -// start and length of each transaction within the raw data that is being -// deserialized. -func (msg *MsgBlock) DeserializeTxLoc(r *bytes.Buffer) ([]TxLoc, error) { - fullLen := r.Len() - - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of existing wire protocol functions. - err := readBlockHeader(r, 0, &msg.Header) - if err != nil { - return nil, err - } - - txCount, err := ReadVarInt(r, 0) - if err != nil { - return nil, err - } - - // Prevent more transactions than could possibly fit into a block. - // It would be possible to cause memory exhaustion and panics without - // a sane upper bound on this count. - if txCount > maxTxPerBlock { - str := fmt.Sprintf("too many transactions to fit into a block "+ - "[count %d, max %d]", txCount, maxTxPerBlock) - return nil, messageError("MsgBlock.DeserializeTxLoc", str) - } - - // Deserialize each transaction while keeping track of its location - // within the byte stream. - msg.Transactions = make([]*MsgTx, 0, txCount) - txLocs := make([]TxLoc, txCount) - for i := uint64(0); i < txCount; i++ { - txLocs[i].TxStart = fullLen - r.Len() - tx := MsgTx{} - err := tx.Deserialize(r) - if err != nil { - return nil, err - } - msg.Transactions = append(msg.Transactions, &tx) - txLocs[i].TxLen = (fullLen - r.Len()) - txLocs[i].TxStart - } - - return txLocs, nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -// See Serialize for encoding blocks to be stored to disk, such as in a -// database, as opposed to encoding blocks for the wire. -func (msg *MsgBlock) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - err := writeBlockHeader(w, pver, &msg.Header) - if err != nil { - return err - } - - err = WriteVarInt(w, pver, uint64(len(msg.Transactions))) - if err != nil { - return err - } - - for _, tx := range msg.Transactions { - err = tx.BtcEncode(w, pver, enc) - if err != nil { - return err - } - } - - return nil -} - -// Serialize encodes the block to w using a format that suitable for long-term -// storage such as a database while respecting the Version field in the block. -// This function differs from BtcEncode in that BtcEncode encodes the block to -// the bitcoin wire protocol in order to be sent across the network. The wire -// encoding can technically differ depending on the protocol version and doesn't -// even really need to match the format of a stored block at all. As of the -// time this comment was written, the encoded block is the same in both -// instances, but there is a distinct difference and separating the two allows -// the API to be flexible enough to deal with changes. -func (msg *MsgBlock) Serialize(w io.Writer) error { - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of BtcEncode. - // - // Passing WitnessEncoding as the encoding type here indicates that - // each of the transactions should be serialized using the witness - // serialization structure defined in BIP0141. - return msg.BtcEncode(w, 0, WitnessEncoding) -} - -// SerializeNoWitness encodes a block to w using an identical format to -// Serialize, with all (if any) witness data stripped from all transactions. -// This method is provided in additon to the regular Serialize, in order to -// allow one to selectively encode transaction witness data to non-upgraded -// peers which are unaware of the new encoding. -func (msg *MsgBlock) SerializeNoWitness(w io.Writer) error { - return msg.BtcEncode(w, 0, BaseEncoding) -} - -// SerializeSize returns the number of bytes it would take to serialize the -// block, factoring in any witness data within transaction. -func (msg *MsgBlock) SerializeSize() int { - // Block header bytes + Serialized varint size for the number of - // transactions. - n := blockHeaderLen + VarIntSerializeSize(uint64(len(msg.Transactions))) - - for _, tx := range msg.Transactions { - n += tx.SerializeSize() - } - - return n -} - -// SerializeSizeStripped returns the number of bytes it would take to serialize -// the block, excluding any witness data (if any). -func (msg *MsgBlock) SerializeSizeStripped() int { - // Block header bytes + Serialized varint size for the number of - // transactions. - n := blockHeaderLen + VarIntSerializeSize(uint64(len(msg.Transactions))) - - for _, tx := range msg.Transactions { - n += tx.SerializeSizeStripped() - } - - return n -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgBlock) Command() string { - return CmdBlock -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgBlock) MaxPayloadLength(pver uint32) uint32 { - // Block header at 80 bytes + transaction count + max transactions - // which can vary up to the MaxBlockPayload (including the block header - // and transaction count). - return MaxBlockPayload -} - -// BlockHash computes the block identifier hash for this block. -func (msg *MsgBlock) BlockHash() chainhash.Hash { - return msg.Header.BlockHash() -} - -// TxHashes returns a slice of hashes of all of transactions in this block. -func (msg *MsgBlock) TxHashes() ([]chainhash.Hash, error) { - hashList := make([]chainhash.Hash, 0, len(msg.Transactions)) - for _, tx := range msg.Transactions { - hashList = append(hashList, tx.TxHash()) - } - return hashList, nil -} - -// NewMsgBlock returns a new bitcoin block message that conforms to the -// Message interface. See MsgBlock for details. -func NewMsgBlock(blockHeader *BlockHeader) *MsgBlock { - return &MsgBlock{ - Header: *blockHeader, - Transactions: make([]*MsgTx, 0, defaultTransactionAlloc), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgcfcheckpt.go b/vendor/github.com/btcsuite/btcd/wire/msgcfcheckpt.go deleted file mode 100644 index fc3fd53..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgcfcheckpt.go +++ /dev/null @@ -1,164 +0,0 @@ -// Copyright (c) 2018 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "errors" - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -const ( - // CFCheckptInterval is the gap (in number of blocks) between each - // filter header checkpoint. - CFCheckptInterval = 1000 - - // maxCFHeadersLen is the max number of filter headers we will attempt - // to decode. - maxCFHeadersLen = 100000 -) - -// ErrInsaneCFHeaderCount signals that we were asked to decode an -// unreasonable number of cfilter headers. -var ErrInsaneCFHeaderCount = errors.New( - "refusing to decode unreasonable number of filter headers") - -// MsgCFCheckpt implements the Message interface and represents a bitcoin -// cfcheckpt message. It is used to deliver committed filter header information -// in response to a getcfcheckpt message (MsgGetCFCheckpt). See MsgGetCFCheckpt -// for details on requesting the headers. -type MsgCFCheckpt struct { - FilterType FilterType - StopHash chainhash.Hash - FilterHeaders []*chainhash.Hash -} - -// AddCFHeader adds a new committed filter header to the message. -func (msg *MsgCFCheckpt) AddCFHeader(header *chainhash.Hash) error { - if len(msg.FilterHeaders) == cap(msg.FilterHeaders) { - str := fmt.Sprintf("FilterHeaders has insufficient capacity for "+ - "additional header: len = %d", len(msg.FilterHeaders)) - return messageError("MsgCFCheckpt.AddCFHeader", str) - } - - msg.FilterHeaders = append(msg.FilterHeaders, header) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgCFCheckpt) BtcDecode(r io.Reader, pver uint32, _ MessageEncoding) error { - // Read filter type - err := readElement(r, &msg.FilterType) - if err != nil { - return err - } - - // Read stop hash - err = readElement(r, &msg.StopHash) - if err != nil { - return err - } - - // Read number of filter headers - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Refuse to decode an insane number of cfheaders. - if count > maxCFHeadersLen { - return ErrInsaneCFHeaderCount - } - - // Create a contiguous slice of hashes to deserialize into in order to - // reduce the number of allocations. - msg.FilterHeaders = make([]*chainhash.Hash, count) - for i := uint64(0); i < count; i++ { - var cfh chainhash.Hash - err := readElement(r, &cfh) - if err != nil { - return err - } - msg.FilterHeaders[i] = &cfh - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgCFCheckpt) BtcEncode(w io.Writer, pver uint32, _ MessageEncoding) error { - // Write filter type - err := writeElement(w, msg.FilterType) - if err != nil { - return err - } - - // Write stop hash - err = writeElement(w, msg.StopHash) - if err != nil { - return err - } - - // Write length of FilterHeaders slice - count := len(msg.FilterHeaders) - err = WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, cfh := range msg.FilterHeaders { - err := writeElement(w, cfh) - if err != nil { - return err - } - } - - return nil -} - -// Deserialize decodes a filter header from r into the receiver using a format -// that is suitable for long-term storage such as a database. This function -// differs from BtcDecode in that BtcDecode decodes from the bitcoin wire -// protocol as it was sent across the network. The wire encoding can -// technically differ depending on the protocol version and doesn't even really -// need to match the format of a stored filter header at all. As of the time -// this comment was written, the encoded filter header is the same in both -// instances, but there is a distinct difference and separating the two allows -// the API to be flexible enough to deal with changes. -func (msg *MsgCFCheckpt) Deserialize(r io.Reader) error { - // At the current time, there is no difference between the wire encoding - // and the stable long-term storage format. As a result, make use of - // BtcDecode. - return msg.BtcDecode(r, 0, BaseEncoding) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgCFCheckpt) Command() string { - return CmdCFCheckpt -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgCFCheckpt) MaxPayloadLength(pver uint32) uint32 { - // Message size depends on the blockchain height, so return general limit - // for all messages. - return MaxMessagePayload -} - -// NewMsgCFCheckpt returns a new bitcoin cfheaders message that conforms to -// the Message interface. See MsgCFCheckpt for details. -func NewMsgCFCheckpt(filterType FilterType, stopHash *chainhash.Hash, - headersCount int) *MsgCFCheckpt { - return &MsgCFCheckpt{ - FilterType: filterType, - StopHash: *stopHash, - FilterHeaders: make([]*chainhash.Hash, 0, headersCount), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgcfheaders.go b/vendor/github.com/btcsuite/btcd/wire/msgcfheaders.go deleted file mode 100644 index 40d30f9..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgcfheaders.go +++ /dev/null @@ -1,180 +0,0 @@ -// Copyright (c) 2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -const ( - // MaxCFHeaderPayload is the maximum byte size of a committed - // filter header. - MaxCFHeaderPayload = chainhash.HashSize - - // MaxCFHeadersPerMsg is the maximum number of committed filter headers - // that can be in a single bitcoin cfheaders message. - MaxCFHeadersPerMsg = 2000 -) - -// MsgCFHeaders implements the Message interface and represents a bitcoin -// cfheaders message. It is used to deliver committed filter header information -// in response to a getcfheaders message (MsgGetCFHeaders). The maximum number -// of committed filter headers per message is currently 2000. See -// MsgGetCFHeaders for details on requesting the headers. -type MsgCFHeaders struct { - FilterType FilterType - StopHash chainhash.Hash - PrevFilterHeader chainhash.Hash - FilterHashes []*chainhash.Hash -} - -// AddCFHash adds a new filter hash to the message. -func (msg *MsgCFHeaders) AddCFHash(hash *chainhash.Hash) error { - if len(msg.FilterHashes)+1 > MaxCFHeadersPerMsg { - str := fmt.Sprintf("too many block headers in message [max %v]", - MaxBlockHeadersPerMsg) - return messageError("MsgCFHeaders.AddCFHash", str) - } - - msg.FilterHashes = append(msg.FilterHashes, hash) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgCFHeaders) BtcDecode(r io.Reader, pver uint32, _ MessageEncoding) error { - // Read filter type - err := readElement(r, &msg.FilterType) - if err != nil { - return err - } - - // Read stop hash - err = readElement(r, &msg.StopHash) - if err != nil { - return err - } - - // Read prev filter header - err = readElement(r, &msg.PrevFilterHeader) - if err != nil { - return err - } - - // Read number of filter headers - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Limit to max committed filter headers per message. - if count > MaxCFHeadersPerMsg { - str := fmt.Sprintf("too many committed filter headers for "+ - "message [count %v, max %v]", count, - MaxBlockHeadersPerMsg) - return messageError("MsgCFHeaders.BtcDecode", str) - } - - // Create a contiguous slice of hashes to deserialize into in order to - // reduce the number of allocations. - msg.FilterHashes = make([]*chainhash.Hash, 0, count) - for i := uint64(0); i < count; i++ { - var cfh chainhash.Hash - err := readElement(r, &cfh) - if err != nil { - return err - } - msg.AddCFHash(&cfh) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgCFHeaders) BtcEncode(w io.Writer, pver uint32, _ MessageEncoding) error { - // Write filter type - err := writeElement(w, msg.FilterType) - if err != nil { - return err - } - - // Write stop hash - err = writeElement(w, msg.StopHash) - if err != nil { - return err - } - - // Write prev filter header - err = writeElement(w, msg.PrevFilterHeader) - if err != nil { - return err - } - - // Limit to max committed headers per message. - count := len(msg.FilterHashes) - if count > MaxCFHeadersPerMsg { - str := fmt.Sprintf("too many committed filter headers for "+ - "message [count %v, max %v]", count, - MaxBlockHeadersPerMsg) - return messageError("MsgCFHeaders.BtcEncode", str) - } - - err = WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, cfh := range msg.FilterHashes { - err := writeElement(w, cfh) - if err != nil { - return err - } - } - - return nil -} - -// Deserialize decodes a filter header from r into the receiver using a format -// that is suitable for long-term storage such as a database. This function -// differs from BtcDecode in that BtcDecode decodes from the bitcoin wire -// protocol as it was sent across the network. The wire encoding can -// technically differ depending on the protocol version and doesn't even really -// need to match the format of a stored filter header at all. As of the time -// this comment was written, the encoded filter header is the same in both -// instances, but there is a distinct difference and separating the two allows -// the API to be flexible enough to deal with changes. -func (msg *MsgCFHeaders) Deserialize(r io.Reader) error { - // At the current time, there is no difference between the wire encoding - // and the stable long-term storage format. As a result, make use of - // BtcDecode. - return msg.BtcDecode(r, 0, BaseEncoding) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgCFHeaders) Command() string { - return CmdCFHeaders -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgCFHeaders) MaxPayloadLength(pver uint32) uint32 { - // Hash size + filter type + num headers (varInt) + - // (header size * max headers). - return 1 + chainhash.HashSize + chainhash.HashSize + MaxVarIntPayload + - (MaxCFHeaderPayload * MaxCFHeadersPerMsg) -} - -// NewMsgCFHeaders returns a new bitcoin cfheaders message that conforms to -// the Message interface. See MsgCFHeaders for details. -func NewMsgCFHeaders() *MsgCFHeaders { - return &MsgCFHeaders{ - FilterHashes: make([]*chainhash.Hash, 0, MaxCFHeadersPerMsg), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgcfilter.go b/vendor/github.com/btcsuite/btcd/wire/msgcfilter.go deleted file mode 100644 index 097590b..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgcfilter.go +++ /dev/null @@ -1,119 +0,0 @@ -// Copyright (c) 2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// FilterType is used to represent a filter type. -type FilterType uint8 - -const ( - // GCSFilterRegular is the regular filter type. - GCSFilterRegular FilterType = iota -) - -const ( - // MaxCFilterDataSize is the maximum byte size of a committed filter. - // The maximum size is currently defined as 256KiB. - MaxCFilterDataSize = 256 * 1024 -) - -// MsgCFilter implements the Message interface and represents a bitcoin cfilter -// message. It is used to deliver a committed filter in response to a -// getcfilters (MsgGetCFilters) message. -type MsgCFilter struct { - FilterType FilterType - BlockHash chainhash.Hash - Data []byte -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgCFilter) BtcDecode(r io.Reader, pver uint32, _ MessageEncoding) error { - // Read filter type - err := readElement(r, &msg.FilterType) - if err != nil { - return err - } - - // Read the hash of the filter's block - err = readElement(r, &msg.BlockHash) - if err != nil { - return err - } - - // Read filter data - msg.Data, err = ReadVarBytes(r, pver, MaxCFilterDataSize, - "cfilter data") - return err -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgCFilter) BtcEncode(w io.Writer, pver uint32, _ MessageEncoding) error { - size := len(msg.Data) - if size > MaxCFilterDataSize { - str := fmt.Sprintf("cfilter size too large for message "+ - "[size %v, max %v]", size, MaxCFilterDataSize) - return messageError("MsgCFilter.BtcEncode", str) - } - - err := writeElement(w, msg.FilterType) - if err != nil { - return err - } - - err = writeElement(w, msg.BlockHash) - if err != nil { - return err - } - - return WriteVarBytes(w, pver, msg.Data) -} - -// Deserialize decodes a filter from r into the receiver using a format that is -// suitable for long-term storage such as a database. This function differs -// from BtcDecode in that BtcDecode decodes from the bitcoin wire protocol as -// it was sent across the network. The wire encoding can technically differ -// depending on the protocol version and doesn't even really need to match the -// format of a stored filter at all. As of the time this comment was written, -// the encoded filter is the same in both instances, but there is a distinct -// difference and separating the two allows the API to be flexible enough to -// deal with changes. -func (msg *MsgCFilter) Deserialize(r io.Reader) error { - // At the current time, there is no difference between the wire encoding - // and the stable long-term storage format. As a result, make use of - // BtcDecode. - return msg.BtcDecode(r, 0, BaseEncoding) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgCFilter) Command() string { - return CmdCFilter -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgCFilter) MaxPayloadLength(pver uint32) uint32 { - return uint32(VarIntSerializeSize(MaxCFilterDataSize)) + - MaxCFilterDataSize + chainhash.HashSize + 1 -} - -// NewMsgCFilter returns a new bitcoin cfilter message that conforms to the -// Message interface. See MsgCFilter for details. -func NewMsgCFilter(filterType FilterType, blockHash *chainhash.Hash, - data []byte) *MsgCFilter { - return &MsgCFilter{ - FilterType: filterType, - BlockHash: *blockHash, - Data: data, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgfeefilter.go b/vendor/github.com/btcsuite/btcd/wire/msgfeefilter.go deleted file mode 100644 index 754647a..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgfeefilter.go +++ /dev/null @@ -1,64 +0,0 @@ -// Copyright (c) 2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgFeeFilter implements the Message interface and represents a bitcoin -// feefilter message. It is used to request the receiving peer does not -// announce any transactions below the specified minimum fee rate. -// -// This message was not added until protocol versions starting with -// FeeFilterVersion. -type MsgFeeFilter struct { - MinFee int64 -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgFeeFilter) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < FeeFilterVersion { - str := fmt.Sprintf("feefilter message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFeeFilter.BtcDecode", str) - } - - return readElement(r, &msg.MinFee) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgFeeFilter) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < FeeFilterVersion { - str := fmt.Sprintf("feefilter message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFeeFilter.BtcEncode", str) - } - - return writeElement(w, msg.MinFee) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgFeeFilter) Command() string { - return CmdFeeFilter -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgFeeFilter) MaxPayloadLength(pver uint32) uint32 { - return 8 -} - -// NewMsgFeeFilter returns a new bitcoin feefilter message that conforms to -// the Message interface. See MsgFeeFilter for details. -func NewMsgFeeFilter(minfee int64) *MsgFeeFilter { - return &MsgFeeFilter{ - MinFee: minfee, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgfilteradd.go b/vendor/github.com/btcsuite/btcd/wire/msgfilteradd.go deleted file mode 100644 index 21b67ca..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgfilteradd.go +++ /dev/null @@ -1,81 +0,0 @@ -// Copyright (c) 2014-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -const ( - // MaxFilterAddDataSize is the maximum byte size of a data - // element to add to the Bloom filter. It is equal to the - // maximum element size of a script. - MaxFilterAddDataSize = 520 -) - -// MsgFilterAdd implements the Message interface and represents a bitcoin -// filteradd message. It is used to add a data element to an existing Bloom -// filter. -// -// This message was not added until protocol version BIP0037Version. -type MsgFilterAdd struct { - Data []byte -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgFilterAdd) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("filteradd message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFilterAdd.BtcDecode", str) - } - - var err error - msg.Data, err = ReadVarBytes(r, pver, MaxFilterAddDataSize, - "filteradd data") - return err -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgFilterAdd) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("filteradd message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFilterAdd.BtcEncode", str) - } - - size := len(msg.Data) - if size > MaxFilterAddDataSize { - str := fmt.Sprintf("filteradd size too large for message "+ - "[size %v, max %v]", size, MaxFilterAddDataSize) - return messageError("MsgFilterAdd.BtcEncode", str) - } - - return WriteVarBytes(w, pver, msg.Data) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgFilterAdd) Command() string { - return CmdFilterAdd -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgFilterAdd) MaxPayloadLength(pver uint32) uint32 { - return uint32(VarIntSerializeSize(MaxFilterAddDataSize)) + - MaxFilterAddDataSize -} - -// NewMsgFilterAdd returns a new bitcoin filteradd message that conforms to the -// Message interface. See MsgFilterAdd for details. -func NewMsgFilterAdd(data []byte) *MsgFilterAdd { - return &MsgFilterAdd{ - Data: data, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgfilterclear.go b/vendor/github.com/btcsuite/btcd/wire/msgfilterclear.go deleted file mode 100644 index 7562fe2..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgfilterclear.go +++ /dev/null @@ -1,59 +0,0 @@ -// Copyright (c) 2014-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgFilterClear implements the Message interface and represents a bitcoin -// filterclear message which is used to reset a Bloom filter. -// -// This message was not added until protocol version BIP0037Version and has -// no payload. -type MsgFilterClear struct{} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgFilterClear) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("filterclear message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFilterClear.BtcDecode", str) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgFilterClear) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("filterclear message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFilterClear.BtcEncode", str) - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgFilterClear) Command() string { - return CmdFilterClear -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgFilterClear) MaxPayloadLength(pver uint32) uint32 { - return 0 -} - -// NewMsgFilterClear returns a new bitcoin filterclear message that conforms to the Message -// interface. See MsgFilterClear for details. -func NewMsgFilterClear() *MsgFilterClear { - return &MsgFilterClear{} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgfilterload.go b/vendor/github.com/btcsuite/btcd/wire/msgfilterload.go deleted file mode 100644 index dbda737..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgfilterload.go +++ /dev/null @@ -1,136 +0,0 @@ -// Copyright (c) 2014-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// BloomUpdateType specifies how the filter is updated when a match is found -type BloomUpdateType uint8 - -const ( - // BloomUpdateNone indicates the filter is not adjusted when a match is - // found. - BloomUpdateNone BloomUpdateType = 0 - - // BloomUpdateAll indicates if the filter matches any data element in a - // public key script, the outpoint is serialized and inserted into the - // filter. - BloomUpdateAll BloomUpdateType = 1 - - // BloomUpdateP2PubkeyOnly indicates if the filter matches a data - // element in a public key script and the script is of the standard - // pay-to-pubkey or multisig, the outpoint is serialized and inserted - // into the filter. - BloomUpdateP2PubkeyOnly BloomUpdateType = 2 -) - -const ( - // MaxFilterLoadHashFuncs is the maximum number of hash functions to - // load into the Bloom filter. - MaxFilterLoadHashFuncs = 50 - - // MaxFilterLoadFilterSize is the maximum size in bytes a filter may be. - MaxFilterLoadFilterSize = 36000 -) - -// MsgFilterLoad implements the Message interface and represents a bitcoin -// filterload message which is used to reset a Bloom filter. -// -// This message was not added until protocol version BIP0037Version. -type MsgFilterLoad struct { - Filter []byte - HashFuncs uint32 - Tweak uint32 - Flags BloomUpdateType -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgFilterLoad) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("filterload message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFilterLoad.BtcDecode", str) - } - - var err error - msg.Filter, err = ReadVarBytes(r, pver, MaxFilterLoadFilterSize, - "filterload filter size") - if err != nil { - return err - } - - err = readElements(r, &msg.HashFuncs, &msg.Tweak, &msg.Flags) - if err != nil { - return err - } - - if msg.HashFuncs > MaxFilterLoadHashFuncs { - str := fmt.Sprintf("too many filter hash functions for message "+ - "[count %v, max %v]", msg.HashFuncs, MaxFilterLoadHashFuncs) - return messageError("MsgFilterLoad.BtcDecode", str) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgFilterLoad) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("filterload message invalid for protocol "+ - "version %d", pver) - return messageError("MsgFilterLoad.BtcEncode", str) - } - - size := len(msg.Filter) - if size > MaxFilterLoadFilterSize { - str := fmt.Sprintf("filterload filter size too large for message "+ - "[size %v, max %v]", size, MaxFilterLoadFilterSize) - return messageError("MsgFilterLoad.BtcEncode", str) - } - - if msg.HashFuncs > MaxFilterLoadHashFuncs { - str := fmt.Sprintf("too many filter hash functions for message "+ - "[count %v, max %v]", msg.HashFuncs, MaxFilterLoadHashFuncs) - return messageError("MsgFilterLoad.BtcEncode", str) - } - - err := WriteVarBytes(w, pver, msg.Filter) - if err != nil { - return err - } - - return writeElements(w, msg.HashFuncs, msg.Tweak, msg.Flags) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgFilterLoad) Command() string { - return CmdFilterLoad -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgFilterLoad) MaxPayloadLength(pver uint32) uint32 { - // Num filter bytes (varInt) + filter + 4 bytes hash funcs + - // 4 bytes tweak + 1 byte flags. - return uint32(VarIntSerializeSize(MaxFilterLoadFilterSize)) + - MaxFilterLoadFilterSize + 9 -} - -// NewMsgFilterLoad returns a new bitcoin filterload message that conforms to -// the Message interface. See MsgFilterLoad for details. -func NewMsgFilterLoad(filter []byte, hashFuncs uint32, tweak uint32, flags BloomUpdateType) *MsgFilterLoad { - return &MsgFilterLoad{ - Filter: filter, - HashFuncs: hashFuncs, - Tweak: tweak, - Flags: flags, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetaddr.go b/vendor/github.com/btcsuite/btcd/wire/msggetaddr.go deleted file mode 100644 index 2af8018..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetaddr.go +++ /dev/null @@ -1,47 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "io" -) - -// MsgGetAddr implements the Message interface and represents a bitcoin -// getaddr message. It is used to request a list of known active peers on the -// network from a peer to help identify potential nodes. The list is returned -// via one or more addr messages (MsgAddr). -// -// This message has no payload. -type MsgGetAddr struct{} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetAddr) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetAddr) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetAddr) Command() string { - return CmdGetAddr -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetAddr) MaxPayloadLength(pver uint32) uint32 { - return 0 -} - -// NewMsgGetAddr returns a new bitcoin getaddr message that conforms to the -// Message interface. See MsgGetAddr for details. -func NewMsgGetAddr() *MsgGetAddr { - return &MsgGetAddr{} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetblocks.go b/vendor/github.com/btcsuite/btcd/wire/msggetblocks.go deleted file mode 100644 index caf4400..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetblocks.go +++ /dev/null @@ -1,139 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MaxBlockLocatorsPerMsg is the maximum number of block locator hashes allowed -// per message. -const MaxBlockLocatorsPerMsg = 500 - -// MsgGetBlocks implements the Message interface and represents a bitcoin -// getblocks message. It is used to request a list of blocks starting after the -// last known hash in the slice of block locator hashes. The list is returned -// via an inv message (MsgInv) and is limited by a specific hash to stop at or -// the maximum number of blocks per message, which is currently 500. -// -// Set the HashStop field to the hash at which to stop and use -// AddBlockLocatorHash to build up the list of block locator hashes. -// -// The algorithm for building the block locator hashes should be to add the -// hashes in reverse order until you reach the genesis block. In order to keep -// the list of locator hashes to a reasonable number of entries, first add the -// most recent 10 block hashes, then double the step each loop iteration to -// exponentially decrease the number of hashes the further away from head and -// closer to the genesis block you get. -type MsgGetBlocks struct { - ProtocolVersion uint32 - BlockLocatorHashes []*chainhash.Hash - HashStop chainhash.Hash -} - -// AddBlockLocatorHash adds a new block locator hash to the message. -func (msg *MsgGetBlocks) AddBlockLocatorHash(hash *chainhash.Hash) error { - if len(msg.BlockLocatorHashes)+1 > MaxBlockLocatorsPerMsg { - str := fmt.Sprintf("too many block locator hashes for message [max %v]", - MaxBlockLocatorsPerMsg) - return messageError("MsgGetBlocks.AddBlockLocatorHash", str) - } - - msg.BlockLocatorHashes = append(msg.BlockLocatorHashes, hash) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetBlocks) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - err := readElement(r, &msg.ProtocolVersion) - if err != nil { - return err - } - - // Read num block locator hashes and limit to max. - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - if count > MaxBlockLocatorsPerMsg { - str := fmt.Sprintf("too many block locator hashes for message "+ - "[count %v, max %v]", count, MaxBlockLocatorsPerMsg) - return messageError("MsgGetBlocks.BtcDecode", str) - } - - // Create a contiguous slice of hashes to deserialize into in order to - // reduce the number of allocations. - locatorHashes := make([]chainhash.Hash, count) - msg.BlockLocatorHashes = make([]*chainhash.Hash, 0, count) - for i := uint64(0); i < count; i++ { - hash := &locatorHashes[i] - err := readElement(r, hash) - if err != nil { - return err - } - msg.AddBlockLocatorHash(hash) - } - - return readElement(r, &msg.HashStop) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetBlocks) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - count := len(msg.BlockLocatorHashes) - if count > MaxBlockLocatorsPerMsg { - str := fmt.Sprintf("too many block locator hashes for message "+ - "[count %v, max %v]", count, MaxBlockLocatorsPerMsg) - return messageError("MsgGetBlocks.BtcEncode", str) - } - - err := writeElement(w, msg.ProtocolVersion) - if err != nil { - return err - } - - err = WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, hash := range msg.BlockLocatorHashes { - err = writeElement(w, hash) - if err != nil { - return err - } - } - - return writeElement(w, &msg.HashStop) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetBlocks) Command() string { - return CmdGetBlocks -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetBlocks) MaxPayloadLength(pver uint32) uint32 { - // Protocol version 4 bytes + num hashes (varInt) + max block locator - // hashes + hash stop. - return 4 + MaxVarIntPayload + (MaxBlockLocatorsPerMsg * chainhash.HashSize) + chainhash.HashSize -} - -// NewMsgGetBlocks returns a new bitcoin getblocks message that conforms to the -// Message interface using the passed parameters and defaults for the remaining -// fields. -func NewMsgGetBlocks(hashStop *chainhash.Hash) *MsgGetBlocks { - return &MsgGetBlocks{ - ProtocolVersion: ProtocolVersion, - BlockLocatorHashes: make([]*chainhash.Hash, 0, MaxBlockLocatorsPerMsg), - HashStop: *hashStop, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetcfcheckpt.go b/vendor/github.com/btcsuite/btcd/wire/msggetcfcheckpt.go deleted file mode 100644 index c30a86c..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetcfcheckpt.go +++ /dev/null @@ -1,64 +0,0 @@ -// Copyright (c) 2018 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MsgGetCFCheckpt is a request for filter headers at evenly spaced intervals -// throughout the blockchain history. It allows to set the FilterType field to -// get headers in the chain of basic (0x00) or extended (0x01) headers. -type MsgGetCFCheckpt struct { - FilterType FilterType - StopHash chainhash.Hash -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetCFCheckpt) BtcDecode(r io.Reader, pver uint32, _ MessageEncoding) error { - err := readElement(r, &msg.FilterType) - if err != nil { - return err - } - - return readElement(r, &msg.StopHash) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetCFCheckpt) BtcEncode(w io.Writer, pver uint32, _ MessageEncoding) error { - err := writeElement(w, msg.FilterType) - if err != nil { - return err - } - - return writeElement(w, &msg.StopHash) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetCFCheckpt) Command() string { - return CmdGetCFCheckpt -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetCFCheckpt) MaxPayloadLength(pver uint32) uint32 { - // Filter type + uint32 + block hash - return 1 + chainhash.HashSize -} - -// NewMsgGetCFCheckpt returns a new bitcoin getcfcheckpt message that conforms -// to the Message interface using the passed parameters and defaults for the -// remaining fields. -func NewMsgGetCFCheckpt(filterType FilterType, stopHash *chainhash.Hash) *MsgGetCFCheckpt { - return &MsgGetCFCheckpt{ - FilterType: filterType, - StopHash: *stopHash, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetcfheaders.go b/vendor/github.com/btcsuite/btcd/wire/msggetcfheaders.go deleted file mode 100644 index 03a1caf..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetcfheaders.go +++ /dev/null @@ -1,77 +0,0 @@ -// Copyright (c) 2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MsgGetCFHeaders is a message similar to MsgGetHeaders, but for committed -// filter headers. It allows to set the FilterType field to get headers in the -// chain of basic (0x00) or extended (0x01) headers. -type MsgGetCFHeaders struct { - FilterType FilterType - StartHeight uint32 - StopHash chainhash.Hash -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetCFHeaders) BtcDecode(r io.Reader, pver uint32, _ MessageEncoding) error { - err := readElement(r, &msg.FilterType) - if err != nil { - return err - } - - err = readElement(r, &msg.StartHeight) - if err != nil { - return err - } - - return readElement(r, &msg.StopHash) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetCFHeaders) BtcEncode(w io.Writer, pver uint32, _ MessageEncoding) error { - err := writeElement(w, msg.FilterType) - if err != nil { - return err - } - - err = writeElement(w, &msg.StartHeight) - if err != nil { - return err - } - - return writeElement(w, &msg.StopHash) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetCFHeaders) Command() string { - return CmdGetCFHeaders -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetCFHeaders) MaxPayloadLength(pver uint32) uint32 { - // Filter type + uint32 + block hash - return 1 + 4 + chainhash.HashSize -} - -// NewMsgGetCFHeaders returns a new bitcoin getcfheader message that conforms to -// the Message interface using the passed parameters and defaults for the -// remaining fields. -func NewMsgGetCFHeaders(filterType FilterType, startHeight uint32, - stopHash *chainhash.Hash) *MsgGetCFHeaders { - return &MsgGetCFHeaders{ - FilterType: filterType, - StartHeight: startHeight, - StopHash: *stopHash, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetcfilters.go b/vendor/github.com/btcsuite/btcd/wire/msggetcfilters.go deleted file mode 100644 index 8002413..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetcfilters.go +++ /dev/null @@ -1,81 +0,0 @@ -// Copyright (c) 2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MaxGetCFiltersReqRange the maximum number of filters that may be requested in -// a getcfheaders message. -const MaxGetCFiltersReqRange = 1000 - -// MsgGetCFilters implements the Message interface and represents a bitcoin -// getcfilters message. It is used to request committed filters for a range of -// blocks. -type MsgGetCFilters struct { - FilterType FilterType - StartHeight uint32 - StopHash chainhash.Hash -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetCFilters) BtcDecode(r io.Reader, pver uint32, _ MessageEncoding) error { - err := readElement(r, &msg.FilterType) - if err != nil { - return err - } - - err = readElement(r, &msg.StartHeight) - if err != nil { - return err - } - - return readElement(r, &msg.StopHash) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetCFilters) BtcEncode(w io.Writer, pver uint32, _ MessageEncoding) error { - err := writeElement(w, msg.FilterType) - if err != nil { - return err - } - - err = writeElement(w, &msg.StartHeight) - if err != nil { - return err - } - - return writeElement(w, &msg.StopHash) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetCFilters) Command() string { - return CmdGetCFilters -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetCFilters) MaxPayloadLength(pver uint32) uint32 { - // Filter type + uint32 + block hash - return 1 + 4 + chainhash.HashSize -} - -// NewMsgGetCFilters returns a new bitcoin getcfilters message that conforms to -// the Message interface using the passed parameters and defaults for the -// remaining fields. -func NewMsgGetCFilters(filterType FilterType, startHeight uint32, - stopHash *chainhash.Hash) *MsgGetCFilters { - return &MsgGetCFilters{ - FilterType: filterType, - StartHeight: startHeight, - StopHash: *stopHash, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetdata.go b/vendor/github.com/btcsuite/btcd/wire/msggetdata.go deleted file mode 100644 index 5837fac..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetdata.go +++ /dev/null @@ -1,133 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgGetData implements the Message interface and represents a bitcoin -// getdata message. It is used to request data such as blocks and transactions -// from another peer. It should be used in response to the inv (MsgInv) message -// to request the actual data referenced by each inventory vector the receiving -// peer doesn't already have. Each message is limited to a maximum number of -// inventory vectors, which is currently 50,000. As a result, multiple messages -// must be used to request larger amounts of data. -// -// Use the AddInvVect function to build up the list of inventory vectors when -// sending a getdata message to another peer. -type MsgGetData struct { - InvList []*InvVect -} - -// AddInvVect adds an inventory vector to the message. -func (msg *MsgGetData) AddInvVect(iv *InvVect) error { - if len(msg.InvList)+1 > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [max %v]", - MaxInvPerMsg) - return messageError("MsgGetData.AddInvVect", str) - } - - msg.InvList = append(msg.InvList, iv) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetData) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Limit to max inventory vectors per message. - if count > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [%v]", count) - return messageError("MsgGetData.BtcDecode", str) - } - - // Create a contiguous slice of inventory vectors to deserialize into in - // order to reduce the number of allocations. - invList := make([]InvVect, count) - msg.InvList = make([]*InvVect, 0, count) - for i := uint64(0); i < count; i++ { - iv := &invList[i] - err := readInvVect(r, pver, iv) - if err != nil { - return err - } - msg.AddInvVect(iv) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetData) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // Limit to max inventory vectors per message. - count := len(msg.InvList) - if count > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [%v]", count) - return messageError("MsgGetData.BtcEncode", str) - } - - err := WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, iv := range msg.InvList { - err := writeInvVect(w, pver, iv) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetData) Command() string { - return CmdGetData -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetData) MaxPayloadLength(pver uint32) uint32 { - // Num inventory vectors (varInt) + max allowed inventory vectors. - return MaxVarIntPayload + (MaxInvPerMsg * maxInvVectPayload) -} - -// NewMsgGetData returns a new bitcoin getdata message that conforms to the -// Message interface. See MsgGetData for details. -func NewMsgGetData() *MsgGetData { - return &MsgGetData{ - InvList: make([]*InvVect, 0, defaultInvListAlloc), - } -} - -// NewMsgGetDataSizeHint returns a new bitcoin getdata message that conforms to -// the Message interface. See MsgGetData for details. This function differs -// from NewMsgGetData in that it allows a default allocation size for the -// backing array which houses the inventory vector list. This allows callers -// who know in advance how large the inventory list will grow to avoid the -// overhead of growing the internal backing array several times when appending -// large amounts of inventory vectors with AddInvVect. Note that the specified -// hint is just that - a hint that is used for the default allocation size. -// Adding more (or less) inventory vectors will still work properly. The size -// hint is limited to MaxInvPerMsg. -func NewMsgGetDataSizeHint(sizeHint uint) *MsgGetData { - // Limit the specified hint to the maximum allow per message. - if sizeHint > MaxInvPerMsg { - sizeHint = MaxInvPerMsg - } - - return &MsgGetData{ - InvList: make([]*InvVect, 0, sizeHint), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msggetheaders.go b/vendor/github.com/btcsuite/btcd/wire/msggetheaders.go deleted file mode 100644 index 0bbe42c..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msggetheaders.go +++ /dev/null @@ -1,136 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// MsgGetHeaders implements the Message interface and represents a bitcoin -// getheaders message. It is used to request a list of block headers for -// blocks starting after the last known hash in the slice of block locator -// hashes. The list is returned via a headers message (MsgHeaders) and is -// limited by a specific hash to stop at or the maximum number of block headers -// per message, which is currently 2000. -// -// Set the HashStop field to the hash at which to stop and use -// AddBlockLocatorHash to build up the list of block locator hashes. -// -// The algorithm for building the block locator hashes should be to add the -// hashes in reverse order until you reach the genesis block. In order to keep -// the list of locator hashes to a resonable number of entries, first add the -// most recent 10 block hashes, then double the step each loop iteration to -// exponentially decrease the number of hashes the further away from head and -// closer to the genesis block you get. -type MsgGetHeaders struct { - ProtocolVersion uint32 - BlockLocatorHashes []*chainhash.Hash - HashStop chainhash.Hash -} - -// AddBlockLocatorHash adds a new block locator hash to the message. -func (msg *MsgGetHeaders) AddBlockLocatorHash(hash *chainhash.Hash) error { - if len(msg.BlockLocatorHashes)+1 > MaxBlockLocatorsPerMsg { - str := fmt.Sprintf("too many block locator hashes for message [max %v]", - MaxBlockLocatorsPerMsg) - return messageError("MsgGetHeaders.AddBlockLocatorHash", str) - } - - msg.BlockLocatorHashes = append(msg.BlockLocatorHashes, hash) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgGetHeaders) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - err := readElement(r, &msg.ProtocolVersion) - if err != nil { - return err - } - - // Read num block locator hashes and limit to max. - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - if count > MaxBlockLocatorsPerMsg { - str := fmt.Sprintf("too many block locator hashes for message "+ - "[count %v, max %v]", count, MaxBlockLocatorsPerMsg) - return messageError("MsgGetHeaders.BtcDecode", str) - } - - // Create a contiguous slice of hashes to deserialize into in order to - // reduce the number of allocations. - locatorHashes := make([]chainhash.Hash, count) - msg.BlockLocatorHashes = make([]*chainhash.Hash, 0, count) - for i := uint64(0); i < count; i++ { - hash := &locatorHashes[i] - err := readElement(r, hash) - if err != nil { - return err - } - msg.AddBlockLocatorHash(hash) - } - - return readElement(r, &msg.HashStop) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgGetHeaders) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // Limit to max block locator hashes per message. - count := len(msg.BlockLocatorHashes) - if count > MaxBlockLocatorsPerMsg { - str := fmt.Sprintf("too many block locator hashes for message "+ - "[count %v, max %v]", count, MaxBlockLocatorsPerMsg) - return messageError("MsgGetHeaders.BtcEncode", str) - } - - err := writeElement(w, msg.ProtocolVersion) - if err != nil { - return err - } - - err = WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, hash := range msg.BlockLocatorHashes { - err := writeElement(w, hash) - if err != nil { - return err - } - } - - return writeElement(w, &msg.HashStop) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgGetHeaders) Command() string { - return CmdGetHeaders -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgGetHeaders) MaxPayloadLength(pver uint32) uint32 { - // Version 4 bytes + num block locator hashes (varInt) + max allowed block - // locators + hash stop. - return 4 + MaxVarIntPayload + (MaxBlockLocatorsPerMsg * - chainhash.HashSize) + chainhash.HashSize -} - -// NewMsgGetHeaders returns a new bitcoin getheaders message that conforms to -// the Message interface. See MsgGetHeaders for details. -func NewMsgGetHeaders() *MsgGetHeaders { - return &MsgGetHeaders{ - BlockLocatorHashes: make([]*chainhash.Hash, 0, - MaxBlockLocatorsPerMsg), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgheaders.go b/vendor/github.com/btcsuite/btcd/wire/msgheaders.go deleted file mode 100644 index 7d18d93..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgheaders.go +++ /dev/null @@ -1,136 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MaxBlockHeadersPerMsg is the maximum number of block headers that can be in -// a single bitcoin headers message. -const MaxBlockHeadersPerMsg = 2000 - -// MsgHeaders implements the Message interface and represents a bitcoin headers -// message. It is used to deliver block header information in response -// to a getheaders message (MsgGetHeaders). The maximum number of block headers -// per message is currently 2000. See MsgGetHeaders for details on requesting -// the headers. -type MsgHeaders struct { - Headers []*BlockHeader -} - -// AddBlockHeader adds a new block header to the message. -func (msg *MsgHeaders) AddBlockHeader(bh *BlockHeader) error { - if len(msg.Headers)+1 > MaxBlockHeadersPerMsg { - str := fmt.Sprintf("too many block headers in message [max %v]", - MaxBlockHeadersPerMsg) - return messageError("MsgHeaders.AddBlockHeader", str) - } - - msg.Headers = append(msg.Headers, bh) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgHeaders) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Limit to max block headers per message. - if count > MaxBlockHeadersPerMsg { - str := fmt.Sprintf("too many block headers for message "+ - "[count %v, max %v]", count, MaxBlockHeadersPerMsg) - return messageError("MsgHeaders.BtcDecode", str) - } - - // Create a contiguous slice of headers to deserialize into in order to - // reduce the number of allocations. - headers := make([]BlockHeader, count) - msg.Headers = make([]*BlockHeader, 0, count) - for i := uint64(0); i < count; i++ { - bh := &headers[i] - err := readBlockHeader(r, pver, bh) - if err != nil { - return err - } - - txCount, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Ensure the transaction count is zero for headers. - if txCount > 0 { - str := fmt.Sprintf("block headers may not contain "+ - "transactions [count %v]", txCount) - return messageError("MsgHeaders.BtcDecode", str) - } - msg.AddBlockHeader(bh) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgHeaders) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // Limit to max block headers per message. - count := len(msg.Headers) - if count > MaxBlockHeadersPerMsg { - str := fmt.Sprintf("too many block headers for message "+ - "[count %v, max %v]", count, MaxBlockHeadersPerMsg) - return messageError("MsgHeaders.BtcEncode", str) - } - - err := WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, bh := range msg.Headers { - err := writeBlockHeader(w, pver, bh) - if err != nil { - return err - } - - // The wire protocol encoding always includes a 0 for the number - // of transactions on header messages. This is really just an - // artifact of the way the original implementation serializes - // block headers, but it is required. - err = WriteVarInt(w, pver, 0) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgHeaders) Command() string { - return CmdHeaders -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgHeaders) MaxPayloadLength(pver uint32) uint32 { - // Num headers (varInt) + max allowed headers (header length + 1 byte - // for the number of transactions which is always 0). - return MaxVarIntPayload + ((MaxBlockHeaderPayload + 1) * - MaxBlockHeadersPerMsg) -} - -// NewMsgHeaders returns a new bitcoin headers message that conforms to the -// Message interface. See MsgHeaders for details. -func NewMsgHeaders() *MsgHeaders { - return &MsgHeaders{ - Headers: make([]*BlockHeader, 0, MaxBlockHeadersPerMsg), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msginv.go b/vendor/github.com/btcsuite/btcd/wire/msginv.go deleted file mode 100644 index 5377b17..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msginv.go +++ /dev/null @@ -1,141 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// defaultInvListAlloc is the default size used for the backing array for an -// inventory list. The array will dynamically grow as needed, but this -// figure is intended to provide enough space for the max number of inventory -// vectors in a *typical* inventory message without needing to grow the backing -// array multiple times. Technically, the list can grow to MaxInvPerMsg, but -// rather than using that large figure, this figure more accurately reflects the -// typical case. -const defaultInvListAlloc = 1000 - -// MsgInv implements the Message interface and represents a bitcoin inv message. -// It is used to advertise a peer's known data such as blocks and transactions -// through inventory vectors. It may be sent unsolicited to inform other peers -// of the data or in response to a getblocks message (MsgGetBlocks). Each -// message is limited to a maximum number of inventory vectors, which is -// currently 50,000. -// -// Use the AddInvVect function to build up the list of inventory vectors when -// sending an inv message to another peer. -type MsgInv struct { - InvList []*InvVect -} - -// AddInvVect adds an inventory vector to the message. -func (msg *MsgInv) AddInvVect(iv *InvVect) error { - if len(msg.InvList)+1 > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [max %v]", - MaxInvPerMsg) - return messageError("MsgInv.AddInvVect", str) - } - - msg.InvList = append(msg.InvList, iv) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgInv) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Limit to max inventory vectors per message. - if count > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [%v]", count) - return messageError("MsgInv.BtcDecode", str) - } - - // Create a contiguous slice of inventory vectors to deserialize into in - // order to reduce the number of allocations. - invList := make([]InvVect, count) - msg.InvList = make([]*InvVect, 0, count) - for i := uint64(0); i < count; i++ { - iv := &invList[i] - err := readInvVect(r, pver, iv) - if err != nil { - return err - } - msg.AddInvVect(iv) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgInv) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // Limit to max inventory vectors per message. - count := len(msg.InvList) - if count > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [%v]", count) - return messageError("MsgInv.BtcEncode", str) - } - - err := WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, iv := range msg.InvList { - err := writeInvVect(w, pver, iv) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgInv) Command() string { - return CmdInv -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgInv) MaxPayloadLength(pver uint32) uint32 { - // Num inventory vectors (varInt) + max allowed inventory vectors. - return MaxVarIntPayload + (MaxInvPerMsg * maxInvVectPayload) -} - -// NewMsgInv returns a new bitcoin inv message that conforms to the Message -// interface. See MsgInv for details. -func NewMsgInv() *MsgInv { - return &MsgInv{ - InvList: make([]*InvVect, 0, defaultInvListAlloc), - } -} - -// NewMsgInvSizeHint returns a new bitcoin inv message that conforms to the -// Message interface. See MsgInv for details. This function differs from -// NewMsgInv in that it allows a default allocation size for the backing array -// which houses the inventory vector list. This allows callers who know in -// advance how large the inventory list will grow to avoid the overhead of -// growing the internal backing array several times when appending large amounts -// of inventory vectors with AddInvVect. Note that the specified hint is just -// that - a hint that is used for the default allocation size. Adding more -// (or less) inventory vectors will still work properly. The size hint is -// limited to MaxInvPerMsg. -func NewMsgInvSizeHint(sizeHint uint) *MsgInv { - // Limit the specified hint to the maximum allow per message. - if sizeHint > MaxInvPerMsg { - sizeHint = MaxInvPerMsg - } - - return &MsgInv{ - InvList: make([]*InvVect, 0, sizeHint), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgmempool.go b/vendor/github.com/btcsuite/btcd/wire/msgmempool.go deleted file mode 100644 index 25760c5..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgmempool.go +++ /dev/null @@ -1,60 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgMemPool implements the Message interface and represents a bitcoin mempool -// message. It is used to request a list of transactions still in the active -// memory pool of a relay. -// -// This message has no payload and was not added until protocol versions -// starting with BIP0035Version. -type MsgMemPool struct{} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgMemPool) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < BIP0035Version { - str := fmt.Sprintf("mempool message invalid for protocol "+ - "version %d", pver) - return messageError("MsgMemPool.BtcDecode", str) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgMemPool) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < BIP0035Version { - str := fmt.Sprintf("mempool message invalid for protocol "+ - "version %d", pver) - return messageError("MsgMemPool.BtcEncode", str) - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgMemPool) Command() string { - return CmdMemPool -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgMemPool) MaxPayloadLength(pver uint32) uint32 { - return 0 -} - -// NewMsgMemPool returns a new bitcoin pong message that conforms to the Message -// interface. See MsgPong for details. -func NewMsgMemPool() *MsgMemPool { - return &MsgMemPool{} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgmerkleblock.go b/vendor/github.com/btcsuite/btcd/wire/msgmerkleblock.go deleted file mode 100644 index d2ee472..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgmerkleblock.go +++ /dev/null @@ -1,159 +0,0 @@ -// Copyright (c) 2014-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// maxFlagsPerMerkleBlock is the maximum number of flag bytes that could -// possibly fit into a merkle block. Since each transaction is represented by -// a single bit, this is the max number of transactions per block divided by -// 8 bits per byte. Then an extra one to cover partials. -const maxFlagsPerMerkleBlock = maxTxPerBlock / 8 - -// MsgMerkleBlock implements the Message interface and represents a bitcoin -// merkleblock message which is used to reset a Bloom filter. -// -// This message was not added until protocol version BIP0037Version. -type MsgMerkleBlock struct { - Header BlockHeader - Transactions uint32 - Hashes []*chainhash.Hash - Flags []byte -} - -// AddTxHash adds a new transaction hash to the message. -func (msg *MsgMerkleBlock) AddTxHash(hash *chainhash.Hash) error { - if len(msg.Hashes)+1 > maxTxPerBlock { - str := fmt.Sprintf("too many tx hashes for message [max %v]", - maxTxPerBlock) - return messageError("MsgMerkleBlock.AddTxHash", str) - } - - msg.Hashes = append(msg.Hashes, hash) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgMerkleBlock) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("merkleblock message invalid for protocol "+ - "version %d", pver) - return messageError("MsgMerkleBlock.BtcDecode", str) - } - - err := readBlockHeader(r, pver, &msg.Header) - if err != nil { - return err - } - - err = readElement(r, &msg.Transactions) - if err != nil { - return err - } - - // Read num block locator hashes and limit to max. - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - if count > maxTxPerBlock { - str := fmt.Sprintf("too many transaction hashes for message "+ - "[count %v, max %v]", count, maxTxPerBlock) - return messageError("MsgMerkleBlock.BtcDecode", str) - } - - // Create a contiguous slice of hashes to deserialize into in order to - // reduce the number of allocations. - hashes := make([]chainhash.Hash, count) - msg.Hashes = make([]*chainhash.Hash, 0, count) - for i := uint64(0); i < count; i++ { - hash := &hashes[i] - err := readElement(r, hash) - if err != nil { - return err - } - msg.AddTxHash(hash) - } - - msg.Flags, err = ReadVarBytes(r, pver, maxFlagsPerMerkleBlock, - "merkle block flags size") - return err -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgMerkleBlock) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < BIP0037Version { - str := fmt.Sprintf("merkleblock message invalid for protocol "+ - "version %d", pver) - return messageError("MsgMerkleBlock.BtcEncode", str) - } - - // Read num transaction hashes and limit to max. - numHashes := len(msg.Hashes) - if numHashes > maxTxPerBlock { - str := fmt.Sprintf("too many transaction hashes for message "+ - "[count %v, max %v]", numHashes, maxTxPerBlock) - return messageError("MsgMerkleBlock.BtcDecode", str) - } - numFlagBytes := len(msg.Flags) - if numFlagBytes > maxFlagsPerMerkleBlock { - str := fmt.Sprintf("too many flag bytes for message [count %v, "+ - "max %v]", numFlagBytes, maxFlagsPerMerkleBlock) - return messageError("MsgMerkleBlock.BtcDecode", str) - } - - err := writeBlockHeader(w, pver, &msg.Header) - if err != nil { - return err - } - - err = writeElement(w, msg.Transactions) - if err != nil { - return err - } - - err = WriteVarInt(w, pver, uint64(numHashes)) - if err != nil { - return err - } - for _, hash := range msg.Hashes { - err = writeElement(w, hash) - if err != nil { - return err - } - } - - return WriteVarBytes(w, pver, msg.Flags) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgMerkleBlock) Command() string { - return CmdMerkleBlock -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgMerkleBlock) MaxPayloadLength(pver uint32) uint32 { - return MaxBlockPayload -} - -// NewMsgMerkleBlock returns a new bitcoin merkleblock message that conforms to -// the Message interface. See MsgMerkleBlock for details. -func NewMsgMerkleBlock(bh *BlockHeader) *MsgMerkleBlock { - return &MsgMerkleBlock{ - Header: *bh, - Transactions: 0, - Hashes: make([]*chainhash.Hash, 0), - Flags: make([]byte, 0), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgnotfound.go b/vendor/github.com/btcsuite/btcd/wire/msgnotfound.go deleted file mode 100644 index e867681..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgnotfound.go +++ /dev/null @@ -1,110 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgNotFound defines a bitcoin notfound message which is sent in response to -// a getdata message if any of the requested data in not available on the peer. -// Each message is limited to a maximum number of inventory vectors, which is -// currently 50,000. -// -// Use the AddInvVect function to build up the list of inventory vectors when -// sending a notfound message to another peer. -type MsgNotFound struct { - InvList []*InvVect -} - -// AddInvVect adds an inventory vector to the message. -func (msg *MsgNotFound) AddInvVect(iv *InvVect) error { - if len(msg.InvList)+1 > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [max %v]", - MaxInvPerMsg) - return messageError("MsgNotFound.AddInvVect", str) - } - - msg.InvList = append(msg.InvList, iv) - return nil -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgNotFound) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // Limit to max inventory vectors per message. - if count > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [%v]", count) - return messageError("MsgNotFound.BtcDecode", str) - } - - // Create a contiguous slice of inventory vectors to deserialize into in - // order to reduce the number of allocations. - invList := make([]InvVect, count) - msg.InvList = make([]*InvVect, 0, count) - for i := uint64(0); i < count; i++ { - iv := &invList[i] - err := readInvVect(r, pver, iv) - if err != nil { - return err - } - msg.AddInvVect(iv) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgNotFound) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // Limit to max inventory vectors per message. - count := len(msg.InvList) - if count > MaxInvPerMsg { - str := fmt.Sprintf("too many invvect in message [%v]", count) - return messageError("MsgNotFound.BtcEncode", str) - } - - err := WriteVarInt(w, pver, uint64(count)) - if err != nil { - return err - } - - for _, iv := range msg.InvList { - err := writeInvVect(w, pver, iv) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgNotFound) Command() string { - return CmdNotFound -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgNotFound) MaxPayloadLength(pver uint32) uint32 { - // Max var int 9 bytes + max InvVects at 36 bytes each. - // Num inventory vectors (varInt) + max allowed inventory vectors. - return MaxVarIntPayload + (MaxInvPerMsg * maxInvVectPayload) -} - -// NewMsgNotFound returns a new bitcoin notfound message that conforms to the -// Message interface. See MsgNotFound for details. -func NewMsgNotFound() *MsgNotFound { - return &MsgNotFound{ - InvList: make([]*InvVect, 0, defaultInvListAlloc), - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgping.go b/vendor/github.com/btcsuite/btcd/wire/msgping.go deleted file mode 100644 index b2f346e..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgping.go +++ /dev/null @@ -1,87 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "io" -) - -// MsgPing implements the Message interface and represents a bitcoin ping -// message. -// -// For versions BIP0031Version and earlier, it is used primarily to confirm -// that a connection is still valid. A transmission error is typically -// interpreted as a closed connection and that the peer should be removed. -// For versions AFTER BIP0031Version it contains an identifier which can be -// returned in the pong message to determine network timing. -// -// The payload for this message just consists of a nonce used for identifying -// it later. -type MsgPing struct { - // Unique value associated with message that is used to identify - // specific ping message. - Nonce uint64 -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgPing) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - // There was no nonce for BIP0031Version and earlier. - // NOTE: > is not a mistake here. The BIP0031 was defined as AFTER - // the version unlike most others. - if pver > BIP0031Version { - err := readElement(r, &msg.Nonce) - if err != nil { - return err - } - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgPing) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // There was no nonce for BIP0031Version and earlier. - // NOTE: > is not a mistake here. The BIP0031 was defined as AFTER - // the version unlike most others. - if pver > BIP0031Version { - err := writeElement(w, msg.Nonce) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgPing) Command() string { - return CmdPing -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgPing) MaxPayloadLength(pver uint32) uint32 { - plen := uint32(0) - // There was no nonce for BIP0031Version and earlier. - // NOTE: > is not a mistake here. The BIP0031 was defined as AFTER - // the version unlike most others. - if pver > BIP0031Version { - // Nonce 8 bytes. - plen += 8 - } - - return plen -} - -// NewMsgPing returns a new bitcoin ping message that conforms to the Message -// interface. See MsgPing for details. -func NewMsgPing(nonce uint64) *MsgPing { - return &MsgPing{ - Nonce: nonce, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgpong.go b/vendor/github.com/btcsuite/btcd/wire/msgpong.go deleted file mode 100644 index eec80d8..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgpong.go +++ /dev/null @@ -1,78 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgPong implements the Message interface and represents a bitcoin pong -// message which is used primarily to confirm that a connection is still valid -// in response to a bitcoin ping message (MsgPing). -// -// This message was not added until protocol versions AFTER BIP0031Version. -type MsgPong struct { - // Unique value associated with message that is used to identify - // specific ping message. - Nonce uint64 -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgPong) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - // NOTE: <= is not a mistake here. The BIP0031 was defined as AFTER - // the version unlike most others. - if pver <= BIP0031Version { - str := fmt.Sprintf("pong message invalid for protocol "+ - "version %d", pver) - return messageError("MsgPong.BtcDecode", str) - } - - return readElement(r, &msg.Nonce) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgPong) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - // NOTE: <= is not a mistake here. The BIP0031 was defined as AFTER - // the version unlike most others. - if pver <= BIP0031Version { - str := fmt.Sprintf("pong message invalid for protocol "+ - "version %d", pver) - return messageError("MsgPong.BtcEncode", str) - } - - return writeElement(w, msg.Nonce) -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgPong) Command() string { - return CmdPong -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgPong) MaxPayloadLength(pver uint32) uint32 { - plen := uint32(0) - // The pong message did not exist for BIP0031Version and earlier. - // NOTE: > is not a mistake here. The BIP0031 was defined as AFTER - // the version unlike most others. - if pver > BIP0031Version { - // Nonce 8 bytes. - plen += 8 - } - - return plen -} - -// NewMsgPong returns a new bitcoin pong message that conforms to the Message -// interface. See MsgPong for details. -func NewMsgPong(nonce uint64) *MsgPong { - return &MsgPong{ - Nonce: nonce, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgreject.go b/vendor/github.com/btcsuite/btcd/wire/msgreject.go deleted file mode 100644 index a00eeff..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgreject.go +++ /dev/null @@ -1,186 +0,0 @@ -// Copyright (c) 2014-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -// RejectCode represents a numeric value by which a remote peer indicates -// why a message was rejected. -type RejectCode uint8 - -// These constants define the various supported reject codes. -const ( - RejectMalformed RejectCode = 0x01 - RejectInvalid RejectCode = 0x10 - RejectObsolete RejectCode = 0x11 - RejectDuplicate RejectCode = 0x12 - RejectNonstandard RejectCode = 0x40 - RejectDust RejectCode = 0x41 - RejectInsufficientFee RejectCode = 0x42 - RejectCheckpoint RejectCode = 0x43 -) - -// Map of reject codes back strings for pretty printing. -var rejectCodeStrings = map[RejectCode]string{ - RejectMalformed: "REJECT_MALFORMED", - RejectInvalid: "REJECT_INVALID", - RejectObsolete: "REJECT_OBSOLETE", - RejectDuplicate: "REJECT_DUPLICATE", - RejectNonstandard: "REJECT_NONSTANDARD", - RejectDust: "REJECT_DUST", - RejectInsufficientFee: "REJECT_INSUFFICIENTFEE", - RejectCheckpoint: "REJECT_CHECKPOINT", -} - -// String returns the RejectCode in human-readable form. -func (code RejectCode) String() string { - if s, ok := rejectCodeStrings[code]; ok { - return s - } - - return fmt.Sprintf("Unknown RejectCode (%d)", uint8(code)) -} - -// MsgReject implements the Message interface and represents a bitcoin reject -// message. -// -// This message was not added until protocol version RejectVersion. -type MsgReject struct { - // Cmd is the command for the message which was rejected such as - // as CmdBlock or CmdTx. This can be obtained from the Command function - // of a Message. - Cmd string - - // RejectCode is a code indicating why the command was rejected. It - // is encoded as a uint8 on the wire. - Code RejectCode - - // Reason is a human-readable string with specific details (over and - // above the reject code) about why the command was rejected. - Reason string - - // Hash identifies a specific block or transaction that was rejected - // and therefore only applies the MsgBlock and MsgTx messages. - Hash chainhash.Hash -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgReject) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < RejectVersion { - str := fmt.Sprintf("reject message invalid for protocol "+ - "version %d", pver) - return messageError("MsgReject.BtcDecode", str) - } - - // Command that was rejected. - cmd, err := ReadVarString(r, pver) - if err != nil { - return err - } - msg.Cmd = cmd - - // Code indicating why the command was rejected. - err = readElement(r, &msg.Code) - if err != nil { - return err - } - - // Human readable string with specific details (over and above the - // reject code above) about why the command was rejected. - reason, err := ReadVarString(r, pver) - if err != nil { - return err - } - msg.Reason = reason - - // CmdBlock and CmdTx messages have an additional hash field that - // identifies the specific block or transaction. - if msg.Cmd == CmdBlock || msg.Cmd == CmdTx { - err := readElement(r, &msg.Hash) - if err != nil { - return err - } - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgReject) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < RejectVersion { - str := fmt.Sprintf("reject message invalid for protocol "+ - "version %d", pver) - return messageError("MsgReject.BtcEncode", str) - } - - // Command that was rejected. - err := WriteVarString(w, pver, msg.Cmd) - if err != nil { - return err - } - - // Code indicating why the command was rejected. - err = writeElement(w, msg.Code) - if err != nil { - return err - } - - // Human readable string with specific details (over and above the - // reject code above) about why the command was rejected. - err = WriteVarString(w, pver, msg.Reason) - if err != nil { - return err - } - - // CmdBlock and CmdTx messages have an additional hash field that - // identifies the specific block or transaction. - if msg.Cmd == CmdBlock || msg.Cmd == CmdTx { - err := writeElement(w, &msg.Hash) - if err != nil { - return err - } - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgReject) Command() string { - return CmdReject -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgReject) MaxPayloadLength(pver uint32) uint32 { - plen := uint32(0) - // The reject message did not exist before protocol version - // RejectVersion. - if pver >= RejectVersion { - // Unfortunately the bitcoin protocol does not enforce a sane - // limit on the length of the reason, so the max payload is the - // overall maximum message payload. - plen = MaxMessagePayload - } - - return plen -} - -// NewMsgReject returns a new bitcoin reject message that conforms to the -// Message interface. See MsgReject for details. -func NewMsgReject(command string, code RejectCode, reason string) *MsgReject { - return &MsgReject{ - Cmd: command, - Code: code, - Reason: reason, - } -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgsendaddrv2.go b/vendor/github.com/btcsuite/btcd/wire/msgsendaddrv2.go deleted file mode 100644 index d6d19ef..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgsendaddrv2.go +++ /dev/null @@ -1,42 +0,0 @@ -package wire - -import ( - "io" -) - -// MsgSendAddrV2 defines a bitcoin sendaddrv2 message which is used for a peer -// to signal support for receiving ADDRV2 messages (BIP155). It implements the -// Message interface. -// -// This message has no payload. -type MsgSendAddrV2 struct{} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgSendAddrV2) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgSendAddrV2) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgSendAddrV2) Command() string { - return CmdSendAddrV2 -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgSendAddrV2) MaxPayloadLength(pver uint32) uint32 { - return 0 -} - -// NewMsgSendAddrV2 returns a new bitcoin sendaddrv2 message that conforms to the -// Message interface. -func NewMsgSendAddrV2() *MsgSendAddrV2 { - return &MsgSendAddrV2{} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgsendheaders.go b/vendor/github.com/btcsuite/btcd/wire/msgsendheaders.go deleted file mode 100644 index 1950535..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgsendheaders.go +++ /dev/null @@ -1,60 +0,0 @@ -// Copyright (c) 2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "io" -) - -// MsgSendHeaders implements the Message interface and represents a bitcoin -// sendheaders message. It is used to request the peer send block headers -// rather than inventory vectors. -// -// This message has no payload and was not added until protocol versions -// starting with SendHeadersVersion. -type MsgSendHeaders struct{} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgSendHeaders) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - if pver < SendHeadersVersion { - str := fmt.Sprintf("sendheaders message invalid for protocol "+ - "version %d", pver) - return messageError("MsgSendHeaders.BtcDecode", str) - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgSendHeaders) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - if pver < SendHeadersVersion { - str := fmt.Sprintf("sendheaders message invalid for protocol "+ - "version %d", pver) - return messageError("MsgSendHeaders.BtcEncode", str) - } - - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgSendHeaders) Command() string { - return CmdSendHeaders -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgSendHeaders) MaxPayloadLength(pver uint32) uint32 { - return 0 -} - -// NewMsgSendHeaders returns a new bitcoin sendheaders message that conforms to -// the Message interface. See MsgSendHeaders for details. -func NewMsgSendHeaders() *MsgSendHeaders { - return &MsgSendHeaders{} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgtx.go b/vendor/github.com/btcsuite/btcd/wire/msgtx.go deleted file mode 100644 index 1e2f69f..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgtx.go +++ /dev/null @@ -1,1049 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "bytes" - "fmt" - "io" - "strconv" - - "github.com/btcsuite/btcd/chaincfg/chainhash" -) - -const ( - // TxVersion is the current latest supported transaction version. - TxVersion = 1 - - // MaxTxInSequenceNum is the maximum sequence number the sequence field - // of a transaction input can be. - MaxTxInSequenceNum uint32 = 0xffffffff - - // MaxPrevOutIndex is the maximum index the index field of a previous - // outpoint can be. - MaxPrevOutIndex uint32 = 0xffffffff - - // SequenceLockTimeDisabled is a flag that if set on a transaction - // input's sequence number, the sequence number will not be interpreted - // as a relative locktime. - SequenceLockTimeDisabled = 1 << 31 - - // SequenceLockTimeIsSeconds is a flag that if set on a transaction - // input's sequence number, the relative locktime has units of 512 - // seconds. - SequenceLockTimeIsSeconds = 1 << 22 - - // SequenceLockTimeMask is a mask that extracts the relative locktime - // when masked against the transaction input sequence number. - SequenceLockTimeMask = 0x0000ffff - - // SequenceLockTimeGranularity is the defined time based granularity - // for seconds-based relative time locks. When converting from seconds - // to a sequence number, the value is right shifted by this amount, - // therefore the granularity of relative time locks in 512 or 2^9 - // seconds. Enforced relative lock times are multiples of 512 seconds. - SequenceLockTimeGranularity = 9 - - // defaultTxInOutAlloc is the default size used for the backing array for - // transaction inputs and outputs. The array will dynamically grow as needed, - // but this figure is intended to provide enough space for the number of - // inputs and outputs in a typical transaction without needing to grow the - // backing array multiple times. - defaultTxInOutAlloc = 15 - - // minTxInPayload is the minimum payload size for a transaction input. - // PreviousOutPoint.Hash + PreviousOutPoint.Index 4 bytes + Varint for - // SignatureScript length 1 byte + Sequence 4 bytes. - minTxInPayload = 9 + chainhash.HashSize - - // maxTxInPerMessage is the maximum number of transactions inputs that - // a transaction which fits into a message could possibly have. - maxTxInPerMessage = (MaxMessagePayload / minTxInPayload) + 1 - - // MinTxOutPayload is the minimum payload size for a transaction output. - // Value 8 bytes + Varint for PkScript length 1 byte. - MinTxOutPayload = 9 - - // maxTxOutPerMessage is the maximum number of transactions outputs that - // a transaction which fits into a message could possibly have. - maxTxOutPerMessage = (MaxMessagePayload / MinTxOutPayload) + 1 - - // minTxPayload is the minimum payload size for a transaction. Note - // that any realistically usable transaction must have at least one - // input or output, but that is a rule enforced at a higher layer, so - // it is intentionally not included here. - // Version 4 bytes + Varint number of transaction inputs 1 byte + Varint - // number of transaction outputs 1 byte + LockTime 4 bytes + min input - // payload + min output payload. - minTxPayload = 10 - - // freeListMaxScriptSize is the size of each buffer in the free list - // that is used for deserializing scripts from the wire before they are - // concatenated into a single contiguous buffers. This value was chosen - // because it is slightly more than twice the size of the vast majority - // of all "standard" scripts. Larger scripts are still deserialized - // properly as the free list will simply be bypassed for them. - freeListMaxScriptSize = 512 - - // freeListMaxItems is the number of buffers to keep in the free list - // to use for script deserialization. This value allows up to 100 - // scripts per transaction being simultaneously deserialized by 125 - // peers. Thus, the peak usage of the free list is 12,500 * 512 = - // 6,400,000 bytes. - freeListMaxItems = 12500 - - // maxWitnessItemsPerInput is the maximum number of witness items to - // be read for the witness data for a single TxIn. This number is - // derived using a possble lower bound for the encoding of a witness - // item: 1 byte for length + 1 byte for the witness item itself, or two - // bytes. This value is then divided by the currently allowed maximum - // "cost" for a transaction. - maxWitnessItemsPerInput = 500000 - - // maxWitnessItemSize is the maximum allowed size for an item within - // an input's witness data. This number is derived from the fact that - // for script validation, each pushed item onto the stack must be less - // than 10k bytes. - maxWitnessItemSize = 11000 -) - -// TxFlagMarker is the first byte of the FLAG field in a bitcoin tx -// message. It allows decoders to distinguish a regular serialized -// transaction from one that would require a different parsing logic. -// -// Position of FLAG in a bitcoin tx message: -// ┌─────────┬────────────────────┬─────────────┬─────┐ -// │ VERSION │ FLAG │ TX-IN-COUNT │ ... │ -// │ 4 bytes │ 2 bytes (optional) │ varint │ │ -// └─────────┴────────────────────┴─────────────┴─────┘ -// -// Zooming into the FLAG field: -// ┌── FLAG ─────────────┬────────┐ -// │ TxFlagMarker (0x00) │ TxFlag │ -// │ 1 byte │ 1 byte │ -// └─────────────────────┴────────┘ -const TxFlagMarker = 0x00 - -// TxFlag is the second byte of the FLAG field in a bitcoin tx message. -// It indicates the decoding logic to use in the transaction parser, if -// TxFlagMarker is detected in the tx message. -// -// As of writing this, only the witness flag (0x01) is supported, but may be -// extended in the future to accommodate auxiliary non-committed fields. -type TxFlag = byte - -const ( - // WitnessFlag is a flag specific to witness encoding. If the TxFlagMarker - // is encountered followed by the WitnessFlag, then it indicates a - // transaction has witness data. This allows decoders to distinguish a - // serialized transaction with witnesses from a legacy one. - WitnessFlag TxFlag = 0x01 -) - -// scriptFreeList defines a free list of byte slices (up to the maximum number -// defined by the freeListMaxItems constant) that have a cap according to the -// freeListMaxScriptSize constant. It is used to provide temporary buffers for -// deserializing scripts in order to greatly reduce the number of allocations -// required. -// -// The caller can obtain a buffer from the free list by calling the Borrow -// function and should return it via the Return function when done using it. -type scriptFreeList chan []byte - -// Borrow returns a byte slice from the free list with a length according the -// provided size. A new buffer is allocated if there are any items available. -// -// When the size is larger than the max size allowed for items on the free list -// a new buffer of the appropriate size is allocated and returned. It is safe -// to attempt to return said buffer via the Return function as it will be -// ignored and allowed to go the garbage collector. -func (c scriptFreeList) Borrow(size uint64) []byte { - if size > freeListMaxScriptSize { - return make([]byte, size) - } - - var buf []byte - select { - case buf = <-c: - default: - buf = make([]byte, freeListMaxScriptSize) - } - return buf[:size] -} - -// Return puts the provided byte slice back on the free list when it has a cap -// of the expected length. The buffer is expected to have been obtained via -// the Borrow function. Any slices that are not of the appropriate size, such -// as those whose size is greater than the largest allowed free list item size -// are simply ignored so they can go to the garbage collector. -func (c scriptFreeList) Return(buf []byte) { - // Ignore any buffers returned that aren't the expected size for the - // free list. - if cap(buf) != freeListMaxScriptSize { - return - } - - // Return the buffer to the free list when it's not full. Otherwise let - // it be garbage collected. - select { - case c <- buf: - default: - // Let it go to the garbage collector. - } -} - -// Create the concurrent safe free list to use for script deserialization. As -// previously described, this free list is maintained to significantly reduce -// the number of allocations. -var scriptPool scriptFreeList = make(chan []byte, freeListMaxItems) - -// OutPoint defines a bitcoin data type that is used to track previous -// transaction outputs. -type OutPoint struct { - Hash chainhash.Hash - Index uint32 -} - -// NewOutPoint returns a new bitcoin transaction outpoint point with the -// provided hash and index. -func NewOutPoint(hash *chainhash.Hash, index uint32) *OutPoint { - return &OutPoint{ - Hash: *hash, - Index: index, - } -} - -// String returns the OutPoint in the human-readable form "hash:index". -func (o OutPoint) String() string { - // Allocate enough for hash string, colon, and 10 digits. Although - // at the time of writing, the number of digits can be no greater than - // the length of the decimal representation of maxTxOutPerMessage, the - // maximum message payload may increase in the future and this - // optimization may go unnoticed, so allocate space for 10 decimal - // digits, which will fit any uint32. - buf := make([]byte, 2*chainhash.HashSize+1, 2*chainhash.HashSize+1+10) - copy(buf, o.Hash.String()) - buf[2*chainhash.HashSize] = ':' - buf = strconv.AppendUint(buf, uint64(o.Index), 10) - return string(buf) -} - -// TxIn defines a bitcoin transaction input. -type TxIn struct { - PreviousOutPoint OutPoint - SignatureScript []byte - Witness TxWitness - Sequence uint32 -} - -// SerializeSize returns the number of bytes it would take to serialize the -// the transaction input. -func (t *TxIn) SerializeSize() int { - // Outpoint Hash 32 bytes + Outpoint Index 4 bytes + Sequence 4 bytes + - // serialized varint size for the length of SignatureScript + - // SignatureScript bytes. - return 40 + VarIntSerializeSize(uint64(len(t.SignatureScript))) + - len(t.SignatureScript) -} - -// NewTxIn returns a new bitcoin transaction input with the provided -// previous outpoint point and signature script with a default sequence of -// MaxTxInSequenceNum. -func NewTxIn(prevOut *OutPoint, signatureScript []byte, witness [][]byte) *TxIn { - return &TxIn{ - PreviousOutPoint: *prevOut, - SignatureScript: signatureScript, - Witness: witness, - Sequence: MaxTxInSequenceNum, - } -} - -// TxWitness defines the witness for a TxIn. A witness is to be interpreted as -// a slice of byte slices, or a stack with one or many elements. -type TxWitness [][]byte - -// SerializeSize returns the number of bytes it would take to serialize the the -// transaction input's witness. -func (t TxWitness) SerializeSize() int { - // A varint to signal the number of elements the witness has. - n := VarIntSerializeSize(uint64(len(t))) - - // For each element in the witness, we'll need a varint to signal the - // size of the element, then finally the number of bytes the element - // itself comprises. - for _, witItem := range t { - n += VarIntSerializeSize(uint64(len(witItem))) - n += len(witItem) - } - - return n -} - -// TxOut defines a bitcoin transaction output. -type TxOut struct { - Value int64 - PkScript []byte -} - -// SerializeSize returns the number of bytes it would take to serialize the -// the transaction output. -func (t *TxOut) SerializeSize() int { - // Value 8 bytes + serialized varint size for the length of PkScript + - // PkScript bytes. - return 8 + VarIntSerializeSize(uint64(len(t.PkScript))) + len(t.PkScript) -} - -// NewTxOut returns a new bitcoin transaction output with the provided -// transaction value and public key script. -func NewTxOut(value int64, pkScript []byte) *TxOut { - return &TxOut{ - Value: value, - PkScript: pkScript, - } -} - -// MsgTx implements the Message interface and represents a bitcoin tx message. -// It is used to deliver transaction information in response to a getdata -// message (MsgGetData) for a given transaction. -// -// Use the AddTxIn and AddTxOut functions to build up the list of transaction -// inputs and outputs. -type MsgTx struct { - Version int32 - TxIn []*TxIn - TxOut []*TxOut - LockTime uint32 -} - -// AddTxIn adds a transaction input to the message. -func (msg *MsgTx) AddTxIn(ti *TxIn) { - msg.TxIn = append(msg.TxIn, ti) -} - -// AddTxOut adds a transaction output to the message. -func (msg *MsgTx) AddTxOut(to *TxOut) { - msg.TxOut = append(msg.TxOut, to) -} - -// TxHash generates the Hash for the transaction. -func (msg *MsgTx) TxHash() chainhash.Hash { - // Encode the transaction and calculate double sha256 on the result. - // Ignore the error returns since the only way the encode could fail - // is being out of memory or due to nil pointers, both of which would - // cause a run-time panic. - buf := bytes.NewBuffer(make([]byte, 0, msg.SerializeSizeStripped())) - _ = msg.SerializeNoWitness(buf) - return chainhash.DoubleHashH(buf.Bytes()) -} - -// WitnessHash generates the hash of the transaction serialized according to -// the new witness serialization defined in BIP0141 and BIP0144. The final -// output is used within the Segregated Witness commitment of all the witnesses -// within a block. If a transaction has no witness data, then the witness hash, -// is the same as its txid. -func (msg *MsgTx) WitnessHash() chainhash.Hash { - if msg.HasWitness() { - buf := bytes.NewBuffer(make([]byte, 0, msg.SerializeSize())) - _ = msg.Serialize(buf) - return chainhash.DoubleHashH(buf.Bytes()) - } - - return msg.TxHash() -} - -// Copy creates a deep copy of a transaction so that the original does not get -// modified when the copy is manipulated. -func (msg *MsgTx) Copy() *MsgTx { - // Create new tx and start by copying primitive values and making space - // for the transaction inputs and outputs. - newTx := MsgTx{ - Version: msg.Version, - TxIn: make([]*TxIn, 0, len(msg.TxIn)), - TxOut: make([]*TxOut, 0, len(msg.TxOut)), - LockTime: msg.LockTime, - } - - // Deep copy the old TxIn data. - for _, oldTxIn := range msg.TxIn { - // Deep copy the old previous outpoint. - oldOutPoint := oldTxIn.PreviousOutPoint - newOutPoint := OutPoint{} - newOutPoint.Hash.SetBytes(oldOutPoint.Hash[:]) - newOutPoint.Index = oldOutPoint.Index - - // Deep copy the old signature script. - var newScript []byte - oldScript := oldTxIn.SignatureScript - oldScriptLen := len(oldScript) - if oldScriptLen > 0 { - newScript = make([]byte, oldScriptLen) - copy(newScript, oldScript[:oldScriptLen]) - } - - // Create new txIn with the deep copied data. - newTxIn := TxIn{ - PreviousOutPoint: newOutPoint, - SignatureScript: newScript, - Sequence: oldTxIn.Sequence, - } - - // If the transaction is witnessy, then also copy the - // witnesses. - if len(oldTxIn.Witness) != 0 { - // Deep copy the old witness data. - newTxIn.Witness = make([][]byte, len(oldTxIn.Witness)) - for i, oldItem := range oldTxIn.Witness { - newItem := make([]byte, len(oldItem)) - copy(newItem, oldItem) - newTxIn.Witness[i] = newItem - } - } - - // Finally, append this fully copied txin. - newTx.TxIn = append(newTx.TxIn, &newTxIn) - } - - // Deep copy the old TxOut data. - for _, oldTxOut := range msg.TxOut { - // Deep copy the old PkScript - var newScript []byte - oldScript := oldTxOut.PkScript - oldScriptLen := len(oldScript) - if oldScriptLen > 0 { - newScript = make([]byte, oldScriptLen) - copy(newScript, oldScript[:oldScriptLen]) - } - - // Create new txOut with the deep copied data and append it to - // new Tx. - newTxOut := TxOut{ - Value: oldTxOut.Value, - PkScript: newScript, - } - newTx.TxOut = append(newTx.TxOut, &newTxOut) - } - - return &newTx -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -// See Deserialize for decoding transactions stored to disk, such as in a -// database, as opposed to decoding transactions from the wire. -func (msg *MsgTx) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - version, err := binarySerializer.Uint32(r, littleEndian) - if err != nil { - return err - } - msg.Version = int32(version) - - count, err := ReadVarInt(r, pver) - if err != nil { - return err - } - - // A count of zero (meaning no TxIn's to the uninitiated) means that the - // value is a TxFlagMarker, and hence indicates the presence of a flag. - var flag [1]TxFlag - if count == TxFlagMarker && enc == WitnessEncoding { - // The count varint was in fact the flag marker byte. Next, we need to - // read the flag value, which is a single byte. - if _, err = io.ReadFull(r, flag[:]); err != nil { - return err - } - - // At the moment, the flag MUST be WitnessFlag (0x01). In the future - // other flag types may be supported. - if flag[0] != WitnessFlag { - str := fmt.Sprintf("witness tx but flag byte is %x", flag) - return messageError("MsgTx.BtcDecode", str) - } - - // With the Segregated Witness specific fields decoded, we can - // now read in the actual txin count. - count, err = ReadVarInt(r, pver) - if err != nil { - return err - } - } - - // Prevent more input transactions than could possibly fit into a - // message. It would be possible to cause memory exhaustion and panics - // without a sane upper bound on this count. - if count > uint64(maxTxInPerMessage) { - str := fmt.Sprintf("too many input transactions to fit into "+ - "max message size [count %d, max %d]", count, - maxTxInPerMessage) - return messageError("MsgTx.BtcDecode", str) - } - - // returnScriptBuffers is a closure that returns any script buffers that - // were borrowed from the pool when there are any deserialization - // errors. This is only valid to call before the final step which - // replaces the scripts with the location in a contiguous buffer and - // returns them. - returnScriptBuffers := func() { - for _, txIn := range msg.TxIn { - if txIn == nil { - continue - } - - if txIn.SignatureScript != nil { - scriptPool.Return(txIn.SignatureScript) - } - - for _, witnessElem := range txIn.Witness { - if witnessElem != nil { - scriptPool.Return(witnessElem) - } - } - } - for _, txOut := range msg.TxOut { - if txOut == nil || txOut.PkScript == nil { - continue - } - scriptPool.Return(txOut.PkScript) - } - } - - // Deserialize the inputs. - var totalScriptSize uint64 - txIns := make([]TxIn, count) - msg.TxIn = make([]*TxIn, count) - for i := uint64(0); i < count; i++ { - // The pointer is set now in case a script buffer is borrowed - // and needs to be returned to the pool on error. - ti := &txIns[i] - msg.TxIn[i] = ti - err = readTxIn(r, pver, msg.Version, ti) - if err != nil { - returnScriptBuffers() - return err - } - totalScriptSize += uint64(len(ti.SignatureScript)) - } - - count, err = ReadVarInt(r, pver) - if err != nil { - returnScriptBuffers() - return err - } - - // Prevent more output transactions than could possibly fit into a - // message. It would be possible to cause memory exhaustion and panics - // without a sane upper bound on this count. - if count > uint64(maxTxOutPerMessage) { - returnScriptBuffers() - str := fmt.Sprintf("too many output transactions to fit into "+ - "max message size [count %d, max %d]", count, - maxTxOutPerMessage) - return messageError("MsgTx.BtcDecode", str) - } - - // Deserialize the outputs. - txOuts := make([]TxOut, count) - msg.TxOut = make([]*TxOut, count) - for i := uint64(0); i < count; i++ { - // The pointer is set now in case a script buffer is borrowed - // and needs to be returned to the pool on error. - to := &txOuts[i] - msg.TxOut[i] = to - err = readTxOut(r, pver, msg.Version, to) - if err != nil { - returnScriptBuffers() - return err - } - totalScriptSize += uint64(len(to.PkScript)) - } - - // If the transaction's flag byte isn't 0x00 at this point, then one or - // more of its inputs has accompanying witness data. - if flag[0] != 0 && enc == WitnessEncoding { - for _, txin := range msg.TxIn { - // For each input, the witness is encoded as a stack - // with one or more items. Therefore, we first read a - // varint which encodes the number of stack items. - witCount, err := ReadVarInt(r, pver) - if err != nil { - returnScriptBuffers() - return err - } - - // Prevent a possible memory exhaustion attack by - // limiting the witCount value to a sane upper bound. - if witCount > maxWitnessItemsPerInput { - returnScriptBuffers() - str := fmt.Sprintf("too many witness items to fit "+ - "into max message size [count %d, max %d]", - witCount, maxWitnessItemsPerInput) - return messageError("MsgTx.BtcDecode", str) - } - - // Then for witCount number of stack items, each item - // has a varint length prefix, followed by the witness - // item itself. - txin.Witness = make([][]byte, witCount) - for j := uint64(0); j < witCount; j++ { - txin.Witness[j], err = readScript(r, pver, - maxWitnessItemSize, "script witness item") - if err != nil { - returnScriptBuffers() - return err - } - totalScriptSize += uint64(len(txin.Witness[j])) - } - } - } - - msg.LockTime, err = binarySerializer.Uint32(r, littleEndian) - if err != nil { - returnScriptBuffers() - return err - } - - // Create a single allocation to house all of the scripts and set each - // input signature script and output public key script to the - // appropriate subslice of the overall contiguous buffer. Then, return - // each individual script buffer back to the pool so they can be reused - // for future deserializations. This is done because it significantly - // reduces the number of allocations the garbage collector needs to - // track, which in turn improves performance and drastically reduces the - // amount of runtime overhead that would otherwise be needed to keep - // track of millions of small allocations. - // - // NOTE: It is no longer valid to call the returnScriptBuffers closure - // after these blocks of code run because it is already done and the - // scripts in the transaction inputs and outputs no longer point to the - // buffers. - var offset uint64 - scripts := make([]byte, totalScriptSize) - for i := 0; i < len(msg.TxIn); i++ { - // Copy the signature script into the contiguous buffer at the - // appropriate offset. - signatureScript := msg.TxIn[i].SignatureScript - copy(scripts[offset:], signatureScript) - - // Reset the signature script of the transaction input to the - // slice of the contiguous buffer where the script lives. - scriptSize := uint64(len(signatureScript)) - end := offset + scriptSize - msg.TxIn[i].SignatureScript = scripts[offset:end:end] - offset += scriptSize - - // Return the temporary script buffer to the pool. - scriptPool.Return(signatureScript) - - for j := 0; j < len(msg.TxIn[i].Witness); j++ { - // Copy each item within the witness stack for this - // input into the contiguous buffer at the appropriate - // offset. - witnessElem := msg.TxIn[i].Witness[j] - copy(scripts[offset:], witnessElem) - - // Reset the witness item within the stack to the slice - // of the contiguous buffer where the witness lives. - witnessElemSize := uint64(len(witnessElem)) - end := offset + witnessElemSize - msg.TxIn[i].Witness[j] = scripts[offset:end:end] - offset += witnessElemSize - - // Return the temporary buffer used for the witness stack - // item to the pool. - scriptPool.Return(witnessElem) - } - } - for i := 0; i < len(msg.TxOut); i++ { - // Copy the public key script into the contiguous buffer at the - // appropriate offset. - pkScript := msg.TxOut[i].PkScript - copy(scripts[offset:], pkScript) - - // Reset the public key script of the transaction output to the - // slice of the contiguous buffer where the script lives. - scriptSize := uint64(len(pkScript)) - end := offset + scriptSize - msg.TxOut[i].PkScript = scripts[offset:end:end] - offset += scriptSize - - // Return the temporary script buffer to the pool. - scriptPool.Return(pkScript) - } - - return nil -} - -// Deserialize decodes a transaction from r into the receiver using a format -// that is suitable for long-term storage such as a database while respecting -// the Version field in the transaction. This function differs from BtcDecode -// in that BtcDecode decodes from the bitcoin wire protocol as it was sent -// across the network. The wire encoding can technically differ depending on -// the protocol version and doesn't even really need to match the format of a -// stored transaction at all. As of the time this comment was written, the -// encoded transaction is the same in both instances, but there is a distinct -// difference and separating the two allows the API to be flexible enough to -// deal with changes. -func (msg *MsgTx) Deserialize(r io.Reader) error { - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of BtcDecode. - return msg.BtcDecode(r, 0, WitnessEncoding) -} - -// DeserializeNoWitness decodes a transaction from r into the receiver, where -// the transaction encoding format within r MUST NOT utilize the new -// serialization format created to encode transaction bearing witness data -// within inputs. -func (msg *MsgTx) DeserializeNoWitness(r io.Reader) error { - return msg.BtcDecode(r, 0, BaseEncoding) -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -// See Serialize for encoding transactions to be stored to disk, such as in a -// database, as opposed to encoding transactions for the wire. -func (msg *MsgTx) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - err := binarySerializer.PutUint32(w, littleEndian, uint32(msg.Version)) - if err != nil { - return err - } - - // If the encoding version is set to WitnessEncoding, and the Flags - // field for the MsgTx aren't 0x00, then this indicates the transaction - // is to be encoded using the new witness inclusionary structure - // defined in BIP0144. - doWitness := enc == WitnessEncoding && msg.HasWitness() - if doWitness { - // After the transaction's Version field, we include two additional - // bytes specific to the witness encoding. This byte sequence is known - // as a flag. The first byte is a marker byte (TxFlagMarker) and the - // second one is the flag value to indicate presence of witness data. - if _, err := w.Write([]byte{TxFlagMarker, WitnessFlag}); err != nil { - return err - } - } - - count := uint64(len(msg.TxIn)) - err = WriteVarInt(w, pver, count) - if err != nil { - return err - } - - for _, ti := range msg.TxIn { - err = writeTxIn(w, pver, msg.Version, ti) - if err != nil { - return err - } - } - - count = uint64(len(msg.TxOut)) - err = WriteVarInt(w, pver, count) - if err != nil { - return err - } - - for _, to := range msg.TxOut { - err = WriteTxOut(w, pver, msg.Version, to) - if err != nil { - return err - } - } - - // If this transaction is a witness transaction, and the witness - // encoded is desired, then encode the witness for each of the inputs - // within the transaction. - if doWitness { - for _, ti := range msg.TxIn { - err = writeTxWitness(w, pver, msg.Version, ti.Witness) - if err != nil { - return err - } - } - } - - return binarySerializer.PutUint32(w, littleEndian, msg.LockTime) -} - -// HasWitness returns false if none of the inputs within the transaction -// contain witness data, true false otherwise. -func (msg *MsgTx) HasWitness() bool { - for _, txIn := range msg.TxIn { - if len(txIn.Witness) != 0 { - return true - } - } - - return false -} - -// Serialize encodes the transaction to w using a format that suitable for -// long-term storage such as a database while respecting the Version field in -// the transaction. This function differs from BtcEncode in that BtcEncode -// encodes the transaction to the bitcoin wire protocol in order to be sent -// across the network. The wire encoding can technically differ depending on -// the protocol version and doesn't even really need to match the format of a -// stored transaction at all. As of the time this comment was written, the -// encoded transaction is the same in both instances, but there is a distinct -// difference and separating the two allows the API to be flexible enough to -// deal with changes. -func (msg *MsgTx) Serialize(w io.Writer) error { - // At the current time, there is no difference between the wire encoding - // at protocol version 0 and the stable long-term storage format. As - // a result, make use of BtcEncode. - // - // Passing a encoding type of WitnessEncoding to BtcEncode for MsgTx - // indicates that the transaction's witnesses (if any) should be - // serialized according to the new serialization structure defined in - // BIP0144. - return msg.BtcEncode(w, 0, WitnessEncoding) -} - -// SerializeNoWitness encodes the transaction to w in an identical manner to -// Serialize, however even if the source transaction has inputs with witness -// data, the old serialization format will still be used. -func (msg *MsgTx) SerializeNoWitness(w io.Writer) error { - return msg.BtcEncode(w, 0, BaseEncoding) -} - -// baseSize returns the serialized size of the transaction without accounting -// for any witness data. -func (msg *MsgTx) baseSize() int { - // Version 4 bytes + LockTime 4 bytes + Serialized varint size for the - // number of transaction inputs and outputs. - n := 8 + VarIntSerializeSize(uint64(len(msg.TxIn))) + - VarIntSerializeSize(uint64(len(msg.TxOut))) - - for _, txIn := range msg.TxIn { - n += txIn.SerializeSize() - } - - for _, txOut := range msg.TxOut { - n += txOut.SerializeSize() - } - - return n -} - -// SerializeSize returns the number of bytes it would take to serialize the -// the transaction. -func (msg *MsgTx) SerializeSize() int { - n := msg.baseSize() - - if msg.HasWitness() { - // The marker, and flag fields take up two additional bytes. - n += 2 - - // Additionally, factor in the serialized size of each of the - // witnesses for each txin. - for _, txin := range msg.TxIn { - n += txin.Witness.SerializeSize() - } - } - - return n -} - -// SerializeSizeStripped returns the number of bytes it would take to serialize -// the transaction, excluding any included witness data. -func (msg *MsgTx) SerializeSizeStripped() int { - return msg.baseSize() -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgTx) Command() string { - return CmdTx -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgTx) MaxPayloadLength(pver uint32) uint32 { - return MaxBlockPayload -} - -// PkScriptLocs returns a slice containing the start of each public key script -// within the raw serialized transaction. The caller can easily obtain the -// length of each script by using len on the script available via the -// appropriate transaction output entry. -func (msg *MsgTx) PkScriptLocs() []int { - numTxOut := len(msg.TxOut) - if numTxOut == 0 { - return nil - } - - // The starting offset in the serialized transaction of the first - // transaction output is: - // - // Version 4 bytes + serialized varint size for the number of - // transaction inputs and outputs + serialized size of each transaction - // input. - n := 4 + VarIntSerializeSize(uint64(len(msg.TxIn))) + - VarIntSerializeSize(uint64(numTxOut)) - - // If this transaction has a witness input, the an additional two bytes - // for the marker, and flag byte need to be taken into account. - if len(msg.TxIn) > 0 && msg.TxIn[0].Witness != nil { - n += 2 - } - - for _, txIn := range msg.TxIn { - n += txIn.SerializeSize() - } - - // Calculate and set the appropriate offset for each public key script. - pkScriptLocs := make([]int, numTxOut) - for i, txOut := range msg.TxOut { - // The offset of the script in the transaction output is: - // - // Value 8 bytes + serialized varint size for the length of - // PkScript. - n += 8 + VarIntSerializeSize(uint64(len(txOut.PkScript))) - pkScriptLocs[i] = n - n += len(txOut.PkScript) - } - - return pkScriptLocs -} - -// NewMsgTx returns a new bitcoin tx message that conforms to the Message -// interface. The return instance has a default version of TxVersion and there -// are no transaction inputs or outputs. Also, the lock time is set to zero -// to indicate the transaction is valid immediately as opposed to some time in -// future. -func NewMsgTx(version int32) *MsgTx { - return &MsgTx{ - Version: version, - TxIn: make([]*TxIn, 0, defaultTxInOutAlloc), - TxOut: make([]*TxOut, 0, defaultTxInOutAlloc), - } -} - -// readOutPoint reads the next sequence of bytes from r as an OutPoint. -func readOutPoint(r io.Reader, pver uint32, version int32, op *OutPoint) error { - _, err := io.ReadFull(r, op.Hash[:]) - if err != nil { - return err - } - - op.Index, err = binarySerializer.Uint32(r, littleEndian) - return err -} - -// writeOutPoint encodes op to the bitcoin protocol encoding for an OutPoint -// to w. -func writeOutPoint(w io.Writer, pver uint32, version int32, op *OutPoint) error { - _, err := w.Write(op.Hash[:]) - if err != nil { - return err - } - - return binarySerializer.PutUint32(w, littleEndian, op.Index) -} - -// readScript reads a variable length byte array that represents a transaction -// script. It is encoded as a varInt containing the length of the array -// followed by the bytes themselves. An error is returned if the length is -// greater than the passed maxAllowed parameter which helps protect against -// memory exhaustion attacks and forced panics through malformed messages. The -// fieldName parameter is only used for the error message so it provides more -// context in the error. -func readScript(r io.Reader, pver uint32, maxAllowed uint32, fieldName string) ([]byte, error) { - count, err := ReadVarInt(r, pver) - if err != nil { - return nil, err - } - - // Prevent byte array larger than the max message size. It would - // be possible to cause memory exhaustion and panics without a sane - // upper bound on this count. - if count > uint64(maxAllowed) { - str := fmt.Sprintf("%s is larger than the max allowed size "+ - "[count %d, max %d]", fieldName, count, maxAllowed) - return nil, messageError("readScript", str) - } - - b := scriptPool.Borrow(count) - _, err = io.ReadFull(r, b) - if err != nil { - scriptPool.Return(b) - return nil, err - } - return b, nil -} - -// readTxIn reads the next sequence of bytes from r as a transaction input -// (TxIn). -func readTxIn(r io.Reader, pver uint32, version int32, ti *TxIn) error { - err := readOutPoint(r, pver, version, &ti.PreviousOutPoint) - if err != nil { - return err - } - - ti.SignatureScript, err = readScript(r, pver, MaxMessagePayload, - "transaction input signature script") - if err != nil { - return err - } - - return readElement(r, &ti.Sequence) -} - -// writeTxIn encodes ti to the bitcoin protocol encoding for a transaction -// input (TxIn) to w. -func writeTxIn(w io.Writer, pver uint32, version int32, ti *TxIn) error { - err := writeOutPoint(w, pver, version, &ti.PreviousOutPoint) - if err != nil { - return err - } - - err = WriteVarBytes(w, pver, ti.SignatureScript) - if err != nil { - return err - } - - return binarySerializer.PutUint32(w, littleEndian, ti.Sequence) -} - -// readTxOut reads the next sequence of bytes from r as a transaction output -// (TxOut). -func readTxOut(r io.Reader, pver uint32, version int32, to *TxOut) error { - err := readElement(r, &to.Value) - if err != nil { - return err - } - - to.PkScript, err = readScript(r, pver, MaxMessagePayload, - "transaction output public key script") - return err -} - -// WriteTxOut encodes to into the bitcoin protocol encoding for a transaction -// output (TxOut) to w. -// -// NOTE: This function is exported in order to allow txscript to compute the -// new sighashes for witness transactions (BIP0143). -func WriteTxOut(w io.Writer, pver uint32, version int32, to *TxOut) error { - err := binarySerializer.PutUint64(w, littleEndian, uint64(to.Value)) - if err != nil { - return err - } - - return WriteVarBytes(w, pver, to.PkScript) -} - -// writeTxWitness encodes the bitcoin protocol encoding for a transaction -// input's witness into to w. -func writeTxWitness(w io.Writer, pver uint32, version int32, wit [][]byte) error { - err := WriteVarInt(w, pver, uint64(len(wit))) - if err != nil { - return err - } - for _, item := range wit { - err = WriteVarBytes(w, pver, item) - if err != nil { - return err - } - } - return nil -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgverack.go b/vendor/github.com/btcsuite/btcd/wire/msgverack.go deleted file mode 100644 index 60342b5..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgverack.go +++ /dev/null @@ -1,46 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "io" -) - -// MsgVerAck defines a bitcoin verack message which is used for a peer to -// acknowledge a version message (MsgVersion) after it has used the information -// to negotiate parameters. It implements the Message interface. -// -// This message has no payload. -type MsgVerAck struct{} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// This is part of the Message interface implementation. -func (msg *MsgVerAck) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgVerAck) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgVerAck) Command() string { - return CmdVerAck -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgVerAck) MaxPayloadLength(pver uint32) uint32 { - return 0 -} - -// NewMsgVerAck returns a new bitcoin verack message that conforms to the -// Message interface. -func NewMsgVerAck() *MsgVerAck { - return &MsgVerAck{} -} diff --git a/vendor/github.com/btcsuite/btcd/wire/msgversion.go b/vendor/github.com/btcsuite/btcd/wire/msgversion.go deleted file mode 100644 index 3077f12..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/msgversion.go +++ /dev/null @@ -1,269 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "bytes" - "fmt" - "io" - "strings" - "time" -) - -// MaxUserAgentLen is the maximum allowed length for the user agent field in a -// version message (MsgVersion). -const MaxUserAgentLen = 256 - -// DefaultUserAgent for wire in the stack -const DefaultUserAgent = "/btcwire:0.5.0/" - -// MsgVersion implements the Message interface and represents a bitcoin version -// message. It is used for a peer to advertise itself as soon as an outbound -// connection is made. The remote peer then uses this information along with -// its own to negotiate. The remote peer must then respond with a version -// message of its own containing the negotiated values followed by a verack -// message (MsgVerAck). This exchange must take place before any further -// communication is allowed to proceed. -type MsgVersion struct { - // Version of the protocol the node is using. - ProtocolVersion int32 - - // Bitfield which identifies the enabled services. - Services ServiceFlag - - // Time the message was generated. This is encoded as an int64 on the wire. - Timestamp time.Time - - // Address of the remote peer. - AddrYou NetAddress - - // Address of the local peer. - AddrMe NetAddress - - // Unique value associated with message that is used to detect self - // connections. - Nonce uint64 - - // The user agent that generated messsage. This is a encoded as a varString - // on the wire. This has a max length of MaxUserAgentLen. - UserAgent string - - // Last block seen by the generator of the version message. - LastBlock int32 - - // Don't announce transactions to peer. - DisableRelayTx bool -} - -// HasService returns whether the specified service is supported by the peer -// that generated the message. -func (msg *MsgVersion) HasService(service ServiceFlag) bool { - return msg.Services&service == service -} - -// AddService adds service as a supported service by the peer generating the -// message. -func (msg *MsgVersion) AddService(service ServiceFlag) { - msg.Services |= service -} - -// BtcDecode decodes r using the bitcoin protocol encoding into the receiver. -// The version message is special in that the protocol version hasn't been -// negotiated yet. As a result, the pver field is ignored and any fields which -// are added in new versions are optional. This also mean that r must be a -// *bytes.Buffer so the number of remaining bytes can be ascertained. -// -// This is part of the Message interface implementation. -func (msg *MsgVersion) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error { - buf, ok := r.(*bytes.Buffer) - if !ok { - return fmt.Errorf("MsgVersion.BtcDecode reader is not a " + - "*bytes.Buffer") - } - - err := readElements(buf, &msg.ProtocolVersion, &msg.Services, - (*int64Time)(&msg.Timestamp)) - if err != nil { - return err - } - - err = readNetAddress(buf, pver, &msg.AddrYou, false) - if err != nil { - return err - } - - // Protocol versions >= 106 added a from address, nonce, and user agent - // field and they are only considered present if there are bytes - // remaining in the message. - if buf.Len() > 0 { - err = readNetAddress(buf, pver, &msg.AddrMe, false) - if err != nil { - return err - } - } - if buf.Len() > 0 { - err = readElement(buf, &msg.Nonce) - if err != nil { - return err - } - } - if buf.Len() > 0 { - userAgent, err := ReadVarString(buf, pver) - if err != nil { - return err - } - err = validateUserAgent(userAgent) - if err != nil { - return err - } - msg.UserAgent = userAgent - } - - // Protocol versions >= 209 added a last known block field. It is only - // considered present if there are bytes remaining in the message. - if buf.Len() > 0 { - err = readElement(buf, &msg.LastBlock) - if err != nil { - return err - } - } - - // There was no relay transactions field before BIP0037Version, but - // the default behavior prior to the addition of the field was to always - // relay transactions. - if buf.Len() > 0 { - // It's safe to ignore the error here since the buffer has at - // least one byte and that byte will result in a boolean value - // regardless of its value. Also, the wire encoding for the - // field is true when transactions should be relayed, so reverse - // it for the DisableRelayTx field. - var relayTx bool - readElement(r, &relayTx) - msg.DisableRelayTx = !relayTx - } - - return nil -} - -// BtcEncode encodes the receiver to w using the bitcoin protocol encoding. -// This is part of the Message interface implementation. -func (msg *MsgVersion) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error { - err := validateUserAgent(msg.UserAgent) - if err != nil { - return err - } - - err = writeElements(w, msg.ProtocolVersion, msg.Services, - msg.Timestamp.Unix()) - if err != nil { - return err - } - - err = writeNetAddress(w, pver, &msg.AddrYou, false) - if err != nil { - return err - } - - err = writeNetAddress(w, pver, &msg.AddrMe, false) - if err != nil { - return err - } - - err = writeElement(w, msg.Nonce) - if err != nil { - return err - } - - err = WriteVarString(w, pver, msg.UserAgent) - if err != nil { - return err - } - - err = writeElement(w, msg.LastBlock) - if err != nil { - return err - } - - // There was no relay transactions field before BIP0037Version. Also, - // the wire encoding for the field is true when transactions should be - // relayed, so reverse it from the DisableRelayTx field. - if pver >= BIP0037Version { - err = writeElement(w, !msg.DisableRelayTx) - if err != nil { - return err - } - } - return nil -} - -// Command returns the protocol command string for the message. This is part -// of the Message interface implementation. -func (msg *MsgVersion) Command() string { - return CmdVersion -} - -// MaxPayloadLength returns the maximum length the payload can be for the -// receiver. This is part of the Message interface implementation. -func (msg *MsgVersion) MaxPayloadLength(pver uint32) uint32 { - // XXX: <= 106 different - - // Protocol version 4 bytes + services 8 bytes + timestamp 8 bytes + - // remote and local net addresses + nonce 8 bytes + length of user - // agent (varInt) + max allowed useragent length + last block 4 bytes + - // relay transactions flag 1 byte. - return 33 + (maxNetAddressPayload(pver) * 2) + MaxVarIntPayload + - MaxUserAgentLen -} - -// NewMsgVersion returns a new bitcoin version message that conforms to the -// Message interface using the passed parameters and defaults for the remaining -// fields. -func NewMsgVersion(me *NetAddress, you *NetAddress, nonce uint64, - lastBlock int32) *MsgVersion { - - // Limit the timestamp to one second precision since the protocol - // doesn't support better. - return &MsgVersion{ - ProtocolVersion: int32(ProtocolVersion), - Services: 0, - Timestamp: time.Unix(time.Now().Unix(), 0), - AddrYou: *you, - AddrMe: *me, - Nonce: nonce, - UserAgent: DefaultUserAgent, - LastBlock: lastBlock, - DisableRelayTx: false, - } -} - -// validateUserAgent checks userAgent length against MaxUserAgentLen -func validateUserAgent(userAgent string) error { - if len(userAgent) > MaxUserAgentLen { - str := fmt.Sprintf("user agent too long [len %v, max %v]", - len(userAgent), MaxUserAgentLen) - return messageError("MsgVersion", str) - } - return nil -} - -// AddUserAgent adds a user agent to the user agent string for the version -// message. The version string is not defined to any strict format, although -// it is recommended to use the form "major.minor.revision" e.g. "2.6.41". -func (msg *MsgVersion) AddUserAgent(name string, version string, - comments ...string) error { - - newUserAgent := fmt.Sprintf("%s:%s", name, version) - if len(comments) != 0 { - newUserAgent = fmt.Sprintf("%s(%s)", newUserAgent, - strings.Join(comments, "; ")) - } - newUserAgent = fmt.Sprintf("%s%s/", msg.UserAgent, newUserAgent) - err := validateUserAgent(newUserAgent) - if err != nil { - return err - } - msg.UserAgent = newUserAgent - return nil -} diff --git a/vendor/github.com/btcsuite/btcd/wire/netaddress.go b/vendor/github.com/btcsuite/btcd/wire/netaddress.go deleted file mode 100644 index 5a2610b..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/netaddress.go +++ /dev/null @@ -1,149 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "encoding/binary" - "io" - "net" - "time" -) - -// maxNetAddressPayload returns the max payload size for a bitcoin NetAddress -// based on the protocol version. -func maxNetAddressPayload(pver uint32) uint32 { - // Services 8 bytes + ip 16 bytes + port 2 bytes. - plen := uint32(26) - - // NetAddressTimeVersion added a timestamp field. - if pver >= NetAddressTimeVersion { - // Timestamp 4 bytes. - plen += 4 - } - - return plen -} - -// NetAddress defines information about a peer on the network including the time -// it was last seen, the services it supports, its IP address, and port. -type NetAddress struct { - // Last time the address was seen. This is, unfortunately, encoded as a - // uint32 on the wire and therefore is limited to 2106. This field is - // not present in the bitcoin version message (MsgVersion) nor was it - // added until protocol version >= NetAddressTimeVersion. - Timestamp time.Time - - // Bitfield which identifies the services supported by the address. - Services ServiceFlag - - // IP address of the peer. - IP net.IP - - // Port the peer is using. This is encoded in big endian on the wire - // which differs from most everything else. - Port uint16 -} - -// HasService returns whether the specified service is supported by the address. -func (na *NetAddress) HasService(service ServiceFlag) bool { - return na.Services&service == service -} - -// AddService adds service as a supported service by the peer generating the -// message. -func (na *NetAddress) AddService(service ServiceFlag) { - na.Services |= service -} - -// NewNetAddressIPPort returns a new NetAddress using the provided IP, port, and -// supported services with defaults for the remaining fields. -func NewNetAddressIPPort(ip net.IP, port uint16, services ServiceFlag) *NetAddress { - return NewNetAddressTimestamp(time.Now(), services, ip, port) -} - -// NewNetAddressTimestamp returns a new NetAddress using the provided -// timestamp, IP, port, and supported services. The timestamp is rounded to -// single second precision. -func NewNetAddressTimestamp( - timestamp time.Time, services ServiceFlag, ip net.IP, port uint16) *NetAddress { - // Limit the timestamp to one second precision since the protocol - // doesn't support better. - na := NetAddress{ - Timestamp: time.Unix(timestamp.Unix(), 0), - Services: services, - IP: ip, - Port: port, - } - return &na -} - -// NewNetAddress returns a new NetAddress using the provided TCP address and -// supported services with defaults for the remaining fields. -func NewNetAddress(addr *net.TCPAddr, services ServiceFlag) *NetAddress { - return NewNetAddressIPPort(addr.IP, uint16(addr.Port), services) -} - -// readNetAddress reads an encoded NetAddress from r depending on the protocol -// version and whether or not the timestamp is included per ts. Some messages -// like version do not include the timestamp. -func readNetAddress(r io.Reader, pver uint32, na *NetAddress, ts bool) error { - var ip [16]byte - - // NOTE: The bitcoin protocol uses a uint32 for the timestamp so it will - // stop working somewhere around 2106. Also timestamp wasn't added until - // protocol version >= NetAddressTimeVersion - if ts && pver >= NetAddressTimeVersion { - err := readElement(r, (*uint32Time)(&na.Timestamp)) - if err != nil { - return err - } - } - - err := readElements(r, &na.Services, &ip) - if err != nil { - return err - } - // Sigh. Bitcoin protocol mixes little and big endian. - port, err := binarySerializer.Uint16(r, bigEndian) - if err != nil { - return err - } - - *na = NetAddress{ - Timestamp: na.Timestamp, - Services: na.Services, - IP: net.IP(ip[:]), - Port: port, - } - return nil -} - -// writeNetAddress serializes a NetAddress to w depending on the protocol -// version and whether or not the timestamp is included per ts. Some messages -// like version do not include the timestamp. -func writeNetAddress(w io.Writer, pver uint32, na *NetAddress, ts bool) error { - // NOTE: The bitcoin protocol uses a uint32 for the timestamp so it will - // stop working somewhere around 2106. Also timestamp wasn't added until - // until protocol version >= NetAddressTimeVersion. - if ts && pver >= NetAddressTimeVersion { - err := writeElement(w, uint32(na.Timestamp.Unix())) - if err != nil { - return err - } - } - - // Ensure to always write 16 bytes even if the ip is nil. - var ip [16]byte - if na.IP != nil { - copy(ip[:], na.IP.To16()) - } - err := writeElements(w, na.Services, ip) - if err != nil { - return err - } - - // Sigh. Bitcoin protocol mixes little and big endian. - return binary.Write(w, bigEndian, na.Port) -} diff --git a/vendor/github.com/btcsuite/btcd/wire/protocol.go b/vendor/github.com/btcsuite/btcd/wire/protocol.go deleted file mode 100644 index 8cc9838..0000000 --- a/vendor/github.com/btcsuite/btcd/wire/protocol.go +++ /dev/null @@ -1,178 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package wire - -import ( - "fmt" - "strconv" - "strings" -) - -// XXX pedro: we will probably need to bump this. -const ( - // ProtocolVersion is the latest protocol version this package supports. - ProtocolVersion uint32 = 70013 - - // MultipleAddressVersion is the protocol version which added multiple - // addresses per message (pver >= MultipleAddressVersion). - MultipleAddressVersion uint32 = 209 - - // NetAddressTimeVersion is the protocol version which added the - // timestamp field (pver >= NetAddressTimeVersion). - NetAddressTimeVersion uint32 = 31402 - - // BIP0031Version is the protocol version AFTER which a pong message - // and nonce field in ping were added (pver > BIP0031Version). - BIP0031Version uint32 = 60000 - - // BIP0035Version is the protocol version which added the mempool - // message (pver >= BIP0035Version). - BIP0035Version uint32 = 60002 - - // BIP0037Version is the protocol version which added new connection - // bloom filtering related messages and extended the version message - // with a relay flag (pver >= BIP0037Version). - BIP0037Version uint32 = 70001 - - // RejectVersion is the protocol version which added a new reject - // message. - RejectVersion uint32 = 70002 - - // BIP0111Version is the protocol version which added the SFNodeBloom - // service flag. - BIP0111Version uint32 = 70011 - - // SendHeadersVersion is the protocol version which added a new - // sendheaders message. - SendHeadersVersion uint32 = 70012 - - // FeeFilterVersion is the protocol version which added a new - // feefilter message. - FeeFilterVersion uint32 = 70013 -) - -// ServiceFlag identifies services supported by a bitcoin peer. -type ServiceFlag uint64 - -const ( - // SFNodeNetwork is a flag used to indicate a peer is a full node. - SFNodeNetwork ServiceFlag = 1 << iota - - // SFNodeGetUTXO is a flag used to indicate a peer supports the - // getutxos and utxos commands (BIP0064). - SFNodeGetUTXO - - // SFNodeBloom is a flag used to indicate a peer supports bloom - // filtering. - SFNodeBloom - - // SFNodeWitness is a flag used to indicate a peer supports blocks - // and transactions including witness data (BIP0144). - SFNodeWitness - - // SFNodeXthin is a flag used to indicate a peer supports xthin blocks. - SFNodeXthin - - // SFNodeBit5 is a flag used to indicate a peer supports a service - // defined by bit 5. - SFNodeBit5 - - // SFNodeCF is a flag used to indicate a peer supports committed - // filters (CFs). - SFNodeCF - - // SFNode2X is a flag used to indicate a peer is running the Segwit2X - // software. - SFNode2X -) - -// Map of service flags back to their constant names for pretty printing. -var sfStrings = map[ServiceFlag]string{ - SFNodeNetwork: "SFNodeNetwork", - SFNodeGetUTXO: "SFNodeGetUTXO", - SFNodeBloom: "SFNodeBloom", - SFNodeWitness: "SFNodeWitness", - SFNodeXthin: "SFNodeXthin", - SFNodeBit5: "SFNodeBit5", - SFNodeCF: "SFNodeCF", - SFNode2X: "SFNode2X", -} - -// orderedSFStrings is an ordered list of service flags from highest to -// lowest. -var orderedSFStrings = []ServiceFlag{ - SFNodeNetwork, - SFNodeGetUTXO, - SFNodeBloom, - SFNodeWitness, - SFNodeXthin, - SFNodeBit5, - SFNodeCF, - SFNode2X, -} - -// String returns the ServiceFlag in human-readable form. -func (f ServiceFlag) String() string { - // No flags are set. - if f == 0 { - return "0x0" - } - - // Add individual bit flags. - s := "" - for _, flag := range orderedSFStrings { - if f&flag == flag { - s += sfStrings[flag] + "|" - f -= flag - } - } - - // Add any remaining flags which aren't accounted for as hex. - s = strings.TrimRight(s, "|") - if f != 0 { - s += "|0x" + strconv.FormatUint(uint64(f), 16) - } - s = strings.TrimLeft(s, "|") - return s -} - -// BitcoinNet represents which bitcoin network a message belongs to. -type BitcoinNet uint32 - -// Constants used to indicate the message bitcoin network. They can also be -// used to seek to the next message when a stream's state is unknown, but -// this package does not provide that functionality since it's generally a -// better idea to simply disconnect clients that are misbehaving over TCP. -const ( - // MainNet represents the main bitcoin network. - MainNet BitcoinNet = 0xd9b4bef9 - - // TestNet represents the regression test network. - TestNet BitcoinNet = 0xdab5bffa - - // TestNet3 represents the test network (version 3). - TestNet3 BitcoinNet = 0x0709110b - - // SimNet represents the simulation test network. - SimNet BitcoinNet = 0x12141c16 -) - -// bnStrings is a map of bitcoin networks back to their constant names for -// pretty printing. -var bnStrings = map[BitcoinNet]string{ - MainNet: "MainNet", - TestNet: "TestNet", - TestNet3: "TestNet3", - SimNet: "SimNet", -} - -// String returns the BitcoinNet in human-readable form. -func (n BitcoinNet) String() string { - if s, ok := bnStrings[n]; ok { - return s - } - - return fmt.Sprintf("Unknown BitcoinNet (%d)", uint32(n)) -} diff --git a/vendor/github.com/btcsuite/btcutil/.gitignore b/vendor/github.com/btcsuite/btcutil/.gitignore deleted file mode 100644 index 5b97dbb..0000000 --- a/vendor/github.com/btcsuite/btcutil/.gitignore +++ /dev/null @@ -1,28 +0,0 @@ -# Temp files -*~ - -# Log files -*.log - -# Compiled Object files, Static and Dynamic libs (Shared Objects) -*.o -*.a -*.so - -# Folders -_obj -_test - -# Architecture specific extensions/prefixes -*.[568vq] -[568vq].out - -*.cgo1.go -*.cgo2.c -_cgo_defun.c -_cgo_gotypes.go -_cgo_export.* - -_testmain.go - -*.exe diff --git a/vendor/github.com/btcsuite/btcutil/LICENSE b/vendor/github.com/btcsuite/btcutil/LICENSE deleted file mode 100644 index 3e7b167..0000000 --- a/vendor/github.com/btcsuite/btcutil/LICENSE +++ /dev/null @@ -1,16 +0,0 @@ -ISC License - -Copyright (c) 2013-2017 The btcsuite developers -Copyright (c) 2016-2017 The Lightning Network Developers - -Permission to use, copy, modify, and distribute this software for any -purpose with or without fee is hereby granted, provided that the above -copyright notice and this permission notice appear in all copies. - -THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/vendor/github.com/btcsuite/btcutil/README.md b/vendor/github.com/btcsuite/btcutil/README.md deleted file mode 100644 index fffb0f7..0000000 --- a/vendor/github.com/btcsuite/btcutil/README.md +++ /dev/null @@ -1,49 +0,0 @@ -btcutil -======= - -[![Build Status](https://github.com/btcsuite/btcutil/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcutil/actions) -[![ISC License](https://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](https://godoc.org/github.com/btcsuite/btcutil) - -Package btcutil provides bitcoin-specific convenience functions and types. -A comprehensive suite of tests is provided to ensure proper functionality. See -`test_coverage.txt` for the gocov coverage report. Alternatively, if you are -running a POSIX OS, you can run the `cov_report.sh` script for a real-time -report. - -This package was developed for btcd, an alternative full-node implementation of -bitcoin which is under active development by Conformal. Although it was -primarily written for btcd, this package has intentionally been designed so it -can be used as a standalone package for any projects needing the functionality -provided. - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcutil -``` - -## GPG Verification Key - -All official release tags are signed by Conformal so users can ensure the code -has not been tampered with and is coming from the btcsuite developers. To -verify the signature perform the following: - -- Download the public key from the Conformal website at - https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt - -- Import the public key into your GPG keyring: - ```bash - gpg --import GIT-GPG-KEY-conformal.txt - ``` - -- Verify the release tag with the following command where `TAG_NAME` is a - placeholder for the specific tag: - ```bash - git tag -v TAG_NAME - ``` - -## License - -Package btcutil is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcutil/address.go b/vendor/github.com/btcsuite/btcutil/address.go deleted file mode 100644 index 243a393..0000000 --- a/vendor/github.com/btcsuite/btcutil/address.go +++ /dev/null @@ -1,683 +0,0 @@ -// Copyright (c) 2013-2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "bytes" - "encoding/hex" - "errors" - "fmt" - "strings" - - "github.com/btcsuite/btcd/btcec" - "github.com/btcsuite/btcd/chaincfg" - "github.com/btcsuite/btcutil/base58" - "github.com/btcsuite/btcutil/bech32" - "golang.org/x/crypto/ripemd160" -) - -// UnsupportedWitnessVerError describes an error where a segwit address being -// decoded has an unsupported witness version. -type UnsupportedWitnessVerError byte - -func (e UnsupportedWitnessVerError) Error() string { - return fmt.Sprintf("unsupported witness version: %#x", e) -} - -// UnsupportedWitnessProgLenError describes an error where a segwit address -// being decoded has an unsupported witness program length. -type UnsupportedWitnessProgLenError int - -func (e UnsupportedWitnessProgLenError) Error() string { - return fmt.Sprintf("unsupported witness program length: %d", e) -} - -var ( - // ErrChecksumMismatch describes an error where decoding failed due - // to a bad checksum. - ErrChecksumMismatch = errors.New("checksum mismatch") - - // ErrUnknownAddressType describes an error where an address can not - // decoded as a specific address type due to the string encoding - // begining with an identifier byte unknown to any standard or - // registered (via chaincfg.Register) network. - ErrUnknownAddressType = errors.New("unknown address type") - - // ErrAddressCollision describes an error where an address can not - // be uniquely determined as either a pay-to-pubkey-hash or - // pay-to-script-hash address since the leading identifier is used for - // describing both address kinds, but for different networks. Rather - // than assuming or defaulting to one or the other, this error is - // returned and the caller must decide how to decode the address. - ErrAddressCollision = errors.New("address collision") -) - -// encodeAddress returns a human-readable payment address given a ripemd160 hash -// and netID which encodes the bitcoin network and address type. It is used -// in both pay-to-pubkey-hash (P2PKH) and pay-to-script-hash (P2SH) address -// encoding. -func encodeAddress(hash160 []byte, netID byte) string { - // Format is 1 byte for a network and address class (i.e. P2PKH vs - // P2SH), 20 bytes for a RIPEMD160 hash, and 4 bytes of checksum. - return base58.CheckEncode(hash160[:ripemd160.Size], netID) -} - -// encodeSegWitAddress creates a bech32 encoded address string representation -// from witness version and witness program. -func encodeSegWitAddress(hrp string, witnessVersion byte, witnessProgram []byte) (string, error) { - // Group the address bytes into 5 bit groups, as this is what is used to - // encode each character in the address string. - converted, err := bech32.ConvertBits(witnessProgram, 8, 5, true) - if err != nil { - return "", err - } - - // Concatenate the witness version and program, and encode the resulting - // bytes using bech32 encoding. - combined := make([]byte, len(converted)+1) - combined[0] = witnessVersion - copy(combined[1:], converted) - bech, err := bech32.Encode(hrp, combined) - if err != nil { - return "", err - } - - // Check validity by decoding the created address. - version, program, err := decodeSegWitAddress(bech) - if err != nil { - return "", fmt.Errorf("invalid segwit address: %v", err) - } - - if version != witnessVersion || !bytes.Equal(program, witnessProgram) { - return "", fmt.Errorf("invalid segwit address") - } - - return bech, nil -} - -// Address is an interface type for any type of destination a transaction -// output may spend to. This includes pay-to-pubkey (P2PK), pay-to-pubkey-hash -// (P2PKH), and pay-to-script-hash (P2SH). Address is designed to be generic -// enough that other kinds of addresses may be added in the future without -// changing the decoding and encoding API. -type Address interface { - // String returns the string encoding of the transaction output - // destination. - // - // Please note that String differs subtly from EncodeAddress: String - // will return the value as a string without any conversion, while - // EncodeAddress may convert destination types (for example, - // converting pubkeys to P2PKH addresses) before encoding as a - // payment address string. - String() string - - // EncodeAddress returns the string encoding of the payment address - // associated with the Address value. See the comment on String - // for how this method differs from String. - EncodeAddress() string - - // ScriptAddress returns the raw bytes of the address to be used - // when inserting the address into a txout's script. - ScriptAddress() []byte - - // IsForNet returns whether or not the address is associated with the - // passed bitcoin network. - IsForNet(*chaincfg.Params) bool -} - -// DecodeAddress decodes the string encoding of an address and returns -// the Address if addr is a valid encoding for a known address type. -// -// The bitcoin network the address is associated with is extracted if possible. -// When the address does not encode the network, such as in the case of a raw -// public key, the address will be associated with the passed defaultNet. -func DecodeAddress(addr string, defaultNet *chaincfg.Params) (Address, error) { - // Bech32 encoded segwit addresses start with a human-readable part - // (hrp) followed by '1'. For Bitcoin mainnet the hrp is "bc", and for - // testnet it is "tb". If the address string has a prefix that matches - // one of the prefixes for the known networks, we try to decode it as - // a segwit address. - oneIndex := strings.LastIndexByte(addr, '1') - if oneIndex > 1 { - prefix := addr[:oneIndex+1] - if chaincfg.IsBech32SegwitPrefix(prefix) { - witnessVer, witnessProg, err := decodeSegWitAddress(addr) - if err != nil { - return nil, err - } - - // We currently only support P2WPKH and P2WSH, which is - // witness version 0. - if witnessVer != 0 { - return nil, UnsupportedWitnessVerError(witnessVer) - } - - // The HRP is everything before the found '1'. - hrp := prefix[:len(prefix)-1] - - switch len(witnessProg) { - case 20: - return newAddressWitnessPubKeyHash(hrp, witnessProg) - case 32: - return newAddressWitnessScriptHash(hrp, witnessProg) - default: - return nil, UnsupportedWitnessProgLenError(len(witnessProg)) - } - } - } - - // Serialized public keys are either 65 bytes (130 hex chars) if - // uncompressed/hybrid or 33 bytes (66 hex chars) if compressed. - if len(addr) == 130 || len(addr) == 66 { - serializedPubKey, err := hex.DecodeString(addr) - if err != nil { - return nil, err - } - return NewAddressPubKey(serializedPubKey, defaultNet) - } - - // Switch on decoded length to determine the type. - decoded, netID, err := base58.CheckDecode(addr) - if err != nil { - if err == base58.ErrChecksum { - return nil, ErrChecksumMismatch - } - return nil, errors.New("decoded address is of unknown format") - } - switch len(decoded) { - case ripemd160.Size: // P2PKH or P2SH - isP2PKH := netID == defaultNet.PubKeyHashAddrID - isP2SH := netID == defaultNet.ScriptHashAddrID - switch hash160 := decoded; { - case isP2PKH && isP2SH: - return nil, ErrAddressCollision - case isP2PKH: - return newAddressPubKeyHash(hash160, netID) - case isP2SH: - return newAddressScriptHashFromHash(hash160, netID) - default: - return nil, ErrUnknownAddressType - } - - default: - return nil, errors.New("decoded address is of unknown size") - } -} - -// decodeSegWitAddress parses a bech32 encoded segwit address string and -// returns the witness version and witness program byte representation. -func decodeSegWitAddress(address string) (byte, []byte, error) { - // Decode the bech32 encoded address. - _, data, err := bech32.Decode(address) - if err != nil { - return 0, nil, err - } - - // The first byte of the decoded address is the witness version, it must - // exist. - if len(data) < 1 { - return 0, nil, fmt.Errorf("no witness version") - } - - // ...and be <= 16. - version := data[0] - if version > 16 { - return 0, nil, fmt.Errorf("invalid witness version: %v", version) - } - - // The remaining characters of the address returned are grouped into - // words of 5 bits. In order to restore the original witness program - // bytes, we'll need to regroup into 8 bit words. - regrouped, err := bech32.ConvertBits(data[1:], 5, 8, false) - if err != nil { - return 0, nil, err - } - - // The regrouped data must be between 2 and 40 bytes. - if len(regrouped) < 2 || len(regrouped) > 40 { - return 0, nil, fmt.Errorf("invalid data length") - } - - // For witness version 0, address MUST be exactly 20 or 32 bytes. - if version == 0 && len(regrouped) != 20 && len(regrouped) != 32 { - return 0, nil, fmt.Errorf("invalid data length for witness "+ - "version 0: %v", len(regrouped)) - } - - return version, regrouped, nil -} - -// AddressPubKeyHash is an Address for a pay-to-pubkey-hash (P2PKH) -// transaction. -type AddressPubKeyHash struct { - hash [ripemd160.Size]byte - netID byte -} - -// NewAddressPubKeyHash returns a new AddressPubKeyHash. pkHash mustbe 20 -// bytes. -func NewAddressPubKeyHash(pkHash []byte, net *chaincfg.Params) (*AddressPubKeyHash, error) { - return newAddressPubKeyHash(pkHash, net.PubKeyHashAddrID) -} - -// newAddressPubKeyHash is the internal API to create a pubkey hash address -// with a known leading identifier byte for a network, rather than looking -// it up through its parameters. This is useful when creating a new address -// structure from a string encoding where the identifer byte is already -// known. -func newAddressPubKeyHash(pkHash []byte, netID byte) (*AddressPubKeyHash, error) { - // Check for a valid pubkey hash length. - if len(pkHash) != ripemd160.Size { - return nil, errors.New("pkHash must be 20 bytes") - } - - addr := &AddressPubKeyHash{netID: netID} - copy(addr.hash[:], pkHash) - return addr, nil -} - -// EncodeAddress returns the string encoding of a pay-to-pubkey-hash -// address. Part of the Address interface. -func (a *AddressPubKeyHash) EncodeAddress() string { - return encodeAddress(a.hash[:], a.netID) -} - -// ScriptAddress returns the bytes to be included in a txout script to pay -// to a pubkey hash. Part of the Address interface. -func (a *AddressPubKeyHash) ScriptAddress() []byte { - return a.hash[:] -} - -// IsForNet returns whether or not the pay-to-pubkey-hash address is associated -// with the passed bitcoin network. -func (a *AddressPubKeyHash) IsForNet(net *chaincfg.Params) bool { - return a.netID == net.PubKeyHashAddrID -} - -// String returns a human-readable string for the pay-to-pubkey-hash address. -// This is equivalent to calling EncodeAddress, but is provided so the type can -// be used as a fmt.Stringer. -func (a *AddressPubKeyHash) String() string { - return a.EncodeAddress() -} - -// Hash160 returns the underlying array of the pubkey hash. This can be useful -// when an array is more appropiate than a slice (for example, when used as map -// keys). -func (a *AddressPubKeyHash) Hash160() *[ripemd160.Size]byte { - return &a.hash -} - -// AddressScriptHash is an Address for a pay-to-script-hash (P2SH) -// transaction. -type AddressScriptHash struct { - hash [ripemd160.Size]byte - netID byte -} - -// NewAddressScriptHash returns a new AddressScriptHash. -func NewAddressScriptHash(serializedScript []byte, net *chaincfg.Params) (*AddressScriptHash, error) { - scriptHash := Hash160(serializedScript) - return newAddressScriptHashFromHash(scriptHash, net.ScriptHashAddrID) -} - -// NewAddressScriptHashFromHash returns a new AddressScriptHash. scriptHash -// must be 20 bytes. -func NewAddressScriptHashFromHash(scriptHash []byte, net *chaincfg.Params) (*AddressScriptHash, error) { - return newAddressScriptHashFromHash(scriptHash, net.ScriptHashAddrID) -} - -// newAddressScriptHashFromHash is the internal API to create a script hash -// address with a known leading identifier byte for a network, rather than -// looking it up through its parameters. This is useful when creating a new -// address structure from a string encoding where the identifer byte is already -// known. -func newAddressScriptHashFromHash(scriptHash []byte, netID byte) (*AddressScriptHash, error) { - // Check for a valid script hash length. - if len(scriptHash) != ripemd160.Size { - return nil, errors.New("scriptHash must be 20 bytes") - } - - addr := &AddressScriptHash{netID: netID} - copy(addr.hash[:], scriptHash) - return addr, nil -} - -// EncodeAddress returns the string encoding of a pay-to-script-hash -// address. Part of the Address interface. -func (a *AddressScriptHash) EncodeAddress() string { - return encodeAddress(a.hash[:], a.netID) -} - -// ScriptAddress returns the bytes to be included in a txout script to pay -// to a script hash. Part of the Address interface. -func (a *AddressScriptHash) ScriptAddress() []byte { - return a.hash[:] -} - -// IsForNet returns whether or not the pay-to-script-hash address is associated -// with the passed bitcoin network. -func (a *AddressScriptHash) IsForNet(net *chaincfg.Params) bool { - return a.netID == net.ScriptHashAddrID -} - -// String returns a human-readable string for the pay-to-script-hash address. -// This is equivalent to calling EncodeAddress, but is provided so the type can -// be used as a fmt.Stringer. -func (a *AddressScriptHash) String() string { - return a.EncodeAddress() -} - -// Hash160 returns the underlying array of the script hash. This can be useful -// when an array is more appropiate than a slice (for example, when used as map -// keys). -func (a *AddressScriptHash) Hash160() *[ripemd160.Size]byte { - return &a.hash -} - -// PubKeyFormat describes what format to use for a pay-to-pubkey address. -type PubKeyFormat int - -const ( - // PKFUncompressed indicates the pay-to-pubkey address format is an - // uncompressed public key. - PKFUncompressed PubKeyFormat = iota - - // PKFCompressed indicates the pay-to-pubkey address format is a - // compressed public key. - PKFCompressed - - // PKFHybrid indicates the pay-to-pubkey address format is a hybrid - // public key. - PKFHybrid -) - -// AddressPubKey is an Address for a pay-to-pubkey transaction. -type AddressPubKey struct { - pubKeyFormat PubKeyFormat - pubKey *btcec.PublicKey - pubKeyHashID byte -} - -// NewAddressPubKey returns a new AddressPubKey which represents a pay-to-pubkey -// address. The serializedPubKey parameter must be a valid pubkey and can be -// uncompressed, compressed, or hybrid. -func NewAddressPubKey(serializedPubKey []byte, net *chaincfg.Params) (*AddressPubKey, error) { - pubKey, err := btcec.ParsePubKey(serializedPubKey, btcec.S256()) - if err != nil { - return nil, err - } - - // Set the format of the pubkey. This probably should be returned - // from btcec, but do it here to avoid API churn. We already know the - // pubkey is valid since it parsed above, so it's safe to simply examine - // the leading byte to get the format. - pkFormat := PKFUncompressed - switch serializedPubKey[0] { - case 0x02, 0x03: - pkFormat = PKFCompressed - case 0x06, 0x07: - pkFormat = PKFHybrid - } - - return &AddressPubKey{ - pubKeyFormat: pkFormat, - pubKey: pubKey, - pubKeyHashID: net.PubKeyHashAddrID, - }, nil -} - -// serialize returns the serialization of the public key according to the -// format associated with the address. -func (a *AddressPubKey) serialize() []byte { - switch a.pubKeyFormat { - default: - fallthrough - case PKFUncompressed: - return a.pubKey.SerializeUncompressed() - - case PKFCompressed: - return a.pubKey.SerializeCompressed() - - case PKFHybrid: - return a.pubKey.SerializeHybrid() - } -} - -// EncodeAddress returns the string encoding of the public key as a -// pay-to-pubkey-hash. Note that the public key format (uncompressed, -// compressed, etc) will change the resulting address. This is expected since -// pay-to-pubkey-hash is a hash of the serialized public key which obviously -// differs with the format. At the time of this writing, most Bitcoin addresses -// are pay-to-pubkey-hash constructed from the uncompressed public key. -// -// Part of the Address interface. -func (a *AddressPubKey) EncodeAddress() string { - return encodeAddress(Hash160(a.serialize()), a.pubKeyHashID) -} - -// ScriptAddress returns the bytes to be included in a txout script to pay -// to a public key. Setting the public key format will affect the output of -// this function accordingly. Part of the Address interface. -func (a *AddressPubKey) ScriptAddress() []byte { - return a.serialize() -} - -// IsForNet returns whether or not the pay-to-pubkey address is associated -// with the passed bitcoin network. -func (a *AddressPubKey) IsForNet(net *chaincfg.Params) bool { - return a.pubKeyHashID == net.PubKeyHashAddrID -} - -// String returns the hex-encoded human-readable string for the pay-to-pubkey -// address. This is not the same as calling EncodeAddress. -func (a *AddressPubKey) String() string { - return hex.EncodeToString(a.serialize()) -} - -// Format returns the format (uncompressed, compressed, etc) of the -// pay-to-pubkey address. -func (a *AddressPubKey) Format() PubKeyFormat { - return a.pubKeyFormat -} - -// SetFormat sets the format (uncompressed, compressed, etc) of the -// pay-to-pubkey address. -func (a *AddressPubKey) SetFormat(pkFormat PubKeyFormat) { - a.pubKeyFormat = pkFormat -} - -// AddressPubKeyHash returns the pay-to-pubkey address converted to a -// pay-to-pubkey-hash address. Note that the public key format (uncompressed, -// compressed, etc) will change the resulting address. This is expected since -// pay-to-pubkey-hash is a hash of the serialized public key which obviously -// differs with the format. At the time of this writing, most Bitcoin addresses -// are pay-to-pubkey-hash constructed from the uncompressed public key. -func (a *AddressPubKey) AddressPubKeyHash() *AddressPubKeyHash { - addr := &AddressPubKeyHash{netID: a.pubKeyHashID} - copy(addr.hash[:], Hash160(a.serialize())) - return addr -} - -// PubKey returns the underlying public key for the address. -func (a *AddressPubKey) PubKey() *btcec.PublicKey { - return a.pubKey -} - -// AddressWitnessPubKeyHash is an Address for a pay-to-witness-pubkey-hash -// (P2WPKH) output. See BIP 173 for further details regarding native segregated -// witness address encoding: -// https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki -type AddressWitnessPubKeyHash struct { - hrp string - witnessVersion byte - witnessProgram [20]byte -} - -// NewAddressWitnessPubKeyHash returns a new AddressWitnessPubKeyHash. -func NewAddressWitnessPubKeyHash(witnessProg []byte, net *chaincfg.Params) (*AddressWitnessPubKeyHash, error) { - return newAddressWitnessPubKeyHash(net.Bech32HRPSegwit, witnessProg) -} - -// newAddressWitnessPubKeyHash is an internal helper function to create an -// AddressWitnessPubKeyHash with a known human-readable part, rather than -// looking it up through its parameters. -func newAddressWitnessPubKeyHash(hrp string, witnessProg []byte) (*AddressWitnessPubKeyHash, error) { - // Check for valid program length for witness version 0, which is 20 - // for P2WPKH. - if len(witnessProg) != 20 { - return nil, errors.New("witness program must be 20 " + - "bytes for p2wpkh") - } - - addr := &AddressWitnessPubKeyHash{ - hrp: strings.ToLower(hrp), - witnessVersion: 0x00, - } - - copy(addr.witnessProgram[:], witnessProg) - - return addr, nil -} - -// EncodeAddress returns the bech32 string encoding of an -// AddressWitnessPubKeyHash. -// Part of the Address interface. -func (a *AddressWitnessPubKeyHash) EncodeAddress() string { - str, err := encodeSegWitAddress(a.hrp, a.witnessVersion, - a.witnessProgram[:]) - if err != nil { - return "" - } - return str -} - -// ScriptAddress returns the witness program for this address. -// Part of the Address interface. -func (a *AddressWitnessPubKeyHash) ScriptAddress() []byte { - return a.witnessProgram[:] -} - -// IsForNet returns whether or not the AddressWitnessPubKeyHash is associated -// with the passed bitcoin network. -// Part of the Address interface. -func (a *AddressWitnessPubKeyHash) IsForNet(net *chaincfg.Params) bool { - return a.hrp == net.Bech32HRPSegwit -} - -// String returns a human-readable string for the AddressWitnessPubKeyHash. -// This is equivalent to calling EncodeAddress, but is provided so the type -// can be used as a fmt.Stringer. -// Part of the Address interface. -func (a *AddressWitnessPubKeyHash) String() string { - return a.EncodeAddress() -} - -// Hrp returns the human-readable part of the bech32 encoded -// AddressWitnessPubKeyHash. -func (a *AddressWitnessPubKeyHash) Hrp() string { - return a.hrp -} - -// WitnessVersion returns the witness version of the AddressWitnessPubKeyHash. -func (a *AddressWitnessPubKeyHash) WitnessVersion() byte { - return a.witnessVersion -} - -// WitnessProgram returns the witness program of the AddressWitnessPubKeyHash. -func (a *AddressWitnessPubKeyHash) WitnessProgram() []byte { - return a.witnessProgram[:] -} - -// Hash160 returns the witness program of the AddressWitnessPubKeyHash as a -// byte array. -func (a *AddressWitnessPubKeyHash) Hash160() *[20]byte { - return &a.witnessProgram -} - -// AddressWitnessScriptHash is an Address for a pay-to-witness-script-hash -// (P2WSH) output. See BIP 173 for further details regarding native segregated -// witness address encoding: -// https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki -type AddressWitnessScriptHash struct { - hrp string - witnessVersion byte - witnessProgram [32]byte -} - -// NewAddressWitnessScriptHash returns a new AddressWitnessPubKeyHash. -func NewAddressWitnessScriptHash(witnessProg []byte, net *chaincfg.Params) (*AddressWitnessScriptHash, error) { - return newAddressWitnessScriptHash(net.Bech32HRPSegwit, witnessProg) -} - -// newAddressWitnessScriptHash is an internal helper function to create an -// AddressWitnessScriptHash with a known human-readable part, rather than -// looking it up through its parameters. -func newAddressWitnessScriptHash(hrp string, witnessProg []byte) (*AddressWitnessScriptHash, error) { - // Check for valid program length for witness version 0, which is 32 - // for P2WSH. - if len(witnessProg) != 32 { - return nil, errors.New("witness program must be 32 " + - "bytes for p2wsh") - } - - addr := &AddressWitnessScriptHash{ - hrp: strings.ToLower(hrp), - witnessVersion: 0x00, - } - - copy(addr.witnessProgram[:], witnessProg) - - return addr, nil -} - -// EncodeAddress returns the bech32 string encoding of an -// AddressWitnessScriptHash. -// Part of the Address interface. -func (a *AddressWitnessScriptHash) EncodeAddress() string { - str, err := encodeSegWitAddress(a.hrp, a.witnessVersion, - a.witnessProgram[:]) - if err != nil { - return "" - } - return str -} - -// ScriptAddress returns the witness program for this address. -// Part of the Address interface. -func (a *AddressWitnessScriptHash) ScriptAddress() []byte { - return a.witnessProgram[:] -} - -// IsForNet returns whether or not the AddressWitnessScriptHash is associated -// with the passed bitcoin network. -// Part of the Address interface. -func (a *AddressWitnessScriptHash) IsForNet(net *chaincfg.Params) bool { - return a.hrp == net.Bech32HRPSegwit -} - -// String returns a human-readable string for the AddressWitnessScriptHash. -// This is equivalent to calling EncodeAddress, but is provided so the type -// can be used as a fmt.Stringer. -// Part of the Address interface. -func (a *AddressWitnessScriptHash) String() string { - return a.EncodeAddress() -} - -// Hrp returns the human-readable part of the bech32 encoded -// AddressWitnessScriptHash. -func (a *AddressWitnessScriptHash) Hrp() string { - return a.hrp -} - -// WitnessVersion returns the witness version of the AddressWitnessScriptHash. -func (a *AddressWitnessScriptHash) WitnessVersion() byte { - return a.witnessVersion -} - -// WitnessProgram returns the witness program of the AddressWitnessScriptHash. -func (a *AddressWitnessScriptHash) WitnessProgram() []byte { - return a.witnessProgram[:] -} diff --git a/vendor/github.com/btcsuite/btcutil/amount.go b/vendor/github.com/btcsuite/btcutil/amount.go deleted file mode 100644 index e2f057e..0000000 --- a/vendor/github.com/btcsuite/btcutil/amount.go +++ /dev/null @@ -1,122 +0,0 @@ -// Copyright (c) 2013, 2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "errors" - "math" - "strconv" -) - -// AmountUnit describes a method of converting an Amount to something -// other than the base unit of a bitcoin. The value of the AmountUnit -// is the exponent component of the decadic multiple to convert from -// an amount in bitcoin to an amount counted in units. -type AmountUnit int - -// These constants define various units used when describing a bitcoin -// monetary amount. -const ( - AmountMegaBTC AmountUnit = 6 - AmountKiloBTC AmountUnit = 3 - AmountBTC AmountUnit = 0 - AmountMilliBTC AmountUnit = -3 - AmountMicroBTC AmountUnit = -6 - AmountSatoshi AmountUnit = -8 -) - -// String returns the unit as a string. For recognized units, the SI -// prefix is used, or "Satoshi" for the base unit. For all unrecognized -// units, "1eN BTC" is returned, where N is the AmountUnit. -func (u AmountUnit) String() string { - switch u { - case AmountMegaBTC: - return "MBTC" - case AmountKiloBTC: - return "kBTC" - case AmountBTC: - return "BTC" - case AmountMilliBTC: - return "mBTC" - case AmountMicroBTC: - return "μBTC" - case AmountSatoshi: - return "Satoshi" - default: - return "1e" + strconv.FormatInt(int64(u), 10) + " BTC" - } -} - -// Amount represents the base bitcoin monetary unit (colloquially referred -// to as a `Satoshi'). A single Amount is equal to 1e-8 of a bitcoin. -type Amount int64 - -// round converts a floating point number, which may or may not be representable -// as an integer, to the Amount integer type by rounding to the nearest integer. -// This is performed by adding or subtracting 0.5 depending on the sign, and -// relying on integer truncation to round the value to the nearest Amount. -func round(f float64) Amount { - if f < 0 { - return Amount(f - 0.5) - } - return Amount(f + 0.5) -} - -// NewAmount creates an Amount from a floating point value representing -// some value in bitcoin. NewAmount errors if f is NaN or +-Infinity, but -// does not check that the amount is within the total amount of bitcoin -// producible as f may not refer to an amount at a single moment in time. -// -// NewAmount is for specifically for converting BTC to Satoshi. -// For creating a new Amount with an int64 value which denotes a quantity of Satoshi, -// do a simple type conversion from type int64 to Amount. -// See GoDoc for example: http://godoc.org/github.com/btcsuite/btcutil#example-Amount -func NewAmount(f float64) (Amount, error) { - // The amount is only considered invalid if it cannot be represented - // as an integer type. This may happen if f is NaN or +-Infinity. - switch { - case math.IsNaN(f): - fallthrough - case math.IsInf(f, 1): - fallthrough - case math.IsInf(f, -1): - return 0, errors.New("invalid bitcoin amount") - } - - return round(f * SatoshiPerBitcoin), nil -} - -// ToUnit converts a monetary amount counted in bitcoin base units to a -// floating point value representing an amount of bitcoin. -func (a Amount) ToUnit(u AmountUnit) float64 { - return float64(a) / math.Pow10(int(u+8)) -} - -// ToBTC is the equivalent of calling ToUnit with AmountBTC. -func (a Amount) ToBTC() float64 { - return a.ToUnit(AmountBTC) -} - -// Format formats a monetary amount counted in bitcoin base units as a -// string for a given unit. The conversion will succeed for any unit, -// however, known units will be formated with an appended label describing -// the units with SI notation, or "Satoshi" for the base unit. -func (a Amount) Format(u AmountUnit) string { - units := " " + u.String() - return strconv.FormatFloat(a.ToUnit(u), 'f', -int(u+8), 64) + units -} - -// String is the equivalent of calling Format with AmountBTC. -func (a Amount) String() string { - return a.Format(AmountBTC) -} - -// MulF64 multiplies an Amount by a floating point value. While this is not -// an operation that must typically be done by a full node or wallet, it is -// useful for services that build on top of bitcoin (for example, calculating -// a fee by multiplying by a percentage). -func (a Amount) MulF64(f float64) Amount { - return round(float64(a) * f) -} diff --git a/vendor/github.com/btcsuite/btcutil/appdata.go b/vendor/github.com/btcsuite/btcutil/appdata.go deleted file mode 100644 index e36cf7c..0000000 --- a/vendor/github.com/btcsuite/btcutil/appdata.go +++ /dev/null @@ -1,105 +0,0 @@ -// Copyright (c) 2013-2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "os" - "os/user" - "path/filepath" - "runtime" - "strings" - "unicode" -) - -// appDataDir returns an operating system specific directory to be used for -// storing application data for an application. See AppDataDir for more -// details. This unexported version takes an operating system argument -// primarily to enable the testing package to properly test the function by -// forcing an operating system that is not the currently one. -func appDataDir(goos, appName string, roaming bool) string { - if appName == "" || appName == "." { - return "." - } - - // The caller really shouldn't prepend the appName with a period, but - // if they do, handle it gracefully by trimming it. - appName = strings.TrimPrefix(appName, ".") - appNameUpper := string(unicode.ToUpper(rune(appName[0]))) + appName[1:] - appNameLower := string(unicode.ToLower(rune(appName[0]))) + appName[1:] - - // Get the OS specific home directory via the Go standard lib. - var homeDir string - usr, err := user.Current() - if err == nil { - homeDir = usr.HomeDir - } - - // Fall back to standard HOME environment variable that works - // for most POSIX OSes if the directory from the Go standard - // lib failed. - if err != nil || homeDir == "" { - homeDir = os.Getenv("HOME") - } - - switch goos { - // Attempt to use the LOCALAPPDATA or APPDATA environment variable on - // Windows. - case "windows": - // Windows XP and before didn't have a LOCALAPPDATA, so fallback - // to regular APPDATA when LOCALAPPDATA is not set. - appData := os.Getenv("LOCALAPPDATA") - if roaming || appData == "" { - appData = os.Getenv("APPDATA") - } - - if appData != "" { - return filepath.Join(appData, appNameUpper) - } - - case "darwin": - if homeDir != "" { - return filepath.Join(homeDir, "Library", - "Application Support", appNameUpper) - } - - case "plan9": - if homeDir != "" { - return filepath.Join(homeDir, appNameLower) - } - - default: - if homeDir != "" { - return filepath.Join(homeDir, "."+appNameLower) - } - } - - // Fall back to the current directory if all else fails. - return "." -} - -// AppDataDir returns an operating system specific directory to be used for -// storing application data for an application. -// -// The appName parameter is the name of the application the data directory is -// being requested for. This function will prepend a period to the appName for -// POSIX style operating systems since that is standard practice. An empty -// appName or one with a single dot is treated as requesting the current -// directory so only "." will be returned. Further, the first character -// of appName will be made lowercase for POSIX style operating systems and -// uppercase for Mac and Windows since that is standard practice. -// -// The roaming parameter only applies to Windows where it specifies the roaming -// application data profile (%APPDATA%) should be used instead of the local one -// (%LOCALAPPDATA%) that is used by default. -// -// Example results: -// dir := AppDataDir("myapp", false) -// POSIX (Linux/BSD): ~/.myapp -// Mac OS: $HOME/Library/Application Support/Myapp -// Windows: %LOCALAPPDATA%\Myapp -// Plan 9: $home/myapp -func AppDataDir(appName string, roaming bool) string { - return appDataDir(runtime.GOOS, appName, roaming) -} diff --git a/vendor/github.com/btcsuite/btcutil/base58/README.md b/vendor/github.com/btcsuite/btcutil/base58/README.md deleted file mode 100644 index 98dfb1d..0000000 --- a/vendor/github.com/btcsuite/btcutil/base58/README.md +++ /dev/null @@ -1,34 +0,0 @@ -base58 -========== - -[![Build Status](http://img.shields.io/travis/btcsuite/btcutil.svg)](https://travis-ci.org/btcsuite/btcutil) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](http://godoc.org/github.com/btcsuite/btcutil/base58) - -Package base58 provides an API for encoding and decoding to and from the -modified base58 encoding. It also provides an API to do Base58Check encoding, -as described [here](https://en.bitcoin.it/wiki/Base58Check_encoding). - -A comprehensive suite of tests is provided to ensure proper functionality. - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcutil/base58 -``` - -## Examples - -* [Decode Example](http://godoc.org/github.com/btcsuite/btcutil/base58#example-Decode) - Demonstrates how to decode modified base58 encoded data. -* [Encode Example](http://godoc.org/github.com/btcsuite/btcutil/base58#example-Encode) - Demonstrates how to encode data using the modified base58 encoding scheme. -* [CheckDecode Example](http://godoc.org/github.com/btcsuite/btcutil/base58#example-CheckDecode) - Demonstrates how to decode Base58Check encoded data. -* [CheckEncode Example](http://godoc.org/github.com/btcsuite/btcutil/base58#example-CheckEncode) - Demonstrates how to encode data using the Base58Check encoding scheme. - -## License - -Package base58 is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcutil/base58/alphabet.go b/vendor/github.com/btcsuite/btcutil/base58/alphabet.go deleted file mode 100644 index 6bb39fe..0000000 --- a/vendor/github.com/btcsuite/btcutil/base58/alphabet.go +++ /dev/null @@ -1,49 +0,0 @@ -// Copyright (c) 2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -// AUTOGENERATED by genalphabet.go; do not edit. - -package base58 - -const ( - // alphabet is the modified base58 alphabet used by Bitcoin. - alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" - - alphabetIdx0 = '1' -) - -var b58 = [256]byte{ - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 0, 1, 2, 3, 4, 5, 6, - 7, 8, 255, 255, 255, 255, 255, 255, - 255, 9, 10, 11, 12, 13, 14, 15, - 16, 255, 17, 18, 19, 20, 21, 255, - 22, 23, 24, 25, 26, 27, 28, 29, - 30, 31, 32, 255, 255, 255, 255, 255, - 255, 33, 34, 35, 36, 37, 38, 39, - 40, 41, 42, 43, 255, 44, 45, 46, - 47, 48, 49, 50, 51, 52, 53, 54, - 55, 56, 57, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, - 255, 255, 255, 255, 255, 255, 255, 255, -} diff --git a/vendor/github.com/btcsuite/btcutil/base58/base58.go b/vendor/github.com/btcsuite/btcutil/base58/base58.go deleted file mode 100644 index 8ee5956..0000000 --- a/vendor/github.com/btcsuite/btcutil/base58/base58.go +++ /dev/null @@ -1,138 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package base58 - -import ( - "math/big" -) - -//go:generate go run genalphabet.go - -var bigRadix = [...]*big.Int{ - big.NewInt(0), - big.NewInt(58), - big.NewInt(58 * 58), - big.NewInt(58 * 58 * 58), - big.NewInt(58 * 58 * 58 * 58), - big.NewInt(58 * 58 * 58 * 58 * 58), - big.NewInt(58 * 58 * 58 * 58 * 58 * 58), - big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58), - big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58 * 58), - big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58 * 58 * 58), - bigRadix10, -} - -var bigRadix10 = big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58 * 58 * 58 * 58) // 58^10 - -// Decode decodes a modified base58 string to a byte slice. -func Decode(b string) []byte { - answer := big.NewInt(0) - scratch := new(big.Int) - - // Calculating with big.Int is slow for each iteration. - // x += b58[b[i]] * j - // j *= 58 - // - // Instead we can try to do as much calculations on int64. - // We can represent a 10 digit base58 number using an int64. - // - // Hence we'll try to convert 10, base58 digits at a time. - // The rough idea is to calculate `t`, such that: - // - // t := b58[b[i+9]] * 58^9 ... + b58[b[i+1]] * 58^1 + b58[b[i]] * 58^0 - // x *= 58^10 - // x += t - // - // Of course, in addition, we'll need to handle boundary condition when `b` is not multiple of 58^10. - // In that case we'll use the bigRadix[n] lookup for the appropriate power. - for t := b; len(t) > 0; { - n := len(t) - if n > 10 { - n = 10 - } - - total := uint64(0) - for _, v := range t[:n] { - tmp := b58[v] - if tmp == 255 { - return []byte("") - } - total = total*58 + uint64(tmp) - } - - answer.Mul(answer, bigRadix[n]) - scratch.SetUint64(total) - answer.Add(answer, scratch) - - t = t[n:] - } - - tmpval := answer.Bytes() - - var numZeros int - for numZeros = 0; numZeros < len(b); numZeros++ { - if b[numZeros] != alphabetIdx0 { - break - } - } - flen := numZeros + len(tmpval) - val := make([]byte, flen) - copy(val[numZeros:], tmpval) - - return val -} - -// Encode encodes a byte slice to a modified base58 string. -func Encode(b []byte) string { - x := new(big.Int) - x.SetBytes(b) - - // maximum length of output is log58(2^(8*len(b))) == len(b) * 8 / log(58) - maxlen := int(float64(len(b))*1.365658237309761) + 1 - answer := make([]byte, 0, maxlen) - mod := new(big.Int) - for x.Sign() > 0 { - // Calculating with big.Int is slow for each iteration. - // x, mod = x / 58, x % 58 - // - // Instead we can try to do as much calculations on int64. - // x, mod = x / 58^10, x % 58^10 - // - // Which will give us mod, which is 10 digit base58 number. - // We'll loop that 10 times to convert to the answer. - - x.DivMod(x, bigRadix10, mod) - if x.Sign() == 0 { - // When x = 0, we need to ensure we don't add any extra zeros. - m := mod.Int64() - for m > 0 { - answer = append(answer, alphabet[m%58]) - m /= 58 - } - } else { - m := mod.Int64() - for i := 0; i < 10; i++ { - answer = append(answer, alphabet[m%58]) - m /= 58 - } - } - } - - // leading zero bytes - for _, i := range b { - if i != 0 { - break - } - answer = append(answer, alphabetIdx0) - } - - // reverse - alen := len(answer) - for i := 0; i < alen/2; i++ { - answer[i], answer[alen-1-i] = answer[alen-1-i], answer[i] - } - - return string(answer) -} diff --git a/vendor/github.com/btcsuite/btcutil/base58/base58check.go b/vendor/github.com/btcsuite/btcutil/base58/base58check.go deleted file mode 100644 index 7cdafee..0000000 --- a/vendor/github.com/btcsuite/btcutil/base58/base58check.go +++ /dev/null @@ -1,52 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package base58 - -import ( - "crypto/sha256" - "errors" -) - -// ErrChecksum indicates that the checksum of a check-encoded string does not verify against -// the checksum. -var ErrChecksum = errors.New("checksum error") - -// ErrInvalidFormat indicates that the check-encoded string has an invalid format. -var ErrInvalidFormat = errors.New("invalid format: version and/or checksum bytes missing") - -// checksum: first four bytes of sha256^2 -func checksum(input []byte) (cksum [4]byte) { - h := sha256.Sum256(input) - h2 := sha256.Sum256(h[:]) - copy(cksum[:], h2[:4]) - return -} - -// CheckEncode prepends a version byte and appends a four byte checksum. -func CheckEncode(input []byte, version byte) string { - b := make([]byte, 0, 1+len(input)+4) - b = append(b, version) - b = append(b, input[:]...) - cksum := checksum(b) - b = append(b, cksum[:]...) - return Encode(b) -} - -// CheckDecode decodes a string that was encoded with CheckEncode and verifies the checksum. -func CheckDecode(input string) (result []byte, version byte, err error) { - decoded := Decode(input) - if len(decoded) < 5 { - return nil, 0, ErrInvalidFormat - } - version = decoded[0] - var cksum [4]byte - copy(cksum[:], decoded[len(decoded)-4:]) - if checksum(decoded[:len(decoded)-4]) != cksum { - return nil, 0, ErrChecksum - } - payload := decoded[1 : len(decoded)-4] - result = append(result, payload...) - return -} diff --git a/vendor/github.com/btcsuite/btcutil/base58/cov_report.sh b/vendor/github.com/btcsuite/btcutil/base58/cov_report.sh deleted file mode 100644 index 307f05b..0000000 --- a/vendor/github.com/btcsuite/btcutil/base58/cov_report.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/sh - -# This script uses gocov to generate a test coverage report. -# The gocov tool my be obtained with the following command: -# go get github.com/axw/gocov/gocov -# -# It will be installed to $GOPATH/bin, so ensure that location is in your $PATH. - -# Check for gocov. -type gocov >/dev/null 2>&1 -if [ $? -ne 0 ]; then - echo >&2 "This script requires the gocov tool." - echo >&2 "You may obtain it with the following command:" - echo >&2 "go get github.com/axw/gocov/gocov" - exit 1 -fi -gocov test | gocov report diff --git a/vendor/github.com/btcsuite/btcutil/base58/doc.go b/vendor/github.com/btcsuite/btcutil/base58/doc.go deleted file mode 100644 index 9a2c0e6..0000000 --- a/vendor/github.com/btcsuite/btcutil/base58/doc.go +++ /dev/null @@ -1,29 +0,0 @@ -// Copyright (c) 2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package base58 provides an API for working with modified base58 and Base58Check -encodings. - -Modified Base58 Encoding - -Standard base58 encoding is similar to standard base64 encoding except, as the -name implies, it uses a 58 character alphabet which results in an alphanumeric -string and allows some characters which are problematic for humans to be -excluded. Due to this, there can be various base58 alphabets. - -The modified base58 alphabet used by Bitcoin, and hence this package, omits the -0, O, I, and l characters that look the same in many fonts and are therefore -hard to humans to distinguish. - -Base58Check Encoding Scheme - -The Base58Check encoding scheme is primarily used for Bitcoin addresses at the -time of this writing, however it can be used to generically encode arbitrary -byte arrays into human-readable strings along with a version byte that can be -used to differentiate the same payload. For Bitcoin addresses, the extra -version is used to differentiate the network of otherwise identical public keys -which helps prevent using an address intended for one network on another. -*/ -package base58 diff --git a/vendor/github.com/btcsuite/btcutil/bech32/README.md b/vendor/github.com/btcsuite/btcutil/bech32/README.md deleted file mode 100644 index e6fa43f..0000000 --- a/vendor/github.com/btcsuite/btcutil/bech32/README.md +++ /dev/null @@ -1,29 +0,0 @@ -bech32 -========== - -[![Build Status](http://img.shields.io/travis/btcsuite/btcutil.svg)](https://travis-ci.org/btcsuite/btcutil) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://godoc.org/github.com/btcsuite/btcutil/bech32?status.png)](http://godoc.org/github.com/btcsuite/btcutil/bech32) - -Package bech32 provides a Go implementation of the bech32 format specified in -[BIP 173](https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki). - -Test vectors from BIP 173 are added to ensure compatibility with the BIP. - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcutil/bech32 -``` - -## Examples - -* [Bech32 decode Example](http://godoc.org/github.com/btcsuite/btcutil/bech32#example-Bech32Decode) - Demonstrates how to decode a bech32 encoded string. -* [Bech32 encode Example](http://godoc.org/github.com/btcsuite/btcutil/bech32#example-BechEncode) - Demonstrates how to encode data into a bech32 string. - -## License - -Package bech32 is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcutil/bech32/bech32.go b/vendor/github.com/btcsuite/btcutil/bech32/bech32.go deleted file mode 100644 index fc2c063..0000000 --- a/vendor/github.com/btcsuite/btcutil/bech32/bech32.go +++ /dev/null @@ -1,378 +0,0 @@ -// Copyright (c) 2017 The btcsuite developers -// Copyright (c) 2019 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package bech32 - -import ( - "strings" -) - -// charset is the set of characters used in the data section of bech32 strings. -// Note that this is ordered, such that for a given charset[i], i is the binary -// value of the character. -const charset = "qpzry9x8gf2tvdw0s3jn54khce6mua7l" - -// gen encodes the generator polynomial for the bech32 BCH checksum. -var gen = []int{0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3} - -// toBytes converts each character in the string 'chars' to the value of the -// index of the correspoding character in 'charset'. -func toBytes(chars string) ([]byte, error) { - decoded := make([]byte, 0, len(chars)) - for i := 0; i < len(chars); i++ { - index := strings.IndexByte(charset, chars[i]) - if index < 0 { - return nil, ErrNonCharsetChar(chars[i]) - } - decoded = append(decoded, byte(index)) - } - return decoded, nil -} - -// bech32Polymod calculates the BCH checksum for a given hrp, values and -// checksum data. Checksum is optional, and if nil a 0 checksum is assumed. -// -// Values and checksum (if provided) MUST be encoded as 5 bits per element (base -// 32), otherwise the results are undefined. -// -// For more details on the polymod calculation, please refer to BIP 173. -func bech32Polymod(hrp string, values, checksum []byte) int { - chk := 1 - - // Account for the high bits of the HRP in the checksum. - for i := 0; i < len(hrp); i++ { - b := chk >> 25 - hiBits := int(hrp[i]) >> 5 - chk = (chk&0x1ffffff)<<5 ^ hiBits - for i := 0; i < 5; i++ { - if (b>>uint(i))&1 == 1 { - chk ^= gen[i] - } - } - } - - // Account for the separator (0) between high and low bits of the HRP. - // x^0 == x, so we eliminate the redundant xor used in the other rounds. - b := chk >> 25 - chk = (chk & 0x1ffffff) << 5 - for i := 0; i < 5; i++ { - if (b>>uint(i))&1 == 1 { - chk ^= gen[i] - } - } - - // Account for the low bits of the HRP. - for i := 0; i < len(hrp); i++ { - b := chk >> 25 - loBits := int(hrp[i]) & 31 - chk = (chk&0x1ffffff)<<5 ^ loBits - for i := 0; i < 5; i++ { - if (b>>uint(i))&1 == 1 { - chk ^= gen[i] - } - } - } - - // Account for the values. - for _, v := range values { - b := chk >> 25 - chk = (chk&0x1ffffff)<<5 ^ int(v) - for i := 0; i < 5; i++ { - if (b>>uint(i))&1 == 1 { - chk ^= gen[i] - } - } - } - - if checksum == nil { - // A nil checksum is used during encoding, so assume all bytes are zero. - // x^0 == x, so we eliminate the redundant xor used in the other rounds. - for v := 0; v < 6; v++ { - b := chk >> 25 - chk = (chk & 0x1ffffff) << 5 - for i := 0; i < 5; i++ { - if (b>>uint(i))&1 == 1 { - chk ^= gen[i] - } - } - } - } else { - // Checksum is provided during decoding, so use it. - for _, v := range checksum { - b := chk >> 25 - chk = (chk&0x1ffffff)<<5 ^ int(v) - for i := 0; i < 5; i++ { - if (b>>uint(i))&1 == 1 { - chk ^= gen[i] - } - } - } - } - - return chk -} - -// writeBech32Checksum calculates the checksum data expected for a string that -// will have the given hrp and payload data and writes it to the provided string -// builder. -// -// The payload data MUST be encoded as a base 32 (5 bits per element) byte slice -// and the hrp MUST only use the allowed character set (ascii chars between 33 -// and 126), otherwise the results are undefined. -// -// For more details on the checksum calculation, please refer to BIP 173. -func writeBech32Checksum(hrp string, data []byte, bldr *strings.Builder) { - polymod := bech32Polymod(hrp, data, nil) ^ 1 - for i := 0; i < 6; i++ { - b := byte((polymod >> uint(5*(5-i))) & 31) - - // This can't fail, given we explicitly cap the previous b byte by the - // first 31 bits. - c := charset[b] - bldr.WriteByte(c) - } -} - -// bech32VerifyChecksum verifies whether the bech32 string specified by the -// provided hrp and payload data (encoded as 5 bits per element byte slice) has -// the correct checksum suffix. -// -// Data MUST have more than 6 elements, otherwise this function panics. -// -// For more details on the checksum verification, please refer to BIP 173. -func bech32VerifyChecksum(hrp string, data []byte) bool { - checksum := data[len(data)-6:] - values := data[:len(data)-6] - polymod := bech32Polymod(hrp, values, checksum) - return polymod == 1 -} - -// DecodeNoLimit decodes a bech32 encoded string, returning the human-readable -// part and the data part excluding the checksum. This function does NOT -// validate against the BIP-173 maximum length allowed for bech32 strings and -// is meant for use in custom applications (such as lightning network payment -// requests), NOT on-chain addresses. -// -// Note that the returned data is 5-bit (base32) encoded and the human-readable -// part will be lowercase. -func DecodeNoLimit(bech string) (string, []byte, error) { - // The minimum allowed size of a bech32 string is 8 characters, since it - // needs a non-empty HRP, a separator, and a 6 character checksum. - if len(bech) < 8 { - return "", nil, ErrInvalidLength(len(bech)) - } - - // Only ASCII characters between 33 and 126 are allowed. - var hasLower, hasUpper bool - for i := 0; i < len(bech); i++ { - if bech[i] < 33 || bech[i] > 126 { - return "", nil, ErrInvalidCharacter(bech[i]) - } - - // The characters must be either all lowercase or all uppercase. Testing - // directly with ascii codes is safe here, given the previous test. - hasLower = hasLower || (bech[i] >= 97 && bech[i] <= 122) - hasUpper = hasUpper || (bech[i] >= 65 && bech[i] <= 90) - if hasLower && hasUpper { - return "", nil, ErrMixedCase{} - } - } - - // Bech32 standard uses only the lowercase for of strings for checksum - // calculation. - if hasUpper { - bech = strings.ToLower(bech) - } - - // The string is invalid if the last '1' is non-existent, it is the - // first character of the string (no human-readable part) or one of the - // last 6 characters of the string (since checksum cannot contain '1'). - one := strings.LastIndexByte(bech, '1') - if one < 1 || one+7 > len(bech) { - return "", nil, ErrInvalidSeparatorIndex(one) - } - - // The human-readable part is everything before the last '1'. - hrp := bech[:one] - data := bech[one+1:] - - // Each character corresponds to the byte with value of the index in - // 'charset'. - decoded, err := toBytes(data) - if err != nil { - return "", nil, err - } - - // Verify if the checksum (stored inside decoded[:]) is valid, given the - // previously decoded hrp. - if !bech32VerifyChecksum(hrp, decoded) { - // Invalid checksum. Calculate what it should have been, so that the - // error contains this information. - - // Extract the payload bytes and actual checksum in the string. - actual := bech[len(bech)-6:] - payload := decoded[:len(decoded)-6] - - // Calculate the expected checksum, given the hrp and payload data. - var expectedBldr strings.Builder - expectedBldr.Grow(6) - writeBech32Checksum(hrp, payload, &expectedBldr) - expected := expectedBldr.String() - - err = ErrInvalidChecksum{ - Expected: expected, - Actual: actual, - } - return "", nil, err - } - - // We exclude the last 6 bytes, which is the checksum. - return hrp, decoded[:len(decoded)-6], nil -} - -// Decode decodes a bech32 encoded string, returning the human-readable part and -// the data part excluding the checksum. -// -// Note that the returned data is 5-bit (base32) encoded and the human-readable -// part will be lowercase. -func Decode(bech string) (string, []byte, error) { - // The maximum allowed length for a bech32 string is 90. - if len(bech) > 90 { - return "", nil, ErrInvalidLength(len(bech)) - } - - return DecodeNoLimit(bech) -} - -// Encode encodes a byte slice into a bech32 string with the given -// human-readable part (HRP). The HRP will be converted to lowercase if needed -// since mixed cased encodings are not permitted and lowercase is used for -// checksum purposes. Note that the bytes must each encode 5 bits (base32). -func Encode(hrp string, data []byte) (string, error) { - // The resulting bech32 string is the concatenation of the lowercase hrp, - // the separator 1, data and the 6-byte checksum. - hrp = strings.ToLower(hrp) - var bldr strings.Builder - bldr.Grow(len(hrp) + 1 + len(data) + 6) - bldr.WriteString(hrp) - bldr.WriteString("1") - - // Write the data part, using the bech32 charset. - for _, b := range data { - if int(b) >= len(charset) { - return "", ErrInvalidDataByte(b) - } - bldr.WriteByte(charset[b]) - } - - // Calculate and write the checksum of the data. - writeBech32Checksum(hrp, data, &bldr) - - return bldr.String(), nil -} - -// ConvertBits converts a byte slice where each byte is encoding fromBits bits, -// to a byte slice where each byte is encoding toBits bits. -func ConvertBits(data []byte, fromBits, toBits uint8, pad bool) ([]byte, error) { - if fromBits < 1 || fromBits > 8 || toBits < 1 || toBits > 8 { - return nil, ErrInvalidBitGroups{} - } - - // Determine the maximum size the resulting array can have after base - // conversion, so that we can size it a single time. This might be off - // by a byte depending on whether padding is used or not and if the input - // data is a multiple of both fromBits and toBits, but we ignore that and - // just size it to the maximum possible. - maxSize := len(data)*int(fromBits)/int(toBits) + 1 - - // The final bytes, each byte encoding toBits bits. - regrouped := make([]byte, 0, maxSize) - - // Keep track of the next byte we create and how many bits we have - // added to it out of the toBits goal. - nextByte := byte(0) - filledBits := uint8(0) - - for _, b := range data { - - // Discard unused bits. - b = b << (8 - fromBits) - - // How many bits remaining to extract from the input data. - remFromBits := fromBits - for remFromBits > 0 { - // How many bits remaining to be added to the next byte. - remToBits := toBits - filledBits - - // The number of bytes to next extract is the minimum of - // remFromBits and remToBits. - toExtract := remFromBits - if remToBits < toExtract { - toExtract = remToBits - } - - // Add the next bits to nextByte, shifting the already - // added bits to the left. - nextByte = (nextByte << toExtract) | (b >> (8 - toExtract)) - - // Discard the bits we just extracted and get ready for - // next iteration. - b = b << toExtract - remFromBits -= toExtract - filledBits += toExtract - - // If the nextByte is completely filled, we add it to - // our regrouped bytes and start on the next byte. - if filledBits == toBits { - regrouped = append(regrouped, nextByte) - filledBits = 0 - nextByte = 0 - } - } - } - - // We pad any unfinished group if specified. - if pad && filledBits > 0 { - nextByte = nextByte << (toBits - filledBits) - regrouped = append(regrouped, nextByte) - filledBits = 0 - nextByte = 0 - } - - // Any incomplete group must be <= 4 bits, and all zeroes. - if filledBits > 0 && (filledBits > 4 || nextByte != 0) { - return nil, ErrInvalidIncompleteGroup{} - } - - return regrouped, nil -} - -// EncodeFromBase256 converts a base256-encoded byte slice into a base32-encoded -// byte slice and then encodes it into a bech32 string with the given -// human-readable part (HRP). The HRP will be converted to lowercase if needed -// since mixed cased encodings are not permitted and lowercase is used for -// checksum purposes. -func EncodeFromBase256(hrp string, data []byte) (string, error) { - converted, err := ConvertBits(data, 8, 5, true) - if err != nil { - return "", err - } - return Encode(hrp, converted) -} - -// DecodeToBase256 decodes a bech32-encoded string into its associated -// human-readable part (HRP) and base32-encoded data, converts that data to a -// base256-encoded byte slice and returns it along with the lowercase HRP. -func DecodeToBase256(bech string) (string, []byte, error) { - hrp, data, err := Decode(bech) - if err != nil { - return "", nil, err - } - converted, err := ConvertBits(data, 5, 8, false) - if err != nil { - return "", nil, err - } - return hrp, converted, nil -} diff --git a/vendor/github.com/btcsuite/btcutil/bech32/doc.go b/vendor/github.com/btcsuite/btcutil/bech32/doc.go deleted file mode 100644 index 2d64fbe..0000000 --- a/vendor/github.com/btcsuite/btcutil/bech32/doc.go +++ /dev/null @@ -1,15 +0,0 @@ -// Copyright (c) 2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package bech32 provides a Go implementation of the bech32 format specified in -BIP 173. - -Bech32 strings consist of a human-readable part (hrp), followed by the -separator 1, then a checksummed data part encoded using the 32 characters -"qpzry9x8gf2tvdw0s3jn54khce6mua7l". - -More info: https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki -*/ -package bech32 diff --git a/vendor/github.com/btcsuite/btcutil/bech32/error.go b/vendor/github.com/btcsuite/btcutil/bech32/error.go deleted file mode 100644 index c987b6e..0000000 --- a/vendor/github.com/btcsuite/btcutil/bech32/error.go +++ /dev/null @@ -1,85 +0,0 @@ -// Copyright (c) 2019 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package bech32 - -import ( - "fmt" -) - -// ErrMixedCase is returned when the bech32 string has both lower and uppercase -// characters. -type ErrMixedCase struct{} - -func (e ErrMixedCase) Error() string { - return "string not all lowercase or all uppercase" -} - -// ErrInvalidBitGroups is returned when conversion is attempted between byte -// slices using bit-per-element of unsupported value. -type ErrInvalidBitGroups struct{} - -func (e ErrInvalidBitGroups) Error() string { - return "only bit groups between 1 and 8 allowed" -} - -// ErrInvalidIncompleteGroup is returned when then byte slice used as input has -// data of wrong length. -type ErrInvalidIncompleteGroup struct{} - -func (e ErrInvalidIncompleteGroup) Error() string { - return "invalid incomplete group" -} - -// ErrInvalidLength is returned when the bech32 string has an invalid length -// given the BIP-173 defined restrictions. -type ErrInvalidLength int - -func (e ErrInvalidLength) Error() string { - return fmt.Sprintf("invalid bech32 string length %d", int(e)) -} - -// ErrInvalidCharacter is returned when the bech32 string has a character -// outside the range of the supported charset. -type ErrInvalidCharacter rune - -func (e ErrInvalidCharacter) Error() string { - return fmt.Sprintf("invalid character in string: '%c'", rune(e)) -} - -// ErrInvalidSeparatorIndex is returned when the separator character '1' is -// in an invalid position in the bech32 string. -type ErrInvalidSeparatorIndex int - -func (e ErrInvalidSeparatorIndex) Error() string { - return fmt.Sprintf("invalid separator index %d", int(e)) -} - -// ErrNonCharsetChar is returned when a character outside of the specific -// bech32 charset is used in the string. -type ErrNonCharsetChar rune - -func (e ErrNonCharsetChar) Error() string { - return fmt.Sprintf("invalid character not part of charset: %v", int(e)) -} - -// ErrInvalidChecksum is returned when the extracted checksum of the string -// is different than what was expected. -type ErrInvalidChecksum struct { - Expected string - Actual string -} - -func (e ErrInvalidChecksum) Error() string { - return fmt.Sprintf("invalid checksum (expected %v got %v)", - e.Expected, e.Actual) -} - -// ErrInvalidDataByte is returned when a byte outside the range required for -// conversion into a string was found. -type ErrInvalidDataByte byte - -func (e ErrInvalidDataByte) Error() string { - return fmt.Sprintf("invalid data byte: %v", byte(e)) -} diff --git a/vendor/github.com/btcsuite/btcutil/block.go b/vendor/github.com/btcsuite/btcutil/block.go deleted file mode 100644 index 7d38abc..0000000 --- a/vendor/github.com/btcsuite/btcutil/block.go +++ /dev/null @@ -1,265 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "bytes" - "fmt" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" - "github.com/btcsuite/btcd/wire" -) - -// OutOfRangeError describes an error due to accessing an element that is out -// of range. -type OutOfRangeError string - -// BlockHeightUnknown is the value returned for a block height that is unknown. -// This is typically because the block has not been inserted into the main chain -// yet. -const BlockHeightUnknown = int32(-1) - -// Error satisfies the error interface and prints human-readable errors. -func (e OutOfRangeError) Error() string { - return string(e) -} - -// Block defines a bitcoin block that provides easier and more efficient -// manipulation of raw blocks. It also memoizes hashes for the block and its -// transactions on their first access so subsequent accesses don't have to -// repeat the relatively expensive hashing operations. -type Block struct { - msgBlock *wire.MsgBlock // Underlying MsgBlock - serializedBlock []byte // Serialized bytes for the block - serializedBlockNoWitness []byte // Serialized bytes for block w/o witness data - blockHash *chainhash.Hash // Cached block hash - blockHeight int32 // Height in the main block chain - transactions []*Tx // Transactions - txnsGenerated bool // ALL wrapped transactions generated -} - -// MsgBlock returns the underlying wire.MsgBlock for the Block. -func (b *Block) MsgBlock() *wire.MsgBlock { - // Return the cached block. - return b.msgBlock -} - -// Bytes returns the serialized bytes for the Block. This is equivalent to -// calling Serialize on the underlying wire.MsgBlock, however it caches the -// result so subsequent calls are more efficient. -func (b *Block) Bytes() ([]byte, error) { - // Return the cached serialized bytes if it has already been generated. - if len(b.serializedBlock) != 0 { - return b.serializedBlock, nil - } - - // Serialize the MsgBlock. - w := bytes.NewBuffer(make([]byte, 0, b.msgBlock.SerializeSize())) - err := b.msgBlock.Serialize(w) - if err != nil { - return nil, err - } - serializedBlock := w.Bytes() - - // Cache the serialized bytes and return them. - b.serializedBlock = serializedBlock - return serializedBlock, nil -} - -// BytesNoWitness returns the serialized bytes for the block with transactions -// encoded without any witness data. -func (b *Block) BytesNoWitness() ([]byte, error) { - // Return the cached serialized bytes if it has already been generated. - if len(b.serializedBlockNoWitness) != 0 { - return b.serializedBlockNoWitness, nil - } - - // Serialize the MsgBlock. - var w bytes.Buffer - err := b.msgBlock.SerializeNoWitness(&w) - if err != nil { - return nil, err - } - serializedBlock := w.Bytes() - - // Cache the serialized bytes and return them. - b.serializedBlockNoWitness = serializedBlock - return serializedBlock, nil -} - -// Hash returns the block identifier hash for the Block. This is equivalent to -// calling BlockHash on the underlying wire.MsgBlock, however it caches the -// result so subsequent calls are more efficient. -func (b *Block) Hash() *chainhash.Hash { - // Return the cached block hash if it has already been generated. - if b.blockHash != nil { - return b.blockHash - } - - // Cache the block hash and return it. - hash := b.msgBlock.BlockHash() - b.blockHash = &hash - return &hash -} - -// Tx returns a wrapped transaction (btcutil.Tx) for the transaction at the -// specified index in the Block. The supplied index is 0 based. That is to -// say, the first transaction in the block is txNum 0. This is nearly -// equivalent to accessing the raw transaction (wire.MsgTx) from the -// underlying wire.MsgBlock, however the wrapped transaction has some helpful -// properties such as caching the hash so subsequent calls are more efficient. -func (b *Block) Tx(txNum int) (*Tx, error) { - // Ensure the requested transaction is in range. - numTx := uint64(len(b.msgBlock.Transactions)) - if txNum < 0 || uint64(txNum) >= numTx { - str := fmt.Sprintf("transaction index %d is out of range - max %d", - txNum, numTx-1) - return nil, OutOfRangeError(str) - } - - // Generate slice to hold all of the wrapped transactions if needed. - if len(b.transactions) == 0 { - b.transactions = make([]*Tx, numTx) - } - - // Return the wrapped transaction if it has already been generated. - if b.transactions[txNum] != nil { - return b.transactions[txNum], nil - } - - // Generate and cache the wrapped transaction and return it. - newTx := NewTx(b.msgBlock.Transactions[txNum]) - newTx.SetIndex(txNum) - b.transactions[txNum] = newTx - return newTx, nil -} - -// Transactions returns a slice of wrapped transactions (btcutil.Tx) for all -// transactions in the Block. This is nearly equivalent to accessing the raw -// transactions (wire.MsgTx) in the underlying wire.MsgBlock, however it -// instead provides easy access to wrapped versions (btcutil.Tx) of them. -func (b *Block) Transactions() []*Tx { - // Return transactions if they have ALL already been generated. This - // flag is necessary because the wrapped transactions are lazily - // generated in a sparse fashion. - if b.txnsGenerated { - return b.transactions - } - - // Generate slice to hold all of the wrapped transactions if needed. - if len(b.transactions) == 0 { - b.transactions = make([]*Tx, len(b.msgBlock.Transactions)) - } - - // Generate and cache the wrapped transactions for all that haven't - // already been done. - for i, tx := range b.transactions { - if tx == nil { - newTx := NewTx(b.msgBlock.Transactions[i]) - newTx.SetIndex(i) - b.transactions[i] = newTx - } - } - - b.txnsGenerated = true - return b.transactions -} - -// TxHash returns the hash for the requested transaction number in the Block. -// The supplied index is 0 based. That is to say, the first transaction in the -// block is txNum 0. This is equivalent to calling TxHash on the underlying -// wire.MsgTx, however it caches the result so subsequent calls are more -// efficient. -func (b *Block) TxHash(txNum int) (*chainhash.Hash, error) { - // Attempt to get a wrapped transaction for the specified index. It - // will be created lazily if needed or simply return the cached version - // if it has already been generated. - tx, err := b.Tx(txNum) - if err != nil { - return nil, err - } - - // Defer to the wrapped transaction which will return the cached hash if - // it has already been generated. - return tx.Hash(), nil -} - -// TxLoc returns the offsets and lengths of each transaction in a raw block. -// It is used to allow fast indexing into transactions within the raw byte -// stream. -func (b *Block) TxLoc() ([]wire.TxLoc, error) { - rawMsg, err := b.Bytes() - if err != nil { - return nil, err - } - rbuf := bytes.NewBuffer(rawMsg) - - var mblock wire.MsgBlock - txLocs, err := mblock.DeserializeTxLoc(rbuf) - if err != nil { - return nil, err - } - return txLocs, err -} - -// Height returns the saved height of the block in the block chain. This value -// will be BlockHeightUnknown if it hasn't already explicitly been set. -func (b *Block) Height() int32 { - return b.blockHeight -} - -// SetHeight sets the height of the block in the block chain. -func (b *Block) SetHeight(height int32) { - b.blockHeight = height -} - -// NewBlock returns a new instance of a bitcoin block given an underlying -// wire.MsgBlock. See Block. -func NewBlock(msgBlock *wire.MsgBlock) *Block { - return &Block{ - msgBlock: msgBlock, - blockHeight: BlockHeightUnknown, - } -} - -// NewBlockFromBytes returns a new instance of a bitcoin block given the -// serialized bytes. See Block. -func NewBlockFromBytes(serializedBlock []byte) (*Block, error) { - br := bytes.NewReader(serializedBlock) - b, err := NewBlockFromReader(br) - if err != nil { - return nil, err - } - b.serializedBlock = serializedBlock - return b, nil -} - -// NewBlockFromReader returns a new instance of a bitcoin block given a -// Reader to deserialize the block. See Block. -func NewBlockFromReader(r io.Reader) (*Block, error) { - // Deserialize the bytes into a MsgBlock. - var msgBlock wire.MsgBlock - err := msgBlock.Deserialize(r) - if err != nil { - return nil, err - } - - b := Block{ - msgBlock: &msgBlock, - blockHeight: BlockHeightUnknown, - } - return &b, nil -} - -// NewBlockFromBlockAndBytes returns a new instance of a bitcoin block given -// an underlying wire.MsgBlock and the serialized bytes for it. See Block. -func NewBlockFromBlockAndBytes(msgBlock *wire.MsgBlock, serializedBlock []byte) *Block { - return &Block{ - msgBlock: msgBlock, - serializedBlock: serializedBlock, - blockHeight: BlockHeightUnknown, - } -} diff --git a/vendor/github.com/btcsuite/btcutil/certgen.go b/vendor/github.com/btcsuite/btcutil/certgen.go deleted file mode 100644 index bbc45a4..0000000 --- a/vendor/github.com/btcsuite/btcutil/certgen.go +++ /dev/null @@ -1,144 +0,0 @@ -// Copyright (c) 2013-2015 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "bytes" - "crypto/ecdsa" - "crypto/elliptic" - "crypto/rand" - _ "crypto/sha512" // Needed for RegisterHash in init - "crypto/x509" - "crypto/x509/pkix" - "encoding/pem" - "errors" - "fmt" - "math/big" - "net" - "os" - "time" -) - -// NewTLSCertPair returns a new PEM-encoded x.509 certificate pair -// based on a 521-bit ECDSA private key. The machine's local interface -// addresses and all variants of IPv4 and IPv6 localhost are included as -// valid IP addresses. -func NewTLSCertPair(organization string, validUntil time.Time, extraHosts []string) (cert, key []byte, err error) { - now := time.Now() - if validUntil.Before(now) { - return nil, nil, errors.New("validUntil would create an already-expired certificate") - } - - priv, err := ecdsa.GenerateKey(elliptic.P521(), rand.Reader) - if err != nil { - return nil, nil, err - } - - // end of ASN.1 time - endOfTime := time.Date(2049, 12, 31, 23, 59, 59, 0, time.UTC) - if validUntil.After(endOfTime) { - validUntil = endOfTime - } - - serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128) - serialNumber, err := rand.Int(rand.Reader, serialNumberLimit) - if err != nil { - return nil, nil, fmt.Errorf("failed to generate serial number: %s", err) - } - - host, err := os.Hostname() - if err != nil { - return nil, nil, err - } - - ipAddresses := []net.IP{net.ParseIP("127.0.0.1"), net.ParseIP("::1")} - dnsNames := []string{host} - if host != "localhost" { - dnsNames = append(dnsNames, "localhost") - } - - addIP := func(ipAddr net.IP) { - for _, ip := range ipAddresses { - if bytes.Equal(ip, ipAddr) { - return - } - } - ipAddresses = append(ipAddresses, ipAddr) - } - addHost := func(host string) { - for _, dnsName := range dnsNames { - if host == dnsName { - return - } - } - dnsNames = append(dnsNames, host) - } - - addrs, err := interfaceAddrs() - if err != nil { - return nil, nil, err - } - for _, a := range addrs { - ipAddr, _, err := net.ParseCIDR(a.String()) - if err == nil { - addIP(ipAddr) - } - } - - for _, hostStr := range extraHosts { - host, _, err := net.SplitHostPort(hostStr) - if err != nil { - host = hostStr - } - if ip := net.ParseIP(host); ip != nil { - addIP(ip) - } else { - addHost(host) - } - } - - template := x509.Certificate{ - SerialNumber: serialNumber, - Subject: pkix.Name{ - Organization: []string{organization}, - CommonName: host, - }, - NotBefore: now.Add(-time.Hour * 24), - NotAfter: validUntil, - - KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature | - x509.KeyUsageCertSign, - IsCA: true, // so can sign self. - BasicConstraintsValid: true, - - DNSNames: dnsNames, - IPAddresses: ipAddresses, - } - - derBytes, err := x509.CreateCertificate(rand.Reader, &template, - &template, &priv.PublicKey, priv) - if err != nil { - return nil, nil, fmt.Errorf("failed to create certificate: %v", err) - } - - certBuf := &bytes.Buffer{} - err = pem.Encode(certBuf, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes}) - if err != nil { - return nil, nil, fmt.Errorf("failed to encode certificate: %v", err) - } - - keybytes, err := x509.MarshalECPrivateKey(priv) - if err != nil { - return nil, nil, fmt.Errorf("failed to marshal private key: %v", err) - } - - keyBuf := &bytes.Buffer{} - err = pem.Encode(keyBuf, &pem.Block{Type: "EC PRIVATE KEY", Bytes: keybytes}) - if err != nil { - return nil, nil, fmt.Errorf("failed to encode private key: %v", err) - } - - return certBuf.Bytes(), keyBuf.Bytes(), nil -} diff --git a/vendor/github.com/btcsuite/btcutil/const.go b/vendor/github.com/btcsuite/btcutil/const.go deleted file mode 100644 index c739460..0000000 --- a/vendor/github.com/btcsuite/btcutil/const.go +++ /dev/null @@ -1,16 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -const ( - // SatoshiPerBitcent is the number of satoshi in one bitcoin cent. - SatoshiPerBitcent = 1e6 - - // SatoshiPerBitcoin is the number of satoshi in one bitcoin (1 BTC). - SatoshiPerBitcoin = 1e8 - - // MaxSatoshi is the maximum transaction amount allowed in satoshi. - MaxSatoshi = 21e6 * SatoshiPerBitcoin -) diff --git a/vendor/github.com/btcsuite/btcutil/cov_report.sh b/vendor/github.com/btcsuite/btcutil/cov_report.sh deleted file mode 100644 index 307f05b..0000000 --- a/vendor/github.com/btcsuite/btcutil/cov_report.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/sh - -# This script uses gocov to generate a test coverage report. -# The gocov tool my be obtained with the following command: -# go get github.com/axw/gocov/gocov -# -# It will be installed to $GOPATH/bin, so ensure that location is in your $PATH. - -# Check for gocov. -type gocov >/dev/null 2>&1 -if [ $? -ne 0 ]; then - echo >&2 "This script requires the gocov tool." - echo >&2 "You may obtain it with the following command:" - echo >&2 "go get github.com/axw/gocov/gocov" - exit 1 -fi -gocov test | gocov report diff --git a/vendor/github.com/btcsuite/btcutil/doc.go b/vendor/github.com/btcsuite/btcutil/doc.go deleted file mode 100644 index 36cda1c..0000000 --- a/vendor/github.com/btcsuite/btcutil/doc.go +++ /dev/null @@ -1,46 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package btcutil provides bitcoin-specific convenience functions and types. - -Block Overview - -A Block defines a bitcoin block that provides easier and more efficient -manipulation of raw wire protocol blocks. It also memoizes hashes for the -block and its transactions on their first access so subsequent accesses don't -have to repeat the relatively expensive hashing operations. - -Tx Overview - -A Tx defines a bitcoin transaction that provides more efficient manipulation of -raw wire protocol transactions. It memoizes the hash for the transaction on its -first access so subsequent accesses don't have to repeat the relatively -expensive hashing operations. - -Address Overview - -The Address interface provides an abstraction for a Bitcoin address. While the -most common type is a pay-to-pubkey-hash, Bitcoin already supports others and -may well support more in the future. This package currently provides -implementations for the pay-to-pubkey, pay-to-pubkey-hash, and -pay-to-script-hash address types. - -To decode/encode an address: - - // NOTE: The default network is only used for address types which do not - // already contain that information. At this time, that is only - // pay-to-pubkey addresses. - addrString := "04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962" + - "e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d57" + - "8a4c702b6bf11d5f" - defaultNet := &chaincfg.MainNetParams - addr, err := btcutil.DecodeAddress(addrString, defaultNet) - if err != nil { - fmt.Println(err) - return - } - fmt.Println(addr.EncodeAddress()) -*/ -package btcutil diff --git a/vendor/github.com/btcsuite/btcutil/goclean.sh b/vendor/github.com/btcsuite/btcutil/goclean.sh deleted file mode 100644 index a9fe858..0000000 --- a/vendor/github.com/btcsuite/btcutil/goclean.sh +++ /dev/null @@ -1,46 +0,0 @@ -#!/bin/bash -# The script does automatic checking on a Go package and its sub-packages, including: -# 1. gofmt (http://golang.org/cmd/gofmt/) -# 2. goimports (https://github.com/bradfitz/goimports) -# 3. golint (https://github.com/golang/lint) -# 4. go vet (http://golang.org/cmd/vet) -# 5. gosimple (https://github.com/dominikh/go-simple) -# 6. unconvert (https://github.com/mdempsky/unconvert) -# 7. race detector (http://blog.golang.org/race-detector) -# 8. test coverage (http://blog.golang.org/cover) -# - -set -ex - -# Automatic checks -for i in $(find . -name go.mod -type f -print); do - module=$(dirname ${i}) - echo "==> ${module}" - - MODNAME=$(echo $module | sed -E -e "s/^$ROOTPATHPATTERN//" \ - -e 's,^/,,' -e 's,/v[0-9]+$,,') - if [ -z "$MODNAME" ]; then - MODNAME=. - fi - - # run tests - (cd $MODNAME && - echo "mode: atomic" > profile.cov && \ - env GORACE=halt_on_error=1 go test -race -covermode=atomic -coverprofile=profile.tmp ./... && \ - cat profile.tmp | tail -n +2 >> profile.cov && \ - rm profile.tmp && \ - go tool cover -func profile.cov - ) - - # check linters - (cd $MODNAME && \ - go mod download && \ - golangci-lint run --deadline=10m --disable-all \ - --enable=gofmt \ - --enable=goimports \ - --enable=golint \ - --enable=govet \ - --enable=gosimple \ - --enable=unconvert - ) -done diff --git a/vendor/github.com/btcsuite/btcutil/hash160.go b/vendor/github.com/btcsuite/btcutil/hash160.go deleted file mode 100644 index 599a0fe..0000000 --- a/vendor/github.com/btcsuite/btcutil/hash160.go +++ /dev/null @@ -1,23 +0,0 @@ -// Copyright (c) 2013-2017 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "crypto/sha256" - "hash" - - "golang.org/x/crypto/ripemd160" -) - -// Calculate the hash of hasher over buf. -func calcHash(buf []byte, hasher hash.Hash) []byte { - hasher.Write(buf) - return hasher.Sum(nil) -} - -// Hash160 calculates the hash ripemd160(sha256(b)). -func Hash160(buf []byte) []byte { - return calcHash(calcHash(buf, sha256.New()), ripemd160.New()) -} diff --git a/vendor/github.com/btcsuite/btcutil/hdkeychain/README.md b/vendor/github.com/btcsuite/btcutil/hdkeychain/README.md deleted file mode 100644 index f9c15d8..0000000 --- a/vendor/github.com/btcsuite/btcutil/hdkeychain/README.md +++ /dev/null @@ -1,59 +0,0 @@ -hdkeychain -========== - -[![Build Status](http://img.shields.io/travis/btcsuite/btcutil.svg)](https://travis-ci.org/btcsuite/btcutil) -[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](http://img.shields.io/badge/godoc-reference-blue.svg)](http://godoc.org/github.com/btcsuite/btcutil/hdkeychain) - -Package hdkeychain provides an API for bitcoin hierarchical deterministic -extended keys (BIP0032). - -A comprehensive suite of tests is provided to ensure proper functionality. See -`test_coverage.txt` for the gocov coverage report. Alternatively, if you are -running a POSIX OS, you can run the `cov_report.sh` script for a real-time -report. - -## Feature Overview - -- Full BIP0032 implementation -- Single type for private and public extended keys -- Convenient cryptograpically secure seed generation -- Simple creation of master nodes -- Support for multi-layer derivation -- Easy serialization and deserialization for both private and public extended - keys -- Support for custom networks by registering them with chaincfg -- Obtaining the underlying EC pubkeys, EC privkeys, and associated bitcoin - addresses ties in seamlessly with existing btcec and btcutil types which - provide powerful tools for working with them to do things like sign - transations and generate payment scripts -- Uses the btcec package which is highly optimized for secp256k1 -- Code examples including: - - Generating a cryptographically secure random seed and deriving a - master node from it - - Default HD wallet layout as described by BIP0032 - - Audits use case as described by BIP0032 -- Comprehensive test coverage including the BIP0032 test vectors -- Benchmarks - -## Installation and Updating - -```bash -$ go get -u github.com/btcsuite/btcutil/hdkeychain -``` - -## Examples - -* [NewMaster Example](http://godoc.org/github.com/btcsuite/btcutil/hdkeychain#example-NewMaster) - Demonstrates how to generate a cryptographically random seed then use it to - create a new master node (extended key). -* [Default Wallet Layout Example](http://godoc.org/github.com/btcsuite/btcutil/hdkeychain#example-package--DefaultWalletLayout) - Demonstrates the default hierarchical deterministic wallet layout as described - in BIP0032. -* [Audits Use Case Example](http://godoc.org/github.com/btcsuite/btcutil/hdkeychain#example-package--Audits) - Demonstrates the audits use case in BIP0032. - -## License - -Package hdkeychain is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/btcsuite/btcutil/hdkeychain/cov_report.sh b/vendor/github.com/btcsuite/btcutil/hdkeychain/cov_report.sh deleted file mode 100644 index 307f05b..0000000 --- a/vendor/github.com/btcsuite/btcutil/hdkeychain/cov_report.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/sh - -# This script uses gocov to generate a test coverage report. -# The gocov tool my be obtained with the following command: -# go get github.com/axw/gocov/gocov -# -# It will be installed to $GOPATH/bin, so ensure that location is in your $PATH. - -# Check for gocov. -type gocov >/dev/null 2>&1 -if [ $? -ne 0 ]; then - echo >&2 "This script requires the gocov tool." - echo >&2 "You may obtain it with the following command:" - echo >&2 "go get github.com/axw/gocov/gocov" - exit 1 -fi -gocov test | gocov report diff --git a/vendor/github.com/btcsuite/btcutil/hdkeychain/doc.go b/vendor/github.com/btcsuite/btcutil/hdkeychain/doc.go deleted file mode 100644 index dcf74f6..0000000 --- a/vendor/github.com/btcsuite/btcutil/hdkeychain/doc.go +++ /dev/null @@ -1,84 +0,0 @@ -// Copyright (c) 2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package hdkeychain provides an API for bitcoin hierarchical deterministic -extended keys (BIP0032). - -Overview - -The ability to implement hierarchical deterministic wallets depends on the -ability to create and derive hierarchical deterministic extended keys. - -At a high level, this package provides support for those hierarchical -deterministic extended keys by providing an ExtendedKey type and supporting -functions. Each extended key can either be a private or public extended key -which itself is capable of deriving a child extended key. - -Determining the Extended Key Type - -Whether an extended key is a private or public extended key can be determined -with the IsPrivate function. - -Transaction Signing Keys and Payment Addresses - -In order to create and sign transactions, or provide others with addresses to -send funds to, the underlying key and address material must be accessible. This -package provides the ECPubKey, ECPrivKey, and Address functions for this -purpose. - -The Master Node - -As previously mentioned, the extended keys are hierarchical meaning they are -used to form a tree. The root of that tree is called the master node and this -package provides the NewMaster function to create it from a cryptographically -random seed. The GenerateSeed function is provided as a convenient way to -create a random seed for use with the NewMaster function. - -Deriving Children - -Once you have created a tree root (or have deserialized an extended key as -discussed later), the child extended keys can be derived by using the Derive -function. The Derive function supports deriving both normal (non-hardened) and -hardened child extended keys. In order to derive a hardened extended key, use -the HardenedKeyStart constant + the hardened key number as the index to the -Derive function. This provides the ability to cascade the keys into a tree and -hence generate the hierarchical deterministic key chains. - -Normal vs Hardened Derived Extended Keys - -A private extended key can be used to derive both hardened and non-hardened -(normal) child private and public extended keys. A public extended key can only -be used to derive non-hardened child public extended keys. As enumerated in -BIP0032 "knowledge of the extended public key plus any non-hardened private key -descending from it is equivalent to knowing the extended private key (and thus -every private and public key descending from it). This means that extended -public keys must be treated more carefully than regular public keys. It is also -the reason for the existence of hardened keys, and why they are used for the -account level in the tree. This way, a leak of an account-specific (or below) -private key never risks compromising the master or other accounts." - -Neutering a Private Extended Key - -A private extended key can be converted to a new instance of the corresponding -public extended key with the Neuter function. The original extended key is not -modified. A public extended key is still capable of deriving non-hardened child -public extended keys. - -Serializing and Deserializing Extended Keys - -Extended keys are serialized and deserialized with the String and -NewKeyFromString functions. The serialized key is a Base58-encoded string which -looks like the following: - public key: xpub68Gmy5EdvgibQVfPdqkBBCHxA5htiqg55crXYuXoQRKfDBFA1WEjWgP6LHhwBZeNK1VTsfTFUHCdrfp1bgwQ9xv5ski8PX9rL2dZXvgGDnw - private key: xprv9uHRZZhk6KAJC1avXpDAp4MDc3sQKNxDiPvvkX8Br5ngLNv1TxvUxt4cV1rGL5hj6KCesnDYUhd7oWgT11eZG7XnxHrnYeSvkzY7d2bhkJ7 - -Network - -Extended keys are much like normal Bitcoin addresses in that they have version -bytes which tie them to a specific network. The SetNet and IsForNet functions -are provided to set and determinine which network an extended key is associated -with. -*/ -package hdkeychain diff --git a/vendor/github.com/btcsuite/btcutil/hdkeychain/extendedkey.go b/vendor/github.com/btcsuite/btcutil/hdkeychain/extendedkey.go deleted file mode 100644 index a0c5e7b..0000000 --- a/vendor/github.com/btcsuite/btcutil/hdkeychain/extendedkey.go +++ /dev/null @@ -1,706 +0,0 @@ -// Copyright (c) 2014-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package hdkeychain - -// References: -// [BIP32]: BIP0032 - Hierarchical Deterministic Wallets -// https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki - -import ( - "bytes" - "crypto/hmac" - "crypto/rand" - "crypto/sha512" - "encoding/binary" - "errors" - "fmt" - "math/big" - - "github.com/btcsuite/btcd/btcec" - "github.com/btcsuite/btcd/chaincfg" - "github.com/btcsuite/btcd/chaincfg/chainhash" - "github.com/btcsuite/btcutil" - "github.com/btcsuite/btcutil/base58" -) - -const ( - // RecommendedSeedLen is the recommended length in bytes for a seed - // to a master node. - RecommendedSeedLen = 32 // 256 bits - - // HardenedKeyStart is the index at which a hardened key starts. Each - // extended key has 2^31 normal child keys and 2^31 hardened child keys. - // Thus the range for normal child keys is [0, 2^31 - 1] and the range - // for hardened child keys is [2^31, 2^32 - 1]. - HardenedKeyStart = 0x80000000 // 2^31 - - // MinSeedBytes is the minimum number of bytes allowed for a seed to - // a master node. - MinSeedBytes = 16 // 128 bits - - // MaxSeedBytes is the maximum number of bytes allowed for a seed to - // a master node. - MaxSeedBytes = 64 // 512 bits - - // serializedKeyLen is the length of a serialized public or private - // extended key. It consists of 4 bytes version, 1 byte depth, 4 bytes - // fingerprint, 4 bytes child number, 32 bytes chain code, and 33 bytes - // public/private key data. - serializedKeyLen = 4 + 1 + 4 + 4 + 32 + 33 // 78 bytes - - // maxUint8 is the max positive integer which can be serialized in a uint8 - maxUint8 = 1<<8 - 1 -) - -var ( - // ErrDeriveHardFromPublic describes an error in which the caller - // attempted to derive a hardened extended key from a public key. - ErrDeriveHardFromPublic = errors.New("cannot derive a hardened key " + - "from a public key") - - // ErrDeriveBeyondMaxDepth describes an error in which the caller - // has attempted to derive more than 255 keys from a root key. - ErrDeriveBeyondMaxDepth = errors.New("cannot derive a key with more than " + - "255 indices in its path") - - // ErrNotPrivExtKey describes an error in which the caller attempted - // to extract a private key from a public extended key. - ErrNotPrivExtKey = errors.New("unable to create private keys from a " + - "public extended key") - - // ErrInvalidChild describes an error in which the child at a specific - // index is invalid due to the derived key falling outside of the valid - // range for secp256k1 private keys. This error indicates the caller - // should simply ignore the invalid child extended key at this index and - // increment to the next index. - ErrInvalidChild = errors.New("the extended key at this index is invalid") - - // ErrUnusableSeed describes an error in which the provided seed is not - // usable due to the derived key falling outside of the valid range for - // secp256k1 private keys. This error indicates the caller must choose - // another seed. - ErrUnusableSeed = errors.New("unusable seed") - - // ErrInvalidSeedLen describes an error in which the provided seed or - // seed length is not in the allowed range. - ErrInvalidSeedLen = fmt.Errorf("seed length must be between %d and %d "+ - "bits", MinSeedBytes*8, MaxSeedBytes*8) - - // ErrBadChecksum describes an error in which the checksum encoded with - // a serialized extended key does not match the calculated value. - ErrBadChecksum = errors.New("bad extended key checksum") - - // ErrInvalidKeyLen describes an error in which the provided serialized - // key is not the expected length. - ErrInvalidKeyLen = errors.New("the provided serialized extended key " + - "length is invalid") -) - -// masterKey is the master key used along with a random seed used to generate -// the master node in the hierarchical tree. -var masterKey = []byte("Bitcoin seed") - -// ExtendedKey houses all the information needed to support a hierarchical -// deterministic extended key. See the package overview documentation for -// more details on how to use extended keys. -type ExtendedKey struct { - key []byte // This will be the pubkey for extended pub keys - pubKey []byte // This will only be set for extended priv keys - chainCode []byte - depth uint8 - parentFP []byte - childNum uint32 - version []byte - isPrivate bool -} - -// NewExtendedKey returns a new instance of an extended key with the given -// fields. No error checking is performed here as it's only intended to be a -// convenience method used to create a populated struct. This function should -// only be used by applications that need to create custom ExtendedKeys. All -// other applications should just use NewMaster, Derive, or Neuter. -func NewExtendedKey(version, key, chainCode, parentFP []byte, depth uint8, - childNum uint32, isPrivate bool) *ExtendedKey { - - // NOTE: The pubKey field is intentionally left nil so it is only - // computed and memoized as required. - return &ExtendedKey{ - key: key, - chainCode: chainCode, - depth: depth, - parentFP: parentFP, - childNum: childNum, - version: version, - isPrivate: isPrivate, - } -} - -// pubKeyBytes returns bytes for the serialized compressed public key associated -// with this extended key in an efficient manner including memoization as -// necessary. -// -// When the extended key is already a public key, the key is simply returned as -// is since it's already in the correct form. However, when the extended key is -// a private key, the public key will be calculated and memoized so future -// accesses can simply return the cached result. -func (k *ExtendedKey) pubKeyBytes() []byte { - // Just return the key if it's already an extended public key. - if !k.isPrivate { - return k.key - } - - // This is a private extended key, so calculate and memoize the public - // key if needed. - if len(k.pubKey) == 0 { - pkx, pky := btcec.S256().ScalarBaseMult(k.key) - pubKey := btcec.PublicKey{Curve: btcec.S256(), X: pkx, Y: pky} - k.pubKey = pubKey.SerializeCompressed() - } - - return k.pubKey -} - -// IsPrivate returns whether or not the extended key is a private extended key. -// -// A private extended key can be used to derive both hardened and non-hardened -// child private and public extended keys. A public extended key can only be -// used to derive non-hardened child public extended keys. -func (k *ExtendedKey) IsPrivate() bool { - return k.isPrivate -} - -// Depth returns the current derivation level with respect to the root. -// -// The root key has depth zero, and the field has a maximum of 255 due to -// how depth is serialized. -func (k *ExtendedKey) Depth() uint8 { - return k.depth -} - -// Version returns the extended key's hardened derivation version. This can be -// used to identify the extended key's type. -func (k *ExtendedKey) Version() []byte { - return k.version -} - -// ParentFingerprint returns a fingerprint of the parent extended key from which -// this one was derived. -func (k *ExtendedKey) ParentFingerprint() uint32 { - return binary.BigEndian.Uint32(k.parentFP) -} - -// ChainCode returns the chain code part of this extended key. -// -// It is identical for both public and private extended keys. -func (k *ExtendedKey) ChainCode() []byte { - return append([]byte{}, k.chainCode...) -} - -// Derive returns a derived child extended key at the given index. -// -// IMPORTANT: if you were previously using the Child method, this method is incompatible. -// The Child method had a BIP-32 standard compatibility issue. You have to check whether -// any hardened derivations in your derivation path are affected by this issue, via the -// IsAffectedByIssue172 method and migrate the wallet if so. This method does conform -// to the standard. If you need the old behavior, use DeriveNonStandard. -// -// When this extended key is a private extended key (as determined by the IsPrivate -// function), a private extended key will be derived. Otherwise, the derived -// extended key will be also be a public extended key. -// -// When the index is greater to or equal than the HardenedKeyStart constant, the -// derived extended key will be a hardened extended key. It is only possible to -// derive a hardened extended key from a private extended key. Consequently, -// this function will return ErrDeriveHardFromPublic if a hardened child -// extended key is requested from a public extended key. -// -// A hardened extended key is useful since, as previously mentioned, it requires -// a parent private extended key to derive. In other words, normal child -// extended public keys can be derived from a parent public extended key (no -// knowledge of the parent private key) whereas hardened extended keys may not -// be. -// -// NOTE: There is an extremely small chance (< 1 in 2^127) the specific child -// index does not derive to a usable child. The ErrInvalidChild error will be -// returned if this should occur, and the caller is expected to ignore the -// invalid child and simply increment to the next index. -func (k *ExtendedKey) Derive(i uint32) (*ExtendedKey, error) { - // Prevent derivation of children beyond the max allowed depth. - if k.depth == maxUint8 { - return nil, ErrDeriveBeyondMaxDepth - } - - // There are four scenarios that could happen here: - // 1) Private extended key -> Hardened child private extended key - // 2) Private extended key -> Non-hardened child private extended key - // 3) Public extended key -> Non-hardened child public extended key - // 4) Public extended key -> Hardened child public extended key (INVALID!) - - // Case #4 is invalid, so error out early. - // A hardened child extended key may not be created from a public - // extended key. - isChildHardened := i >= HardenedKeyStart - if !k.isPrivate && isChildHardened { - return nil, ErrDeriveHardFromPublic - } - - // The data used to derive the child key depends on whether or not the - // child is hardened per [BIP32]. - // - // For hardened children: - // 0x00 || ser256(parentKey) || ser32(i) - // - // For normal children: - // serP(parentPubKey) || ser32(i) - keyLen := 33 - data := make([]byte, keyLen+4) - if isChildHardened { - // Case #1. - // When the child is a hardened child, the key is known to be a - // private key due to the above early return. Pad it with a - // leading zero as required by [BIP32] for deriving the child. - // Additionally, right align it if it's shorter than 32 bytes. - offset := 33 - len(k.key) - copy(data[offset:], k.key) - } else { - // Case #2 or #3. - // This is either a public or private extended key, but in - // either case, the data which is used to derive the child key - // starts with the secp256k1 compressed public key bytes. - copy(data, k.pubKeyBytes()) - } - binary.BigEndian.PutUint32(data[keyLen:], i) - - // Take the HMAC-SHA512 of the current key's chain code and the derived - // data: - // I = HMAC-SHA512(Key = chainCode, Data = data) - hmac512 := hmac.New(sha512.New, k.chainCode) - hmac512.Write(data) - ilr := hmac512.Sum(nil) - - // Split "I" into two 32-byte sequences Il and Ir where: - // Il = intermediate key used to derive the child - // Ir = child chain code - il := ilr[:len(ilr)/2] - childChainCode := ilr[len(ilr)/2:] - - // Both derived public or private keys rely on treating the left 32-byte - // sequence calculated above (Il) as a 256-bit integer that must be - // within the valid range for a secp256k1 private key. There is a small - // chance (< 1 in 2^127) this condition will not hold, and in that case, - // a child extended key can't be created for this index and the caller - // should simply increment to the next index. - ilNum := new(big.Int).SetBytes(il) - if ilNum.Cmp(btcec.S256().N) >= 0 || ilNum.Sign() == 0 { - return nil, ErrInvalidChild - } - - // The algorithm used to derive the child key depends on whether or not - // a private or public child is being derived. - // - // For private children: - // childKey = parse256(Il) + parentKey - // - // For public children: - // childKey = serP(point(parse256(Il)) + parentKey) - var isPrivate bool - var childKey []byte - if k.isPrivate { - // Case #1 or #2. - // Add the parent private key to the intermediate private key to - // derive the final child key. - // - // childKey = parse256(Il) + parenKey - keyNum := new(big.Int).SetBytes(k.key) - ilNum.Add(ilNum, keyNum) - ilNum.Mod(ilNum, btcec.S256().N) - childKey = ilNum.Bytes() - isPrivate = true - } else { - // Case #3. - // Calculate the corresponding intermediate public key for - // intermediate private key. - ilx, ily := btcec.S256().ScalarBaseMult(il) - if ilx.Sign() == 0 || ily.Sign() == 0 { - return nil, ErrInvalidChild - } - - // Convert the serialized compressed parent public key into X - // and Y coordinates so it can be added to the intermediate - // public key. - pubKey, err := btcec.ParsePubKey(k.key, btcec.S256()) - if err != nil { - return nil, err - } - - // Add the intermediate public key to the parent public key to - // derive the final child key. - // - // childKey = serP(point(parse256(Il)) + parentKey) - childX, childY := btcec.S256().Add(ilx, ily, pubKey.X, pubKey.Y) - pk := btcec.PublicKey{Curve: btcec.S256(), X: childX, Y: childY} - childKey = pk.SerializeCompressed() - } - - // The fingerprint of the parent for the derived child is the first 4 - // bytes of the RIPEMD160(SHA256(parentPubKey)). - parentFP := btcutil.Hash160(k.pubKeyBytes())[:4] - return NewExtendedKey(k.version, childKey, childChainCode, parentFP, - k.depth+1, i, isPrivate), nil -} - -// Returns true if this key was affected by the BIP-32 issue in the Child -// method (since renamed to DeriveNonStandard). -func (k *ExtendedKey) IsAffectedByIssue172() bool { - return len(k.key) < 32 -} - -// Deprecated: This is a non-standard derivation that is affected by issue #172. -// 1-of-256 hardened derivations will be wrong. See note in the Derive method -// and IsAffectedByIssue172. -func (k *ExtendedKey) DeriveNonStandard(i uint32) (*ExtendedKey, error) { - if k.depth == maxUint8 { - return nil, ErrDeriveBeyondMaxDepth - } - - isChildHardened := i >= HardenedKeyStart - if !k.isPrivate && isChildHardened { - return nil, ErrDeriveHardFromPublic - } - - keyLen := 33 - data := make([]byte, keyLen+4) - if isChildHardened { - copy(data[1:], k.key) - } else { - copy(data, k.pubKeyBytes()) - } - binary.BigEndian.PutUint32(data[keyLen:], i) - - hmac512 := hmac.New(sha512.New, k.chainCode) - hmac512.Write(data) - ilr := hmac512.Sum(nil) - - il := ilr[:len(ilr)/2] - childChainCode := ilr[len(ilr)/2:] - - ilNum := new(big.Int).SetBytes(il) - if ilNum.Cmp(btcec.S256().N) >= 0 || ilNum.Sign() == 0 { - return nil, ErrInvalidChild - } - - var isPrivate bool - var childKey []byte - if k.isPrivate { - keyNum := new(big.Int).SetBytes(k.key) - ilNum.Add(ilNum, keyNum) - ilNum.Mod(ilNum, btcec.S256().N) - childKey = ilNum.Bytes() - isPrivate = true - } else { - ilx, ily := btcec.S256().ScalarBaseMult(il) - if ilx.Sign() == 0 || ily.Sign() == 0 { - return nil, ErrInvalidChild - } - - pubKey, err := btcec.ParsePubKey(k.key, btcec.S256()) - if err != nil { - return nil, err - } - - childX, childY := btcec.S256().Add(ilx, ily, pubKey.X, pubKey.Y) - pk := btcec.PublicKey{Curve: btcec.S256(), X: childX, Y: childY} - childKey = pk.SerializeCompressed() - } - - parentFP := btcutil.Hash160(k.pubKeyBytes())[:4] - return NewExtendedKey(k.version, childKey, childChainCode, parentFP, - k.depth+1, i, isPrivate), nil -} - -// ChildNum returns the index at which the child extended key was derived. -// -// Extended keys with ChildNum value between 0 and 2^31-1 are normal child -// keys, and those with a value between 2^31 and 2^32-1 are hardened keys. -func (k *ExtendedKey) ChildIndex() uint32 { - return k.childNum -} - -// Neuter returns a new extended public key from this extended private key. The -// same extended key will be returned unaltered if it is already an extended -// public key. -// -// As the name implies, an extended public key does not have access to the -// private key, so it is not capable of signing transactions or deriving -// child extended private keys. However, it is capable of deriving further -// child extended public keys. -func (k *ExtendedKey) Neuter() (*ExtendedKey, error) { - // Already an extended public key. - if !k.isPrivate { - return k, nil - } - - // Get the associated public extended key version bytes. - version, err := chaincfg.HDPrivateKeyToPublicKeyID(k.version) - if err != nil { - return nil, err - } - - // Convert it to an extended public key. The key for the new extended - // key will simply be the pubkey of the current extended private key. - // - // This is the function N((k,c)) -> (K, c) from [BIP32]. - return NewExtendedKey(version, k.pubKeyBytes(), k.chainCode, k.parentFP, - k.depth, k.childNum, false), nil -} - -// CloneWithVersion returns a new extended key cloned from this extended key, -// but using the provided HD version bytes. The version must be a private HD -// key ID for an extended private key, and a public HD key ID for an extended -// public key. -// -// This method creates a new copy and therefore does not mutate the original -// extended key instance. -// -// Unlike Neuter(), this does NOT convert an extended private key to an -// extended public key. It is particularly useful for converting between -// standard BIP0032 extended keys (serializable to xprv/xpub) and keys based -// on the SLIP132 standard (serializable to yprv/ypub, zprv/zpub, etc.). -// -// References: -// [SLIP132]: SLIP-0132 - Registered HD version bytes for BIP-0032 -// https://github.com/satoshilabs/slips/blob/master/slip-0132.md -func (k *ExtendedKey) CloneWithVersion(version []byte) (*ExtendedKey, error) { - if len(version) != 4 { - // TODO: The semantically correct error to return here is - // ErrInvalidHDKeyID (introduced in btcsuite/btcd#1617). Update the - // error type once available in a stable btcd / chaincfg release. - return nil, chaincfg.ErrUnknownHDKeyID - } - - // Initialize a new extended key instance with the same fields as the - // current extended private/public key and the provided HD version bytes. - return NewExtendedKey(version, k.key, k.chainCode, k.parentFP, - k.depth, k.childNum, k.isPrivate), nil -} - -// ECPubKey converts the extended key to a btcec public key and returns it. -func (k *ExtendedKey) ECPubKey() (*btcec.PublicKey, error) { - return btcec.ParsePubKey(k.pubKeyBytes(), btcec.S256()) -} - -// ECPrivKey converts the extended key to a btcec private key and returns it. -// As you might imagine this is only possible if the extended key is a private -// extended key (as determined by the IsPrivate function). The ErrNotPrivExtKey -// error will be returned if this function is called on a public extended key. -func (k *ExtendedKey) ECPrivKey() (*btcec.PrivateKey, error) { - if !k.isPrivate { - return nil, ErrNotPrivExtKey - } - - privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), k.key) - return privKey, nil -} - -// Address converts the extended key to a standard bitcoin pay-to-pubkey-hash -// address for the passed network. -func (k *ExtendedKey) Address(net *chaincfg.Params) (*btcutil.AddressPubKeyHash, error) { - pkHash := btcutil.Hash160(k.pubKeyBytes()) - return btcutil.NewAddressPubKeyHash(pkHash, net) -} - -// paddedAppend appends the src byte slice to dst, returning the new slice. -// If the length of the source is smaller than the passed size, leading zero -// bytes are appended to the dst slice before appending src. -func paddedAppend(size uint, dst, src []byte) []byte { - for i := 0; i < int(size)-len(src); i++ { - dst = append(dst, 0) - } - return append(dst, src...) -} - -// String returns the extended key as a human-readable base58-encoded string. -func (k *ExtendedKey) String() string { - if len(k.key) == 0 { - return "zeroed extended key" - } - - var childNumBytes [4]byte - binary.BigEndian.PutUint32(childNumBytes[:], k.childNum) - - // The serialized format is: - // version (4) || depth (1) || parent fingerprint (4)) || - // child num (4) || chain code (32) || key data (33) || checksum (4) - serializedBytes := make([]byte, 0, serializedKeyLen+4) - serializedBytes = append(serializedBytes, k.version...) - serializedBytes = append(serializedBytes, k.depth) - serializedBytes = append(serializedBytes, k.parentFP...) - serializedBytes = append(serializedBytes, childNumBytes[:]...) - serializedBytes = append(serializedBytes, k.chainCode...) - if k.isPrivate { - serializedBytes = append(serializedBytes, 0x00) - serializedBytes = paddedAppend(32, serializedBytes, k.key) - } else { - serializedBytes = append(serializedBytes, k.pubKeyBytes()...) - } - - checkSum := chainhash.DoubleHashB(serializedBytes)[:4] - serializedBytes = append(serializedBytes, checkSum...) - return base58.Encode(serializedBytes) -} - -// IsForNet returns whether or not the extended key is associated with the -// passed bitcoin network. -func (k *ExtendedKey) IsForNet(net *chaincfg.Params) bool { - return bytes.Equal(k.version, net.HDPrivateKeyID[:]) || - bytes.Equal(k.version, net.HDPublicKeyID[:]) -} - -// SetNet associates the extended key, and any child keys yet to be derived from -// it, with the passed network. -func (k *ExtendedKey) SetNet(net *chaincfg.Params) { - if k.isPrivate { - k.version = net.HDPrivateKeyID[:] - } else { - k.version = net.HDPublicKeyID[:] - } -} - -// zero sets all bytes in the passed slice to zero. This is used to -// explicitly clear private key material from memory. -func zero(b []byte) { - lenb := len(b) - for i := 0; i < lenb; i++ { - b[i] = 0 - } -} - -// Zero manually clears all fields and bytes in the extended key. This can be -// used to explicitly clear key material from memory for enhanced security -// against memory scraping. This function only clears this particular key and -// not any children that have already been derived. -func (k *ExtendedKey) Zero() { - zero(k.key) - zero(k.pubKey) - zero(k.chainCode) - zero(k.parentFP) - k.version = nil - k.key = nil - k.depth = 0 - k.childNum = 0 - k.isPrivate = false -} - -// NewMaster creates a new master node for use in creating a hierarchical -// deterministic key chain. The seed must be between 128 and 512 bits and -// should be generated by a cryptographically secure random generation source. -// -// NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed -// will derive to an unusable secret key. The ErrUnusable error will be -// returned if this should occur, so the caller must check for it and generate a -// new seed accordingly. -func NewMaster(seed []byte, net *chaincfg.Params) (*ExtendedKey, error) { - // Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes]. - if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes { - return nil, ErrInvalidSeedLen - } - - // First take the HMAC-SHA512 of the master key and the seed data: - // I = HMAC-SHA512(Key = "Bitcoin seed", Data = S) - hmac512 := hmac.New(sha512.New, masterKey) - hmac512.Write(seed) - lr := hmac512.Sum(nil) - - // Split "I" into two 32-byte sequences Il and Ir where: - // Il = master secret key - // Ir = master chain code - secretKey := lr[:len(lr)/2] - chainCode := lr[len(lr)/2:] - - // Ensure the key in usable. - secretKeyNum := new(big.Int).SetBytes(secretKey) - if secretKeyNum.Cmp(btcec.S256().N) >= 0 || secretKeyNum.Sign() == 0 { - return nil, ErrUnusableSeed - } - - parentFP := []byte{0x00, 0x00, 0x00, 0x00} - return NewExtendedKey(net.HDPrivateKeyID[:], secretKey, chainCode, - parentFP, 0, 0, true), nil -} - -// NewKeyFromString returns a new extended key instance from a base58-encoded -// extended key. -func NewKeyFromString(key string) (*ExtendedKey, error) { - // The base58-decoded extended key must consist of a serialized payload - // plus an additional 4 bytes for the checksum. - decoded := base58.Decode(key) - if len(decoded) != serializedKeyLen+4 { - return nil, ErrInvalidKeyLen - } - - // The serialized format is: - // version (4) || depth (1) || parent fingerprint (4)) || - // child num (4) || chain code (32) || key data (33) || checksum (4) - - // Split the payload and checksum up and ensure the checksum matches. - payload := decoded[:len(decoded)-4] - checkSum := decoded[len(decoded)-4:] - expectedCheckSum := chainhash.DoubleHashB(payload)[:4] - if !bytes.Equal(checkSum, expectedCheckSum) { - return nil, ErrBadChecksum - } - - // Deserialize each of the payload fields. - version := payload[:4] - depth := payload[4:5][0] - parentFP := payload[5:9] - childNum := binary.BigEndian.Uint32(payload[9:13]) - chainCode := payload[13:45] - keyData := payload[45:78] - - // The key data is a private key if it starts with 0x00. Serialized - // compressed pubkeys either start with 0x02 or 0x03. - isPrivate := keyData[0] == 0x00 - if isPrivate { - // Ensure the private key is valid. It must be within the range - // of the order of the secp256k1 curve and not be 0. - keyData = keyData[1:] - keyNum := new(big.Int).SetBytes(keyData) - if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 { - return nil, ErrUnusableSeed - } - } else { - // Ensure the public key parses correctly and is actually on the - // secp256k1 curve. - _, err := btcec.ParsePubKey(keyData, btcec.S256()) - if err != nil { - return nil, err - } - } - - return NewExtendedKey(version, keyData, chainCode, parentFP, depth, - childNum, isPrivate), nil -} - -// GenerateSeed returns a cryptographically secure random seed that can be used -// as the input for the NewMaster function to generate a new master node. -// -// The length is in bytes and it must be between 16 and 64 (128 to 512 bits). -// The recommended length is 32 (256 bits) as defined by the RecommendedSeedLen -// constant. -func GenerateSeed(length uint8) ([]byte, error) { - // Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes]. - if length < MinSeedBytes || length > MaxSeedBytes { - return nil, ErrInvalidSeedLen - } - - buf := make([]byte, length) - _, err := rand.Read(buf) - if err != nil { - return nil, err - } - - return buf, nil -} diff --git a/vendor/github.com/btcsuite/btcutil/hdkeychain/test_coverage.txt b/vendor/github.com/btcsuite/btcutil/hdkeychain/test_coverage.txt deleted file mode 100644 index c0bc7ef..0000000 --- a/vendor/github.com/btcsuite/btcutil/hdkeychain/test_coverage.txt +++ /dev/null @@ -1,20 +0,0 @@ - -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.String 100.00% (18/18) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.Zero 100.00% (9/9) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.pubKeyBytes 100.00% (7/7) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.Neuter 100.00% (6/6) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.ECPrivKey 100.00% (4/4) -github.com/conformal/btcutil/hdkeychain/extendedkey.go zero 100.00% (3/3) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.SetNet 100.00% (3/3) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.Address 100.00% (2/2) -github.com/conformal/btcutil/hdkeychain/extendedkey.go newExtendedKey 100.00% (1/1) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.IsPrivate 100.00% (1/1) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.ParentFingerprint 100.00% (1/1) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.ECPubKey 100.00% (1/1) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.IsForNet 100.00% (1/1) -github.com/conformal/btcutil/hdkeychain/extendedkey.go NewKeyFromString 95.83% (23/24) -github.com/conformal/btcutil/hdkeychain/extendedkey.go ExtendedKey.Child 91.67% (33/36) -github.com/conformal/btcutil/hdkeychain/extendedkey.go NewMaster 91.67% (11/12) -github.com/conformal/btcutil/hdkeychain/extendedkey.go GenerateSeed 85.71% (6/7) -github.com/conformal/btcutil/hdkeychain ----------------------------- 95.59% (130/136) - diff --git a/vendor/github.com/btcsuite/btcutil/net.go b/vendor/github.com/btcsuite/btcutil/net.go deleted file mode 100644 index bf11733..0000000 --- a/vendor/github.com/btcsuite/btcutil/net.go +++ /dev/null @@ -1,18 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -// +build !appengine - -package btcutil - -import ( - "net" -) - -// interfaceAddrs returns a list of the system's network interface addresses. -// It is wrapped here so that we can substitute it for other functions when -// building for systems that do not allow access to net.InterfaceAddrs(). -func interfaceAddrs() ([]net.Addr, error) { - return net.InterfaceAddrs() -} diff --git a/vendor/github.com/btcsuite/btcutil/net_noop.go b/vendor/github.com/btcsuite/btcutil/net_noop.go deleted file mode 100644 index b0b7c2e..0000000 --- a/vendor/github.com/btcsuite/btcutil/net_noop.go +++ /dev/null @@ -1,19 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -// +build appengine - -package btcutil - -import ( - "net" -) - -// interfaceAddrs returns a list of the system's network interface addresses. -// It is wrapped here so that we can substitute it for a no-op function that -// returns an empty slice of net.Addr when building for systems that do not -// allow access to net.InterfaceAddrs(). -func interfaceAddrs() ([]net.Addr, error) { - return []net.Addr{}, nil -} diff --git a/vendor/github.com/btcsuite/btcutil/test_coverage.txt b/vendor/github.com/btcsuite/btcutil/test_coverage.txt deleted file mode 100644 index e475fad..0000000 --- a/vendor/github.com/btcsuite/btcutil/test_coverage.txt +++ /dev/null @@ -1,72 +0,0 @@ - -github.com/conformal/btcutil/base58.go Base58Decode 100.00% (20/20) -github.com/conformal/btcutil/base58.go Base58Encode 100.00% (15/15) -github.com/conformal/btcutil/block.go Block.Tx 100.00% (12/12) -github.com/conformal/btcutil/wif.go WIF.String 100.00% (11/11) -github.com/conformal/btcutil/block.go Block.Transactions 100.00% (11/11) -github.com/conformal/btcutil/amount.go AmountUnit.String 100.00% (8/8) -github.com/conformal/btcutil/tx.go NewTxFromReader 100.00% (6/6) -github.com/conformal/btcutil/block.go NewBlockFromBytes 100.00% (6/6) -github.com/conformal/btcutil/block.go NewBlockFromReader 100.00% (6/6) -github.com/conformal/btcutil/address.go encodeAddress 100.00% (6/6) -github.com/conformal/btcutil/address.go newAddressPubKeyHash 100.00% (5/5) -github.com/conformal/btcutil/address.go newAddressScriptHashFromHash 100.00% (5/5) -github.com/conformal/btcutil/tx.go Tx.Sha 100.00% (5/5) -github.com/conformal/btcutil/block.go Block.Sha 100.00% (5/5) -github.com/conformal/btcutil/amount.go NewAmount 100.00% (5/5) -github.com/conformal/btcutil/amount.go round 100.00% (3/3) -github.com/conformal/btcutil/address.go NewAddressScriptHash 100.00% (2/2) -github.com/conformal/btcutil/amount.go Amount.Format 100.00% (2/2) -github.com/conformal/btcutil/tx.go NewTxFromBytes 100.00% (2/2) -github.com/conformal/btcutil/hash160.go calcHash 100.00% (2/2) -github.com/conformal/btcutil/address.go AddressPubKeyHash.Hash160 100.00% (1/1) -github.com/conformal/btcutil/block.go OutOfRangeError.Error 100.00% (1/1) -github.com/conformal/btcutil/block.go Block.MsgBlock 100.00% (1/1) -github.com/conformal/btcutil/tx.go Tx.MsgTx 100.00% (1/1) -github.com/conformal/btcutil/hash160.go Hash160 100.00% (1/1) -github.com/conformal/btcutil/block.go NewBlockFromBlockAndBytes 100.00% (1/1) -github.com/conformal/btcutil/block.go Block.Height 100.00% (1/1) -github.com/conformal/btcutil/block.go Block.SetHeight 100.00% (1/1) -github.com/conformal/btcutil/block.go NewBlock 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKeyHash.IsForNet 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKey.EncodeAddress 100.00% (1/1) -github.com/conformal/btcutil/address.go NewAddressPubKeyHash 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKeyHash.EncodeAddress 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKeyHash.ScriptAddress 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKeyHash.String 100.00% (1/1) -github.com/conformal/btcutil/address.go NewAddressScriptHashFromHash 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressScriptHash.EncodeAddress 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressScriptHash.ScriptAddress 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressScriptHash.IsForNet 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressScriptHash.String 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressScriptHash.Hash160 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKey.ScriptAddress 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKey.IsForNet 100.00% (1/1) -github.com/conformal/btcutil/address.go AddressPubKey.String 100.00% (1/1) -github.com/conformal/btcutil/tx.go NewTx 100.00% (1/1) -github.com/conformal/btcutil/tx.go Tx.SetIndex 100.00% (1/1) -github.com/conformal/btcutil/amount.go Amount.ToUnit 100.00% (1/1) -github.com/conformal/btcutil/tx.go Tx.Index 100.00% (1/1) -github.com/conformal/btcutil/amount.go Amount.String 100.00% (1/1) -github.com/conformal/btcutil/amount.go Amount.MulF64 100.00% (1/1) -github.com/conformal/btcutil/appdata.go appDataDir 92.00% (23/25) -github.com/conformal/btcutil/block.go Block.TxLoc 88.89% (8/9) -github.com/conformal/btcutil/block.go Block.Bytes 88.89% (8/9) -github.com/conformal/btcutil/address.go NewAddressPubKey 87.50% (7/8) -github.com/conformal/btcutil/address.go DecodeAddress 85.00% (17/20) -github.com/conformal/btcutil/wif.go DecodeWIF 85.00% (17/20) -github.com/conformal/btcutil/address.go AddressPubKey.serialize 80.00% (4/5) -github.com/conformal/btcutil/block.go Block.TxSha 75.00% (3/4) -github.com/conformal/btcutil/wif.go paddedAppend 66.67% (2/3) -github.com/conformal/btcutil/wif.go NewWIF 66.67% (2/3) -github.com/conformal/btcutil/certgen.go NewTLSCertPair 0.00% (0/54) -github.com/conformal/btcutil/wif.go WIF.SerializePubKey 0.00% (0/4) -github.com/conformal/btcutil/address.go AddressPubKey.AddressPubKeyHash 0.00% (0/3) -github.com/conformal/btcutil/address.go AddressPubKey.Format 0.00% (0/1) -github.com/conformal/btcutil/address.go AddressPubKey.PubKey 0.00% (0/1) -github.com/conformal/btcutil/address.go AddressPubKey.SetFormat 0.00% (0/1) -github.com/conformal/btcutil/wif.go WIF.IsForNet 0.00% (0/1) -github.com/conformal/btcutil/appdata.go AppDataDir 0.00% (0/1) -github.com/conformal/btcutil/net.go interfaceAddrs 0.00% (0/1) -github.com/conformal/btcutil ------------------------------- 75.88% (258/340) - diff --git a/vendor/github.com/btcsuite/btcutil/tx.go b/vendor/github.com/btcsuite/btcutil/tx.go deleted file mode 100644 index 5633fef..0000000 --- a/vendor/github.com/btcsuite/btcutil/tx.go +++ /dev/null @@ -1,124 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "bytes" - "io" - - "github.com/btcsuite/btcd/chaincfg/chainhash" - "github.com/btcsuite/btcd/wire" -) - -// TxIndexUnknown is the value returned for a transaction index that is unknown. -// This is typically because the transaction has not been inserted into a block -// yet. -const TxIndexUnknown = -1 - -// Tx defines a bitcoin transaction that provides easier and more efficient -// manipulation of raw transactions. It also memoizes the hash for the -// transaction on its first access so subsequent accesses don't have to repeat -// the relatively expensive hashing operations. -type Tx struct { - msgTx *wire.MsgTx // Underlying MsgTx - txHash *chainhash.Hash // Cached transaction hash - txHashWitness *chainhash.Hash // Cached transaction witness hash - txHasWitness *bool // If the transaction has witness data - txIndex int // Position within a block or TxIndexUnknown -} - -// MsgTx returns the underlying wire.MsgTx for the transaction. -func (t *Tx) MsgTx() *wire.MsgTx { - // Return the cached transaction. - return t.msgTx -} - -// Hash returns the hash of the transaction. This is equivalent to -// calling TxHash on the underlying wire.MsgTx, however it caches the -// result so subsequent calls are more efficient. -func (t *Tx) Hash() *chainhash.Hash { - // Return the cached hash if it has already been generated. - if t.txHash != nil { - return t.txHash - } - - // Cache the hash and return it. - hash := t.msgTx.TxHash() - t.txHash = &hash - return &hash -} - -// WitnessHash returns the witness hash (wtxid) of the transaction. This is -// equivalent to calling WitnessHash on the underlying wire.MsgTx, however it -// caches the result so subsequent calls are more efficient. -func (t *Tx) WitnessHash() *chainhash.Hash { - // Return the cached hash if it has already been generated. - if t.txHashWitness != nil { - return t.txHashWitness - } - - // Cache the hash and return it. - hash := t.msgTx.WitnessHash() - t.txHashWitness = &hash - return &hash -} - -// HasWitness returns false if none of the inputs within the transaction -// contain witness data, true false otherwise. This equivalent to calling -// HasWitness on the underlying wire.MsgTx, however it caches the result so -// subsequent calls are more efficient. -func (t *Tx) HasWitness() bool { - if t.txHasWitness != nil { - return *t.txHasWitness - } - - hasWitness := t.msgTx.HasWitness() - t.txHasWitness = &hasWitness - return hasWitness -} - -// Index returns the saved index of the transaction within a block. This value -// will be TxIndexUnknown if it hasn't already explicitly been set. -func (t *Tx) Index() int { - return t.txIndex -} - -// SetIndex sets the index of the transaction in within a block. -func (t *Tx) SetIndex(index int) { - t.txIndex = index -} - -// NewTx returns a new instance of a bitcoin transaction given an underlying -// wire.MsgTx. See Tx. -func NewTx(msgTx *wire.MsgTx) *Tx { - return &Tx{ - msgTx: msgTx, - txIndex: TxIndexUnknown, - } -} - -// NewTxFromBytes returns a new instance of a bitcoin transaction given the -// serialized bytes. See Tx. -func NewTxFromBytes(serializedTx []byte) (*Tx, error) { - br := bytes.NewReader(serializedTx) - return NewTxFromReader(br) -} - -// NewTxFromReader returns a new instance of a bitcoin transaction given a -// Reader to deserialize the transaction. See Tx. -func NewTxFromReader(r io.Reader) (*Tx, error) { - // Deserialize the bytes into a MsgTx. - var msgTx wire.MsgTx - err := msgTx.Deserialize(r) - if err != nil { - return nil, err - } - - t := Tx{ - msgTx: &msgTx, - txIndex: TxIndexUnknown, - } - return &t, nil -} diff --git a/vendor/github.com/btcsuite/btcutil/wif.go b/vendor/github.com/btcsuite/btcutil/wif.go deleted file mode 100644 index 8b17dc9..0000000 --- a/vendor/github.com/btcsuite/btcutil/wif.go +++ /dev/null @@ -1,169 +0,0 @@ -// Copyright (c) 2013-2016 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package btcutil - -import ( - "bytes" - "errors" - - "github.com/btcsuite/btcd/btcec" - "github.com/btcsuite/btcd/chaincfg" - "github.com/btcsuite/btcd/chaincfg/chainhash" - "github.com/btcsuite/btcutil/base58" -) - -// ErrMalformedPrivateKey describes an error where a WIF-encoded private -// key cannot be decoded due to being improperly formatted. This may occur -// if the byte length is incorrect or an unexpected magic number was -// encountered. -var ErrMalformedPrivateKey = errors.New("malformed private key") - -// compressMagic is the magic byte used to identify a WIF encoding for -// an address created from a compressed serialized public key. -const compressMagic byte = 0x01 - -// WIF contains the individual components described by the Wallet Import Format -// (WIF). A WIF string is typically used to represent a private key and its -// associated address in a way that may be easily copied and imported into or -// exported from wallet software. WIF strings may be decoded into this -// structure by calling DecodeWIF or created with a user-provided private key -// by calling NewWIF. -type WIF struct { - // PrivKey is the private key being imported or exported. - PrivKey *btcec.PrivateKey - - // CompressPubKey specifies whether the address controlled by the - // imported or exported private key was created by hashing a - // compressed (33-byte) serialized public key, rather than an - // uncompressed (65-byte) one. - CompressPubKey bool - - // netID is the bitcoin network identifier byte used when - // WIF encoding the private key. - netID byte -} - -// NewWIF creates a new WIF structure to export an address and its private key -// as a string encoded in the Wallet Import Format. The compress argument -// specifies whether the address intended to be imported or exported was created -// by serializing the public key compressed rather than uncompressed. -func NewWIF(privKey *btcec.PrivateKey, net *chaincfg.Params, compress bool) (*WIF, error) { - if net == nil { - return nil, errors.New("no network") - } - return &WIF{privKey, compress, net.PrivateKeyID}, nil -} - -// IsForNet returns whether or not the decoded WIF structure is associated -// with the passed bitcoin network. -func (w *WIF) IsForNet(net *chaincfg.Params) bool { - return w.netID == net.PrivateKeyID -} - -// DecodeWIF creates a new WIF structure by decoding the string encoding of -// the import format. -// -// The WIF string must be a base58-encoded string of the following byte -// sequence: -// -// * 1 byte to identify the network, must be 0x80 for mainnet or 0xef for -// either testnet3 or the regression test network -// * 32 bytes of a binary-encoded, big-endian, zero-padded private key -// * Optional 1 byte (equal to 0x01) if the address being imported or exported -// was created by taking the RIPEMD160 after SHA256 hash of a serialized -// compressed (33-byte) public key -// * 4 bytes of checksum, must equal the first four bytes of the double SHA256 -// of every byte before the checksum in this sequence -// -// If the base58-decoded byte sequence does not match this, DecodeWIF will -// return a non-nil error. ErrMalformedPrivateKey is returned when the WIF -// is of an impossible length or the expected compressed pubkey magic number -// does not equal the expected value of 0x01. ErrChecksumMismatch is returned -// if the expected WIF checksum does not match the calculated checksum. -func DecodeWIF(wif string) (*WIF, error) { - decoded := base58.Decode(wif) - decodedLen := len(decoded) - var compress bool - - // Length of base58 decoded WIF must be 32 bytes + an optional 1 byte - // (0x01) if compressed, plus 1 byte for netID + 4 bytes of checksum. - switch decodedLen { - case 1 + btcec.PrivKeyBytesLen + 1 + 4: - if decoded[33] != compressMagic { - return nil, ErrMalformedPrivateKey - } - compress = true - case 1 + btcec.PrivKeyBytesLen + 4: - compress = false - default: - return nil, ErrMalformedPrivateKey - } - - // Checksum is first four bytes of double SHA256 of the identifier byte - // and privKey. Verify this matches the final 4 bytes of the decoded - // private key. - var tosum []byte - if compress { - tosum = decoded[:1+btcec.PrivKeyBytesLen+1] - } else { - tosum = decoded[:1+btcec.PrivKeyBytesLen] - } - cksum := chainhash.DoubleHashB(tosum)[:4] - if !bytes.Equal(cksum, decoded[decodedLen-4:]) { - return nil, ErrChecksumMismatch - } - - netID := decoded[0] - privKeyBytes := decoded[1 : 1+btcec.PrivKeyBytesLen] - privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes) - return &WIF{privKey, compress, netID}, nil -} - -// String creates the Wallet Import Format string encoding of a WIF structure. -// See DecodeWIF for a detailed breakdown of the format and requirements of -// a valid WIF string. -func (w *WIF) String() string { - // Precalculate size. Maximum number of bytes before base58 encoding - // is one byte for the network, 32 bytes of private key, possibly one - // extra byte if the pubkey is to be compressed, and finally four - // bytes of checksum. - encodeLen := 1 + btcec.PrivKeyBytesLen + 4 - if w.CompressPubKey { - encodeLen++ - } - - a := make([]byte, 0, encodeLen) - a = append(a, w.netID) - // Pad and append bytes manually, instead of using Serialize, to - // avoid another call to make. - a = paddedAppend(btcec.PrivKeyBytesLen, a, w.PrivKey.D.Bytes()) - if w.CompressPubKey { - a = append(a, compressMagic) - } - cksum := chainhash.DoubleHashB(a)[:4] - a = append(a, cksum...) - return base58.Encode(a) -} - -// SerializePubKey serializes the associated public key of the imported or -// exported private key in either a compressed or uncompressed format. The -// serialization format chosen depends on the value of w.CompressPubKey. -func (w *WIF) SerializePubKey() []byte { - pk := (*btcec.PublicKey)(&w.PrivKey.PublicKey) - if w.CompressPubKey { - return pk.SerializeCompressed() - } - return pk.SerializeUncompressed() -} - -// paddedAppend appends the src byte slice to dst, returning the new slice. -// If the length of the source is smaller than the passed size, leading zero -// bytes are appended to the dst slice before appending src. -func paddedAppend(size uint, dst, src []byte) []byte { - for i := 0; i < int(size)-len(src); i++ { - dst = append(dst, 0) - } - return append(dst, src...) -} diff --git a/vendor/github.com/davecgh/go-spew/LICENSE b/vendor/github.com/davecgh/go-spew/LICENSE deleted file mode 100644 index bc52e96..0000000 --- a/vendor/github.com/davecgh/go-spew/LICENSE +++ /dev/null @@ -1,15 +0,0 @@ -ISC License - -Copyright (c) 2012-2016 Dave Collins - -Permission to use, copy, modify, and/or distribute this software for any -purpose with or without fee is hereby granted, provided that the above -copyright notice and this permission notice appear in all copies. - -THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/vendor/github.com/davecgh/go-spew/spew/bypass.go b/vendor/github.com/davecgh/go-spew/spew/bypass.go deleted file mode 100644 index 7929947..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/bypass.go +++ /dev/null @@ -1,145 +0,0 @@ -// Copyright (c) 2015-2016 Dave Collins -// -// Permission to use, copy, modify, and distribute this software for any -// purpose with or without fee is hereby granted, provided that the above -// copyright notice and this permission notice appear in all copies. -// -// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - -// NOTE: Due to the following build constraints, this file will only be compiled -// when the code is not running on Google App Engine, compiled by GopherJS, and -// "-tags safe" is not added to the go build command line. The "disableunsafe" -// tag is deprecated and thus should not be used. -// Go versions prior to 1.4 are disabled because they use a different layout -// for interfaces which make the implementation of unsafeReflectValue more complex. -// +build !js,!appengine,!safe,!disableunsafe,go1.4 - -package spew - -import ( - "reflect" - "unsafe" -) - -const ( - // UnsafeDisabled is a build-time constant which specifies whether or - // not access to the unsafe package is available. - UnsafeDisabled = false - - // ptrSize is the size of a pointer on the current arch. - ptrSize = unsafe.Sizeof((*byte)(nil)) -) - -type flag uintptr - -var ( - // flagRO indicates whether the value field of a reflect.Value - // is read-only. - flagRO flag - - // flagAddr indicates whether the address of the reflect.Value's - // value may be taken. - flagAddr flag -) - -// flagKindMask holds the bits that make up the kind -// part of the flags field. In all the supported versions, -// it is in the lower 5 bits. -const flagKindMask = flag(0x1f) - -// Different versions of Go have used different -// bit layouts for the flags type. This table -// records the known combinations. -var okFlags = []struct { - ro, addr flag -}{{ - // From Go 1.4 to 1.5 - ro: 1 << 5, - addr: 1 << 7, -}, { - // Up to Go tip. - ro: 1<<5 | 1<<6, - addr: 1 << 8, -}} - -var flagValOffset = func() uintptr { - field, ok := reflect.TypeOf(reflect.Value{}).FieldByName("flag") - if !ok { - panic("reflect.Value has no flag field") - } - return field.Offset -}() - -// flagField returns a pointer to the flag field of a reflect.Value. -func flagField(v *reflect.Value) *flag { - return (*flag)(unsafe.Pointer(uintptr(unsafe.Pointer(v)) + flagValOffset)) -} - -// unsafeReflectValue converts the passed reflect.Value into a one that bypasses -// the typical safety restrictions preventing access to unaddressable and -// unexported data. It works by digging the raw pointer to the underlying -// value out of the protected value and generating a new unprotected (unsafe) -// reflect.Value to it. -// -// This allows us to check for implementations of the Stringer and error -// interfaces to be used for pretty printing ordinarily unaddressable and -// inaccessible values such as unexported struct fields. -func unsafeReflectValue(v reflect.Value) reflect.Value { - if !v.IsValid() || (v.CanInterface() && v.CanAddr()) { - return v - } - flagFieldPtr := flagField(&v) - *flagFieldPtr &^= flagRO - *flagFieldPtr |= flagAddr - return v -} - -// Sanity checks against future reflect package changes -// to the type or semantics of the Value.flag field. -func init() { - field, ok := reflect.TypeOf(reflect.Value{}).FieldByName("flag") - if !ok { - panic("reflect.Value has no flag field") - } - if field.Type.Kind() != reflect.TypeOf(flag(0)).Kind() { - panic("reflect.Value flag field has changed kind") - } - type t0 int - var t struct { - A t0 - // t0 will have flagEmbedRO set. - t0 - // a will have flagStickyRO set - a t0 - } - vA := reflect.ValueOf(t).FieldByName("A") - va := reflect.ValueOf(t).FieldByName("a") - vt0 := reflect.ValueOf(t).FieldByName("t0") - - // Infer flagRO from the difference between the flags - // for the (otherwise identical) fields in t. - flagPublic := *flagField(&vA) - flagWithRO := *flagField(&va) | *flagField(&vt0) - flagRO = flagPublic ^ flagWithRO - - // Infer flagAddr from the difference between a value - // taken from a pointer and not. - vPtrA := reflect.ValueOf(&t).Elem().FieldByName("A") - flagNoPtr := *flagField(&vA) - flagPtr := *flagField(&vPtrA) - flagAddr = flagNoPtr ^ flagPtr - - // Check that the inferred flags tally with one of the known versions. - for _, f := range okFlags { - if flagRO == f.ro && flagAddr == f.addr { - return - } - } - panic("reflect.Value read-only flag has changed semantics") -} diff --git a/vendor/github.com/davecgh/go-spew/spew/bypasssafe.go b/vendor/github.com/davecgh/go-spew/spew/bypasssafe.go deleted file mode 100644 index 205c28d..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/bypasssafe.go +++ /dev/null @@ -1,38 +0,0 @@ -// Copyright (c) 2015-2016 Dave Collins -// -// Permission to use, copy, modify, and distribute this software for any -// purpose with or without fee is hereby granted, provided that the above -// copyright notice and this permission notice appear in all copies. -// -// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - -// NOTE: Due to the following build constraints, this file will only be compiled -// when the code is running on Google App Engine, compiled by GopherJS, or -// "-tags safe" is added to the go build command line. The "disableunsafe" -// tag is deprecated and thus should not be used. -// +build js appengine safe disableunsafe !go1.4 - -package spew - -import "reflect" - -const ( - // UnsafeDisabled is a build-time constant which specifies whether or - // not access to the unsafe package is available. - UnsafeDisabled = true -) - -// unsafeReflectValue typically converts the passed reflect.Value into a one -// that bypasses the typical safety restrictions preventing access to -// unaddressable and unexported data. However, doing this relies on access to -// the unsafe package. This is a stub version which simply returns the passed -// reflect.Value when the unsafe package is not available. -func unsafeReflectValue(v reflect.Value) reflect.Value { - return v -} diff --git a/vendor/github.com/davecgh/go-spew/spew/common.go b/vendor/github.com/davecgh/go-spew/spew/common.go deleted file mode 100644 index 1be8ce9..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/common.go +++ /dev/null @@ -1,341 +0,0 @@ -/* - * Copyright (c) 2013-2016 Dave Collins - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -package spew - -import ( - "bytes" - "fmt" - "io" - "reflect" - "sort" - "strconv" -) - -// Some constants in the form of bytes to avoid string overhead. This mirrors -// the technique used in the fmt package. -var ( - panicBytes = []byte("(PANIC=") - plusBytes = []byte("+") - iBytes = []byte("i") - trueBytes = []byte("true") - falseBytes = []byte("false") - interfaceBytes = []byte("(interface {})") - commaNewlineBytes = []byte(",\n") - newlineBytes = []byte("\n") - openBraceBytes = []byte("{") - openBraceNewlineBytes = []byte("{\n") - closeBraceBytes = []byte("}") - asteriskBytes = []byte("*") - colonBytes = []byte(":") - colonSpaceBytes = []byte(": ") - openParenBytes = []byte("(") - closeParenBytes = []byte(")") - spaceBytes = []byte(" ") - pointerChainBytes = []byte("->") - nilAngleBytes = []byte("") - maxNewlineBytes = []byte("\n") - maxShortBytes = []byte("") - circularBytes = []byte("") - circularShortBytes = []byte("") - invalidAngleBytes = []byte("") - openBracketBytes = []byte("[") - closeBracketBytes = []byte("]") - percentBytes = []byte("%") - precisionBytes = []byte(".") - openAngleBytes = []byte("<") - closeAngleBytes = []byte(">") - openMapBytes = []byte("map[") - closeMapBytes = []byte("]") - lenEqualsBytes = []byte("len=") - capEqualsBytes = []byte("cap=") -) - -// hexDigits is used to map a decimal value to a hex digit. -var hexDigits = "0123456789abcdef" - -// catchPanic handles any panics that might occur during the handleMethods -// calls. -func catchPanic(w io.Writer, v reflect.Value) { - if err := recover(); err != nil { - w.Write(panicBytes) - fmt.Fprintf(w, "%v", err) - w.Write(closeParenBytes) - } -} - -// handleMethods attempts to call the Error and String methods on the underlying -// type the passed reflect.Value represents and outputes the result to Writer w. -// -// It handles panics in any called methods by catching and displaying the error -// as the formatted value. -func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) { - // We need an interface to check if the type implements the error or - // Stringer interface. However, the reflect package won't give us an - // interface on certain things like unexported struct fields in order - // to enforce visibility rules. We use unsafe, when it's available, - // to bypass these restrictions since this package does not mutate the - // values. - if !v.CanInterface() { - if UnsafeDisabled { - return false - } - - v = unsafeReflectValue(v) - } - - // Choose whether or not to do error and Stringer interface lookups against - // the base type or a pointer to the base type depending on settings. - // Technically calling one of these methods with a pointer receiver can - // mutate the value, however, types which choose to satisify an error or - // Stringer interface with a pointer receiver should not be mutating their - // state inside these interface methods. - if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() { - v = unsafeReflectValue(v) - } - if v.CanAddr() { - v = v.Addr() - } - - // Is it an error or Stringer? - switch iface := v.Interface().(type) { - case error: - defer catchPanic(w, v) - if cs.ContinueOnMethod { - w.Write(openParenBytes) - w.Write([]byte(iface.Error())) - w.Write(closeParenBytes) - w.Write(spaceBytes) - return false - } - - w.Write([]byte(iface.Error())) - return true - - case fmt.Stringer: - defer catchPanic(w, v) - if cs.ContinueOnMethod { - w.Write(openParenBytes) - w.Write([]byte(iface.String())) - w.Write(closeParenBytes) - w.Write(spaceBytes) - return false - } - w.Write([]byte(iface.String())) - return true - } - return false -} - -// printBool outputs a boolean value as true or false to Writer w. -func printBool(w io.Writer, val bool) { - if val { - w.Write(trueBytes) - } else { - w.Write(falseBytes) - } -} - -// printInt outputs a signed integer value to Writer w. -func printInt(w io.Writer, val int64, base int) { - w.Write([]byte(strconv.FormatInt(val, base))) -} - -// printUint outputs an unsigned integer value to Writer w. -func printUint(w io.Writer, val uint64, base int) { - w.Write([]byte(strconv.FormatUint(val, base))) -} - -// printFloat outputs a floating point value using the specified precision, -// which is expected to be 32 or 64bit, to Writer w. -func printFloat(w io.Writer, val float64, precision int) { - w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision))) -} - -// printComplex outputs a complex value using the specified float precision -// for the real and imaginary parts to Writer w. -func printComplex(w io.Writer, c complex128, floatPrecision int) { - r := real(c) - w.Write(openParenBytes) - w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision))) - i := imag(c) - if i >= 0 { - w.Write(plusBytes) - } - w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision))) - w.Write(iBytes) - w.Write(closeParenBytes) -} - -// printHexPtr outputs a uintptr formatted as hexadecimal with a leading '0x' -// prefix to Writer w. -func printHexPtr(w io.Writer, p uintptr) { - // Null pointer. - num := uint64(p) - if num == 0 { - w.Write(nilAngleBytes) - return - } - - // Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix - buf := make([]byte, 18) - - // It's simpler to construct the hex string right to left. - base := uint64(16) - i := len(buf) - 1 - for num >= base { - buf[i] = hexDigits[num%base] - num /= base - i-- - } - buf[i] = hexDigits[num] - - // Add '0x' prefix. - i-- - buf[i] = 'x' - i-- - buf[i] = '0' - - // Strip unused leading bytes. - buf = buf[i:] - w.Write(buf) -} - -// valuesSorter implements sort.Interface to allow a slice of reflect.Value -// elements to be sorted. -type valuesSorter struct { - values []reflect.Value - strings []string // either nil or same len and values - cs *ConfigState -} - -// newValuesSorter initializes a valuesSorter instance, which holds a set of -// surrogate keys on which the data should be sorted. It uses flags in -// ConfigState to decide if and how to populate those surrogate keys. -func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface { - vs := &valuesSorter{values: values, cs: cs} - if canSortSimply(vs.values[0].Kind()) { - return vs - } - if !cs.DisableMethods { - vs.strings = make([]string, len(values)) - for i := range vs.values { - b := bytes.Buffer{} - if !handleMethods(cs, &b, vs.values[i]) { - vs.strings = nil - break - } - vs.strings[i] = b.String() - } - } - if vs.strings == nil && cs.SpewKeys { - vs.strings = make([]string, len(values)) - for i := range vs.values { - vs.strings[i] = Sprintf("%#v", vs.values[i].Interface()) - } - } - return vs -} - -// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted -// directly, or whether it should be considered for sorting by surrogate keys -// (if the ConfigState allows it). -func canSortSimply(kind reflect.Kind) bool { - // This switch parallels valueSortLess, except for the default case. - switch kind { - case reflect.Bool: - return true - case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: - return true - case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: - return true - case reflect.Float32, reflect.Float64: - return true - case reflect.String: - return true - case reflect.Uintptr: - return true - case reflect.Array: - return true - } - return false -} - -// Len returns the number of values in the slice. It is part of the -// sort.Interface implementation. -func (s *valuesSorter) Len() int { - return len(s.values) -} - -// Swap swaps the values at the passed indices. It is part of the -// sort.Interface implementation. -func (s *valuesSorter) Swap(i, j int) { - s.values[i], s.values[j] = s.values[j], s.values[i] - if s.strings != nil { - s.strings[i], s.strings[j] = s.strings[j], s.strings[i] - } -} - -// valueSortLess returns whether the first value should sort before the second -// value. It is used by valueSorter.Less as part of the sort.Interface -// implementation. -func valueSortLess(a, b reflect.Value) bool { - switch a.Kind() { - case reflect.Bool: - return !a.Bool() && b.Bool() - case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: - return a.Int() < b.Int() - case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: - return a.Uint() < b.Uint() - case reflect.Float32, reflect.Float64: - return a.Float() < b.Float() - case reflect.String: - return a.String() < b.String() - case reflect.Uintptr: - return a.Uint() < b.Uint() - case reflect.Array: - // Compare the contents of both arrays. - l := a.Len() - for i := 0; i < l; i++ { - av := a.Index(i) - bv := b.Index(i) - if av.Interface() == bv.Interface() { - continue - } - return valueSortLess(av, bv) - } - } - return a.String() < b.String() -} - -// Less returns whether the value at index i should sort before the -// value at index j. It is part of the sort.Interface implementation. -func (s *valuesSorter) Less(i, j int) bool { - if s.strings == nil { - return valueSortLess(s.values[i], s.values[j]) - } - return s.strings[i] < s.strings[j] -} - -// sortValues is a sort function that handles both native types and any type that -// can be converted to error or Stringer. Other inputs are sorted according to -// their Value.String() value to ensure display stability. -func sortValues(values []reflect.Value, cs *ConfigState) { - if len(values) == 0 { - return - } - sort.Sort(newValuesSorter(values, cs)) -} diff --git a/vendor/github.com/davecgh/go-spew/spew/config.go b/vendor/github.com/davecgh/go-spew/spew/config.go deleted file mode 100644 index 2e3d22f..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/config.go +++ /dev/null @@ -1,306 +0,0 @@ -/* - * Copyright (c) 2013-2016 Dave Collins - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -package spew - -import ( - "bytes" - "fmt" - "io" - "os" -) - -// ConfigState houses the configuration options used by spew to format and -// display values. There is a global instance, Config, that is used to control -// all top-level Formatter and Dump functionality. Each ConfigState instance -// provides methods equivalent to the top-level functions. -// -// The zero value for ConfigState provides no indentation. You would typically -// want to set it to a space or a tab. -// -// Alternatively, you can use NewDefaultConfig to get a ConfigState instance -// with default settings. See the documentation of NewDefaultConfig for default -// values. -type ConfigState struct { - // Indent specifies the string to use for each indentation level. The - // global config instance that all top-level functions use set this to a - // single space by default. If you would like more indentation, you might - // set this to a tab with "\t" or perhaps two spaces with " ". - Indent string - - // MaxDepth controls the maximum number of levels to descend into nested - // data structures. The default, 0, means there is no limit. - // - // NOTE: Circular data structures are properly detected, so it is not - // necessary to set this value unless you specifically want to limit deeply - // nested data structures. - MaxDepth int - - // DisableMethods specifies whether or not error and Stringer interfaces are - // invoked for types that implement them. - DisableMethods bool - - // DisablePointerMethods specifies whether or not to check for and invoke - // error and Stringer interfaces on types which only accept a pointer - // receiver when the current type is not a pointer. - // - // NOTE: This might be an unsafe action since calling one of these methods - // with a pointer receiver could technically mutate the value, however, - // in practice, types which choose to satisify an error or Stringer - // interface with a pointer receiver should not be mutating their state - // inside these interface methods. As a result, this option relies on - // access to the unsafe package, so it will not have any effect when - // running in environments without access to the unsafe package such as - // Google App Engine or with the "safe" build tag specified. - DisablePointerMethods bool - - // DisablePointerAddresses specifies whether to disable the printing of - // pointer addresses. This is useful when diffing data structures in tests. - DisablePointerAddresses bool - - // DisableCapacities specifies whether to disable the printing of capacities - // for arrays, slices, maps and channels. This is useful when diffing - // data structures in tests. - DisableCapacities bool - - // ContinueOnMethod specifies whether or not recursion should continue once - // a custom error or Stringer interface is invoked. The default, false, - // means it will print the results of invoking the custom error or Stringer - // interface and return immediately instead of continuing to recurse into - // the internals of the data type. - // - // NOTE: This flag does not have any effect if method invocation is disabled - // via the DisableMethods or DisablePointerMethods options. - ContinueOnMethod bool - - // SortKeys specifies map keys should be sorted before being printed. Use - // this to have a more deterministic, diffable output. Note that only - // native types (bool, int, uint, floats, uintptr and string) and types - // that support the error or Stringer interfaces (if methods are - // enabled) are supported, with other types sorted according to the - // reflect.Value.String() output which guarantees display stability. - SortKeys bool - - // SpewKeys specifies that, as a last resort attempt, map keys should - // be spewed to strings and sorted by those strings. This is only - // considered if SortKeys is true. - SpewKeys bool -} - -// Config is the active configuration of the top-level functions. -// The configuration can be changed by modifying the contents of spew.Config. -var Config = ConfigState{Indent: " "} - -// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the formatted string as a value that satisfies error. See NewFormatter -// for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) { - return fmt.Errorf(format, c.convertArgs(a)...) -} - -// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) { - return fmt.Fprint(w, c.convertArgs(a)...) -} - -// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { - return fmt.Fprintf(w, format, c.convertArgs(a)...) -} - -// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it -// passed with a Formatter interface returned by c.NewFormatter. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) { - return fmt.Fprintln(w, c.convertArgs(a)...) -} - -// Print is a wrapper for fmt.Print that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Print(c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Print(a ...interface{}) (n int, err error) { - return fmt.Print(c.convertArgs(a)...) -} - -// Printf is a wrapper for fmt.Printf that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) { - return fmt.Printf(format, c.convertArgs(a)...) -} - -// Println is a wrapper for fmt.Println that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Println(c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Println(a ...interface{}) (n int, err error) { - return fmt.Println(c.convertArgs(a)...) -} - -// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the resulting string. See NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Sprint(a ...interface{}) string { - return fmt.Sprint(c.convertArgs(a)...) -} - -// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were -// passed with a Formatter interface returned by c.NewFormatter. It returns -// the resulting string. See NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Sprintf(format string, a ...interface{}) string { - return fmt.Sprintf(format, c.convertArgs(a)...) -} - -// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it -// were passed with a Formatter interface returned by c.NewFormatter. It -// returns the resulting string. See NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b)) -func (c *ConfigState) Sprintln(a ...interface{}) string { - return fmt.Sprintln(c.convertArgs(a)...) -} - -/* -NewFormatter returns a custom formatter that satisfies the fmt.Formatter -interface. As a result, it integrates cleanly with standard fmt package -printing functions. The formatter is useful for inline printing of smaller data -types similar to the standard %v format specifier. - -The custom formatter only responds to the %v (most compact), %+v (adds pointer -addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb -combinations. Any other verbs such as %x and %q will be sent to the the -standard fmt package for formatting. In addition, the custom formatter ignores -the width and precision arguments (however they will still work on the format -specifiers not handled by the custom formatter). - -Typically this function shouldn't be called directly. It is much easier to make -use of the custom formatter by calling one of the convenience functions such as -c.Printf, c.Println, or c.Printf. -*/ -func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter { - return newFormatter(c, v) -} - -// Fdump formats and displays the passed arguments to io.Writer w. It formats -// exactly the same as Dump. -func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) { - fdump(c, w, a...) -} - -/* -Dump displays the passed parameters to standard out with newlines, customizable -indentation, and additional debug information such as complete types and all -pointer addresses used to indirect to the final value. It provides the -following features over the built-in printing facilities provided by the fmt -package: - - * Pointers are dereferenced and followed - * Circular data structures are detected and handled properly - * Custom Stringer/error interfaces are optionally invoked, including - on unexported types - * Custom types which only implement the Stringer/error interfaces via - a pointer receiver are optionally invoked when passing non-pointer - variables - * Byte arrays and slices are dumped like the hexdump -C command which - includes offsets, byte values in hex, and ASCII output - -The configuration options are controlled by modifying the public members -of c. See ConfigState for options documentation. - -See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to -get the formatted result as a string. -*/ -func (c *ConfigState) Dump(a ...interface{}) { - fdump(c, os.Stdout, a...) -} - -// Sdump returns a string with the passed arguments formatted exactly the same -// as Dump. -func (c *ConfigState) Sdump(a ...interface{}) string { - var buf bytes.Buffer - fdump(c, &buf, a...) - return buf.String() -} - -// convertArgs accepts a slice of arguments and returns a slice of the same -// length with each argument converted to a spew Formatter interface using -// the ConfigState associated with s. -func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) { - formatters = make([]interface{}, len(args)) - for index, arg := range args { - formatters[index] = newFormatter(c, arg) - } - return formatters -} - -// NewDefaultConfig returns a ConfigState with the following default settings. -// -// Indent: " " -// MaxDepth: 0 -// DisableMethods: false -// DisablePointerMethods: false -// ContinueOnMethod: false -// SortKeys: false -func NewDefaultConfig() *ConfigState { - return &ConfigState{Indent: " "} -} diff --git a/vendor/github.com/davecgh/go-spew/spew/doc.go b/vendor/github.com/davecgh/go-spew/spew/doc.go deleted file mode 100644 index aacaac6..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/doc.go +++ /dev/null @@ -1,211 +0,0 @@ -/* - * Copyright (c) 2013-2016 Dave Collins - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -/* -Package spew implements a deep pretty printer for Go data structures to aid in -debugging. - -A quick overview of the additional features spew provides over the built-in -printing facilities for Go data types are as follows: - - * Pointers are dereferenced and followed - * Circular data structures are detected and handled properly - * Custom Stringer/error interfaces are optionally invoked, including - on unexported types - * Custom types which only implement the Stringer/error interfaces via - a pointer receiver are optionally invoked when passing non-pointer - variables - * Byte arrays and slices are dumped like the hexdump -C command which - includes offsets, byte values in hex, and ASCII output (only when using - Dump style) - -There are two different approaches spew allows for dumping Go data structures: - - * Dump style which prints with newlines, customizable indentation, - and additional debug information such as types and all pointer addresses - used to indirect to the final value - * A custom Formatter interface that integrates cleanly with the standard fmt - package and replaces %v, %+v, %#v, and %#+v to provide inline printing - similar to the default %v while providing the additional functionality - outlined above and passing unsupported format verbs such as %x and %q - along to fmt - -Quick Start - -This section demonstrates how to quickly get started with spew. See the -sections below for further details on formatting and configuration options. - -To dump a variable with full newlines, indentation, type, and pointer -information use Dump, Fdump, or Sdump: - spew.Dump(myVar1, myVar2, ...) - spew.Fdump(someWriter, myVar1, myVar2, ...) - str := spew.Sdump(myVar1, myVar2, ...) - -Alternatively, if you would prefer to use format strings with a compacted inline -printing style, use the convenience wrappers Printf, Fprintf, etc with -%v (most compact), %+v (adds pointer addresses), %#v (adds types), or -%#+v (adds types and pointer addresses): - spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2) - spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) - spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2) - spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) - -Configuration Options - -Configuration of spew is handled by fields in the ConfigState type. For -convenience, all of the top-level functions use a global state available -via the spew.Config global. - -It is also possible to create a ConfigState instance that provides methods -equivalent to the top-level functions. This allows concurrent configuration -options. See the ConfigState documentation for more details. - -The following configuration options are available: - * Indent - String to use for each indentation level for Dump functions. - It is a single space by default. A popular alternative is "\t". - - * MaxDepth - Maximum number of levels to descend into nested data structures. - There is no limit by default. - - * DisableMethods - Disables invocation of error and Stringer interface methods. - Method invocation is enabled by default. - - * DisablePointerMethods - Disables invocation of error and Stringer interface methods on types - which only accept pointer receivers from non-pointer variables. - Pointer method invocation is enabled by default. - - * DisablePointerAddresses - DisablePointerAddresses specifies whether to disable the printing of - pointer addresses. This is useful when diffing data structures in tests. - - * DisableCapacities - DisableCapacities specifies whether to disable the printing of - capacities for arrays, slices, maps and channels. This is useful when - diffing data structures in tests. - - * ContinueOnMethod - Enables recursion into types after invoking error and Stringer interface - methods. Recursion after method invocation is disabled by default. - - * SortKeys - Specifies map keys should be sorted before being printed. Use - this to have a more deterministic, diffable output. Note that - only native types (bool, int, uint, floats, uintptr and string) - and types which implement error or Stringer interfaces are - supported with other types sorted according to the - reflect.Value.String() output which guarantees display - stability. Natural map order is used by default. - - * SpewKeys - Specifies that, as a last resort attempt, map keys should be - spewed to strings and sorted by those strings. This is only - considered if SortKeys is true. - -Dump Usage - -Simply call spew.Dump with a list of variables you want to dump: - - spew.Dump(myVar1, myVar2, ...) - -You may also call spew.Fdump if you would prefer to output to an arbitrary -io.Writer. For example, to dump to standard error: - - spew.Fdump(os.Stderr, myVar1, myVar2, ...) - -A third option is to call spew.Sdump to get the formatted output as a string: - - str := spew.Sdump(myVar1, myVar2, ...) - -Sample Dump Output - -See the Dump example for details on the setup of the types and variables being -shown here. - - (main.Foo) { - unexportedField: (*main.Bar)(0xf84002e210)({ - flag: (main.Flag) flagTwo, - data: (uintptr) - }), - ExportedField: (map[interface {}]interface {}) (len=1) { - (string) (len=3) "one": (bool) true - } - } - -Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C -command as shown. - ([]uint8) (len=32 cap=32) { - 00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... | - 00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0| - 00000020 31 32 |12| - } - -Custom Formatter - -Spew provides a custom formatter that implements the fmt.Formatter interface -so that it integrates cleanly with standard fmt package printing functions. The -formatter is useful for inline printing of smaller data types similar to the -standard %v format specifier. - -The custom formatter only responds to the %v (most compact), %+v (adds pointer -addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb -combinations. Any other verbs such as %x and %q will be sent to the the -standard fmt package for formatting. In addition, the custom formatter ignores -the width and precision arguments (however they will still work on the format -specifiers not handled by the custom formatter). - -Custom Formatter Usage - -The simplest way to make use of the spew custom formatter is to call one of the -convenience functions such as spew.Printf, spew.Println, or spew.Printf. The -functions have syntax you are most likely already familiar with: - - spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2) - spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) - spew.Println(myVar, myVar2) - spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2) - spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) - -See the Index for the full list convenience functions. - -Sample Formatter Output - -Double pointer to a uint8: - %v: <**>5 - %+v: <**>(0xf8400420d0->0xf8400420c8)5 - %#v: (**uint8)5 - %#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5 - -Pointer to circular struct with a uint8 field and a pointer to itself: - %v: <*>{1 <*>} - %+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)} - %#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)} - %#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)} - -See the Printf example for details on the setup of variables being shown -here. - -Errors - -Since it is possible for custom Stringer/error interfaces to panic, spew -detects them and handles them internally by printing the panic information -inline with the output. Since spew is intended to provide deep pretty printing -capabilities on structures, it intentionally does not return any errors. -*/ -package spew diff --git a/vendor/github.com/davecgh/go-spew/spew/dump.go b/vendor/github.com/davecgh/go-spew/spew/dump.go deleted file mode 100644 index f78d89f..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/dump.go +++ /dev/null @@ -1,509 +0,0 @@ -/* - * Copyright (c) 2013-2016 Dave Collins - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -package spew - -import ( - "bytes" - "encoding/hex" - "fmt" - "io" - "os" - "reflect" - "regexp" - "strconv" - "strings" -) - -var ( - // uint8Type is a reflect.Type representing a uint8. It is used to - // convert cgo types to uint8 slices for hexdumping. - uint8Type = reflect.TypeOf(uint8(0)) - - // cCharRE is a regular expression that matches a cgo char. - // It is used to detect character arrays to hexdump them. - cCharRE = regexp.MustCompile(`^.*\._Ctype_char$`) - - // cUnsignedCharRE is a regular expression that matches a cgo unsigned - // char. It is used to detect unsigned character arrays to hexdump - // them. - cUnsignedCharRE = regexp.MustCompile(`^.*\._Ctype_unsignedchar$`) - - // cUint8tCharRE is a regular expression that matches a cgo uint8_t. - // It is used to detect uint8_t arrays to hexdump them. - cUint8tCharRE = regexp.MustCompile(`^.*\._Ctype_uint8_t$`) -) - -// dumpState contains information about the state of a dump operation. -type dumpState struct { - w io.Writer - depth int - pointers map[uintptr]int - ignoreNextType bool - ignoreNextIndent bool - cs *ConfigState -} - -// indent performs indentation according to the depth level and cs.Indent -// option. -func (d *dumpState) indent() { - if d.ignoreNextIndent { - d.ignoreNextIndent = false - return - } - d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth)) -} - -// unpackValue returns values inside of non-nil interfaces when possible. -// This is useful for data types like structs, arrays, slices, and maps which -// can contain varying types packed inside an interface. -func (d *dumpState) unpackValue(v reflect.Value) reflect.Value { - if v.Kind() == reflect.Interface && !v.IsNil() { - v = v.Elem() - } - return v -} - -// dumpPtr handles formatting of pointers by indirecting them as necessary. -func (d *dumpState) dumpPtr(v reflect.Value) { - // Remove pointers at or below the current depth from map used to detect - // circular refs. - for k, depth := range d.pointers { - if depth >= d.depth { - delete(d.pointers, k) - } - } - - // Keep list of all dereferenced pointers to show later. - pointerChain := make([]uintptr, 0) - - // Figure out how many levels of indirection there are by dereferencing - // pointers and unpacking interfaces down the chain while detecting circular - // references. - nilFound := false - cycleFound := false - indirects := 0 - ve := v - for ve.Kind() == reflect.Ptr { - if ve.IsNil() { - nilFound = true - break - } - indirects++ - addr := ve.Pointer() - pointerChain = append(pointerChain, addr) - if pd, ok := d.pointers[addr]; ok && pd < d.depth { - cycleFound = true - indirects-- - break - } - d.pointers[addr] = d.depth - - ve = ve.Elem() - if ve.Kind() == reflect.Interface { - if ve.IsNil() { - nilFound = true - break - } - ve = ve.Elem() - } - } - - // Display type information. - d.w.Write(openParenBytes) - d.w.Write(bytes.Repeat(asteriskBytes, indirects)) - d.w.Write([]byte(ve.Type().String())) - d.w.Write(closeParenBytes) - - // Display pointer information. - if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 { - d.w.Write(openParenBytes) - for i, addr := range pointerChain { - if i > 0 { - d.w.Write(pointerChainBytes) - } - printHexPtr(d.w, addr) - } - d.w.Write(closeParenBytes) - } - - // Display dereferenced value. - d.w.Write(openParenBytes) - switch { - case nilFound: - d.w.Write(nilAngleBytes) - - case cycleFound: - d.w.Write(circularBytes) - - default: - d.ignoreNextType = true - d.dump(ve) - } - d.w.Write(closeParenBytes) -} - -// dumpSlice handles formatting of arrays and slices. Byte (uint8 under -// reflection) arrays and slices are dumped in hexdump -C fashion. -func (d *dumpState) dumpSlice(v reflect.Value) { - // Determine whether this type should be hex dumped or not. Also, - // for types which should be hexdumped, try to use the underlying data - // first, then fall back to trying to convert them to a uint8 slice. - var buf []uint8 - doConvert := false - doHexDump := false - numEntries := v.Len() - if numEntries > 0 { - vt := v.Index(0).Type() - vts := vt.String() - switch { - // C types that need to be converted. - case cCharRE.MatchString(vts): - fallthrough - case cUnsignedCharRE.MatchString(vts): - fallthrough - case cUint8tCharRE.MatchString(vts): - doConvert = true - - // Try to use existing uint8 slices and fall back to converting - // and copying if that fails. - case vt.Kind() == reflect.Uint8: - // We need an addressable interface to convert the type - // to a byte slice. However, the reflect package won't - // give us an interface on certain things like - // unexported struct fields in order to enforce - // visibility rules. We use unsafe, when available, to - // bypass these restrictions since this package does not - // mutate the values. - vs := v - if !vs.CanInterface() || !vs.CanAddr() { - vs = unsafeReflectValue(vs) - } - if !UnsafeDisabled { - vs = vs.Slice(0, numEntries) - - // Use the existing uint8 slice if it can be - // type asserted. - iface := vs.Interface() - if slice, ok := iface.([]uint8); ok { - buf = slice - doHexDump = true - break - } - } - - // The underlying data needs to be converted if it can't - // be type asserted to a uint8 slice. - doConvert = true - } - - // Copy and convert the underlying type if needed. - if doConvert && vt.ConvertibleTo(uint8Type) { - // Convert and copy each element into a uint8 byte - // slice. - buf = make([]uint8, numEntries) - for i := 0; i < numEntries; i++ { - vv := v.Index(i) - buf[i] = uint8(vv.Convert(uint8Type).Uint()) - } - doHexDump = true - } - } - - // Hexdump the entire slice as needed. - if doHexDump { - indent := strings.Repeat(d.cs.Indent, d.depth) - str := indent + hex.Dump(buf) - str = strings.Replace(str, "\n", "\n"+indent, -1) - str = strings.TrimRight(str, d.cs.Indent) - d.w.Write([]byte(str)) - return - } - - // Recursively call dump for each item. - for i := 0; i < numEntries; i++ { - d.dump(d.unpackValue(v.Index(i))) - if i < (numEntries - 1) { - d.w.Write(commaNewlineBytes) - } else { - d.w.Write(newlineBytes) - } - } -} - -// dump is the main workhorse for dumping a value. It uses the passed reflect -// value to figure out what kind of object we are dealing with and formats it -// appropriately. It is a recursive function, however circular data structures -// are detected and handled properly. -func (d *dumpState) dump(v reflect.Value) { - // Handle invalid reflect values immediately. - kind := v.Kind() - if kind == reflect.Invalid { - d.w.Write(invalidAngleBytes) - return - } - - // Handle pointers specially. - if kind == reflect.Ptr { - d.indent() - d.dumpPtr(v) - return - } - - // Print type information unless already handled elsewhere. - if !d.ignoreNextType { - d.indent() - d.w.Write(openParenBytes) - d.w.Write([]byte(v.Type().String())) - d.w.Write(closeParenBytes) - d.w.Write(spaceBytes) - } - d.ignoreNextType = false - - // Display length and capacity if the built-in len and cap functions - // work with the value's kind and the len/cap itself is non-zero. - valueLen, valueCap := 0, 0 - switch v.Kind() { - case reflect.Array, reflect.Slice, reflect.Chan: - valueLen, valueCap = v.Len(), v.Cap() - case reflect.Map, reflect.String: - valueLen = v.Len() - } - if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 { - d.w.Write(openParenBytes) - if valueLen != 0 { - d.w.Write(lenEqualsBytes) - printInt(d.w, int64(valueLen), 10) - } - if !d.cs.DisableCapacities && valueCap != 0 { - if valueLen != 0 { - d.w.Write(spaceBytes) - } - d.w.Write(capEqualsBytes) - printInt(d.w, int64(valueCap), 10) - } - d.w.Write(closeParenBytes) - d.w.Write(spaceBytes) - } - - // Call Stringer/error interfaces if they exist and the handle methods flag - // is enabled - if !d.cs.DisableMethods { - if (kind != reflect.Invalid) && (kind != reflect.Interface) { - if handled := handleMethods(d.cs, d.w, v); handled { - return - } - } - } - - switch kind { - case reflect.Invalid: - // Do nothing. We should never get here since invalid has already - // been handled above. - - case reflect.Bool: - printBool(d.w, v.Bool()) - - case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: - printInt(d.w, v.Int(), 10) - - case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: - printUint(d.w, v.Uint(), 10) - - case reflect.Float32: - printFloat(d.w, v.Float(), 32) - - case reflect.Float64: - printFloat(d.w, v.Float(), 64) - - case reflect.Complex64: - printComplex(d.w, v.Complex(), 32) - - case reflect.Complex128: - printComplex(d.w, v.Complex(), 64) - - case reflect.Slice: - if v.IsNil() { - d.w.Write(nilAngleBytes) - break - } - fallthrough - - case reflect.Array: - d.w.Write(openBraceNewlineBytes) - d.depth++ - if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { - d.indent() - d.w.Write(maxNewlineBytes) - } else { - d.dumpSlice(v) - } - d.depth-- - d.indent() - d.w.Write(closeBraceBytes) - - case reflect.String: - d.w.Write([]byte(strconv.Quote(v.String()))) - - case reflect.Interface: - // The only time we should get here is for nil interfaces due to - // unpackValue calls. - if v.IsNil() { - d.w.Write(nilAngleBytes) - } - - case reflect.Ptr: - // Do nothing. We should never get here since pointers have already - // been handled above. - - case reflect.Map: - // nil maps should be indicated as different than empty maps - if v.IsNil() { - d.w.Write(nilAngleBytes) - break - } - - d.w.Write(openBraceNewlineBytes) - d.depth++ - if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { - d.indent() - d.w.Write(maxNewlineBytes) - } else { - numEntries := v.Len() - keys := v.MapKeys() - if d.cs.SortKeys { - sortValues(keys, d.cs) - } - for i, key := range keys { - d.dump(d.unpackValue(key)) - d.w.Write(colonSpaceBytes) - d.ignoreNextIndent = true - d.dump(d.unpackValue(v.MapIndex(key))) - if i < (numEntries - 1) { - d.w.Write(commaNewlineBytes) - } else { - d.w.Write(newlineBytes) - } - } - } - d.depth-- - d.indent() - d.w.Write(closeBraceBytes) - - case reflect.Struct: - d.w.Write(openBraceNewlineBytes) - d.depth++ - if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { - d.indent() - d.w.Write(maxNewlineBytes) - } else { - vt := v.Type() - numFields := v.NumField() - for i := 0; i < numFields; i++ { - d.indent() - vtf := vt.Field(i) - d.w.Write([]byte(vtf.Name)) - d.w.Write(colonSpaceBytes) - d.ignoreNextIndent = true - d.dump(d.unpackValue(v.Field(i))) - if i < (numFields - 1) { - d.w.Write(commaNewlineBytes) - } else { - d.w.Write(newlineBytes) - } - } - } - d.depth-- - d.indent() - d.w.Write(closeBraceBytes) - - case reflect.Uintptr: - printHexPtr(d.w, uintptr(v.Uint())) - - case reflect.UnsafePointer, reflect.Chan, reflect.Func: - printHexPtr(d.w, v.Pointer()) - - // There were not any other types at the time this code was written, but - // fall back to letting the default fmt package handle it in case any new - // types are added. - default: - if v.CanInterface() { - fmt.Fprintf(d.w, "%v", v.Interface()) - } else { - fmt.Fprintf(d.w, "%v", v.String()) - } - } -} - -// fdump is a helper function to consolidate the logic from the various public -// methods which take varying writers and config states. -func fdump(cs *ConfigState, w io.Writer, a ...interface{}) { - for _, arg := range a { - if arg == nil { - w.Write(interfaceBytes) - w.Write(spaceBytes) - w.Write(nilAngleBytes) - w.Write(newlineBytes) - continue - } - - d := dumpState{w: w, cs: cs} - d.pointers = make(map[uintptr]int) - d.dump(reflect.ValueOf(arg)) - d.w.Write(newlineBytes) - } -} - -// Fdump formats and displays the passed arguments to io.Writer w. It formats -// exactly the same as Dump. -func Fdump(w io.Writer, a ...interface{}) { - fdump(&Config, w, a...) -} - -// Sdump returns a string with the passed arguments formatted exactly the same -// as Dump. -func Sdump(a ...interface{}) string { - var buf bytes.Buffer - fdump(&Config, &buf, a...) - return buf.String() -} - -/* -Dump displays the passed parameters to standard out with newlines, customizable -indentation, and additional debug information such as complete types and all -pointer addresses used to indirect to the final value. It provides the -following features over the built-in printing facilities provided by the fmt -package: - - * Pointers are dereferenced and followed - * Circular data structures are detected and handled properly - * Custom Stringer/error interfaces are optionally invoked, including - on unexported types - * Custom types which only implement the Stringer/error interfaces via - a pointer receiver are optionally invoked when passing non-pointer - variables - * Byte arrays and slices are dumped like the hexdump -C command which - includes offsets, byte values in hex, and ASCII output - -The configuration options are controlled by an exported package global, -spew.Config. See ConfigState for options documentation. - -See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to -get the formatted result as a string. -*/ -func Dump(a ...interface{}) { - fdump(&Config, os.Stdout, a...) -} diff --git a/vendor/github.com/davecgh/go-spew/spew/format.go b/vendor/github.com/davecgh/go-spew/spew/format.go deleted file mode 100644 index b04edb7..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/format.go +++ /dev/null @@ -1,419 +0,0 @@ -/* - * Copyright (c) 2013-2016 Dave Collins - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -package spew - -import ( - "bytes" - "fmt" - "reflect" - "strconv" - "strings" -) - -// supportedFlags is a list of all the character flags supported by fmt package. -const supportedFlags = "0-+# " - -// formatState implements the fmt.Formatter interface and contains information -// about the state of a formatting operation. The NewFormatter function can -// be used to get a new Formatter which can be used directly as arguments -// in standard fmt package printing calls. -type formatState struct { - value interface{} - fs fmt.State - depth int - pointers map[uintptr]int - ignoreNextType bool - cs *ConfigState -} - -// buildDefaultFormat recreates the original format string without precision -// and width information to pass in to fmt.Sprintf in the case of an -// unrecognized type. Unless new types are added to the language, this -// function won't ever be called. -func (f *formatState) buildDefaultFormat() (format string) { - buf := bytes.NewBuffer(percentBytes) - - for _, flag := range supportedFlags { - if f.fs.Flag(int(flag)) { - buf.WriteRune(flag) - } - } - - buf.WriteRune('v') - - format = buf.String() - return format -} - -// constructOrigFormat recreates the original format string including precision -// and width information to pass along to the standard fmt package. This allows -// automatic deferral of all format strings this package doesn't support. -func (f *formatState) constructOrigFormat(verb rune) (format string) { - buf := bytes.NewBuffer(percentBytes) - - for _, flag := range supportedFlags { - if f.fs.Flag(int(flag)) { - buf.WriteRune(flag) - } - } - - if width, ok := f.fs.Width(); ok { - buf.WriteString(strconv.Itoa(width)) - } - - if precision, ok := f.fs.Precision(); ok { - buf.Write(precisionBytes) - buf.WriteString(strconv.Itoa(precision)) - } - - buf.WriteRune(verb) - - format = buf.String() - return format -} - -// unpackValue returns values inside of non-nil interfaces when possible and -// ensures that types for values which have been unpacked from an interface -// are displayed when the show types flag is also set. -// This is useful for data types like structs, arrays, slices, and maps which -// can contain varying types packed inside an interface. -func (f *formatState) unpackValue(v reflect.Value) reflect.Value { - if v.Kind() == reflect.Interface { - f.ignoreNextType = false - if !v.IsNil() { - v = v.Elem() - } - } - return v -} - -// formatPtr handles formatting of pointers by indirecting them as necessary. -func (f *formatState) formatPtr(v reflect.Value) { - // Display nil if top level pointer is nil. - showTypes := f.fs.Flag('#') - if v.IsNil() && (!showTypes || f.ignoreNextType) { - f.fs.Write(nilAngleBytes) - return - } - - // Remove pointers at or below the current depth from map used to detect - // circular refs. - for k, depth := range f.pointers { - if depth >= f.depth { - delete(f.pointers, k) - } - } - - // Keep list of all dereferenced pointers to possibly show later. - pointerChain := make([]uintptr, 0) - - // Figure out how many levels of indirection there are by derferencing - // pointers and unpacking interfaces down the chain while detecting circular - // references. - nilFound := false - cycleFound := false - indirects := 0 - ve := v - for ve.Kind() == reflect.Ptr { - if ve.IsNil() { - nilFound = true - break - } - indirects++ - addr := ve.Pointer() - pointerChain = append(pointerChain, addr) - if pd, ok := f.pointers[addr]; ok && pd < f.depth { - cycleFound = true - indirects-- - break - } - f.pointers[addr] = f.depth - - ve = ve.Elem() - if ve.Kind() == reflect.Interface { - if ve.IsNil() { - nilFound = true - break - } - ve = ve.Elem() - } - } - - // Display type or indirection level depending on flags. - if showTypes && !f.ignoreNextType { - f.fs.Write(openParenBytes) - f.fs.Write(bytes.Repeat(asteriskBytes, indirects)) - f.fs.Write([]byte(ve.Type().String())) - f.fs.Write(closeParenBytes) - } else { - if nilFound || cycleFound { - indirects += strings.Count(ve.Type().String(), "*") - } - f.fs.Write(openAngleBytes) - f.fs.Write([]byte(strings.Repeat("*", indirects))) - f.fs.Write(closeAngleBytes) - } - - // Display pointer information depending on flags. - if f.fs.Flag('+') && (len(pointerChain) > 0) { - f.fs.Write(openParenBytes) - for i, addr := range pointerChain { - if i > 0 { - f.fs.Write(pointerChainBytes) - } - printHexPtr(f.fs, addr) - } - f.fs.Write(closeParenBytes) - } - - // Display dereferenced value. - switch { - case nilFound: - f.fs.Write(nilAngleBytes) - - case cycleFound: - f.fs.Write(circularShortBytes) - - default: - f.ignoreNextType = true - f.format(ve) - } -} - -// format is the main workhorse for providing the Formatter interface. It -// uses the passed reflect value to figure out what kind of object we are -// dealing with and formats it appropriately. It is a recursive function, -// however circular data structures are detected and handled properly. -func (f *formatState) format(v reflect.Value) { - // Handle invalid reflect values immediately. - kind := v.Kind() - if kind == reflect.Invalid { - f.fs.Write(invalidAngleBytes) - return - } - - // Handle pointers specially. - if kind == reflect.Ptr { - f.formatPtr(v) - return - } - - // Print type information unless already handled elsewhere. - if !f.ignoreNextType && f.fs.Flag('#') { - f.fs.Write(openParenBytes) - f.fs.Write([]byte(v.Type().String())) - f.fs.Write(closeParenBytes) - } - f.ignoreNextType = false - - // Call Stringer/error interfaces if they exist and the handle methods - // flag is enabled. - if !f.cs.DisableMethods { - if (kind != reflect.Invalid) && (kind != reflect.Interface) { - if handled := handleMethods(f.cs, f.fs, v); handled { - return - } - } - } - - switch kind { - case reflect.Invalid: - // Do nothing. We should never get here since invalid has already - // been handled above. - - case reflect.Bool: - printBool(f.fs, v.Bool()) - - case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: - printInt(f.fs, v.Int(), 10) - - case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: - printUint(f.fs, v.Uint(), 10) - - case reflect.Float32: - printFloat(f.fs, v.Float(), 32) - - case reflect.Float64: - printFloat(f.fs, v.Float(), 64) - - case reflect.Complex64: - printComplex(f.fs, v.Complex(), 32) - - case reflect.Complex128: - printComplex(f.fs, v.Complex(), 64) - - case reflect.Slice: - if v.IsNil() { - f.fs.Write(nilAngleBytes) - break - } - fallthrough - - case reflect.Array: - f.fs.Write(openBracketBytes) - f.depth++ - if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { - f.fs.Write(maxShortBytes) - } else { - numEntries := v.Len() - for i := 0; i < numEntries; i++ { - if i > 0 { - f.fs.Write(spaceBytes) - } - f.ignoreNextType = true - f.format(f.unpackValue(v.Index(i))) - } - } - f.depth-- - f.fs.Write(closeBracketBytes) - - case reflect.String: - f.fs.Write([]byte(v.String())) - - case reflect.Interface: - // The only time we should get here is for nil interfaces due to - // unpackValue calls. - if v.IsNil() { - f.fs.Write(nilAngleBytes) - } - - case reflect.Ptr: - // Do nothing. We should never get here since pointers have already - // been handled above. - - case reflect.Map: - // nil maps should be indicated as different than empty maps - if v.IsNil() { - f.fs.Write(nilAngleBytes) - break - } - - f.fs.Write(openMapBytes) - f.depth++ - if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { - f.fs.Write(maxShortBytes) - } else { - keys := v.MapKeys() - if f.cs.SortKeys { - sortValues(keys, f.cs) - } - for i, key := range keys { - if i > 0 { - f.fs.Write(spaceBytes) - } - f.ignoreNextType = true - f.format(f.unpackValue(key)) - f.fs.Write(colonBytes) - f.ignoreNextType = true - f.format(f.unpackValue(v.MapIndex(key))) - } - } - f.depth-- - f.fs.Write(closeMapBytes) - - case reflect.Struct: - numFields := v.NumField() - f.fs.Write(openBraceBytes) - f.depth++ - if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { - f.fs.Write(maxShortBytes) - } else { - vt := v.Type() - for i := 0; i < numFields; i++ { - if i > 0 { - f.fs.Write(spaceBytes) - } - vtf := vt.Field(i) - if f.fs.Flag('+') || f.fs.Flag('#') { - f.fs.Write([]byte(vtf.Name)) - f.fs.Write(colonBytes) - } - f.format(f.unpackValue(v.Field(i))) - } - } - f.depth-- - f.fs.Write(closeBraceBytes) - - case reflect.Uintptr: - printHexPtr(f.fs, uintptr(v.Uint())) - - case reflect.UnsafePointer, reflect.Chan, reflect.Func: - printHexPtr(f.fs, v.Pointer()) - - // There were not any other types at the time this code was written, but - // fall back to letting the default fmt package handle it if any get added. - default: - format := f.buildDefaultFormat() - if v.CanInterface() { - fmt.Fprintf(f.fs, format, v.Interface()) - } else { - fmt.Fprintf(f.fs, format, v.String()) - } - } -} - -// Format satisfies the fmt.Formatter interface. See NewFormatter for usage -// details. -func (f *formatState) Format(fs fmt.State, verb rune) { - f.fs = fs - - // Use standard formatting for verbs that are not v. - if verb != 'v' { - format := f.constructOrigFormat(verb) - fmt.Fprintf(fs, format, f.value) - return - } - - if f.value == nil { - if fs.Flag('#') { - fs.Write(interfaceBytes) - } - fs.Write(nilAngleBytes) - return - } - - f.format(reflect.ValueOf(f.value)) -} - -// newFormatter is a helper function to consolidate the logic from the various -// public methods which take varying config states. -func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter { - fs := &formatState{value: v, cs: cs} - fs.pointers = make(map[uintptr]int) - return fs -} - -/* -NewFormatter returns a custom formatter that satisfies the fmt.Formatter -interface. As a result, it integrates cleanly with standard fmt package -printing functions. The formatter is useful for inline printing of smaller data -types similar to the standard %v format specifier. - -The custom formatter only responds to the %v (most compact), %+v (adds pointer -addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb -combinations. Any other verbs such as %x and %q will be sent to the the -standard fmt package for formatting. In addition, the custom formatter ignores -the width and precision arguments (however they will still work on the format -specifiers not handled by the custom formatter). - -Typically this function shouldn't be called directly. It is much easier to make -use of the custom formatter by calling one of the convenience functions such as -Printf, Println, or Fprintf. -*/ -func NewFormatter(v interface{}) fmt.Formatter { - return newFormatter(&Config, v) -} diff --git a/vendor/github.com/davecgh/go-spew/spew/spew.go b/vendor/github.com/davecgh/go-spew/spew/spew.go deleted file mode 100644 index 32c0e33..0000000 --- a/vendor/github.com/davecgh/go-spew/spew/spew.go +++ /dev/null @@ -1,148 +0,0 @@ -/* - * Copyright (c) 2013-2016 Dave Collins - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ - -package spew - -import ( - "fmt" - "io" -) - -// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the formatted string as a value that satisfies error. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b)) -func Errorf(format string, a ...interface{}) (err error) { - return fmt.Errorf(format, convertArgs(a)...) -} - -// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b)) -func Fprint(w io.Writer, a ...interface{}) (n int, err error) { - return fmt.Fprint(w, convertArgs(a)...) -} - -// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b)) -func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { - return fmt.Fprintf(w, format, convertArgs(a)...) -} - -// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it -// passed with a default Formatter interface returned by NewFormatter. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b)) -func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { - return fmt.Fprintln(w, convertArgs(a)...) -} - -// Print is a wrapper for fmt.Print that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b)) -func Print(a ...interface{}) (n int, err error) { - return fmt.Print(convertArgs(a)...) -} - -// Printf is a wrapper for fmt.Printf that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b)) -func Printf(format string, a ...interface{}) (n int, err error) { - return fmt.Printf(format, convertArgs(a)...) -} - -// Println is a wrapper for fmt.Println that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the number of bytes written and any write error encountered. See -// NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b)) -func Println(a ...interface{}) (n int, err error) { - return fmt.Println(convertArgs(a)...) -} - -// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the resulting string. See NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b)) -func Sprint(a ...interface{}) string { - return fmt.Sprint(convertArgs(a)...) -} - -// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were -// passed with a default Formatter interface returned by NewFormatter. It -// returns the resulting string. See NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b)) -func Sprintf(format string, a ...interface{}) string { - return fmt.Sprintf(format, convertArgs(a)...) -} - -// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it -// were passed with a default Formatter interface returned by NewFormatter. It -// returns the resulting string. See NewFormatter for formatting details. -// -// This function is shorthand for the following syntax: -// -// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b)) -func Sprintln(a ...interface{}) string { - return fmt.Sprintln(convertArgs(a)...) -} - -// convertArgs accepts a slice of arguments and returns a slice of the same -// length with each argument converted to a default spew Formatter interface. -func convertArgs(args []interface{}) (formatters []interface{}) { - formatters = make([]interface{}, len(args)) - for index, arg := range args { - formatters[index] = NewFormatter(arg) - } - return formatters -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/LICENSE b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/LICENSE deleted file mode 100644 index d2d1dd9..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/LICENSE +++ /dev/null @@ -1,17 +0,0 @@ -ISC License - -Copyright (c) 2013-2017 The btcsuite developers -Copyright (c) 2015-2020 The Decred developers -Copyright (c) 2017 The Lightning Network Developers - -Permission to use, copy, modify, and distribute this software for any -purpose with or without fee is hereby granted, provided that the above -copyright notice and this permission notice appear in all copies. - -THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES -WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR -ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES -WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN -ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF -OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/README.md b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/README.md deleted file mode 100644 index b84bcdb..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/README.md +++ /dev/null @@ -1,72 +0,0 @@ -secp256k1 -========= - -[![Build Status](https://github.com/decred/dcrd/workflows/Build%20and%20Test/badge.svg)](https://github.com/decred/dcrd/actions) -[![ISC License](https://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![Doc](https://img.shields.io/badge/doc-reference-blue.svg)](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4) - -Package secp256k1 implements optimized secp256k1 elliptic curve operations. - -This package provides an optimized pure Go implementation of elliptic curve -cryptography operations over the secp256k1 curve as well as data structures and -functions for working with public and private secp256k1 keys. See -https://www.secg.org/sec2-v2.pdf for details on the standard. - -In addition, sub packages are provided to produce, verify, parse, and serialize -ECDSA signatures and EC-Schnorr-DCRv0 (a custom Schnorr-based signature scheme -specific to Decred) signatures. See the README.md files in the relevant sub -packages for more details about those aspects. - -An overview of the features provided by this package are as follows: - -- Private key generation, serialization, and parsing -- Public key generation, serialization and parsing per ANSI X9.62-1998 - - Parses uncompressed, compressed, and hybrid public keys - - Serializes uncompressed and compressed public keys -- Specialized types for performing optimized and constant time field operations - - `FieldVal` type for working modulo the secp256k1 field prime - - `ModNScalar` type for working modulo the secp256k1 group order -- Elliptic curve operations in Jacobian projective coordinates - - Point addition - - Point doubling - - Scalar multiplication with an arbitrary point - - Scalar multiplication with the base point (group generator) -- Point decompression from a given x coordinate -- Nonce generation via RFC6979 with support for extra data and version - information that can be used to prevent nonce reuse between signing algorithms - -It also provides an implementation of the Go standard library `crypto/elliptic` -`Curve` interface via the `S256` function so that it may be used with other -packages in the standard library such as `crypto/tls`, `crypto/x509`, and -`crypto/ecdsa`. However, in the case of ECDSA, it is highly recommended to use -the `ecdsa` sub package of this package instead since it is optimized -specifically for secp256k1 and is significantly faster as a result. - -Although this package was primarily written for dcrd, it has intentionally been -designed so it can be used as a standalone package for any projects needing to -use optimized secp256k1 elliptic curve cryptography. - -Finally, a comprehensive suite of tests is provided to provide a high level of -quality assurance. - -## secp256k1 use in Decred - -At the time of this writing, the primary public key cryptography in widespread -use on the Decred network used to secure coins is based on elliptic curves -defined by the secp256k1 domain parameters. - -## Installation and Updating - -This package is part of the `github.com/decred/dcrd/dcrec/secp256k1/v4` module. -Use the standard go tooling for working with modules to incorporate it. - -## Examples - -* [Encryption](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4#example-package-EncryptDecryptMessage) - Demonstrates encrypting and decrypting a message using a shared key derived - through ECDHE. - -## License - -Package secp256k1 is licensed under the [copyfree](http://copyfree.org) ISC -License. diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/compressedbytepoints.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/compressedbytepoints.go deleted file mode 100644 index ca4be12..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/compressedbytepoints.go +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright (c) 2015 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -// Auto-generated file (see genprecomps.go) -// DO NOT EDIT - -var compressedBytePoints = "eJys14c+EI6/ANDvMDLLyA5ZhWSVRKgQQlRGRQNpyohSlJA0SCqKhobyq4ykJQ2JUkqikkgLJZJCQqX7ue/wP29x4H/sgosJDpbnkcdUPZ6rl8yBzqvp8TlZdKpsYEc2JN2BaNQT1YT4tG7uUYmEzwvTeL1sGSd8jmILo3ds/G4Y3rrMQqPsACgbPwo+NkhRs/BDeveygsdtzuaRMg9pVbkaLlvUxYseJJG53k4sfKAHPrW68GPLMlT6bo+bB1z4YPcvyk9tpOO9Zyln5xJwNYni8X8FYHqzB8+9f4oDBoKo9nsl6Mw8jSW3ffnPDEeWs9rGd01CwalKG2z9sqnKuY4SDvZRkZcTtjemUvWUn/Rmgy9OijzHS3XsaFWEFgxdnksimTdJZ6YtX3+TjpdPpXD0Ezdcv8wC3lx5z998jpLNQhEwkG7Du+duQHGXHHzKz6etvbJ8uDUWPsw+xd4zP8ImoRzeek0D/v03AVpKlvG97LGwxXsjLmcF7nyURC+VNoNscRuKLjjM7xZowCprJ/DdJIhd0bkkNjWFHkQPoMZiCRxdc4M9D46iXclaOOAgBt92R0G5iwR7x7phU0cY3W9yJn9FHd5XvAxmJ3zGGWs+wpdoFZi4xgxDq7So78pJjJr6kYYu6NH4s76gX17E0SUH4FqSGnTIC8K25nOwPeUqKuTEccIiCRhfqUzPXnowNz7CUq1N+FH5M8xRF4eeygP0cf8WnLFkP+pLKKKX3ENI1HSHxRVZvMmph8fvqqNNk0RhFShQZ585yVuO4r74QnyZHUNCoeUg7hsE/0yCMO+fGS6osYHIZcmQ2FSAoiuXsDA84o0bPTA0N5Cr1zPyVIDWhDuY8kQALtmsobGLjFkiSJ2cV5wEkbvBnHRqHT509yaHw/m8Tq8dfrwaDfmeOnBmpgUd/d5DKUo1eNW0i/pPtaDurTG8MKmHc2am8rUmZRDVHouGv06wh1M+rJCsxw/273izpwSWzGxBFyd9yhVzRPuOkWC88j+6A8qksvk35ouvwjb7iXCi4hssG7yNVuV3KdMjlV5/MoR38oiquhdQ+QBhrHk3WWo3cvaeEo4L6eHd7fk055oZaEXrwrD/chh2OQlxVmY0b0EZ+yWosFW7A1tkHEZjQCxb4k9hnw1gqcd7DKgbAY9/RoBywirW/hQL+jOrSeDkEt57oALfL3jCcnGysN8qCGSN9lKw5kW0uTANjltu5tnJpnDvtSS7dzpCS+cffFIjBNKv9FjwVRsXpq6HGZvKKXnqIgyuU0C/w59xnPYEMJb5wr88xkPdX0dsSduKe46Z8L21p8BG8DbpBG+BpXuNQbo0CAttZoBZoA2ccFAncVs3OHHOnA8d9qbo1sXcENsMdQ/9EYJLweFOMLsbyEHUpa2U/qoaZ8tO4mBRaR538RCfvH4btC32k/mlY1jtWUhdG8aChU8N2t2VYKNRm6i+X5IsbCtAZL0ljXAtR1cvBdx88QEJpetA6+wzVP3KE23q51GU424edvTkV7WaZHbxA+u/u4CjHpfBvAwDeF+Vxw4JEzE5wpQnrjaGyUnTqK+yjFtdXqNwdhaky6ygsxYE9jf8qXx8NS9KT+Hy8CHafn0ybwhro5q7n2G3WBZ8e3iT7mxXAP89SSQ0vxV0I1vZpukA2WpuQa2QZaQ56g6qeaTSC7t/oIYCsMMxhiWe29Ej4WrYYlNA4bmzMaTmGF8aTMDjh1/B8XNpUCiqAMfXe1GdnxftXTNIAX1/KHnTSPq2wABdChLZ0H8HFsFkzHgmBu6HbLFLeyavWgXoFZCHFxZZs+LihdxsOplmWD3lP/6JGBugAgc0ZaH8Rj/ZlB/ieeOP4/AINygOnU6jnywnQ4mFFBFqyOZDhqC49gh5D1ZBSFwd777pwr4aqVDSvZ2/WN1kp6uC2GXUC3PXCsLKwnRSChJAYZcAinx9ER63HUXTfSJQkrEaZKaGk8KTGeT+AUFn/Tw4uLWNfgVvAJeiIXjmZweJc5oBS3zhltFzCi0YxpLnYtCdUsF2kZ6wsM6OApS6YLOMNDkduQXd88Zh7/FA6hA4hQG6Y6DjZid//T6O5Mp96NWpSLA8MYDtvmNgzMgmHghrhQ61QxgbqQPWLw+Q5K1sWFeZzeHfxtPaizbcfWYeJR8fYudJyTQs6Y6L9ZTg6/whqOiYgzUmB2mkYDI0LJoF9gndOPmkHB17lUTna/r4o5gSTD6yj0xLNEl4+0Q4LzTEUu5t6NxnTysjC2B21jeyM5zMJUIA/tTEYqd0eNWBkXRaOZpcSB6H5eXghEktlX+YAGIT5sLv9VPg5dlGVDO2Yb/c6zA5fQ7HZhmzSsZZ9GrtBoupxjR0QBlXWCDsVymB3yNj+ZWEN3uvLsYT76fBE0/ihto1tLLyBOi/bUbBUgUYyg/G9bfl+YnFfBa/Es+pJT/or/pOEvurQ9N8HGFGQjudeSELa0w/k3vcZYzbMQx7ze6C2tJg+qfShXM2rGWx9a6QOTUVrjnrQfbTW2SqHMRBzo9owvxKvD/5DTl3jqarMsnMjYdB6L4EVs4ShMuXfPnnnFl8aHAcnlb15f6TfyH74iNaIPcDY85+Y9PzZ6CggcBvRyKud8uiUJfzpDPdCx18vcjcTYl7p63FrqohMp84jEUG0yD8nTu1V0XjdclNSE9EMXVLHv4rrcV53s9RZGsSL1Y3gFJjKbhV2MOhPzPwRvZP2pVpgjbzfGHGTC22WbOJZ1jOJfutHmw9isDovibef+aKKmtXoEzne5j1eD8c9E7lhwfGQu/RxyQYLEl/rMxh0E+Q701Wp8z8L9A88hGKXBSlglM/Ma1XEcyX/YV1c+VYLoPgQZY6d0l/g8VyqRhy25PNJfaD4hhPOP/6Bbdne9IbmwT+OksCXrQm036blZQnKQqRzd5gUeMDR49HkpRfDN64tAIf/Xca3joKge58I469kM+ZxzRJYboAaT/dyTsS/qFvwD5+G6OCQhYrqe+0MRyQm4X34QomyPyA9gsRaN3wBLT/ToY8ySdQOVxMTRaD/JRF4eCjTXBCfjzo5tjCCxkhjj4kRtsbPvJiM3M6l/KA/itzxKEcHTC5loqrKitA90gu5h9IAb2aAFq20hON362gpytNQWNjGDccNoKa1HQo/fmHvtWfYpFNwyxwQhQ+bSDiTAH0f3oKXL908fz7suDmgPAjLZFsnDQo+HIOPPQLp3mud1BjVSrUJpjg2MEq+jveGI77e7Hqlc3cnmJBejQFfQ1f0yTJerAqX8GCRr/h8LjJFKRuDTpRzrhszxCDWxY9Wz/MP72BZ1qNxkn2gbzlL/C43X0kOFMKomp60eF2LxW9PQGGo95y3s3ptOjLDnyW/oENUsvIT82TC1/KwDrLLGy/3MQX1R7ww38L8cHBefDSqgsK+6eh88f5+HvPc5KtmAh/j23ixX/92HCZFokcs4MM1xQImP4B2xUOAw0YoGtrHQQKCsI2yxYYDnnG5QmqMHnXO/px7RGZd5WiVWwgvJs+njqWx3GHtgbUPP+PHkxXga7H1TRrURGqNf2ig78b+cvl5djmp8ZmgomcdtYYDMUkaKS5MAV9EaDHDytp/dpHEB4Ug1bqVvT+sgtEPxlJ8+q14W5WAGZcOcITBKaD6hZX+PjCilZOaqR3aWl4fdNNkA36zQYXbMDX/hZNaKtg38+qJNi/G7reXcKdwqWoYhGCI1uM0ee/CBjWngZxC2ZAxb1EFg08Tkf3teGm2xf4Tm4Yv9/0lOsqZ8J+lUIS9DQFw23b6ZD9eHSvu80aO8o5d+F6aD9kz4XFc0l72xxy6tMC3bEjofGSFaS/mE/w8Q/adVrypqoecl10khrU1fimnRnZhBXw+WgFqM7TpmRZPxSps8av6q7Y9Z8ZNWQo49oYL3j4YSe8zplFU1xF4anGYnzw5SDIaF+Dp6eV6YvjdZwsWUjbLZTB/ZQ4rXu9EpWOWIOIylSYtjAb9UvkaV3iNox4+pnXu8uSZdZ+fvsqECXF0/DHT10Y4RzL2z9OYl0rP3o56gAbGWxmrw4HCig0hLlqY3FnzDPK8hQGpQRJVmq6QNVPgzm8q4mlpD5CrWM/fLX7RiJWs8FaW5ezXJVg+P5U1JTZjQITF9DkpOecpm+LTv0HcGlSFPhP3IWTt98iq49SIKcUwoVpOeCQp4iN7S0g47QQpj7LgNbnW1BIGfj9C2PutETQGf0ewvzaeY/eDHCdFgO/jrhS3ZHj8CL5A8hvNOEcnxwY+DAKGsatZPVfd2Dt3lG8p82aVmdF8cLgQsyYUgThsd2oPd+ZNacKw5/fH3hlwDruNHxKX6/3wokV99nlbTy8OdoE+/Jj8GphFu/7pAHDJ6SwaNpf6q815oj7VagzcRtMvPoFn5dshStz1tBpy71gM14DkhKmYl2OKRUMJ+GxpnyU+VJB9UUbWHnnBV47bExPDc3JKFocQpIG4Kp1PqR0RuDqqgWkpXUDJi5RhqSSe1Az3Yuyzgxhy3052CJxi7RnPeKVrvKQFl7C3ts6YdbJhXRg339Q6mwFbmJrKTvLCNI2Z3LV8ETK/2pFD5waadK97RhVbQ+/77+i/IBeeKPZA5UaliA8rxr2D7pzW9cKfqkpwEs+fuICnfPgXXeRk6fEkETgKfR6pgtLQk7SwnpCJZoC8SX2eGBGNt3vyoCxLwpZojMNZDt+wyNJSVj/+QFf+VDLu6cXktG3Oizob8fEQxb4csVPkIlrp66KNfDGdDQoNdzlDWVvQa4hGyb9/g0KRu1gGNqO5/cawl7pVyhwRI5Sq6zg6vWncLz2AVXnlUKFYzbWadij5aoMmlT8HYJErrH/JRG0UjKAygElDFbXx2f+0bQgZBkb9/XzJe8SsMzqoB1lDXSrYj9enzQNcH4dv9/shOsnbOLTo4Y4sOs+rfnjCBaC6VwGz/nx4z34VUoZFhs8Bp9jjWz4dBUKOupB33ABUOxZ/BZuihJFjTS1IZwfwyQQFn1Lu/Wq6NjeATCKjKHpazUh+Z8rfiz5iiO1e3DHqQzeW2oJq85b0xnb5Tgm2BIvBGagef5ZVK3VgnUqPWCbNx5UP9VTd6g8uGse5ZwTHWgU0wM9YyYzOs5k1+eKYF/6G6Xa5NHlujpPEyHYkbeAm9+Nx7xpOvCqJw5G6uzFwpsN7Pw4gjzrm1jP+g59FpaAnQrT+PfYdir+Wgk6Xp3YcW8LJOl9h2GpZmpzD8MvWZU45Z0RTBCLJcPduvgt/SulOwqw0oSjoLXgH85dI0WP1QmvjhzJjk+ngH9kKMwLjYcq3yV8Uvwnixg4wbPGSHTRDiH6MwVviF6lg+aKcDzbBa4aT4cdHy3oS8p5HOH8B0Zn7aHpogok269Ah2sjaHmRLhxwVUDLyvmsK7kZH/M+qlS9jkffvEAfkSpQcNmOzs5vUXHQAi6NHkmdNx/ht8k7UK5Dm8y7NcHwhjhdkxCjayGxlFbUzyoDoqBy5hz5lqZT0CZgy5ppdKrtKYt4CeN/g7945QlPDnh8gzF3HKzMTOLzlV+58VMZj4+r42c169g44CLPjBODcbwRj1c4wDUXE0jvyqMj9vvZfoYP3Bu1BB+WtzCpBPPWBCl+Pd+L7oYq0MENU6DRpw1V47XR5FYURcjNZc3yvyhy6Qt0HDnJrkXLaN54Wz45Sgn+6IjRhHteMGzVBVXjboDyfHl+tP8BRM84T8WO3fR+qTidjDWFwz6pcNJqKwZ+N+HbjkmwGUeQ3oQyynoSy5b9P3BT7Um+E6gDy9vu0RrzXlRd6k1dQt+wyeUYuU3xwekOjCH3W7E4Xoddr2pCsx/jhY1bKVF6mPK+ToX5IQF4Nm81im+UoM2Cx0G14BBVJlqD7qVbrKDTj4IRttQfsZNWNIrg9fYVcDH0J/auu09ithJI5QjTXcNprMwU2tUWjUUS/ZSrUY/qJaE0auJPKOv7jOFHR/GVODPQGy9PompmPJQajZPyW1gyzB98f4Zy79ydZB2qhe7ZDeTrIw2mI3xxjtp07A2cgbsyyrnh93souz6AzgfG8otMSTixYTE0+U+Dx9cSaPy9HJxRa8oiLTa0aFM6f4maAd2nuznD4xhNCTjKc3N0oOpeItqfDwSFGRXUGXuVRaqlUV/kEzwS8yT5vSdoxrPtfOfkJKgS9+JACzNKVzXDg5tiycBuPY4tHObvnSe5csxWcFKz4POd4uD3cgX87JrAE95egSUPQtkzWhxkRp/Gs/EGMJRXgE+nDWP2f6IQHvCZ0l6Y8iFDBYpdUsgduIQvt2lA/aJo6IxJw+Cys/g7EiDObgT8PP6CswtVsHelI4HHFpL8m0cFRvnsuIa5ylGGWm4KwizhFIrd9AHrtvpwrsZP7Nu5BPs712DQgyhu+FFLHpfvc2+ZBLyql4S+hddB8s0EbF20Hhp618DfsKn01mYK2acq8bei49i42hp2yb4gj2FHMB8hggteX+WIsdNRYao+RtuWs9XPHTh1yy3QECKQLnwD3k9aoefbaoy77Q0K7vbcNF6f/1AiL2xOBeMFYXR4P8Lapfa41S8R7X5EUkzCHrC9EMvhs0byrZKb2FRyCX0eK5LqelNoPynCG5NPcojlbvRJOANbk56QyBdBmDY6EV//N5sKDU1w3mwdcPYMg/j+fdzamoaae0fjyTkylLR9CvstFuDXi/fBu3FWdOg/APu+LbhErh3rgz3Ru/0vvPpwjbzal4HE/kV0Xd2dKmtWgMgmCzi9vof3XDrAjmWNMCAgC/oRy2lO5AlcIt6GUW5bUafaDTQz1OC4bDCPfyeMc00NodB7HI9R6cHO25qs9d2bOa6Lzl8OIGETeVD5EoEtDb7w4VY0rBro4WWTMuG+wgwsW2zIL7Vm4qYkR0hJtoKla/dBqWMytgcc4CX9/hjQs5Jt40IgsKYC7K7MoV2u/tBw3RB8rq9mX1EH2JIQh9spjoV+9ZK37E+42GAPjeUVqB2Qi3ueykB4xG5wMBUD3au+kLw3B/u+HSEPq2mcsnoyXOjUJY39dmAkbgw3Q/R41HIdzLVuwpadXhjUK8mSiwA8Pk7kd79eQsvgeax4bAiyPr+xR6ubZRVSUVrNBx58bYH0cG1oMXoCorsfgfuxi2CXMArU1KroZd9z6rp0kRqW+7CPzjzY2XYWTHqvUGbbQ1iw/zZDDsG25x9wqvdPyF6vh35zZ3K6fBn3axfxfF1reKjIGHVcmf5WCcHM9F10focFC26ZBgJbDGnjkm1c6RMMd6QkWSnrPGVe0GdtFxmojr/Ing79LOA1mg493cnNM04j92WD1j8pKNE+hIZ5l+HgPUM4fsiOlyTdpT1Sd+FutQJ/0+iBLd9PY/iiHyh2QQ8uX53Id2R14fYNDbR+PECii/dj2N/XMPFJOdzrC0Kbh6YkPEmJ57R9gvUrBCFG/xKu1iumAekGFN21GgyWBUG8700+9qiG/3tB4LO8mUozFOAXOvLD19HY8sIWWvyk4WHDYfpi5IAL/dTx3sQYKLrlx05/JCE+ZAGaj2ki9c8yGGZdCGdy96G3hiR+G7cTxbJWws3HX7h2QBjWh4piwg4dOhI2md7LfaBHXmIk5LaLJmxyxaT3SfypcRfOWWgNO6U/kFdoIn7PkIUYNXkoDmuiUBsJiPWaTMa/ZGD/tl4eFWsJpzZHwXjBFNTX66Gw635cvd6BZ5U3wZ1NpdTAU1DZUhyu+U6EAcfbmD2iCorO/+UVWfcwZ00z7Jq3EVMH3eFgsQG9couEUFYFs1PmNFf4FW72VQTJxmRWkdAH2yXbce2xNvx49SqT9TMSPzUVErSDQFNgFl9cY8ovgy5yi8hE3r85ljhcDw9mrMaWDBkYPGQC+VGF4LhHgs2FLpDbCFdsSdAEz78zoKqvGdJ136Bg+xruyVWAc74B6Hh0JO83N4IgrXYUbbOllNx1uPj0axjYu5yc/V6T9V0x2OSsAFsXfodqm4X8eYcC5E6XpymGMWzbXoUG6wEO9HTxrn+yYDhRmdon1WPp7S6QnxVIEzyPsVBUASlKjgTdbUZ469xhLioDSDF+y2KnbehXAdGG0hA+8EAZAufsYYHhPFb79RHSTh/Bs6JqUDMcyEEtl+Gp9l4OnbMe1CrmwdrPrnA21YOGruZQY0cnzAlXABHDQ9icMBbM4gcw7MdbdpFaApEhjXz/uCtvaBxLkapytOm8KiSmy2Jr8WtWvlWLOfuC0eDdZPi+9jr+rCzjnfmb6dT2PI5RFQSpi784RvoW6z4sxcQ+ccgsqeMNUodwtNZK/lqVwen9/9GqaFNwkEkBfO0Aqz62Qq9BP3XI/aAOzUloVLocXe0mUc+TUlpbogoVdJuuim2F5pui2Hwpg95c0qHlcJ5yolRoT6c0T8g5SxNadOGZ5lHsvm8Nqwsm4/Jr+zlhcj70bLOg3UUllDTvEEyJf0q/fRVBwbGO575djKPFr1JDxyK8WF0DD9R2wVD9JJZULsZJOpq8TF4P8gYuQMzT1TzOQRCTU2/z1y8mXPzrNXYYj2RxPw8QLUjBJX+FYVNCPPutEqJyu/+/+kMccz6TNx3+goHlypD0chsErQ2D4791IH7QDOQ+RqLE3ALsOxOBUWrJEOYgDIZxgSBW/5MfS2uD/BQpsBIopt8jLqDqZgGqSrvFc0WjwPemJvic3c5tMyvYz0OdHmhYwr7MrWx3Ko1d7F1xzvlsfFUfAIVHXai0RZIkjz2AV1ErMEx0DFzfKAMqTzXxi88FvhrRxhMLF9KKKVc5ceM79pkmCdpLvWDW4AgYs+UYLj4oz6+uaeCSu6f4ufcGuGs0nlbduE4TukvhPgzj0lnjIXZJMvz67E5BSr6YKxfIv1oBwyMK4H14HMx8PAlaVt/mYnd9eB71D9p215N2lxxfPmsBRyX6SNBxO03yUoWAz4epXQtRZNYo2LnvCAbH74UVd8djRcY+FHR+BaN2KvNm+Qxaek+eomIWY9xKeWj4L472BB2CcMdS6sivpxqz85Sb5gCLnE+jxl5nNjZtY8EPUyBusz5Ves3kjXdO4kSbrTiw2ps1lS3QYdFXqn3rw4qWZ+Ckmwq4XZ3DgrljOFCqGD+Oc2O3HnP0bVnEzoRsfdWAvpWfRIkRYyBCKxdkrHbwe7EIEi48jF5heajlNp07Q3+x9uJnmHfXHKTD9GBrvR4ZmzjRYxFTWjtzMzlla9Glnab8ftcIaNhpCoHHUtE/Tw8qdwRAnfIwBuAMmDZ4Fsv9HkLLuBV0svAXvGoez5PPtaDfE0XYZbIW7UYJwsE+Vx7c2k9pGZW02Vwc+zW6YYRBKz1Kn0mWbfrw1KCGzWgdyVAQRIbOgNlSq2DZp1LIdMmCn/67sPXATEzarA1pgQ+h/lck639SR5k3sWgUvYScJ4uifvBpXvbiFATpJuDJfITN3z1RZeIX2Kh4CCf96sHTVkxJFqqY1WbHS2sXsfz75TA6WwhGBF6GHZY7+MeydHbzvgIph5Rhpp0bjchSRtnDc8CvcjJnqmnAnDodEjk8BJ8fNXOXoDoZwTwSOhCEhZp/qGP0FX7cXUq16eOhutELFn6y5eW9t/nmrRsQ5/WF7QtHgfSbo7xE/QILVlXR9L7JsO/yEG9IEeP2yM9wZt519jUNgdgxwjT5mx+fj7Dl1x2B+FKcoddIjVanLeSq3CEyL6vDkOVrIfKGL8kaRKKz8RSedXsXCQrJwK31oTCi6BbZDi7FQXVfrLumgfknmmni8miS3vmW3z/eBbVamnCk8xEvVTEk6cVtFJlgBoam8vD1rzW8Cg/nzeEj+J6qBeV4mILQhzTQGLoIV/o6qfyjBX3rd6D+hV0Y/HUBD75ygLy19ughowafCvW4c+9mNFIyIH0PVVjneYdvb1fmyWkqcHt1ATR/uk9btDXgU+kjrDS8gxOX/yHp4gNws18fr6isp7rDxfhOTJzTckUpxMYAAte/xTPxajRpzjDPyeumJIcVBFHTYdfVu/S1KIFyXEXJyVQQzvrfg4adiTjlhCY+u7+Zpmv4UWvTJpTpFyPP6K3kEVgJXcLW4D1fHNyi74Ozqg2UYQw9vDmB9JoPsfA1Idi7wYYmHEuA5EYdkFlzi+/LP4Ig8Xq2iE6ii602UOATRlpns3kwaQ2fNgvl0+njIO7nD3gnuoomqaRTiY4qLbVop6WqjRSTU8474ufipYab2LNCGlJjHvDDNKITj47w7yU+MCvWGHemzOCnsx7iIo9srshPY6VLo6BCdyJtf1zIqT0q2Hg8EVP2LeBFEn9IoDAA4udvhTqvkTQcowjXh+/BjAEbOPL+FEmOAJCYuwrSFpqSy0JhqLAdAYv3F9GX3yOg/s4F9vGLJm/9SHp2dwfXVNjx9/NqnHJKGyu15cB3TB0O2IyBl21jWaXXiZ8k1NPfwxfAL7+YjKaVYsIdUZrnVgrhkx8Ch46A828HWEB0kPPrb+CYOYZc4dfNocViqDC1g//8PEVCgic5b6sq9MjrUO5NAwwvNaeJD9tp6+5L6LFAjAI2COC3b0q8ZYMBqNROgtisBIw+vAuWvXGmNtMxdOFXO1QkDkHy7kWkecAFhVPPkVOiOORLLmY5ncto3NWHQgLJ3GZ1ngvOXMHlR1ZDm+thXppmBvYA4JjznaeM/U45oQ5gky9PXqvn49vHx0jMaTp83qFCm6vK4e8mQRCYIYP1S1di3ao+jPFNZ7+tDqT+swu/65nRsf1bKX6ok9Qvjoe0UXk4aFGJBTflcHyDBMlt+wn/Ptmy0jU1mO6ymvxOBvOyGkm48XA6y4idorLEaIpXuYkvD23Hnmw96lm9loye6MMvs3+48ps5GMafxx3DnSDSd4UlanbwWulcPvTWEd0dFoC4eixkH7TBulNTQbysnQSl1Oip8CoMad2CGeuv8AnlJ/j07W+yPBeKwx8X4gZvSUgJGMay5T5c/lgDj4TJwLFUF959cJij2mVghnwuLLzyAq4vsIFFJo8wSfoMfn//By+Hx7P5mwSuhhBsLYynsxvXsodLEZ71Uobi4G0oIGsLHx/U07+LrzEzZhYGHZxN03dfwc+lW/CA0i6q/qAOMuHjYaHRPJBMC+eIcbdoXbc92whfx6i8XHzpWoybZ93Ex6MnwLjcPSCqN8iOKf3UpLWZ17keA8e2FbjLDdD80Tbc/+wlzfacCivk99OZ8ii4d2wPbdNbBh0h4hTyMpvxv6X4CQtgtrcAf7xjAokFglBfE4cmSYWoKNvBr289ZdWNGQz50uieKkzZvYNkNkoISskLTKPGgt6MALZZfRiXb2zHW4cmkOgRE3C48JsMLh4G9UJByFmwFfVHn+O7SxygcmEVOY2MRtctd+DvvXiY7F2GM69vp5lvdeC3zFf4nt2LQ3etwHuHA80+VE5dApVkvEcTo4RaMMD3Csz6YQKZYwEEfL2hftJpNJER4vzfS+in0SBfmKwNilN+oMsbOdSQF4LXwY94xssIPBArwslnv/LepzKQJj6Czgv/pnrhJkx5owzSf/TB8rYoV4kq4MINe9HS7iovNzNhNUVh7IiajXmDxfCqOJiel02BJTXxMOaROU5/NZLKd0zgr+Z2ICQ2Aw5udOMDi7dRY04VVrpNhNUtIVD9/ggZdC9APCNA93+K07inr8g1JYfmRITSvWNB5L5wEniklMIurUBWKexFs3cLISVPklvX3oSia6UU8LICio4Y0WYvI4gTPsdfvx4A3y+lODBBAMbenEb/FR+C0vFTqbd5JYvnHcPua4ogY1AA90Te45a6RFrXFoG6ew5x+OsBumk/BZUKLfm58Hm4tVIaHNIcIexaLr8YWAmHDRp4V5UqX1nETI0vqFepn13j/+EPq7GwJnoP5ZRY0K33FRyy9DKZ390Dr//uxgKnZnqrepS+CD7DH18MQLFlGYpsTOdgE21UbssFkeMK+HidBe71ekWxJv9ARNELy8YIgKZ2C9tesQKpV9UsePEc/jtgAiW7DsBynVY656xH7TO1yU7KFEbfEGGxjdd55AcDmFUQRnK603B/YCrqJK3gv2OEeLuIH/68NgruX5LjgC/mGOc+D6IWf+fhjmlg/doOF8uY4DFhHXj530I67SkLj+tlsX5iL288voMu7V5Fktc96J7vbS42AM7aa8LLvdThTeY0cP1SQPK5AqRuMxcNTlnz3toJ0DAtDN5bqKG20gg6seEZmG+Xg1ef29gi4xDOujkeLffK0vt4Nez8mwJw9D7Jfp4CprbjeNw4RXguJAqS/37A+YPGtC7RCWmSCu0WGcnSzlEsMxTLEnM0MdleFvaWPMVA8ZfQHNFKI0rt6bOSIQdBMMyPXUaLLGdR0+XD/PehKLQMe4J7dx4oFB1ELpcnG/X7fH6KK0yz3MmfpiBtORgNGnMs4aV2JOsk5WFHfCQfOreYUjfu5vSrvjgt+BuZ/HtCvrrWzDM1IaEliUfGuXCSdRBvTL5Gol/DSOXWL04Lyse0oAH4pH8GWvdOAMldihxVs59G7b0K0fOescB3eZwbc5L2DLhjdkg0vlR0wkYlG9gdcRTun13NT60V2P3Heb59ey6eqL6CN5TTcZ+vCawyzaOjPVow/ZQAmalu4O7qRBroGwtH13fQ1zkNLPByJU4MXsgDybkwa+1oaImIwqpLgeypkQTXXYJ4yq6zNPGHKuaf/Y9ufhrB5pOr+GGzETg/lcPa9Eo2O7oTmkbUY90TDxbJdEOhqBAcPakfnN2McW6nGqjYuoDpx+sw+9wfcHObhWV3ZKnc3wY33MqhPfGmdMY0hS+H64LW3L1cWhpF/24sg0QKxhANQwzIrSUjsz0Afw+D0a2vkLpDB/pmBMHJjFncmnobnuWtJikXhHe7XkDY7pPcJSGDruTKoeN0wc2plynlLAXke8Ja/6Os1TKM9tPFwC15By8R1AObVQbw7qcW/HJ9xIlR90EzuQBWBxvikafd9N/Pc9ARPY8eDp5gXycFbjQXhCHXl+jvY4mbvSdx/dE16JIuCcUrOvnX3VxeJ6MFZ+V66babJEjXF5KNyCY69jUH1avboKz3KV5f8gbM/ryl+6pjwX/dITT/LQveTR/oZVESj+lYQI3TurndwQvkLYZxRXwYfH90mjZekIL4Lhko9mojp5tfKPmiI0rNvoBDlERl/WH89OsQBzTZoWSCHAmOEgfZaevR8lot3jxWTXabnmOYsS3OXiyF5s7/QdOL7ZzVJw5LtCTA6c87+vdnLGwt8MWYAQX+fWMz7XCMoqLFR9hYLwJ/a1wlhekSoDWmk+f37QQDcXkWD54M5yb7sv6SMzjgswtPpr6FxFPnwKVaA2Zov6OiyEJ0XJaA1m+XwqrtG8FL4gHXz9KElZlGbFGgwfqx8vDuowBMnOzP9fP14EvuRX4zvoD+rHgOI91Xwc/WIr5iX4hSNToQ/ekTfhWcD2lOz2B9+gC5iI1khZnPIWNzF+RtM4OamDVknKgAqrVfeP+9Jl6U8R+DdD8WXp3K4hc20syvHpDssgh3blyIER6SIDHlGifKpsH8pjgSsy2lkUulyEinmQx+K9CTs1H8LHIKPhqWA50fbTxax40EaopQsCIRfSMv0+dRqZheUkZvXC/wRUk3uD5WDAY8mylw22v8Z02c4tkCXQ3HwXZ1La+vtcAIwWX4d3k2fdU0ggi3eTRxsQfPLv+PRgldY8er7pzx5wE3WX9CoV/6kHP7AJj4qcFybsaTc/3gp94Fevp8K1+vkKfuiX9YIPsQHEny42MeeaihrATvcsw44JwPf9p/FC50SpF78EfoNVhIY5dtR4+0SJaXHoP3fwnAgBFDelc5Z+xdi3nXEmlNpgR3GTTCloEckhKewdsdIvH5NAkoCn/Pvl7n6PvwDGrJ8cM32YqwaHYmfZc+gqmN36l85Fh8am8FbmGiYDmgxf5ZJrR68gzadWkm+K8tRdV9Oawyv5pjGnPwyGVlGHPXD36GjuBOt/XgXPyO7IN+sppBKtwIPoaHdxfx3qFceLlGFbplg3B70EGU+/mQW5Vf4J8FI0A9s5jvvPxGWydG4rzJb2hemirI3Lbhe34DkP9Li45eeMMFd3RZ4pUmp4ltw9MBB3le7TBG3BwN48SM8JGzNfds3EofBQ3hh5grvJD15a55QuiU0shzP+7jou0TYd6OLroW9wpv+Z5D/VWnSO9dETVLx5LyhlN0KS4GlDZ249vbetD4JZefL+zkPB1P1FM/SQ/rtaG7Y4gMjsXRs7ElFLNLiUINFaGNbVAoV41ejFrFV9V+c3fqU/R0lQfjh91440wIZP2WoO4GTVhsEojFk8ZRV3MtrA5jsrV6ANY2x1FcxZsnP7fmke9TKeO4DFiatWDB3SL8tDwR1B3G4rNBT04JPoTXF+2F6O4SXPrRDwzXqMCx96PAuFMPOmKyMMwhARU07lLjEk8Is/5N2WvyYMlUQX6brALnggGNLwhQ3d6/FJApD/u/BvOzqlBaq/mERLYxbXogyReLLcBEZBSESMRw2tVINqm+gs32+1A15C+c0fhOn23iaVAzgNNWMQy9PYzqQ3JU2yQCPbsTsXrIkW9LfgWD27/hQ+kzSJ7sBzZlYrBmwA2KU26Dc38+t/ybzXMXJPKxroWsdkafcj06MS+njuMjAIy6C0Bf9iy/XHCfhdVKObTjPDqotOPb0Q2kXnwGIn2DuMFNFFR+6MKL0VPgq6MoVr0IZc1vo0hl1UK0lriMNZraeAtbsHmUPOzJfMYzK1ay6G5rfh2sTDv63DFc+QoIp9njue3beXXQKoJRinC/9xKszFxLi6SzkVTL8WPvO94z+jXlSQ/xhHMW5FT3ml5OM4NJv4xh92hJWjjOiEWK0+mX6FHYqdgANudesKHkIbxWp83fL8rB+p1ukNSsR8tjqrHrWzyE3JbnH9s2gGPSNV4udpGU7QNw3UQR+CH9mK81jiPXx5405VEc/bmgAU8NrKhATg5F1znjwSkbIGSFALyM9ITZOaVcYcY0Jy6LFwuq0N0zTBWjh1hMaTN4n1cnC28L8Dkdi5GZg3i3JoL/HZ1Eu8eKU7OuLd9rWkAlOX/53ecO3nZEAbRu/MD590NpULcCnwlOQ5eJ/jjcuoBK3QPQvTMIspbFUcz9KVA4tBe70yUA77/DhpXrMTbaAm3bEmGxrQ+da0viT0L63P19ApTe2IKZQYso+g7jBIkF8DzgD+T9XsfVkqm8VaYRx/2KoITNU0HNzgkGhqX4jF8TrDtxHTd6lnKIzB+07bIAwas9JPTxGJjnjgE0+UQu6+Zwvn86uO2Sw11161H31nnOLL0NN3yHYb97GVlpWEAHT0OF/NmQfesdnpzdyef2l8KpYwdh9Qs/lNrVRL7tIVQ0QwyKxxyCt7+fw6xUfw5OfU2FVlNZUNmfXkutwMpn17Dq6Trsm6gJKctGwdleG24IW8Wn3kejmvc23lltjpZHQyHSMAJd4C0MfDaE2QcVULdTmrfM7ITXdvPZb/l/mPv4Mi8a9Mec160wv/Esbf6oBk9aGnHfwkBeczkNtVr9OUv/IhiuSYWzS+/iwLYi/HZJkpeOUAHnRzE4062MB9/dQy9NBwrtGofLTt6gc4vGUvSVUp4d/ZjnJEyAfONNoPSvm182jcSleyeAhq0IWxjMx0lXT+KMJze4PTOc/uvWAuNkLby0dAKWe9SBYlQBTYhugbu5W6jhqCMuVZ3Ne+cHcKe/OOTcqMa5UUMYtWoXXPpPB8NAioOj3sHVonrWr+7nRR6msPusKZjc6YW2R99hZJEWU44Dx8Un4dJTvjTK+hzEaFTxfL1ItPYbD5HXe+HGUCndK02Geybq/OjHYgq1+Ewm/8xYarEvn87KpXeFI0GvZjaPtozgrutLyPpaJl26cgrW+i/HsjOuEKvtgVm/JKhXWhCOOlzDD+5xKNmry396teHj/QrWj5NlOcknWO66Bc/4O6Px4Aiwm2tBkke9SefbRpZq3cdfQvbDJS1Fmj01B9lpEfrOaUDNcVaw4UkgvN3kA8debKLmhtMQ924+R+825U+ak8lOcSsfr+mia6qykFuwgaJmZvKKNZY486ESfbbTJ/oyBi16TvCkL+eB3s9Dtz2asEYgj78W6CH06YPnx3y4oT0LE8LMUGZnJG2dbkPTTgWh9HFpeLAcMLFnLkYmaNO3c24cYRdEpyuVeafkMJ/7YY85MUt5opoYdGclkMqdm+waMJpSJuVzqf0r0vAsJl9fd7B85MU6XfPpbpc2GBqLssvy9/i54DyFqi0CHxtBHAxQxNoXQnz3yjWOCRmC409NIKDEFI5p3udpTbZs5DmPnT4/JG0DGVA7mErjd7SRXUoWH+QRMPXaShKzi8KxtZ34ujcfCzWJDqojuKQAzTSz4DvazhjgZg5aSuPpzL33LLElAxUtb/APqUBQOTobdj/s45xTs2BS53u4KmgDxYnFtDfKkCV+PuG+uo+g3/iZw/5l0usrU/nTj5NQeTmQ7oZNgs6BJzRziy5GUQkdfNbFR38NwpO3X6F8YiQeuO6MB1QXwSXVcfByvj6qj6ri9q/rqXuEETptmYobVJzxeXgtjM6phEOmo6jWexrIb/WheW0POWdxDB75NQ+nuJ+GWTfPknhtAC2N9cC3Xld4yV1h6FPJYp8gZQgTmo0JvWJw/44dkdVxuJn5grPd/eB+ziOqrZeE3W9q8UxhDv94Jwy3Ro/F9hQDctY1wIZPreRg24+PZkZx1kwF6LvtDx83nQHJmGVUqnITL/2ngugdRs1ml3n4WSdNmJ5GHZXjIC+zjoy9LSDM9xmuOHEFd3llYIPFBzI0+cSXhtJx6gVfyCwD6Fgch64zd+CCsMesnFmCgzrPaOYkW5CT3U4rG5po9Msqyq0VBI+TVigyRgS8Bi9SVsRe8p9vgWJDynznzSXY9WAWVj6/Qc/1FOHzxvk0cVo59P08Dq3HfMkmeQ/f63tDgpKLWGr0Uf4zJgd/xKvB84ZWePimDiOEAtnTYQNIp15Dze0j4O0UWYxaZEti1slQqToSSjP6QbzZnNeKV2L6hmcQbbAN9mQLcNwsMxQ+toZWrBSCF59UwX2tN/o8mk2RP+fxCgUBHJYJRD9zDfpV3cGHs4LgxNjj+LvGBjoD17FMnwKe1xpNMLcZR2Uu4oeaWljam0IWZstZ23YBbisWBpU0DTzc2gjvpfShXiGH+0yqyLr0GVecyOXw7ypcf3s/zG6cCE/W9JNsTh2XxN0Frdle8F5iNab13kXJp49prp4ES9k/o2VL1GHJh8fQFhMEFwYyQMxLm0Zn6NHX8FcQY3OF7Er28AbHyahUbgqjROTQ3NmD/MfWQUDfINdmaVPvgQHUSn5L1Vp/eNZVE5DeIgoy5ZVQp70ez26qZKFJYqT0aTwqDhykefON6cmccHaovkDe3pKgmxTK8eduwJGhIMot8CaBZ+Y8YtkTMmiNhMiSlaSne5lLK2zgpON2PGDYg77iFXReRxhSboxDpfipZJh/GS8Uq3FIkDJPfWsMDabZbKYkTtSvSJYRQihtX426X39xpe132tszDiIeruVDzQKwZfQp+jL1EZwKW0rTx0bB5+8N+HZxDf/7MhLv7J4DN3Nasf6oEjjoXIIns4Z5xJTbFNqeCj7/NfPvjD1gPncHTJD3pwCrOgw4zVD0GOhSSD05GVeghl0gleh04LIf3+D32tOYELKZPFMeY8nhcRCywx11FjRgRtROsBO9T/IzzWD0t7O85rAA71J2w5o1f1GnYyQknrwJ7g6upBDzEnKPJpNMYRnLBwlyafQGTItxoznZbej8ZzxU7bTG90fu4sBYB3xV95lmZL9mmxHt7Bf2HEO/WfCUWk/+LDYSln97izr+zyBtcAmeOjqD9o6q544TK9n5hBVYbjtNEoUjKdhIDA59u8UkGM6vnaZieFcTPl0dwmnrN4FJQBjmJpfw2i4L6rXRB4NDJfDa3I71pq7lzaEEFa+Rxp6V48LZUTz9byuZjY6nalV9mOj5grYOfePnojr0/MUmqHP+w16f20h2byT8GYlsv0aHFTvF4Oj0PD4yegYmb32AV0xToMRtHQXXXae/BVUUeVaEwtTi6d8oedDegFCr6Q5fki+BtZEyVRzyxEd35/Dh8in4fowcx4Q30aE/ciA2T4etJ4+gfMWNsNRwCt82t6d1sbPZRSmfew+U8qrPCWz/1RBuu67mhsaF2P/3HmrbrIKGpi5wivchh51RlJ5rixaWFpDhawXz3Z+z7T5fkCy2hdHb67CuWZq2vRHjtrLv5Ol2A+5us6eV7+XAtP4M/5k7ExNGimLdIln4028Fao/VKGarIb7CWwQN3Rg7Qx34iCM7nDlL3y+v5yM9XpD95DvoDKpg7jEFDpCo4e9zltElMwN4UqwBq19Y8JIjcTw7IIyVLfJx+8dleGXbJwr3cIQnFpGorqgPteP6IT05Gj7Z2JJaohnrFU6CuZVz8cRKFQ5dcoOLKibTvRWWIJsZDU5u0bxZ/Ty6FlehjPh4virmjecuZ9O9xHhUrXSkBf1KYFa7EwV3qfCcn9W0+0g2n1nbzeKPZBhSykn2Xj65qMnCHaUREG7vBlcNFTAnYwzXL0jDf6l+tOiaNwf+DoW/amfZtmYdv2g2gBlSt9i6Pw5/uqiDzae7kOmpja3NDWTSc5u8tu7GpsXv6Iv4VNimncOB+50wVqyCvux+QOXhCvhxsIxmj9OCzEPT8OeHh+gapQLxbZcwQmExFJ39BW9M3VFTu5vS9nTimbUN9MtuN2zpW0huZqpQuMSZ4q7tg89j9rPhcgHenjAd57sTxfnXoMynCsr4FsnTLgiCUrQKT81TZr2bzCZfzeiggh10PS6G2h4znPhGgb+s/cbjPESgY/Y1zvO4Q/NqTrBC4Tm4U7wTnYo88V6qBe/Y8gPPrNiHFu+FYVxGA3VGtlHH6mfsMyWa38g38lhlb66cSnDE9wTZbV0HBocsQFZUjMpvZeAy5+esWLOQauvmYcP8Ozxm/izOu5HFyvWtqDzCClx1omjDJxGoKNqAvkGnuGepKw2rqNKbSZ3UJJbLckNzcPRNCzAKcsBgjVtgpz+ed2xbiemuH1A+9S+oX1HnKdc3Y/r3YtjYJQ9XJ1SDxJjPvPriLtg4eh3pTvTC/m57tHwhinbvtXDbTi/cZcywdXM2v3mVScVbfbGl7Ctm3DxJ9QH+0PwjHaOtNnBuniDFRYyAOy1RtHh+KS/QVaPja0ooeGwqeAR+pP2uGaje8wPktnzDZR+UYENPEotFv8Zd9U0YnnSBd3+3In3tMbiNQ8n17F5W9p9JIfZTYLH/Por1tebsc6fJcbUHlTmFgXecL+fUvoSbS6Vo0u+/NK1pBPROLaAvPvKw3n4NhSjW8ooNVVwToYRmL4fwcPsMXpv4nBL11eFooiQcKDsKOVrG6JwqxV0HjfhZ7kdKXa8Nx92z4Oe4BeBTpgg/niRi/fg3nH1iFY6878Qzx2Xx6Lfz8L3yVvCR2Q3uAXow2CwKwhkfwP99FWz9egY89qjRlqOb6Y7QYl5qdpqiLr5A+RnetGCTJlxzPgpLf7Xjd8Modh7pxx/1PeCfZBRZi4hwkOR3mhcVjy1SI6EmVBPvbF8C9kNeVFgzyNWvpcjxnx7nJ6mz9RpJTPgZym9Hj4W/0yzRrmovRmS+hHVBynx8uwzNaRRFye/KVKnYSXOFE/CJjyIsbn5AR+Uf8Eq/v7TowiQa+WETpVVcZ8WhejjVNhV0iq7Bi8XiEGVZBwH+F0D6zCE4NWjH4wuO0/wwFww8J4m6OW9JISINbxaKw+k/03E2z4YDTkKY9siIvPdNx3k6CvB3+jSwoTIO0k6HERFyUC/rgloL78GxsP0431eHWqXe0AeII1HTLeQ+7zAXFLzHTh8t2FjzAmhECi5+KUzjcxNgcp4eJ4yfztcpHaWUT8CVHlEyHpCFiK/3WSNlGQivE0Y/fy1yjt2Kg30eJLNUmlOnf+Op2Ai5B0ZDyrIHcOy6EuSbCNFvo2es/fcKXHiZibX/x8p9KISgqAEA/geptKekJUra0VCpjAhRWW0pWRUKpZJKw55RiJIkGQ0UyUghhIqOymgRTSlKKLkvcV/kq7zHK6TeQaBvIPxnaQyjVq3ihsf6UKfgjR0LjlD7zxZOdgWYXmBAf362w9mXBdzzD8Ag7hV+EFXgsmuS4PjuBHq+6qbeE08pumIGVXhlwPmnjgxFE+Fe+Ru2XZkM8dd3w+SH3XDw5jHc7h0NCpbesFxPl+/IW3LSf1NhhaoDQs9ofFWXijPWJnA2vsWOWdWQcH0JXTEfxLZX4eT8wgpmPzehhxZLqfco0iTT67g/0hu9XqqS6F8X6Em/TIerp9KypSNhnds8nqtwj7SWKEPsg1oMepiF8k/H4GhrMT7obIfOy57wv+rJ8LfEE6Ijn4Hfh5VsWGzBkyMKOPaXEIeUS6Nn7HuYNek7LHgsCTnG+0HJZT5vFt9ApUqS+NrVi9+9ToD4/6Ippfkjq5pJ0W2dKWAgZ4jLav/Q+6ZVNF9QDVJUWug7V2L2TXnM2bEaNe4bc/fZCbD9TyuJ/8kD2d/fYVr9C74GllQvOAsmQQrs1XTjgcRovJ87Etq2raD6NnNSCN5KkS3K7LB4Nmv+18i+aS04SqoHbk5QZ4MPimCWNshVpxzhk74Hla3Jp9R4Sf6op8/asv4cJlLGD0yP07Hj6rD1ugLLLq+Bi8f2sdoHLTxoKsOWMwZowaxINvl5CEdpFUJzqwJoj37OKz+5cGbFBnjsvwNDPlTRvcXluGiZEMTevwJtHg10RVoKLnAl9HrL0ZupobglbAf/d2MS6W8NxisRVyFcrJ8Gzv5GzVBdKNjqRulnBKn7nyw3Tr1CIyMX8epIf9zf34NZUgt588cQAB99qP9cgVpiWmQxcgvJv8/Asyr5HOs0i8z1jKi/MwbHdgWS9Ep1uGmfBGf/3SKHfgfYLdjMHanPeZ30MO1fJ8T7l01if0sHMMs3Bp0CH+wc3oa75szn+MExYJUmzibCr9hz1ngs9TlJX51cCGVFIXDDJ1K7J02dqpK43OsDxJ22g8GDHfxwWjEePRQIajJj4YC0Ksi6mNEc0yTy+DKPLcaUwtopjVAXaou6H4rgptcpCBVVhUUa5uCU/hPGS3ziwoun+VB2Lq/9G4+OUsKQfCGa8zQ8wKw9hAYXA4j+txY8dbtA99cpnvTqPf9YrIUnUm/i4EVnnryhgud0tvBmFQnICitBjfePKC7Hmtv/htOum40ke30cGI2fTv5wnd6OnAZ1Icow98IDUpWsQMPiz9A8q4BtqmvQ2W8Rq/9MpVBBdTQezqKrv8XheXUVzX9xgsfV1fLirR3kOGI+vzk2FYJ/LsNoyS0YvuEgCN4YB4smHOEj3wT41X819OzTOZKWPcWByT9p+rcAmJ3cwTpb73CK6ET499KU0mfv4LxmB76vNQ8WwiAob9UDH+UqWtdtwnd0g/DfHmW4ZquCcnrP8Ye/I84LfcrSkz3wwLaTHB6/H44YbYKSve44dEkAXKXT2U9Qg+DiCIr4FoyGbw6ThlYjNYdkwJeEkxT9qY3P3DAG36fK1DIkCqYuBTQpeCx63z0PpmJ/YCt58ILv4zD6lipM17WGJ1rKHKt8ldV7psGIaA1aIXMPprZchXXbJKGYSmDk6QOQKzIVngtcpYfhpqSNTnx/bgy6dymSc+YbGNeOcOhcJmtZZYPlYj3YPuEEnTv5B5tPWkKqvC1USTdyZPcV/KBnQbszLuOaBZcgSk4fZO8hhB6rhYVh32F+Qyg5KvTyvogndNtJkW1iRUDucjHfHq0FX/vE4O7uYM6TtKcDcg6csGAbPYmNgE1tZ3FWwwTKfrce1cVMQSyxHJWfSVLP8yJ+lFOHsk3TcMy1Qg67/4tktJ2pdVE5yvROhtdHjpPGqrMc8cAKE80ZbNYtJlnb6yBS2IgBa7UgZvg+lO3VhhkqQlgRLEriS+Vp4YRh2FU2iu5plYJOSCwo9czDUiUbmjrTBKwHr3F87yBEbMpBX6dzKLjXF1Q2lbBcpQolxDVQ8KJDfENVAUxu3YTUrh90SmoFW9Zc4d7QKvi14w8PjalDux17oXKHB8d814TIffvY2FebiuPSoSv9M29bN5l8XljAv49KMP9vNj/a50lnVfRAJugUGU07iYn6qpy81R9XKNigjaMr72kTpJ3qiWikfR6P+WrDeQc5Vk0aRS1Xjdl5Ui5JL7sAnWcHeHbWM8gZdYO9q+9DxanR4Ft0hL9yE01aMwIe324H5Y0mfDBxmGbIBeEcQU3+ry+B7gyIgUChHx0fmAaRm96CUM5+kJ8myD9ny0PuUnlsXR6G9sOinCs1CnYty8JP95M595EZq8JuvHh9ChtnxHGKag5pzXGH3umL8O0EHThVtZpPPF6Gvg7d0GY+jIvmduKe+d0UbGTPteuV+YphLsxyUYKTqvfg8ZdFsOmeARv/WIY2ebup4ro6xoiG0c+p57Cu0Y6aVc2gRf0wmEfcAw3zNC668htzzcdz33wjur57DN6oN8Atz6xQ6st00CqywgTHWHDbPQgbrjahrdRK9qushdqFe+j6PldM93wJAwIEh8SyaO7wYny/KAxuPrRF5YRBHNS8i2icirvEfmPf2i0kdMscXPZ4U/fxWjz41Al0tuzl4Sc2HNfyApJHttD2fZ5g/O0Cd6dLQFJpNb6fWMZr2nJ5/SJr+n3jKb1QYx6REEpFlSJUX7uKG6eNgF6PN2Qa+4yvmhXjprReWi4fhD9vb6HZu45R2lI3MovTIAlDE3iyKpEvNxdDb4sFNNpc44KuR2juIgeb8oN54fY7tMn5HPnFmcCYBSHQwdvZJbsN3u1tpbrybbymaA7JXboCHrYiHFMfQBL71eGk8iAPVtTQFt4Me0XmktdHX5yn8p7EnDtwVcVtoOT/UHWOMri7v0K5K4shpX8JDtfthIGF6znl0B4caFiCy784g/fjvRC+WAY+vizlau8/bP/5NVdZ30ORpCA6hFG461kiTNBKYZ/mHpCpUIae5Va8K/IN7PMdBTcPPoQL1uJ8ZeYFnB+8iE4MO5DcYRHIKdKGhslJdG5XMdYfdaItixaSXZsSeopchBtzfvDfulYyfvWZ1teYw8Mrpnit6S7pzVjFatrGsHFtJ0kKVmKEyzAu66nHF6aHqD/OBD7V/wLzVeu4SE6BJAKFWUJjiNrrHXGgJxl3tadi7bYeijg3Do7qOfLENx1wJ2Y3qwwVgb17M2qG6JKg1RQ+FHyFdLWNIa9eGEzLpCBjZQFdCRjgFqPr/OZ6Db+UV4HoyvlUW/QE7t89Rzk9+jDx4zUSN7/C605eQuXUBbh9eR24ltli25g9oDvVB7wz2nHzTUVQbrjO4XXBcChQBKeNuUrloupsJ/0EPhwK5aur10FTTRjYZxvBiyJNUIpzIhVZPSrYegwNt6TS5KBVKNTpwnUj7LB4ji/k9opB5t8aCu+vBPugfNLfd5yCFWtZOK8Ax3f7sIm8CIcEPQD5A+owae9jdD33EFfrjMC8h3c5qVcarT7EcNBpaR5dc4xWXnqC9HQSHL1lgQk38pClZ/O/i1+B5I0pcGkSDmn1wd8xkXDgmgDVNeuD57ardHyjEXwad5TW3vvC4fPC6NK7x5hi/45TiyThic1NKnmnBzsdblH9Akn0qqtBmcqP8FSiAb33ZVFQwRF4m34cn5I3Wa41gabHemR2OROSOQoqvFwoJkYEj0WNpLsPeyEA/2CKYjslTlGBbZojcJL9Vz78agdvE4jDMwsPcpZXH0k3n8LS7mqYGa0ED8aNB13JDuqMFaLZ6wbYeI0JmdyO4+hKT3afHA0hLe789qAgFUyRhs4jY+Di+iYMTzsLx4NcsKDcgCpdD/HpH58hX0WHPsw/SZuaBcCU3mG20jlY4fcQLyQJ843yU/D54yJIEVlIY+SHYX3AHnQLGw/a0q50c5EYas7cyhPc5HjnmtdgvvIkL9T7i6PVQ1Fzy1HqNtWB7j0LeeroctBf6wGx00UpSegQLo0KR/n3YjzxqDebzO+mEW9FQPjoEpy+9jf3/OigfOPPkHx8Ep5fVET/ZW7CWgkFXraijZ+OmgAVKRY8VWsnaJjYk7twNtbUTqIt4ftRwEkK4j9twerHdrQ6xxRqprtik9hrCtC6SOKPlzM8daT5MvLoVPIFIx5lcrnkTdzpqwhzNmhB2VcxKr2ZQ2pZ+6DfcxqucG+BitUtUBgrhI1XE7H2lgJMiX9O+q5rQfzHDTa4eAdnFF6iBX++s0bCaAoZ/4Nlg2XIwEwUpDRcaFKkDi+IfwIhxnZwvyEY4U8xCBatxY8zAf7MlGWtN6rgoatAjpbH2SFhNmT/6YNJjr/4o04dNHel45dFVzjPRRfokQmUnNjPB+uvgv+HGAws30rRmZJUVT1ALjqr4M2qClLqfYFHclRB62AZ/DylAjk6zZRm1wVbzSdjrPQDtrT7jAvMY2HDrDwwbBaFnSIXuHu2Cm+4IYzlLTuom0u4sK0Nxvql8vodcyG/Kx1d/axA/ttudNXeQBvW3sD7D+Nh7QcLak9diGnWvtT3cimcefKT845YQ7TxAEN+Nx9QPUol1g4ILv9BT+Fx0FJdBnqXkXxzDuMBvWkwRi2D6kfW8qvlyTglp5Y3lO3B1Udf4yYhFa6UjsJRtwIhw2Qi3EvYSmVDx3lN+kKQk/wKKn1TUaTJDzWab+KVU6dR1dyWFoWYgaOoHaWf9cKaf+Z0sDKe3cx9Mfr0fk5rjOHEfgF6MBjOruJGEHViNXzLDkbhaF+2iAmk22xGzzIHIS7fFosyteFhnQda3pIEx+eH4XNtHLgG/kQ756VgKP8U1xQ/RfFlX3loeiuKjhDGc5eFQFZRDMXgPmT6ZeO2G8EYX3GW7y/NRrOhRHr3yIRd6/bhps1q8OhpJspdHMX9sYOgF6qCjStaaPuNMB7lEY9Wywd4b/YhUNg75f/N/4H/mlx4L34AX47+BE+kHHh4KIrH/B1JOWHred8lYdh50ZkSXo0AzRcbWSVjOfVJ68HErWkEP+zISOcH2E5p4Xssh94jjmD8prGQE+dIO4OkKDjCmXLNB/B+zFHMj4vCp3s8IG//Qpxg1A9WleYQfdwfh6N68OeaybjprDzbavfjJK0Brpj+hcXRg9+Oj+FeESNw8iqnVTFXUa04B78v2QjyHfW8ZUMJa/t/pWsuyZxaL4PB4aYwYFYGfWcyMft3EE4MP8+dw45Y+uks5U1VQZ+5I+ijpTQmS+tB1YV2MtDfhIfOKsEeqS88FHKBAuZIkpp4Jk/3XEO6QjtofYQ+bP/ng94PpuP7cXNob+JuHD0pkzoacjFr6X1Iu7yLVl/RBt+JEtCy5wyuKRkLv0s3QkHML3D6msyPpeygU6APi14upPXqEnRyjjU0PnXHJFsjOqMlDgbOiznI/wM11U/ERAFL7NIX5Ke3l/KK6wJQLnIa1iWO5Re4CY8lTKBg2/OYZLKP1jnYgrN6Nee9vwafljKMTE2AWJXHZHjCnmf7rKWXU+P5R4EFPHqTBTqzRrBV+FV2EzCCijHRXFuzHN7sr6EJJhV4QbeSgxSvg0PFP37U6kaldYaodlsaVMzs6Mmu9fhQeiWkVZfhvFFBFNZrCAdt8rm39iOP3vkftZ7XhaBWTa4YGYUNV3zop5IrzbA4AF9Vj+J2jftofDGPH9VvJDe1sXDz3R3euc+YJDOncMmich6vNIVeN6yFM/9t4kVduynMoRcr25Qg1GQuRmQswEmB+ig2cSk5pz2HcQYb8bHMJ/y7ieHR1DNww9MaHBxk8HzRMWw2jYNRjoV8yGclGT+34S3C3RzrL45BobNQYaclTPD/QjfsEbz8TaC7wBrKbrdR/q0yPv12NvFHZW6/XQkhxtLw10gI7m0sZrXXObxgQSi2eJezTb4xTzuwiKKW6+Lthhi68l4WjqmFo/pjXej5Ogc9y6RReb0O7jHXRc22AForWEXqhuf58jo1MK98CTr9qtyjOQG7AiP5XVkzX4QtoCtYRivdZUC70xkyR2jCts+1eOfHA8hZvhDey7jh97RqnrHHHDTnrgT/Zw08aY84FvxnAIEFb8HqozWWrwpEu7pyupIFHJn6g2wN3/Dlz18opMgMylP0IW9dML+UEwH3JXkcvdaGD+YY86y3Tfi45iZIvPrNlVuGOOTEVDiTMI1vzVsEwgI93BOqSlvGx/L8n2FsP5BD+ovG469jwVx8SBlMJgbRqD8uOGVsK9cWv2Enxyy6WFtHY1s3QExUB2Tk7aIlGQi9kySh6ZESpqenUIP2VRwfsBcMhP0xp2IfnpXpo7eLJ2FqozBIRyix1pzj7BV/nq3bGrlgrC/i9Q681D6KnZ9pYfssQ1y4UhIqV/2jRbL6tOqUP/4UXoYCqoG42W0A5cX7+Y2PP52Q6QK5Gk1Y8yMWF8QeouwDLlC+/xa/eCtCKzaP4rsGfeRf9Iulb/XjRSl9KJmiAkmnjCl4wzV2av/Gl9oyyeiLLjaGH+OmMYEYurEc0xYxLLy3iz310wnaJoHPJivyvLGbN5qaweV8F/g99iQcWt8P4/O04WPhNc6PEIRlyx35y2t/yDK9gx3HakDHbA/O/PuUT9yVg8iJVhAQ50umszt5TsVBrC4II59/4Txa9gLIjOmGSYXD3LEjCit/i4ONRCB3KqvA/bc9qL7uF+w8cAMXmXjy1l4rKvJw4g1rVLgyWhCsepJBq2AdhfX78+8dkvhq3mVa++cFbyoKp5H7w2jjhSVgP10MdFRHsJlYK6UaeULY9Ep8lWMOOotLwDi0DzOeu6PFqSxw6DUEk9MfMcagEZSuzUG9KYdZW+MRr3m9Hs8PBcAtsQw4uF0C1/hMA5G6bmguGEe7hf7SyQ09tMukjoNahbhoVxCV4mMcHXcFozZNAB09BRwx5RPEzjjG7fsquFxAns7oL0f3D2Xs3/IELs2eyqbrTGFLeg79h5PAako2qP8dB3euluJmx114of4f9BW58bUddzC7XxqSwR1ngz9DyjXYGrcNVs/fC9+vTGZR5xC+NN+einX6yWbGGMgasRkS22ZRkc5i2lEnBDEml3HMGE16N9YG/taPpZ/vESb6MwTvSsIz/52i1LPbQd5pItxJHIEzNrjBwfTfGCAWj0G5JhzkJw7SfjpUFeKB4sVG6HR8BwZITaDnVeegc+YOtupX4ozaSmqZJApzYnaxYOdL3v9VF2+90qYNZ7N4/N482HHEE3Wjg2HaDWHyarUCt5XrsShGnFJeC9BevxLIfp0JO5TiSa4wi4ampOEClSbWENOBlW3mlKL8AbrEz8OYghog6Xd4584ZqCqLor+3rqKVhB5EaFnAc9jPAxsI6/64gPwdWRQ304f+c93gLCwEsnvFoDzRku/N04Xy36JIOQOQFnCI7NTiIeLSXgw494bKN/XyKRMjWD9oBiH9QtC/zgtsC2MpygSxcakP7U7up4F5znCy8hx4ak7A/JJOSCrShV4jeTRY+JZXRDaBW9R7VB+RQWdXiJFLqxwXHj0I9VWNmDDLCLqjQ7lvyQD69H3AY1W7+JWBEx25foemOKyBwf2H+VmXBEj/kYCQGXc5bY4XFXhYgbl+OGpM3od+ayv4nYsB57tOxZCPazG9xBzOPUhHp/OHqed3Pc8unIUtl6bTy22+LGs6CGv/KPMjt5/g9INA8oY7nplYRQuuhYPQdoA5rxTBY0IfdA+XYOu7aqxd8AE+rBsFr2P2stm+bEyOfMhdT7xg24Ln4P7faFy63py2qm8Boyt/eeuSiXDkiwX7bZEFIfcMGgqt5y/u4/Bn+UJsW67JM60DyCNOk/trRcC1sYHT4+/ygsjn9NzjNmv/18fbNuyFAE1zGjqcQCOs9HDmbXPYZ2pIcyU/0ukcN9i3VBEFj/7FvsliqHB7Bfr+uYR81QgWNk2An9XFELKuhoM+L+X9qzyw6nQcPHRex59dJdA+2oCPP2+AHT4jQaFziCOcwjgmwQbkG3bD9b16kN09jTVCPCCXpnCF5AqsPGICvi/6ScvuDMeFaHKq3U0Y2nYI7cI+8/wPd2jbAxvIUqtmE41pcGDWMa5ddALMnLsoqPYcD+cWs4B1L5dskuDaYxUkuUWOTHt1YXZBKXSZb0dan00daWpg4iBKZhurwav6MUYEh8Ed9QiUAiH42z/IH9a6gWLWS1yoHoM3FLNA8LMHe58UhGSspxqhsySaIghmd57yUoce7h9GfHoqH/8G/IRqsCXbz5o8eTxTVbAeRYWJAT+YT43ql/BMYTCXd07jR5M8qGDlH1R42I3el9PpbfltLnUVhAuSAXB5mQMtdX2CnbOq2fC/fDr3YTZLj0mF5X7BYGL8kdr/IfipX4QZEhdB3UoH/bMFwKawhBSc19LEUcXQJVmLyskn6HjTCAh0LGOz+efhwcG7UGt6HjMaduMrRxV+kuzAo35/xMJfxXBaUAGO1Wym9xHalPBPhWJ+TWHJur24/+02emvaCT7/vuKP3igaCFKEvkuzeeuNTuDAp9S2RhQWn1bgtOwgbu6cis+MimCmuAIu01SD8xf8YLmHKQctu8Tdq8XQ9mwnXch8yx3drvBndzz+WPKLhbpM4PVHGRSYIc2vHkWQt8shqKHD+NW0go5mXYTnwvcoVK2DDgcbwVwJAQwTs8fbCb9hjK0xi62eSxPCZXHTVBVyT+6myJUBALnKEP25kEIvrwYhX2ESWLOIY7UtkUqkoGu2Pec/CEDzQ5thvp4WVGjF8hnbUvK/3Q0Z4k2kdiQRV++S4w1Wj3jPTnt62KzKz55pQUt9Dv2e/JkCLtiwrsJc+N1YTPmKLjBjvTf+WehOI40v8IQGIfhY9If9Anyg0OAFZXy6hu5LHbBGJAi04q5T+YpAvlU+hM/KLYGeKcJ0vTAu8ooDK+MRsFu1hsNDzsH5b1/Zo7wGT0dokvLsMTDYM5PlBwAymsPxwXMFSooXpaC4l7DN8herXnqPg8qVINFpDdYlVXgjdCkeOh1EjysdydmrgaXfZ6PQ+pUwdVo63R/tgZ/+CsLeU1NoadVKVAr5wH+FNXl1WC8tC3ID3eu/uSbdgLepXqF8S0V4IfEFp3l9QSeXlzhfeDLmjS5j623dJLOjCpVOPuYsgUaybRaBZlFrqCxvoRlaB+m2VBXIvm9j01clPO6eAnpcy4FM3Vn8200PXvhm0XPLJtBcaAxd/vfoRasf5gZ9o+//6cEK23o6ObSQ2p+rw7Lw2YTpnrDY7CG6D6jBl8h+8O46hnMcGOVeReCO9iS+tk8ZKrZdoL5l6ezzcDUfnX+YfTEMoyxWw6Vj5vyvORRm2bhgaaASPHI9TVm1agQJ3lBhIw5BgR7wd8tVfO2jCFvn7mRb4RnQcc8A/G8n04SEj+CfqUENPwVxb/oL9rE6g6078+heTTb6X9oA5zIY/Bs206jL/WC+rAff112g1g1hfGdMF97z3wPbbAfRK3Ya/9o5Ar6vCyClL2mwXqGPY76fBgn1QL4zc5h9z85hqfAacl+VTxPlxoLlfSm+d2A/CfhnktM6C+pN3AwLRz6gIs/N4PDpJRkeS4GXwWLg8XMTjNohAA/tffHI9RM0sOIbFI1IRvtlmtjV+A2+LXfgzBZ10LhcAB3Gb/DWyyjcXLCMLx9/jLO79PH3ytOQKJdFN87egmlZUmBfup9uWl7iW3M7uVflF11UsYKCHxtxYVAoXPj8Fg+9P45RGhOg6F8VLAkQgdzgZ9QX7oD7N9fBS9N+nHV9CV4PjoVUbxlKXqENLa7bSHKNE8Zc9Sfnia9wpd4hUh/pxtuSa8lppBkv2fOO30zXhc0CXbC6LB1GeKtj3ClBGvnenE1V5+PuI3Owcqk3u935RJWW+pDw0B4VVhWxxKtM2GUXBhnVm2G91WIUPNOFrVK94GDkSaqPzcBL2pn1y8dh/Ifl9PrhGbp55C4dunQExsdnclJGBtiHn+WLuoLgJPkVin/5wIMLJnSu1RUSn0XxqicvKDjdjI65ngTdVwvop5MqWCWPh4VrXUDg0FkS80sEu3kPKYjGY0v6Jt7WKg/HE8fCiJbRcC+yGu0+D8E1u424RHIfLzHOoglbDOl84zR6/K6S3/uWwVmLCVCo5Mqy2n8h224XOohNIUnXteiQNJKPPXxEk4bn0opXohDMKpD+6zOnBiWj/fMMLvE9yZ3uAah7eBudfCZNQssdAPycuXiNDMw+OZ/Ur0/mxb/EoXOwk8I1Silf/RtcT9WkaK1oEAgDEtpmAFcpE9J9vqPMpd0Qev4r9U2dh4mt67HU9S56f3rK54wKqEVfBmoWtPGS8SE8bn0PKwoDeQ05gGrNCZwQ/ohK2AUVhLdTrbMGZCyR4hci3ej9NImqSx1h3vmtpKviwLM8PLlPVZx2z5yH/54z5J2tx2x6Q6r5UZjT0E7fngjwqHQbPFEQxw8mrecnCk6gETYVzhnWgfWdjegUVQZGTdOoxNcRvlYmYohWKec/U2DXQBvUmSkBhReiaYZ7CGZKdaNDeRIfrfQDvQFRynAbgGWW57l+z1WUExGBT+GZIPFDkJd+OI+TflnRdqXbuHjff2SrdZ3qPcJojswwbvkqD6YRnzn+/j78bTUKR2wrg+QnMmQoHwpCtadgsnAWnhZTBuMgc6g+spVCXq9h+P2XhUEZaMs8OHKYSXy5Cq563Iluk2aTCKjDzDHfeZGgNR/3rAcxhV50iJ2AnsJSfNM0nGKjqsFziPmEhCGAlxVrlrvTdu1UfB6gwz+knEk9TIhWbnpBIzuOoHd9JF+/OR0e/dqFxya6wUw05rtvTlHHN2DZsJ+sT1F4TkgNL3+I47YGDZh7fgrXTVOjR0qKNM/yOh4dqU86b6wgba8t1B69ByeXufLBfjlIi6jgLx8LuNr5HkZ6aeIVgxxIOfcMXxcQ/znTCXOKRuOrqdrQNGMViU7LhOtVsjxX/TWEDe2gANFAnJyVBg+NrEFE/Rptv8Ywa/FecrogjmtstnGd5ij0dVuIc7v+UvS0G/ym9Twrozer+I6FqTPEWSBlGdetWkk7LhxEEW9xOmZxk11EKsEifxfKHZ2K4tc0YfL6SpKr3csLVzfxzqdaFPvoLha7B8JJuRIMzFPhtnZlOv8EIHzNJrwqfRleCFnwX7mzcNI3kMVSjEErUAjXDvwH7nPc+ayXNpTNS4DsEyNp67EWoMRIvjveDaXeTQen3Rd5TP0E+P63i4a6ZGEgexDUjkyBLvspELW1l1RlPsIz3z9QP+s0f6w6hf723TQwKAI2Gq2o6P6aU7JmU9IDL3ixeju3j2oDkRdxaN+uA1+iLNF+kTroqN+CmoXKLHnOh7NGX0GHuXEo3H6UBPVHQYbwGVj44zDUdYrDbfkirjJN5VXLzXlmmw4O2RrQ3iQluui9G8L/zcIbA9p0ok0Z1Eq3wifvMrKQ6sdbycd4QD2Icw7ncIOwEwnLrsW7l9PopOpomBlVijsNL+FsPzG43BsLN6tjgb19uKN+KUis3QVnKnowWcoKOqrnkekZPQzKOgtzdKRoglkE/nDbx0e9F+OfW8M4Ob0S9fOtoZFGYxY14glVRv+gcfDftwzSefydg1c8xoKwARTYHc/RatMgU80QHUYo09+RtwFjlfGm3z5c4ZvOG56dw8zz32nlxEhe/GAK5EpMZZNvpfxS5zWMvLuAhrvE4eO4RBS8sQMG7cbwNfXlWHTYEoTyZ3P4la+Y/zIb0yyisO6gFate3MfHFgrCiY2m6NPlDceblOFm+xM6UFKG3i0H0GZvF7flasKrBXYw6qsA19McqlIOorTtYyBhZC3md2iyg+kFeGhzBzsOf4c1GvGQlzaXdVOOo3e4A3ZtFIXbG1VhQd9xThVr5ULzYmhNuUOTN+WAhEYvSD9bxUPS9+BM8yiIzdhBN3Tn81BgPGTZdIJG3VE0uN7KM9RzYVz1fc5cMUBrQ0zAaNkDXhpsi//mrqUrBX5wW0AeXT1CsUTuPQ+p9qH47AjSKTaFr5M+kO77N3QiSQOWromBegM/7GmKg0KRSnwt8wq/bNBD68ExYKrZhJ9k9tPkCDvecvc6GnVYoIFSA1n/y2E/Symes+YkvBs9Cdwy4imvp5Ve6ybT7bNBdKTMm39clMPChDUUdfopVimeh+c0FspU2vnM6nv8Xvkb360WZ8WUAC4YnorbR7WBW707jmwUpxsGY2Fe3kJQnaBNWclrqVVgL4z9m4BHjmvj5qYFeOGHIaQ8k8G+6SLwasE13Hx3HiyXeoNmJ7+DRXMala3u5rTcSPowpElL5aVY8o8Z2H66TknpP3GJxXbeujydP9ECvJKUzJ07zfnlWx0ebdkEu/eOBJk3tvzE5xI8n2sFoTOXQWP1AlSMaMBXax/yFvcmvNOnTz1+E+Hw3U2oWpBMc04TFBeupd9ZbvhMbx2OH9xNl7qP4acV67GzYzQMT37PEsG7uXqMEJe+1KGJywKg3iMR/nz0g2i1CJZuSYXL56eA19VNbDprHY7824xGHo7oPc8QijePR71mKz7x9zFtd10Ai2UmQJaqMB1/Lwr1twv57awsfmrXiLrPLlKW4llenpdO2yf5gYajIAyl9bCp9Fy+/u055m+N4ebNxeDgtgeut6jR2PvNOHn8AZpQKQHa37ex6bdjfNm4iZqWfIHNp8romf9qKq0Zh2Ezt8GHAXlqN7IEyzQhrLlmRkPeyzFm5h880DsCJPJt0STAiLf7RPJv6Vnst1cAXp36DF6mRzjV3gf2euuxzPpCOHdQn+ZU/aMvnpEwekQerQsSBs1bppAiN4dlp1uB5D4bFMq5SYs0ynBr4Al6JyhKZPAUi1+Ng2MHZrG01h8sfXmatpm/pAVDjhihaMZDW5rx7lcJdP/6kudr6cOPgs9YHn8Nzxgo4RdvY5ZZNo5nJ5az3IURPHz+LEa06UFZjhUsydWBpZP3UXzfXjJaMZkLx1VjTHguiZ/Qpb2bBcBd0ALpnTis1/kMrm8voV6MIMbUFLOpy3f4OuYLHdnlh9Or+qkj/R5fddCE46u/4IPya6Q415Wn6w3QXVlJ1JKczuZGa1h1VC68PuRJOUHqsHaJLu/JDqOEPiVumRhPF/vEMMJ0KnBNEse/kSO3rQJ4VAzhTEgZRxzPQPGBZfC9Q4k2PbyOdxK0QeqdCqz4IIuefxZzkpIMfN8xjbwO1OKY8Jf84fpiznRKYqXlF3l86yH+lx0Cj1ptYfdDTXh3SpBGed/DHIuptGbPMOb9CcS8nzU0evIblPSdQ2f83uPTWH2om2jPQw8i4eyYMJI/ZEKntomC2tMsOi88htuH8viCiA2ppUrAhMJ6nNMjRjWLQrFzhytN8nUGmeBItm48CDe9NsJdnRuw5cwU0PUMpoKP3YQu1YyCW1jBVw+F/bfjmp8hOOM/GwhIvAnNSrLw/oYbvkiPxF9BG/mYhix3eIiReL05Lfz2kMdl7sFCJzWYsWE07C8qwHfV53igYwi/Lx+ARrtV7JgugW/3bqUWz0W484cQHT6rCgG3vHCTrR4dk3AjM5CF/Elv2d63kLZN346/Hh6DcVp3aGiEFhTWerHvxHcQmT2Nv4dGcWlpOW7tOQ9FPtv5RZUYnuhowNwjWrBp/gp4nTiV+v9k8ZS8W7SlvIF9t6dQbHg0CZka4520u3BJ3hSsbdxht0I7NT8fYNHR8mD45Qv1fhqk7HVKGLpgLde/aaHrpfpwzolo5koNnCplCopvvOmdzxpeM/0ByHodZG9BA5olIMVFm1VgMDQFC9ZXcVn1G66X2gOO1UU8uHg9DL/aBA86JtNB230w4wCBf8ExLj7czJMvqdEaXgC7zpSC886feCp+CZ6eXIbi5Ay1KhawZcI7NDscjCPi5uJw10ya07AZt9q7wpK0PlrXJ4xeRu9YRgphtak1529vBgN9Y5Azieffd5M4elEYnZE/yib7PTD2shk42grA1UMu1JBYjL9sFXEo5xj392fRpc/hbN1vhx+cFbjC/hCm/5OFxrZHvGHHUX5dr4Y1q8bBKS0jPLUxEstCU8BXeBTgmGGOsFSFhosBeH9qBkjs14WrRt70eHEhm4V/JpeBm3BIPIufzhVFMlGG/D2dMPmNOQZmacDYwRJ0q/EAfHMDLkzby4d/1/PiP5VwqGMqKE48yy0dkbjE1BFSlidi8VZ/SBznArc6nkHt9Hl8WduGtapEYfOxGE5JmAxd05dB+3gjMDj9iN1WNMNnPx9+1DUVrMSfwVoRXdBcWk9ksIU231LEX5OcQWp7IK0LEmSh4XAezrXBTcnzoL9EEoq9ZSnXYzXXkgk45kzjiJxeKBbaA91py6hNb4CGg6wR7khAXEQkFYyfRwHDjzBvJ1GphhVtuH0Nb9Sq0/HMJnjYso5mqgjAhKfjcLaCEyx4rwk6X3/SzNcjMD9PFedJjERjQ20aaRWGJUlToE4wFybJt/Phw6G87eQGlJlqxwsK43F+RA/9UHwFZZTIPdEikG//HbOOZHFuiRP6rFoMvSeNqemVPl32PI5dAQ/539ka+vBUC/LHbOPvN2ayskErzbnTR6UP5sMFhXk06eMj6s19jNknTYEiFOH13bmY0L2EovNG4/O3PnilaS3cXF2Hgp4zcZdoNpz6+YYyTDVgp2UJyUT1kOjr65xg8AZmmmpA4Y8mzJs4iionFnN413Uo2jkZapNUYGRSNc16XIm/JrSw6J2zVCPbjbUnK7ko7zatvBzNq/7pwziVcOz/OI0cMoHORHVzUOYb/tQ2SC5nPkGaRj0r7QmF9OcaEPXNnL9vfk+n/5axzZeNmBykBbv+vKWbn05D+e652P5Ak2/P0oUN+66QyUQGkR2naGTCb75fZIXBSRWw8F44NEXn0sMOD4rKkYdvB6TIaqwYnLbyg2eKDbjztA6nWITyumXx4CS7kpxX6vGtYBNwilhB90qm8UkTe9rUY8V5wrHwZ/wvCG6YyKNqrKA4oJnUa2RhpuU3EHosTs2BZTikUEEN24N552gJvtaphoc1T7Ny0S5UfKEPMYs3wW6bvbRRyhTG9sWQyR03SjYSQu035vxTbgT+dNrAaQ5GcM/wNfZ9mIjHJL/yztzvvHJ2DA+p2PGHFVN585givLf/Cf1OUITM8BR+OOcQ5w97QmLUOOgM7oAYV19SGBdNRvfKUD8lj6uL9GB4phptLH2MFsEP6JViEPutNGNxdx12+WFNHy+Ow8IHZtg4cTpEu3ejYloqWu5+jnIXxaEytQwkhKzZfkkO77g/E91eelOdqyQ0jNxDW8EVPb9LoV6rL9bPd+W38zvp/sVmOupyA+5/VcQvG7Uha80SfvnyBod6ycG9hp8QmTwKOm8M4gbF2fhuYyXLLL5DM0VkwXzsR84zH6Jny8cQTmnhW5MESO+3HB3LtibjKC9oD+2hOXsNYd2AFhasvcRyxr68tcKFVoe/BS0xxHPNZRg8qES3x0eD0Tcd2NCryK2Cp1nex42m2m9Dt4P2uOrONYrfWUljHR3I53MRl70QgNNfzsCO/Jt8MrgGwhs7KeasGn6vnc6N+5dB1B09eCPcAV2dmjA38zo5PQ7FsYcH8bKZLtxxWAVqk09ibOZ03HCngccm5vJF31Gw//lN3lNggi4fN9NTkwnku66R+9eVQLRLNNo2y2OXryKsumABR+K3gfmI6dAUnUf5CrvA45wJNb6WA7PWm1ht/Yx/7H4Gj45Nhw3a72Hjww84b5EE5gtHQtKwJh3ZkAUNzyKRP3kCPLdmlwBDkDrjSIbGprxv9Vyeu+kgDPsfRIvkcXRQTB532y9Btfe3acUoMSDvfNp/XhjnBOfS6RveOMlFlcNWnqIttq8x++JPeBflzpeVtUCs4it9iFmHv24uoyuRgxSQEMH2Qxc4Y6w2BDqOZGopwRVPLODMlVpaKmeMD+xsONO9iuc+NKeIhQ/4vdMq2L2qiq0GQumqtB44Xj0Iop3OeDcgGx5YBWDBnHFw5s963lQTzbl3gK+H2dKDXaPhoHc35QkF4pT07XyutJYiR4ZT0Ghh3DnhD/SVbOTVF8qhdHAE1Cqd46mv3+LOvfUYYh0J+vUjUKFkkBbUS4GvextOORLI079Lw5aDv3BHcgXU1i4HG51H2CaixaNKr1FEQSDJf5jCZ3UaUO+lKHx6Ho+qsbGQryqOlfKxqB/bgc6t+0B21RtQLTnES6Yex51hEvDceSP8HfcJ5du7UMRSjc/72XDCUXf+WVqAeYvfwCjdH2x3cCzUjL5JyTdesM3iowiCL+mARwTbzJqM9hkOuCM6Ar+dkIbIQi0o3z2E+1ZtgieWLiAzeQlpdbpjSUo7iq8JobiYHVTgPwciBixALjSHlqyayVMz9Ml+nQqkGHzGofQAvCSqigkO7+m89xnylBeBu4WreUz5P1bPO8+DreNoecd7ntGShAn2B/DM64n8dVI5PVknAL51VqicuhPFpgCtXLEDEv7WwFhPNWwz6+TrzxLppKs0aisLw8aOlbzMxZkzDbfyfiOAhUJaIDz5PmZLboK3Sakkf1aEuj4xWATKUKGhFppvWsifpkeQzbVDlNZWTn8WFOLVmBf0+1cp29dPgx1uejzq7wCJztRHGYEQNNHYjlnDKnRZ4SMtkVQFod7ftM/QBKyhgHdbrua0yEFW9PCkAemdaLCrEnf8HE/Op7W5tfwNlI0VgOG8UFa+NY07nh+kB9JZKLhsPFoor6UdGdV44TDAmYkXaPpEgIOte0Ak7iUvqmWetf0LNaTvY+UfTawW+5LtAipQ+GgC6yZPgMolhfjxjxnPDrkLx3+6YLPbNT6VaAs0dzonBWXBC7/RuOuwGgQ7ZlDIyAn4ROUZ7ulZRmExxsRv55LDiSfY7y2AydOk6K+XHiSLPuJttV20Ndid52VXglaVLcSmb4L0nS6o27YRIpUd+dlqJXi+rp9CRPvpd3IgP+BrUP9bl9pl18DiNa8h5t0evPTZjhd6jQF7izqWmi7Cn9ct4AOfW8nYzYDem9tT4baDnOuvBenTZrPkDWuY5lNMTZc+8tTRc7gzKgFOy12GluWmvCR1I22/2MKa286xz0krOPirH/x6bDDGqQz1BPqhalwHuDsooL3wPR5+bs4ne73g2euR0Ko9E45GlIJB8Wtae04Ptsc+4uq0Gljfpk0er5aRyfNVOPmAEpwxaOe21jZ4eiWNkz5Z0Nx6Rbjotx8dBO3pbu95qp7tBhsVReFRiAEoZBE75GzH+ddCwf+BGj1yWI8jrJUo2D8XZf1tIDvRCE4YfwLhA5IkXxNFQbdu8r6iY/wi/he99pFlo6obWHylBcbUa8HNPX3Y9K+ftF2PkvK/Oih+1s4fvE7BLtEm3rosDg9mjaJm78mgdEWJH3SnUuJ/ZViQsBp6qqaRoFc8PG1dBYEuzrTnzRVct3IquD8rpySnZ2S+sIHiL3eSzWASrlhsBx9lGjlbej/1j1KG/XFT4YPhJYqUs4B/z9oxNN4XdiyKpaqspaQZG4Ip4fr4QiKUTTZJwKXcPJi2wQ4bRx7BQkUVuiIRgKfoMy5WOgDSFX3Q4nULclJMQV/7LzaoDEDl3SDOfnEZm+tK2SP6GYxY5ccOHalccO0wrlAeD3MezSJMfU2uMwZYA+Lo8CcBvp90CXOO/kSFL86wIleCFroIgKlJOgr613AFWVDUWxeuWVMAIWW6VHDpNM0Yc51dkytA5CxBVIof5HUq4uMNq3jWt4XkZX2dxm29zcFXnUCPDvDhKhlMOasD329Fk+ldRjupcnKuU+R5k4dwxB59qNwpTC6P1oKGhxLVd5tCu/5LrunN4I6GMkjtC+IHf1eD4ywX/nXYGAbvjSLdRD9QPqgEARkz8LmVPBZP08Lma2ng93YSn5C8wDMMl0NP9XI0a01BX11VkI2cBVq+TzC7eCdIXq3hZq8pcMZzPfqeHs+px3dBXeYetrk8FuzgHr9/+AB808vR5aU3+y2RAqlb+fS8yZcfvPcGi/NGdPmxMMj9sqaiJh28lnoe93se5SrBKmpfp8cHQ2vxc3IzKInJQ0XjSKitv4j6KS9gTNEFqBJK5x/nUuG0TSkut6zi+7uEaPWnQdjO6mBo4MO3L19Hw8vB2FszzEMnJLhC/xoKvv5Nmb+eQ/YHL7BUkIUP81t43dl79Nd9DZwoK8a9Mw/SWniDJQttsd7vNzkbn2PBsOmw5GM+vf18mv/dV+LOMEX8Y7+ISh0daXLfGL6t+RjFxFXxaIoENBk+4E/p97lM9A4Ib34FVuP7qWftGFzw6BcU3hKgi3EvOWdIG1pjF1GklAmMMxyC+52OvKDAgFtzavCekSTMHR0EPw92gGPIRAic+B6PulmCrEs63RquIEsDf5B51MXlU5Vg7tONIFrwlW+zCaim5sLWvs107aMySUQe4cb69bhj0l3eqLIYd42Yy/FPXKh++hQY2r6W5TN/47l7Zynq8G147W5E55zG0M5db7kt4h2KnnDhp+3yEGyqSOB8G39ci+LdqTvxkaQ3JpzJRP0uYT43ey9WDD/Fx6sM4fMHL+QrJ3i99V0uywpE9ZCNXCQtBp4RGXy1fSNm3DgO075rQ0nPXfIZO4DGvbWc6q6Oyx9eppKSRnwUuRwzt0ynNg0vtklSgjuWReR5LB1nV6/HIMt3tPLOGXpv9hRXKD3lKXan4I+jO5a/sIAL181oRn06q6gOwYNRe0hscwLYox69u/oEfJI96bFnD59XBFiuZoQHVkVhb0E6BM0UgowgDVTULYSEAEfyOrOawm1H8MhaBci2j0HRflP68VcQRb5Z0VLxdJb1EGa90C/kNVMfBl5u4JWFYjD8Qx8i5tuxhXw1runegK9vKcCP1RVYtSYMvRUiIOqGH82OmwzL2h3gkPFXeG9XwYd2JtHyUz/5+Pgl9GWLBSqfUqEra5fC0AMtuDdbmvrvPyeNP9vIQ+4iyKUu4TVzyqgm4SLxLWXMSzdGKxtjKPVcBz/+e4SHIhJZ8PIcKlXNRR01QzhyKQCz3gTRarMOfPxXBMaKHsbViRU0Xek2PJg/Fn6vOA+n/ynw/CvRMDe/EA1+VcE+dXV4XLEcB7/l49aPQeyX8wr33CzF2I2LYN0shFVukrRTJINEPREmDWlz3tej8GPLZqhT2kg/A3fwIrmPZBghyF7lanzcYwLbjbQAr8vucCVzGOf3OUJhQDdcyNCkoNCZLOuqg6mrd4KM0Cxq/MZw/H0a2ijVQGPEN/47/inNrrpK+00nk3jSEdhdtYMyrNVZ7ZwaeGnNoA8aE3mZQy56TihjLxUztv9lCovmD9Dea1JQldWLIxO04NVEQTr+2ASOHtRD3UlXYYGIJ1gPpNH6+evhgLAXar50x9WuSqA/bAhPNmTz7dHXeOk0RdgSXgR3x2azZu56fC6znHUFbNCzRBwMTySj6KgX4NOkD7XPmb6YucJo07couwQpaeYfFJvkzfFWDI3zR/P27afZMmUJ21nF4Tz2p66CIIhLXU1z4xXBb5Umttqpwdi4d/D9Qgq+75mInYWW9F/wGto9U4E3ntDmlNgncPEp819BY0hYpEcPN0xBz2eKyHFPwO62FiakvmD5ycKkvL8f+kbU4m9VE5goORGeSshg9jQ/SLOzxk++ohi/roEKxx/gHL8XdMltD0u5K4OVZiCsqsml8UuHKe1eCz3Q+EUF1l8g9MlieOi/l2N2fSGLUYZwLGkhnYxoobATczDjjSzumxNMh6PEabVFHG/8vA9G6vzhOzutYHC0P4XOe4e3p7nh9O/tWLhIEfU9hmGPnwilmd2CD2IAfVNV4abmAG8LdYJ25UQ6XvQNJ1xqoiu6N9DASYCn1LXRjWIj9rE3hXJtA7Rr+82329LAaWQrGF69S4+/X6XEPY7YbIao8+8QVNsSGBjrgajFPrhjsINtO/vgeP8CMDqrBOI/E3FfF9BXWRc6F6QFITuAwRGg5U4chEis5HuOqRCvMoTFpiogKKxAvhINoJCnCNdyY9FtVhP8j5X70AuBgRcA+h9pT2kY7WiH9lRJGSVRRhIRIqJIZkpKMlJERZRCKMooQpQQigYlPrQkpYQWSe7v3me4T3De4AQ3HgE1t0Wg63Wbl/45gcM4lq0NQ1HxQA39njgF+l+KQLj1NtD1HYYl27fjrG0J4PsjjE8rfOG4pe/otsghLkoUAp/ioyzvFYf3/B7C342e7CQzF27EpNLHbkf2nHuMpnEC59aMB4nCILB/pwbGK69DUrctWHhvomabdDI2eAjrOxbSVoHHuGGXMexXPUNOhTNgQp84O8zzp9tf7fmepBC4qdly9PwIqEyZg6unWcHugDuYYfobkjMKaJR2BxtVp8NeqRXo92Iirhq8BxlL+kBPcjwkmjliTW0cb661wukykvAsqAJ0oyNo138PwV3wH8wu+UwTzphCyHA0RR8S5n2xVtR/eTw8NLkIgRMMaVbpGP6v0401pDNZOlUJDMcq8ZzCCJ6f8Bk+fi6jhuvXSGFWBTd8ycAXk8Zjhf9skH5tBU8OHeC8Lk1Yef8IZ4XtgJGGd2BgKJ/707RI4/cIvOFeBjOfiIP0tkVUPcWC3FzzcYfVOjpTGI4Vwwd5rK83XfUtZuOxDvgx0wg89u3jxtRXfGShOe/q7oQe+QF+fOEtP1GrAN0nteiv1oy6vy1heNlj+vL1Bp6ViIbyXbG4KU0KzMd+wJEhp9B0qjL1FAVippYJiDkuh+S6I1xgcwSb5y8CP3oCzmr+JL3yEOlMMuYZrXtQdaYw3N54HyOtTfGtbTbpKiXRx/8syUHNHmOre8ks6Drk5SuQksgkeJb3mlfO3EHSZVU8wvghPGvMp80iyZAiHM++j+7RV3s9bsg2hEkii+CvXifrLAmF9Vo3+U2lH/ckfqfWa124pkEf+m/MA5fDYtA2/hb8/L6cI48okfvPR7R73kkUcDvGC+U+4ZwTO7jipQBijRbIzimC8amjYPB6AipcCoA2/RjgTa4w72kIPavwg3vvu+hXyAgQlrCm6n8KvDVNFnZ/9oZ/tuN4pMJZPlYvSA63w7GpthA6VljDuiN++FIlgEvztLku8wEdMHiLa9dX4YOahfgg6hEpr3gIoTlCYO4gBIeVKqDV5je8OOWF9cluZB9ljmLa4rik5iM/PqMCjYkEmTdr4WD4PHy2qZUP7hmJFUkpeOzifHgTcAp2S6jBqreecDBcD6RMBth98Vn88awBDar0MLo+lpIU9eFPwngsr2ih36Ln6cshBciL20IPZ8/hEuUw/Ll7GR7/vRrVPS6zxboa6NDSAT/jhZifCWD39TZuMP5OV2Nc+eypWpivIAJi6wgV5pbA5RPFGHdUAIN6BKE4zgCFn8iD1NJ+0tm+lHJX6vK2u5FY/kqPxhypB+vrFSB7XBPMZkXg75sn2DLHBc+MsiHv/dtAIGstSSrlQfi3VXz7QAG0z5WCaUU1NL4iDq+9+EA+f3ZD45ar1LKhAeoNXsKhP7IgFihNBT8NQGJWOx6mKNy/r5BWhN+EC3ME4VbWat687xs/sp9AuMWFd+TagdOcFRgiVAffVKZDqMMEKq+qYgFJAUhx3QDrcsvJrdqVL1WZw97Z+Si/VBcqq5QoyU+GXOIfUWSJBcwU1oOtJfLUPaaDM9oFoD/aFV6LyFFCXxuO93KinxaZpDDXDOrDdmHs9JXw1i2UG58YgYXxcW7558GLeoTph2wdCm0QYpuYSnjq8ZmM8troekkw7B2vDWIiGhywXZSefLJCz/VhFFU5n38fPY/q3nqQaHOCtwQtpZVptuB6wpWMh7LpeEwVr488CPWyBnQh8w7fXCyIN56k0yR3NV6lpwipWyfQ83djYEn8AQ6fA/BLIwWaK+zhUPZ1iFTLxaut6pyoYQROwXZwoSAZlWubcdJ+R/bxX4AH09tZ1aQbRsJduDW4gjjZFERs/Snj+xZO2pnAc19m4x3P7bix6TYs+fee+7Tq4G1GELwYqwVVumWopbOMVU2H8JBsHHv0nuANCbtRIOkRbsieyuZ9R0HRWxJMOtton00/OsbcozGtgSw+7zFOdR9D5eWOGJwShKpj34LKMSlY9LKD0NuLZr6SoYqDcei0eyxLfRkFb6oCYKyPI9Zefsw5P8aB26pf9NxJFxQUdLDlmxnFBFym4JWnUDYlnjZU2aLV5nPQdVASdo3OprOdM/HCmx60vxzMr6yuk467G54bKwmJHVPxYtAX3n9iDMydVshPPijQ3t//cf6XCmwJEAXeN45K4y6QsvQpUFp8AFR+aMFu6TQaWXKCpPZewSOm1fBUbx2vHXyNVw/shKI4D6q6MRWm5IyBQIklkDT7IunYnGC/naKMcZrckpGBO0p+ID47yhLnv5L9tNFw/JglSE3s5qnDRWw1bgu2Zu2jrn8KcObaB3otWwGLnGPBoEUe+rsy0aDbjLPz/qPZw4tp0tNtOIV0+cLweziZ0AciyffxUKIJ3GuXB025exwtHE0VKmX0+u8b8j7qTQnOR8CiORlbXtuDt81k0JeV5HVPBeEHXsWrwoIUnv8X57c9ZbGKGdSW+RccDFXp1m4xOF3uiGO2L+fQNUexdEIWHwlcwddTrcCyeRHmLPqCkg0C1JQqB5FxntSukgCyUVmcrzmWYv+N5scZfpi94g1f67xNE7a8xD/y48BC/w9kzJlKCXEBWHjMjurv78Ij4zbDlv0+YFWUTx8nX0IvMIBK+RyoLdyK31ps8HV0GDt1rscv4S3wsWodHboyCzocVHnSz0mwuLOauuQEcMLHMhKozOPDdtug+ewHdj7zlBbbmpPboBBoC5uCxOt1cMJ4N6vtE+YPTSFg/libFZ1nc/WpOva+a4ynJE7jx80AWjEGrPZkLHm9yaK8riH6dHM0b2zeQ0JX/Wj9V3k4WX8GPymNhxovC/gcYAgf7b6wS0UV/vc3gFoUp/KL6e9h46ApZGxooQmPrMHz7X+cOlQMN87bUtanUdiuqUR7X92C6A3bSFdWF5+pvKZTNXbwakEHprmF888FjyF29AvqcajByWnGkPp5Pn+6mweu07aRz2UtsJmNIOxpiWU1WhyxxgieiGihptweGHVoFyoGzoLopZI0tkMOVlxpB0P9ByidWAVrNqaDa+tydtXTBMitBunLjdDaYAOrJ5mDl/BN+mJjC2HK9+GnSjKsaFoGcop7QW/hTdwzPRHyUlfhyBlycGhHFv1SLoLLycq0v0cRTlZHkUqCPG8QewES/hPo69212KNvAL+zn5PnXXmWcNpMgRJbqHCFGV3zOENFr7/jsw3WOKt8HXnUykHqLTt+eHMSrNOMxBvbtmD3F2GcZFcKCtpemHt4EsjgVdi8yxoaBLfwwqjHMEHVCTxlF5LYpkOocseRw/TVCRqtIOtxPXoHmcGLTBm6EqCNp4b+4c5bGTRymgQVfzpOYxSO4Mi4PZxelEzoOR7szhxA83QnenRIHMbHhFL5hFe0P2Y+X978kFf9Jw4lh/owrNYMim0n4sEpW0km0x/VSwLQ808/6yfVwVa9Vux56sJ7EibTKraEv//Os/PiajxUKA2ud05h4JdjYO75kaTHdvLQyhqWe3ALavZLgZ/Mfiyd8gDO9vfx0d+ZOPagEMcFnqEZsetQL4Kwwnwz31NSgDPl5Xhj5iN2aShl381atGCwDusl+ni6Zins7HgBp2Xe0KNNxlBduRyvy58gYVETNq+Lh9yUszjvwi0U6fhD/3Y/4sKdTbTtgiW4Zo/BV7GRfPd3F62sn81OB4zQJT0IhbUDwFZGkotH6/EFC014KmQDdTmPWT/uDRok1sLnDaugpluA17/fAg0/y9AmO5ONwAxydjbietM8LBh3kjIdLbnnz2P88X4EfLs4BHOap5BN1iVMvqIBIdJ3cZunAwkvHqT2pWnU/SaSzx3aAOU7nahO3wzLDEt4yEcEUjb6glOqExnOqaWZ+u/gxOdBuNdyGQz7/GkodZhvdlymXYpq4HShlqerToP9pc3kUlzEt7LkccRNFRrOLAa3zlEsbyPB5yRHwx7ng3hUKxLKBcPxUHsil/lew+8HisknTY9vLi2Dz5/q8L8ghPwsRR49rx+DA4vpWeErGjtfhjpm+sDx53E4risG4gIKwC9KF66qzcQLDWdQ/JYQS/69BArzvcFtgg06NIwkz4ZI+lOXgjVTjGH7mCtg+/YxRxfMQk0YQ3lWUSCxIAhOOrnSTbHPIPk1knUnjIQ/izOxPaMXwtOVedvc2fz1kTg2DK1GG+VJeMxiM5wScuDrMuJwIXQ0L73uyuZB32B/0ya4k/WK94QaYUNvNIn3utKYSSo4e7scJKpsgN7tD3Dtf7X89fgZemz3mosfhPLsglDU0ftBrx4uhiVTBCD+0U8uHOsF/lufoZrBDDJX7oUTJ0Jw/sm9uE0oE08fNaI1Igaw9JUt/pXRZ23jVbBI0BGez90CA/c9ydWLQSs4kAO2qIJT/3iI1rCGlYkj+M7dqxDeXEdNPb2Ud+kh1ESeoXXB03F59i7e+2wKDAhGs7hOE44M88OtUYoUK3qDFtW8JEX9o2je8YxSWvfitvVS8N0hk9pmvEaHOUMkP0+aBO1V0cc3hXPCwuD5FUUY1SdAd1QUQHzxCJTZYkQ2p6fDQLAULjtgzo+emuBBzb0s3i1GU865Y8IshjNbq7BO9Tj3V0/FM2tdeebSMThLdiOXdJng4L4P0GbeSl6TpcDgry/aXwqid4UJtOJEApbONsPumaOw6lsMPVc7TD+N3eGm1VhYp5yABsK6kHNGgKzyU2CVRwxPW1sJ46M2YXreHhL+JAhHraVhTsNXyB+xig+bWXG5hQb9eG6HQppFOOvwbtoyNot/hLrAktOKYC06Gz6f8kS32L04OUIT0/st4cQsT1h2KwfaLuiz/N0wyHJVgfLwcBjl9oKkForRcn1zOrljK/i/SaFu9dd8WrsPe9oscJWvCoRl1cPPZDPe7HmPDj77juGBg1x/wpeC4n3w3atx2BFUjyFZCFF6wmT83z+U3CiEUwsqoTFqBbdM/ghz80/jjCZjGJXST7WVwnB0wwY0/SgGG3vfYoq+GGj5HsXs34tpxoXj/LvYhS6yFPwYIQVv/XqgWPcZ28hZwhWFBKp3+E7XbSTw66I9fAOqucdVibqljGDhve+sEKfKcywj4VuDAIzd4YU8XQTLgkxp1UVlPnshCreomMJSJUUontgMLiN+UkDrBboR/BE23GI++wowpl8FA93beCh2MgTuT6PDOvakZalPE7XkIK8/jvrCtEnWdy2Wx12CacpvsK3FFGJ/7EHX4/Y0lDIKEjdPgKjvEyli+ACZuH+A0+EtnDQyGOd1C4LJ0Gb8r9Qe9xRe4LolPpD7M5KNfOwwXMmZxq1+wYYV8aD0VBs6q7bCREUfupxTglWXb2BE0zgW3vKLHL7PoSGxkxCaKY9XzFRgaL87aT4dgREfnKgx6An/6Zek2GQ/gPVHcEOyMBhJLYCXPvrgZS2I4cF6nLRzNstXXSSty2ZcIWVOghPGcZ/9Y7opexkyxoyGILMennJ/Flx/uRbeXURoagSYKfcLBt+vI5eFvfzTKp4bchWg3fcvKe1t4DnBHphsIs3fJ4XRZglxeNF8nvp8BjkzKY+Xv9CGy2Ht+O/SJL5yOhAGll/kjLTf5GStRkMO22lH+3cuvRDIHhNVwS9KD2aKPGPno+Og9bUhqsSfx8UpBBOmJWCzRxM+/CYAR8YogvC8Lkj9U8ILTOphxUg9FO1XoJE5SEmX8uDxwTKWd3XGo0G2ULMkghUf7EelmHM8Rfg4nok/Cxb+EZxiUAJ7js5D//U+sBlHwqOJ7mhlOw4/nnHl9+J9dHelO1WAHzifXo7RzUmQvqyIdmXoQNNwPn5K04ODeoLwvng9ml9axyqWD2Bw/REuMZkPjj3+8KJQFj6qf6Z5+nIkEnYO+lv9IeHWcr63ayYKDF+mgbu5aDXhI5d12IHx3zRO1r1EJ8/J0fiL++DY4r9ktnAfzGuIh9X/ueEBhZO0MUgK2vdNxq32o8n5jAwLn88BXZNIfjAojauVQjh/dwlsiioAEx0dOPa7k56OTgf9XV7od1OLxGd2kLSWEWwyW4T3vxZA6YwvsM3RAAQfzsIbbVuh3WcbCeZt59q2RLzz7glrb5gM9+fqsdKEt1zlKAj+CzLAxp5AqesMi306yTGfv8J9g1Kac5JZdNlhfPC8ls/eVoLPN86QYMIsuhUiBUld5Vyf2okXJ8zgUmML8p9gBWvGP0OLEyMgUjuIhB+Gsly3HOwcfQDPOtmS9boWajzznKRzE8mt/RsMrLSFGr8dmG6gh6Yqq+GXfi/onKvhI9zPu/01cWlrPHhddeK/LqLwdoYMVZ99RVevudCyzWE81ew5gY0NPZ22Bm+op2KBUAzPfDYBauedwwUffGD/B2k0mjGIorpNPHeNA84XKySl6Qo8XWYVdbmZQt3WDpr+pJEnR6+AbUly3G87BCNtLqJhrS5NUH2Ooza1U9umSZD30puO9wbSqRvu/DLPExbdzCWFub3s5T+ZHnwLY7+HI3BAXAI+ZISDjY0airSZ8rTZm8lhgQAftrMAd5VkPB8jBb9bXVHphQC8PzEWNx0rgS2KwqzQFsOZd+7j67nf8MTIDXD7VCPtVKqm95rK4D1kwCVXNMFs1yHKuZGNlze3k5/Pe+Tu65TscJs1T+bAsk3GEF91g6K1LGia92Sa/ygGX0ztQY8xwHj8FJS0fuF9M1vxhZURVLQvowpbFXxz7TCE1nTS3tt/WFgvH6KkHeD9oyfQqe1HC+9OBpe3R2hkTA8VS1fS071XIGlOFD3/qMLjmwz5XHEjv5npDVUJ5nDmygawIltwfXqYnLN62WZjFF15WYXGv02ozn4Avzo859ZiXSiuvYO2/dZ4e64jORZmgaJxEdS4OfOast1gJHcX26a3ws3jYlBGGfwrspAj8DDfErWh2VpteHm+EFXrEhkck8IrN8/CpxsE0qdmkIxNCvglybFn/D1U625FAb2zfHTpLTghXgf+by1By8AE1N+8hZTn83jo+Xq8lH0fx4il0fFZJSRaaUHW9tt5FnfBUJwBRJzYAz037+FDGx8OztOg+pOvQdY5A7ybIzkr4ycYjH/OmY1m4PY9kTVfHSPvNwdpifkp8PVLxLXXK+jdvVf4XTyfciJCoKNAEH69/YzX58zgXalbIc8jFVWMm+G1hBI/n1xDK31/gtRib4ruE4LRB2+A4X/CaPhMkr/Nl2V5oUSuCurBXTGK+N1yLz1VrWY9rUkwV3E8b0qxpvNeLbCneiRtddCgowbZFDMmCZIuzqeQ8E3UtEkISDKAInEFDmQx/WizoepTt7BJqICWqm5EjU3ylK2xGuo2EvAGc1z07j0+D18L+xbm8ONcR9AzVAKXFY+Y7ZzYduk9vj8oAUNvrqLHWG1ObtgDEpJr8Xb4UqpS3M31ur+pqug+3RSsQL+/E2DULE0a9rlOcdu38qYvd+l1+2pYmOAPKwpi0cbUijd2jgHdpEkQ8NMZR3kUUWzGABXP0aFuhVmcJX0Exn2SRQM5LZpafZwjr2jDuS0tcK3iP+yQdAWtf1E0rdobK7sWk3Z/DnwV2UYZA6s4qlgZ9F9O5b5f7fBBOQzUNzRhUFU2ejwchm8rgXsvq0OLYhc+e20DkXEHYf8jVz5gUgZ3Xlpj+8ltFCfnQimay2FnWjcJvh7N5y1soGS9P1lmZeDP1tvcCOtpe9s03tvnSkrtL2DQXR1HTJPAKQaTwHr0TXz3JQdaY9bz7IDF3DUzgEfX51KHgwjmlH7C1w65nB2kCJbF+eRd0Yvqoy24K24v6+gz3KyPoxc663hFgQV1Ta+Eh57KYFFpSDHr1vGsK59osYYa7VYehnaohkkShtDSYM+z/3yjVEFZONl/koXKy6jkmy1Z71mMGvIhXP5gDVTH7Ye2oSfw1qKYlkkpgKOLPe/3/0vOdvPoY8oImOanyqeFAlnvcTIKdmykJ8s1+cY3Q7C/coTLPs/Ep5KTSat4Myxd/BQ/XA/j09uQtVuaGISWUsOwOtwd9OTpvybwWJE2bLMUBFW/XDyR/hglHt4kweOjoUB/IvrUqkKEz0Vc9W8Xzv9+E99tesoSLsOcsXMeB4Q1UUXpOai+cgClvRFEVVVhbr0Z2p+bAR2xa1ltbTyIRLZjm2Mbfe0w53TvD3z5oQK8CBCHpPtX8HBJDk5ZKgMjbFXwy4J1WGm9mev/zWadw6HUs0kAHnaZ8fnBHNwZdxKqdr+jhPBjOMrgNM3cHMI9N5aC4e4kNl+vCPIHI7nLPxPceqbD0QwbOj49nRNvlfAF+2X0pXIGN0jepynNhjDg00GRX8bh3NQTFBP3CvfM6uRFK53A1+s9Vodkcp/ADTr9wgCEj0/mlBmj8ZzBZH7jfojj+9+ToUs1hUtNhnKjB6z19z1uZ0vYMuI4eH6Qgaizb/mbTjXGDvwj2hEAozyf4C5JI85aYwPjZCQh2XwDDo/rh4x1ulQwbjYsqGjk5P5WdP8VyJMmjsWr5p/p7TExeFrfwfmvArlKagjD9x6ntLcE9+gu5qde5MrrG2m25C7SENGDbTr7aaGBEI/VsKfT00rgUO8cbB41Gp4bJfLwO3G+em8ypn1Uhzmz7vMxg2Ug8TgSl6cWkNafl7zt5Vi4/nQYmmKAm56I4dzrinDTUgUTeitZOWYn7wuS5NyerfRyniq9XFSNM3X2oo13OY26qgsBGzrxhflJLtytDIIv+nDe0lEYf/YFTra4xV+PTgGlW6cpTHYyaLoUcnrmVng+SQfFX2hgoL8ZPPB+CZt2r2B3NWUs0GAM/S4KCzvLMYeno3pEH0TFDwK+XMNzfJ/hEfEOqN/kA+qucVBkLg0DbbPhU/lxqg/5A59/zaMQjwP8wmAFny3fCLNqn+FT9TY6NE8dtieYkMmlKxD5K5VcXi3BoxmHcECskOMa9agk2wVt7DXwo9RICLiQi0rXhXCEzzy+Z/gWrZvW0ZDTTByz+CGN0LVmkFInBWdhmOeykFTzj+J5kUzsdbjE4dsSyD2/HV4tPoh/1hex6c9/0O2kBt+0irHheDrcPq0LO36c55ntN7DY4D78KfkKNRvEaUrpU/rvkQqoDt2jXOmr0FTzHcIO2uPQxEqo7XKDqLhokFhkypHT3DFkkR3caL4ER8t2883QeXhzlw/+/RAPHorx5NG6koSUKvBd2nocOmoAG//sZOEn4thdNBllp19Cv20j0PHCT3IXtAAX7Wt8faM0zVhgAZ17duPRwacoE9nPqdZHyL2f6fHmx/TT+wnU+vngukf1cOnaFJAXt2QFkXScGlyIi2tG85mDtrxvvwz/uDSApQNGLFcciR2ptrDp+iC+63yFS7X+wqNuR3488AOfx/vDK9UF2B1viWV3rClQczT8CmumlluTOFXdAp/f+AprJ0nByPJnPMtoLcveeEMY0sOuMfKgbroTrIwWYrR+Lh0Uj6TGGZ1w40EoWxZ+YKNmUx7fqM2R/8ygzqWSgiKd8YmTCt+/Owbuir4hUU9pzO1bh6dSC6DXxZV0XMxhafEbXJpxgEPlF4KX6Vfq9PGk3srLdHlfKH/t7UZ9h3F0rF4Ysnw/cdk0Of6lehESnO+AY9oI3Nv5Cq9/WkW3Xo9AoRgXPthN0Kihh2J3PNgn6iyaLRyJRo6LcHuvCSpKSLG0kzYOiAXwpW8q4Lr0ItRfDcTQkeP5gM9a/Lralz+4GnKkjgh4X1oNf48Uc/wKK5DOOIdZ5eF0uzgNWzteUEjuFNisVU3H6j5icHwV50jOpNpghGkv1ZGuryJ1z2VsnP0Dx40bRR6fp3FJ6HRe7r6S1tyX59nnRvy//3+bGxVILvA+Ot5Q4E+NvVSUs47UBnowMLaNHJt3wHRTDVKRHw2xq3I5K8mfIk2z6avrJxAtjMY1F77jtLpAvHNADNY+qMUefzOQmBHF0hpm7NJryNMv76eCxkQSKHUh13xtvmHjTg1Tr1H+aEO4mOsKpdWr8bNvIITqI6m3asLX/Au0+7AWTXh4hQOm3gB9J0Gos5WmveMeY8PJaMDvyALOpbT04kocslGjd41SMHVxLX+UmQiOpQNkWqAKlk9mQZdiOZrq+GDcpVuoPz+Hr8/cwhd1NCmmzALWS1xHoYDNpO7jRHb5x1i3tpnPXrUHZ/nTKLtTkD5Gx8M3UWtI702lRbL+JHngEv85OxHNMoxpsvtUFNzYTxVRbtC4PBQnWRvD5Gw3MO0M4iqhmZws6w65j0XBavgMGk21BvHGRlq3eBgCteQhQMUMX/++Qw6Fh1kj2hMll6uwzcqJSCuCoP7YATogvQTmHleExGVrSeIJkYHXIMc6jeG1Z1fw5oD7tHdfOTiG29L8m3MxKUQfzLRaKOnzIHo/72LFq2b0o9+XR3QEUIloB38sm0qSvIlCx44DB31xurBkET3wX8/ii4Jh3N6p0FDgzaL7zsLlg/dhQ7U5r38pAHr3fmDHvBKOdrCicwNNrDVyHVR9mQZ/7Y3ozIZCKlvhh88/a4HU6Tx+en0vHujp5Km28egOreggf5z7lr5BN2tvao5tYZ3gcbDiPwlaUlxG5qFDfFBHDfQ2biNdgfugIzqF9b685B2b/6PhRwKQO30I5HfrY1DpR+ByVR7+cBEWBwLk6zBOXmbDfrJn+duQCmQ53sEpx6LxV9JDMnReB9bnFXhM9Ti8lfCUIy8kk2LEVW5/JwSSzQ6UZSjLSrP3sWtLH+y4aIGDJu0A4VL8U90cZc4/woWSdvBtaiUXTvLjHbeaYfvZtThdjSg/cICSx9wm4/G9WCWcALdHS8IWczUcH2GKivGXyP1IJ+jcBKxX+cPHjylDdFckfrVxhtRrGvDvnwOcqXSExnhltO2JpOR3wbR3pzXLmayksYc24rv0jaRTpwGTjX6RgeAjTDFZStL1liRRegtC/q3H0Eg5zDz5hcj0MbQ4qsHmvYa8MOsJpPduxYPvo+lBtCg2TxajdcIDPHWOA2XR/f977u5mz4PZLf+gvOUhth54AFkBV3H8llU8XHoHtb4JQpvDTUweUIUNBW5Y8s4J0xV1wLL7HSxLfcOLomX5V8AfPrk7El0zTdjinjgMbjRk89HT4KBFKM5//xHS7jvTXEclvFTgDXM7/SHxyG/K+DcK8g3bIeV9Dp9VF+c+yWT+lb8MksxH46N+cfDaPxfn7tyNqs814UfoUSwS0aATS69x9KznNP6qMYwxa2BYchcC1gux+5FYTvaRghv3UrHphA4q+27DJ6sjIFmthyrFC2h2SyhGBg6g4o7NePKDCSz65IS31Lx50atwcoy14guiE2HP1nk4JdCTXsqv4E+fGnGjqhrsHrGdVwXqY92CVkrOkebtovF0Xd+aLR+Mp5GhsuB55xCfsZaEOTSHrS7vBWXdMNgQ8o5+T3lEvdsTofFJF85P+UTPKhdQzF0pED77AEJcW+DveyNYbn2UBzVqSL/JEe/vK+Sjd0fBoaqLoGksC30d/rhMKQVub83F5Y5RtC9bkucZ1VNWehq9+OtDzvOLUeuiJCysE+PdAx9gUYMYJvU9gBckDAHxKiyhfZ9dxKPp2Hxx1v9hBJL3Q7A7bRUK/7ebusVvcoCtJXuFtHFXUQ81eQjg0eJ9YLJlEoQ91WKvvTYkn32G2wvUSeSEJYi0arNF7S1M1B+ksJsTccIPHVgxfgU5PDLA1f3LqCtaiWOedGBQfxJ+Gj4P24zC6e5XJbTdIgLvIkfxf2VzoUR5GT+Zbo/L7/aC5Z9SbLwnwNnrEmlZxxf2rzeE9DOBWGtRhL/Sr8CcthUQVLkMfY+Mo3u6Z7DSehzaOb2BmroJsBHrWaXVA6zEDmLBU2lQktLhsOyP+DK1icYeCAbaJQ97aiTgStRajBS0g+v9S/jvkDb9Ul6CpdETsXNBH6pZhNHtiVHYvlMZ5C6a866UyXxVQgSfapaBuOgG2Bl7GS4t9MXSh8agNdYdu1pkYc1JH7hzv51vKNdD9JHrqCzfScYjD2O2ahn1PN5KpXFRPEVbBEqk7fnGqMs83UsXcl6tRSmTBNhcqkin5mhBbdUyyDFyxsBtAF6WJjjcHwmGB9pA62s5p55VoLDvzjSpPReT5iaiuE8EC7qJAfyZCtF3jCDYcTFsT13EtfMcOcleHK0m5tLqv/tQb7YIbR0lB0ZmXbTl9zdaHGvOLuyLrqqDAI0WuL/hCsyoK4LzJcG8fqkZzMmLpiaTOqrIHIaoRhlY4DAWRm15CqOC0qBQ/Qot/5ADTvM0wXxGLt8bmcgFj7zZUCGN0XEqjNZPo11uZ/DweiHsjknni9vNYVpwDt37k8YR197j5b0DfE80BOZuDYREpTbYJHQUXV1aQGfQDKQEHvBOP18emnGWsqz/sbZ5F8c8uktr5hPeeWcML+Lu0uMNwvBuxyI+5y4HQalrIadzMYZdsyTn5u14LWKYaveWUJ5VLAnNlYCOhHCMsFMgoxI1liw7CHCzGwdCDfj7YBRdaovgN9ES8NFtCnSqWuCU/RGY1ehJpZ9WsejARJSeYI97jKqocVYxaNf34PS/urDP4QjlGn7HqaruYPInEAfsfKD1ZTycjNBFkRPHKPhdAhz2koHMtf/w+VY7Fi8kjMx7TGWXfqDptSS0OX+N47tvYb3MCKq0s4UMueU8KCfNykqf2EHcgbpSz/DmiGEcuC1Ova9c4V3iNU6ZpgHu3jr45Lkh5qwOIZUueRiqHA8hSUtwUW4jRJws5fhXy2G7jDyI5RWz948mMtHRojmKc+j5QAK0Zs4i7dnb2fStKX0f+RCDqqzA80YLVngPkGZRAZ2w6aIRMyfQx9hi0p97ijZpOkNm5EaMvjcJRv1oh1OvxdHzoxLNvzAK6gwtOVdzC7x44ojhhh1gUeQOaw+Mh4T/Na4tocz3v2hx8G/wGl+Ix4qMQf3vffLx+Y+WiWvz56qJUOsqyxrRp7ghGeDHPhGelrYclpjPwBOX3oH3hgSoua/OgYqakKzexpWJk/mw4mHa8j0cVrzxpeXLd7K9xRoafP2O9i84AdfMVWH/e2lsu5VEL8ofYZ3GKLgxrRc3/W2lleqtYOYRzd6dwKLF+vB7/DvoPRsMXwqN+dGZdl4X6UYDIsOccE+FHwc3gMHxk5g4gkDhcx2lhO+HF0938Mtxy2ljdCwcS7sEraIbIH6iC5y1GubuBCn4sXsnBURP4wuOiTR/dRnvGn2Ie7ca46n3lhh2/h1l9/mCtcMUeLznFNzXPYL9C9finFBHls5WQ4ldERx4fAJp3vDHSE8FPOchCtpXnlLtfV32Gq/K8Xvm827TN/R9ZS5qlBwGmP0cTn+cS6uVdaFvgiGrK1lw3yJR/uL3BkYs7oKkKwnwJ/EEvh6xB6tWNrLkFm0YCHel7Wu6WKPmMF9M+Mo/SxvZVf4ifM+/RkWyGvjyjANnOdvAxPHrwPjBJBhO98KGK3dhw9s1sORyK5+nEDR/PhKfeHVgvrM2PNAUp/KScSBUdhYqLK3YwjkPfi+YyY/naaPm3noe7tAltbLJYFvZgn10AI8lTYGZ44P5zWlXvundAk0dp+ieRhzcMgtnmXmCcN3TF14uqact889AqB1gJmux68ivsH+yHv89/pCsJwWz8A5BuLHhOdxa9ZlC7J3Q+9NmcrnfQovT5oJpxHtI7fhBj6ZnQ0boWNjnf57XbzkLUyJycdLwccySbObCukTyOrUJ/cTSYKFLHmUctYVps9LpWg2S0+vzPCjlC4qZMyFg/kF2qO+EvwuegWtKOUkry0FLRzW+W2RNB+5fhLsvQ7h16T80yUaOWZDEtqNS6IzGRGhOlQHN3+1cL/+D5ZeXw8rrllRS0gPLlnvxl/y13D59ORev68K27crwRGg1avj74x+oQ2mJVSiXvZuVvqWwi9FcVJDI4aK5oVgvpw+dUufx8fxvYGp8m1t/TIbUzU9JLmwbnG87hrf2G8HzbCdIO6wNurWH0b86FPrzv5Kz2i9YF+aFw5W5uOSOM7oUJ6Ox3zGyS1EGtxNivPjOXNJxUsDwonk0IqUbF3ffhSMqtTjCVYgKXrrTam9TcD1RiWqtGuArDBy83xwbmu9w2bcc/KndT/s3HeVzdf64ZYUVrL4gzdF+JrR07RS60iCILWs68MLYcuqaGEByDz+wWOEvNvw8DgQ6dpCI1ES4djsTXvbmYKPAeDYdSbis+jTF3azEvF3JcC3DEDyK/+PqfQmw1MqOjyvMBpF8a1r+Yw8KT78HKaUzSacoh/QNpCHBKBjeLjnGOSZCcFE8l0Yu9IH73cM4+ksNtkXK4m5qop53YnDywR6a1GnAwTM0wE4uh4w0hUhg23yScQvlU6uEQfi9HQeGWYFQ/BUICpBFx1WrId6jns7J/aA7GWdJ+b8eaqj7SDSHMHa+GISdNcAR7XvJ95ozOWisZ9n3MvCTfvGIdW6ovmsyzZVSxruDklCzpgx2Lh8Jbesd4I/5N2x74YmBFun89eAs/mP+Ff8t7mPTzknQL1BO7m1NqNeaxsdm+mLXtDYQM/UnvTZFlhQLIxnxWq4Ll4MNWhnw6cgZ+GE2yBGza2il4iHW0bRnr71W0HtnIa1t+AC/rZVBL0kf3GTv4WqhaPbTmgrV686RTeUqNtfbin8tjoNAwml4fFQa2ouiwbTmEXo8ecxbLhyjh9+0sMAtGyun1eJK0RKckv2LPP004KKVMNg91eaLzlHkdcUG7D220tfhZ6iyIpIOqM/kFrm/dLlMGSYKnOPPpWEcIjQG3nxMxRCDUoj8bsYX50tgxp0MGid6E3+Zj4Cjf5+zppQIwuVQOOV8GPzeGLJ3YiSnyVjjIRV7SJv7DZWLBEE19AClVfzCjec8YNt3EfikG8Bb3zvRiHHNfPfmF85QWgkp8bZQ3ZRNX/64kPVtAzgT8ZFFq97g/bLD2Kh2lRTG3KTcygIecV4Zhppnw6S397FJr5IOBXlBg0cPBsYex/fCVzk0RQPlz7qB4kMV6O8OAJmFeVCX3U8jBlVptpcvJp4IgUGJWi4TFuIdjc7Y52UGfSzAT1LHYs3Z79id/gieNRvRcJkhCj6eRLFXw/FDwhCvnDYOVE0l6XvSPDCstYJchUrwvOoBDz3n8Ey55aBgNAACBrdw0n1tuJlahPuvGPHE2gX05ijAofNC4DOmh3ScPWnLnV30pHYkr8mTh3ehTZi/rQyCC+9B4G9brPvvHKu2++ON15dA4GgTh6kVY5uHLpT0FFD6oj3cYH6AM8Yog/4RPyp+X4JyvU2g1aHDT7RWw0ZPWVjStJ3NghNhl/ozyv2+l0uefYDkrc6gnN7MMZnHoa3oFGTPk4UPruuxqHcveCbb4uj0Vny3ZCGiTDKJ1PbTA93DeNo/loqi5SDdTp22rsgmudOLGH8bsNOuRXBERgnXN0hS/+QgkAss4VNB8nDgrhmJvv4N02tcaNDhExZ+lAOn+37Ydi+W9nX/gsu3ZkGoLIHza0k8cPYBSxl0kNME4n/OdTgm3wRHnfQEofGpeNKmnZ7YjYPyw+OR5bvwXewM3B43ineGOKLVmHA0yulED16MDwezaMJqO7g3+xpVam/kh5FKpNTlQssHzrHT4y1waGwPdcfsYL+PU5kELKE8ZQ94zflDD9XsQOKmEYd45KHwJSf02+7CL1dk0HUoBJ94PVj44AfUGH2GTfNraMQpE8gbX4j6Sg+wSLEfTMR+QFBiMH3tsYDa0G+gnN0IZRjPpikqlOElB9Zvl0Cz0y6+N7wK9xz8gicWaEJ/40IMl9nKqwXdyD1uIj6IGEsfxqRR8opDULcjgp7lj2Zpfwu4nJKKNfI7uVXLDV9+MqItAfYUGrmIJ+b20n5LS/yUX8khtpZwMq+VNvxaDup/9nF67HT6smg9X77uC0seGnIYt8AKuZUoLy8Or0UyMK0ISE43gReHrMCOlit441o7j548kh4O7CSLNsALCSJQuv45xa5qAVsLRVLZp4Jvto7iAU0jzpLYjDkaY1C5ezqUvTSAzP/m4CWfN5CT28e142dghvpmnIpGfHdlGOqcOwAzdcrxsbQ8XHw9mZ4VXcbe7AKMNmpht5abPKZPHCwWNlGETicaTZjD7WPUYFnwc5ZXG4eKSc28YX4N2ujvg8GoF4QXsvjv9DJoQHX6PksH3n/NRP+rErx/igw3df7F35u8UaSsBZfMFUCpTQF0/bcXizqIwLiM1/ztlRD88GPi7m5QDjyI6zZHwmGT3bxDPxNHLVqOcy+IQMnJTn7suALGfNsJ1R9/0J/cYIgY+gN3m0bT75a9FGj/ChKHxWHJmWUQeu8XNad5UqlGJy63fEOmr96jca0Z3+oj+nFlNtimyENQ1Txek7gJZTVkWD2vBLMaC0DG8TdXXN8G764+x01hLyDh02SIk1VhPDgWbE5r4VuUJb+N0+ln+06euH0GtB0dIJeN5bhRFsAmdhOek/pEHl2yECFTQMmZmuTQ+49jqorht/Q2aNk0g/8oTwBtNyuY/yMfY8S/wSuheNbNX0T9Czbi6Fm7QCtTBxunM91bKARt5orU+3Y1tQhbULiPNrldH+Lmj19obHcPFAte4sidxnxz0xTYF+4D+mWh8HKFM78deRzWrHlJfx/U4Kf0IV6S5MoR17K51VwCAs8T71S9xwJ3stA0aC7bvUogO7tLIH7rL4k8rka3Q+kkPVIFDMsk2XvzONoZ5UyGv5349Y1g/PaynXeMEcVz51fQ1Lb5dM3SDCxfHOcvy9x589Aj3Lr6FW9dso//WO3iK66B7IyHKbjNmKK7LGHguhykG/3jP/eXgceqf/zgpQnUf71KZy2mUXO3Lx84qYuzgq0gWUGGe5+7s5yHBh+xlsCJ+tIINrEYPteBRy2cT9fU00h3nwSMybWhnC+VtBOa8YW4KnutmwsfzT6Bz9KlfOR8FNzWMsWdJnLglD+NGgbfgdWNF6ST4E9R45bz9MYXWG5tgqpLHoDi+2cgWKADI/dfh8xza0gwvRffVr3G4lIPnvukAId22rNioSXK6yTA9CWWsET5LetpmIPwv5Pw6EUKGRwJRa+P9qR2y4hGrr+JS9u+QY+oOPhlZeDzq9F4UOsgGEXVsUnzIpyavwB+2ljDtmoii5o8iNgkDoOiWpTUPx/EbqhRr28F+Pu5c8ml2xwiOAP3xm/G8SdecdsYPfhls4bVD28A3ZfNELzWCWcF9ODVFd3wdWUHhG6RovygSiq8pgw+83p5dLo15DUNs7LVIVggG0VXpq7EQ3gQEsuHcIb8MtaJ0Yc1my0o3qcZHJs/UtC/YFBSUsPe7qmkWR7E36KLIKZGBMJtxcAlPBiPjeyED9s+Y97xKZy33hhVlBdgSLoQ7aqxhxXC56laSwJqC9aCT8ZPwiEn/kbnuPScP7lGLKcBv2ds4n+WpYS1qGm1LYR5daKShT00BK1i0cvRoNW6jxLSVmN/x2VKqbGnoXF2LF0gDDuuvKVp70tpVloMfFi8D+c/mI2WXwPohsxXuJA3Eu4NHkbHLdbw+L0bbVj2hU02jUVx4WgwcmvjVXUziYcMUGnfFnpfns79qWPhU/pp3NITBjfM43l08VreekCLz51Vpf3uTjSoPpm/zRzCvEhruPdwH71cxnw29yRZifuim8J8zBJRJ7tBUbL4/gomah2BH74WsLoigF9qfGYaFoRju8xhUaozyWg6wpe1D2k4TpLTvvXgnFGioJWlhQmix3B77Hqc1eqOsuG6ePzIO9i2J57mHCDuKCvgE3fMYaJvC9ltqSD7TE28Kp0OD5dO41gZc86uKKK2dH8gs1LeUaUPN1kMNmurc5jgCaie9RNvx17FrOsLYL/oAVZs3wqOsdXYZiAIBryJPQbd4Kq/PQmlR8ETtfUYnuvPW59osPLXNZDxM4Z3D48Hq4/t3Gb9GY+sucCHIxTAcqwRN3YlU8/vUAqffhqTTvjCvx1KAK9CwOaQASr2idHqbTYkK3Oc7nSVYNirUZD40xAm1y7GtF3aoAXInhtDSdlDDlQ14mCXUys6PtRiOx012rXjJMZmavGdsVLgvcoXedFrnj/hJXh2adKCs9dog6sh+135SMUTo1GtqYA9HcTA8VESFC7toDmKnbBd+wLGSUyDoI7L+GzuTx76OhVtZO6wx0YNOKNwjqSa19PZP9k0GNQH1S6T6O6vDRCkf5yHzKZB15wJ5LGRYMGsCtJXLMGm0R48/skXEg+Upz0nZvArgVIcm1TCmpuT8fJvCVhQORvCL72AZ84S1H8xE4cKLtNemVRYmWrAWaeRf6akwS0TaxBb9oVO+zxEWLYKgkpr6MvRNPaMtmTzw+sh1LgUO0vsUNFYBjxcSmli4BNSdToKd2VPwry/p1Cj8gfaPBWEw8pauMRvHUtmysLliV/omt5o1lz3AUzNZqFBQQU6C/3E5CejUX6OO8utlaXCH+PgdkwA7AtvhZKdSL4P6ugDi8Huiq/0vH8c9Rq8hpjlxnhpwQiQTPBDieiZsN/Mglu1juGuS75gd6KJtEbLQX+kC0lFzCB58QmQWuOF77obYeKVvXRm10y8Iy1Eo80VOdzuLh5dPAZXpyhxgokYNK9xRoWgKEq6ep8Gzczx/aKVcGd2GKwO/AI5P46hoN5nWvvRHF4vWYXHZ2ii+ux4jgjbBp/W5rB8syJf0nCjnG+RaLj4FYRclAOpSZYY9SAN1m4S5Z8vjSnJ4w1nOf0g2W9FcOlVP2iEHMLOkSYQVYfcd24m5o4SIL8L2/jX6yDeZdvNym1NMHNxJJc8C6Xgq6LwsO0Yt7u9g1sNK7Co4Bm+OCkIDygRQurWk1h7Csg/cgO9N6pwaVkF7WrcS1vNkdYs1KVXsadBa9snuha5mWbsOE4iAXa8apskWFS+4KisIM7Z+ZZXDjnw7brL9Mv+DYw+toAFk09iYok8Ct2xge99S9FhXxEElfWD4tXxNCtFnDR+zKNjQUmwr1uYL206RI9lRsGRRQl0tewOqe/ZAoJKEThevBVHbg/l313TqLthLG6tEaCi03pgLa9IxuffYsTCBhatHuJtFz2xe/I/LtCXZ5zcxUZVx+CwlwHcb/IDE4d1NHZJFsY1HCQdzUssYrORPeYtp6dzc8BXqRrjHwtA/NNh3F8ZDh/Cb2F1K/NVqSIenLWRhyYZwqWSNvDdvpz6JWVB0ms5OJIGZTc24PXOfhR/9IxjRoXhc4nPxBI3YXpQIakUqkPyVFtY99aIivM2c43eHTxeegQS6yTZa5IUv9J1pCQndf7ibAdyqo30tvo2XFp6hjKiJrBInBg/2+qF0Y+W8MuZf0jROQJ3LCA4+NmU/svX4C+v70Gx+28u7BPCDyuFWONkDev8mQ7qn+pRYbo4HDuUhk7bhsnK5hJ/9isHFQF5qlLdg1pz1XD7+130d94yVl+vD/KG16mrchv/Hs6DekdNUs7+QVWlYbCjXxkDMwpo0/yj3O6tBasCnFm7ajt8O9KE0psHoK/DG67uDeZTXhaUH7sSIu4b4+IVSlAn8ZqvbHWFBZ8uY9+BDxi4MoCSRGNR4IQQzYm7Te/1C+DKHT34OVxIOyP2sEyHHIQpPqK+7EJ2T/QB3bTbKJmdAEpN7niz3BAMNaXxbvxaDrmjzbe8N3Lvm2VYYXIEi6PW8FiHQNDrfcj5tmNhoCqW/+YL4vZ5cXBwK6C95F1W+Xeb4r7m4EedKWSsWgHhTyXASfE8vR6fAw89i3jdro9kRaO5UZN59jQRvjptJN0JyuZz2SLg9nIUt6Y14top7/jWrHbonHGH3uQtx4j7uaQRP51S/p2F7nxTaH/mCnOMJ1HIQk/MEz9Aaan7IEwgGG1Muylj/ELutJjNc/aMAd/YaSR3MZ1PZiCek+6gOlltWKNpgDOLp0L4eyPeWP0bDM7pQV9CIew4iJzvKA3vbw9we3w15pSnY0VZDcbsngwnjRmSKwGuSltD1uM9PNvnBi7r/Q/Oa0+lzOFleHV/NL8TesFXBVKpxEnlf1i5D4UQFDUAwP9oESqVtPemrakiQipaKLOMDolKSiIlQla0hcqMkhBKiSIi0rJVKlllpSGK7kvcF/ngsdANmnfECGc/OM2bNTu42Fee65abwy6x6/xjhwk7fk6g/b+V4PD621inbcR90Qbo2tVMpepb2Vugi2+b2tJkwxbQWXsSxa/JQtXRZ+RoWQeT49OAIhfwYbHZXJlwmZRVjXBxmhUuyz7M8/tkoakxhNa2TOH3c6byeXKjOc+D6YpHDlwesZ7X+paRgPJsCL1gCkN3r4NClAPcVncB2/mv4fXTNm5UsYINoYspxikWXl53wODqyVD8boi855nQEXMPkk4oIweHA7jLIwBnJo+BSOseVA8V58tWE0DqjxovzxvkgLPbuFxvJO6r88S8vWv4sdkPWvHSntP2KNKTeEtwHf0S+/rXccIkfT494i67DWxErz5Ftp36jg3PTgbrfFseyBWHpy2yEJV+mZbvcsWgG/EQln4HYk6/h99K2aTStRJH9gXDFRdt6FN2giNxEcCmlqhcl8+CjzRROnIqBDrHUMFHC6jIKGbRfB2o7hXGj0s3sKaZIpyoOoGLrWSpMNSNDdRUaMKENkx55EBGr0Xh8XsR7AqSwbv6C2Dtiv/Q5ccmLizI5HOTrUHy2isompMFF0sE4MOxxTz56FuO91DGRaq3oX1fBp+9jeS0bRRPHTpO1txOMQYysPlGDCWKS/IIqUIOqP7EfYcEoPLHYepMi6KXTs/pvUU8FlUoQkutFooLNLCL6jse7GuEkX9kUCEnEo68OMDN7k20KCoWc2PU4GjXGRzbMpJ7JzeC49X9vOZrIfdezqLjl3uo/qgwrZQfx3KrzeCNvw/f8n2Fuo3T0EhiJJX8KORDztP5U4AhxltJUNmralySYwTek/PQL0iINWSO8LhrzCUtG7hNsBpkrr7l8R9VKLBuE0/8awleyvepvcCIdQ+18R8Uo50BLSCTPhY9ZpWyf7oLnNwnzUvPmMGtPFf4oehDQWqjya7LgCedDaI9P0Xg431bnLP9Aa6eHcwq9RKwjNxow+xT8DfwHinEH8CJW1aBVokoL/trRin+Q5RqfhPlxmqC5SQfCilcjzpqtSTs9Ylv9T6F/lIfKvtSgz7vV/HN/4RhcYgxGOjawJH3EZzsPJ62LPfipznH+NeuECywjqCxQZ3UVnafLbL1Id6zllYL9bB28ly8Ya/ELj+VaEHJFd4yq4m6d/3GK9c6WHrEeGidk07Dt+04VLqcWgP70Mt2Fp5IcIKi9Cmo3zaTJ1tY04pp42HloDsWP3/KfzrracZ/E/llojo+LRWh7ekWnPnhM1u+Lsehx4Ig5nmMWkaN4mVBv2mEUhJOCAvgn3LnWLivCRxX5+Iet2GIvyQNF13VuWfGWAz6foM6Mwpxha0/XKjcgRPyv+Df9UawoKOJjfvUAWwGeHhnD6lXJMEaP2V46P8ZTvgewrQLRngq/SR7Snnwj1nS0FZxAgpbQ6lgeQmNPSuICwUaMCfEm4KzUrgl4DngDFF63WQHzn0SNLg2lFNu2tE4N0nCT6dQ5G4hN53Qg2GFZfR0swAMj1aHq/O2crrHCixY1ge/Sp04sG0Whi91AE9soI7R87llsh9kDQnAjZpydHj7FLRIFRsN9XBHhTffjZrPLwdeQfNPR1xtFsArokfChA4ZEFmxGIX7kqB5qyCkLnHC0W9lWV9dBYM0N9CzMdcpfmAE2L+24uyL2nzVO4PPOpbgkrMd/HjbOkDlczjb6BmOzbOg54UykPShlE38Z5Dk3H7Us/Ilxc/qXBfylM6kt2DycmHyXdvF8GM0RCxpoK4KOX42URpO/JdISmJdPOvSEW6abU5PY6/B7Ecb0LmNoa3bAM5tU+NlB0dg6cNLtE1eF4PLjLDD+iom+euwzsmF8EdZBs6KF6NIUASWN0+h80+VWX1WF+3zE8ARJoM088AmsN1tRqXxajC4hvlZ+D/wn/KMKlZep4gTxRwZ2Evrq6NQLj2CEh7cRJUsWah7/ZF4z3K0E9DhdAlzfnWuFfudBbngrhpHtp2C+NYeSl4/BrTCctH5aTvVjI6ADEEBdBpyg7Grn4BhqRnGbfiM5jf/kvNEAxDsXk3z748BT99p/Ka6HNL6FanZKheSthDvXjCZsiIf4qb3pmC9+DOPeLYE353ZRRmZPbha1RIFFEq4z347nNlrR1phcbQrWQ+UAo0hOasRdczqaZ/7IygLPULVw91k2GDM+huWk2+RJ4yNUYDWpAS+unIP3/99BF6/+gZ6i+q47PYnhMR0njnKF6a8uUJx0TaQL5hMEXOXQt07bSqWYHC3XURmGyvo9J+N6Pk6kM8MddOUDBv44+WBxa1Ei7YmUsZpcxwzmM5zpfp57q6rcNhyNVwKlKdmQUu4Knwbk++944Sjc+lRxAiI0/wBsQuJq/9W8ubLO7lW2wuk5WWgbYkNCroC/X0bT5sfBoNC8W9sU1nCbrbr+dTJ/Rzm/psNMhVgx2M3Ov32C1n9e8/5m3+S2/PV6Lj+OmU0aOOwrxu4po+DqkpVcBUpQvV3D8k8dg6+SrtEVe4R+FU2nNbeZNghlUUZGdtBapcRCJS74d+v1zCxKAxgzyAGSDawTYsPj5ONpYKxYbx/5lEut7GHyH+lKDNtFUhbvCeRW1eoSiOHyx8I4piQdXzt4CkuzboNmjXGcMhrI57+LcNS14XZruIJ2F7ezfkyypwX2YmGb8eAvMYzbksxh+XnllHvrGRYnx4Ikw9dpdRfTmTggHS7O5HmVDSipIkf8SJJSLzkhcaKCrhzcSicPeKNqyGIo99ogsmoJdSesR7euS/Cqf8pwqTbcyk5WZtH6F/hX1u9SG/Nbmo4VMyZG19zvzZAS8QW7jIEcBs9go7NmcGl5yaS1o27cN7mEKhaWNLZMEF4/OUbeT5awR9H6oDom19YW+OJVj054K9Ux9YFx2hyVRn9k9nM3yT+whzT4+z60QyabNdAxM8Wym28Tc/Pn+Kz9zbQVctKljU2xtfF4WRhrAIy303gR4QFV5Ue4EP3dnCPRzo4z1/Dud8baW9qPCvYe8NcOSHKX2sK3/YVk42/Piw4JAspk/fT7Iap/GGDDrmFveWmvixIbj5K/vNtwedREcmMPgnL73TAo2o36lXV5WN/+kHyqBqPV7qMjn+CKbfZFD6052NCZxi/6zclaZUWUDu4nCat2YBCoU18z9iGF3++gl975GH55s84c00OvbacCQtzxHDgcwgsrZpCOS+ncUPnOhC9JkHyrVrQts4X75lLc17FdtKuzqZCrV6KvBwDLS/XQ1mYPFwovQ1aqvIwaf5ZkJR1AYPF+bCu1BIFZ36iP5F76MOmTNrZFY0VrfHU6yULCp8z8b5TOEjrF1Pd/DrOcS8GwXAZ0tmcCGF153DFsgxwF5QGhaNNFDjOHNP0O2F+1V6qnhvLG/d1cWbsGVpnGIt/e1opGsRg+MZLyr30he5Er8ALaZ8weaoqGfw+z1Fsyuuny6HD6jEcZKkFtgMxsMLiAdUklMPF6Hy8dWcDl0dkUoGUL8stN+UP5vPI75UqLPY7BnFvLkDI7Q4wObgRltl5YHJsANgteoniATF4zOgSPCjShJzHf2B4aSp/8e9i70U3qXx7OzSe+A7njm6h1/XnsN7+O7eIScC/aYN8rEQGeN9KfF/pj0XdXlClepo71W5x4Ow/4LryA4w2FYdfakZgvUOP/144zt8P+UPupPd0d7UTdog30qFZ/5FD3RlMcJ4AlpV1bJR4l5LEneH6rGo+f74etRRySMctCi5UHsBtHzQocp0qxLUHUdPYj1QTNZYHBc7AhUWnSS5iG5yu6iGzVuajifdI5JogTL06Dy/9tgc79afwqmk6jLL/jIEuBzDjQxGdFDoC7e5/QG0bg+b9Hljg/YrUb5Vhtl0anpN5Qde+BpH25Ut01mUBli/eQxYnVWBRzCqM2jSDsjuADB7nYOd3Mbij0kGLHRZinPUpPBb2nb8Yj4H/hjbD6Z27KSzsHvPtLVA44M7bz0yBJ59fUcqWNIg3qOLHiZbwVvw4L7bphJWVlXD0rT/0hTRCeuAVOOoixLd7dkNRQR1OVp0IJRWx9OXrPLyoewnlZXJw3tZXeNlWlL/PVEe7hMkkNkuKG5XsIfvkTlxoNpUrMoFF9KbQvweSVNb0mKLaArl3SR3Z6J9hVWsj6F/8g9P0v0BM+mQwTZ9HL+RFqCW8hlpHL6E0oWHSHv+T5HpUISEwGLW5jP51tMFrrblQu3IWyyxtp1Wz3XnBU23o8f/Ci7MFoRV8+J/jIN+JWk7p+w/DrwBNXp9mzsWplTh3sykLfemH4zY6cPbmapSPvghbH1tgjWkN7/jVh+0Ci/lH9BOIO7gCGwM0ueq+JJyUCCTh3r+cpZnN+v4LyP3pByoROw9792pyxpqZ5BdpRwlSSiAnPg8TXpmRslQ+nJ7gRtW7cmmlzlHq1LGETQWfEdadJ2dlIbDxUeTqOwpQ399H0qo/2XTgPN2X9iXJ+bVcOxTGO8cG8odR2lA0vJf0zS6zZcUmlNjshVtm6OMeBznapDoNhS/PwAMWUfyrVxaOLbnFV9Y0saF1E55u8CCL3Bz+WmTIdEQK52ydDjWTNqKxnCmM8K3mDyNnQuWqmeR9UZC+zkKo2OXDZ2PmkbBCHx90CsUR7y3gbvAX+rZDG2yG6tguJQ+2Sn2DQbvvvHOePpZotWKGZxKl18tBq5gHR+XPYqPLc9lSqhTiQZpWN03hpeOfQVq7Pv/00sCOmXIwc3sn8WRn7PDczt/HP4QyhQc49mQztFsOgd27Imp4dBzXJEpBIzjBFMMrTH+scKPXd9AwqcR5O22w7II+C3qP5vjgvagbOwnCJwVh298cEgvvxnEaxexc20rqtWJgWvuCPm9PgJkfE8EmSQBcjcayxeh9nDhjF1VYyWGFsSWQ8xq82fmCZ8YIQER9JlvdVoFTdZnsKXaUhPZd5ckyc/DCqhY2KX4Ef9MHODutCh3/qeG4QTVQx3wsGviCIRVW2LhWF8auO0C/+m0wTGA+Js934SrtSXTETgPanKeh+MFUDMz3Y9O3Uyj+zG7wbzmDd8weQf+OLD7cWY8qCqOgUu4qXbMLw+vnbPGT60tIPPUeBuVdMfCJAjt/aoTcw4WkLkiQPGmAklqX4Jq+Qnj+4ih9f/cPtq6SBNFx4yG39TAEvmzkaTXCoLwwGNyvPoS7jVvA/Mg0NNbej8MXPvMn81N8S7oHfR/Ioq64LgwYenJIbig+qO2jwYl/+N4ORzZY/YOVtjWAT1UojQ9awg2N8tCu54M7GkvhjeINWljUD22yZzGqxYzva2bxaYfrfNH0EUZXmsIZoXcod9EFGqWjYYRkEvRfK6aQG1uxUDeENGqMoOf3Cp7wSBNSln+iiW7RILSkB66ZFDEtKEal5G56H/0Rt52fTW/bBbg+XR/qBZzg1RQxfJppxroYgEOkiL7Nr+CBSSD555/EKtftcFbFBCTGlPK35KMkAKMx5G4ZvxDwBpPLv2HslUj62O5C/9SeUGPHBAimsygSKwYDZhFkO/soqnYFUWGPGD39rAl9ksdx0uXrFDtKE25K92DKli6+GfqFlOwn4q+4Rnbv6uGT6dH4c9ZSdNMOoj1zDQDyRkLfPYLRfavocNx9/JT1kP10/Vgu3AP6Zk5GU8N8lBoeC/0lUhRqvhezsR42f9oCyT/kqWXBVLgxfRFNScxkjTRF9turAotUlEi1QwDMAjpoeZcDPLyeTsf3/OLnbn/B57EcCMu/IZVxunDOU5LmCE/iZll3tmkwxSudB8AlcZDSD/pggn4tTdKvpZvyCvBmWRsW3O/hb5+rKG9tIU7c2UuHFs7A1N5JdMfsBjge3IYxqACRqpMJtz0nk0NLcNyc7ZwvI49F0wLA5Xo5j2p6jkkXRVDL2wZCvySRs+gcmnjhNQY816F1wWawbJEYP5vpjsrZPzjlzWXWXawPZ669xdrhLXhoVCHJl9iSn9VysNrjy8XfK6DhuyF+rDnDb+NUYbvaHHasEyazc2UcWe3Lczvqaf9NOcitN6aN2YKU0zUVihIMYP7hGvhesICij04nxaLdPJytSbpp6jxrzStacOMinXjRw7VPVSE8ciXbtF0Dp4NZPOaLHVb8HMPHLoZx9/6/eK4gmH3jD6OTvwDMFhrGkpAv7GBgRKaXn0DJNxPo/M+We6Kc4NG223C3r45onBxcep+Bkq7L8fP+OlryfiqcaVcl7Xw96Dn7kTR6lPiPUzF6bTCARXIKJD1gjuMXr6burHwQ6yV+PXKQvC9NA+PNu+FRZRElRBuBhdBuLPWMA4sf91Hm1zys/zCFDT+rwkY/WbLp3oKd0dtp2TgVMFn3gg9MmsVj9Xbz+yvDLDvlK96MeAYm4ogNH2X4/g4HUEgZAcum5qLGPXNM11fG4GYtDI+7grOLZkFQ+lV+HPwFXwT8wk8rDOBJYSStb+thtxSEhEfR+PzpX/Tx7aEC6VFwxrOEBdxDsOCRKOTnVVGcYRStz24FFxFLiA6oxxciR3C4/Rtc/9eA154fxU0nrGDvPGP4spowYOEi8nVIg8IlT1jbY5ibJ0QD2HziK1dT0PSZNsT0H8K8rHRqXLGIho3nQ1ldI8zau4XSHI/zsp0REDdrGq67LgKOcxjkq5v57Ixqjplnh9N2+MHsxFYYOHUC717MA2vDL/DLxxpk946AoKPx6F93BOrFhLBqpTiGHGvkwx5I5yCTXh7cDOJn1cH72RVenHCXtR1caL5mI908rcvaj3fx9OYk3PJsApQ0SKCmwxhwUBTh6ZWfMKtgPV7c9RnTOqv51ZV6rvRTwnMLdDlAcQ68bNMAi0ofXPolldarfcblywgHznZQcMZjeuL/F6xOuOMW/9+ooisOkmdq6eJPB3jXaU071mwjYY05kLPQFsKmn8LzB69h1beZxD3CcGwoEgQ+P0e33YfZN9GRv351hnXbnoDX7nfQ0O6O76ZmY3CaILjPSoGoCD9a1vcJHjzLwNBZ4fju9Hnu0tsPx/ctI8lX02nVCiFoz9tD2dp9mPVxENeqxoJ/qye4zp0JrXOEcE+OIQQPyIGc7wSIWERcNHkQp/r8RLWvihi1VpQjBwXwr2cq9M7UpHaTANKX1IMr5W00St8fR62/TFu/uLKo/iv+m/qZVMJzGfNm46tR6zm/xhJSRd+BrIMcua57Al2LRfnU8/VQtTWUFH2NYbmYMIc/S8ET20ZDwdf/MG93HJ8bFoUDKs1w8eYkHjgyipdZHMVF4h1ou6oXzKeZwOHadfht3xuqsTbA+evv46Ukd27LnEcfAu2osvAcqeum0AolO6CQHIwx+05WeyfBhx/iILtxCyqcukWrLFt41t5qmumVS4rfNWDS4QvgWpjOc49NRP28fNh8Zz3vnGJB3h9H83vZGoCZp9j4oA5kD87jXz/VIXjSGQ78qIRrHDbiAydn1Bg/B1P7gvBafRkUq9vDwNFrdKDOHoWzJOnshwgKveTAoj4TEEUI+r2fs7uwDJnPVgazz8UweOMlZj+5C1HehVwiLwjqN4zxm7o4eni8J1/LJjijrwMBVpPx24/5vH15L9Sf+YWCTnE8+Y40aRikY/PHfSQvg/y+xx6WzrpBxS21rMRCuO5aFzXKPuapNX9gu0cn/dwzkp1qUjBB2hhmR4zDmS69lHAiC2em5tHatfsh8rcE+eInyPpVh0n524im2sHgjF6MqjgCBuEr+YbTGpK4II0PX7oDXVhLlwNC2Hg4kUM3y4LC63P84k05in+y486ydDBSacQIsxaOtzxJ2lsCUWiHDW39rQZTLEtQxjEX8+OWQZSjLYuu+kV7Sn5jQtAvGjxXDOtMr7LlVwOoKy9jR59P3HpcB0qvxML5/WnoPDcQr4sOsNuabJC0mQObLtuDzsAWLo1fBSIpbSw9V5y2Ox2jeePe0OLYE6i45Ti5oD/V+5iDfXoAmIZdBdviUaTQeBcczdpYJBfBy+wILp1+kZ1yd3JzyiQIKz4C0qtNQS5akga83vOk4QgymneYrTttwE81Gt0fXkeNraLgFfQV3BaNJXE7Q178fTXvE+um8UPTUa5gBX1q2sp+1x1gcLka2Cz8yn92F9KIMBHQyQ0H/+M/qU39MvTOewS++Vv4ie4ieLNLDsb/iONl8QP8SaybxkVKoZCJDs7rDMffHQVMgfvZpisTF67Wh47Mt7R/5RKwUC+nzmO+rCvkBXLl5fTzhC+NO55A8ZQBvhtl4DGpcIlzHZxofQu1hc95x/iP7JqaCE/AkBuC5ajy8yWcPFISntZsJp56jCeF/KPZBo6MTQ2EQW00t8gUtfe08BGLWP58ww7u1G7gcZk32SLADgx2T4Og3pNc+/YlPDpcxGkG9vz3hSWtKleH+IyPUNX9G3yt6yl8oh+GrZ5Dbkc82eNbOx8MiOV3ptKsXiQFm1tnQNbTGBrbHAE5MgaQ5J8HzZ9GwpuFv8je5TLV6uXTpTY9aBs2pyU/TkLlmK04TfUE62x6giYxj9F1XSXaFpyFLNxFwbECYP3aBb8f0ubB4GF2n/iVc9ZvY2W5C1Q2soLPZfTB03e/KHOeAgyu2go7KpQwfOYcGm6dz+MkD1H54ViaEH8VnX+4QLauA25SmwRLhKeS5D5NdGl8hsanVqD1SnleuNKCst9Iod2JSADDCRAgaQ5ZfjqoLZ7F7zqi2KaA8MWZZVT+Qgbnhczhxs49MDtdjD54TYRTRXNIPdsHd6zpJZXX1rAzQQO8Q1wBluiDSONkVvdqBDNbXdC56UEDwckw3bGJRgzs5z+dF/kUecEKvx5q10gHqZMXsfuoHChIr0H3RS7QoZqPKdtq4T5FocDpF+ykdZ2etRtQCKrTt4fC8EX1Ir7zSIakK3E4vq0XZLy8OfBaNWUf/ki7R8pQivAleBRhC5tillCo9Apu0v7Dx3MnQcfRdSR6pZI0TA3xzP1YGjqQhWNfm8F/WYdoyp5CdBv3mKHpBCW8DsfSmis8qsYfnQ/fo5seISieMQbmrTbgiz9G4frMQU4e9YFu5PmR2hqkpGpZNnkXA9tiE7jwjjXsXXUareQaWMH5GRmL/YANXWMg8bEO79T6CakeD/H04gFaWSIO5+dpsuhJESAjZ9h12ZVkbynQj1c++Ns4DrqtlSHduBYz15uBxqzxtG3hAy6fcwL09ybxgVxrOFAqDN8aV2GB+kvI3TIK9uhMhNtRq2n4+hxc6hELM8tUoWbuWTphacIVDgI0Kk+FnesEcd6N8fCieRrv1BXFr6MWwpm5kWikrY5K8Vm4dVUaYPdzCte5hupTNaBI8zJdnOGFd1ddRDMtSXTR0wF/x884MWOI7T66sPT3mxzzhsDw6TxMtf8HKo/UQeDfKljeuJrLh9Wgduxj+GI3jnVq1Hl1/Ui4dxd55jWmZx1x3B44QF/EnlKSyUcqXPoV3lXY8TiHMtScpgwjU/bR48Eq+tbTQJbnlqJeyGI4pWbLu3xK6duxWKqJzISUf6OhVUofYh/egrcvL1DDhwiobP2Ab7wXQNvo+ahreQFCFKRgloAGZL3eyD+tqmChyWkW2vSRnMf8x5UvYzA/UwWsJrzjbZ7n8MF9VQhRskL6vJmT/+ajz2lrfP/WkiaJd8OfEmuUOl7Nm8eNRf9sTTDx6AYjg1AuyLDg3/IKbB9kT+9mV0Nu12F2+CbPh7btgoRj48Ezwwyuv7nPxtVSLFurh++jpwAKBODeWaNRtJ9wnu9Xmv5NG4ad7qPLOmH0UKyEKcoC8Er7K+1R/IlXft8ivaWGtOyjGFI1QOPuZKgzrWLNhcV8PGUkf41fjicvB5FEXCc5TT+EB54/5LFzJ8Af62Q8HXQcS5SvkanIKbKaEcXWZytxaY48VRi8pwiX03hA0R5G7FLCF9U7QCLNBaUnboMkm3Qq+34dPqeIoEnVBZi9aw/ZmdqBrlg2XXvpBe12bjQpspQ318XTGI+5JCElR8ZBDIeS94D8OXW4sqaJ7JWPgdyGEM5/qEW+I89Q27kNOM1oJTyOa6fA/FDomG0EzVObQSSwhExAjzN7B0jxWzEt8Wjn+KYNvKrKgs3e20P34lFQN9aL5dSfc5tfHm8oyOT0rie06E4bDLoFg2mgL1yXMyDzz1ogUaUPs4Yn4ufLm3Fvaj39CmnGheBJw25jKHboBgU8doCkpxoQdkQHxsd6wId7OTR9nyK7bFoCAkv9Ub+lCEKP3AaJLqJj462h92Um1bv4sJL1PJa3jYGh2ATeo9dF5iLXOKPuBfbsrqVjefYgfduTi+4pwUnjLC4zHCapky9haOphyNWeQml9++DavH38aYEo5PtdxxPTXnHp8RUgodjFMVaK+HbgC07of0Ojts3nh2pzQc1bA1r1h9Dyzih+a7SPHsyYTz88bNnBpheOrq/l3l8nOHvGObaS1gPbG+Ysb7AP1KSksCpoLxc12FOpugB6hYdx1oI3oPh3MudZSsCYYAKJnvPwPew8yaAqdN+pp4tHJ4JiURJcLveh7k9OkJFnA2kyI1F6uAZlg0/zKFTmIzproclhDB/9ORM/LQ4iy5tr4WSoIJyaU0KxrxaAyOszuPDzStw35QoGdKxghTJ/vGz1i4x9TrPsSIJ491n4c7YjrHF8T7cva2PGiC/cM1DJ4euF+aLSN7iy9jNLjWF4sn8dX5WMpIv2I2Hp4U30/vUXfFymC58iV3PflEY07ZFgi3d24Gu6gy5WHIDWdzr4SqoCz0U9Ja/zS+hVaxkK/l1DP8f/IKnp4jDqz09415vGy1Ul4UpoL7qVbmYt7S1MGi5wVr6ej5oRe+krw0DlR4y6GUsG1U54rbeId7ekoLJzF2w2H00T9evgRlk2R/NYyH//Cox3jCElEONYLVXUEgwBR/XpoDVWnZfPquR/385y1JAl1DV3w+mjtZC8rQXDUszhXoAPRD5U5s1LrtOOvLF0o2oI97vpgfAsVXg8VR8iJwtBs9UTHLFVklNul+K6FZMhdHwvz1eTRquVcpBf9YUXWhXSmp3WbGP3FNd2vID9unkY9a8ddgubw56hZPbbKAURry7RuGP2vOCVKp3QmwWO2evJx0cXJy1JRfN78ijb78CXJqnDxjgdHlI5z+ZsDREjevjiFnmw6XwMz47L03UDH0qXB9K7QPDqVD/56MRCaY4NbNZ7Qteyp7OCyRmac0idHowK5EIZMTj61x5aLb6j09OzWFaUTLudu1n5nB2rnHXFi8lJ+HD7QzKvPc2jzFVAp6mALSWscHNlGp0a1OETyUfJJbMCci9H8LPF4/BYTw5mOInDV6d4MMnxoo9r/8MxggpssMae5uo2UAUMQOPAXhxzXx1omgYU7CrgP+Na2CfPAMs6F0NumCZFQQ7KberjBrssPpD/BHeLqICM5gtMrepmhfqf8Mu7DdV7Y3jmmfPo1JTL+SU7caytFJgWIjyaMA2eSG7laRoBnKR8EsulBcDV25sdLQVRImExntC7wB42o0EvYCtImvdja5UJ2l2/z9Ia+ezdkQLoupqCXinzyUXbIeaDFjhImFFOjxLbjQ4nhVf5vPNDJGQ4riaZBnlaX36QJo6SAOFjxpDvKkb/xRljYsR71gr6TEPCS3B11C4uO7qLnVeFc+CBQtoRMxKktBuhvWI/Oc59j3MehHFSRTWOH+0I6+Je4/aQYJTXGs3v68bBb4cUnBLqCOWjJvHSNf/43klpfiBeDzUjduJB61R0ueeJpXHyIPEpFeROmWDPNRvM97Uk3YXT4OWOQ2Tl1QsDVc3gozMWr/ZIwPLqCHDaXMdxh6Xp23t1WL9TE27vf0URAW50snc65//opYcLtEAi0hNjdPbC/Jv9NEoimWNPrIOS0kCQ31UMujopdPDqaGhwMoW3VuVoHDgXyqsPsMSjT6D+WpeKz8niywMhcF1eGm49vwkrrS1BRKOHI+b7w/wsC1wtMRdhwX7yWpvIMh8U4HtzB3qHzsVXMgQZ+41Y5uIfFu7ZCHt25NPBtK082dEfOv110DIxl7+97cUBsIPCK9+pJusi5rjWQ+WSHxiyOo2u/veXSyM8KUJHAcdYJGJigQ7IlMRhbFMC//fmA12EN3RlRxsdzflJv8tf8ds5FegXPQBtBWawIkCBod4blxZ7YsGLpzTCsgMEtaTQ0ew8Bdk4gF6AGR72M4PD60eRZ/Uunn/oFE0O8YfxgiPR591rNB1whLvnv8FQTi3ExKjD9G3elNh3G31d02iBZCmWKDpT1YaLvFKAUKC7hEw+t3HME0F40PicX0u8IqvWYdSzbEbR270Y+jcaE9u16JGxJPmvzoEqd2VY1bCJlXefJZ3dw7Qn3ADG/u3DppW5ODdCGjOex/IaUUE4P30ShKltgqpjr2i+0iAeUbLEGMVOSBKZwF2ue8FgzCj+tvQdqixWh/uSsRhdmAXT7plwmt8zMFaKYs3plagwSw3FZ/aRBRzC+wdEYddKoAzRJ/RQpA0GR16jtRcfo0n7Zrw58SkmrTkOd7echE0bFeH8l6Vk9DGac1TPUJrXTfCteg2JqlVwJ+g/Mhodznc/i0LAKkM4XMSYKpaKlYdLQeyhD2d3VNGyfE/ul9XAYo1/rPxgFF1cbwDOUqmcNtke59fn0tH2+5hYKgq6mdGw4PIs1Hv6BvQvt9GIVZbgVb+MBGUDQdv4IsyV3wcP1IzQ8pMf3Kj0hvluK9DVxJ+8N9vBh42e+G5oPYbUHuKFdaJ4f2Miqz7WAaFfd/h46nEsbwjCmtdaMFbVk0+/bIaScfUoH1JE+od/Q3GeIwx7ZaL+kf9AqfkmiuYJgl/uYS7WK8PAN2Pp+DNxeLpDBAvKNbDaphDEHR/ysLocjYsRhiL1ChZZORKE8neAS/IBDP2vAWwyfvHbF+I8+bkrO8d4UxUpQ5VLD6/bXIrdVEFpL8ex8i97PL9nNn86/p10f9Tx1Ig2jhogqCuJYnejIAreupEKZv2Dtbb6sGP8TnKWr0ab4PngpqGIdXrjYYpqNMKK8bhNJg9VqoZBfNFvDDxRiEW7GOSOP4Gy2Kf0LlIdTAxbKOVVKX6Yjjwx5weE+66Cn+8k4b/y+fBl4xYYMzeWfEt0wfWfH26Tec7XI2V56oRbuEdqL9XqOoNkkh0n2HWiSVMcB40zgzvqnyij4jkcebSSAxp30z7Lv7Bu3lhqWiVMwxFOuK/cl5SmS4CHgTO3+ElghXMvFy8NxS3x7TB89z6kJ+1FywPmeLT5GCcnSMKVwm4KsffHwF336d3pONCTb8SP65eRlbwJRnUtgHs+gvC33AC80meS/Jsy9FhvThcO9lLESweevFYKRXY1w3UTQ85ZKYmugYpwMzqZnaeNxBKlK/SfbwS0nFlKDw+KwIAr4Ni8NBj52oamhY+GCNkrnL5vAus/dMYhs3JublbmtR3h2DJNgVcZhWPvvx9w+JwqDAsmQqHdC8arzWD9Vp8s9JhUrybQA5P5dDB5DMW/PojPDNVhWdttEn+xg4a+GILMpwHQbVdg5eOCpK4cj80W/zg5NYhjOnVhiVUp5fuMIPExE3jF0ml47VQTxuNfftJVxId2hnD3HA0cElOGrOAUXnXtIpXJzYKkWe/w1O6rOHQ7FFatTsKD9iYsGXSY1slNhKW1+WDxeRTVXDzAhS4fefoFFXBuiqU5jcmgotjCBzObqPixGQQvz4Z/QtIoduo2Jh/S4J8xajR4MALh1mPw2SvNPwbe8PbXenAp5STM6N8JJ6fIUUf3LjQ9+wk1aIhGV++kz9u+Q8OjdVzSIAUNTX6w7IcFRWwUZ50f4TDDYCWmbx3HUn8GSOXYdLRuPE7HXivDZelOehuwgGK6VuDPCBHaZFjClre/8J8NFnS++ToX+SWwfLMc7HRRg23Ca1AgaClvat4E8Usv0xxfDez9s4ZM3eayaUozhxoxiBsKgZ26BMfqpnJzyBoWvvOS1Y+Z0jT3PpBPPsFHn78Hl1QF2Ld5Gi3LmES9Z2xIINiWXFMGqH+CGynJeNMmaU34sesvLz6gCO9KW2GdxiOwOlDBq4+osIjeatDpvEktM7so0+s2iRTcxA5TQyi16wYwvUO1/kLYpDsNJy6qgftiXvzptAn0h4fCBqkBtK+yAaUIRWgTKMfTl86w2/jH+E1pBXqcdYR1Vm9A3tWLC5eJsck9XTBUK8Jxk/PQ1eAbnMkeAgPzWHwVv5EO3MlC3u+LygsP49MyHTj9wo5tXqvAj4N5vHh0CIiMmcypt+di7/VSECzShsLHoZQcLQ9aNTEQ1b4GI052cJ16Bg4+loTi96uxOmyYFW9VoKDtMlh0xgRUz/2l7hYnzmu4C71nSvCu5hjwPbIEbnY6cuTEZNg1fz8e36gNqlN28rGnGlz7eDZvc95KMvgC7sh2gr2ON+5zeUQGyi9ZtkYIbrnthxd/FCH3Xy7Ocujn741lUNTewxeKC/HnzJEw8cF76Cg0hiS1KazlsYYqn20gFbOXdHb6Erg3JY/zf2rxzhBPfH5qAW2PsgQY6sBpwlEspbIZHWIiKTSzFJ51GIKH+EUcobyRN6x+xAu7xoP7gpfo0y6DBe73wPTKHLAaIQ1rYDrbHv6A0a4xFKGlwyvb7SGoq4rG7zWled8TKMHVHX6OXcnP3y0m+brROPJjK86S/ACUMOr/7v+VFIWB5tAv3vmyEGYk3oWPVq1svmIKvt32nnuD23CabDq9X6kJf39qoOI/PTq61BLvqCah/apjcGLSRzq9i8kgvAru7tHBlCxRsOl7wHTmOW4I3gpLOi6gGr2gBf2LOarahG5HZtHoYUGIGzQBx+gHkHnhBiTGbuCjAq+5N2s0m55ppfgPPfh0ZAeHzZnLM/fYQtyR5zwtXIZHdOpxVNFEPmaUBfdMe+jtoX5o/10GRU/CaEkJAWePAMc6azo2UIDFXYJ4/EYdGqfMwNZ/B/ispxl19Iei/ywNaJYohHtqP9Gi9gYu/l5Kt97ZQnHyJ8q+HYNhhc85N6GB1ofpw4G7z7Hhpi8ZHirG9RnHue2pB3v6PocBsw5YkjqGbV/3gliINRzS18L+Xyuh6bwu9AwIc6V6Ec9MA9rUvYq1SndixUI98rs3EhaE2ULijVV02CkDPD7cRSfPIJracIImPjOizM5aGJlri3hBFC4VRIB35lr8uFGWnMTleeywFFc4HsX9M55C4tOD6Bdewwu1RUC8cAqvaV4HSyztqPGjCxV9RU5dvpxKSlZhLFXDlkwHrtwnBFNufQQ9z8Vk7/MNxKd70IOGn3RW8Qb6VaTQ4PEbnCr3lSJvyYHCNks6GrMITmfNx+c7MrD/nSOq/KoHndOZcEzzCMIaCZrdOgE2j9iKO+gQLgt6CAHdHlCoO5uuhtbx257j9M9tMcic0+dDQ1Jw0nwLS037g1nLdvJJ7Rd8+pkz/aqYASPs5qDp2w/4o2KQS70MQSkmFmw/vSGtJdLQN86Q5m6egrcmGbDG1Vy+YOMO0wW+QYbPOLAYtRsq1O/hzPxJ6JowkSuuHyBJlyYUSU2ALVvLuGTROTinpQkrgtNgua449P6rBJcvhhR0exX378hCywE33F22hqIFMunGS13oXj8XR257DUJ6HyB60UGatS8FT1bXwCsTGRJa6ghfHy1Aiw9y8Fd2Av+4EUgudvsJxp3m4urZ/PzOM4qs78XbL6eim/weNDthCMo63dSU7EHh4Xdx2uZnnDNvM6wacwdmLfuAZu4O2GTyCLz/2cDt8/PY4mw53Tx4G8/n3GTpS/2wtDsMfKONQEDoPqw/1gVn0xXg4mNrMJxwCyXm2LAsGPKWzbcgQqsXvp+cBGf7g6jlPILapDEQm3yf5kU3U/2WcXTLBfBa5yNQK7hJLtoLWDhlEEe7GMMnWS14MWEzyzuOh6DDe8nb0ZYdl2ey99n1sOhZIofYjSZxm4WYLmoGDR9zUPz6EKb4vOTOQSMa8/A0Hy5yp3lhBXxaN5GtJMVYwNUArGxXgVbASpotVwkWx4J4e+Mwz3z3l5ZlJMK519Iw8eharp2lCSci5+HM8IOwN+0OC5sNcqLiW84N04Jsg2hauUaQXk5xpJuyemAmNA2Nvq6H9KLTuLNbltd0+eEcy0A+k2CLSyXzgc714xO/ieB+ORa12RWuvTnJ27z74HT2Yz6lVUmeEgvBZ9FmmHLRjQ6eNwPB5AGwWCKCUyeeAckGfQgTy4E9Kmdg3/uL6NP8k6etHCQ/UWsYIywLQbk76OEqEcw9/xA22sSCnbQHHj66lo79MsTpFl8h44QgJJzx4EChIyQ+xZibEozYzkaX9vrFY+L6TNrdqU3zXYg0PoyBugXOsMtqiMuHf8H+QWJ91yFKGK3ANslR8KLUDKwWjYG5cgpwKFsXqx4P8M7KFzicHAyV15XYUcGNvGZMpKBremR1Upgn1oyDWbc6aeSiTuB3biyyaS187gvlK2NL6cfINbDtgQ/4fGuhV6Ml4XOIESZMrofhuw9o10NVHj3BEOco7+V8+6c0IeYCPrLQhku7TaDd9gGUSOZzpkMj+U4R529bNqNOki777jXi8EuF0LzdicMzRkDPaWcorpuCDypTofaUFco1ZMOuGy+4ccJfWPDVF9JWPkITCYBt1105wekt2N8wpTiTVSgkcoo0X5ylFbG2vOeJN90NGYl+fwVgZGslfdgYDeZxWVzyZgyH7n7NedOHwL5oBpxTPM8F22vxbMtkqKm7B1rz51GJcTL9HJGC/aH1EF1mAc/fzeVL3835r/FyvOOuCHlTbPjFVlF8rXYRD09cRwtU5XDDMiN21AzBLVNSKVf0Jdll2MOPFYiTVVfwsQpB9rGayz9FRbDm0gyc9vIKNc2shx2dJ5ASAV7JzuDJt85BbPUImqT+CT1ejsLo0k7QOv2TRl/WpYhvovQnURf+CJRiwkJZkPktgcsrF4JgjhRG5B9hTY1iWOZZijMKB1H0tzLE7z+EEdMb8Pm8YyzkrE4nP+XC5MbFJLwvkO+OisLFc0VJqVQUntT8gdoeRfYPsiGtSdI4Q+4CT96YRw1rb1C+znZojzeh8sBxoBf5ip9k93NbfiW5Oo2E8JgnKLlhK83YXEPrtyNFLZ6P5fesIGn+EO93CsCW4SFwPOxLC2JbscFqI+4Zfx8XSCVh6uJ7lK4jC77z91NVrxLvrduJnndyYM6/Iapq3UtcPJJ6rq/DwiNXeMZ2e7i8axmOeJZKW5q2oqXcMY5z/km+Ro85oPcTjIxVx/C+y2j8E+FU+EJOiO5gh7dqFPyL2N5tOZQYF7NQYTeNfJjCP9+85MtrdeDlXS+e/WY53PJ4whdSr6LqyTbY2K+I500/c/+OIT7tYwftj/WgZ5UE9p1wQ9ORJxmvCFCG2xLWVZ9EGToBuGk4new9dSFptx2E2YvTtwYZOlxeg6NxE3+72UIrto8mrVWz6fH+tzAhMRPjPmjCpffxvOi3ByXPqmNNv6fYdeU3ncxpJw8hJ7ryMAku+U1D9paFC6njcKv1M+xVug3XZCzgzO677L7Snf0m+sE44T42TVtGk3+YwdvG+fRIPR8zq6sh79tVvuC+iDve/Yah8y0Q9zGLoy9XsOQWIWgIaoIxdyWwXC0bLk3JwiPRc2mxxBSyOeLIV9PiuNpzEKbtEIGZihKc4tHNZiOeQZ2uCO0yuEcpdYZ8UGQ6fHOW4nztRaDTYAvLXm8gk66xfD/NDMXfXMCaG2q47WENqKhU8cEIJwS/HPa9aQC12T9Bb68Vb5I0xye6MmyufhA3Bi7kA8/2wcIaM3x07BZr51mAELXQpQ/j6WxKN+ZlaEK22z3Id14AZjstcLb9VYAly0nm1hj4b3w9flq0kIOP2sO6UD185hoMmtpvKGx+I094LIHlBx+AVZkOJJuVU2OzFXubx7Lt8UpOVzVj3xuP2Hb0LLCwHA0Z75/TrWoJeKeIqFXVRevsFvCvX4JYYP0fbju/m+bezyCxHf9gTN4TfDhOAbpEbDEuxpc8P7TgU9lT4Dd9iD557IKLLbP597FQ0q8vptpIRdgfkYUKtUnUGj2WN+p9AfVNnfhGeBPFy73ij3vS6eVeUex/pATKoQthz91ULFttSsHmAVQQOAqq/WJJstyK7zilwY1n12B+gSIsz3Kjh01bODXQHrP/k4EZwct5Ay1lD688MryzB8RmhOHhWoLUX1Is//cyvTm1hytmjYE7q+W5alwiNZ/8g3fa32AjyeC6ZGtYujEB5t/bR5HFwSCsH0YvVJZz4+UphM3JtNPegZcmtaDLSxF4ujgGe360wu2ZQaCdtQdzn4+GudpnKeWjJp7IS6YPt9eBiPZEcL5ZhWElP/i/Gj1UmWAEQt8/4KhrDfinaS12dYyjZwXC8PaqHqwaXgCRz+sgKliU3vsDKUvI8TsvKZroeY72Zcex8afV5C4oAyrPyvjhshu0r16cVS49oLfJOex2w44V/Fzp2nkXpNzFGCIgDgPSC8F4kzv9+3GZVObmYUJfHno7n6SA9adA/a85bp1WzQkHR0DXozsct6MJvu/axKv0s7DFcQ0+3KgGgwuEWXCFFSinSsLnL9pwXc2LDunJ8VT5+7i8x4m8rxri0lNKHP/WF9o9FbDdoRq8dowB+/x+erU5H61vZ8O5O8tJW28Bep+RofnF1/hYeSq/sb2JA/4EP9ybecikgPcrfGSl92boLxDHsmIHWPGmA5tersFRS20hJH4iWMY00ifzTyziGUeSoz7TIf3xaJlZjFoJN9j7dhlfPfkVyp3Hwqn0/WApHwamCs3sef0chf315rw1k9jinAdm/Dbi0P8OYLGFKPi6mvDfyDPsiQK8f88dOuWsSdslkmG7wUbMDr1P/42fSPZvVKEjP4rGeKSAx0YFXDIjEYUj78GkCdXY1SVK31Z3cur7dlomIgRlg7NBwz4QZIXkqE3vAerOieDV1e0c1D0Bvs4Wwi1PbTD9+QjQ5Di6PUcDtlpepGdJ2zmh6AmN15nLkTPKqR/i2WuzAf20Hg3jehtB7H4cRr3OgH8S/rzB4AH1zpyGGSWjYGNXDH45EMop9zTBzC2NCywXgOjNbjjt/pFiJyyHPeNEqfWCKdkl7aWe4V6MSNOA5HcTqL3WlC/er+faFRk8XbGahW0VcXBDCi5f+Zm6cy9Qd7kGWM5eSTlL98GorWJsFLOaUvc70l6l9XCg4QSZ7DOGnowSWtc+Amocuuhk8kx4dO0cqVtYUPbnj+AXPwA71DJALWQEZzxG1neaDNk2zrTlQBTFySiz4f0XfEtvMcs8DIKe4DYefPKVldUEUcBBHFLmebDgJm/a5eVI21OlyclcErTaFnLbwrPw6JQPDoev4aHRFmAcvpKdtrXznDda9PPQdBSLGYke4jtQPcebf8xWh00popRJ4pDsd4NNn7mT6NfbtFrYAHtk8lmc69DJ1gAGn/dB1wsN6AET+BBdBwrWu/i/zjpIOr0crg4eh7dnCRz8RFjTRRS/zhiiGPtJ8HDpeqQfV3BE0nPKT97EUYPb+c6vA3DpBNKwShFs+m8alvEIWHlWD4UEUvn7iXLsWhUNj3ZMY7GjKnBwXQULZ1lyRqUK7OyVhwXDNijeWEJWQfHoYx6C80enw67WNNZN/sOOmt5wZ9E1ltPTBo2Zj/hLmC03ym8H1VcM61JWspj7Uoy6fBE/zzwOjvd/svrysWD+MZZnWRfA8fkKaH8ylPe0FKOvwBVSmdjNwf3e1CF0gr7skIdV/g9xXtYQzfC7g9tfr4Zp9wtgT4IJJMU+p+nnD3JH6ELquGAEBRPX8SUzYU7xaoXfY7QooLKSRuqOp9yYAurPjOX6q2ok/2AcCBzKgeA5itz9eTfmWFdQrHghrusLI0MlZ7o2uAEwqp4nDwjBSOEPHKmbSdkByTS3+AYU1HfwvJkWNOnmXBxzqhu7Hl2FvitGcEfWhYZLN4HhtwX8znMRrhWL5/B0pf+xch8KIShqAID/obRQaWvvqWgvRUaJ6hSKKEKhhGQ1iEopoUGUVYoiNIwoVFYZySxESBqUhAjVfYn7Ih9fUHfBjRNmk7ZNKS91AXjkuYCHKy1ZxPo2ZH+tYu/ZcjwrqpQ+OGlR8eNPvHkomW9lSkCWQibddF0Ft4IaQWNeNxs7yuLHpnx8c3gWLah/Adkx6WAqogNLIqfCBoudVHd4A/+lYuz7Ysl3pr6n8tZD2JZvwOca76PFulGwqlmDciqGaHi4i1Ps1WmlrA8cWPORHp8YxCUC48DogSM5vpoATV1POeHCDjq+uAkki7fT0dtmfHP0fsoOfs67n3bTn1d3wSNQEISDAQS+htPrty5YPy0VD+59hlc/KUNhzVj6qn6ald5aw+kHlqDuE4khOQloH9BNKarFcHx8C2c2S9GTV0/occ4zftnuTBHTzWFW0mq+N0EI96acR9/Txpw1RpEqHtnQzz8N0GE9ApSvekC4igMsg5m4oFUZbl8yQ3ryl79iJNo27+D/XFU4xEWbPI+9Jx9lCdhmXkV6diFoozeK1dznsMKgMd00f06vRsvDypul/MdZnDe+0YB0UXeo/TRAelO2sNHlDFB5nYy7CenIGT38+H4B+wZM4e1JqiAVOh8kUwfone8OnrI+CknsNc7dF83SaQMks/grbbq+Hpz6VaBvdA+9yO2GUVoK6P7biQX3KEKZpQjFVuhyZlEvOdtFYoWHAszP2IHTrZ6CZOoDjog4g97JYhBkJMHqMv6okPMUGxde4Bsn1CB99wistb6OMmFbqOW3NVVIn8DE1Fvs/voTe69+C1vBjJpFZKDi1xY2iPsKniMXssWEEEiYMRkSBvvZc/Z5BLd5dHeuKtvmKoD705cYmezAWeG74Paiz+hz1Zdyuu6D16/R8ODyPRyjVcvN9mLgZB2CEw6UUv5wPr1ZcBEaXi/AG/ZpLKhnipP2AMa1noLrn+3h25Qf8PlYE08wA1x/QpLwZg9/f9QFzRVT4FvbSh5+PpVr9oyFoV9jQHD3JqyO/QADPUPw01CADQft+PI/R2ocVmNL/zH88Lk+zKk1o5wvj+mh7CXe0r2cZ717Qu0KYiBzyZj1fMzh0VARwphRsCm9BS7aZuJbkTh0dZ+I4vZvYNHMkThFN4ouzvsG91KDcOJUY5gQ+IltTHvJQX4YJvyOpM83XoOfgDn63BlBphU3YJ2pG9VP0ofVGa+oWukKNixW4ecG9mC1JxivSUmQrTThjH9TaP3jcLRwVAHv6af4tNIYjm5r5YpeWdxUoIJLT7XAxGwbvnW2FJsXbKZxIkbQ/fM5JqU/Rg9HEdi6JJert8bTjnFrYO6eVtDc/xdXJu1B43Xj4EPbbkSFFNK7/xUvz91Mjcef0m93A3ZRO8afqnbzlNwmStxlD5nt+lDWFoluscd4rsNNXDEqEZQPTiST1RF0VewQf3qfR7IOAjD3wjNu9ZsMec92kKJrL87q2s5xV/1x55Feen9oGQkaPsZEF1tIknfF1Sdc6OqC1TDsOhO9v/pCUm0XbO36Ay4BD3mxiw43RZnAyNQT2LE2FQ95A6mu8IOI1YM8Y28OtNy6ieFFFqQ5UAE6E8zAZuZcmCE4nlcvewanvttT8vYK2uWSwVPvbuHVlZYU/SYcNV8pwOXB2xBe94L6z9jA5dgV6DHLnoKubIfC0jwM4gFO6fCG1FUToPLYA9p0RRYzBfxRyrqBxhX/IOUvR2hv2n+88JIBtnIi+26dCIGvxWnc4iD4dPUbt6y05WnrOvCXUSEv1XWGSq9dmK5exBtFNOHEl/VgbpqKmnITsWlLBrLUSpqaUAydOAgpaw/Bk04/6vNRhmiJLXjj+zJYLR/K7+9sxBOiGmS4cAFd+/4QB5Z8xoDSVjS9Zwtjj97B86Iv0d3jKK1xC8P73VPAsigbx0WchxVz0+gemOHuvWqw7aQk+NWehAbRJRT26jg/6JLHUTOHUdDlC6RFGbBPXDB869SEuMQMmHFwH57cfRlHStdjo6oyalWJ01iJRtp0Rhu1HeopQnU0XAgLgl1+y+lCazO46XlxuI02SQ6/JQpg2PrhEQ6KvILK2aMg3egJ23/YC23HzXBksDbuXFIID3SVYWxaA/XoraXcDz/h718hCD+1H8acXg+SEZ1cWLCIH1vH49jBIRz/XR0rixfxTrEGHts3Hsp7blLeEqRZGTdJSMiON8/eyVmNVrBaugTuPXjG45tTIXGLAZiPU4N7Yqn8s8UXEr8uhOHwG/A4rwCm7unkPdUISRKJ+OGHCARX3IV9Vbup7ok+f0mrZ4+4X1w22w39trbhhg1OJJUWjw8U5cF0cBpZCl7C7l+2NOJbMLbzbzbxPQpOys2kvu8J3a5pJItNytAVEEblp4v5zbdzvNfLGDb45mLvqkKiWy9oiqwM+Kvrk7iIEkzyiKXh5UIoE/MO9vZLge2IehRfVoi75vQh7XDGaxVevCpZFbpTXrJmaBgFxKmBbo8Yqbe8pswNs3CfXh9oaDCH5IhTQYcc1Dx6DFY/l4N8/npQ1omh/jMqJLHcFrVMPWjyDSUeav9ADSLq8EHvFY1e84hcB8dA3NpONIrPhRF2l+CF6WX4b4og7TqQhR73VGFruyAcdSUam9UJEfcukd/FQP7vXzvmGf7i+gXX0GGWP71cZwv9Me/YebUtDPtqITydCvdue2L7898UJqUPhU2WOLnaAQMG7SDq2Dr4+tkb9Pca0g2biyD9TpVV7q6HfY6LqOKRNu5ous7FA9aQffInXp6Xyc+Uf8CeiD4a3PAefgpNIevav6DQUo7Z9tVQ+MUaNk/robXT14F8iQ+edrfgqCtDsPTFbJxx5xAFf3+MrYF+8HqtOUyfYYGNjV50SG0YR3YpgXpEIC6LfoPb785gucJ9KH1QloqjTEHyXw7GKuvRdL0ibLg0wNf1pJjNdeDyQ2/SH3yJkUX3IWmkOKzR/8jnnJ1Y6PgFyHDTpZWZx+G+yW5+NusMR9T183GlzzStVACW/Irgl02fAAtTWaNcD365/uGtmwqxWGQQm/rz6MahraD8UgZczGKhQuMSdpRH0+5zdbjrvQL4fb0FDnsGsSmuFG8vbiD3VivYYKKJAuLDILVzEj7fEUY374dDc9wvkrJbTAc6vYBmBpBmhjU4Zg7RyKxS8v1TCbPu38Kr3ztI9XgAVRxmzJ4WgBHD96H1njTc4ElYX7yOu8z2M4legSPt12nUqQwsvWWOc70VsKviA2/6PALmKLTxuJZxoLakmv+UCONwx10sLBSFUu1t5Gp9hup3ddOsX/bwREocPuFi7jt9Czp/XeXvKjV85uV8MlK8Ak/L55C0zg7aa6QB2uFIRzr6UPWWJNy4uBDWeTVjulEO5k6MhOtL5qPkjz98q84SPt/6iu0pbVgZ94StN5eA8vUaCHrylE8n6cI+b32Yk+oGN347wPiTDjx2RwmEvwqFRa7xNDIihD5ELeXnyvlYcDIdY3am0UgzE3gqdp8uSdTQoz3rKGx4kCbd/oG9Er9Q+Zs1OWrP5rljY+DJvnHwPSiGc/3S8ZrZHaaWGtzZ5YOXlQsp9sp0FP80is5vvcoDSlLwwNIJFEqT+W/rDjhdupSL/bZyiHgFLfEKBtvXTuh9cie0TpYC/8tJ0Duwhg0F7tJQgQynOlfz2EUfYWFUDB72MYbPOv14KEwWXonGYPB6YT7qeZ2vdOrzyO1BHPt9Bs5VdeZqmTO8JewElIVNAP/Zc9B49Vw4MHUcVkxIIaHbU8n3jwavK7yNE1ao0MokDU4Pt4fRk1+SyAtBzHNRYAXdaaTax6wqfZgXqTRiT6c9fmraQHE/bcA5agjXXA4h90m/0eHvaXjgWwAlN57CGrGJvLnhNmfXREDlJXG4H+kPz2LbwH92PFblikPA98k0fGMKuYY3QeVZAo36ibz7gyAob4nE0+lfWPd7DkgGpqFjK8GV3kyIE5Wgv79Woc+LMEypl4EHMq+oapcXFnil8+rd17hm7HO6It+DY16eohdBo8BNZyMr1GhC/JzREJO1hYSoBVc2GpPg2Gl0K/YBBgjdJauhX5Sb3khHzEbCtmv+ECBlx/kP3Ei7tgY/NBzilnxXnDa7DMzrr9H45Me4Jl4eurbeg8UOTyEycwO5Lv0JI7ZeoI5t23jEf3NQUKsVx+xsYZOC0bA9aYj0Mg7BBo912L6tnffc7CaT9j5ylJuPinMHqXpHORzZbACLzsng8Z/+JBA4HvWVCti9OInFs2awxYRHtN8qAZQvHsYRnyyh9sN6uvDvAReofaFigRRszy9GzxsNWLdyOTaVrqLHb9RJqhxB8FMnKbyYAiOf9uJV61PsFzoKJSW74dmsRTShq4mWHj8HR2oBBCqGOOFiPQ1lSMMZpds0oDKabWct5tYNbXBRWpcC+hRQdJ8RyJrIo4/ADWiCMqi1v8p3HsyD64nloBXiw5ZTRtPhuhY2iRCHCa0m1PFuOd4ZXgb3IRTl7YI59tsPsLRQ53Gns+jOwQAoHaMIsl6r2P1yPEYGDcCD5kYU2/8Rj1pfgYjOdjgxZg/PVT4Oad4WMPLeEXysJ84dsy7hNB9iMZXZdOHocVpq8xVzQxfgfyfccOpIRbh5vgF6bi7Hhyb74cX8GSz79SV++BsCunLaaPG5iV2zp3JNFUP8pxP4LLCO2tqrYORVEbz14Dy6ZHZDw7HtmH4aYd9TfbAwkIKyS9HU0rkA7q/yQf912ylt1kWYe34Ehn/14jM9z0mzSA6CTghAqdQKPGZ2EgYdKnCJbT8E9ejxnGQBnCE1mpY7Xee6XZrscVoPfNLfcWr1ax7xIwJN/y2C3NQhsBzfi+UN3+BFVh8FLL3Fyve14GalMS0VWQlK7zrp4dbP8GLfRLQXmYuznH7xrSfnMGBBAhyosgMdtbWcJyFOpnkboaBakNN3u3B+rAAX7HSgf/ZTeWlnDfY9GQ1aamrwL9Mcu97dBrXzgnzz4i48r3kDoieOg3laW7BU0x2FErWhVXYfLvryGVL0htjJvZbbQm6T0L098PZXLfw2yoT/EtNZqNkMrAWcKebAQsgpkkbP6Feo8FeFkmA7zQo3ZKnZ8yjbJohkk03Ba9ZuzFk4kT0KCsig0YbfhG6C8ttvQHDZX8xaKMVOFr/I9JApCAdaQIKsJOxQmo+10RIsJ7QEFjUthbb9T6FWRp7EhUU5XE4Irs5eS33TN0F7ziBVWZiAnXQ6TnRdytP6R6LMUUvUOlAKuydJw+ymBLzVfp1v9vXQdZ8zNCPlISz0lsdTMzeTw+xP1KBdyILFE+FOxz9wuyBMx8X+weflCDcnx4Nrwm3cXx+NPx+Iknq4Df2eJgiN/ifxoow277JPwy3qJ2hr4HGOuaPL+f6afHPFNsoXbsTj6qYwIr6EN1dsZkpfjV+HwiDoewoJ3B5Bj+L/w7TSOi4wWcGl+hNAYMoj8HPtBL3kOFoxPonabRbgBd1/GKUWScmaL+lxgw0lfNMG5cr76C77DiI0xvDsI3vpoNwbzF6kRRp+z/lCgAUd2jsLr902gPL65Sh0bAIuLAugtk1XeH7ADtJ8PR0y1Q/AqbibkLxzJbX/JwbT5oyA8Rk7saCnESIc7+D64Rio/DqX2z5I8i/dY3hk6iJcLMAgmDsHPH6+Z6mJXbD05T6eY3IVZn4/iJduptMU7xHYaSNC5g9EwWLaD+hO9uNvrW2IRt9ZYulechX+x3t1ntKl+m7a8Oks7msxgIfHZenQqRegepbxnmsmHDEpg6k/lsDb26qg2zOMszd6U1i4GEh9DSFl7WKcPH+YTmgJUuA+W5on5IZn7TRIxeIZKrap4V+78fDwfRCXh5TByLh7FKbdjS7GTIeUdHit83a49/gvak6qxIsRyuA8LMfjvvSwR/sQJW3ajP/5iOL5c/bcEbsQz1rVsMLm0/i00h4er1wIGU8bMXKCD+s1J9PrvjlMvtvARGEL9R8+jdl/fmNaiRZYPusns9NqsKS5jL/6x3P+sXHkln8etyaow7EWOSp0rqK1ZoIQuscWmnLzoGe2CNUn1pH8IQGc/mkG/P0ohTWb2qHt3xAabmZ4pxkDvr8CSevCVqodsxlb7imTy8dd9HXfI4isO8zNG4S4DJTB6JIcqI8N4l0yHyg2xxznF5fRTMlXqDNqM/5N8OGCxUE09NgM2iQ7YWPHJPr0yRsPBT7h3XVPcX96KLoNlkJ8ymiaH60AAlrWcH5FBr6K/MaZ3yr50Zw3sKO4khOF7oHvgdHYL3kE11RGokykDWQVr+Oqffcpoaie/JXHoP97VdxSs4VUDDxJ9kkp9Y714kMfJSBo/Wick56N7x4dp4nXhOjcOCmQyfpIP0xTsSfmNv/4eRxcWwShMWEfB1yLwcyn82lpnyGVrFvFs9Quw4O3a3iLqjYZmVvS7SQdULyxnjQnn+MNkyp41/IMeq36H359twfW/gauXL2Tf7QWs3GWBBw4u4lLy5JgZFkRr9L34eoGf5CzDsMTasyVaWfxqKYNWJUqwdKk86SoW8+nVoqAhocYNKwP48mV4XR162hIS3SlGCtbcpovDs7r42nDlJ/goPgKZ42QoPjZ9zB18V56RCYkU7ONLr3cAE3WKtB8IZG0TlrClCRjNhqvhAafFMEvM4yDzyXRm/BwmiL+iKpExsPOgW0U6zsBRvdK42D+WZj3ZzEkiXSB6S9k93HbYfGyAPr9TAluXgjF6o+d+LmoE8wfGlBt1VGanBCL5nE/KfzJTrr2IQzatGWAT29lhVmBIOlewJ+bkjHn/G2SmnIXf8mehdc5y+DS5wP4L1AUOF6PBD4/hnbBEpo67gPmL7YFvatIv2+3o2KdLSmWTif3KlvQDqqmuub9KGkTS11741FJx45ET0zgPbaePBQcxe7mVyD+7kRwvlxOVSEP6cUFS0Kbs5QV+Ikr3drx+44iKnsVjO7PAynGayRIdLrQvJmbQXS0GCvZptDeh3s4QV+H1Yd8uMshmBeYnqSlkkLQ3Tye+qsscGPaCsiLLSG526/Yf/Iadgo2xCz5D3x3bQP7vGHIC1xAE/OWkn3oXIjZyXR5ZDlMuvabbK1NqfhQNKmWf8ZTzoqwVtEXPot94rCHjrjhbwrNKVvCRTLbKeeqHr3XF4YJdoa0t8UU5k9Nw1vSWvynejMp7z0Af/oi+G7oJu7VG08yrx0Jxe/zf92WcHRwOayPlYXcR0oMmTdB+Lw6mMqHcedhKxivrohjrhaSWZk2GBkuZdfNkqwpUoVXfi3n/slrcbz7DDoXO5le+yhjZ3wanBo1Aaxd/WGEewY/PjMPZAxewPybDRxydRJKyPny5HNyvEr/KL49rwlmFwJ51YgAYv8erkjzJmm9TFy96BhbjjzF8WfNaZrOa5i4xxbeDv2FO4M/+EBnB6RHFJP69Wu4fkwcbBQ4jL+7j7PWeH2Q7jOHO/Yr4WCEHa4+doJ+K0Wx+ClNuJg6grqqx9K3oAv0OmUEif8D2Bc3lb6f1KH1Pq9hSeNukg/MI8emDXzecy0kZd6BvJkf4Wi+FQjGBoGvlBB2fd9PUhKGWGI3nRWz5UhazhqCc8K4Y8ALG7yVwFZVjg48msOrXXToYk4qaUy+B+ub9WDvyifosFgQTBsG4P1xA9DKOQyLLVLIOfol6hc1suG6AU4WukjhK6s4W7qaXjnFYbe8Bvx+lwsKH/Ix6EM0tvdLcOxJI9xY8AoKnPSoLuowvmyeytYnReGwzQvSzjxIj94648Mrq9i/m0C7NJ0ea1Xx8qfyULulnla91IT5RZth2vw/vHw58fR/m2jgRia8rVVlxaZgmnvoGVTHdNO+e5ZQ/nADDevEUmLtSnZ1O0631hhwqtlNnqaZgIGnbOmd1Q1c83ocSNcXgn7WMOXJqWNn33v8W+9KGdYp5H91CgsGt6P5MyOyFjeHgLL/6EZKM/eePQwVMhX4aL8nTrVbjvXGgexck0TJvfmw1V8DOoPfkXxsEWUMvsbvp65DlacU2Zrpw8qxBXzzhhlF7OjCy6EW8DT2IU05XkTquRfRA4PhzLs07Nk+j634AgvOMsOopgE88o3haI0/RlyawAfrl8PmV0/A9UcgHBl9nrF1COMdPTl4XRdO85AByqzgv3KicPeHLsjeMybn5Yns/04K51Sn85SDYVS0IwqCnCwgWDMMnbRqQNwtn0NC1+C68D9wev8mPBs4iaRXG5PDzgfciWKQYufE9gaFWFsZC5+WZJJWmzUcypgOuU+qYdU8N1R92wJGz+1AztKTTpTc44fi/rRtnw7IrbzH+LqNxMq+8SvVDdTw1RzP3hwPM3IEKKsPqHDdD9a5JI9zHU5jh+gpUNq+nTI3rYeYvh58UqkPW2/Uo4m0Gj2x6GcRS0sQualE3QnWNH6NLKtdb2RjR2fYK0Pgp3GbDz+UBbWPQSQ8pZhf9IWQgPIhqnwrQU6rj5DreB2KlVGH1unp8P76EqhKzuP0xicYGbCLUu8Fo8G/b7wivod8LjB+XG0Cf+EAuu3VZTmy5/mlzbDcfD/LZoqw1fY/dExhI2CxHu36PQrknp9GW4VGrtJJxuZDibSjWIuf4gueuDcPKyoW0Igdxuwy3wg+bF8CHXrL4ebpPs4fX0cNFwrxvV44fN59CvcbeEJPVCuLrzWBuGPuZF2yBofW++Hj5EBsOL0KAmfKs8z7t7gn8zBZbWEwTTSB89vi2aTdGToxE30iNvM940RusRWhHwWRaL5Wn87tCuY/zydA3iwf0L25kZTEZ2GAoxlMiA7gnSXGpHrMgvc3/WONh4/wwGg76IJMvDvwii5aGlHvuL/ormHDt+rTIaM9i4QC8iH3iQ1Eqo6CaN7E+5+IgO2eT+w1fS82jflLD1rK+E31NrCZuhffLNsFSkIqIDvWA28WP+Tqpgm8ZeI1Us4VYj0haYyM+0Urvc8wH5en+8qjoWS8KVx98Ayt+Di3xJbwwusukPdwFBsuVoP6SwkQs8SD25PkQco0BuezPGhpa7BJ2wsa8BXhB1PmQ0bmfVAtcgUFzzCqTAUYpZSLc7KMcK3AUgjuqQGp8uXUK7Cc9VIqsGtPFGq0zaPEHFGQrskCbhNn8c8ZFD1bgGauiWb5EW7gnXkXvnk44yhlf3YxUIcJKcdI1/4xqtZc44DRjlS7q481SnZwYkgKfwzWxKnBp2DsQQdY/PQ0ttUIgE3XM7yZ4AYDVp00xes53v9czGdFP1GdnBFcTZ0Elyxj8UKYFm3POEB33m/F1uJXeEizlO3vNMEpygEB9Rg8smEiOE62wvn6dTx7swiJzV1Deau0MW2DJJUFhINHpy8JifnQIxcj2Pr2NilWuOJp4yM4Sc4Hxf+7x+dlKlDH7zR3//CFj7Me4P04WTA/kQBt5jU8KOPL0w5mwpNuXVquXUxLHLfh+3uIsm7mMPuYHDTsaKMdq/6Cmak+P8nohlO+3bB0qSaEVppCVXYwPUiv5vuoBPtcN3Lw2l8oLPUUvuYZ0qfGTbiiYB6lzdhJqQaX+UxiAwl1E+iHn2HYSZx48Tx9DTjE8yXccP2ceq6OeAehu9rR4IowlOVJg3BJIE9eGMOFacexI+Az+Ecb4ZI+V5QfmcAeL3fxTLd/+C3GDg42C8N/y56g/YsBVrqkCYtU/oPvwptIsmI5y2/sgWnHM9goYwQ4pS7Awz5XcGZII19bIMdaJa3QlX4eCy9F85O+Zp6u/hxa6hUhQ9EKbSzteP3rOFx2fB/bN0zCnsEw8FyRwA7hXRQweivIFZrCM8mj0HZlHF6VUuKZJZPAdMkLWHlQBD0fOqLru4NgH+UHkK0NAZd0MMJuLqmvF+H81qfs7P2EFhq+hOzhy+C9bgpbtuwB/Q45aPWciS81MzjRbAccETkBQSllkLS2Ep5PaKN+s8f8cH8eh3U7QF+EM17J/U3/fPOp3mkcuFMrSuZPwp0PX4FhkR3WBfqSyrgJ8Kn5Oah9EINLOUFcnXYRFIwX0eax42Fd1F0abrPEv75zsGmSIewYfExGxuV0ZZU83+yJoeuCN/H89Fz8dFCeyi9cZu81RRj4SA5cl92Afgstyg8a5I0LAnEYf0OkiQurdtyGrKplvHn6Jez00odRITvRyiWKkwvc+Y/jIVgx9TM6p+eT5ktpttJcSnnfY3DxSysYcfgMiVc1ofniHXBEohfdqBf/upWQq3UnBdVfpwoxTdp7Ygx0zl8KB868YMHpM0gq0Ai/W23mi6IbqNNYnovxOiybDbj8pSDIXvxNS599oYK6q7hQcSVsqtmEu7zjaFlMJXqnhfCtB79IyFkRinKOgPC9X5gc3oh+X6N40uIT6KGkBdkq4nwlN49nv7Xid3ONQbF+ATS5GoOP/TaYEPqNV+8LZqXEGpq5Xo2VxeRI/N1sMlFjSN59EQPz9DhKIpxFTzXyqfTXVHv/G3TdlKBWN0N+VbyQujTNIVcngNfkLeDJGz6Bo1sa2oal4p4VBSBW+47G9cpTrN14GnNLBbLlnPEPPcRfAR1Qc+UZ1exvopojHWAbE02OpSfhyUkJ8N0yEQoU5XDo0CWc8+0qTJzTzV9DOuCW2QwUnKIMic2T+J3WGtbMkINx55ZC/M2fcOPAOjyyKZtehEVidmwMTFiQj78TrsA4XU2ON2dY7uzCz9b/B5MXeEJapAP8unGBd/67AperfGjH3vfQsmQ2nHqtBgqrT8IJpSw8++4RaK2ookjnrXg7QhXdX0tS29Wb9HRSIWzLHgMHJk+gdSLn4LnzAlI13wMaW8Ihu+cah2X9QrVwP3pVPoLuO+hBg3Axuio94WZ7bZT/rY8ZsxZT1HY72vr5DG3tXkFe3215i5MEzDoqCxIX3eH8w2vw53Ql/Wz4x+RkgA//24Hn5Ezgnc1XKHLRg3/nF6DjFymeOWMzt7rsppHTiRZPcQWvJk9sOKiP+G+IDFXEwbrBFF0dJaDcTpBDM31oQD2Fbb8cxcBGR4Y9LTjsZs3xQUbwJWo7+FluoKY4L1zQ7gBrtbvpS985DNocQBYFO/nsewes91UE30++uDO0BB6eK+UzxxdQo3IMaGq3wOAPK67uqcbQI/VYGCoDR7f0gZe2Ps8aOQKcXsuRjawKJT94wG9bNFivLRK9WwohyFMQ5m00xpxNSVCyqBZ724agv+s5nZIppS2rfcClJ4GdhY3g6z8HOOI7ERUn9+Bscx9ahN/BZKw6jD+7Fv6zduHly1Rx97ciKPexgdP962DSqDOkJagDeUVVFDvpG5uHtmCu1W8Wu2PO15KzyD5KGQ7IfoAlE09CjmcHzAvugyWXBElglhEmbJKgwyd/wM/SbG5WtwbLmdtg0qy9mGrXgj993UGkephd2pVYaE0E5weXwj7HrRz+ZgycOm5D9/4T5/Cz/WQ6pZXqegPg+v6/LOIQBru7R4PBgY9U+U4d0rKNefxtH3wokwT9RrloIaiBMs9VUMismswO/6ayljKqGT0a+lyMIeNqBxU8u0jFt93By24/G0b3wbm38tTp3gFf2sbxvK/aUCalhiumLofyZ/v4zPRxPNDZCGtT5fl7yV1YmxtC8aPS8d1ThCOTB/jJtPO4cEkgXJNZzY+/faUZxc78+Nh2bH/0g76U7eDpk8aAxtyVWFT/ARz/PaSUhxdorEQ/bVNI5QVRjH0DF+COZSZ6/LCA0x/WsNjabbDoTi67eo2gdBFpqh0NsN0rAsdXfsY/H1eRuvIYmOqpi7++XeEXqvehcl4L+h0rhspwRbhWvgDfu2bhjUgtuntnFEiGB9Mbo2hSLIsgo0B5dkwoZpfGQ3yjphtnOm3l31U1XPhJBxapz4fnY6fzR/EUVLv0G3/9mUoFEASHHBfhO6dYOn/2HMsdnwQjpeupZU8L5d6cDyqOryHEQAQyxdNBSP0t+OQhV3nv47udBFILf3L7rxKOLa3DlC/F0KCXTq9vDVB9xEv6PHkpxBcL8CkvY+ht8IDTF9o4sfQtb8jfS/tN7XDYhGFjkA4qR3SQWNx2+pmqC+02MlCcOg8ua84mebEasje6BRcWW8Hxg5fBJliJH6RlcehHYWg3VIL3Tq4oVDsESTTIZ4t3sFyILOpvMSZfMRdIFRvD76tMYbPSYaj/GwlVJTpoOtYcquPb+f7U9zzypRYZ1DSw22kNtgkQhDktcaik8h/F+zpC77smLN9YxeFiquy8UxCyEt7gOr0LqNMvBXnNWmh6IA6vzJ2HNwTyWTVtHTivHiK1J/ugP+MJRs+0wi4He/AJacKN/z2hGIVXJF7iRuO4mW9XylC2QzdebxgDKYUGmJNgDoHvfMhilx1YRt4h11U2rOvvhp+OHoDQPVWgLDgKs8uMQFNBAxKpm2ZJvuHbfd20Sk8N/hYcRJo2H7+MyOH+ywY0hgahS0wAJsXZcWz1LFy2cxpddl0BaqKbedrJu3TjpSX7vxChRMkIGoizA+V54Whz/xXOIEn2FgqE1sr53FEmQMc0JDjksSP6lZyDSwoSYEq5OP450IqEYdKa5k5+f9/TmkpFWCN5FlMzkrDUwBP8vcVBf78v5hm1YFriTN4RUcbHQYW79ZNxe8EBUhcdhjupvtivNR4OFm8gH78f8OXNFVYwe0YJBopcrSZDR0eNobnKbjBxgQdHHhaGdc9PgeW9z3zgnSNcE5nE1jXraUfJRDwhFUwCR0RQQzOcvCvV4USTAKzoH4CVatPRbIw9f5Odij1Zv1lbZYhDu9/SKJ9m7PMaDbVKD0lLZhTmey2gMzur6VyHIXlUHKbq+tl4dU8KCh3PZNECSwj43EWS8fp456QYrnw9Hs3GWoBsThAVnnWGm+MkYHObB+1y1gbdV7XwuncnHK14zDGXf8BURxX2P3AAvjYugsLuP7Q5JhSinylBhu9kyFlHHPeyFc3vvKKg9/9wkl4bPrtVD0+tBeGFlhBGJtuAh4sciM5x4YCudkzFJbT430r+cNge9586BS0/fuNAuiF96XSAPwHlmGdVj73597CxtxyjQ9V42o1ucDb2wG16/tDa7Y1fDtrC1wMHuSxbEl7mrmddr13ou8GEhFYIQk1AFT83+46uEbf4x1xD6P4WgYbXZ9NJlV1c+m0FzV4aS3JuCvA3IRsVSgp5jVEH6cwbC8/6BFF+x3LYCzYQJGYAvnXm7MRBrHjcnM/0HoNOsZWksksf5izeBJpJvTz8TIok5U3xm8RJvDaviG+E7+VL1b28Zs1mtjmoCvvUDMHi3HUKqx7kadU6qFycCfFHN2HPKh9a1mJEdaIfQWpQGlZu3YPTT7yjyxOtsHlSK+usOoTF22WpuuYlxmtPRZ8FFsyZkhBnMxUtXNpZVq+GEjTOcH/wAzz26Bq7D4ly88XZfEdvGpiUmsOkKlFcNc8d75r6YcyM2fS9OA7eOUngL61C3HJVEXYYdsMlW1Fo1i+ntx/u4X18yHNi7XhAaSZf7f/GEZ89wOLvZr7SGcOvhPVgn/pYml7wlFbOUqazKVWMl8fDndB+1vLXxdnCkdC48gwUVenAjaGPvHXGGHJxVuCLP4z5baMj60fn45ZabzLs9ccxj0IoeKYoCKdt59qYTZihuwxuLYon50vhNP2FKc0rMOMlzxUoI/EWiB/WBy+5E5xx8CSckb7Ivi9tWWDuCu7dkQbxXirUd78L/zuJsLXWHsb+jOYk7W8QtyGA/0Y4Y/v4zSilcJUNF1xF30PV9DmpHuNeToC8He95RkcbDgqFQOXPHmx9+o+MFcPAfttxUl1bwcJDCjyoBDAiV5xChOeCRv0Y9AwU5orqJAqePZPa9srR3NBVUOGxiX53joVvrTeZThny1K0/MfHMFBRQeYAtX2YgpBWAStwJHpv8kecajgATrUH28tLBr34tfGW2AD7UeUTKayyx9vNO7Jn4C38X5sHVQg345rSLFhzZSQu9VuMXhbvs90ecc76vIu+RDHc/pcK4nGoK34sgGGrAIwumsrNuBybLLMbPu6rIdegsPzhjz9PGneFy72vwSsgaTp9VQbO5a2G+aA4+jrLmreFvcNqNYHIc1Kbztdco9Eo22lyQA/1+Xdo29ItlbHzAJzwUape/5o968fBkRwO+0BKmxrBp/CVWHTz6lwJlS7GH8jZeW7SX9x0I5cmhc6HRo5dCD75iaYNjXG4iCquPhoDFk0LscRsHjk/l2SZ3DWSO3sArYg6TtOAuFpkVRV+kZCF0mQFNfumP2Z/Mwf/ZZjrnMYY98w7g5mUz0H7yCXwk+hOXRhnC59P5sCD7KF0dvQU9Y63Z6cEQaMvOg+X+V0HwYguITf3F422UYVxMEmlOmQf/CS9kmfR+ck33o9CqDVg0yQF3t/fjtC+HOGXAABYohbLufSt6vKkJtH11oC9MFML81qC/hwpOfB2NvossMK5qNERNSwSxcAbtP3sgs3ckT9gWS/Nev0SbSX4YH+rGo4OFcc4YS5C9UsGNpjMozvolvr14hcbWh7HJRT+4xyrw0yeJdwjVUp+LDnS/rSOnyyLYsPYvjXp0GuMD9+M7nwoY+8SUbQ+cQO+WTlg3NA6Cg6M47f1HehWTzeq9vixtWE2OLaFs/3ksLX2Wi+p7bkPR4knQuH48Vpjm8Y3zLXinaAP7vBZDz79idDY9i4Nzv/GVY038Dy1hRnMp3O1OwX8nlcBp6hcqmnadhFeugc9r3LH58AnoXRCJelESUF/wjHOnn4e7hd1MIdI8avdFuByymu72F+F4dUN4+iGEOxKkYPhoKUyoHiCpo84kv/sO+NWKQpXBdeoX6kDTVXPYYoM6q1sLwPoYV4heXoZf8vZSb345znxXyL/vGYDE2FqSqsiHulOG+FpBB0bry0EsrMCCOc/JIVeIVq70xlCva7Qz2p0tU0XYSc8Xzg0owA0lPdQ1Pc9gVIJPu/zJhbr4rJYp4ch4ljr6HuUHJrFhnS1MbeglgfxtFLRFgbZM8eRjV0+jXnky/j7cT5tz/ZCO3GbdpfJglHCfr92PgjdZHbBUfC8G5cylNz/cQOfFcrST2w9dEZZokmkA8a1RNOfpLn64bTmpnpXDcSekOPy2EkT98sFC/RDcYuEEMhMkwdPkFLap/OJ40Rqqj7hGHrlL6HZ2BB3YU0a6oi+ho+4US900hF0dk3Bx1Bo+W7qA3sQPsNbXSRzRK4yemXUoPXMp2BdHsHyrMeDe+VBy8BD+F9dB00VS+IJUPmtpV/OW33Fo6qqNK+zm0rQIHTgRaoaedadxi90vynO/QGpCM+irZiToWX/gcY+7edqJHtp7RA1Of1hCl/L64eTW+Wyt2Qj5YftpnVsJ+PIh6v85EucHnINtZRaQ9skUrd7GoM+Lq5TSE0uzOiaC1ftH6H7tDK2/8ZqkyIQ11+pAzkWEORqjOaf1LFzX/Aia28+h2ag0ePhnIcy8q8pnY/ZRpI8ZKH/IJbGGnaj6cxM8+FmCezwycdSLGNi0sIbFQBxqjz7HKUETIDKxltRoPzVZ78H8yW95W9gJGv72GEZd1sGcF/L07Ysvb9+uCpHmJaw00pdlfHbhyBZjHiR7NB0hDAGa4lDktB0Hn+yheZ5yEHVsN68wP8Oyn/Zx6+wWEG3Jgg9HvFA4Qhjd0rzIMNIfHaYYw22OhjHKk9nJbiFUdmSzsmopXS8fQWuqdeCIRiI39gSiJJmCwJQobu69hnm3chHsLDFk/1GWLIpF/0nS7F1cD1c3RIPBPA1oH2lLd6Teo8nz/VzsdBikX/VzqEMI3X2kiZl8kNYVS7JhuyiUeL6DE/OLefrzDeTY9wYcK1zps3c+D9vPxBHL0jAuaRVEXTKCngW6eMWvkpabK8HVrzkknS7KKdsecqDcRGwuWEaaKjpk8MIcjk9RhmjVUeTs+p782p7gPdsvkF0oTPFS87hgYjFnPd6PBj/lIX7sJXRPvgkbxAnfy9/hZI21XBl+niRd5kFWiCwbWyTTUB3DnpFvea9XFjtEZuI2h4u0pnQqHS/ZDt1mWRhbnchZ+9+w7nZlKAgIoxf3ROn0Y2ZnbwN022kBh3Mmka3oaBz79iuvGLObj58Sgr2wgf4ci+OmZFua+yCNXX1WQfPuASKHe2xE96Aw34reZGrB4suycHqhB7osbWD/+R1war46TCyQo7yAWuxruUZxK6vQLFsVToXs4yu7Irk86Si3ZM3Bo9Pm4doN0ui4OJAPJq/lyU6JvNfRAL5ubWSR2hKY93kGLcQEnBvxGI4pO8PU+3cp+rg0Bz8zZCdRc4jdJYOXEoGK066yhXUKFDwXxnN+80jx3SwqfLUVTGrc+ecjIzD0bQL5H14kZH+EJS3+I1HpcGryfI9GY77QwMw8ROHzeKF1NByZWUjK/yUSb0xHb8UyqBARpsfvo6hf6AaVJ9vhmuaxEP5QFEScp8GhisNYYiKGWQqZfH3GFNios5ZCKoogQvE5JN+x4oQgEZD1fgDf/TK5I3+Ao0zfsK91GrFLBvjOiOQTr2fTbMsqaK4aCxmap8ljtxeL5dfB1F8D/KY5klS/2mBU6FgMLzvB1tOyQKl9FCwNqSXTiC6+br4Mc1qOUv+ysXhrzFFU+lqFfbeAB5LjWG6/Ljx6OB1nqYXxaPW7mKRyBSvb5VjdJhSFLUXw7BQ/ip6M8MJcESovRWC97lgMsThKu/NfsK72RHIyGIJrHjcwYLk771ymxd5xomASeRXUg8/D8/flOFJtFIWuF+aVgj1g5meIaalV7DRKn70GbeDpB2dOGP0GV5itQMNYNQ7JeQgBm4zwg2calrqV4XHXffTpmRbkvkwCQf2FbHlxFwwPDYJqizufS9uEkkdcMCvVEvWeBfFERzPIci7GOe+60KJqGbkab6XRJtPp1Zj/aEXDVZ5Q9pT97DVQ4IsI9GyX4GUeDri+tAdfCXhw8rJMKLPWZKm77vwvejENlaiBzsdJUN6yHV09hblkeQwFjFlGz/s34c/yQt7tL4GiwYtw6ehVLPJMC8yuV2JQ5BCZlAfyq+lt5CJQjZ1rcnnLWyv2ImWQ+HmUcyvUIaY8CJ5WZsOZFzksYhKDNs4vUcVnHGkkG7Lp232Q++Y098mNgId+WmRydCHcHxMI0QcfQIJ2My+uPknOsdp80WIZfE+SR58BAziSB9AyYTHOX/cEVn7u4cof21g3sxZ3HlGD8GE7zPwYymL2KqAwvhVXTHuDGZEtsPPyDupdKA0n88vYIewvjimwp5ZZOWDWYw1eM5VJ56sa7x+Qw0fhnayp9gzMQogmzv7L/SOEUc9OEPfNNoInjvKos2IX5YeKsuvRGqABcRRy0sAPPjdo3JE9+LbQgd9oEdwvyiCvjfK8sjiZbiStw7gXnbAneh3M2JSED4MS4ah+EwmNlgTjVZegyfsuOuxxBfnHVrzrjAbsS/xHR2s0KX7ZR5j/6hG1fpKGVf7uLD/fB6Q+rIXZT7bAjX81aHjpF6cG/4YtQ0JkZKlDP+8ZwUm3M+jycwd6jjuD89aIc+OMLjiiNp0GAu/yQGM5eJVthY061mDk5MNF5z9RV9FPWLzlOfkqX6DUWbWgIqMLkacUaK3ZS5hsJg4O2f9A0X4UzTRLB9tdszgtdpj/rt+Bx537UWDEECWrboPf0wTgk8RFGDyyGlekbOKdfxIoeMx7HIrO4EsDJ/F6pCwsVfkA/WZGkL3zMc8YeYeLdt6lkoTxYG7bza0Ki2Gnmj9bvfaFUKFd5LNKFc5Ji6OzuzmrFERh8blG6v80ktoDwtjO+ip8rZSkS2JfoEJBEBYvmkljpSvhedQAafvroMCEJVyyJwy31AfSg1nxWKLyF2iiDdSOGqDs671keq4JPd37SU0igstarSAYjWizrRPl/vbFzmc6cOHXI5wxZz8Jt2+mU172EHj7Llh9uQaeUw9xvPJJ3GZfjV8eGcLjs56QlDiR6j6+wIsaTqjQ48Af/bxIr/4S7u0pA33vzTzF0QS8DQLhaegzrovWYu/nHXTfqJXPjE2hv+NssfC1K+w//YeNV5rBFJepvCVZAS6EXYFQqzhYCsmwovIaVwruh5Art8jM/iac/2AFqzccoIdzS+lixGT0mb8dv60KAtkH7mx+sBqsP9/j1PMz2TNMDDafE6JNJ2SxUmQkXsgy4JZzsbRd4BplXSyHwZOjKXSuK3zgSbA0yRBvZdbhW9tBzC6ayIarl8HKjv9guFaNx0+U4brMep71Sg/q57iCbtRvSkhoxa5jX/BmxCFw75SnjbSV7iRdxJRXuSASrg5RZhtAMP0M1p8bhWcERuHHWzroGz4KWkdVQbx3J5/rkaDfB8bDyiI3kioooAmWo7g2JYGVjfrAb2U/7G9YTM1vzlKr/i103WgNe79E0o+Qh6QaKE65G7fAEU1ZcE0eRxG5q3F513lYlh+Mib5GILnKgtwbpoJzmQ7c/jOVJt2cCe3GZaBorcwj1/6Ad8ZOGCOrC4e1DDhgtB1trAsHL/celvXT4XlKKZiRsZri1zbglQkVuCfMFAInvweJ8EScPrOXNoRkU3QzwLLq3WDhm4WXt5vDyyEpdqsyBe2ok7Q1cyGfoEheZuVGX26cwKcJatxh48G9vRIwY/FI3m8FcP1TPxRKbWRWv47bPKfRn9BLXPTPllxOHKMz6wRRz3M+D84DSHlEkBY9m0yz9kFu+XF+8TwVRCPP4YIYQVgfMozbV00EtzJJsI835u1XPGHuVXOeV53N3snCXBwZCKUXCqBkWIfGqOXDys1moJegyEHGqynKdTX36ahwVeE4cq3ygYPKvrDLyh+HF/STcegkqOkQxANmwtCibg/7YqxpbZwXpLvMo/b4G3h9XAWVzhHA6b5acGyPGi9bPRoeTLPCTYFzUUuuDNQHzoPkwCD8PmJCcxMqOdrQHMxt7Oi07TW44JoAHaf34ZeTMXBh4nLWO3OR9/QvJ1FLdVK7IA8aS2Tw3us8VHzgzlseVfJgwigc8TkG2icP0667XVg9bhbp3jSBlf1C7F3BsDu/gaNHnsPmtZJUWJOHV+vE4BVtgMcLlLhRWRLGViJFn9+Bjb51NEsK8FDdVuwZksOL12w4Kuci//jRwLbp6pBatIxyNQO5yEOe3xa3s8zz+Rh/NxJePx6Nf02e4rTrxtTGkpDVcgYSZq/D9QGOtH7FfzB5ggaz+iY6u38sa8oqUYTeXZI8qg5Z35+wy7lBlLacAlrHZOBZNFOy5WsWtD4NS5yT0FPrI26fJw9zbHfRTMFVsGjhY5ywSobtaw35SnQy/vI8yMdf5sC2mZdAa58xvNARwTHpmyDw6AWI0knisl8JeDtBGJuz1qDZoj3cd+MBnjtjD7YzetHoRQ2cLLfAjNR7uLCjl8boboCSXRIYrxdJviYiHBztAIrSPaQwvod0dWww+bsCagaU4+ELVpQq5ET189xJcPZF/HVsBOzpqUf7z49YN/kdCNsF4De7Mhad4MSKOIYmS90DlaEizqgzhJTtA1w1tQvWXrYAsxB1tjS9AHHlGlx1/xmsPxeLx/2ewMAMNRj5lvmA7igeKxNGZ9Ke44w/QI/WTeNBdUsonvQV0loWkrilHpQ9m0HS6xVJ2tmH2m/Es0P/dNgsFI0f217iFo0azhdUAxwt+H/3/8a6CaKT3Bc4FfAOKyW2s9IEaZrv4UB7BvyxdrICZIoN03ErfRB78AOnPviGX0Ou0QanAcgKSoaAaXV0+/tlPq+9FspTfPFhmwrkeG3kYxHnWFoxin4+K6Sj17/ywexCFvi9EcYbV9C2D+1UWTIR5rXdJocLU2C3oA2MyN3PNh3bQSpFBLMWXULT5ZV4+kMbCfy0h4tbrGl8SCDof9CDP4csaa/uVcjgK1zSa8nHdu/isw9v8/ZEA1jzxwNy5n+HvQcS2avlB0YW/AO5hZ/BU7MOLt6JppFi/9G2PBuwB01SK3rCdYol0CqUD0GXZ2LdvqU4Pv02Xx/nzJY90+nXZWuwvSJDiU7yNKcxGoddCrlN0RYSP2pQ5N4fZKfdBqnXL/OXOjXQLPhHPFXwfxTXBzsQjBoA0HcIITsjouwVmYUSRUlURhFpaBAlFPIpJSotCqEopaUSpUFlRUNGg6SUFooGUVQq7nP/xTlglz+PduROQ7Gyt6gwOg3B7i5tSLtCYRfFMLrNBJZvUOMVdkYga7QRnVW2surFNOg12Uu77sjx2vHqNGpjEth2iUFgaztEb4rnRf0PMWFfGLWDCEmlmFPMyS/Yl3wRogp/wu8Iaci3OUYi516RTOZ1ltMphwWTlWnh7lP40nQILysLkcCsDFo8wRC0G2s50WId2HXlU/IuRxSee4muvfyNow6kknrWKOrdo8tzjQ3Aoj0a90oX4PLe47T/iTGo6T3nC3kvCM8MQOKOQSxVteXTe6xh5LtX4DbKHsStx2L1Bjdom/+exnkV0v1HtnSkX5jOvMiC7TIS8ClfkRJXvmD9mDU0vEoU30UdYpcUXzxR4snYMJPeZa+mniFJOGFRzB3Py/jDlh481roVbQWrafa/o/zFLwHd49rpqMk07mpRgnj9OLpdtplfmv3mXepOKHb4OYTcXI+2e0R5YLIgLx2Wp/djJ4Gdmy+9feON21YboZGjHjfbLKScQQMw26INLpZHMersRRQytQGRdyEwRbyEls0uhbxdl7G50g1uZzrgYHIn1w1W4WVJe0r5KQCvj10hbeH9nD99AiosroVtwsbw/IAtxMwchp6GCzD9/ha656oKMcsGWG/Vd3rwOIn2hPzAR4ciqWz8MKuob2eV1NF05rsiH5MGsPrWAVvWT6Ahj3XgtSmPly5Mw/1bl7Lpn1dcX/+LdlMrN04cBwKnp1C56xOWv7wYHmwuYT3RRt6m9RPB8yV5mkfDvrMLYbvqSLh9eQkd2uTGC8/fxRsW2Rhev5U0S5aRcZ0E3748BEW/V2AqTIG3eq9R6XY/tniqoJnPBhyO2IF/LuwmX6cgMt4SB1MTOvG8O4LaD1kKU9CB5TWvwTjqOrfHXYGeXgscT52s37+Zz6V30kxrJThYMQ8GDgzAR70UOPthPNOJfRCc/5t0zh6Cr58sSULpM6n5jYSVBlU0oPEUHsWXw41CCRiyECfPV094fpcAT81NhK8IsENAH/xzL1NR8AWIzRDmeWu6wNf7Kwdo3QbPNaK8vMSQTPNqoeCkKWyercjHi96CEe2DVPsuvrzIF/P67OnDwmN8VVmOch7c4NSGEbBh8Ajj53iaOtkDPphEgFXQSooakuK+BXa8ZFEI/b0wCSJNTMFU0IWPdOjwPi1DejjRlqfkRvGaoXb+eEQX5ntUQt6LGZS8gkD76CEiiR20MVabHsYvxJP3vtJDX2dsX+dLF82k4Mf3Pp4logPZ153xiMt/KD5Kkk3TN4KFaT1+ifSER0I+ONbYGtX709DsrBwsHT6KN2EGRbdqUfiWOaAwcJP1Pr8nlcZ8XJ6kxMtnJuA5DzNYpDSOojUWsfG9a4Au7bRo6BuPc9+IZ6POUfVYIqeGdWC4TBAcx8nDmSxdImFFbgzaRUs9nNjc1gFatRbz49ETYN/pUBq6pA8bOy7wgvRiHsgLQKc19pwTZ4xTnQ7iKrFQ8F2ciO0BYyHrIMCps0c5b68ouX40xzWNA9TUkwTaExvBv/UkNVZcRUe3w/R6lAxYuSbwZaVY/KgJbEkNJNKRiG0yw6ymu4Y+yjzGNRXLSN/cAsLWldDaHjmYZDUIo7o2w8sHnuR705OFU+Tot+c7DtZ7id4iY6Gk0Y8/qVrB8xiEqp7xcNTbAzP1Z9JtnT6aknGP5Q9e4sGkaVApIs5h2XWs3pKAKefM8cY1a3x1fgldGFJD/axa7v81hxdskoE5Wyu5BYI5YcUTmlZSAyFXH7Fa712adGcU9vp8xz0+XfzNXQ2EnL9DsYMSytkKY+qyCbTuRjb23K6kQ1svU9fEApC4OIMXK+uBsftC/PRHnmLLvfHU9QzYvSSFNkxhvNZjifG7J8KkA86U6qwNE9d8o3OVXoy/zbBF+Ba4PlhMF672koHzF146fBNitKfyoRejwOnHDDyzO4wzPlpzq/44elHRQwv1I1gx/gIGmHzg6sNdqN8pCmIB61DXaxijzQ3wQuRfzkiygatbHPndD110WPub1lWvopz6adC3/RurJdXwnNNdZCEcgps0q+jWxlz4eusbSdtuwMpHU8lITRniU8/QiwgvGJJcxipnN6JVxSiwUX/EjpF68O5nDoUPqeOWQT0oXJIAwe4TaO8uW7qb+4Y3HxmPs8VGUN4KB4gLu0kB14ao65oNzPLTpwWZg5hz/S6UWa2gfYLp3BA0A41ul9BhxfmYpesNx9ZbwbVbsTB+YyvWqz6hncZtJB7mgwdjj/Ch2wW0VryNz/4dCS5V4+FPvCpt95/F67dl0POkP+TftIHLN1zAkpnvMX+5OBX4qMB3FQkI6n0P+3SP8Mp+RXzzej32JFvChVHL2WD+SDimMgfHzp7I7i80Ib3MCH4Fh8Kq+5nw9VA89p5PoTblA1jRPI9XnLID/QPdrLxABLId/EFEcxOefumEsXFSHHAmnLtrkygxLAXF1d+gKZTA+xsjYa5KMI8YCgTXoifsvbYD3bMWkI76Arqy8yA+layhMms77ItQgNauXF6vqofbfprxyuNZ7O+nQbJXCnnajhgIsEqF/KAPrHjPDJbpXcbC6bEoO/4NRC4IQsfYLtZ+sBKT439wgC5hZW8enN9gARsaRsG7lwHcP1oKZC0ng87UJs6dEww9oSFQ9TwfU9M+UrGlMKRcm8nBDtNYqC6FTgy04wOVWDz05B2+GHMTdA764+h5Q7Tksxmol55AiYbf/PBiJE8bs4RLJdvoyIhQMDfdRsvnAAnpTOYKjdEwOuwWCw/LQqX1Cc7+9xFHiZ1i6RArtPI6CeaLxtCLvVlUVi4AHyVuwleBKKjRmAR/FTJZ4NleiHqcCBnfaigpeBrGV43kjwni4IyXKb5sBb9ukcbl605Dnps2nDifTxvyhvFJtwnF5u6gzesVYJqXL7RdKoWK5kMgeuciyyi8Yqu2YH5cPZaXLbKEkaMb6ZSIFhzFOJzWcwDkatz5xcnZNOnMTnKPq4J50q78ImslVWV8RaU7DCuWvWeTp4wyLrvoTeomqkmcTf5371GO7AU6O3ENrktUxqazyjDOrxydIjO5/HE6bDo2He5LV8MC2Wy8VnYXuo+GwBnl4/hUwRRef83gr3GPsD/nPx4v38TOx6r4/JpVsPdRCnU2PcSjddGQKCEGUQvzcEmFP//XuAlbT+XA2nUL8HB/ObxMl2Dzygie5uGNc8VHwvH6FtTP2AS6v1eCRKwx21dogFqRAj26+h0OCjzmF8FL0W7ADL623uHRAWPohMMZnLK/n8PURtCeBY+gJmc9/9W1J80dYyDtuxwcOfGbLHNl0MT+ERrnH+OamFp+NHYqzQt6CJGu+9G+qZXKLESgTEiV1yt1gqT9M4w18cd7XQFwUWmQ5u/9Ro2f1+JFGX0u75eCETdHcpaZCGXuKKeWU3PBfoM9+y0WgVM3GsnrvQkkLRPHB2pC4D13FmwrTKCZl/RQ4OUvXvrQF3otDEBosge2xNdR0ZR+KC8zgLV+FxFfLeQWjqNNyln0JkMAXT52gGm6AWcrdJPDmdlwzU8FpO0qYcaFNxSXJMJjbrXBZ7F41NSr5oNbH7GsvQgt01LGSi0LmHw/DR7aruZA8zmg2tKILU9+ko3EXYoXD2Cp4Q6Sk9Wm9SONwcdeFmMM1uFTo3iWnikDOcXbcHd9ND2MbAS/Q2vwh1kufHaQgbXHQyGl+C+vvnKRS/amw8h/JhBd6oxrqypQcZ0dt1xMgp2vpSD3zlT490GLrJKcaaTACji44yea/tECh+6pIGjVgD5pQbxroRB4HvvJdh/EeMppQ0p/dp6OJomj9EUhemviQRN9f0PbrIWwxWwUfM0rRNvvYyEzVBbHmHtBrthDPD1oT2Uv5CHigCZuDwyAmngD6K1qBfOOJtjX1cgRL6TAhE/zsbVjQbm1h6KiN2Cp6i8od1ADcXkf/m0wlgenhvJpkZU0w0sRzF7uonmtNzHGL48D7gtz4FRz6Gj5TA+22/KIeWFw8pQ4H7N7Q0eeuoJNZjnlH3YDifgJMK5TEGo1F1PDf2v4P/2VaLA2D7P76jDryzJI122m+tT1ULJvNm0YrweHd+oQhXTxuzN/2f1ePZ5z/wh/Y20hT/sNLzqnDGqibXjyiCxMqbhIFc+FOenpE1DqjGKx565U+f47Lqy9CM+K3fCV+0lKvzQa/OPmoO8jpNShIPDI7sei8CJMb5EkB9/zwDdm48x2J9yeJg81Ox7iyrNnwN1+kNN/lvC5wCh6nVyDo1UPgKj8Jow69QDKcvQhYUM+/JDV5pE/Q3jz92bQLLEkia2joX9SJ567fgPWHZ4M2jOUwDBRm4uCj2K/kBSqz9fiUwUWpJjsgfsTAsAgZyo/2zQHtr8VgVlBu+Fu9ikUbttBd1w0YOHUHewdN8jl8x+z55Y1VGD1B4VWjYAF2/qo0yqbPM7dRdUzyXRMOh4S/qnzfs0m9tzxAF1frKRRXgIgtXkSpFerg/eyefTjvyJa828H1Wk+4hCPq5A+qxWUW8vY55wIzD5VhX0ycbjtgiw+W/0Cnv+U56wFM+h4tgcUF15BK6cCdvlgBUfX3GCLt294VLUSXji/hc7X2mJxbBsHRL5hGdGzlLPKEqYEi4L48R/gbhbIX7KO4Z24a7xsyi3SicrBk/qh0KfUjfPaJNFVUQjOVEZR/I4O/pNjyyNn1LP08zNQUi7NqxYHkKxvMa5SKiSbBhUQfOpAk2L1yFRnLWVXvoblmR9gdecCXHfEBLokxKjnvSAtbrWAmz69+FzxGJhEd9BpsSrIX9FBHwqe4HUJQyqUz4fRTvegL1EaDmjOB9cJPtQR+oD0py7HiQcfwMzAAzg+v4Ceu7hjV58vFmkjXCq7x68qdWBQ+DtuK9gCDQExfHh9NQ3Xb+fulW+5sPId6s8ZDyNLttALTRtOH1qJXc/kSdKgjAPKKuii8CaMVazHvx+/8Pz+MVDh/oJXplvxLKkItOvQ5e37bmDzryiaG5IItr/7qUr7NUruHQOvFCJhYFwRdh6P56lNdvxw0hsO0V8FdpMW8h3SJXEJC17rLgoyo9vpW0A2jvUShyuDJmD8PpXUzoyDtltHYFPcDSoPkYMZaVPh6swK+PotARSXyuLSnjaY6knY4rSPsyNiMH/sE/K9rUCzJIVgbvZ4ztf7Ckv89vM5G2+OeP4XdV4tgj63ydzSGomS+3+T708jGLNjJYw+JMBmV5xAefQrcgv3xtKDaVg3WpvWPHBkWT6FIgFKEJD6hS59ewxC9z3x7q4++nk7Gr4+vQea8iPoc54gnvxXQEnVBuC4NQztbgbhzLFp4Jq6jxTHetJd72CWCt8N134cQy2hEj65agRoaP2B3tS7HAmmZJc6FRP1pGFX/jga2L6Aj/mWsfIIBxD5ZASLKxs5wa6O3nvO5qGtMezlu5a/JT6AFre/eNThEH4O6cezFQhaz2XhaHILVdc+Z6H17+lXcy/kPTzJReMlyPnQDJxX78Wjs6dB/oLPpJ/+EBKnq7OOjS9OWu1C2z7aoEBlCqnZV4Nk6QZ+e1YbbCCQfHvcyOWMMb78L5E1exPwR3cMuKaYwVZNTdhoshitBUfAzGmH6MkxTbQrn0LNSnNI9pEjCZVtIBtTdR4rZk5vVktTzEdtuLp6Prb9aKI1m1/j7fJ7vGzNNHL23o+PzJ7DEZs0NpbvJNtMM3ilWAqaz6/zleCH0FxljuLJHSg3+R5ax45gh/E6OFFwD+W/GA8bI4RIsM4do21qYOQVFwjIN4dXEVksJKIDx4Nn4clmDdCLU4eMr0Uk8McEiw8Qts/xB4GBR9x0JYNcGtZgqNA1UFwkRKOtERZ/P0+fyoepryIZqw0Og+s1a3rneJjnSLvgnu8KcMO1F8vtDUH+4AfK/OgIJwI6YOF7MfooWYGxfQHwbdNs2DXzIc0J/kj51aow8/xUWKmshUYNGTj6lTqD4APa1X6EDjn24uODqqCiVgZpuxWhY8Iklii4wPd//cIpl4oxZO4J9jn5ADMKd9ALuyjOO4yY+XIcTJy7jY7OlcPHjWW0KuIHmPiq80uLr/jtzw/6WB+IY9sUIMvcCgzv9dF2kUa+muwDl8dcgcPXPOE/ky+o1+1FvZVTWCW+h1pqp8EnDmSBzndcotAHD2plccRDT1Af74OObg/QWfQ/NBt7Cpq85KChbibZ2o/ke5t7QaHal/JNnnJv5XFUNs0jjcHp4NXSQhKNRpCwLw9tSmaAwh071lGYDmdjqzlrbBHkyB6F8JvCYKFXhbNaRsDePdWsKZXAZ/Ic8aPxGZ5lH8pJp15QrXEVrB65FuNOx/Jed0lwFPpA3or3QPOREG57/4KnHNrMc8VrYF/rUQh4Gwqnt3yGrACAXJnxlB9jzt8jK0h2my/XPUvAlzrtcOu9BS458wgP/ozEcUcQ0ufUQvrsSojfewmCdxyA1IeTWOPKaXjXtIHtIo5Rkeo7lu42BqHz79DQZC5/n9xFRx96Y7aiF4XfcaYhoxbo2vWUSlSzIGfWZPBNqUTJ6UF8QuESNv/phq+Cg7i78RYJnVClJNMlNFY2hc+pasK1BlWoTb1P7zW6MdRKgd0Lf1O3ihAc+vAY5t9Q4IGzW/DeBgG422hBtg/T2FtTGrTPv0GVSzJ8NusPqQiupTHdX2CCYwn/MFAEoXuvIDxlK+k83kOqfkl4uSGMauoL6VnTMEXMC8eMbi2cNdkGMhLkqVA1Gnysx9HZxEdwOWEqiOwUo7Zke9geZEZV+3JZsE8DBrIk+GdYJ8rJLiCxt0chZ3IxPCusJH/hJ7h/awFdK/oAO4rl4KLEO6y+WUpm4xNxV5QK1MpPZOXg9WA9bw8Ze7WwamgX5N+dBB99v5Nm3W/6cfUzX9rYDRI7VsPk82dg8tWL3LFKBgYG7vCxJRLgsGktyi+UI9G+SyCseoVFfK+ismwTbIiczA0NaqC42gf8H8jB8SdfoHexL8m21nPs9Cu496Mg5ngFcsTtBzzT5x//Cg2GlQdHgtT9Znz5PBt8q6TQ9u8YupMmgWnKYSCYNIDFxbdw2cRudoxXhYN9uhh+8AvHB/nhuIV7SO6aP0WLhpLbhihYXp2AimuR5s+aDCrnktjdSZ3ef1fl6zrHKHefB32iIM59WMcS6mowV2o29KEVBOi1QMbbOvrV60pXN48A1+MCdHiOMsi4CtOY2Cq+LF7DD46rwuNFG6DioDNVz23HleELUG/DGAy0VOWX05SwwXQL1+uZQEyHGNw2EEGXRT78eJEqROjqUdSCl2xa3U2jj2/GyrWnsOC0KX7UMYOjoy5zR/toUiz4CzEb/cDo9AcUNZwBpsV1FCl3E0JuXITJ5gBfX9misrQtbLdJxr1tmpzhJcr/TlTDyngjVNU8gJMUMhC6x0Ne5X4Oc3wAVQ+V6Nz5PHxxrwA9MrbwSPsiCsnLAhmfnaj/BkFj+UfoLvEkK9blTs37dHL5Cjgjtx4VrxXBFUN/sBt7mGuFjcEq7z88YCvHGtPU0bPJmZy6v3GggwjZn5ZFpxli8O33N5omowA3PntQaN1N9g3qwBvdbqSSlsGL3n7AhidGZHVoHm66lU5OStLwWKAYH89YTmeU8mDu/RGoG5rM9qNbIedYNc/46Uezz1nTYhFzkHx1GbpCTsKxKmee9WY0r/inSKvHxeG+j36g3b0WviXpoPE6MSicMRdatCZS3JYlVAINXH9uPGzy8oKzVnoQpRAJm40m8cNogIvdh3CRoh/f/PGSTKoOYsoYKXwj4gG9x+LR3Mea1po40HD4BDjgJME6ZwPg5XRp9l8YgvN6dmGz5EauPxNFRo9b8PQNFSwTHwNn9o7FsFU+eCF3JmcIHyB9+zv0RycU7g6rc6J5H61LmQP5Zepwy5FwQ8hVkA47hE6937lvnAuOGDlM/zT7WDvkGquXNeJ6fYBVTxs5sPcprNrzkz5ZmpJIuCAXid7hdUsmwfs4YpNuc+gIlIPs0ltUfB7hY/s/1NrXSOV+TSht/Y7ahD1IWz0L3UrDOWbnRFigfBvaMtLooVYH0+3pMCqwgrd9cqS2eS2Y07MP3IWHUX+MPvx0qedrtvKgp9ANsbeysOmfOCWdd8Snc2oh8k4M/xQw4zbWgk/jHdH4Wy56jvPCnXkzcNy6Rn72aS3XyuyC3uv66PsjkRVjxcDUL4HS9m6n6DtuMHzSCE8vdialolpuTHhItR8nkG1gEkKEPJSdFUCMeYszLZaDqWQEHMyshuU/uuFS9EqwvB8FnvZb+FOvBYgrOOKI9a5wxSOR5Sbp4rvYNSDeqADp/XpsV9gBz03TyHSfEQj5DJBo1jTeHPmeb+6LBbcKHVqtOZ+emXmC9J65tG4gH6ZkGEFpQQFf+3EeKscB7vovgl4emY7BM1+C96U59PRzFca/iOBLqwXA6McreHtnFe89r8Hr+8PI7NBbLq8ZoD9L5Kjy3W6KSfEFEyEp2Gf1HRsf2XKR20esHV4OCnPP06QrX/CIRzPNNU6EEO3pmF9qAx1T7nBz0hO+M0eFBjOr4HtLIO3dYcnBi8dRicN1yq6uYqfPimB1M5YVf58FnfeS/IRugPIRHYqJMuFi87HctDmHzm/fiZEmOnD3YByI737HB01GgKXoKi42L8WxD9ToYu8bKDnzEOfYrsGOWjk4uUyezj6eTp0Pvcm3Zxv21h5n3fvPKOVVA4T4uuDQ9Bf0VM8cZnUnUPipZ5QubMqrnh3Gy0sPUvTB+9TckkC6S//SxjPzAf+IQny+JW/I/In7/xjBUUthaNqymJKeJJJD5iXWD9yBx77I47QbDPavQkA76iv7b53A93ty4V6WL1/cbkARx1Tg5dptZDFoQQNdirDoYgnEjfoPLwmdp+0pcuAdvxlLbGPQu1qePuFzyHOTgpfXRGFo9ScIzVFhJ6lUzq4UgHthS/HPixH05dMZvJKwGYtn2GLjRwXYY91KnY6C7C2dy7pOiNtsi8E8KRDCfH04aOJnDNnfgk+TDWFn3ADunZ0DM2atRlF3c/zzfhiDS4Kw/Md23OdfSkVxX2jfsB7Ylmaynm0A55TmUtXqUBbrTaLwtGRYt+MeagVF8KIwWZaMkwDDXUc5/cBaDstxgu8DyPPbX/CumddhVqQS1kM62+mPpInrbUDoXwSZtZ7jA35qNLtxE69yPg7Cjj20qs8N5KXf8F2RMXD7pz4M+t8goWf9+O+mFsf3qZN/YT+4+c+CjzbtYCvniEY94vhUaxp0nP7HU26vRyX1T2T9rx5+DtmSYF0njrrUw1fmBzJufELmC0Vh34ypfNO5HyQe3obXBzUgL6YIxoVJcUq8GQ8dNYXVL77j71kMa/dsQAHbLLAJyoL184/SmpPv8XbQW4zWPgQ73yfRrj5lEN88Cc74DWOeWTKun3Acj2ke4fbwGlL/+5lHyEujhEwlhMV/g0tVU2FGWgIOKSXhqbg+SkuupM/Ra/Dav32Y8c6BCtJTWF5LgI+1GYJ8aQs4ZGnCblkvuuqfRdH/ifKhw4XUd+M66uV8ob/nF+CRo6rQpxmAB23Uye+9N0yIeM3zqZSfGdqBnugm7nyShFKL1nLCIkHo1P+M39e68AfRG+ggoEHle3aT0pIzmNRRwzculvIhPSU2nKcBtqWXofSRGQjvV2URWV+Q6CvBI6/DyUCrlUROTsSEjCXYIi4Cd/bKwOtz/ux4soM2RJWwfNNE+vKWeLrmEE76/A195aeDboMoPO0cINcjDznsDmBAmSocOuUPV4tu04/d4iAZo05fVJJYUZLhYJ8Ixk2yxeYdrVy+oJzFf2zhHWWqoHNiB3RPUKGU9lA0P2MDinrNDMrLKa9YGxXDIjHhlQ1fbbtODxe5wY7P5+lc7ycYpSMGbl0nYYJxMFpZeDLl/QIrqWHcO/MCv7qVQfNHOdAMmx2QWSEArgZnKaG2E8UWV9ESDTcssjCl9xdb+UnGY3pkUU4TFo2kDv8poP1KlhK993NB2ww8/iSNZBe30laRkfD6zWxY1vSbk43L6fJnQdj1awaqeY/CSwsn8j/Z3+h5ejatn/8LIj4WU2H5LTqtkUv9Hy1AW0AZlAs7eLLhOf7tv4fld+fjfOWJbK+7n/ZGqmCykgeXvZgCMy3u4gprMRzffQ4naE6iqExttDmoxXFvtShp5Q487XGBL4oYQVq8Jfw8nYyO0mvwk/Bt2PtNHf12JoHjEnv0mZJJxTf38urjY+Bb5lt+rvCMrn2ponkbGqEnsYn/E4+nCdY7YF6LE1c/EOGcCGtY2C6IXbYPwaTxLBXWbMHNuwvI+n4Ax/4ux6AGTfQKqoD/DGwgRkEU4wdO87umeThlVQdLCT7GA4uL2LV0J6p7FXNKkzu6ztCGKddrcOPZlThdUhyP0yu8o7UNjoR/5xqD6Th/XB3aZW2hketGQWd+FmhnzAThQlHefU8Oxxmu4MO6lzlf8T9+yY3YEyBDqS8ApIrC+GvuZT737SwvrNGgc7WIUqe7KPZeNqxaHc0pevo88Z4QLFyKsO2qIDv9G0P3Y/U42O8SxOTWgcMGda473slXfA/h4Us6sHtZDhTlzGFh6Xlg9TmIhHu0qLWmCp9dFULl5QU0+VwUzL4iDu0TgcJuvgaD09twZJgajFwmzkLNSzHl1FYeFXeMts7Vp7D2SVClvo914t7z+dVifKDwMY5xWsodjzfBlgl/SHXQh03XiVJeqzGYDUzHUwnXeP5QBb6206YSOU3YtLebe45Px2NjAS3avTktXwJeDkXDuWQ/lFGN5JMidfDL0pXaM1Uwb9M9qE3by5K/5rDZf4qw3+EPRSVOg2Xuc8C6KZXPL/ZlH+9KDGpbiRFvFoLlrc843tUERgu9xGbba1Cd4U+aY4Wh5J8U5H2eTg9LisBxCUI35sN5L0E4dSMXkieH8JeaNMbdp0Hs1W0u4DFc36eINxtC8bBzOC9qHwF+RsoUariYjtSeBA0PEyjTsMHJ0o8xN9CKqzbOoo77XVg9VRQ2J19DjTt/+VhQKIe0OeDbzEYa6esMq03GU2VFP4/ZkAwubZYwJSQX0qvi8PjzX7xpjSle0jxA4lV/OXPTX3zrYAqflYR5xEg1OHvwOB0PHEvT/Fqh+ZsLLr62H07d+44ODRH8bfoEHBo1zJmz9KFA7x0cnR0KorO16Od+FVrzYzU9UQ0ipyeyKPniKa48qgAVjSrQky9H2VeGMU0oHOSj97Lw5zNcsCucw7fco1vRNVi7sZdXtTJ8ySijfy4fSWVIFfY5uzBJaIM6OsBhx8m0MWQnyTbGs+VzhKt79/C/NXNAxaEZ4xdUYvO/Y/S4bzEbV/dxYokAq44/AwKf9EDpxjFcLTgZ85q3UbJ/Hz5ymsFfBvLguYUaf7d/iYpTmknotj74vx6HK4pnoPfT+1jomcZvQwJ4p2gHnDjmBF4D7nDV+TA7KhvBQt1G0PqrCDUFkXCLcuDKuYd0eVk4nNQu5fhNnqS7chq9PiEB0Q0++OxTJ/7TYDC1Nuacb2t54Isbndrykb/UrkG7UGFYr20Oum+tIeaeMdzaMpotB7/T7cCVdHy9Cb26nkf30qTYYnsMePwyhT65qfBP/QiErZ9LS+fexsSfX9FzyX5WLLShFvE1lPZMjEuyBOGcw1HIPdUEKVsFqf9qL56MkISB2kV4xrqWY/AtRrwN4Kj4kXB43l5w37Ebk16b8z2/MNz7PJTemzbxltsnyK9MiM7emwzkCaC14Alang0BmyUZtKvKgldt9wFF+EFpF0/DzvwJFBVvAY6fx0EKdfPTgCQ8nHqfD4mMxSuByhge0IZWMkc5ZOYaPhL1BH9f0IB/8kHoEF5GJzdo4wJTFdj24Q5U//yDh4+3kUfrLpTyKOGLvmow73snWleqwt3Rt0FulA9t3LePbffY4+7oKhxxPhGyb9ezVogmWG/ezsdXXoBBZXW6ZHmeBE8KM9W/xlWqP1HE2ZpTdFJwitlYsNNQhPPy5ZQ25MQ79+0Er5cFeGlRErubn2H5WaL0wLUFnnZPhfxVrhCey3jv1kaQ6YmBV48uo3xyFJeuKME7Gan0/6WIf9eAfGqlxeEbqUTEnmu/6PJjF0n4GG1Ni0gYdhXZwcHSv+wrOQ2i4ovY/GYd9qX/oOnB8nB26Pb/bQKDJ3bhzK1zUfJCP2TN0IaA0PkouXEMXbHSpIFdo8hwfy2cdHMBsbuRYGkjSnmHt/BseYSpCw/x2oBGWq9VDPI0DVovpYG24x+cl1FBk6K/0viNpXTusgD8KjSEQVtn2GJ1Hp/OFMJ7q/QpOiuSd8t30leXMt4/MhC8QkTAXbGCow4Yodm37Sy/TQ7edG3CS+mn0Pu8ACslRcGeuf1k2G4ACd/H0OOpdfAqYgpa12TDsLocT12vwuWG07nVq4Lwswj8nCQNS9tKuVnsAnl8+0DzZxrDGV0XDJQ3p8i3KvD24zpU8/IghbEI9aoRnPt5FNvHHCXZe/3cI25Gbr/saN54aVZ5+IALkkeDpI0l+DmV0pgHK6k/+y3bt+1ED7Vp1FUgwEGnCvHOw2DejhmonT4GVDJn0Q2fTLp47xDmKoeD3hwPNj0Zgz4CHmCgexBft24D59VqYL3FgMK7C3BXczj3mKhB2flFYDJ0HR/eX4PCQm0YH6RA++6Kw4Xbs3DLgvFQ//wjz7rXys5uW2GNkSJ8e9WO21R04G60C3bnSUPvvUgqcdYCwUVHeN6xg/zkRjIdd9iMju1K4H3cjM2OerCfshkc6FjL17MtqdDzOBvuXYoOSQD35g+x0iRjjogcQ8NxEpjeNQGsWk6jZ4AqXrfaSNVJQiite48nqa3GP1py/G50BpuEpFDdbgsY6NCmGaJq7CvfBrtbArg4/wv6FvnBdRSmk5YJeG5RLHatGwNDVtFkp/WPxWcp4Pq9npA1+ARVZ8RRkI4f2Ubb4IgJXzHtkiwIK+yl3stzSUIwmZWmzUBxQWdySUmkgs0KMKs/izIqGnG2kCFkf7BFXccFFOogjJ0zv8Fqk5u48cEunlR+GCePdeYg30oKnC8Ad17X4piUZoi7fh41r0qh4Bshbv/vPems7eObEuJ06fplMixVApuDtSxyMJp+f9gE9bdF4PzYH6R9api2hdWgbmo8ufwKoHXTR4O3Vhg5f+pip5HD3IIydFNugDMnKOInV0N2yfTi6umh7OZiBuecmtm/XgP2OeTR4H1tNhZM5cT+N2CjOxrGvy9Hlbg/pHRJByzjjDD2SBr1/B6J05Lkyb+ok/+Ts+TBLb50pcuDnwXvwrbx5iC8Yy/HTD6NY0LmU4ywCM1aPBmTKvMx/c4EmBhwAVWsE1j1nxVoH4tEib/X4YJEFke1Z2ON8lbIXO/O7e3LsG26Cx7//ZNvdEyAEWrvcNvTD7QqPRIH1Y/Bup2psM0vBbVj+ti9MR+9DySx1lhR2OqVw29O5nGc3mVkV2XsH5Kkby6z6Po3MY4wzuLoawdYUEwftJrlqL5sBz2aKYmDoosp8mYHvV4VDHljxdjpcTSaVsdS0O0RsLh6Jqx62sHTzAVBKEMdXk96TTcv/wOHtf6QGzOFXq4fgRppDIbpjlj9eywPNF3ESWyF6gd+gJZgA99U2AjWAT04KLUUkj9MBvX2VPgwq4vlM6/Clulj4XGkCitJuUH6NA8acr8INLoJJl5RhgNW0zC2JBRevrAFaedyHC61QQh/wdvZgKEyhJoFnkGBnzK8/WtEe7CSP0RVwI29Ophi6sDfzN5S5oivXA9TqM7mLRSuGwE1N+eQzBI/Wn5dmiMOzYTzFo0U6jqD4h950ZKjwyCfdIkWK1lD8Icg/lG2ENYMp9Pb3CQacf86n5rcTVMO1PBTf4bN5Z+w4cVIeGBcgnL60yig7jTG7guCvtmu7G8M6Ooyh33X1VPCinjo7SHQ/55KVTm67LpBjU+ZyOG2jhi0CHhDYgJpcG7LddCZm0DznCbBfiFzVj0ZQkkrxfn91khqEWqk5sF+7j9QRaVfe7hIYxTM2MTgUlRNUa9bKFe2C7yGt0CC8m6aMVqGLx4ppT87+8hm/AAtP2IA0VmHuK8+jYLs5lPjiSPc/9oP7St9cElGDt1o18Qcl9N8sV4ZPCseo5xoMDsMX8TWg4P0dOYTqHUop+NVJRwxfTvp9izD7B8jYVfnZ8peJ8p7n0fQzVYdHCFzg5pCu/hZqCQdeD6VZjbchJTVluBgsAhSJ15j38e7oWZYlTaZJ9HPkVEYefgxvCFTfDW/ijreWMFQYQ1rnIvEwymOfLjTGIVO1LHxiwQ+dmMz3lexhmaV3aCjOB7WntwJfUWAHQqn4Xj7J17etgSMRh2B0OxVoC80HeJin9P2l6YwdpU0bOw+jO8rwnn7/mwQstrNtZFldH/UQhAPqMUp/5if/rCChMWVeFLrMYz+YI/Rz6pAfilRZqszfLoYD+bDZ3Fpbgwa5BrDCfPxuNXoPqv4nIKszsPgfqQOhxoEiaW/wzoVJp2PQliyWhP0pAfxyctL9HnmWHSunUs3Mn9z5mM7Dt9RQvEeq+i20yyoyJ4CQRONITggDbbXpLDCxr80/FKJF+tvIE0rKda9up5mTVmBuo9HwNRV0fQiyZqSrr+CaJcxvFn1HHfHd6DmF2JfOYKR87r51+ap0FF9FUW9GmlJ2gJWWpoKpmOmo8INb/xVfIoT59XB9gI7vqgqCWXry3nr9UH42zONOkYXQlqhIN1JLWLXhle4KicGbEmO/K9MBp1fX/itlQf83RNOy4/X8C7lOjjtFURTZj4BczcxborzhpRvFuByXxi3nHXh5qh5GHNiiB3EUlCm7SfvVw7lTrWPAMGDXNahD3OirMlVpY7CZ0jC9OefMP3neA5dYQmmBqvpSrAz3Q2cQlZO8uBr+ZYfNvSjykZvlLrzkid/v4ZTq3up0vElpY47RSv+mNDeNeZg++QCL/BL4AoVG95Trg5hu+oII06AzNvTqHwnie7Jt0Nz/gjwMpSn5sf3qO7vP7DuyQCdYT9wKHDlxWe7SSx9NY5or8Ho0mlwrSSc1EftItGBJ3xocgvO00+EXodilM96gwU95piuosHzOsRh11tvRAEN5JjToLm/DG+E3gP7HeJYtDSVry5Lo2Cf0Xz4iQ5oRyRQdUY9X6kTZffEErxgcxdl9+2hMUeGaNKAHAd1nOb0MGHwPyODj4JGQfnGN1T4x4127JqB5o/qMHG0MVuWPuBM7Vcg+EQWpO+/QSMnZXy9IBL1z+0gN5+DEP6ni1ZGDpJeVRD7tfWStJ0edAYV8bF9CaBgUE9vRoag7vLvMNN5D16TFqG1TqZ46nMvNL+0Bss983l4xhjWXGSEEssi8OXKL1QRVsMxN1fCIRMjsh+diJ8na0Ba8i1SnuvE6U1hYFd6B6Jzk1lx/l+42+ZExvX/UWRoDZVeNAWHRH3OKd4JO6ePpgmR+nCmV4deZGSxl3ILBe28iCa2W8n6xAgotlKg5VHbSa/ZgVJ2xrH8julcZtpCR5e74X3RNjQ3icb5YlrgUTgDv0c+xZW3f1HtoCHN3dlPq81dISXjBqz1Nuerjodwf5IZDFfJgs/pr3DdQ4Gcbf9BPJ9m80RlWpQihOId0pxRewc2vjIGeBSO3fGxXKq/EXwjhfjsZE0qM3lK/j6/YYHGPfyjUY/JG7UgX34emW0oBIu9O+n16zY6LRhOor9+sHtGPxhJrINdJqe5PFkCRF/akvi8KCiffoxWep1m6e8b6F6/Iky86wAj3rzmjbYt7PdHHdTnOtP6Ix9gevpKbgQd2iP2gb9PUOMx+wtY8sYslOocYO/xcqC8oI4/nJiAh2Lngp7dHdYMquei2ELO/fkJZJaupls3TcAtTQSkVaNoXk8Y6f1T5vHjnHH8VgVYIbCTg7R7oO71ef48QQJ022Uhc7CaJvUuINOeDIg/uZSXD3xEwaxn7CzUwNu1i8hxuTF0xslDxFFPvqk2navk/qFznw3ctsiCavNRYBYxgHVGx8l0x2O6fFgdwkw8OdUmh+fuNaYTDR5sJKIOh9cI8ympFtItnIu3DTaCZIg0uCYO0oUgc46tG4A2/Q2wz9QRum7VkK/lDUg7FIvFkkJ0rmEM+Biq0QrF3WAVtgf7hxrJYqEViOl95LWLn6H3wy7qrrbjeaeMIDFXmtd/X8GzFodQifcDsL+8Gx6VKDHnXofQa7M5+Ywntk8QBDhgRoqZEhDp8pXjx1bD0KIDoKKnQx9HX+VLr2tI6uUzerJeHTz7bdF+tyMsHD+NdETyeVdQIo17kUdfFfTwd3Aaq2kv4C9LxCD31lNKWe0PVxWmkXxmIbtKH+PhzDJelTaH7j76xJOi8yGq0xr6smZi7+XVcLx1GR/dHgxhDhN5yZUC7L2JLBHfwIs6O/i/i4KQnbEbdk2fhuevDJN+myvekhgPKiUNsGblKmgwTOelE6RBZ58wLGvpAY/vLRj7yA7yOw7QpKpSWOG5Ct0WW8CtkKmYPlOK//YqgWNXMEyTn4N12Qe549Q7DKgz5ltSllTdPo4rQqagZ8FE7veVgdqBZtLznw0rJx6jkrijLOZuyQV9qWA7tIRbXAXwzpX9JL9JGIIVF/DpAT1IXldLlmf1uKP9LS/6YYpD80ppbfImWue6iQydEBZJG9K3zfrUW+DHAmMOkKV8Cr5qRTi/9BFd/KuAvVrrSOCxLsxY6sRiD+7iz6YWCv/yFJfslMcbqtnoJL8U1v69z6m9N3lrIMKnPyKsvkkDHH1a8GbpIi62+s5Tv3Xi3SFz8k3rxpyF17l2OcGCR9bgo2yOS9uzQWfddCi9MJH/GKTD6IFGXOCTBF07T4K/pSREZV7AypDr5HOjB1/9/Al2BpPocPJJ8vBairUfv1PwIT8uNlSAhjs6cGmJONTk2sD9WZk0Y9gYxUp96N/gccyNsIXNOlbk910fJIcXoMxFwC+ivZTaI4E/x27mGFMBbnx4gU68uMs/PPeRZ9NkaOj8RvUqJeyWXgXDZ0rIwUiJ3slPAyuFHPZOMqZ1rIGy/gQpp+ug2cgd5mbe4aEr/aQROwmfvTChpdOe039T1kOI6HIoPi4Hnkdncv+673yhK4WaIvtIVukSv51sSXcfrOV5GYEMB0zp1QxxyFAM4QfPPFkmWgj/FRriyYWG/N/Jft7UpAauGs2oGRXBSnGicL34EUqOSsaIV/50/2k2l+ldJtvCAl6p8BgfHQRS1xSgvMgRcGmDDh88pg9ygYOgi5O5VMqXPpbPp77K8yBS1Iu71FLpuL0xCOaNwlFtcjjaSQ3fVD3Cg4v0sKAumd3dh8D7dRNapplgTp42aBY145Jvb+nOHEO0/zmbntr4YFn2Jxq7s5BTi72g2E+XFDeZwtbp8/nPjGv80BH45upl9EEnF9RO5eN8UUeMyZzGv+tW8Cghc6gbUcWH4wXp2/WbaD8qnU+U72BJSQNY0+KFC0/ocbxsG9RekoOo55XoNiaHr6w0440VlaSm/hCeJewmsap5nGF6mES9u2ChtgFse2VK2speNP7LGRh0UsJl/y7S7eZltL8+nl6Gl6Gf5RqeM280eCRKwsM/Z0D4tzqL+ARAr+ciVGn6i6v/HMKXsJk27ethAUMZ0FFVx9XJP1D6hRvdm7wTtHf70sfRupST8gl0dk8mgWEl/vB6BIwrO4W5WU7QcN8Fz97RwYvb/lKq73MoWrOUXjfn4Xznw3B4JoJofSC0gSd+6BygHdUPYOB1CSixGOpLv+P3lvk07o8tNNtKQtCJAUhoeQJTzsxHk+RjXPhKCt+e3MP+k8tgw48lFKHxh9u7LeHpJGMeXbIEpfKv0G+tufRx41cQ3PQchc8qg762F/CfOog7NQ56Vrym9zekSHBDKja/Lue62GcoFVwPu/VUcZFVCqh/C6QhRWlwKxXEUw4mWKdsQeJCSylwhQzGaCrRJqdMlNmxEGMN3/BXC1O4PdkC/vyYT7sfuUPu/Ns4VuQJrf1wmV/NioND+dYweOkM1F+bDIGBlWTsoQo9j8OhavIISr4fCWkDs+C+Vztb2Tqw8aL3uOisFUw88xSuaArBzlGuvK3Kg4s873Oyoz3cvRlLi3+FsNzd3aCgPRkWPlDk7XM3caCBNJcUDVP32P2keFUYFl7X4O+74tE96g7WfxgF9989p8cjR3HXLHcK2KdHVc1nSea1MlZeV2eLA7t5+3EF3F8nBI5ziiFq8ROemBuDx/1V+MfFg/Bq6XyO7JdEwaYUctgizpFf5KE4sYz3H/mPY5rH0F/l6VSlK0jLZmfy+pU/oEfbHKeUlHCZhzDYzFpFDqm+XLfxArwRWQT/ji7hmtZM9lzPmL33GW1ytibZo9ogXrCGPsX6Q62SMg1eNoDMnV20uuIZv8v6Ss2/zGBtvQyO/k8f4tzXw8LkJGpJvwC5b99y7+0alhaoZm3ptbjhWjc7F07nnX8mQM+RJPYXKubPhcL8tLGdm+eZIElEcaqYEBv8LGTD4g7SDdUFwS+36LDzKlS2qKLSpTJkLxdGgonu+Ny9BbSc0+hPmhxOLBYAbF2LI2uOUoX7PlTLX0fO7sWwrcENAsTe0JbgIWoNeI0++TKgvjAKvb030Dy1a5wfG81LzO9go0wQmn6NJ4vAIcwbCOL7TwzhSLESevzRwraOjbwiaT5VfDgAVWI3+Xngc3I5s4y6x1XSNWFlWPHJBo4+IbyZVsPz/7lRBV7ivR/W8SatHbTUQooXLFWhwpUycHttAytVhfJOlyLeunsuP23aSIlfq8Eu7jaHSmRCwk1tuhs8FXaOv8qLRRey/q8P0CyRhwaq9nxtRBJ4fIuBX6nZHPjTFo1Mp8C3hSK8g8oh5tQdnmK3gje5BOPveVp0u6WJjarTeO7rQJgWawM7xzqwek4ErhZogFGfRLHx+HpYYZjDS+8005qJ/5Ho0bPg0GkOrlOWoa7iI/w2so0Dhl2x+5Q72B87AILedXzp2VGO1ngM/hraoH3CjaoKn9LlQEP472so/1fdyrNm78Q1P0sw4GIDTLx0G1PNx0OEiBTF9lnQ3MPdmNdlRGsK12KBVQsYdCSA+J1C1v99BH6PGAHZVlosP0oR3WqUcXpzOJ97F0cNrtvp67AamK2t50C7Ely8RBPiij9SrcIaTN5swXucHmLKvPnk5CsCMkNjUbGljP41yZHrNxVYnLeFbf6byK2SqrBN4QLMMJZHP1UL8OscpO7d43DE2yq8HiYGKYbX2fjCZnJ6ehejEx+AjpseCFTeYJnn3njI6BbG9o1jXTNVqGF7+mk4Bj5YtJCo5Rqe1pZBOtwAJ/kRtf+2Z8GTxlwiJQGrXcX5tNsiFrsylYVkvGCq9EiOceiGsGINdN30lqSKX+HdIWk4lV1ACzR12HeKHR52/MKZTRV08PwErrXL5c0SL0n0WwFM/KkIcxxOwIcnf7HLNoddjXpQ9p4xeMWE07/BAtDpKOayvW8wtFsdWqZexrvLW0g2UYqlEhXoqNk1WplYC+Zhb/jg6r84Xc0MXe+qwEDVD+gaEUmLSvIh9dIkjjpbRZaXVpJH0WOUfD0NB5buR7n1BnDDeC7I/mGeo93Pbj73sT/QnPK3BpJj4zZIiDyIwZdUIPzZBLA72UQjnZ7BukprKLVzZ0XBQCjzGYFODkPsW/uY/xr94M7ySfD5ggFrWErglIeJ8GW7ODbGd/D+pgeUvPoVORuYwZ6wNO49OhWWf/hGFbvegcbtQurrr6enwS6w6dZ4Gnh6AuXWv4X9c09QlZMJDPUKc1/nDkr4Fw3bDbM45mEz+15dxqs8bfFwciOmrhsPhr/Hw5f3TRRU2IBLm1/Qu0XrWd0oGK5MLINPv5rZ3FodV0RUUGLjVNj55y43Wjxgr3+rKHrZcnr07g62PfLizDcGRA5jKVTmPmwfNgJ3t9U0Ud0DJEdVUJ7HBbqSsAk7j02B7M+H6VrmRCzpKqE5/2PlPhSBUNQAAP9DRvbIKCsRlbJnRkVGiaKiQlERoZKG9tQQUaRBkSSjFEpS4hRJUiiaSmY0UdLgvsR9ke+4DPSIFJLItCy+j9JoWxHDIZbbqETIHH+dFkRV6yNouLwE03YbQJFVBUwZ94W2WJeywOX1/PryEW4WGsKOgCCqLe9EmdgVuLZqDPjFlGPCuB6o3U+g9OEoFF/MxOB/A9w08SHFez3BH2deslKGDfSWe6KF/husncFkLmxND5PlWeBmLMlKF+C4j5/IU30RhFYpwfuwmTjvyzTwXrwIB5a3o3naeSjvk6H0LE0QjJAnvcVPsbHYBIJ6jnNu5kqoOnqalRR3UduQFdm8VEe3sWMhWuccpj7YC6nHRGFGux1ccnPmkEV3OeGeIN+pLoHp6u74JKGAssaF4c2iVeSoqQDOY6dhQOEPOF88A4wHFKCVZ5P60WGwmcR0f9ND/i8lGFZvV4MJN/tBaHkLuEVf5uTEtWxksAYz9j7iHKl8bJo9joY3jYfc3dLw/cBF9BzdRDFWDfDl9zsamn0UkkPb2G9IFh7OXIiCRgvoi4kBZI+5RMf01mBN13us9ouEfyZOEPl6Kr69IAuLQ+rYq2eAmnqsALyyaMmOhRilI419umawdqk5Nb7eDg9G9NJJQX9Qm9oBgZ8sYHyFNu0PWUEeZYihA+c4IpjYpdoTP9tHs6ZcP1wxTgK5Daag87OeDiubkfXtZ/BA6Qxeu1WEC49b0Dajm3yQqrlM7jG3nB0FwkVbIWzmdzpxaS82JS2BJW97CId/s/efE7iNd7DZO38stlcFg/eaWHSoHAa+yOHPpeoo3GtOrULV4H1cnIVXe5LvxTl4+YowvOlYiKh2EJ2WRHPJeGX6oSRBSQsLIVX0IZaWvaS6uHv0JXM8TFr5lJKaMvD3hDHUaOsAp/4l0jKJeFZWuEBWh67AgmmD7CcyHk48MSQdax9IHylKP28K04e8m3hldyBkv10K/3YUg/uodFhupAcqQjfQcJQqzTzZii1XlWGGBGPinYkwt7sCtYKZ8rWdqD/UFu7s/sPXLt7mRKkgvjNHByWyNPDXtS8gZWJHG9dG4Xqr36RoKA5BpSWUNGEVeJZ+ZrlJH8nmrDkfTq/nntYOtnsaSX0FGvwwVB6GJ6njufMreWjOVxavzOH02W4855YVB9+ygfpTy/nA71WIvyeD68nPcNdwDy8p9aUXM90ANlrB53XiWKeyhVzXOENmhRpKNBjB/b6R1O8nQE7/9dNg6SN69jIUfsoa0JUvPTD/9VaoSD/DKaJTwPz4Lrg9vxFanXZjwcoOOKG4HoXKD2FOQyY1X/FB9bwyFtg+EbxaLvGHt1rsbjWRS36K4xJtT1wXXAwzpyzF1tGVcLnHi//4i0CNvAdH9kvjb5clsDp9JrdU/OEOz1SeoTcR0vNTafXN0SiWRbCg9yYO+d1AOel6uKSZwnbbO/G3aDYJO0whr7gP1LI5An+GaYGFnCmM/H2UpaT+8tvvJRR+qxdMC63gqLoubx1W4dYJdSRxXQ+yXmnjrW5bkrPOpZ5KIzRNPEY5bWoQ1ziHXV548gpXBfbbIgE1wbooeeI47jtaBVPfHiDrM0/owshYVk3eB/FjZaDuqS/nrJkCrt45qCF3hCjXmqpYlT1XrkDPsdrYmirDW3w3cLn0UpA9aA1b5rZSgdFB/HB+M90OqSYzbALBqf20ZoMGCC1w4D1FFuBrqwfV2udo/u0t8GlkE+csTaO6CxWYdp3I7YYRfTJ3h/ZNZuy6fQI0ujVhc6kt1107hZ7xCZh/pQs9jypS8FVBrpJczOsyjfjwDwPYG/sNYgT3c1T+DNgyfTN7Sp0BN5EbEOsZgzbbgzDgbiynpxvB1x9fePeFhdSrb8S3rxuC3wE/sG49gD7P5qDmv0P0OkweTXK1wc2lAEY5GUL/5yN4tG4e5hvLABXegfXhF+C4nyHtPXOM1XzHwsW/7yhatBuk7wfQ/cNqeKncCGMSJbBd6RgfunKIbDMO4PUWWzhsNQJkwo/hprBMFHpuj4k3H3CMYC01XloL3aF/Oc2nF8bJm8GfGevozv48WDtHE7U/uHDQfh3+XmyAL157YU6PM6e2l+GN8Zag7pFKxSJ6mLUjGHfc9ADLzWowt78Hd3+ajMPta9DhUCSPyZeDoKyfYJx4GueHvCehgp34PvsTiOTHQunGavy3twLu7R8C0ZvC4Ji8nHuM2zDJL4AvVA6ySG02up89SsoludR1vhrKp13mgLuSsHVjA97tFaJfW/fg5dOppJuynIIeCWDkhA54mhQNo/+dBZv3BAEpa9CpOhUjbMQpsD6CSx8bUmD3LV5hOoo7TK1weJ8hbttqDG6L5Fi3aDR5bNSBc4em0/OzN3HqPFPIebuadF++RYv5BrROyxouxWqyTPhP0pOpAt1fAei0O4kULk+jT+2zeHTlfzxiWzJ2Gk2FFVGHYWrsfPJOPAgtiXlYOtqMf8dNRoNxqSy7T5/2DD1klxFaoHxFm6PU30NPqxfW7nUjhUoHuF+VhGnWYly2cIAmTX7Ef/+qwohRX+BgfzpHZOmz6LFfWC28Eiqm7gE6NhsXvP8CE+vL6edHbXBeMwftZ26BpM8B+Cl2C75eEQkj3K9DXHQMS4xdgYY5y9Hnqj4YvtEF8+YPsCqnC+pmfodVG6eCeLMphX7sY4cJVyjuSDFKZwHcTVnNxwy/o0NULmj8mkADK++j7oJgsF4px4qfB8Co+yNfWW8JysfUOGXZePI+H0Ihru20tlmIZyV40E6JU2ilMYbSNDO47YAajHzphQYdq6i8MgSjL52gmY4O4PTfe968XYzan49F1ywRULOwhJq8jzB7uQ/u0s2BzsWxFJ/cAKYBqUjC+qz/+wi6awmwTtRYuFfoQM2X9HGm1Sx831XP74eLIHDfC7JN7IC2Wgsw8K6GbfvNQT3xF4YLJ+OU8nzectGbnu3dgmctWyH+1GZ6214CXl1fwVPZBrzr7uMlizK8VBxBrPaXMn2lIN7dGcR0/6MLJzqw29aBo7aIQ3eLLb/r6YCHnxMhoXwXWS73gUrXBvyXcRQ+mMzms2NW4gqnSRC204X/3DeBoZoEGCpRZ/t3dehm/IVmSUmR+oUC8LV/yhOVdeFU329YrTYFhIrcwaKznIN3zcRrl6bB4sF9pBF1By7GLqf+O6pAvxDcemfw+gQ3DHO05tYpSwDqv3JQeAQa7HqBMvsmUVieLnjmmPO5jyd4lEUL6t33RkmBt9QzbxkE/N7LGoJvyDhcCezvI7TZfSWT1/a0y34W/I36yNdX+vPZO2JUnP4BiqxK+FKDIN8ONgfrV9eo7489P5G8xAa1x/m38Vka8dqPJPVe4USR8zQq1ZPPTtcFLdluLmy5yJviq+DiqxKQuhjH/kPxuBDN+HrUGNz/5iTFvreB0WvWQZujPybVXOA+/we0ZcNNCNt2hmSPZKCrqQNW73rMJeka0DKhnUVelMNcg3pqdmykkZHn8aXHdy5L2coz94aifXgd1zVKwxXVfpZdspT9r7XTW6WZBBnqkCy+hS51OGDplUGo911MJ1RHwVbdQFZxbMAPIvFU6pFAScHZPMb3GxXovOY0uUe4fJMWPQuaCGUqdmRQhDQ5WZfjxpjSiA3aPLTPGQPuVUHxTobxObH0PFoTxqY6gGWQJNysCsZUtSeo5TIB49sE0UT3DHz5E0r7h+VwWp86jPI6Qh6/I6BEpovnBO3CzNwMHMz+gStmrIUjBv9xVtIXyisXBmn/FXjDxJgGLOr4vasGXJm9Bi2ymkn36B46cWgmH4iYQEemCYNrNFGPzUWU2uiF+xbOx/9O/6blU13oyuVvqFY1kXxao+mMuwo8uGeA0ypbwDLOjFri+ql98xdq0VKhlJZ7aLPlJi3xCIek2YZQvM4eze03cWXFUQyp7uDlTqc5MVoLajbuI9XMGfTNy5hmjTGDoTciVNI5A6aoXYHfef5QmFZJ/GAZnlsghqqJDmQsUcp5e6bAjxmTcZPMIMZEyeDmv0r4Zpw0jsqPIPO8MogWuIx5ixt4048RsEVoNny9aowZccQGEiPZcexDnOf4gSWl/MHt5D24dEMUK84owoE6K1q4VhWfCZWj1d5afCB+Fp1VN+IaQ1Gasu0Odt0+ywM3bcD29Fq2ujWWC6Z3wZP8PHI0XYnfw0Xpa/xJEJe7QXN0b5FHlDbMnekDmQdO480dW0BljxVnb1Cj4pFDtGXDV05e8pBy8hJh+L0RHI3KY1RXhPbU6+weHEs9x0Ngte59Lt/uwVkbyujnFWEadpIBp11+FHdOBhOKxEHb8TcKjD7B4nsdILb8E36oXosyBY3gG6YIdfEEmu713FvZiOpy67FbvJRu/fPA+rv9pNiyCheXt8GpKSaQod7AUkpPQfadEzQ86KErIxbQpnl/Ic/rO50RCeG9GztBLFge/uRs4KDku6hUNIenChBhzC0IkvvKNwIuULDWDIZRszGoQgvKquygze817vEyJCPVIxQHYhg11wcCH62mVQ/aWE/ABx7MG/V/9/8Gv+xCF9VsbNqYxOdX7QEZiKH7qpfoWk8u/ypPYg2Vn6CfYAPSOm7stnQ5HymQpa5EVzJc5Uvng1IhXOcxvbl4hZPGHSODltHgNHcnVB5cg8kzQ0FCxpl1xnWS+Ixb8F5SDt7vbsA4vy90vF0RfqXoo7/sYdprV0WRZnNI1Msae4fqQfnMMMYKWvOh1ZZs81oCZHxfYduRvayalA+TPAFHVmbRZZ0DdPycIZmuOcKRdlYk+swaevr3c6pCJ1140ANJb0qgIWor7E7+Ad4JazHgRw9va/yM/0ZJwsqJr+nKgSm4Wy0d9dxy4HtTHr7VtoV3KQ5YePAdjZqzhMyPyoPKTkN8YOQN0Z+7OGmZJEd/sOHVHU/4z+uLrBy7Hd8fW0ICjzVgRF0R2NdoolDvQ070mILe1f0cMiqGNQPcKPawH17ZOwhn7wrAslmR3Fl6jbz2ieKtJUn44ZMKv+0NIqXs69Tyto8azdPxtqIwxDoa0pPd98GsfgeFZVuRQY4mVFXXcF9RJdmqu4IgNqKAsAk8O+gKEamjoNagBmY8vw2z89ewaose9v94TiH65rg9/SNsKJ4CI3zEqFNsI/gPvyLvrBkYIuFElTJEdG02LP+hjO8cZflqtgrYdHzCZ6FRuNDkC0WOsGItmdmcdHIX7NXto7zSe+gt/pV8nk+Fp/bnyP1tDQZjKqdfLMZHr/fzzjgzcGsVxQtBf2DwZB7utlCAEdiAGo8VQDykBkqODNE1qxyQf70O+M5C+jKYhxqfzvB6M1mIKvOAnWPv4IeHV3BVeD14X6+E6epbUO7eMlIzXI/epUto+OQEQH/ELDE5DpL4CytrE6lG9RSvPbqMqugaRvzbAWNX78SAuZNhmnA/hl8wgfPdi3h+5EjsV8nkurgPYHG+GwaF3rKazFgcI24O4bVN/Dcniize2HD/rSBqSB5Ph78Uc9KsUPRZokWnrNZxarEkROzfwO5bgS5/rEQbcS0KMHzB2/JukrZUNYeKmLIgbaH5GWYwcVwg2+zcxkWFzbRqgRykddzi65kV7FilQuYWM/l47kL4ZSwLDW9Csau5CoMXMFw6ACA9W4BXv2ihkJ4l3FwUSK4/TXH1TUEoyt9BswMVseaBLH3u3cTBfotQQ3ofbBiIgMDdTpR6wBl3j1AGN8f9ODwxjDbFBECM1hWY5XKIbsmrYtujNzS8MQcaAt5DXtA4GHDdim5qnfwvownXKLhQhbIo/t35AJ/+eMuyQx6s2hcMY4YFwKg9hWZ8GGbJqlZ6LpyM189MhJT78Rh8Lon2ttmRmZEMTnIVgPVaRmir9YYuCQJMGDUZ7kT+5IGgdv54T5zHuG+EDV5F6PxcF7pnPMVziXP5uuA/spQ/ReN/99BXzSdwdkUjV3Z0UcGTB7C6WhnSErxZ9I8RvRrpxt2bajDJSZGmvurmhM59pOl+G4umm+CxZE34b4cgN1X3Q7u6O31Z2ESHdUaTlKU/F/1cQpUOqyC8+il6HTCF76YvqHLvF15w0Yk7nAPJPDMADzuGg3yAEHReK4dT2xbjvwXqYLVnHtVctsJx2Y+h+NZ7eP00DMeUyPEv+zZs8XiEYzc5U9kZI3C+3oJy52cj1k3FXbYW8HgwEyc1FKDKkwTOXqQDQmcqcPNHTdh1QIGumFhyVtFHlH76CIKE3lFp1R7aIjKXH7nbkarUITaMtAYBxxYuzhvk0lU7+XbHMG8vG0sKB7JI3K0Nv08dTZpZ89i1UBIWdNZRyaPb0PjwLo5I7cQdQdLYEjYCLHwk2E6YsemgFaRlT4Apmt68zCGEZor1wGuvEFDyyYf4OQIwENNLLVOV+Qwd5/AbRjDBOZRrhDfDLKFx2NV9BDaIzIFl/ypJ8ewwaeiZU6O3Fq6cy2AzvhJl9x6kDOkyUrwQQyuMHNih/iGQjSQeLIyB66+3w+PRU6F5xhv+GmWMe/cDjh8rwzW3zHHvf61guekF7zZrZv0XC/nSUXlwqDahNp8d8KP4Dki8FMOIgbmwZ5c7f0hSAYzMZtPICzB9jw0079rGx+M+U8JIB9YPT+XoIVmOeZyFsiYL8OTpD6jXYcpTisWhZqEziAwx7BlOx9rwc3zYMY262hVwl/pHtlVSpGGbbaTiMRV+WYzBtlp1Lt+Tgn1jiuBXgz1/v5yMD6S/QdiTDHBbbwofg5UgfkiVDduQHBNHwYJvmnh6bwqKfE7DEVd/8c0SOQg6VIB+hgqQEz0KO6T+wqnsEChcIcbjZV1YadU1eNe3DQW/h5CkcAncuWYOvdpbsOdhH+z/0cDa06eQ15jptO7OTvArmIT92Q+orMEfzl6wgazFmRhbehWOfvpIK7R/YO2JuzjuUSKl6U2gN0ErsOzlB5KVkoP+trUUcP4vpHY/Qr/VLnjpoQ0kX5SnB1/OcpGnN8g2lEFuiyL4mkTA1K5ONjTWhbqzndTlvRUOvSjkTp9MzhoTjw/9krghWBHmb7zBgsEjeGiiAM0aYc6p7brwX/d+DLQ+xLP+K8H9Q8/o4hiGpKwbZHP7G1y1uM9BH5Rp3lAl7xu9g7fH5eBOcUH4E9rCFzcqAKM1q7V4g+rjWzCrRw3t5gqAsoAI522Xp5bj61De1AEWnbKBvdq+fCO4hbonDeDpktNwKvc9FCdsAShUZoEjzixTEErHQk3guVIVdt7bD8KayfCmtJf/uCwE44aXoFhtxqD8lMc0KNBaFTMosh7G9s8vKfvAPFR5GYDrFsbB4DRxeBsjxOuLdUA2ZAWW/GS4lTIXBVVXovv8SsCJ19BlbSjDoDj1ey4nYz1/OJnchCceCcOLvF98SrUOx1RvAd+913jj6QP0sj2ZTNOOwr71ynRGN5dUnJXgwDZnkAgjitu8n2JsUiF/IBWj2wvo2D4PHnf1GlcYaiKtlAHtjfF8+v5FaImawC32tZgmqM82ap/xS85aLJqfj52yszh8tTAkTT2Defry+NhQA+QUTXit32KcU+NGActeYb1+Lp1PSQM7zzEQdK8Boo33gdXs49R6QJLmLxtHErPWst9SH9ghK839rqLwS1UbRiUaUtfvo3y2/hG+WtQFowxswB0seMGz8TRrtzHkRzSD/kFN8HEESM30xprQFRB2LwWdXU+RyTxXcmyeRwmKVSTlP5kMtCwg6cgxun/XHXcrDOGnabksoJGEXjuZf/f+5H8LZvK6Wl/Y91QelBdo8u9t5Wj4bROXtx7gU788wTb1LwR7V6DCs2o2ajtAHm5G8LlRFa9uvofmS07D61n/UNx8Puxc/5JmNi7DynUh0Hz4Ah+yNAPv8c3ov86dHq5zQ4nUcg7/SygvtBan7XQm3Vf5/CZ/gE6dkoWCmYKsKl2PDfuu0OZOBYgrOUlVP8JIy24BDjYnkXbPMjokIQ8HZG9Dr6YBtFnPo8UtO8G79STmnn3IVqPWUtFjA+pIyCKLbwZQPOsJ1AU1UM3pO9igmMIH5+WTbroKBrwo5hsfv9Hp+49ofpE1WK25jCWJybBrygtYPO82G0qUokC9KFw7doLqoq/hRr9UfldnDUeVKvHw9jgqmLwRko+oQdjCW3BHeSlPmzObPtoK4w89MX43LAs/91/DvVn/cF9MEJasaad2r24Utkhj1xYv3OqmyDuettGquyIwPn0D7Tu7jc8FuHP9exlce0WcNo+ejPUX4zl6XApMsPvHw9+0YGvzNRAoOUdu6cE07bch+Tl94x1H//GC4D8gf6WHKiLV0T6CofNDILzNv0FN5hboqT4BC6fPINlKU2wIasepDR5st6IfxJJFYHitF/a9lEWZTSb86moIzFWqQL+kNrIJLgLTr/OhbFs5p8boA3vYY6qIHR7JO0cX/+nQreYjbL9DG5fck8d90p1YJW+JrZ5CcPatDvx6FQjxjt3Yo78XhpSDuTBikE9nH+BVG8zZ+bskq0gJwbyU8aAy+hkcW3KZlDCDj4v2QrrUTDL3YEx+cpeidl/k3wst4YeIM2z4JwWrH5mAhEkx2W5Twgc3GnH8yNV4LlYSMuQ/0LA3w5ueN/jssx27DDTSvdbDaLDDmGYmXOWCo+UQ9NCdrASk6bGxJuS9i4MlAwu4fudzshZvpILYLN6a1IeWgS840nIR6mW2k4e9BgT8FkKRwnjIP74JHTs+Q3piLTTEPSDJxEG6XD/AArWu4HfDEIrKRvHxnf4UU0DQrr2Wj3uP4bemS2CnWiMvWDQOHvnEUf16PZBNTsRtl2bQkqW6MOXgHJhz5BuLndTmY5PP0PnjDSBX+QT3nVaHKFd/9N89m9wPboPVnRVw8+VZMnrqRuF6x0h5lQmnj8hCr81WUOVWiRt352D36Z0sH1OL78e8xvBlWph78SpFV4bhs5/HcM6AOdgKvIL8YBe8/rMR/e4pgf5jB/D8royCc1Ig5OdK6v1uCgsPysPf2EKafssJRG9H4MmWPSx4Tp8+vayGb0XlLDJ9P6g6t6C0jgDMqXXmix3SmHkuFINkg2lbmzRnxgriPvsNaLesDFf499GADkLbM1dedekdmxSexQOR0+lX10Tw0z2OlhPf8Z/xF0h+exXlPzaG15cSqbRGhXz81nCEqjSX2dzkqgoHClpxggKlIpiXX0C73+YwqCzOle8KEOsawM9wKX299odeFZehWNZvKJviCyEjyth10AbWfnoOqaZv+ccyH2zc4YqTD0dijng5+hULcnORIReZr8dMEVl4JehN55ZrkO3Kg+R6aQnbhKdAoVIFnM+eSeSnQVvXq9F4GVVIjmknAaef6Dt7F6hqCKOxnzVEXVKjCQaP+L9PfjBD+BQ3JepBVdsPuGqswnIlg7TRyIPzqlJh1bQVKLokiovi3sGRWW64M9cSZrEBL6oywICfk7mlop1utA7gDVs5enhJFsX/E4HQzFcwIIkQ4JdHK2edgIPjYmls/neAkmD8tDwB3gxqkLvzBxCKnApTfwPcfbablv1S581eOby0JhhPX/sD7pJnsEC4n8cdX4izXtmRiKo4yG2N5Ac53hj0RhL3xDriXu8BljJzR5GV4RRx352vpy4ijf8EoO1wINwzOQLiAXPQZaYJuLfv4VGuKVAovwX2HguFkyGxrK8rCdMeHeJXWy/hknvFbHLGCRUex9GQcBRLpETy3BNRYJfrBq37tMH8ykc81LSe4jc78cFDUVj8tAKjf9+HK1OKSfr1QrAtzoCbb8XAZmgGnv6zDQK27+LAt4cp0+k46Cd+5Tk9arhdIYxe03SSrJGHW7uWUPkDN2xf18QFF5pov/4pFNxYyodFRMG19y9bT1fi3FkWkFX7FV+vmYxxutvo05gQdr7lRx21HVSd1IHT2zahbPYwaDpZQm/ASE6d0EPLLCfDnZ6L9P2VAGaXlaKfkSYYDRRjwroo0v0+Es7sW8d1PA0DRorhwR1ES148Z2upfFSrNKQQl1eYUHeMmlMnwIT8Vliyox68xG352dLdVKV2gxVCzGhT7DlY8OAazyw8T/lpQpA94ThFbDRk6fGt2NakxVFdOxFn3ICa4RZSrFJin3vOdDLCELS2yqDZLjOuHu6FyGmheEJZn7vlq9BIoA/v3v7OVrc+44sHtpDrOUwHjt1gSaW5bKczH6Zcd8ap8RUUIJUFM9+Xs9qaxexkjnB6xiW8d3I0ObgnsiXlgUrzR+zzUKINX4eg6344D1cepQJzMxj4Vw9S7pH8irbSqKXJcCvfFz+UR5LGnR/YvdGeXn/bhOZy+rB4cxDJnJXFsMdzOdOqijxHHadyowoaKeZPN/t+oQNN467D2rDIJZcNBBsYYuait1UBfl33BKYJm0Ll402YWRyDv88Wc0qcMEhdtiffNaIotNMZP6qOxryT93CikQEFjLMkqYBf5HRSj830ZGFrzEmssq9hvqmC16a7o1H/dfqpegI9Lm2DEMsBlvoQD9EGkiBqVMOaDyIw568JFcmuB5tuBT6yT4hn75aBhxaTwXLiAzz3Wxx0TLPQtSAaXn3OhPdP4nDw1VzydAik0ee2cWuOEfZEhOCceXJQfXKIvVTGgs9KQawufg7F639Bc+p8ELW9zmIR2tg1yR7zExVgvZgSSxkqwEaXQZD+t5ert23FBQ1jySdnNnaLn4INr3VQRVgdWh/eZN/Zpry6czMKjEomwbcRqGlgRONmB+DzLydBS6efl/UxXM6axQM7FnCU610+VGHGV0ovc2roTmw23IOOU79yRfcT/EZjYG3YdBwjK8wS5pJwc8UnjDsJtGLqALp0vQcP39vQZneEU+9ZwZNXGZh5cw2Wyo+mFJlusKz8gAG/LNlr6hv+aH0ALPxWUVkAQFiJOue9LwFr4wS8nKEBavM9wXPaMH2HBv64bD5vuRZFG2oZlmoHQaTCBKoYb4/yB/bQfUFB0jz3Cg44fqZtz7OwInk5J19n8Pk8HzY7/eOn233A48Rt0pD5zTIt5/iBbzp3K5tT3Wpf/FRhAI3HM/HoD0WafCgebrTfhTsFz3DlpsP4oOcQiV+ZQZd/BOKym6JgK9SIcxsS6eR9C1icf4MeG44B+WfPaJVQEFV+sMcW279gnqUJgrYxEG67AIN/PKXePd14MyOcq/eOg29nltPTwwnUtzKP7o+bBImohf98PrBi9AGoGp5MPS9OA5z4RWH6fyElt5ZaVzfC1WFlcMy7jzlGP2nO5kjKS3jG2zMtuE/XC9QlZWnoXSxa/hImn0ENON7kTLfzQumFphBddfuEA04/0XG7FEjyK1IIDKc7c5RB2EIR5DST8VyeDuVv6cPnVQAd0Vvx5PO1+MXyBkx1EKf+CZc4U2QEzFcEltdP4MRfPTCz5QI+X+3Ef6qNcNLlHwTvx4Pf3bVg83Ic5FrIoME7bSxZv5/crDtB7JoqKhsP8Og7q/FfVRmMzzCknFRt+CXkBoFfNEBFRok28XRqvjsTlumWgqS/GFU7NMBI92+4BgyhfGsvxX4cYAlTD1jSlM5aA1KwtsMV7SSv4A2PldSdNA/j/1nCoZzD+F/nAfZ3j4To7iGwOtYDnpfFqOXUIjh/Tg2g6TiffKEMK/UGYMsDR/o38jY/eeKGX03EuCalmYJ+fuPlXz/z9SdbyX+xDZxpXkwr3ozBNsXv0JfqjT/m6oFe2HKqruuEpy82QkC8AFb7iIOshQxU3zTmgUO5zM+zcdohT/BJvgTz/VQoKAuh3jELQ1MADqpMwsE5lVxmWYYDjpEEESUwFDwHkwYO8ULZizSp2pFrZppAyfjnZLr0PEZPFaOYu0WcJvyFnmrdwNM2Q+Rk00tnPwO/U5aCJbGZ2Cr1ECWFLWlk1R0SC9HD5VvuYPXqREov200zDEVoo9JoyP7ewuzYAbkmoujTfgkneVeBhEYz9Z45wtuDl1Gj+X4e0JSDaaKKfLRFCcz+nuO/ZcKofj+d0lt+klzrZ5z9cxy03QhhDd8p0BBmgU8iL9OSFmHoFlWArzuecWuwJs8iMfj7XA1cn+9EcVchkIJ6PJTxiD6fuwJn2nw5PWgXTplyhlKCEvB6Ui2Nny+GB63HwfCbSuhe+BiS3Zmv2SPNSI7hacOPIHHjJdrYvBa6o2wgdXgsPJpxFbz+G6Qju3vBbLcpZTaGwqGxHbAy6yUtedDAto9EoLRuHCwsbcGA/Iuw6L4TvtxzEDefNOU3YXm0byAeLk/wgfmO6uR1XgPkPkxBgUV3aQvOR5eFvuQ6cTMI6a/Ff+Ir+XyjD7caPqDhBm3Y0rcfEg5K4de9BBp6LnRDKQkz1/mw3qoTtLf4NsQatJB5pyK8XOYBuefV6JxBOB0szSWbl9E4IP4Hlex7QPzTQurNLaK5h2Vgfok2d36bTiW+R6DoYBtcCbHnSSJKHEbzaJGdJs/LzMa2eTqAonvJP+IqJfhlY7NSH6heuAprpongdZ+d4KaUhN+9ZflypBko7crDuwcD+WXSNN5l7oqNexPh2ppQqo8/i8s1M3h3yHX4fNQUWvarUV1/E94dNEH7E/Nwse4JmGZwAto7F1Gv+Xf+pp4CPjFWoO/dx6+7c8j2bDNKhq3B179yKXzeDozZ9ZUHTb0odXkki/21AqGaapq+P48DJqrzuQsyFHpbEMQW/Aa34VvUoHQHv63bhgp1SjBrVzyN7K3DzQ/XQdnwa5w96SE7kCdY7L+FXZvP4sKmAGwUkoDLXSbw97U4dO+PgkCrQEhecgvfb5kJon6ddGnPVpZPk8BlAww7jnSggY4Lzt82DC6zR+EDgRqKqT9AVgceMK6Mgo2mdmx2SQsebn4LlqYjsPGpBY8VeEsLM67gmd3+dOJaCLWPLoOjAePwnDqBW08qmW0p4sIrx0hrpDJ+Hi1FDYfzsHPdaXAskMEFz8zx5V19iDtYxMpJorxL3patA86i35YLtCSyEk/+N4vHnzhLRkN51DpeFprjpiK0neDrrq44FLsT96w5iSeMldCl2A7Ppcji9Pi3PNlNEt4MnkKp7jzw6t9DVTPeobNTId7ZkooKB8/j6o+xHJy9AOcZyUCsWxqYvA/kl55F0DtxOxUn9GHLG1fYUVtBYd5aELSshzbZasFdqaN0/7M2qw1b80+pXaw8zhk8U9Lh2BErepNuyTsc40jaQxs2hRtQt3EkH9s4Cl/QAFy8kUsZRj4sZXyB03P0yKTXjd1bpKFSWQ4+WhNuyLSCrKM1aLbrMp9OW0jjRitT6M71eKjlOSdoMJzqfgfXjx3EaJWVfP6nC15uG+bdG9bTN5cReKcqin1XmRLuE4bTqbJsNzCGprbPh53Lginx4Bc867EGu+pySKR6D6lrKILgIVOw0NKhA52F5GDpBp8j54HKchP2WCaAgbf2sFGoA57riaOz6brQVjaIaXGPQNr7GaeMjeRNgjH0ItSbHKxOoBUtQgXxR/Q5B+C9/TDf2TkXlvlsoFuxETD/hg+8WGRAX9IEecwkIOPBeDqWy7DH5zycVg2jz85WlOFqx+FnzrNvXzTqmE/ARXGBeFz6KZR5Ezy6oMCRj0vQHWbSnxl2+EN8Fd0XV6ImTUtePUcKZp2oQqfeyRBRacLd+0rg0NFaENFdSFPa/PmxfyEX1Nfh4MgV/E8yjTfvUIHlSW/RuGoB6xsd5NA3ejhWNpUj7OVJGqVw+d4ySNq7lefiRJhdI0r4sBRi6/x4yvRwaM3Vgu1J+SwuLYBlX2bhnShv1to0FiQ9H+OBpcdpqOcPSD7Mhj1frUhz1m1IlDBHL48FrPDfMrhwWhM6xFTgebgku6k9gwDraDp2KII+KXRBa40clQhk0HezCbRw5AiIKjHn6+cFaWLGdIoI3YWJwgb4SV0Kne4bQMj96Sj9bjk/y7KFlfKLYKviN8Tr0ykqRptPH5oAsvovIHDzSyycGgB5u0z56nM92BB0mf/tkeODfzLx3hp1iOEaurXiGBv0vOIXx8fx/O4sKq3XhMwp4SBekIpf3k7Gt1v20qiJ68DFzI9j/tOG2Z09/PqzBrQ4yIPUOUEYERAPkhPPk0aZCkza4UpPQmp4Rd4dHtn/D18nBrDVWFWQ2PwQXgp9gNkC+vR6pSZPNz2AqCYHLcvnk0VHBsamLEal86bwsb2J1ZeXkNjNaIh/MRNmFG2jrJQ8bBLYBsttr0NYaDfsMTSDm5orUGrmCPq+tR7bnz9jyd92aBAXyeJxOrwxwZK9dw3xbJwA0UU3qb3EnF+nTaAPkko4N+4jNAbuo8eXX7NvzjbuyA6lH88tYWmiPehu16btTzpAZ1CO74dJwMcOPxDMnIeNfe20O7cV1t8Th5oV4nhbaQ04j+0D7BigTQ8HONTkA2QXFdG3WU9o+/KTPFthJFzb8gT0X56hTJFNMN5jAYV838Suj6rw/mh56JuUzG3nfcHN3wzyPENxZcBEvnH4JK7U38Eyzo7Qcd6ZXQZMcVb3bZhkXgopJxTg/GpfumzuQmsuasHfyiZatjiM6xZH084f0qQWuZ8yH14AOZXJsOGnPxjvyYJ5oTfYV6mQ4pWvwqZHrbBtkw+8az+BKheFaIywKqT7HqZSqVR4tTma7u7RJH51D8d6KXPhxyLelXceUpcCGTrLw7V7m3GoO5MSlsXChBXXYfNKWYx7U8B7TueAeEY6XdmpD5lFxjC+8gg3+odS9sBl9M2Tg8Qpt2D5n1rQ8VfEvSpJlLNuBJltEgPNRztI7uNvEpv8AatnHKHVjnZ066U69LgfJmufkeT45zea+xrDhc6ZWDXbhExTp7L0yMV80H0Xa4QF8e+gfdR36Qzv/T4KKjUMIWB1GSR0VmGHyhTa3byat1uup1b3qzyUsIvr7XNwa1U9KEdNhJ3LZHmVxnIwz/DE9YL95NSjhXczzlDzpY/U/FKRvyojDWaIgXJBNkjGPEXjUkvWXn0WzaPOQO6OlVQ1zoF67Gtpd3wO6D20gmXzemjhskI69WAEvqu8AaM35POE49dh0bZZuOJPGjgmRGL7M32Qp6NU9+0IDjQaQexufew9eh17U7oouL8MLj0ZwGOly+DITnP4NGcRfbn3HGrO2lNbexoKLKpFOUFl7NYqpx3dWeT6rgrfrBODdsfrnCZ2hz12D9K+kqXUY6yGVqWmVBLhxNdjdKDsaSieqLeF0gcv6N9+K5pecZuP3R/ApklAbxaXUrjIA5z+4QZMWydPzpfVwE7TAsoWjkenTF92OqzBI+adgmseu7j5Yged+kF4aPs9DNgsBnKThEl+TgGt7fLEyjIzvnO6n0fxUlqVshtlTI1Y2GIU+W3Sh+F/CRTf5w4BOvYQ/PMBCDn/4ZJjRLMPLIIzo3+DWOgAtF0WgIxUP3acl4rRX1thxJMo9pCZDY+ojqePHM0VgpNQdvpkevFACk79qoWzw59xteYmXPRcCrJvTafk7ipUWtlM160lMLtzJ4ld1IH5MafJy7uSlGNMEVeMgdylo/DwmNuo/fkJ3lXR57erxuHpF6ZgGH+OvJO10JnsoCiLOXV0FlQPldKDsts4Md6Ffz3cQB8XmYDUhNn447Ms2/ZuZxsRV87+bx2RvwtPk71LtzvvUO/U0XR+1Xjo3RpK2SuKKXDuL3R9cR0P6zymX6dL0dfdAOK61kKPeidt2KYN60wW0xrvWpos8oIMndaC4oqnfP+kIn+6kwG73pRTQaYtapIGvPXcB2XFC9lhgTYturcMdBQ3g79MOm3p34Mxf1NYq7qZz2SoQpvSD0jtf8Pjm+TI610ff6vw59iqLihsb6IGf0u4+GMcBlySA1YRRbvkb7z18xBdX1JMTi4ynFMHfCB8Jld7hcGbT8s4ockaRnX9gufWwbQu7yiq6EtgprUTSk8KozCXLjLUi+C45RNgh6EiZBra81mjpxw1eAXfHVKkZJdYsBqzjhSv34L8TYPoIHUVtPXGwvn/Ekm4ZB5OU1yGB1f1kKRGLUV3TEeHGc1w7NYpuhH6CduaJ8C9vjz+WuINu16NYv+OCtxht4YsRV5S4PMsyOwRgpE7RsHmVn3YvyaGzo7vxHB7NxQXSKWNNd0snPOXtbLNKd0+le32d4L/PWMY+14DHIW6yXteDT+68oRKrjhy8/3xMOHqfczNuMJy6rPp+hEFmPVjBP+tO4SFKzux47o3drlWouHoG3x6fxuIvtKm1FXTKN1cFC6XLcNtmRUk+/A9SNwieibfy4Vbcsh9fgsEXNOg6xZpsOX7JDiy6BFY6SdzaKU7/H0bwOGuv3H06xZcXj4Spsff5CbX+5iyRgQKa5fTcYkm9r56GD/tNyOhHZX8zvY7/Lh6jafXm2Hus1C0HKMD3TfaaLDiLk6+IkxDl8ZiuJY+r1n1FTeYV+LFDmMeSn2Lfc0TQGasAMVaAH1aZki2lzpA+sBx/Hk6DFy9IqFpVCzZz/7LunOFwXacFE9KMoAX20VhZHQDLniVjjMlRGGTbTS1P9rJJkuDecFWSZCInIxXLSJZ8dMK7K94S53bppNgdzCZ6N7B2TFd6KdUB33ZOpD2bAw98qwivaVzuNKlEd8FXsXKs3/xa9VUSG/fAfc3q7DkFBHQHjGI4V7RuHmRGrywtEGz6D7Ii3zHExTm0Y8L2jxb+zkY/tQFUZ809E8+xaFZrTym1ANF9MKoSjwX6w0ewMGL5eSaaokgQeA6di2krJlAzyRecbT7AzIMFONpF5+w2IwvJPhaiTbOUcW3/2nD5EBbXBLoixIaDtTeLcrb3wng6JanOFq2ha3d00guMZkqjKaCtJ0hZrjOpoqVQOmqTtAotRYnh9RTjH02j0vXJokFPrC6cAqEv/3OQi47wLz8G5WHfIS5s5aSZWMV3ZAOgxVNzhAfEYWafghxImn4Ij6MNz44yCfmjmPfc3ksn7qGa96XQtEhHfo50ADf+vTg+4rVpDuvA54kviSV5+nw5HMRBkbao7/LK/CwK2OvMTthro8yPDeeQbml53j8hXpUrntLXWpXaYxhA0hPa6DHdgu41d4OR32WAmXfYJ5xqxHOpX7hVyY/ePHyp1xVowAZxyPgvx1rcJN3MRwe0gXxc/d5V6Qr7i7cQ8/+a4NZX7biCyUz7q3JBs+SfxS5RxgLWBzmVJjRoo1p6GlbDFVSu3nnJ1Ny0M9DHfFscllGUFMjjH0JRnC0N4FdbazIXe0wxc1bQmcnOeHuAy48bnwgf5aTorSr4zlqiiTkumRBY2EqZrx8Dhkr5PHFwmUk7veRX8gZgGfPMWwpeMG7HJVAQFIY0+QvUu4qOdx1ygp0ans5Lecp1r5WQrWKS6RaUEVtGhag8cGW4m5lklFaB55Ke0DZS3ailZwHXXXchHrb1nLWfHVeelYW8OYOnrxXjpVyUuhc8Eew/PIJK3p60CGyF2N/HsCxa+fiuEoZiO79hWr7O6C7Qh9/1phy4ZRqkHD3x9frrdmhrgsUwnbC/BB98DzWQX+MMmm1lA+tUPgOz5eMp4GmxXR1eAfnryqGk6LB7CFkC9HdgjhN4Sn/GJnCMe+ec72iGx9y0eG2OkvItRHhIjczHFGvAK0qsrR0wW5a/VwXe1/94ZYfH2g4tJ80wxHGHV+K/46IUIDleDid+QmSN9yEeI9Eany7FprutKLsob/gfFgIMwLTaKFFIeT6KIKJkzQ/G5gAk25EUXh+PIt9EGXt2T6wb8xtjr7bwqtn/QfHwgWhf3g0hwcvQqGRXdxwew2OrljEZY017L85iyadlILfV83g0qAk5OgVkonmQpApr+KykChqlTCinNXnuIaDqGJNPtfmF/KnR2bwr2ESmhicZxOFyVgiPwc+/LzNTQ+9+c6cHL6FK+GzQij6jxWAqPLDmDkwEb7wUf7jEI6zC1rhcvQOGBU3jf7W5eMvtXl0xFUFjvd6QVGxBw+a7YcXkYqwu59wUFOZP02Q41yeS+u8Z7PLTDlQ/PqIXiZfpvU7JkDttD7s634DsP0H6SQCXNtigCWLm8nDUx4OrZGilJmf8V9SEA2+SsVtylbkmqyMzSNtOfRbEYNmL+15YwhThbWwzvY1CAe34URbCfa8oIgj3UUpbP15NFYdwbIR7fRk+hgIm/6df7p3o+QYJ8ptC4A8Z1OwztiHge4zKXpjNa7t+I7q2ULwXeUPNGUaw74za/C22V1oL58PCQ2fOUFcGOSOp0KIhD8W1iiAudE5vl0pzE4zstlvTz8d0HwBkTqz0DmkHtJP/6G54QGs028Gz+Y1oUpPDH1Q2gNZI/bxycGf9Fs/nfY8vs29b6JZufIjHBTWh6AlwnhOrZM0a0PxVnQ5FhyrIJEjmTz6bCkcVLgMWzNV6VjaFAi2OgOWwSdwUFIJpDZvwm+V7jxyeCWIxR+iO9uFUFlWk9ZHGoPvf5W4T2c2r7DqgKvJrZDf7Q9Lu57AZMcKGvnhFe7+EgjF87VBRHMJrRrxFlsyI3nD5GZ0GzzKYqfX8qtTH2HDu1n0frEpep3SBN4fwYt+nILcbbHkUqOCEmESkLPvA1t89ef8Fhvq/PSWwtzGw4faq/Ru32O85ZyNk8Je8dZfCuSwvQs37xvAlsslHLT/CwY7TYD8J82gcK8bFA5Pxy3BFdCXfIHFN6bx0N0HqBS7iUa9aYaUl1Iwnk5ieHA5ZPbO4rSihSTmpwxq0wdoUbosBFv8RhtooilFE8HV7D1elunCR08j0D/Um/9l7qeXu/7AUQ03VvbygHktJfgyn+H8w0WQYL+I6u162e5wGmgUy7DcikAsHZaCM/d7yO39XWiLHgGCuloADlIc3d9J69S98Mx3GxZa9o6+dXqRm5Iz9V08AQnvdYDhIvoXmOHRP6NwbEgzdb8Rwo55X7Er0IR4VBl6DBdQuPdk+LQ2mYJ/CJNi+U66uTiRZO8h23TVUIL4E9pYkcPus+r4Q5ERBBhNpP1HU7Gtqp78C9UpflcBHno8hC7i6lBy5AkU1zfitxGyYJ4jjI0FalyzwpbXy0WzSq0p3N5egwVD33BkciPuFy0ireV6MC3tKC482MbNrmtRzz4edb/aQm7+QrhFXuC82YnHvHOjnlptKIvVxnkNbdC3MhHcOv+wTrgvSTfYo4n8XPq1vgILvsTj1ldiUD9qB2b9OcXnIwNhQelaqnUQJHWR52QnnkAHUlIpMPcDS+eOgrw366jDdBrc9rHHLr8g0q2NxJVz98KxyCY6KJLLR4ytKHOtBNirHQW1+4HUIjCIMvMf07QiST50ZCbev2cOi0QHOCvbl/b060HBoa9knH6aZka4oJl8L4wVIzow6Rbu/t2PmeP1KGtLIZTMIdD7FAwhvqo0MS0Cp6EoHPErYqnrmzhy2kZuEvuMGc/XgstEOagIT4V4k2B68ecKZSqVspKWC/7XM8BaZjrU/vwTrJhUivb9VjBJ4yFnWmvDk/5gLtMoIbO9V+Hyvr/wn9F41rQTw0TDDIi8bw1P5hWykY0J35Auh5VLFXjS1N0suEAHJ5/Whd+1aRC8+h921UvDdS9TWPW1gw7PPMCXnX/R8qPREPvSj6QLzpB2qz+abRrBiSX6YJ3/BBIdJmLq6znkG3AOzn21hw6TCGjRaALDywr4/eAzPNo8EtZ/N+Nfbnsxdd892PrlIiTtuYT75rvhuGJE+6k+8MJHFUWkrGBy3Sxyj/nDY47PIpW2qxzmFIGZRxK5WtQEJwcAVc2bRW0+qjBC8in88LzImzMb6KrhWNJfJMsyGc6w6dhPSDx+iv9en0GfF4nAl5nb6dOGOni5bgWn38yBdbW2eHmDAP4TvYFeU3ZiVIgS+NyfBDFS6/B0ylH8PsYVo+f9QEEtgJsxolBpKwR/niSx1bfV/HejAqxzfAM1P+xwoY80WMxYjGcu3CURi3aSNG3Gj/LX8JN4MSaK6cFL3URacTcL36jfojqLveC2yxC8Xatocfw6CLYugXLZAu4qAnA+9oQtM93YsFKFXs/wgcGCFBYeAr5oPAGdhNeQakkcrRuhBx+lClGraR9dM42BT0karDLrLv/7Hyv3oQiEogYA+B9WtkJERvZelZEoIjRUCqWpklFIWyVJKtIwSksS0jhNlMy0RIXKSFG0ZDWsBrkvcV/kC9fC3BOp8OHjMO0Uv0DiUkKgruLAq9snovNsEyrp2U8xFTbQYSGEIxN0ob1iCXyKDgIbEQanwEuou1CKBs+MR4eQ17y5O4bXBcSwTLgG+l/Po+rNJRjuPRk8BRbCQFcW2wfJ8/vMM3BIsRu/Rv2FFjdx/L51HIZXafK5J+NBTLAOVxyTQL7yDlYqeLJgqxU/vxIPUe6KvPLWGkgrzaAOCx2QWxCNU/V/wWYNee5JbgPfBHmYZyHBWYYJsC7dAGJfbeXbjuNg1M4kTOlXBPmJ6phXZoDORQUs9s6DD817D00DT9m8wADi5UQhwT6ainykyGi2NSgkfYJbT6vpepIV56h5stJ2ARL/EYz1NprwcPgvSUepIMRug7KjM/FHTh5Fi5ewoZsvDDjFsOC2evZLVYCMlCb+tqoJI8faY035CxbOiKVLPdq0cfA6yBnc52UZYzkiF2H7wov4zsET7gcns1uoO8c1idFihb88TWAbreuypUgTcWpxsgH1EU+htbiCNQtvYNzMH+T0eD2Fu3vCz1vO7OLuAbkPjkF0kBGolBwHUeE/GF8tzManyilLYD+NCv0P7WdG4dm8eG416WeJ+MmwZo4iTD+ZBN+/unDNntV8Q18VxIYe0M1ryLZZ73mx3TcMSLCBT1rauC1HCh3LwujLk0/o/GYzPltgj+mm62BmcQvmnxaDlC45CDmjy6mF//Bb5Ui2N9/GGx4cQ7eTwRBTWcN6Th7UufkJBM+2BaNcN35Vfx3cHP+w6B4BKix1QfUMf+x038hBB2tAsW836s8bDVlt4/j9r1xyEnMBoYV3cPzuZgqysMC0rCtw46Es+p8w5b1CErDEOpXeKzfjjKJhWPerjs6VfoZNv2tgzPWvNDfcnQrcI8HqqSHM8zeDwMXF3BBbh66DvXRJYR7oGc7nmlED8MehBGaa69ODETIwDbJIauIdGivpAIEHHmC+vxaNOWtLd/sWMcIT2h//Esu2aAPFfYfKqhRY/DEFLrhr8YMZQVCgOgdPXv0HSrP/wLWvvthbrgDfXUdATfV7znZZwaEnlfi8WCY5/r1MYZ8ug5+KI3x9u5hCn02GwZTzOK/vCHsP19HqQA2wXCfPUOTPLsZXYeYnZXzhtwFWuQBYNFiTo/I4HppQgUsvdMKfyHc87Xgr5y1Iw+vqc2hW6EI8HmMC9zcb0NkyK1hocwVexX/lR75b4O6W0Tw3xhJ2tE2EXZnPOGPYDuJpBrUK92N90VP+ePgH91hkkbBaM+hsGMK7OTvgZsQxMt8rDB+6d9CXpYqcFnQJxQ5VkZOPBE7rHKDcfTfx3qxPdO+lBiy/ZAjR2Vuw9/UKvK4iyMfcXbD08WM8PFcPJWUYN83o4dG2+9gtQBSkhHs5V+YdLxA+BkIzGln/YTnKXTlBt7cexg7v6zT/+ANOzLWCD/nObKaqAakd2Whc5wkWgmIom1aEN0bkw0hBRR5cYwDO+0zg31svUhRxo7JYKbCeNEDW9XbsaqpP5yK8acG1qVwlOJa1d+lB06aplPK5G3dVX4MtrM3KGk9gStwd0riSiQHjZdjy+21asl4aIie/oIAz+6l56ysYe2IH1Ii1wHVvB6o0S+KDx8LxP6G7tHTHWIiolQDRtecoZsRCsunK478mlpTR4Acl1Y9ZlQNppdw/SlHRhbkTf2BI1FSY+1cNv/+Og7CVOrB/XDwcvyWHPWV3WEXAEJZOBUgVa6Qjh72pycoavYyO0t4eI/jzdiy9NbTmMbfT4KSAPScEWMDqp3V07o4q1686j+eMTlHunFE0WXMGdqzdQvThAIZfe80hbQAtR9dygrsPffVbBEPe2XjC6Qv1tmQDRbYSX3Zku5AY7gthoLb3oOZXBbVRmyBx9xccGfWH/uZ3QptVB1CABnWU7CDdJBN4o7sH1HkUK6xvhZq4Ezyx8Sn1q+XTrLk/8OChbIzdORGlbNWBj28lDBaBGwKvIdVbgdfXroKB7SYkM+MN+2yaDT+TpPHSNFk4GVPLUUNX0cJKkHK9T/Pb80q0oVIZowx2k9+OkWR5aiVMzREF163BKKhlBhpOSay7QJrPLneDd79fgbX6FxasfQUjl04G/7LJMAJSoHWaIGpeucn/XY+C0V83ouctFzzpXwXBq+Mg+u8BHjgP4GOqQOpv+mnj6Wn8Dnsx/eh9+iv2gmePb8cbAX3gmTMGI4uF4HtJE95WcoMT7hchQ2w5flDQ4ruurXw50IsWOARzX0UjuW0zgwUlwGW770K7bAUqnDGCoJ9SnHctBg9ProOF/c/pSpwr6My3gCLDPs7a28Rt72UxcOAg9ow6ThlLelh34R8cd34k3hE8Ti/lDCClJ5mSV/iR1rxuVhPO5JPfeqldz5T8GxQ4/LkwRE6ShMtpYyDW/wA3XFsNHofbQTJ2FQQG2qCobyr9bTtH5z8V0tFnzzH/8QiwGeynLRkI7XcH8F71Cjp7Uwrtwmr5AKfj7KMDaDtQRDRLDaZPaif7/HjK2CYBYySVQar7FyolapGS7yL49e406177i9OjjcDfMIBE4qzw36pllNtmAyZF09mB1/Hyz5FkPvY3vqy/A/KvjeBz8g9q1jyGk7OOQZi+DNS8cyU8l0n+/xJh6Hgjdfozq+00gNUDx2jSgmhQmLmcx+UuxiqzSXD+wgnUeDCdf1heBFWjT7w2yg70l03DEXYFHOc+gAHjFiKu+ImaLu8grfsHWcRbcXDUKjq9dzyEi91GtYdbQOD8Y0j6oo7h0mUkHNAITRob6L3jAhpyMMeNb9UgMfYJelRIUP2on3R7KACujRrA5xdP8LnXi8jaO4SKvcZDUvxIECpcRvmQyc+/S+LnxVVcMKGL1/TF4b1dETT//iw+KvOE3x8Xg2ThUJJ9WgcJCmq4NHsHnSt+BLY2zdDtU4ReMytA7GMmdi2eCHs9LuLmPW1UxdcJLgby0Y7xJBOAfOq5NubKLeOm1By6vkIYlJXm08iiFygrOp+3FedzQ+cMkNtVSg+ddVB8YBx+sBsJl+sNoEbEg4qX7kDb1hQQdwXKrJ5KKjna8NfWm2863ANfNiWLYlW4NaCMw4KN4K3UDYW6Glhh2wOv3v0hp7UBOP1SDNhGhfHBDSawy308j/xiQetnipO1Rh8fiOsGgVxXrjSPQJs7URz2egaYe0hAXdQbvBj0gD4+liQxBSF4NPEQyqUHk72rGJ7Z9B8q6+mxCepAokgVaka9hYV37+N12Xz2/5jJC/WW0sW0QZrk/ZueCbbAUpmRUNtkynKL30KZ2mkaHJDCY3HKdG96Iz98KYIda1ZCc1U1bg5F0HYYAQ4T9vK6UTO4cFksTI4o4gUPg+Ds2AZMHrWAlDARgp5MhOMlU/m/wrU074wPDp0UAvbeBpFL99PCAzm09VcjCQaU4SqHkVCfb0lp0SbU/odx6YhfuG7zHDaQX0K6Pldo9vy7sEzgAPw30RDa19zAkdMuAuwXoFGxK1BU6DLPNYin7fbvIfHNBc4e1UYCighrX03mJpczWH84kQx9xeB3y26W2jUXAwVmwRT5Xji13gIv3JaGN/t3c3HbW2qRv4IV33ZAyfMmeqh1kl9tyiWv0INYamWNEzW0Yc/WxbTvv7m0fliU/VYOw6yQ53BOrhzPZD3EtQs9aOG/fRQRQrC/wIqdTjXxrdJ8ULL7AWsv2VDHrmIU2TiG9N9twotJ8tj13gbepblzv4kLtN7roGlyjqTkooMTPqXD5dMXsDi5BOWyZDE/Wh0kH4vi+j0ToFewFpxObkbrgzNo/NoL8Ge4kqon2cO4GUk4YoUGZBeaQ+l7U/LNOMh9YyZA2P1QuDW3CPq3yvClqBv4zv4m9BZpgFvdHhy76D6lSd+kg+9keY/4Dr55vhwGDsVBXqsvLiv/AzrWo2HygSKKPzAarynmQpn3XShJmglBkmZsufksXz/8Au8mzqXqwLHgbfkV+me0wm7VOTDB2Z92VNvCpYXqdMigg9ekLsQjuWdh8iJT+NlxkXVf7SQNb11c2OrDYmc/47+KaH5bGwSbvAJA6/V69L+mAqY23VzTP5US37+DDdIT+JmNLXuM9uacDm+cpXUcL866yEriY0Fgqgi1bSyj81p3cVRFPePo92i3sw+tvTLp6H1lmhEWT1MtBeFjz18o6rKgPvdt7PswnS0GzkG01Hga8bSexinp4vf/BlkveQLsTfED40NyrHhvCwl4NJLkyWPwePQt2uJ2jA72h0CSuCA77Z8MXbmaeOywLfySioHTLx7wFNdrmCFtBLUZFtDR7wACa4spvWoSKFlFIElWopj4Lfyxrwg9QuzA5q8xzMw05Gn2Uuis/wIlXk2Gi3lRuDJwBP23JIP+mt/Aw3uzucbtEhyQuEqSl37h16iJ2Hl7JHiml2J47iH4lXGNH1Y6stk4HxZ+sx9ry3Jw1JUXJBfnxRejjGH3Lx2+I94MNPodvEudyjylFU/XhNMjz3yoMfzAlQ/0SGk7wjqDStCT9KXov+foe2Ud53dKoeYELVR94AxetoW07EM7BNcoQJuyP7/c5cenrHT5ijvgs5bplLm+HZ7MOwUmh/rgkYYhj31qAXlNRdAjM4+fDdyA08HBINI9lveoDOGHxhQ6fuULn/dtY/NUAxjWf4r7vbRouWgo9hTu4+oXF6HE1Iyqf44jiTFy+EVmLK25Ph5Gjf8Pvd98plY3fzwrLg2l+fHUrGLMe3uT6VTUC34tsxTlUhUhLKuQVEUESBP9aH3HfDB6nkVfBn5iwjptdB3zmre2TqbNjrIQ3vOF0kUk4eWlGdwwbhb9qjqIgX2nOG3MVe58W0Dzcl/xmZWK8CDlLwZ2jKb50+aRoZkwL29LhhyFQWgybOB+a0mcObCRpk22A6/8PDC0UyOntbv46OMeOlXnwK92NkBqoy18WGcK6fstUXD6KDizfxsOj3uL6x7pQWqaObXkNdC1lPlc96UM7mz9h/dzQzjOZBwM5ZvitDAHqmnX4t7WNei2yAcTrIzZ9q8Njrt2GKO+6vPJq2YwVuUCV72R5W2OrXgxSwl2d/eTctYTmKfTiy/EZ/PvMEM8Gj4JIj8fZKGvh/nxUVXW1x5B2s2jQWeRNkcbXKYL9kCxn9bRos3qMHhgI49LdKOds99A6bhTFOTmSX6CvlDgwSSYvBsa39jRfitJuHfmKaQaanPYOUV2ylLlL8daONLjMecebkC/J/1g8+4fbJ9jC8OewhD9ygJuwiyuFN0Cz01PkMmFKywx1pYWXbvKR2U2c8CfMWCsWE3n08T5e8JGHB81H4sspHC4dS8k6N8lQwlNrN+QwqK3lEHsM9Aa++sstNsbxv15yq96r0DX7np439HP3/pPcEb8BWr2R1D6vpDXVT3C2fN+0Kq3Nnx6IJXGnQjGo7OCaft9fbh7TwhOa+uBtPoBuBl0hzYLtMAPPyP4QC58bkkECLxbB59rr1OOjidahSFc6B4HvxydsO/uNz5d4oIbw6YjXnDl4+yA8t8e4tWjE2ivuRwUacyHV8au7Nm6mcu3b2CTW2I0JvEpNuocwrPnE+nh5k248ZItzMjwgyfjorF1bxlKrU9l/RlvqBbGUdADbcwoymefIllclyQJI5NFwXXzUjY8Vkc+gyo4f88mHNM8icVfy1K1URaaPtXmsGFFUHQVh3qJDNguI87TbsbAsh0PselnEr3cnohqgithxedFMHRdEML7FtDe1o3wedwccLO24dJ3pqDtM4/XtLvCs+eryDfwDUY/04TLrvtpic5Y3n7OF4x+duHQfQXI/zYVgp5G8GGnGvTxBRTZrA+hyf5ww2QbLTaeDG4v2ql5yRzExn1c3beZ19R44vDHDzDrojDEzZsJ31vCaFV+CF0VEIF8zaVwZZssmbgp0fGfS/nIEYQuL2XwenuX+vAaD52ooX3ZBjQ3/BQYtU/B/W36KDjvB+b9WsI5QwxbJcK54tg8eL90MnRLHeWsd7exy/YDVL98w0d/mkCgxnba5WcExgr7IOBIJrU7e8Ff0Xuos7cFwnpXc3LvcozPyIGcsfPZNA5APMgWBXYrYmnXcup+0gd21eP5lGsPPrz3Fg8mrqZf3zUwWnI0OO/04/yypdBppE6nfsbTgfcmrO7G3HFzKf96Z4CzRxO1BFpBls80PpC7Eezvx8PjijfASzM56nITvbpihrXzBOl5YRqbx4jDwr5Ylng4nrY8ucirenth0it/aClyBBc+gj56vzDENp2/2ErBjRxCiYgudJmeAeTjgVrXHmB79H78WRoDeG4OSTUqwMNJBjDo00YLUyPg16Ot8Oi2A/na6+OGxb7ssR1ht+VXbKs/i7XjzaBfwgIP3RSiFh0jTL9oAhnmIyFurw1027mTSdxHzl5tQgEiY0C7cwvuyziHiyV7AbcEwOnTnbAiNoAP9hVCfHwude6sBgs7fXjYJwGRvRspa/5CLlaMoYCXGbBx2Q8WKWmGH1Py0UBiHVQtEYblG06yRUAgTrEeQpXRGVB4BqEsTgjsFcPZPPQeeCas5bh2adhyAnjH2FHce2SYvXPU8NTVUl7QrsrdIYoUXPYGFg+kgMdWY7CakwvvPTxxUPI1ekzy5psiy7nVaA9Nzj3IueonoUleAf5pTATML8G+MCHou3EVRzYnUa1MGkbKxIFcwEQ4aFtOq2uaODPWBsL6L6DUSD36vXU120+dw7H/zpN97AG+0nGTV4SHorpvLC3bOhH2v3gKvh0NeEEnnorPlqNMx17M9ZkJ8yOE+PcfP8xTr+Yp1iMAAl7QsP0Drj0wD3IV/fDQvVC4sGUDFu++xeM92yDt/Ex48kMCfrpXsraNB19YmI1its/QOGs2yz8Log7hJirJXAPTFNpgx3VleDLCl4Mz9Oiq4RKSqtiJGpP38KglB3nBmhA8H2qCaV3jUS9dCEwqPXnLHz8IdWmme6vMQG/CLiqbcI/XOp4G83ItVn27CF98t4KYtY/Idd4WEgRbWpsewEmCSzj/7gtQm9MD/jM86PBoP65dKwtzXx7mv4qV2Ba9jjP1ukB4twFb1EbByYqz3Op3mbNfzmGJvVLwqnkk7d0QyWXy2zlvrQa8D/5M236s5dZb0ykq4BVu6SqmwvjxYH+5k8/ZvaQYoxKsG7sO7xRbotHcSF7e4cxy2ldo3bsmuuVoA9EP74CDZAgYwUnSeFoMQ58tsCpBFdLzJ6P1kAzKpKmz1JAMPCgvgmMoxr9SJcgwTwQqHwEueqYIynuO8yFbd55f8YSX35EEvT1KpBvuQOvnpHG6UT1kSq+hRIt1HHi5gFf2rqCAhJs8f9AS1ljHkYGjF743UifVtlXcPj4Le4pnUZveU7YUNcf1duvhqKsy/Msu4TjjtXBLfC5qP8qhTZmuOJg1A8qKM0g7YxhUOhZxjqM5pM9MQa+GFdh6cgML/4oG0+iFuMzTAJ2vPeOvSkto4u06vF4gBCNTPtPGX6Y4r1MOP6YtoRHFunStYAe92iqOFu/Gk0/ldPDRF4IZ6kup3kwYDy64T2V/hTgvqILGr1qHo5XfYZVFN1jnpNC22ZKwMmQ3mcrow+3menzwoxTuX59ODY+2g+F0Ge6QA9Ty0EHX4xJws+swCt4fAqEmV5yYW8tLdCbx27npqPkyF9Vcl1DCxTfgmzwZ3Nwvs97yQqqYGAv3f06Brrrz/HaoCisvVkK1CPO3/8pBWN8MbvlGUe37udA6/wLYJwpz3HAfyTX8gBtHW2mq6EnS3zMWTbxsoWy1G6mdKsPlDvKU1RXIH663Y9mzLHKVN+KEoHWQsmgYTpwaCyv3PqV7dQZQekkFoodD8J1mAqTHr4YGg3LKG9eEjYYTaeSADfx5msTZPUvhlOZv2K3pSsIPivmehyV/ntCNayNmsWfbNDzopwiDry0hpCcEY7xseFrBOpLfNB0PpgnCg9gIuPLrKr33smQpCUHo9GiF0PU7sTTFnPLC00jMXJ3BM5F4zRLKLntNwX+U0euvDgTt6eNU4Wj0k3vLh+xi+H7TD3zhrg1+H3KxxKwA7UZbUt0yA7i+fi0NL/QDi11VNDLiG1Tp7CdVM0M83LMfQkd3cvI6cTK3mwi7I5ei55m7sPaYDreNzaUdD7M5ou00eZksgepsSzRVZ17VrgHCcWNo2+V8GF9pRhFKSWjlPwaSCu7yJstrWPmtAuR1OuinlBBMfbmCyv8cwnNSfRwhfpUcVebhw4Rv2N1wgXzuKuG7llA45i8BYVFSvLVjPpTudKU4ywZm7SrWni2MqipRoPlalS86DECWrAg8ODUKftWJoR19hL9uUZzRFAYvBFuxX3cbv0jfTy4616nkpQbsWRbM3p9ieUvaVwoNCASpeUKQO3MFyf/6B1/60/hVnAtt+KkDWjL36YhDOy5L/UiZOq/hQFMP/e0SAR9NWfz0dSTPXnwQN4oqQ8jD5VTcIkPfl/1mnU+H0LbSF47+8QJf+yY2PKpLrhc3spmWNNQov+WwXjUwGyb8Nz8VZ4/4jUscTdnygSQ6nptJyc9H4JJbQiDwOh8Wl9SCw7ZOtBipzelLYljj1BY8iQKUPiKJFC8b4LlGBXhyoRcS/r6lb+7D9HebI3zy/0PNxz+gZHYdbSt7ClIbX9BbdTW4F1RLYyGYWv1es+ajW5ydcoMSb6SQrVce09cF9GTDAthxQAqcxMvhQ9N6FPIUhaul7SQ6Zj44J//jtnuK1D9rNwbV5GNCvxB4hXuy1MsD3O33hjObIzikZjzVRYnRzzVn8Un+CJ6mcI3+RZjBQ7EK1hkIheQgG5CedZktEg+zT3QjR/fJwqQTQpxHwhS/0gpORI6jWVmFpCg9k3fPL+Cy0BKywBeYG0pgPz2JrtQ/IngsC4qy5lBV2gqWzl401SOXZTZMoWW3EzFzvgEqBOSC3uBWnLBRB05pryCNFc3Mab9xf5YZ/Ck/Rw8i5dFs/lz0SnsN4R53OWMdQtwLE1p3fAXEHruOYyS7Kd2xitS/vsTk3/v49rnZeOzaMAynqMAmp7ts17uD4rLNYOqmkfi5/RbAq0E8+kODJBtC2O7jBQ5YKwXtrZGUeryHZ+p8R7FDNXjMzJ7e/Sxgl4mncENVLrXeXYHDLepw3/UJXegUxxzrBkraFkzLzURo/F4BGBE0HhQXenC8lTRpr7GAyB5zpIS5OOdOOdGaYIrHEHq9LAp8PO/DgrE5oHS3kx9vHAH1L29wl1IdhYVPwav7XfnnqbVoeWcUJh2Sxh2ZLuyR/415tCDUaBah/XnA70ZVcOH2PtDdG02ia67QhoS/3HG2mxKlZoFEkyy0N4yCo1Ok0S3RFRayPk7peg/JcZqgM84Mb67tgauBNzEjwej/7v8plgDP+fIc1ydlkH16I07ITeBGt2fU+Gc5zlk9QOITvzHfFIah58JoKmzJ6/OEyTN2CL84I9V/a8fY5AwuHF8NuZ6W+KfAAD7+dsc5o9O4cbkg+l57w77Rh9hY0x7Hp7WTiZIJflecQH9+y0NB0XuWUTEETjIlv+hSeHRCkob/88T+I794rFwKW/Xfp8pCcfh97h/JfvuJN5IMUMbUAcWGH+BMxQeY1zgE39IquWaBKIy7rQdfne6zirUg31gZwed/r+MD2wVB1uQyytj4g6T4Wby/cz4EFqrCne1v8OXoWrJXOcGyEQmoC7VQ/86SAsrtUS3JGq8Gy6C2rTwEG/mQWJ0yNxuYwpIcBfgYMYcU3yvgigETmuA/Df5d04fS3apw60kd3ZNijN+xEhVfnOOZaw9SsJoePdYrw2ur5NGh3R7bT9rD3yIXbNdQ4TI4RWKjB+lH5GuqnT0HxyvlcGPFCvKYUg/Od1Xhwd5t8PiMO+SJ3KCtwVo4OGMUSLwsgkgHXUjuWUe5AxVoVC4C09YZwssttjj86g6t2RAN0iGvOePnZ96tFAYrxTM5rnwyfPpiBnPn/ob7yg943LQ8uCGdj5Gr8jHHktjooDiV/vOlQecftHWTIPzs/MViPbspKkkKVg58Ine1AvwnoknHpSXx3w0PXnbUjCrX6YHhoZNwa7cgj5JVJiGLAIifHMX3zRVoSOApP29woOM382GbnSHkSExmyxuKULa5Gx4LisHTORYwuLUEj4gVgHDuNraJ/sGi4SPB2zMQ3YwFqN7Rk4qEXfGmrBWFxHZgAkTAyg4Z3O8ZBjam6lATqQT9Wafx9bghtN25nMZkvaTjb5PwiFkERI2Mg+X3Inn5sRHw6k8dbq4Qg0sPNdE/zJa9biXBTk93aJ1ZTXY3p5PomkhqyJODiSKpOMs+lMJjnuK2gzF0804fm4kvYnnphex49DR4vUni2XsmglTgW9AK66JNHl74S8yJpjpupO9jr0P4bG1cuOkpJo55jFdy7eH94xBeXTmBKk9PgWHdmVS7cRTv7xiPV3cfZRn9QR6+/pkvbdWA05E29LMsis/WO/PypfXsm9dIOvrJ8PF4Ff9btJMtrMvp7HEBeB2aCpmkydlN52H4XgFMmq3C8TGL8dqOjazeasjzW7toaLwVLEhsBecd6nRrXQOUf5pJh5RNYHO3CAjEfAN7ZRN+mfAaE0+KQpjuU+ziXyBYuhlGJX6FRUf+oaPdSVApH4IGs1/otuMuD5xRB11pf942LRP6phegcUk4agQr8sqqIN751ZYHY/bAEoUfbBikC2eUz8Hew0fpx+6tuCfiNFR2+5H8fQ2K8p4O2esqqGBMFqsFykFJowv+0mjn3zcO8aYXH+nFf/fwWX4EanSu4tVKtZiwlniVmDWsGKWCabU3YMuZDj6zphQ3hZnDzJYdXPLcin3vjySjYENqEVCEYgc/knCro6YD2ezb9xCPjH/O6RFMzteAnYtNYY3AQT4zRhCqv+1BqReZIDa2C38XbYTjl0T5nOEm2hUVQJsMRGG+RSdYPTKEgOdjoENwDy6JzSMBG0UWMVtDyafusXr3f1wzdID3bB/Ns2004KRALw8u1aI7syQgu6ODdk4zwm0OcrDnXiqEHDgFgg2JMEbeGvxwKk/qOkTGgbvwxK7frCosxzEXruGvy3/ArGYjLko8wikblSD13m9qvDqFzfY18wT/Cjhl8R/ONUmgI6cGwX2XNKed/Aeaylbw5XcsOKz5ylkzMyAvMwQd51/Eh+6X+eeSbPZp6McLRQX0WNEWmibV8cx8ZVZbVId235y5cUcxL2jPA/uYk3z+zwo8BP5s1KsBE65lQF/Pcco7V45lLmPhSLQ2vlFT4YdrnEBnRzGusUKe/UUFLr78ynLHz0P1m2O8TPIuxPVuQQ9rKb51yIZ8DJW4em8gFtUpQqi7FYuGKeKX4LUQ8TcV/nuVCs3jBrgoM5LpXSyOmdgKG2S14PjIJtiJluBk18k5JwJRX3UaRHcHQOLVIHpfPIAns/MosRhg1P1sPv/CFy3cFkDz2/v8WqYJJ4YU0urxWbxF6yG92OWM1sslQbfUBGs0ajgFz5Na/3cyMFbjvk0KWGrjh6vHi2Cgrwxd2WgCUrUiYJPvgkn6j1ng2HesfWfN6gdacGvVNppwV4GrQgnl80eARMxeCG5vhoxTAvzupzE+70+GQ9fOU+eVpSw9mErLXExJ7j9pUN0eC94flmG57Cfa15hF17wHeMWPCHwWPgdVSv/gYdcSVgtCSKlcTJ/q4zEmSgrrpz4l/nYLi26Eo6ZDFdl1nmLPgbWwptkKejbognLNAQxvcYLS5K/wp1AOV75+Chsiy1BoyR2WmDcNpp+0hbcKG3BuRgxsy5qBB2SOwv4PnTQ/oYmsRV5juaIoj96wGyuPEYQONbLHJDVwaE8m8XHPYIfgfcAPM2j3oBUbKf4Bney/fNVMCexXFmL+L08wjm3gDo0pNOy7AlZ90AaBpXNwb/tFSu6w4hg7a3DaIEPecm/Bp9iZcz670iHjerrg8wWjdnmzQI88vxn1CB/7j4OCF6/4hZcN5F0apHsWHWjs2gKdin6wrUIHRRYdh7NPS/DLW0twrp/C9X/WwKNkNdI31UCxiMk8+dg8/ixyGj3thVBgZTKMfzsegsRu0ZOzR/DZju/csrYcX/XJw0HdxyRq28QXzl2mq7HOGDgwCRRi5pDzS2P6fiWHKuVc2O/kWiiWSiTlxjukfBfA+sYJCH87Cb4FhfF+4VKwdtpIdk9C+XtID6QqzgeN0J+oSAfIHo/i1sTRUL4lG2a8fwYnl/rA2oUCqBOeyrc9n8LxqIPQt20O9b1YD0OJhjCieTbtWVrMJVcHWa9nKgqZunLnQ3Vav+IDGlVFoIfxGtC4KwWxodvAR7QcbxyX523BS3DvtMPkvBTZK3cM+E7S5Pm7nMj6lCy8DvuPfu7Pht0epnAz0pAezrMhodPu0GfYiFLtL8Gt8RfPn68JVxY349LkeFA6uoIM//6AlMFutnDqodLcUEpO/IULY59D4Us5EHRZxDcuBtGnChGYUvgNRbXHoExzFgo2BuI35TWgqmuKfsEESXO72L3AGnerR1Hi25O8eqEGyb1SoSVCc0FzmSdZbj6I8/eqQvjRZpY5spRUHCx4/LM6OnF0MQnr2bC4UQY/k7xOVgqGdEDVDMb/kaXUwWdsX7mF9qbOBcWb8mC/5QqWavdQVYYfuF6cBZ+OKECd3CIYml8IPe2LuTLvEX+R6KD9PAdHO9ZBbuU+Clt+h4x7DGBW2isoG6+JUQf3o2rWWRIL8INbX0xBrGM6DgzPYDiuCIe7zKBS3h18ik9ChsIe2uW+nrWXSeKWJik2kn6GfSIncERsC+TKyMHY3gm0p1IQaubPI/c52aTQ7w2sn0B6XMM6qYd5ccQ9nNQpC+qyVdCTMYGHf80h3S2+eMXmEvR5x7CimQcKjjTH2Loq2n3NHI4kLuLi99fh5qclEB2ZzFVdE+DH5wkknfYJbc/Zwr5uxodXpcHsQCL8yJrGs9ovwpNLu/DTWwku63xDmhE/aXfkc7wrtx9W3DOAF+VfeHHgHnj/+gYt26+Du3Y609eoFtRK8qV9Q0L00GIYBkMsQbU1F8a3VWOfpzTJrn/DlSXGkFNYyyVxY2Fu7G449ncuvNppDpNzpvHL0wpQrKgLPdpa6NS3Hi5d6iEHoXT6PVTAdZX/KCXICtzsn0Be/GF+M0cYRXW1QeVlEzfuiSSMv48fU7M5xcWW0uLEYVzlNPRIBigYNEK105n8e4cd7XruCq/U32L0WA3QWvKO5X6Nhpc6Vqy6/wzvNDsA+mP24pJZdbTuvyPkuqqD08RWYNPyHfhWxgKqb9/Dw2vDYdWVaNrcqUNekt6gt/4tr+ysIgEtC55C1+DPQhXIFDwK7nqb8er6VJzi9w8fR39EuU5mFbNOdrz/CtxnnEMxMUuoX9lIKuM+4STBJxhmZM/ZBge4aCADTe/twAmJqfw11J6T3YRhrH43Ld/cysuvfmGtUn9qdC9gg2/+8GPONrQ6lUrLqyfQCAUbSFiYjHNrC1jDvInfzM6k2oplHDJWm120ommB2BQoPDSfNp2RhIeHSuH1GXcuXnKE17QM8OrMRTBg941zp3lQxp3NMOK/brr/nzHYBR7GQ1P1qOGAERa9P4AFqvPwjbsZHBppxWKGKWRhlUnCAUJQf2ojOxUMscCLrWRtGoo176oharcLbbFXp6ZCOeh2tqO/yRJw3P8fVGcJwgfRRfR1yg24ZawLky+ZcE1QOy+NnAj07gRXqumAXGUZ7zr8D1U0tHF1aTffXrgDjcz6SGvcECxMdMdT1d9p7Hpj0PZWRU2NX9ywqp8Hb52kh8VB3PLMGauvZ6K1Si8FStvSDRUJEAo+ipL9iaD41Ab/VcxiqvlEO9afx3D3RfzjZg4tuS3M3TWCYCZ6nvZsy4Rc/WD8NtAPVbs86VHtT3DMiaCrn6bhozX5ePmeLFhvG6B9myXItS0C6ZEbPmp9yQ6X3kLX3UIOvLmP1s41YZVrluA434xHPG+B1yfC6JzBAi7YNhmz5+hC1Ilyqt41i5YLCYDPGHtYfuAF10ZNANfRShjioEC9u1yw60wmNilL8jc3X5z0q4MPWFiBrcNiEE+4yu6JOvD9wnq2XzzM25bf4UvNY6hgojV9t7vASadE4OGZEyw49ByqHjTxtj2B9MTkOYrWvwDXQl34VD6VzX3W4S1pe8iZkUrP3eaR8MthmOw6BZvaG8CsPQzPDilCkvsg7Qr6jFeizaE1eTa/1HuJ0Rs3cX5hJH6/60+DSYW8TjUQr5Uuoqv8kG1MlGDU0Y0UMKWTDzrbonpHDM1595N2uCdBzO9Otkhs5Fq5l6ATLQqXZJZA8w1jvuA1nbAxFKxmTqU4zRSM0HNCYd+R9D3+Amo3ToJZ41aCx0JHuFC4iZ5V7cI1Uiug4ulTDFntjGaWRvTdZQN/6LCBpW1nuX3wEMqNG+QXu6ZwoK8rFTqLctPWBjIuOwVN37QA5I3g08Z/rOfzGR+YD3P5wm50OTuM7oPu9NKLiXeMpqNCQrh5pzkEltZA9SsPvnZ9KsW5PwYDi2hYec6HMswS6N/OCnKscKC9OxXgFurRpY2nKd32CM0ouEgTby/HgjOB+MryEYmm70CrZ12ksFAJ7t0+Swk1uWhwKRX3CV8E202xfHJOBQVa74UCPSl86KmFdqJq4HukDs30M8E6xhAWzy+g0Xc38cTyp/BM4SE2rlrMzaGyJHNbG/K+6kLFszeM2feYYlzRv7GDlmm7gMGzZs6XPcdR/Z24zcISXt30QztvbSTJFjQe0GaXt8g9M2Vgs2MapG2SRqPtmmTYpwCmyudJOm0qbfuZzC7D2pzy5RZlLI3h/MqD8PGqPy3tDeAaf2E4M0IUpJ8d43KLsRCxIB0ynjjQrRsDUJXSiF9K9Oic+TWe/2UU+GAEjPk4AouSTsLa7AFYrHyAj6dMJIHgp6z0Wh9fHtjOaasNITvyAz+JNUXH8Bh4KuAM7KzHmmbhJCsF+MFHCnWP3qcr65WhLt2fw/aWsq6uBZ362km6Ux6jx47lpDDxIqUF3QOLmDyIP6ENcyffxtIZC6B+VjN0mzB2rb3AP5ROod/NpRjq7EuZTschYo0JPDbU46EJ1WAck4KibydBuPlfCC23hdNzYvFNTCls3/8RM+TUILlOg+OVa3DvEiOYsvEhPhP1xkVSP3iLzRPaONKUhVu7aEBMDeIahmlUzEeKDndE6aR9vHLCavomm4o/ugOwRfM/+BLyESZFaYHuh/0UmqkHytK3KCEolyXe5tC8L5q48m07e3qVYobmUYoInATP2tbSkUWfON3OFmYGpIKIYQi6qzqgceRMmhuziHB/HxyfIAGaz814TrQKF5ndo+C43bhklSbkVg9T9/s2vGp/BRyM9pPdSjUoGfrBoesNeNgQWMFMEYq/tvCav7koDmXkJSOGX2VrSaFGBDLXKXB85FX8t+Uu3wlr56aPVygzpIAPbvjKH4U8+V/OHsg8Iww3HR3g5ohM6vtVDF5dDN7X2lBVPZJOpk+hq/vV8NQiJVb5MAZe+o2gEUvEWMR7FfwrEOLQC9JYr7aStluPwM0tXzjuzDZa1j8e5hnbsprsVW7qmA2Wf5xh38dczpGcw5sSsunSNi2+u3kldG3WAN31hmT64y88lJKm4IuL6eLmSvD4tIcD5zPZevfSjDxnqHcVgWqdk/Ts9yK6tK+VylNM4EHvEr7TU0NNZbUgUpVNu7QS6dqwFTTZytBsaQW6LH0bu3bHsmWWOsVfWAmnjoqQ+rgZNKHxCpumy8LolI/wMvM3iixuJ9/jf2jf79WoJbqTb0Tq4xOV02AqbccucdKgl7YbMqvW0o79r+jSqu8UKq9Klp1L0TWij2bIbqLiSXsg5xfA6nmTMH5rL3gZtPDT8mWs89UBBI5Io/HCtdyrKwwwZiGPsDQEAfgNWS7XWfnJcjbdf5v6N7zikI6DpKA4SFd+jeSRKmJ0K8YObAzL+PPtvXB8ijP56/3CLVabIPbzPfBqnkXbS27xLMmP6DyI0LvnLOs4fSHVSQFULhUBskXCJHlNH0crCeFA/FOO3hQBh1bLw9lCc9LObCTVhBc49GYabFSJxpFCRyhr00Fo+fyANgfH0jFNYXD9PYmupt8CgXfFaFC2lS5MNeNQzRB+cTmbWvo7qPuOI+9vtYSivbKk+uY4TNpxim2bk1j8bwwU6D6iVffn0MWObPAx/MvGi7VgzxcFrHdsoxGOlZxS6odzQrfgvlmHeV9XM4tXBHNUx0GsSAZoKvsOTgoXOX7GLn64rIFme+4j5YRnsEz7CtkpZ9Hy7TpY5DQSvFbtYzOLNqzwEIcFC2rJr1kH/kRI4JrqqXTqUSMk/bhP3k6S4N7lRcFJq+ie2gI8UfyJn1+L46R6dxY5JgGrJLXhYkYbHZCXAp3+nSDiZ87xEYtgoskSiBFV40/S5TDdrRQtt/2gXU/teJuRNCxTiALrFWb43H4HB2npUYtkOByUTCAIjsUPxU68rLKAjqyVgZR0Qpa5SGflRtKKfGWYJ3OYdvivx6yc+9DQGYFj1Gbiktuq4BwpDAMP7kCAyGi+NFYF4707UUM7AiPq/+G73SNZ1SeNXYyUwdd7gCOvf4Zjend4SIbwwU9jLnIO5iz7MxT7LRxkM4jWyomByyNRumm2k+UbXpP3vi7IC5Jnn7bffKTyIylb+uKo+AngdcQIEnTD4d7cHpyb3EZOelvg9MrJGDxuHCoHaPAW/Vh6IBOC2ZMNofC1A14o8QG7qousuHcmPP13Av5kncdDRddpxYW5qCAxhpquaIGq0gT0WNsDxzb/RdFMpBk3tHGHqgRZieWQRmE5qHxbCau7EIKqN/Cbgxbsf+I66c3WgaQR6TRF34NmNUXCrLFipCRThJtAD9bbtZNv2XssyviEX3u7QL5tAqwY9MCF6nHkcymMa0XaadFyW1hzQR3Wh/4CU4tNoL8wk+t/5tBbk7k8PLQFz3ifpumrv8LwYYDvP1dT2oV0fN38hVNTsyBUNgHNymw5eNRqnBa2EmreauHph1pwVNQCNvq1042pIdiwMIh/hs3irYkDFPNuCh5sdcIcq1j83SsJHTlDJFhfSUpnLlC+whdsOn+YNK9cA8/znhSUU8Huw+pU+EILonv7sX0glKa4aMDwt2zwUpbBSZrXodpRBRP1pGCOx044NF8Ogu/qo3PnAI91Ok4yw+2wpXgIDg0/pNv95+lZ4iP+PbeXY+smgP6LL1zQ+gusHf7C8VBVzj81mTqXngXDBRGYdUgNuy3i0J/1Qcn6NDrLjALRCzV8png+Tt6yGb0/mcP04Ul4zCmTpCbX8uivprCqYidYJWvzxzVf6FDtes7fOxeLD1iDlHI9l07vpQ1ntDDJWBwqoJS776vDpbaNcP1zPAVWOLFCoQ8XH/LAQTdPOqDyhHLmG0OOaz+OUWqj/qe+dFfTAutad8F51Smw/YgTyU2diBKpq/lOL8GTSCU8uWwCPhJXx7fHdoCXSTdu3W3J3ycZ0519vnQss5WW79EEhdoBSi1ZxhHNJ1Bk1XRyERmL+idjeOAjgfmfVpJqM8E3pgBVIc58YNVNkq425oO+RnghR4Ql7inRsGUm5EVWoN8GMz5cJw3CSm74WPMznT85i1bE76LRm7LZqiIO14tMYpOhS5S4Zw1trJ4M+6vM6MeW7bDHzBG/Walj9bgE/LDBmPrGePLcGAtc/uYb/3w1HhpmHYHj4ndApeUIuC2biCpjN0HM/jd832E5me0U4+iIe7TUaASohZ1jS8/lWCzxj7tsNel+qQg/PKHN/iWXSb7xDrql3yGN6Yrw6nEG76xNp8j0TzDD8QPOLB7mz5JOXBsdiG0q1Xhg714qD7aBo7ICMGfxBg47pAU3lFZw01NrPCo+DiZkToRKwRjIvPwGn2+whFfri7g95h9pNp1jMxN1uOZ9lR7P+YBBgpb4N9aPjy3KZZd4FegancivL25nG0pGxwWulGTkDs8a3Wlo00/KGSODv7mUpo4SAzWKwIwxOfg70xP6x3yGofqLsGn5I7K95kBxK43oxIMP4GQ9GaZ7VNPENYtBvOwBeB68C5Feezh0BsCphlfUvXsm1Vs04eePcuB3tpyMv3VS5f0qunLlBnzNiMZELTv8PmMRPdp3E0WSGfH+BJguspPddCIoQcSIBcyS8PHvl3jaBnHD+Rvw2+Av68sN4nVXC9DaowqHMuo4foYVV95xJutbG1jhSjb1RCymgUp7DvSWxAqpUbDU+TgOXe3j+0npsDvoNbSaiUJ0+jqueuLHhnJzaM7sBnpjYQl1HS3U/jMIV/78gMk39LA6Oxis2QmOxHvSLOsAsHCtoRG3xWC9lw5rejazbIMWD9nOJ5ULf0E6sJ67vn3Fzx/6oXv6XHarMAMR9R0w57w2X0+5QY6Xu9FLyo71++6Qb8pBznZdzzN3bqbm2arg5G9DkUau2PjmA4ZBHcn/DKbVq0pgw9gWvPXUgG59aIfuOiNIP1ZMSR9i8Gntf2Ru1ovzxn3EyzM+glljN/pOtYcNjaO55aM5mF+KRMdXSTzzTxGKbc/jeW1XQVS+AKY2BEHy5SKYNfs4L1+vBSJ3e9hrwh1KcB7Jm/OzMPOMOky8mgQ7t5tAtFARGsx4jvK7jMHTJwiW7dqLPcJ5MC7vMpXvnYrWkYP0MsKbLT+I4zfwInUbXVDYNJZmJw2Q/JhMkC/bBPuC5uHlAVk6dScLPzvk0sWze+ho8GQ4fC4AxyhLgof2bfix/CosGrMYzS+ewzyvU6wv8ps+npTBNeHGcGZ0Iod8kEUB/2IUuelGUrL5sK/yEoW7nIYx77+Q32x9alBXgG/DweArfpAK8ueympUjvb9kDWdnRUK/Ri7tfuVLK+OTMOCVGtRxMGzuzmK5x3sh3PoiRWevxJVvAzDzfAsMmKWAPtpAykkb+KA2lwZjzuFd/w4aF+1HUCLEm95NQtER1pRwuBoytAzI1VcYLrR18NuqeDjZ54U+MSXsclyPPFNWgLVCK40ceYt6DJ5B/XkNMJ4rygXvE3Cwzpiq0jph3fp2LjlZCrdXObGS8iWc+WAx7DFThV8z5TBURpL4JZJxTAuWh32k2+ld7N3QitrhVbBz2XZ07peGnPifcKTWBa4qKtG6kgOYZ2hB8Q/sYM+5a+j9cYgz4SOdKxeBepMO1pFfA2mz1+KNxj9cusQG15UTJo5uoIuCzuBnfZBfzBaEOgTI7VhBi842sO2RefThtzlarsjCD7seU5fUXVyl9JBLtSfBpXUJOFGsEIaVb0H0go2oresGLl7P6c8tfdzfkQi+efI0L5HA+N9tyqrfC4euuXC+2Vqq97aF/Alh2JekSr3Xw+FQx3PMMdUC5fH/aHnJAFeJraUZ2YZQMryZn20sYruML+i14wblj7iD3pqm8PydL1s1RMIWsQB6WWNC/vEfKclEHUacHonWJs3sn6bOKzeYg8S6q1Tg+hqNa5h3N+zFBuvLGByygBa7XWX1x3/Qat9YUCgaDSHpe2iZQCn8O1eJG/9e5bf3NCmo8xc1m9Wyj6cPmwggxcpJgpv8RvhhH03br+9AX0XAj6/LoMI8DPwq9sFWi2FYsrGNzJ7ZQdXRpVS7uxTzQr7CYRtlFjk4n91kftPmXd40MvkIFJ64iGcDTMFr+kywSRWA9FWNPBS4mbW3PkKKmguKcVdgX+hC0mwOgpe3jcEq/iG1LmyB0b15qBliCIeUa2i84mEavLoeCwcKEY3WUeMfbWitH4Zim0f4vtCKjLYo4THTCpCK+MSZtikw9fl69DPLhTlZMjDd7A6ve/UFSt8/QvMEYRhUKeQ7Yr74rXotVu+6Sztbt3CKpTocn7cGr7tu5cvLBvns/XQq1r0BXh2KkF0mTO2aVZyelYNLpLRhuYE7P3P8D9//XgaHNSWw58ZhbLq5B64rPecFe1zJN0CfJZdaQk+vD5//Hyv3uReC4y8A+DtCQzRIS1sqRKW99CMzo6ySQkNJZshoqYQiK2S0Q0VmpaGsSkbSIG0aqBBK0tD5nHv438Xz6jljj6aRUXR4xCF4qxLAps/tIX3rMfLtsKbeJg9YNUIO7A5dhf07vdBbfS+XeknihFFL8L7vLloeawrqBjvx8rJuFvkqBpu2yfKfWjHctaQIlu08AEHaf2j8pgC4OO0j/7qUTvecIkm4Qxkuxm7BCKvDZBvVDebfgulioRjZDOeCgowLjvv4HH8vXY6v1wtDdfJuHnojB+UrGBcYGYDTq8d0Jnsnh9Z20R6/T9i2YD3b3ZOHlu9rsDpLAowND4LrBVFepPEFdS4n49V7yqg29RM0LriE6R1SMOF8L9QXXIVp77+jza09VO+kzPm9gbBRMB5zxvfjWL8N3HRWBTw9ftCM+UEwT2MhWBeLgrHFSzKMUSHD8jbKnN/AgWMvsl+8DKg+EsQxO3Sx6+10XDxCBe5Yd3DcHjfuWh4O8i+TcK3tA9BdoA0rSkUwNcYUJ3ROR8vOKTjqbhaPLAjgp/2KTIcqcfeZefSrbSa43KyDQxePw4TxjuQRVUvxDp7cx0/ArUGFUuY30FfP6xyTOANcvhjBn4si+MSqnFc8D2Ddr4/otbYZpD//x7EqN/mo5RuoG1AH/NSAezfe4qzWVDqSb4m2/tZoGbWTX5EFJXlF08bBMrYWng7Jf8JQumo7V558gGOMN4F35lm+dTOQN0k2oqjzXW4U6YZNN+Xhw+ss9Ftny0Ee37CqqQ2vj7fFgYHvZB2bDbOVXOHh+05YU6ULL21uwcLQ61De0oIBGoL8r+0D/Jb4TRW10eTkdQxU/syBkHYjcA5J4f1lsWBStpSrU6zwZ70ZL1PSoZLeYU5Mr8WigH3kt0AFpJsCeMS8cn4y3ovCRKXxnFYe/Dw/jLPcEiE5sogiKh6hkLs2dPyrovPlq3HMx3mQqL6OF73LpH73azRK1ICXfUpg/aQqfiM4CdwqcuBP0D1q0xAEmwpj/n3TDm8ZHoF3CknQ9/Y/Kv9wA/VejocX/5bBVcdj7OHxDDNH3GPf6YNoeWgqJqWXcNjyZs6RkOHkQAMwD05ju+3V8GJLEK8xEGBnpbnYXXsJLotV8FKRhfCq9juU9GiDjpIayjcdxVVXTXlcugddXS2GGztO4P2wMyglqk/xhRIoNtccTrT3skK3AW+5Lw+rdQd45KhK7i9bjyY5haSh5sDiaeUQ/VMNLHV98UZdBBmueYtOz/1xuNobNEzyKMRkBxZvAw47OgaSv5rBtpG76er3++g9bAJVCqfR3bqZMWcKoUY/3upKxC0XH8O6YAUou+PGe442oszWcPbodqe74kvYW/sdVX5oYq3QZ/hD7wi9iTSAeI1I9tzxlMWCFXBVmD3LGR9HtfWSXFaUgMqHLdFM+DpKrlYEZ5vlrLtKmPZUeOIuSMbDZYfY5fNcnB/Vgg6yImwypRRejZeCSDNhvCm9gqYqeYFrxRKSOqEFg3/P87M7j/jhiVLsbDUn32gROIXPcObXMew7pY+G57+HoptSWG3cgZVaKhg5XAQ6hZZwP1QENrmOxvAPRWw5JZskWjVohNpKuru9CWwuABxWGEITXQM0easN6f3NdDiqgL5+zGXdrAL+vvszf7vymMJqgijiTB84pUTxYeNxsFsgmKMPrqCAC8X4UC6CKwKTwO5FHqlDGS16d4gT6wl27VSA3RVruDJfkqvKDVFDYz5fFsyE3M9hMFbSgAOKzPjVmCd8KUELftTbc6VHGL36dwd+f1nAB7Rq0e7Nf7wlcQAO5AxgwY8J1JgrAWtPSeB372+gcC8MDaaK4sWyLVi+9yNn677CunYzTvL9Cx6RI2HRlmPU1moBAkqPYZK5Be8tuEvBA9oc/HkXft/gAveO6OIFr6lge+MU5IbvI3OjV3xk9380UViMx3TYc3PKQrhYqA8H18vzwUxFGHvjGcaWx8DQxHNc47QNHWP1OahkmFwulFLmo5soF93CNS8FIDV6CvTYOaPZ6Sd0VicR1R6Jc/PGJVBwSRKibvew55u7+NVYE/b+10IP6j6hmWYWLr4fhFGSIRRDJaDuvRN8N83lql5bKk4eC8deTCSn0xPwz9wfePb9Eu5wVmClx+c4+7Az6xr8ANnWcWyTORkWzrdA7RYPKlm3Fub8FYZnDkV03vwJ6QVMgIgKRZgQehoiawRA+uRsFpWJp6eLhND17k12F/qBu40s6PJuxJDAcDqnm0d/t4+AaqVquniljZcGKFJr7hY6f+41mSRr8c2wn4Qz9GjLgvNg3y4Prs75dDgmBw51D7GhkjvlNzyDF/+twpcj5GFrXzr+ky4F67+SoJ81klRF7Wl/5kv2W3aP7t2dAG13AqFx4UJ6P0h469MPGpkzEpyPHIf0y9Og8ZQGuDxrpJHjFtHJ+oPo9bKUMPsN3jhSxFvDpEDgVTqqxOZi+3+6MMs5E830S2HjmGF2+txJKuadfPbpFy7MmQZDFfVgXanHo/9TID+1h2CVXInOpcUgmPwDa1PzQMvgAYy1VgMt0y7Yv248vLl+mh4fkKV/YxUw/bEHN1iLkPM8NxA/dhBmlKiBW4ACKaEFRO6ZDlsmjkOx0QNIUTV0buRcNjv0mX8c2A2+v0eA0rYFoLFwMyfds8Gz8i6YsOwIzZFJhaBLR6h0kShfgnwY+dUQ3KWc4ZOgAqyf6sCKocbQPJTEd4WOk3/CdhRUTIQOzR7ecHYmVNj8RRERU1i2dC+EluzgNN3/6IrbFDrm0EbTNAT4s1gjJfZOgovfpbivPoBc3Q6QzI6ncDNnP4yy3ANNuxdgmn0tXzCYwAlfRoPojlkc8/4oiTg08dgNwuw/+BE9CmNIzmE5RlQM4pVV/rykSRuSzqRjc9hcsj8xxIWSH3DU10vs1vMV31etA5Pg3bh3Qxy/WmgMc+ZGo4Z/FIn5PcP6GyMx4L+rJLNqFnp7D1FhvSZaGY6Di0py8FN4BXnZpICbxXPs2ruYZ9X/AudNzbx72iT6HTCB7G714KAQQfjMIGxInUqXk7qw9IYgPA4KBqGlF/Fs9lpeZnSDDYWNMdZEAYzsF5N57hg+odVI0cGXQXXPAbq7Zwc7L2nFyHQvjrEvIEGLmTAYlIeBsxdC/88SnCQwj7bfBhx/Qgns+xz5kZgMfji7lWS2ysDBr0cB/QTx5NdU/DH/OTmpz4MrgyUs42mCJ6vj+N5HMQx2nQJFlb5Q7tKF9Xcl4FfteVj3Vh3+mCngTwEt+rNuCu45PED7TgiD4J8DFFl+EgS9Z1Dq2PGo+i4dj/x8zFWu7WQ5egeY9P3g/RdnwCoPJayeJssSQp5QXLceS1IWYotMCuE4R3YQi8BspUE+5aEFa0x6eDkJQ3xsBWqcyoSY3n1kWbCSn8jbs6xPH9xddZLvqSOc9NyJ5qeeka19OYve7edJJ9so5L9W7hzUBYEeMV7QeY0n1FqAyV59+G6WxiPVL7Fx8iJ4eXUpBmvLUI3UC5TN3YuRz1XYsEofPqeI0aIoKdAP8+TCHldaEuWCLT4H0MbwDyfGtnGkTwf42htAv3YkRA4qsuy8t5B/zZH2FF4H412nKM1mJ4ctFADhqhWY/kkNfkUewcmvRkPhmAU49+dszDG6R+X+unxnsgub+suiq5E5Day3hKm/t9PcjdIQLVoPOg1KuGaaBOd+OAdRv9aQ2dKR4D/jDde3SMP2BAESnqrN08p8QDi9Fm6OmE9P4iZh7LwbcD07nQObmsmrUw72yfdS58rN8MCxmjptbeGgaizfwkh+/cSabKbMg47df7B9siLkpvXwUcsrzP/uk8IBfz719iBP8NwKv7/e4ZZ56/FJdhLmW4jDbHFD+CyQS/cTDqPoKk2YF7yebC1zSPi+Eiz0aCbfyZpk6Mcwp/ICiehOoTB14jLrRfBv+le21rjC39/64chvDbj341P2MVGDL6/cWGZfB7v49+HrpjPYsjWByv9bi+IRnvg4wQAP/GrGgtcMqlSBfTZl6JigDxWnFtGSi7e4KuIGX01RA5mpi/iydxDpV8hChZ0DP+zrxNlDETRhtBln1LhRlOJb2qHayApJdzgtU5ddZDXgxvdt8H2TEBza3sPOTfHw3/mtfEdgN0+/XUnp4fKQYP6Q1qUow+xfEtz7wwkDAgqhr6gOv05dxx9vM33bm08Wad0Q2Z+CtbkAaavdSKHXhX+52SNPjuNanTaWtc4kyxePeW9vB46TU4MA+VHQ56VK0d1xcHm+BaSOsMAqxS34e98tFPjtQ1uOZCBXXoORIw3ht+kvzq3K4uC0iXTzSwjEP/LG3vYQzP1xjpYduIdw8R1vy5oOL843ULicNvsv304WogV8wXcxFPU+pesZ+zlND9DzfSDZGOqC7m0piMqPQoeZRaD0Zio6f0vgpWsKoO9yLO6v2MsxWv3035A44PRU2PzoIGoqKpDcA2f0zJwI8gXjQOufDxxfvJz8fFJIoFwT+k+b0KqBvdzxdzcLmC1k26zrPD7RhmUv2GO5pys7ZAzThkhhyJTNpIHieGz+pUbJ3sCpi7s5SX0Dv3r2jXpyyun0Gi/8oKQBdqPteOILLRYXc0exTGX+XiDA++0YZB5qQ63NNLbv2ohR9zXgoo0+WxjYokBbDKaOXYLD9yXYI2AMr83OR08hBbDc5QgZ18eCy28prOuVp4rc0Vy1yZHbgsoZz9SjXd1mWF/bQ93pZqSfNAJOz7MA//73zEsq8XTRJbiRs5onu6aBn+oJlk9eg+15vqBiLwUzHoTivaWV/O/dLzxnMYyHRvmwTtUArRey4c8zFmBObA+7P1eH4dCzXFAlSgm/F3JAVB6J+RmTrXonP3i+jU5cTILM/Qo487oULKnzx6GYjSyXfpP3ulXTtuwBVihfCCofpUnsmCvOXrYFbl4XgGJuBsWRyTRzmit5dN7DQ6NqcPTrVG51msB2o6fxtAQdct6gCHltxSSdl8UB1z/xvbfZPDykxuvOLaQQkevwzs8KnglageMcIVCWDOCQF/JYX7WTZszzZ8EiX3b1HUH1I3fx/qAm3PFZEmUNpOHyinjwirekeP1VuDq2lKx0JkKUfjKvNmwgv5zXrKBxFZW2TAJ7Xz2cZpWD0fWqrJzvAm+W5vLGpnY4L78NH2kdoK9rd4LbymnwwH8N7P7Yh7Izv9Ad80FQO6WH2sOK+GjUaxZvicNvd74TTGeYvkkUzA7Poe/G3pTv8onedjzD8WWxcG2SH16+8QAD9hSCXth4ODX6KHhvdIDGss/8PcMDt5lKYkv+O8o4YkDulkoQLbuAQlaqws7QArx1/Cy7dwfTsYPz2e5NAtude0q5H4RwU+xPHuvZzgfiJMG72YN2BddS9o7HIPz6CP0Yu549xN3h32UT3jZGH5rvBLKOmwJ8ua5KIzZ8RueVw3hY0wAKk6PhskEl65akoL96LS1Zqg8GGYKgmmiIx6+uJ6v1M2HBdiMsFR0E3Yc2YH/qHB+oPYlJwwrUGCEHXrILCFqjITFdDmbvdwJPDwEe3m1Dt96IUmRHNMWZR0PzDnM461MPLyO/4o1YP7rzbBmFd4nR74sL6JhYLvcIV/O98utwLN8IpsoUYYiLH6UXI44ZnMAXmtXB4fVn+j25CQ2v++DCod84sXEq+G7vYH2VTeDlHkvaFbMhduV37hkzG518VbBGroGqZexQ8PRoODTlKm6NsCHFlvdwZvdzan10HGNuKNHpxbFgGJRPPxSvY360AXzoC8fomjWoMjoMSDwC5nT0UrlqPEKCNFnu2AV+qVXgttoSevzfwApNTawokoPs+Xpwpmwj3xVW4zn2q0izPhTcbphhMyjB/i0lKPVJCHp3N7AqL4a7L41hub4sX7jbS1/+tEJrZBa+C5AEsw5JXBLjBV+utuNckUb2CpwDkVlOWB+2gJz1A3Gsvh50b0XYcE6bAAbgyIIo6pfR4LeOY1F9jyaYHjmCo76LQVHHYj4fKwxFH/TgfUcBaG1/Bv6zrnP9p/dYVu/ER4M0Mc9Qkj58/0HunnoQVFKDb58J49PYS3Si7SJcOaEObj7xsP/QQdg7Whvmin6GnHmm0OmSj1a7snjpnGpQz9iHq/VU+MnvzVBz6yvAcS+UTDuL3mEW8KfAH0OXzeLFF79ywuB5Uu79AbfXNfP2SS2Y8HMkRPl2gMCQPJQ9UKS7+VspMVqN8+VMaFC3H9U2hlHvWwWuFNHDSUM7abDGBB7GV7PzXEWkpjTQ6L4Fs+T/wqua32z90psWarjSHDdD3LaSoS3iNFPHB74+ppLXuA7Tl8X6aLxvAd+V8ULfGz9h2bu9VHFLEJYZ1tEotVoUH99Or3TC4JHSFNj02IMterLp0ps4aN3hT2Jm0iBUGA7Kh4P4xjRfyErfijrtDzFqsQvcudkIYuMVOO3cOcpSMwPXlb2s9SEQXDQOE86XA6O8WXToWhjIheRzjdYESHUjVJDTAB/v5WDd9BDalQ/jf2IncfdvcZgmchArRl/HuFOB6LJODWLsRSE8+QF0FE7Hub9d+E98Jb/N2IvPhhJAPmcya3m6U7NDL7vumwClVkM0M345HT6bBhZGOyi/zRKUly7CJ6pX8cmKLaQfZM6RUrJwWk6azG8vYqO9e+ndQBQbtU/iH7N60bElECKsV0PsyV6oaBwHqc+fo2DaAO+aMQJFNuXjsLYue83ShL/9sbxC/gVaNo7nPFsFWDz5In75YwkFDn5UWeBHXQ9KeH1JGm5eeIOj17fwq0Nq9HeeGQgEE14tXkJf0qrI3u8kPI79Bfz7C0xb9gEtpcqoyzmaDn6ZCrEVc0jMLYCdTgSzfe0CGFhyjpZYnGGhxpV0dOsLGOvziyMqVMBY/SysnenOFyzaKeV0Es7tD+ZpEEXjJeJpxK2dWBZyGtWa5EHWJ4X5kyKMzvnDfTYfSHDtHhi5vQBuVL6lcZdecA+exV88GgTWHIaXatfwfFUgd+s0Uk2NLq/f3IW3MuJYtFsKBcufY/Y3C+i57kf7zFbxQ/8idDZyYKGo+Si42hM8n07E0x5haKyRjTYXlEHf5SQ3uraw64dtpOb3GkUlennV9suw4soAtey14AvnYtlDZSJcbUildvdB3BmyCccNV9I/C0XKEfrI89ao4IL8SZx0UYkvu6lCVnUqPJ6TCPqeUdQnugG9UnbilPQc9F/oCTn7HOnSOWGEIm1oy1emO6d68F/ybYwevAmRK9eB4RcXXjX7Jq9WuU/7lcRJcKEwHPm0jV0vjOAzy9dwqJwyPVM9Aq/O56B4ezMd+auC86EWn48Ugqd6Cnho2yTeNM+dQl2y+NvhfgyYeZYGIQHMbDaRbU0VrDOyBN8ecfo3vQXrbm0hP6uTfH6PAo65eIB/KH2lN9eTwNFPDKe/nA7q8emwfUw82Z/cwpH6zrT8cAq/fHGOi39JUeDBYq64vgTuGxJsMrajgP2eWLtpOYTVi9KJsKlY4PSAvR1ewdYrO9n9aiV2qE4Do90h2LQvAbeNi6Hc1DCWqlmBhyvHw3+Cxzi0bYB/FBxAxacTINf8Ox2euIvOaP3mrk+OlDVFizVqVvPBjHLaN8mGO0sjqSFTAOYIzkRh4yF8cSYc5FXLuTL2G1aulGGNZf64b9pSeFC4guUDROCPYgM++5GGOuUzOW5qNSxpDeTZmnZwbKMByDuKgWGIDP43ywS+709BsbDH5JmpQxnNaZQgEcjxWdcwrD4NZPyH2DLiH0/2nAwFPghNU+J41rAYPVDugtth+fzg3wZsM3eFqPcS2BDmxn1rZeH2pAjKOlFHJgNZpJaQzQruTXw/4wX3Cx9hh2YTur1IkfXfCIBjvS41HhWA3aesOe7XN05UtMP0+vEQmLKVQkLe8/VaHzSfOwJGjE7AwcY3vKVGnwKaX4GwcxHXvI8AEd8++vz9Km+Sk4c7zlpgaaQLJqVvUOXDfiwNE4A1cYlQ03MdWr9mk9DE6Xjz4ls2GpSHPqsq+HgviNn2FPWMmkwp2T14zFKD2mxkWVDqE/7RmkpKDVMhi05j4LxYCvIVx1nnLoLAuPn8bPsGOJjQwjcenwaV38CCm1VAveE1VPmfx2qrlbg21ZdySswo/LM9jRV7j6HPb/IGTUOQaJ4CgZat8DUjlrMEJ0BqrDLGrlhBbYsGKDL7JSx8+gilDvzlf+MNYXOtLMx7cQGSLn2Fw829KJBkDtPHXMbIzhmgeKsLW7bqcYb0FPhMrpzrf5/frnuENnHmOLfwDf/bY06zbN7Sj5ePWMlbgO2OImCSFfsoTqKIF4Y4KugxStcdB/XXn3jxQ2FYMdiAnzeuwY19qnBKSols5Sazx+XRaGiyCFQG5sBPtx5e+WcGScesxxcYRhrH9UF1Wxk0zB5HdzpC8YlbGjosm4c9mTL8RsifV1+LouQfhewbbQhveyJh0eIItFCowTc774DBHzMSDmihMXIu6Gy6k6S7p4LATFFYbefGk57/wFWT01l/gy29i/eloxufc568H+1+dZHkF8dy6UMlWNj6GD4fegwL9G4QPRBBrZDN5Kb+jpaO8+OvohspbcQoOvLOCMYYeZGrQwMKqziD/fFLXLXgBumGP8GjZ4doj6M7lO+yAdG/itD4YC0dWz+aWu03k8B7DRJytqCYSTm89GcMSADTgMou/NAkAv4rvHms8S32svAggTo5ZseXUKT2lca1D7DYbicyDvLCo7NEYPGz3ey5ZS1enW+Nt3p/0POyL3Bn2hANeqnA3LZknLvvDxc4GsLzjaOpo34dN5oq4qOeUagCFzGrL5RHFx7FU9+SyWh5KVqXSoHIDx8yOP8MUq84sa/SbLqveZC+pc7nP8umQP8yddpxIx36lupA3KsRPPBChp9UL8NtO3NB0NcY93ub4/SF9vhITQo+lOpzSKA5XCrV4BF6njxQ68ibVkmC+dk8OvEiGZ/ql+Khrzvp1H1/jppmDE1PUnBfhygZby7i/W8c6NqjaNoy35M9r87HX3Ga9ECiA5y2SEPh+X20wOY4PA3Upzk1ciSiuAnfb7Gml6WfYLzmGGrtsKetOQIQ3DwC5nxu4mgdEUh7E8xWc80p9NkpHj8R0EH5DSjHdKKomhr4iwtDkmwOZ7e54svypbzymSiuPiiLs/9KkqKgF+5Q98edd4Vhtaozui78hlt7TGlqZAh/kFtJkrMKyEZgLgtIqrP9SXH49sMC9N5pcXqgF2DHdnwtm8Jfdjzi/tIUPu7axfeu7KTT1dncoCoMM+K18KmuONsnLIPQM/fgfowaVggHwYHwHeg0yxG153jQr1YRmHd+HO6fKAhSWtLs1PgBpr06jnVPvVhxoQqsXpUOpza8IorThaTvORy3YBbXVibj/a65PDjQARZ2GaD2JQqen5jIj9WGoIbHw4NN3+jHczdwtFcH4dYG9vcSos2+Wozbu/hBQw+puGfCQsGx4BmSR/s/q5LN5eP0wrGPLmXpoZHCNHYe145e2qvh9Rt3GIqwAEmNXL49ZIkrS9Zjpa06bLvwCaZnFpPWm2qKz7tF1if+csDwaMhLOE3Dll1Q/XsuyJqlwf5+bbwgfZ2NIqJh2m8Z1i/bxy8yxsGzGgVg1xNoUivGDqiFCXPMIK17Bo/5bylpvt4Ah8xFcb+zIGS5dqFx+Qdo7AxG71cO8CZjDez8UUlJQ/fxwT8XeNdRikLFctC9shjL74nTVCtr/Cd0EtccNcPxpaOpWuA/dt06h0699ad1TyxhdGs+jPe9jSfv7KMJXa4g43QDDMqd+WF/HKb8fc9t/sP0eIsFuGAQqPzyh6UDq/jMhXpQn3EdbMb1c1T9MpZ4tZJ6qksYtwiCxgwZiHz3CFRs11OG8lN0v3IHBTYXQF7GDEqIn0i38jfxjMva0DuZoXjrVzwqmki0Wg3zrkyHCbvv8QrTLRy/RZmOa0RxxSDDHnNjWH7xMfmIO/CHHG02vVAHScdzML7pKQV7afLoa5up4NFI8J6RRpeNvpP23ib0PP6FrubugljZr9xpNp6Te7zpvv5qjt1kDPtP7AFZHStY03eG5r1ux7XDn0BgYyk9fRCMcHs3T3ynT1/GaMDy/3LxV9NhdntticfjSnic+meI8juLJufuoe3jzZR4awVK66uAxIFEdB5KxPMCUlR6Mo6jLYXosfJaGCVPOO7uDaLCZRwcZQbv9QohUysIG8Ysg+Pj/kHibUeYFNSIpuuBm/12wa7nUXhXdyyIjFaB2s12dHv7OSq6GMpiQdps/qqVitb/Y8U75nR4dSn3Z0rDmRam3OMS1GGYC98DXCggbwV0ljjDBf1espuiw/WbitkgZzo4j2rgq3burLZ1Ez/89ZlD1lyAhoESKLCKpwh4zCV3r2KlrDyMdxMnZ7UboDmrnts1P1BIyxl8Lu1H1YLHYO0fR1hitRq7vo6APZWJZDi9hIbd5lC41UvO0LOgn+1XMSdzG2XV3MHNtZPYqscMVrwOQI99RRh9zhzavcKhd0Eo3G3az3FvO2Hs71q8eekcBF2dClMSA6G3sxTfCSZz+ZVHpGX2itbYz+fokY7cZDoFdZQ9adkoHXhu94SHm8JhVsFGVj1bDBO1H4LQDjuMyf1GU0tG4DRPCbquqw+rPPPgQKUU+Esuo2bVs/zEM5LKdm3ix1vEwPD7V+xot+VW6XHwoD8c+pPqqS7DEvWeF/F0Ez26/oHxzytTdJ/oAn9Nd1JKmB5Ef4yh3zYG/FywGFdqDvGbjjzeE/eJRry4gfu70iA7QwJPuqrBdstVMFbiFE0Iv40eNQi5m31JrCeVIm+Mh2arAHw+QQnnX9EEjw1Z6NI9lQ5s2Mcz66bDF0ckx+o4nrDRAQ2V7Ohx2SC5yirCry8d5BD8Gs1DStEh4jtmLzxNS8YPccf7fRA2YMPJl+6z5eKZULj8Cb57cR3u552hPoli+pf5A3Qv21Ge/TO099LiSdKB6Bc+HnoWdlP4TlO+ePsH+or3oM+zAOrpnowCfsK0WWMmNOucx5vfhWDOgD8JLFVEadcp7D1gQnXXT8KB6G7Kf7oZVyxroktPHUkgWweOqN3GFrFY0nEooLN7WvHLxB48ryKKamZVnGDpiLd8zPn0CAMQkS7iID1p8pD2ww/2t1HzgD1mN+pTg48+BFjaU/26MRB8RxlO7PnFFpEyJLFXA16q7YQRZ0dhTEosKDnkgGWsFMc13qYXn0fDtDFXKMB7H8U9zYec2nu8OzETdm1Wgo6WVeRdA3TEcT3ph46D7ylD9E7Ni6gzjIRkDNl88hpWOTfEnx9JwmcBG/7qtJAv+IvCfmtnXr5wE2gengoWh1Phw9QFPDTbEROq5lFhrSmfiAuH4r9y0Co7mrYtXMxbB5lcujNxWCmRPuqc4a7ajxy2Yh7Ez89E3ZrJoPz9BOWnGMLwjtuYpm0MBbOzMXmRBHqemoKHDRLgSGo+tZ5XgJwUHTx6r5YTVlTzVdWjLHQlga7cm8Czlz6j+2nb4YmBBfXcFYT+oH0w2tGM5HIC4cOUBojImMvrdhGLx9fRDadSLJwxh1L1xOH451wyEI+Gl1ZrcWF7D6wPNwG9DQvY/a0dzrYVhsJCVTCcoAOnXl9EN/MLNCPOGvsNdSl7pxImnldmPvoBve7s49QUbz7mNA7GdIrirfZYejnLHNeOc2Rh4bt0zmorxdAInBVpwi4FMdw7aRpsfxWN3d8z2Gb+DrBWqcJnM/7fu5nwrnQjZ6adgAGr61TvPwN2Su7FLsjh3qfLWVj5F60Y+4fXv5xA6Y5XUEZ/Eb9/NsD9Dsbw/Y8ZO6pcoy/XVsHp42PgscQPzjg1D6fJLeEJ+okc9SGHbMMtIWicKe86dZyD/FKpR02YR3jfYZ+UCtpDdaxrOhVGTmqgdfNE4fSP3dB5RpRjjPr4ZtAxUt41D9NyDpHTCSsq0ZpMP833AESMgrunLGizhiblSdbR3zuyeFZMkkdJTkDd154kLr8e6v7NwF4pEZjRYUQSZ/fCRs1hzvTrg4F6cVyzwpcrp8yDSp1jvKdjCblvkgED6e08fkIGba32ovivTzB8iT1OP/WZBSIbeOtMERwXuIxlx0rBiREL8MuIhXzfxgr1Nd/zntHNPFDdx35eEthYK46OKi4skjQO/ksphe/rlOFwyww+viSLbo07RPzRhH4cn0nm0mkwx/Q6jww2g64gGdzWd4Ruls4HqTY/svK+iibOwWhkMgDbjO6z7cz54DNCBmrPytNW1zWocUyajb+38GurSl7wdhne6PEBy6kZuCLEmQ7ORLAQUQM/y3Le5fqWqnclwFPjkRgs+o28q9XBtlsSVIeteXSZOFSND4FFua/o482V4P9VBgbPV/L7znaM09VCieehLBMfj7ZtoyGp8jM3CzTSHx99CBEsBJvDGrT7/REI0lsLtbdS8UlqMaX+A5BS/wdmfsk0eLePy1RaWGhqPZeFGtDymG66H1cPfx1VIHbOZGgaE0ijX47iOv/r/C75Lf6uDYT/+l7j1YhH2Nq3EdZmrQC4KwNr510lJwc/GLHciD6FvMKIPgc0lbKji3vmgaBgOak1p7NfuSm4mkZTWM4hvjJjM1o65eImVw9UDlDh4s9CsLwpmhNHiYBZ3WSYJjAfT8+9ix3KM5C3OODUqU9BRb8Dp7QXcPnybpq2VRB/fdCHovCN8PedNyTq/AL/E0k0T64fd/dH0IDsQt70ronVW0O5bqImXBN9QZukL0J+oAVnKhlga3w55K6toJR53jAy4g9IzFxNX34Jg6nlVfAfEIfMyee5xX0kmCqFYM2dGP49fge8qz1OLn/OgvYBHVBbBphQXsrLHb/zk7057N4ZAQPHWvnEiGSqLB1Fe2WkccFRQYCuh3j8Uymc1J5J68ru8uP5NXi0ch8/vOuFs4oteU5KIaaclwKHOzOgcKY1L8zQw5+aA8RBebRR8SwRqPLRwTzM37EWUrJUYGOoAAsdGoVduIsi8z0xU84QtB61U8iWw3TEVZnDD6ZS8RdzmGM3Hd6USrGH/n064ByNl1MN2eLYDAzYoA+OR/0wTLkOetNGgFlpGY97o4b6S97T0qNfILjmBUqNCedJ5j3s4CHEWqu/sZ/CKNjVMJFNcldi9S4zbD7sxjXmn8Es8A/UTXhC/eorSD7rJvBsS3Bw8qRi34UgVNMAf6fYsYRqIoSEnoT3fptpfNcFKrZIIaeXOiAxKhHUTTeA7b5LtETGhAI1ZXFH1kGaa7ASUuSO8ahcbyzfPwnEZk/gPMNjLCQbQRM/2uCXeQJYevIjTVs8niyEk6Azbj2pF6qBd9UXbFfJh0dG5+iO4Svc2vYXjx8+RpcXLCOLve+wdNp4EJbQAac7MeQm5YUVFv2Q9tmYRWplwMZIDUX+1kLv35/cIHEfxw6qgKTbBjSPmUNJkntpX+wX/rK/mu8PKWN+9xCmXvrBN6Wy+dBVAsNxt/H0QT9eHfyXJl84Ca1z3vBPESO4aT6f/Pe8xFPt5+hv20hYJRID0euS4bO5Gmf/8qC8FFPY5FtDFo/iSWNzGr4evYZeqqrBuGhFSqo7hi/1FcklZpiu5QjS4GRrKq2NptNHVsM9q7+4WsEcYlecJs0POzBxXyI7jnGD/SsIIncWQOClJM6IW89J1U28LG4STGrdhW1H/eDL6zPUpleMLwc7OS3qMV/Q24HTDAqoYuM59s0TgamF+fR4zTtQX1gJT3Y+BQO5SZj5XJMfjHaj0Bs6WKLZDadeT4bWLTbo+iCPV1duZO8QI9xSFgJz23/AyLYreFxvMbQbrobMuapw9eEZmFRQDr7SG/jdMQc635gFzsb7abZUNIlekMdQ7ee8+I46vKro59xbkXxQJhwmKRaAXCPQkvyT3Ne8i/NnNHOrQx7efI/Q/bqLwpeug8VXqwmv3+CixfX4pFsH/HLdefFeY1ha54Gm1mow6vchqss+DMlN4jDlkCheKTuDWOhHbec3s51QLbztu4FhV9Tg6Td3fp+Sgmans0jcdjYVbbmDb0NLWMp0FydurOAXn7XItXYanK8O4Xvdn+md43T8WibAvGs6FLzJRtVsV5KKNuMO/yO0Pk0EVk1sBakL4pSY94uybk5jlwlu/LBTlGI2GeASm08c3ljOQQ7CsFulm/G0NujYh0CEpzjHlIlAa9cqjrG8S76qoZQ8IQ6O206BbVni0BdXjPvFE3HsxXkgJfwblxUFY/z8YLT7k8dzfA1oxwYRqDcqwgL/aIj7UMLF21vw5219PKj9AmqV5Uhm4hJ83BVLp2TFYHrOGUqjQ9T2wpw71vympr1aINJeRO8nBuCttnA6v+ED2sXp/c//v3vNSnjE4h11X7vIikPGPGS/H+fnGPPMm60c29lLtoq/8HSqCZjXrKGtj6NoXkwbDxWex5yrSOe8FOjo2BSU7XxEeY7fMPbYdEi5/ZxH+fwgc+s69nu8Aw/oxdL+WEFY1qFKQnnrKKfgHn7OGgO1+Y7g5xTLssXeJCT/iUtq0mhoNfGoxl38s9AYP9/cghGVoiA6SptPLBkG+xOplDrOB+6naVKf+DgylfeBimEtnC7Qjqn1EhBUvQVzRTpoTuNTsFvoy+4Zt0GgbDYb5PlSkPlh9pq4BA97SMHfsJugFnKNV/x4wX/t1+Dw0D+UDbyDbSuFsO/bTor87wZHXRMAp5KjNM/nIatkI5Wt6WHdxLs8NqwQHcUT8eVVT/oefpbvrhYDeQciid44vqywhuZscKAFvy3QPnAvdg5sJqlwVTZ2H2S1QC2of1KAtQfu00nDSWweOAKPHXmB+xySKWGCDfSvlafl9cZsLDIZvko4gIXGI9SYKY7BpyThxd/JvOzxdYo6t4DTPm7BgZYqnH9ZC/Y6tNDp57ooXveSxhsl0cyP/3h/XgrmbLSDcZNX0JtaXzBL1gGHiHMYESIHYh+fsPbSbIpIFOKYR+ogcaOaUzX9aJusH8IyXRjY2YaqJ52468RlmD2mhqaGNoOI0xbslwvnJUHSdGn0Mpq/ZwzUZq+E/b9PgorMDpi0sAfVVz2jlf9ls9dLZ9iqbEu9JVEgPkIa8hctYTM3hLe5yTTYJ8QrjVfwuRwbqFEsgP2yF/hg7yba/U0FdPU209rSV6jh1Yg5ZVZ8hHXA6N8TXGeyj+6cAfgWEMPaH0eB9tsvUKQhjCsmmcB90Ux4/eAJ+B3Yin8m+8HZGQfoxZRReOmyKbycch69nVdRQ85rOHCyD7R/PaGGQ1ksSZFkLuxHeSWrIcNvLDQJOdHvmRGgIecL7rCG5pySY4mLsnhbdTM5Xs/DklnFeEPRECJTu/CeXSqVnt1Ht+fG45z5O3nHfje6t/og3bXqZmuho9BXyODhoUHbamNIsP4VmTjuxe0BGpz1/isKR1hS9ayfuGTPT5y/ewrUn65gy6OykP3RBuuLiNSdfXGPcxdWbg+C9opWVjJcjtafJODqWiE+O3ye9KpuUYO3OKuGnOG3o/xw0bVHfP/oFxDbsAAbnhvB5ku/sX/MdnDubwaVkSfw2L12zhBaxRUJGlzae4cbbK+g215DEBv3khaEu7NX2T9YebmLjFZH0PLscbzBfzcFT6/GYNrL/15IQadFBguWzuXv/0JR4N9IiJKXhgkepTw8aT71L96PObHnGX4qge1AKGQqv4Fh4Qxe+laLH2adJW97hi2tj3l6Tzb7zf7F1SuF4UJWMe4MHM+ecofp1K23sHpbCsWP+IZ/D2xBz/Z8DPmmjY86JkDa02K8vaIEJlyyZaW0YRS/fpIbI/RB0iqPrkla89Ok7fRvowgsrZhJe16+h2bcxaHqT/l9lhXmiJhzY+9EXLJnDZQVzUYRTWMYF5VLvjb1fE1yKbkmBfD3sC9QmdFMZZef86UqeS6X+kytHpJAJhEo8/QRaH+3w70nrPiwvwjZhcjQBpV48gm+iZfunqSTuTNhQ+1iEN+Uwp9tvsOOb/kQNtkXFrz2pPUj7lFVzkMKC86nUUYzQLhyI76K78A3rqIg2mSOfq764JT4AOqc/Sl+eSO/s1anj0EqEKUgw9GZK2HlB1FQG3Dj8aRA8xz68F9UF9dzJMTFW/KovvEw/Z0qX4g8BD1SNTzJdgYL2myh9EsH2P7eUU5YbA1j8vbRmEiGH5ufYl6gLqy+14urelQhMcCN1w9F46TQ5zD5tBGWi1zhviF1sD5/CItfpqCEwDu27RwLndPUcftOE3yx/SGZbs4CSTVTXpIsBblfkkGiroqaRBeizeQ9EP5siGWarqOB9mw2+yuCby/tJelx+hB6YAkdlr9GXCfPW5oWoU9fKd9sEYWTp3Shbs8a1pp5l2NNjOGJQAs4vRGjuTUf6UvMYYi0PYtvJxvSRK9DsFaEaUDxM4lEK0HtygScqBNCQp2D2HRVlZSktDCj+yh/aminML3Z2PZxOe2NU4P4+E1gPDId9a9OpKs2T1ByWiKqDfvzhqTz8KxbmGrkf8EjXSXY2qPPKs3KdNx9GA3HBrGshgDdF7oAf/4EwfLr0vitvJ9VdNQgeecgzzlzhhq1irjttgsXLv3FiycYkOmlHhpKSsXhqmXk8dUA9BIXw82W9ZhaNZVK58WT6NIyzKobZKPKS3BkjQ0qnF/Mv9JHgbRlIRetSOXsyzfBbNRGem6QxFoZf+jNg24S+idJfq3hNHqDASSesgDdg9Xkq5yMGo+14N3enzSzcCv3y83k1u4cDIhUhrl75MHsjxZoP5mIf7ZmsfDvp3DCdzHJBuiRXUo6XxqWgLk/zaglzASa1phAkNsCfpmhzT+WSNNf5XskFeNJj11KcOuL5fRsrSbM7pGHC7WzQEmyGc3mncKzTbNQ8OZCnHfcld4dy8TZJTrQpfeXZqw3AmE/aR5TrIrCcrYgH27MWw6MAOFKU7ogOwwpgjfpbek1fH1FAaRzOqE7yoBvb9ZG13E5dG3Wbi6K20l3b71Cl9bXEKuGUJSlBTX54TxdIZaCTMpg3JkJ5Jn0kwz9L9K+0cdpzvYjKCmviOI3FaD2v8U0aWsMpV07yemrunCRwEmyKnYHw70jeUGJD29b4UM5jcqQFGlK3/rHoPxidSw2C6Kt7Wp8bvkH0sv+D5ItxvAxAzE83aoFtuKrOfBNAmhOSqMgw2nsEbGc+yzU+d2ra5SxuwsuX8rGQSMTOGJvCCVnFKku8ywKhQvS7h8l7CZ4kU3PRUJ6jCcqNP7Fu7fl4JyZG25YeZiWamjxBzdBGCgegscWVpybtAKfhJfiyk1N+PTECHBW+oZndY5CooMo2oe0Uyr6g9o1XRL39sEFN6JR+GMypI4fAXt65GF5rzf3htaDTFE12hSnwbRnMSCQKQ+Foia4T3M5T5syCvJcTlBZykvmpArIaYzAouUjsNL0Dh4qE+aBmcVUFjqA4xwsQVxoKocqu7HwUAjx/EWUodUPeuU/6PGVz1zXvBIO37lLPuXG0JMnD1/m1+LfBsAJ2e0kXDqJ+sd60pFZPhC28z0NlvzGgG5DODsfWKLQCc9Y7SBF2wN0pygSNoydQp8k02isegJPeOHBxk+NoGfyduyyKwMTY2OYm7SLlb5bQ9+BFNjjUAevtHNw/NTTaK5iCdvnX0GDUXtAZncrqMsfo3nSvvxJaxusVwmjwosa4LvTli8JaoD5wwWgQwc5bPwXXCpliNi0nLZvzmR0VaKMsp3kkm9PA9fN4c+dQVD6JkB7OhzA9FIVvMpTxbnp5uxg60ehFdPw0cmlKNxmCTZv9vGyuBcwe6Q8/tn0BM57n8Tug+IgemYFVk08yNktg2QtMhZc5POofX0QgIEEtuTtIf2v8ri3eph39LbRuH1TWKU1EMUWm8HS5FdcIvsfzVH0x6zdo3if2xlwiL3MK7rbudxtI3ucNuQ2d13Y/WMjCvnX8YeHo2GkUCluuaJDogd8WFY4lFrPBvGtWdt5SMQCVp9ci3NV5kKV8lZq2tYJf96/4k3Tv8Hy/1y5t18HxVe8plHnNaBe6SF7BFbx5iNdYGEbyB4fP8JgVif4VSjBcadi8t4ZQwc0pWG6sCdtX30cu/yv8W1dR9RI+czjumPQ6X0vWbqosUa2FMn1i8Hiup/05Fw9+HWtwXXHjfDP/GDYWZiKH8XWU+GzO9A7z5dnnbeEYcOHOM1aFXSPmUJdoDRPrrrHD8mKvG+08r8Ll6D5gzUqp2rBD9dfOMvpHmgfLkXz/eG0M6CAfx+3pl1y7/hhYSxoll4l2Vua8P7sRrRuiOUDg8Zwy+UjCwqOBsuASJhg5cnfZQxB8WQ7lGfpgfb5n1i2LwR9r6XS4THv+b8mDY7UMQfXF8foXIccrM6vIBxvDOnRG7BL0x7XZM6lmcG3qdxyEg4PFvHZbCf+1/KbSlZm8nCjCAgXe5OPkCTfFrSmQ6+MYKrqVuhqPYVmytfovmgwjA2NI/s/6mBpzxB+bBOfGh3Fe9VVuGHUbH43WIjrhl7wouMfIVV1kA5M0wPj8iaYtM6ej26oxhitYlr45jFNmFhBO5a38Om5Lvgn6A1ubbGEDw2dIGr7FO6WL+T3scrc1J9Bxr+n46mUJ6A0Wg3lA9exj4EwFE5TZpV7XjzlUAn8Sv8Dd8/OINeXFXRj815YXjTEexPaqDJUA267v6ZF7VY4O2EW73iH+Eb2ENbMyoMthkfBqjwEN3x9QbleaqDXbIVVzQUwKTWZf5/KgN1L/WHu8/U4e+M7vqmQhknBr3mVoAwcD5pMEcf70PbjGX7QsIx2DPhBGA9goLEnbjoWC9rrptG5BZMgtWkkrl/Qi/ucD7N6+TGCqc/RcnwNO6I2zLm7AMR7DtDKOFVY7WBHLZ9s4M2judjdfwxWz49j74Jo8PXIJmP59Th4zJK1Yi3g7pIC2n1+K/We/cszfEupVyKLcnfdhE+SuWi1eZiXzPEFzZGm4Dm6g19PEcCSzNP8NeY44Gwh7nRcwl9KLsGko5G06uNMcj85FrK+WVPxUB29vJ6A3Y+kUSZhOj1OfowtD824tOkwLDodgz/nA0T86wPHvHuQ/nIZ3yrUpxfiuyhZO4pndm7m9oOv+WdwM8a8EIH4F4UgmLmWM589R524EowplQf1oRz+J6HF4SvC8OFZGwZvdfDRWQcFvX9h6WEraAowRMGOSgrdlwWhYd7UvG0Sip69iMG3JkJbzCZwuPOKtlAcBypMIJHLj3CVUzjX/tqHLzv20Pblc2CXPsEY9xqKz7rKmfe2guRYA3iVHQ42j9bxylMrOVZ1EbgvXo5m1uMh48R6zHYuoZbCSPw1ewfMz/xNu+yL8EqVDbeNXgYvKn9R/MaxYCiyg7fq/qWQWyloXm2DGm8byWF7BTaqdbKBvi8+9Y+nrnXK8MVDAu79DKZUVUk6Ir8ZDbOQXEYoctn4NyB3YiOfVROl384aAPnlVHX/E/Xah8N75QLaUnyGlj03gpMHFzEqJlDLYCrt+qcAkdXJfNLKDk5uWIoif76Cyl0xvDhtDNeNrcfY2x/gmaYc9hybAIkBM7Ay6TytPe0E1xJWc9V0JSxRWssXXrtzsGQm3qxahOm+U2FsrCk6ue8iyaXKZHwyB65BM6d/mA7l9B6uXLbFlcvcETuFwG6UD4tWj+WHERJk/HcXX5icjrJ3HHBKzVKw1tHD+FNm/OmfChw9msEjrIypt+w5lvb3wvfuFnLwfIdffmny228XYM2xQRDRUocUrfH48etdKpjfgH0TF8DTiI/U2fubtZfvwecTV/D1mHqc81cHMC2Y21OlIGWiKf02LMKDmffgS9MZdt2Uxfp59fivKYyfbTOBxu8XwDvWEn3ctSnpfT6LP17L899moMiAFriu/4Ez7rmyS+go8PHt5w/F16Fi1h94mWhA/60sJc8bfZCg58Ox8BHtfCTwe/wMCJOfw+4jSnl07g4QFzQC97LF1H/xAwn4d/PbnWNJJvgOpH/XhxsNhTh1xjIQ7XFmn4Gx3PY2nZVe+kLtAkm4Uof0VvYTTdwjBdfcwijmcSd/3taGhtOX8+wfmigiNY+ePHtFR0bKw/+xch8KIShqAID/0dSS0l6iVGgoFW0yyiiJVEqUCBWSFBnJiIwWJSORNFB2KFIdCkmKkggpkQZaVO5L3Bf53hu4o0mKKqTO96JykT7uBS8eNSePSpLFcN46F9SeOAPLD32h/pRBWjlvEuSM0ACYmoUmlm/54o9DkLLYm1aM/Q6pIWMofRh5hUMcP/gzGcp2noJF1XNhxbXf0Kqaz39y59Fe/wtY79wMSY9GUvmlBsRcOdhjnAlV559jgo8IeQxoU3/dDNj1eQxVuHnBE3sFTB5RhbfeTAQH5zpsFLGm5vsdvHCHCWWdrYZ+ldnslK2Aj3cYs1SpFzwtk4T4Q6m4dYsge/o3k17gRn6Z8JdtIyth8S9pylmzj3TPy2D1rGlgOM8dN7n8xLj1e8k8fDaFKl/AKysugsUWB3rbc5duQC5yhwx43iCsmHobWifuQc9PprRJpRzlns1j4zFFHLThJvhLLKZxReIw9vQhSls2C39Z2zIsGYPHNWXAUTMNl1Ueo1MhrXjRpREy2/VhXcAwhnbM5nPqEfAixI0/TQfuuNXKQkpfqaxbiWyvbYcD94Rhm7EunC5xxxvfE6lnwh0Qogh226SAowIV2THkJPReUUSDuYqwfswaDlzbTw6By3DBsjroOH6GS7oWkuqlm7jCygYHNf3x9BRl0HyxhJbek+Nv72NYXTqGrPNcoe7JVrhae5X9z2SBtqQiS0RIQKfFfAp5fgCFi8XwcRzhCn1reDzxG09ZbsOzPLdh0Sh36suXBbuXDOm9A+xpnQWVHRlQPFxCrpJRLEHvKO6IOj7UDoU8cR0QdE3kph3ICyaFYL2zNin1yMHVMxdoT2USBQvngdDuEfzcRwBE7R/wdVkH+l0/DisO/OArM3ZDTXAe9irtoG8dahB0bC7eyRWF15uNKP7rfBzSFmHx/lZ63vcLNijH4DVRRWryDWW56mCQjpoGb83baLL/PgyoP0ovbqmTuEcP1US/hLILvTxR6x8pHyjiLSctIGyqEthctITrp94Bbc/hdWZD3JGQxVf09Clmy2sqTX8N07aZw+PXbZQU6oq2tp5we3M9yL7/yLXXZVmmZQMphTZD09pNPMbSHM6VrGAeHcoRmhcxQGwtm9mdg+V5nqBVp8G7Aks5uMAL/U7qgmiZOWdeDOMWQTX4XFWHhtl3MWVCJDsKl1He+evc8fIkDk2ZADXhI8HncRPFK76DJY2dtEXkDV2yiIPWhw2ICvn0JfAuDjuPgCX3tuEzqdPcduYHLUpeybfdw+nuA3MacZ5gfvEOkhBsxFdxCAqxnTxj2gwcNr2De12v0DrrGjj96xvfdnsGNfPn0DXrAOy1YZDUacL1ZiFwY+tvmsXn4NjQW7qU4kjnTS7hEs5ldcfvvLRUAyYmn2aH7bYUeOUaTjgezSouifSwzZ7nFNWAiPYeepaZibsPWoH0sgGWideilzOyof7kZhK2DUCS96HghSMo5EMLLSrUxH1ianAitZYsFNQ4aWYJ/5o7krLHbKIbEj/x0Sh7MH2UTt1dI/HVaim4NpfY9up7tJetBZt/BfhGvJ0v3G1GFzMX1MsNo8L1ZzhzlAqEXkiAodU/qFxlKS23l4OIQQ9+NhyJ6XpA9rXrCfU3wRcVM0jfMxpfnzmDoho3cfqm8yTRPUijRFyh7ecbks77BaHnBCGodhT87RfHu4bpcK8wEQ4f2M5PDo7glQ1ryMKoj/ddvw73//yAqb1joe3MA3I7ak4jU1zB6T9lvuQdRTe0JqIxePI0rxOoKNXGh7UUwVN3ITVfaMOjuf8g47Yi+2xZw6O37+Cl0AF5siZ01OsxRvqLwJp/dtiTGIRhiySpfKkSHy7LhxbDDBwZN47z/hRChc48vBsvDg+2FfKPaisadj8O0ZvWQNAjZ7xr3keLNmrRU+UHaIX+vCplClSaZYGhiDaYNA3gtQsreYuxJy34HYlTbFfx0El5DIjdS6neMrBYdQnN2f8fLH4Ticfj50D540xOacyD4/6+FH3InmanTKFEVx14VzeeWvYH8VV7R9r19g+tupYJZzbNgcgdVbCjVY917EpIYIIyvBmXzOOObsa+iBjcVGOIt24Hce2jD7zS2hHvja1Br5k9ILlqLJyd48/jqmUgrc4Xcsub6FPBUW64d5mMCn3o2qU87HAKga3J4qBmXIWynT/4R1gCN7Yv5nqVWHCSG0JdWS38+6qdRNN6KWSBMljPNMf/XiXR+5ddKNs6F4dW/eM/EjpcWTWeZietwqmJB3jbwXGwufwPe3i8ZoNAM6y0Os6GPQaollEFFZNXcsAEomu3v6DpDAXIv+QFh/Sl4fjY81C35SZtCiLUvP+Unx3Mp/x4bVAr/UQpD6WhJPoEDH1CmpH4EbveVtPireo4LGvNDZd341+b5/T3v3WwNdQCwn208dS781BgdYW0tS7SkaZHpPRtPs43OMrnNAuh+aIbr88cB2defQDxurNwx9EDFv9sZN9wMR41Nw5Orc4m6ktnmwfzWOqRNcRfiAOp3jIUjsvDFfLqeNDYByzqXWGJlxNHfHLksSrOZL5YA5KGhdCs+g0KOp5Dieh/bJhfRC+DzeHXo7OgH5QMx+e6wrmP5hDSO4kNqg6iBXahIYlStKErCNa34NnTwaj/xYZ6X2bxylwpGPpTjHWL7jLeGU031UTxwosFHCS9nk9edKPunLm0OEOSko7rQLCHLGWN1SWns39gbWEPq0ZL8syD4hA7azm9uXEXLd5Z8a6n42Dy2t+k5JWIHpfOoO+VZxRw2oibZySySdtr6BNwhbIjmzBI0xpiXE/CtRVPMSxrFqrGuoJI8Q2wP9yJQgZ7US5WgHJUlgCrq0LUZiOYe2MIj32KhR+DsbSYNNjGy50NGkToY6IJ+53yBbptDGM/+kH/01g4G/MHr4dqUE/uTjpntgxfVofAZ2tReLD7F99wGgmH/62kNb11ILPjCSzwqYeD8lu4f813WtU+iZfrB+PeA2bY4CYEy97owsr4+xScG8PNr9JIJHkNX8nw4SqxMLSRDufyET953aA6RL6YRoU9XXg1diIEyCyiMi1Bfn7qLUzWG8Jz9Tdp5umVEFcqChePfwL1lEq8+7iLD/jqYOYXhgWDWlBf/I4jxH6j9MEG/nZLBLZFHaOqdX6c2HyEtSQGeUPzCd50KBamrGqF1dmK6GkZz9UjReCLjSwddKvgEfOQp3Xt5oiDGrBbV4D2L6igV2e1qH/9A3B2MATFgTzKGJPM6ztvw4huGfrsFAvTfR5yjpw9BZhs5dQ7mtT92hKqS8bx6Xsz6XLQASh+U8Dd8UOkpj8K2iU0wapPHA36XHCEnQQEN36EAJstKPRxM1+2nwD9AgchOq4eAz4IkH7sSnouNgfLrXVguvIAnlYdAVd3jsTxF0eibNZaCNM+Q6ob98Dre2PA77srxQ7pg46sI8bulmXXkYcwetJqurr7JP56FwKuJ56CwpFgyt0SCwmC8qAe/IeccrRoyLIP2syrePCvJvy8FQD5jg/B0X0/HrmWTlHpSpC6ayJLFteC3GNJcNuyFReLvAKpDWkY5a/MHyPf4aJPyvR9pgxc8i/FZatN+YOuDa/qGMv515s512MR1rUTCGQv56bQvzzcMhYc79SwoJEgZQVYc9XjsfhBdSUU252DSQ56ZDTxATw+/AUvLrCE3SpD7No9g9x1juPTGSoY+fkWKfcf5ZcqBZS15CKLST2Ha13icG3OSxYWzaTqCGc6v7UOrw+70IsDrlTpkMZPd2agYt4j+BljCW5rS0F5UxvGF9SDR2knz1F3pognUtgQKk8D+56g29YYvuI1AsoP5cLotXm49KUQ3RrpSW77ouDUl4mUv2Q/T/mVCkMLi7AicRzE6pxmo7QMLD0uTyOmbMLK3mukePIQnw2p4qN1tahols/ykhKQsSEEf813olJ1Mf54bj5dXqdKDWPXcf+epfSlw5rWL3Cg99Jj4LnwGs4eyOPqza78TDsJ5githjPZ1nRzeTKFiFRTDe7B3ZUi4K7fy7elpeF6hDlFDB0m7Xl/6P6FXlpZPxftzn+CxBYPLBlH0OocRw/CamlEcDCN0vVGJ1Fb+JL9hEpakvjIZQ/MKJAjKyEJGD/mJuip1IC57Q++Pj8FpCdawQL/YtTa4ckGV/ppgcM0KAycBM7XvmBToiQpa0dh0sUEODnQzie6l8D0ZZepfXYoOB3KB68z4yBvajcaNdfjv9JcFrdTg5TnXXzr/Q02mGgC10fX0d/ki3D1nyqc6r0FPwIvwnk3ZUh75AwvBiaxZrUBqPbcAnXLOO6oS8Xub3qw2mAGvdJ+Bppp2pQX94GL3h9nQVEvbCr/TO9GZMLJQE8o0EGofVVDYZlLUPReFUoKV8Du5kp4ECDELz1OsqTRezp7MojMfurCbhNTEk93ZyPbdnx64x7If20kQ5vb+Lj3L9Zsu0U7L6ykS8Py0Cf7kLuOXYJlNSP5b+UXTttSDSdEWuiykx4dvmcKtU2X+ZjcaJiBM2B7lge6r4pEjRWr0GHOGQAzQ1rUFs7Hrjmipb8TDu/QhvH7zEGmoRK391+GxuQNpDW+hJf+9UYbaSk+OvkMbbukBWMbpsL8iV2wYtReSNtxGpw+7GN3tSSeGbKC7abY40JRXRR8W4MHM0bD2456+l2UTGczG/HBCQWuzboLQZVpOCIxHkVzd3PZolFgaSYAEo53WVMxH4adrtCi9CQeurEU3Us+0NejURhjztR9cQm0xaiAu54SP5BJxKjZ/0G6uxNGfNuGf/fY8sCwHhW80qNT5yXhlbMiiP1bBRs8S3CR9gYW/3qOxu3QYpnjnvBxhSkWZApDw69veHC9MZjn3wRJmZH0AmfiDjVxHDHaDUNNp9NbUqZd90/w8dhunhlpBk6F+igioERpjuepwPQY/DXrwx5fD07piqZFZpswt14F088haMhXsJOjFUboFUJgQgB2WmRh+K71tEuni17G+fLl4V08WUEc/FdYQtbbH7xacBlkBEnRyrOn8amiMFyXmg7JMeNp1pmn5PvcEBYmbeXkYUv+6vUBtmo0oUSyHs3a2oIaoy2gPugnf4w9gxeUNWHCBgneI1/NvWcWkqeJLlx53MwqCzNpf8MjnnLsANhc2I+dOwG+Vl7mpR2WqL6wnYL8lCB+zSvY1xZCDQNOFLj4LYx2b+QGJxF4L/MGLv6H1Cyyks5X/eBHPgnsvHCA00dlwRSRhdixtAwcyidBm/Me9ncY4ODbg6gb9wCrowRQMCOU9BUmgZ3sAOgcPMnrZWXA+V45JksfQCm7o6zUeYm05YZ4mVce3tWJxvsr1OnV+mBytVWFYMl18MW2Gz+4L6HoiF7SVH3HvS41mDgkRZW6RSjzNpqb9SXhwOpv9MdwGVwbv5DXm+wH0ZZyfGfSyyWvFViy/wn8/TCMly6KgazRLSj95Ye1IpZ0b8toWK9fz/43VPC+/HyUm3uKzokfwtomfcjUqcBfr4Xo597jqH3bGnNt7+IeNYKCyGIQV5/Db8wFMKdJAKbxPx78VIoXzLVpVtAfcvTaBXf3Z9C4wQQUu9oJY35dZ+VSDdiz9wtoPjlGeqOL0GpPC1hdziW/jWuoIXgUW3i5sILjS5h02hQ2FwD235Tl1EuKbK8YDn43ejFZ9jzv7m+lo9oGGDLLAX8dlYFryb504okQ27YW4Urxx8QFAhSovZK/dFvSmb6Z9C1ZBMI6xKH1gSMH+SvB2KFSVk36BlMUZNHZ9AtR7Dm68VEMriUu4qPzNUGjfJCmCn7mAfSl7W8yqNBuBEz/PJ+cfylRsoMzhph8hmL3aXDh9lNunKOOS7XCULH1I979JYVCAkt47cMR0LKnELPvL+T6AQm46N0Hp6Y4cNviD+CZto7jIt9wqdYrevXYkwL3BfHOG+t43AxVsFP3x/qB9dAQ70WJ3tn0ZvMZ0LjrQMeyJOnIi24+uFqMD0fKQ0zpITy51gH0JDbQuGXb4dn8x5AxpxV37vpAagaydG55Hh5OEgaByQok36HNd30F6XVLL51VOk4dlZ0ckqxEuhGpbPb5KNAagseBZqx+vR4+PVOlJdc38vcMKfSusCSNoucgb1CLzbabePFzBGWBaHZvcsXho25cnzYJZ6W1UPx/3/j0hnHs4pJGUoeGkTeLgM7Gasq7V8lpU2o4b2sVOP1J4CVBz3H0kqe80+8YZ/zaBUPjhGHnvXBWLXvNtpc30bqAXIg/sYVONr2GAggG598vefSNH0TzjKEsrgpfJF/G6JC3eOeOLk7ZYEAidlL0ctwtkk8t4UPTdtD2Jh2oVSXYKqeGlvvGcVtPKuetK6KdXuLgZ1xCoYHnsDDGjT80m4JSQzEfH13Pz0OUSPDbJpDs9EDNlyfZik5DirQ33AZdntqlAtphZSg2WwQGUlPwZ5AZSo5SgPEXZqPC/ks45k0vi8oY4fd5ciB36Td1LhmgOOE/2DX5DCQc8WdNsyh2GIggN/8feP/YItp7RRYSyhLYXG4W9nf+YqtXB/C5bjruSCznDPs/7Pg5G1oKEWY2WsC7qLuwdvMb2hdsBeisDlU5g5A7wwG9htNxzCoCt15dMjdRh74gffbaXgY7qq5yU38kGa25zn7GtXSlbApVjXNAKVV7yPOaCh8WV/PyCgnYPFocn8yp560albB7x21Yb3WMJtmr8ez4Tqw+qwJdy2/jrI2GvFFliE/VCNLPw7NAW8IG93ouh1XmkXTZ8zAte6cKtQ8Tedt/jIePudGybkEYfPgR7Q8oY8k1D1q4KJezLlnzJTaGFoOZ/H3VAH2zcmWn6BRwEu7l5IEdaKHRyE+KdEhlowWp+VnDdHtJDsq1g2VKT/mN5SBX/T4NMgf3Y2RXEh73cKdTD6SxK1UDog+k496P9vhR2gQ5NxcM7QtR0HAW9EQt4Pk2K7H183c4/45ARduUZM138Ybjxiicsxo3pifS8ZMb+Y5BA2evKYagj2Eccc4GfhqcQ3+TONS30uUpbeWocCwFj+yQQqmcCdi+9SR3XngBF/0U4K9zH4cvXQABUg9xyvtCWtwUQv94J53tFmQX6gQdvW2ccG8UKFaPQWG3QHgj9JMHXW7yyG/5NNQaRCHuy/hs6Vo0eS8A8l0msG7DGTguOofF0zYAiZaBrGEDuxy6RRfV4sHsnCdJiA9RhYU1xNs2ws+7R2lY6yk8rcnFim3XIFZdlkV9irnTVwjaLrRDUo0EmKzZgQohcvQrTYSMRNtYraSRrTIXQcCnbuyQOscrkn7RxmYpULKZREP3+6Hoyna8tOExbDxUTtcDL1JS1RJUsIlnV0VBqLfUha6YbZxd/ZMiFo8kv0ey2LlxCvTcq6KbbsfgbEw1aFT2ssIhIXBOmkjx+dNo3jtVvhAxgsfel8CegmHwfnuSXn2x5cPzLsLfYUXYun8DJ0Qe54oZA5Dwy59En5ny4hkrOHzVZwj5kQWpNSOppc0auPkTmwYu4lGFMVz+7DUsORZJc68sYdFybazfOhfUDq3A5a0TwXPGC6KsW6B9cz6sElrINR99UaR1Ax4/aciK/U4gOjICZY6owIYl0jDS4wDKPWiBuhl2KKg1l8+nN+BE80gcW9KLjQFDINluBM423nA/vxKbInMhWv0LH7KV4NmLvTnJTB7777hRVGADpQ+MgXu1zCvPapPmw2x4PC2COegRmr29zHOPTIcERyE6lm+CCXkA9zvjcG2/Dmvl5eA4rWa6utQHsvf8gritxmi27zX7S/7HeScMIEAzAIfxEw23GXLW6i8sck8Hm27PgZrGuXyhQ5SXlMjQ+MkILz1mcZ3JFX5angrHbd+yXW4XRiTVYvzRA7Av+AFcqwqFiPFKMKNSG9ar3qNpg7V0paOKtFYgLX0RzqLLdpJxvh6oN/0iifE6kLklljOTxoPtoWoY3LoXe8rN6WNwGZVvUYTfE1Nw80glzmzQA5+qLtjWvx/GQya+Xn2RZf4ms/j9BCheDlA5Wwij/xrRlgBhsItfii+fB+FtvzkQ7HkDFA32Y3TVOJJf8gMitJQhpegU5X/VgZvRGZjyQQBCpG9hWNYMNJ/jCK8kJtLZLac4mhLZySOI9rmNBcXNq3ht+lu+/1OLRfYIU8uwLRSKtKNW8Wj8YBBG0aM2wtpbFnBe+gdsO1oDWodXoxyPYn8XwPGaFfRBT5ldpsly6PxASFERhRVTf8HeWf94baM2N3aYsWKTIE22fcxHDAdx8z1TcvQNw6CroyBfKJl3vjjGTrvi8YSOB5mNfoTmRYks/GgU7h9IwdKUl1SfNhluTLSgfxfy8BkJ4JPnwfjLwZDGz5wD5kGPcd0sBwgc48Hy4VJgkLcDxL/H8ooX9qCyNoV1rKPIbtxycswWoRkbb5O3bTKeO6gPfXuz4ZT6fqqzEuUe9Rq+Nb6WnLS+YN9yZTys/JXPVI3GK8Cw/NUxOOZ0nbzC9kPlv2a4/JXIM1QGN25MheUZS2FF61oqCpQED7kNMPWhLh6UDmDHKZUoOMUUg7aXsmviBsBTK1iiNhgsV04G93AJjv07Ewsn7Oa356Zi3jkpyHN0Q+kwP1JbpA8FORJsHWYAFhNMufGnG0mNT6H3ZokkMmkAYqpHYnmbAc6dpEs3pxeRVK80fLMYzzMVR/LFjn54XKaAjrb1PGHqKlx1zZFfLz8A29InUswHc9BY+57dOrsg7rgEfGhP5V9b+iFo41wYq32Wtpw2woaWW2w3pAw9g+uhyW4cPa38QbNbP3HmAkNqnW9Gcl3SKN7UgQuWZGHZakvw+b6YarRXoq5FCS8rf84hL2fzm2RveBM1mdDbAEc3ufDmCfJgMusseD0Lx+WqEeBvvwInT7pM2n77aZSCHyj5j6R6pXYKvzwO1urHoVFvOIi2veI/Mqdx37/pYLGvGM2/zucTU+QoIewEd03WhmvmVlBx+BTuu/oAVjU/o29BaZwsbgGpOgvAOWwy7r/vjaeWjoddm8/SwC6Etv824hxyJhfjZ2Bh8RmWzm6GYUdjzqjJ4VfjjOBscD5a/NnGo3bkcJFRGJg9mUtRfx1p89Em7nW4A8rOTObXDGDry31wLdsEpr1PR4+4OviVmk/xvwrh/Qp3uv/mDfnt8uVZZsawbbI6zFmbBXFjPdla8RvE7NtAbT986V2PL6gIv6O33W/BKAjB9poQhn4MAmM7XZriPgoMWpbwqpP7MO/MHMj87AFGM8bxfmkN2PZvGEs7NNB/ugO0cTEfHjmG4wdK8EzOb9j1Yz975KvDywMW0LGzg+5GxLNP9mcsNF8M6u311Bf9m3vCfbnj93T+nnuLRn3XghmLzWDaw1zc8NSPylOPgumoV0ie2/G/vgn04dkTHIzM5668URD2U5P3eLfhx6lpEGV/mv13LiB3nWLuVzqOG8y+sdICMbi83ARM9p/i5VtmcV1nJYad7cHaPc8hsugtjqoJZ+9DF2CVTCI02KpBXegeXJDURlYu77FnvSgrNzMlfuviJabxmNX+FpU+jwd9f2m4p3kDaq5JscGxCjAVV6ANZ26ylmIyKUt7k1dDOr+bbon2dbIwTv8CCoeuxp+Xz3PwYUCxiGGe9WEve955STo/bmN24FE+uFkGKu3ngrxvMd9aMkzRtiU0SXAXpLaUQ/3C1fzQzoendQji98zRMLcqAwz9xqPW1lmkH6YFabZiMK7PB+pG9+OQkTIUTxakit+T4XDDR7zuO4HHdm+AKLMVlLDKB4S+fWb5GwfZX+kYPTeK55j/hOBHcQQe3RADIzx8+IanINr37WKftxG4c1I5d1iZ8aRnCnRzrzr8s1GDgVUfUbpLllf9UcDuO8cpP8mJTJYo0qioOI6e7Ehf66eCJomTY00PPXO/CXc1WnlHghw85WUweOgcKEvrUMap+ZQfPx7ulQ9B26lGXv9RAK/0WgKvVAGTh+3Qe1gSHpmc5uazqiifZQx7nFKg104EJmldoTlXJlJibCd+uG1Iy/aegsN1ClAzWxeKfJTgRddK+OGUhxLbY0FEyART/u2gR0N/6NXfWfhGdCF+SktgKhcBkSXT8NFMJ75xGKGofjvqCcewg48QzS4kDvQWQMFrZ9jSSwGCfafCvK+76YpaKxbN2kLdh2+il44gh2h64TzHx6wnWUYv5jGESHSAySRlXCbyBkSW+hH7S+E/Pxd+uEmCSrTtoUvjJXReloHNv8/j2HWDXJEshJ/TrODF5JVUFdOCyXki+EPwBvx2vsRXZknCV9syHHz9G56N2UeF74fxzVhHuK/sT7dNf3P5sYVg+9sEZ3w0B23lNGp9t4tCHZv5ZtFUln6+l4KsB9n29jBkhM6CFbFWkD5PF+Qnq7BYUB4+HXEC3tekkVj4RdhwRZeaH/aT8GkVZIlT9LZIFVJepYDzXS1sjnyOszvCIX1uAs9WAYDWePaEtbxrSJCN7UbDj9Fm3HlDBIelhylzShKLTNqCIc+FWS2/ht59c+eq/wqxJ1cOvNaXcKuKPT3KUWBzsRooDi5B9RcGJPd0I3dfaGZn1Wv45JAE3M15zacsDrLBGxX8+V8CGlpOgPgkBe76B/ygIJ9shhLItAzh/V5NWO4ImPAuC8Kn/0XQNuGKTxK0b6gBbFMEaO/rsbhenuGB42m4oD8GV3++DSZ5b/mRWix9eCmE2+t6WS79H60O8oME83EgHimEh953cZxxOUl71MDdrV208KU8q0Rewf1zhNnuz05OGGcAJ3ruYdNtMQivuY2zgvy4euIQwc1KnLf/Fg+dfIICgj958prJMGe+Ii/NQey8sgCm+2vAWI9kJuFi3CiUQaoKe/B85Cf++sYaXg+ZctfnBBzeN5evdyqgn8tKdN25gOevfQGWTxVx35MgXtSlB0EyS8HL8QAXzd2JtR8HKKPPjm16VuC66dOIjVIpavIYvGElDDVGOTBfR432hEWD0/GXGOExF7QLd4B3dAHtNp/NLz7awprZY0HSRoBmPm+DW4+/8jHRJrp0tZIalFMhy+UhrBJdhPf6JoBnGUNJTz7Yau7gil0zuf++Osw8GM0e4Ro0Kukq9rw9gEHky9sMDWEoaDqaBWyEiu2J9L5Yj4zKPqLgwd2YM3YLCSnd5I5RGyGhcySom32mImU3drg+E3+sFKSvqe/IKHUWxG3bzpEprSg46RSHrhsBmVX+VGgvDXrN6XRx+CN7ZUaDjI41GzXsJP3YF1AjtpYbUB2o4yy9GAjEH8ZZ0J1hSa7sCStXi5CkyxXMbInFI5rSvGy+NGxak44/j71lTcOj4NSfjKa0h25lH8f2GQlUkvOMO6OAVq9WgqFNF3BudTtPlfnE3w/Ig7jvVMjo20UnKRz2BlbDkXYBDtOWgp36/fx9fBMsC/OCvvmWnOYsDD8lXFF4oSPkHjSi6s55HL5DEh58aYaGVFUcK+8JtlFKVLE6lXLsNNGs0oaE1f+Qe8x/uN1+DIic2oqGCx1pcKULze/Wpq2XJrHIrmxs72tEQ1UXvh/3AofMLMA5UB5PZ/ihb1YhnlijTAuOhcBU9XT0MAmFeZMtyWT1OVw0KAgC7a+wzDQB1J9OQDPJBXw4bheNMdPBBXWL0GJeHx1cKYX/6ciD6tRD8MDhCPo9+YbCF8S4W0uLyxIjACgGrv9WoP++asJ/7lNg5AFldK/YB4FlM/D6aUlqndvJGvWGJLB8OtgJXma3/Q9gdoUYNCwYwXERzFsfKVKQ8k/SnyjNwYEXcM2SFP4gqM7/ZsnSXWEhEFCqpVXKT2jkf4Wwav1E0po2HdZuSOdW2b84Z8kZWlipi5/yNSFhlBrt1HZijYajtOPcDFoptp4ebHOFu/ft0JYmckiSL4cEjIHYhwXs+H013HnSCXYtdTw1Zxvfv7Geotv+0eB9L/T1fUzbfquBmNZ6fhm4At5s78CfHntp7X1pnD5tPgwFSEF8SQNHV2XDwv0CkDbhFHknXqZv1lGg0+0EffSQ9+sY4YaSYXYqSGKTiyvoop8WuGZf57ey3RzYfxXcAhyoznw3ZlIJPhAf4JvLBXmOvjjbPFWGxqQaPHgzFvw2XoR7R8Ipaf8UFrwRSbfjVeDuE1+6ObwSHuTLwR34D6aaj4A3B/ey1MIy1DX8As0fV2Py7Xl8bOsOzsxeTGMETeH24R/Y74b47L8vkHCgH4IbVHlmfjBoVljR445/cPbESPC7PwnGOT+HKtctfFzEFiXf63Dm+t0g+MeTE1dMoQ6FGjY78gachaTBaON70FjuhwZTCzhJ7TH/9nzNDa0uOKHaF8D0CMfk9+DbvapQdPk+vHV5AqKHNeBRRxNdUgnAqiwhjjn9ifcdP8BHFiZj0081yDQORNtwDViS0cnTtWZRy6J68E5qB/n9jcCnJ+LE4KU8M9kQ2OAWNpxyINNSV948uB0O/U3Dc25TwPuhO8jpzuTAAKR3RhMhsMcD4uJj0Vh/EXkam7NgihmYtw2B9c7TFL/DGh4Yb4JVV7QgsSmY1I0+0LOS/1BRrA7DG0Vp/IpFtCIuEPRLK/CunQKjhDa8j5+BPb/ug9c5cTTcxmQeU8PiWd9wztw/sK5kFK/reoG7NfTg+xhrULk3BXKWhLJI3nz0rJfh+vtNePSGMJlCAetsiSbLDaNArGwKrBaJwKUTy6lObzUNPxGh8Vd1+Wu7EbTGGuClCBdqnYNg/8OcN+88hn5D+/iQ3zicV+lKy3/mk+/SfGruc0Dn9hPoWi0IpW176f2mTLoeGg4rDObDddFYPL15K6g8W44qg2n8RPs+Ga3SAdS7TRsPBJOOXTBoFibgzLN7sX5/HU67rUvOZe7k4akJvz+agnCdKbZEbOGYDxp0+vQwXZ2tTZX2D+D565Mo3nedvkmXwJR9NrC3u5oWKN+DsYb6JHC8miAxGicdG8IxkjE8uSuNf9pdRTUdLUg/vg8Db12BGNFsLDgSSxVTb0Db9Uicmu1KyypH864d+rSr2xLUPEJIpkySuwT/YPJVd2piW3iwKxovN8ay0iRPTA1/yPmfFGHxwz4qjWwD04iZ+O73M/q3053Oy5di7S8pbgs8Bxn1xrRIlmCgfDGlrpwMR7f9hc9XtsCJpr30M3AlhdV6YOQTebhUpwUFayzh3akhVni7lzPbJPB8XxucrY0Aj4QjfCR7Ds++8R3yQvXR2FkMSift4C/b5WiO+zGUerkfz1iUsqzPUxw18jn+vDvEzRqlHPSNoPGEETmnleAC1U/YGPeT7UcosI3MBM5RleFO/Sswx1gMDL20Ier5DWhrzKc/vrexT+U3/Rgnioc+ZoCR12M8o7EW0q2/8ctyNfhsZwM/8tJgwoOVbHClgy9YfceRxYiXjxmC958jaJgzAi9vE4Udwg/51cNRnDi3n7x3eWHasC3Wj8rmZMs/8HzWb/ywvRLnySpBI23C7Npp5B/Zx03SSyhYSRGEnrxGVV8P8rXcxUf7Q+lTsygM/tdKwVGvUbZ1Fxq0xXFURwTmZ2XTu/rXoCWwmnY3zORN4lKQk/oJgyf8gHlSv+HutlPUclkbl1Z0UqmqP3ffYZApiODDZmawIew/mLdHDOeGluChTmES3bSMJDZl8juNqyDypZJX9hCY6wpBj8RPzG4N5Uipas6fkk53Io9g0c53LNefwgZCq7lxXBNLzFWA9D01XHbzDmpuFIRguwq8OnE9fm4N4Dfn83iKkQJscdAjE4XJkFj6jZwjzOnN+j3cmXuQgf35w2Q1uN+jjFHrnLE3txq+j5eEeRUBfEQulXV1pVj+vQUYpjzmO17bkYYNWEL/OL79dpn3VSGIHXrGkx9ro2bzBnbVi0aa0MaFLMa+ovPR0Wc8+cxtB/NULRCafQf+PTlB/e9K6YL5AZqQroPvfJ/Dyx3b6MPIR3ginHBHuwQ8LQvHiqX98Os6s/ffCfD9iB5VzDLjRctq6F3VfVofNgp9SiQgU3g3SO6oZcm1UTzB+zzFf/nLc7oNuAanUfXdTyxqkg0yU/Xgab8cidvK09YR+1Do4ma4daMEZ4814yklk6G/SBunJivy+gUK8D32Of+2/gz/haWS2sAYCJauRjGjQJa/PJK2GTWxYsQKEg9WBeuvx/mFdjuufuNDK8PcKOfNZp6SkgWjjDfhnwu9cNNkC/3sIXA7ZI018utp18Ld0BhVAItj9RmW22LMo6eQt3kGnOrZwMbOJiBXH4dK3hdx9np9SsoZQFutF5BYEAbCmm5otdeadn6PxnltshCnEkubrm3CK0Zv2OjMIw5Ub4NJUru4NUQU3LgNN++QQp18GfjyRIqm5pyAZRwAhexDoxba0NH+IpzyLBxM2hbCwvuzYHq3FPS6jiSPKElSWjWVWzrq+HbtA1rXb401Qul4Rj8Mc2eEcqPmOPibMAPU3Zbi36npIC7fAXtdnHh8bwvse7INg/69xoji+2ygZwiXr5Zybewa6v73GsVXf8c3cbth2cxIqldZx1otb1Bg40tU6TMCz9ft9PnUeTatus8SFxTQxMIKs2a8x6wda2Ch9Sc6+teFFHtNIGfpZDya7o7KJfOxS0+Iple74Wu9vaz/+BxfP7ALX+zWx91yY+Go1CR6KBvFbu8dYRW38te3s8iQZCBc/BKqRffSjBtzeYuAEkwXtKYXsXlYpXAFIkMy+Vv3NLA5I49jZKWg2yqG/RuycYW1EmwLL4LAO318ocYYLbc/AjFugEsqi/FpcQTcvVaNq1r7qWIkgO+DbLx+9TIsHcwCj/4cbpBdDH63BLBhzyvwGv+GY6OX0p/90uB9ahCzjCKpoCaW7Q/FwCqbMF7yvZEPO2tCRc5tGCivoghHdThXsRqjL+ih8xkL+NyeTuofZ3Do10ZWKG7Bl+PFUaFDAiep6YHPoBrIVajDYVdplP8VSa1XRnK77WwqZwfcfCya61/a0PgecZgWv4+/wDG6EXITw8f6QIz3aJ73JRLvHBHHlqxn1Lf+Ppw8pgIPHOqhtKAIY0vrKeDABUpIrwD9e7vw9PwFsGPjNF6AKiheMRUCTN1w8e696DsjG12U/4B+ixpI7/+HuZW30HnCRrilI4+pqsJQNTCDXwd9B4ffiaQQWcnfZB6Dk8t0vDQpAp42TMDo+Pl4T1EG6lavoguS3hh+6iIOpT3mpeNTKPLnJnA/vQAXNM+mtZOno/hPC3i1YTvH//pHN7vCecH5Muqy3EbyI3xQfeEhepYixfE3h2hWhTHsC+vF3Ff99HbZSIw5vR+WXnrJSnLymHzTB50OuuIzdEatE8pgffMV71GdQgWTPOje2hf8yCkEf3d/4R+2KhAc58APtyVCh6Y4FMU18acUWS4XHkcrxO1o5tQiLq35Tcset9C4nL18LLuVv99RB70UA1hy7Q6rmGzhnHvhXC19DAunWMGqMRPRe38EnPhhwv+p6EDDoxI86FLN6B0EsLCIqlxy6GH3UWq+tguetxSBu/lldknQAMWD71HLyggf+7mT+efnlLVQCAdsdPADO/JOvVeQlz0a/vmrw5EeGSgYyuW6i1PwTq4R2XxBelm7CebdqKI1saGoZlROWQtHwDmBBji+sB0Pq+mjdX8WxZuXQsSP7ZibvoXyy3pZpCAMlZPl4fzRSVz9rRwWP7ejn+PlwObabr47wgU3zHRmiPvAl2SmkfVuK1h5WwbSa7/wYMhDcrpjxXILJpNZSBV+VZrC5LgNVAuiwVVUAGL3dOBOfzF+dGsC2xnPx8vKx2mD7y3cftEf9zfIYdjiCny+UQG271Tn024aUH3qMExMX0A7eYAXhOTCmcwylEjbwNezFrKtEEFH7i/YL7wXHQKegnfUC1CQbOHImdWsvSiaNCJOg/VHadovqQVWW4RJ3nmQXr34yEO5VkjX4vnqiu+YUrYSvusvgjy5Ar5VNgl+mF6HV8FHKUWzkGcKyJPJRlsauSSdtNw98XOqHnueUCffH4ogpWgNq+2Pkc/AEXjUEMAVS95DbP4MUrweAz5rjuOB7rcwrInQG3wVPNbpYWT3EFlcOMVpHmF4YnAAw+JdaMxWXRCqKyOnGAMYNZJx1h9/kP1lj3Elmyl4QTlkuGhw9R5fGprpSCu2/CD+IwJ3svRI410Gb/vRT3bPL0AQAMvflOP6pDUUet0K1tTJYoa+IqyaIkeBHbM5wfs6F6cVonLncho/4A+xm4TpQ1AwzLioyS8cNGCrmDnLDxdjziphTjish3X3bnDc+znk6R1N7d/8QPDbItB1sIELUbvR8PhxMNMag2JnUmmEjhZHPk+lQNvxnFmuz9aFgtDiSPDi+lX201xOu4f6KSPwDf5+HMwre1/T7egG2uJ9m04sjyK1a0KQkdaJlqHxlMSzECTKacrTg3SnezO9WOHLB40TODzfCQxDR8A+hz0wWsAIMw8/gn8TMjDz4jwqPecFafyBHVVkye9pGP9eOAp+LyunxaiMKUub6PIvQRo+t5jyfl2BlrXDdN42DWSXpeHaFiUw3WxFims2QnSBOo91LyA7SXsokvaDXSvnwOMaBdASvcDCL6ygQTgGey1n8noJP+SSDTjXXwpPWU1m4w0rQTSjmCwnNsJyD3FInbQT3lovwOQ902nUOxOkZGSvp4ko1ZxIRo+WQ7bUOY6+rg/z5UeTWNwgTfkiwDPK2mis803+eNiHF7j9hbsTutjwaxIL5yvDhZ67JLl/LQtfOYZOY7/xGk9DdHs6E3OiPJATLaHt5jvuLVaFqqlKGCApTXN+bwJ93USo26hOwVkJuPbwcv731ZQPNmSRbJsVfD24FLflesPtWYLcBeEcuOg9S7/4yZ8aX/H9Vc248ZsqPPs6GVJ3xMK6mM2gZDkHc9x2U9oPbeh5EscOYvtYgAbQu8kR+9xGgGV7N/fkirFxbi+Uff/Lhy2Maf6EQLo6cwYl+o6nzvZict0sCatWKEBElCyFTi7HpJoDsH3fd8gUaadgl9V05+1RNFhzCBevE4LEjyn4c3UCPQ+4SWMTD+Orx9lsMHUtyXfroJXRQ5w+aSGaLCdYLCfIBndfwv7VNTCzSRE3bp8Ltc4TuPCMNBUffMLz5oVDj64FDBn/R88iT/JLfE9h/SfxUd0/lk9+Sv6Czdjid4iE7BVpq4gKbDSWwfH1JbCkv50dwkZAX8RhytGIghADdUydXopdDouxM08USifEgkFGJ2j/XI26z+M4aXwo9vyRxb6/NVDybBvwhw18xUoKbo3rpQ0y90hCYhmVDVXT+petlNarh3NMJUi5shSEg57zughdeNT5Bz+8Xo9Xx79jnesTeXPwPlLcaENv7dpB5OFNdK0huJdhDWluAdR83IVuCDtiVnwjJ/ecxphpJ8h/2lOoKj6PUXda4JPTOLhW6cdWroU8eV0+VIircs+3UHzqEAGZnUGwOzYSz6i9BvFJCHuvrMIPE1pheLMNrDCNg3WuIfz38TtuODsfO8500sH7+2BNDIDQvgzc6TofEt90g/eShexxqAv1T6jjmom36fD0XeDTMoBBl0fC1oMItackyHScMljV/MCTLeFw5LU9vW2+iNpzA+hrxmcue64DOt3GULNGDp5WTsAdUik8I6oYa31EYHv5NvQ8PYtKU8Xgy1YNWFOzDg2Gb+LziUvAdIwt/is0xd1ZW8jVshHHnlnHCd2MVscMoeN+HF+NGsFL7erAcKslqb7o4fmDHlhW6Qt9UbVQ+F4OhguNwXjdcWzKNMV7/63lp3tHwFzriyzvIAynjC0oTkCFNvvugVcDirC8wJ5SVMpJZtcdPtKmhJUbq1Bdw4FyfjdBq0or/M65AK7C08CxpoCWByjilj2+JGTmRVGftsOkwfv4y4WwLH412vc7Ye2CCSCXcY0mjZqKM/UzeNGjpXxMVY8bBhXBzl6eUzUz0TN9FUW0j4Y9P+9ihacDp7kdJPeL//CWYDGpN1gSlH4GtXXfITLLC5a+E4Au7V14Q34JKegVcrHLRY4MduMSewuwMK6FzARXqmhuxr2VauATnwMe/X4sNP4mFHrMw75FD6l89ClcmnwR1o234CNqR1HzmAI0aZ8nwc7veDxFBrNHm7Fm6QcePidCdw8mgHyABWZel6SojwDmF//S1nxpsHQ3AAm7s7gioIq2/T1LX6YUU3boRsh39wcRc22IUoziCv8OsJH+Qnt2HKLpccth0u7N8EuyjN1cZkGjxHIufCAIe7bHoPvswzR1rjjWl2+mZGkv8vH/g02ufexdK8h51+dg1ztRWNV1iG3a/flrkhuZ96+npJxBnNoXBQpalynrfCJNGyvDfrkGMCbiNKUtPgg9PfZgexr4U6gAn3xzHS/XH+fA3BHU/ukuw1hDkFDdznsfZOHTox2k4nKZbs17hKtrN+HmJjvIaorntltxZBpBcLGvGu/U9uIys4m0WeshiGhFw55DolRYlwyuaZfYr/4FCJ8wAPn5Ytipm4PtUu58UHcCjSkvR8NG5K6KkVBk6YHqJdIY66IPBz6W4qal06CzoBMHc2Kw9eMPfHrPA5MEvaFV7z75rpmOC++OAtNCA572/h0GKAbQiCtNVFszFt6M90W3gvl0+7QfCr8rxddXrWHQfA/5T3iHou8P8NWvRzlJp5dGCBvhp4F7sEl0PP6cOsh+WyZCyGs/+KB0D/vvmRMmyGL2Vy3Iv7oY7CySuLhenT//FMBfQVJQINRICZrS6NsQyuFnGqngxG6OO5IMf0QOsXekMi84ZMobrkjBcjsfTnvZj0fDlTB3ujgFmjTAio/f6e8bHyzzvYeOo9+w1gdxyNIxwo8nc7Fo+SQ2zS3mzcYJMEGqEe99F8P4wQToEWmkFUuswW6GGs1+gqjmoU2Gdlu59mQUbVSroPiBUgwIK+f3n2TpfoUJZEkd4fH1f1lxZga4f71HkldiqK/oAi/2qcENLy8QO2tgaKMB2BevhtnmHvRL0pULjDrAc44J9D8W44HKIf46qMO3X8uCorEmpMS84ksOz1FBSoD+fgTIM6nCsCEz+jonHvsi4pjKtmNAhQBc3v0aV/ccws0J2+BB7QX+bv4YDm9aSIvufyazLRK0o+whaI3QhlsOg7Bj8n+ccT+e5/ZpQHueO/495opJ8os5fHE9hDidpm3uY+CymhGtkpWHFfdSwDb4MWePfMViAQ2kJvEZS17NwzVj3FnRzRCcutRxOOsJLEnN4PJmf9pukQq17gHYJyCPc2qWweCRX3yoVOf/7v/tENHGOA3EHhGmNWKaFPh3COX1W9DOJxWEl0/jjhOVWFJhA8Ipj2D7rtlYfq2SzJuL8MftxzRfzQTL5s/jCSu/0rieYbZ3GgWd/Q74bN03KNwzkz8lW+Cy71b0JGgiF33Xpc+R19B0+X2+5TMC5qQ/JsHccgyaWUdH5zpTgZcojg/+gaeMM7hV7wD4X23j1/t0YWD3azxjMxrcBwvI5loRS1b6w0QtMfD+uZM1NWNhedhP3PnSCGaPusfvq5YBb1kGPYpv4FVDLCsKTYPHiTKse+YEF/T+pAO2cqBsv4vn1I0nlwOreC/LoTr6wOteLTx2M4ir3jJ36Qng1INCoHXVBc4p1bHg9wgqUA7E1usCaHHfiy7p7uHuy1uo7Hg4tXiNhvOSz3H+PWNsGj0HJuxJ463212mw4BR+/+JOZybKQmjWLzzTrgeV2wzhw7x5tMHPgsW2ykHAie1w83MxPGyayztMl5H8AwuI3iYPo8ecBMX5PRxW5E1J3uPAJ7ydhLSP4emKtRCqrMyJ+S7QtcwG3q6/S23v9dihawyE3l2K2CuAt3oKkXJyQGTkGJJ/UgxvdyuAdUc5//fiED8qi+JTRzPo3NlvaP83BTZnX+GzaWk46C6GM5ukQOjKSZQruUWVLAdrf4XwtbFbKHmxGlp+V2bFm2n0YGgNaW4SgkxDNVp6pIQ7pk+GLSvek3ejPgg+cWKxZ860eVcxLF/Uxk2aDO8P9HLrn/f8vcEEVVreQ3VFNoze9IDlbSTxo9o6Xi4UBiohDMJpzVBUFAzyt5Zyu6Yl/48A+AAIAYECAPpHQ0t7SnuT9lbK3jQ0KKtCKdkkRChKRWWUBtKQ2aKEjFC2NFQoaSiShCOje58/ycPvwiNknz0LPdOuwojnxizgpAh7ylaBjs4f6Dr4j9epLaKwlGraIamN++XrqNbmAy+T8KUKBWN4pzQeZAd/A7A2l/Z+5s6Z1+Bv4TiUWqdHky9ageueKbj731iYN6aA9v7eCYVjPciiaiWdWVCAlb+ScZehEn2+UM/OyZtARNEI8uruUE1mJR6R+s0T+mdT2N1RVCIrxRvs3nOKaxLNkphDkaXGsM7/AyVkbWCl3Y956w073LloI/kPR7JI0jO2EVzEFfan+PUfaTBZvZunSoyiFvV3lD1diq6Kf0YvxRPwbokCXMsIgiOBb8g1WQGWhnxg1Ysf8de1p/D7kyKHjCwlq8hn/FPfCUTPR+HIh0d5+tfRYPFmBVTufwIi90J53YMJdD2xl0aEiML8wkJWUV2Oz1bc4nHrlWBIbID6tveSw8NqGCF6joVcg/nfxmU0KzWIpCVes0emNq1s0IGK87782CIJn4YVYfz302B6XgnTDyjxjc4t+NnKAtaPLcTc77Jg90qFtHsrwEG2i/effEQJqQUQFxPKf1rCIbAiiqS/D9KkIjP4abIabQZDcdfZRBj1UJCt/WNwe/9l3uCeBepT36Hexhx+aKsLTpfewawFmvjG/h1fmiGCX+yLIXtlHEZPV+NZ0bLQPCkOXkxlcGn3BKe4Y7wrphYXWbjB5wEvnlktBP7jxmBEAdOHwg7+nKUBn5Lv0MfTobg0VIGdVe5D7n+RkDZ5Gq8c28/3jT/h+vFJ0L3HDLrur+X3cxu4o7iKvTsusajaNVy47zcPnJ4H5pMz6GiIKcr3icL5RROhvFQZHmiYot7AUojWmIr/PZ+Mp53LsGTSanI4cYLu/7CBwt4t5KHTjanJPqz4rY3uxn3F0FXbQWogkCaueYQve6ooyFoRYnY3wsrek1gX8w8eXvdHA69w0l7/EZz+a6OTY6uIo76gyUVJsDe1gXWXKmGqwne0rNXDlkcT8e/dB1icGE+fO2+z2fwQinknDpFNV0lOPx52+PZyJi9jt/QYUK+R4byxE3i303c4I1/Kztb2sFDvPR/LNAH7Oweo0qoeHeQuUK/xIvBWzoPIBZUofkGEJFK1oE6yATP+bOXJgoW0eV87yGxK4ELlU/Sl9TG5hQex6b4RcLXfBirv9PL2if/Q/4wNhk84g9NNk+BpWion6YnA9uZxGDZhL8pKjQPJVBlM6c+E+fZT2MO9FHPH3OUPVYUQJXwcnrodhp9/d9OoV1pgs/g6Jl1MpYHY66wp+BaXXorhpz26pJm8iKP7+tHK3wOCFJXhROh8OPnyH3VUnYTGmm/0pHwG1Z7JYKnmZ5iWJol7F3hg0ChjcFGbh9VBz2FEjwgGDbxH67woGl0/H5bc28D797nzNZUesDazhIakcSTQeQ1+lYfD1uF+Gi1dR1VfJnNWiQasi5bEmQ37+JemNXT7PMXrZogCg8q4wmETvdwshGnJIaywvQFFkjv5VFc4i/ULwbHTaRwfUA2C8ctwpNNzPnoghFcNTOUhhRZsO3Wf6+Nn81dhUXjvfRIO65Tw4WXP0PBxPV7r+g8fjpTDUcs1UL7mEDhfOgI1FwyhwDiNuuUyeXGHB9sGf0Bb2wKS6xLCr177YdNuMxSYXotJLQawt7aU9kvcpI0N+mwdc5U8bh6AhIUXSdUzCkvXJOPrSUfg+jIdkMxchfJdMyki2RGVr0ig2YiP8Cs4HZ4sGIkXoqzw4Hcj2pCiDd2HKnhu00yCpg8MjfNh9/tKeiajB8Gx1uQ1KhIFLK2ga7UENP0R5ns7nUD4lDxPV/yJCuiF46TscHnyV9y3TYAPiHrBnJ0yILSxBJwmJuKbq+50/UsAVMSep8SpLuj+ow4aDjvg6Gff+KecNezYvRNNXv/Hccvn4pM1A3Dw5lNeN/IZyXV0g2NSPI/d+pkWXpeCBz0iOODMWDvCG14UesOuOxFQoD/Ij09+g3MrLtG30x0gGeIIlubroVy1DRVLH1OEvzv0P60BnbYwtJt1ge6eNmOD3mkYUjEe2r3yafxGBba2nII2zRootzoGOodfQ+C/EeQbvpPG9eticJcNSNc2w6D9Gf4mfQEXamhA6pF6/N7yhRL8QuHMTWVYdX0n3qoeDbpWBThFXYaW3nnPWiE6GF1+kFZEBFKYbCFek5rCYSWlHD5gAc6fW2HO3kASPD4E0XWfsFBzFG7u+kv/DONIZPtGGB8jQjPHWoHf7kK4a3yYf6hN5XfLp5PotKX0JK0F66sb6afvRex8nUdVrcZwr8WLtC99g2sNCiAT1MFfJs7GVLFBsPn9FP5IFVP0vEJ81yIDa4R/4NURZlhUfx1yVVbQeI0/OJzQi2qN1mTo103farbRdV97kF3XTEHzPuDzmiLODexEyXPb+ZJ8P5ndaYV/4f4UOesQqEQhLFLPAHG7BrjSIAElUlp0KNeZpmdPhztzrGhS3kXuL10Pm445gHvkYZ7ts4/tsl6irbMlxC/2w4EVgyh6tQKiM3bgmFvusEjcEdYuWkhhb1ZD6/7L9HtrERiNe0WB3d/xx5QoXCHpx80Pi9hDyQTKlCbTh9v7aEddBzvFJeILAT1a9HYGPTwxQLdD1NG1+hDb1lvAlJRObpo+hkbc6ALv5HdU79IPa62reJTrYZbs1cX0K9O4P0kObn1I4/qJRcgqe1jtqRHufGnDOMMfNtQJ8XPBffjvSxyzyATAPysxtOgwPu5aSjZlLdSVug5mQg8fc/oG9yTfk5r/bxAOV4bLmVEYGLQLFse9Y/Gk92xsFst3Vu6AIq/zXP0wh/Vz0qi33wo84hWgt2cGj7j8AS4L7uQPVWs56uY8+AI6PGfSAZ43TR6eR42CL5daqe7qTlQwEeDXc2phTPsyKNpgTy8s1kK+9kGI2WkDKT8Z7O4dw68v+vm8QSxLHWnEyv4UsPkaRxtG6eNkaXVs32iDOdeEQLdOHPVtMlhEKgUtjHNI73EXe39phzeH+6Bl9zbIverDiy5YwMvZQeCypgpi3o2EbI1WNPr3ic/12wIpakLLzGj4c/IETTAQgWdyL8B/dSTvsI3A9wMPOUDkAX/ZfJuqPc8AanVjad5dxBwT6E1bC/Oq3SnW1JFTzswmpV3jIXNbL9ieOgMP5jRT+U9pjDS2AQ/7e7x8xxCbTtDgJ2kDtPLeSU76qUstnm/A3WIZwXcnckt3AKfpYVivpUlJxQVc/iARQoM2gl3jNLjQaYbZz4ygLLIGus+OBgyMRZGwyZSC20FcLhf9tW2pjbOopbKD9CeWQbrtaT6kaQ/7RfvwKqvBznnpnPpqLv685gTiPRnc5isMAxeU2VLzCyeUGkJYty7qpOfgZ219ONVig496cyDuiC2P2fIevKQMMCbwKSVmmEHq/hnUOHsPHnE/Dndq1sDW3kkk9dAJJjd+4pGPNFkrYTWfOasBXpM2oNwCGYwtNSJ9220YWCXMzdsesV020sD+AtrvL0kxNbawLL2T3RY0wtmEcjAXdYMPBX5wqE+P8j9MpNvT0+GmvjQerTUFoQ1LceKjXC7r0cRbmdEcZGoJH7aGs+WBdhiYnQS5qZMha44l3JVVpxWCKqy2uQBaliXRlqgSEpsjgGV6Vqx49SR2p+VxhrMyFLTLY+HjSWTp/ZMqpuzm/IZ9PFVsBvmFRlHN6yyU5AIcXOQIdgXbIFRLD3qjBWF5lBn6LVnIO/vuUNKmdBKcVcs95kc4R80CPreJoJneCVBS/IwW02oxMuwrRK2tpNViDL/SUzkn7wrJSWtAnmQZP12viZbRtij1+iI259nzSo1quCGkgtwvxiP81fmnPIHxamu8M20ENZ1TAN9BKbAZp8iur9fzi5rtOCvKF9rsJ3LHIUd4WVCGLVv/4rvQ1TQ+xJ37ej3JqcmLPi4WxFtLhTAhKAODyrWgfpUqH08ypD7NB5xvuh5ejbxMP4pi+YxkONmmm9C11A+4xhPg6aV0uHWjF7pWKuD0QxYwZ3k/HxeqxRdGp+hvIpGQpiy9faALdoMl2FmkihMVMlndJJNvCTfxr5YG1LeNpO8RG+DK0w5yjjGAOx/z+WxzJly7E0DTov7Cy45OMpnlyZdd+ynjpiSGXEnENm076MsWZlEnLZZJiSMz/Z005s4jFE49xq8gCA5si2QDsxmwpdsaZj7/ScVyblwo4UhXoraAweMAKI4Pw1uln0hzdBFMv6jHq6O0QE7sOqRMOk5vpmbihZsudMfVAOeaVmCsw2vyVkpAs9hV2PhLHoSEfVDL/j03XF2Ib5v/0DPHmbieDtLt5lhqPbEABtryCUeYwtL9h/H3kQS8v8KQ098P0mKdGLh9MgdCZas4qvQUlO+ewhVtCPfOKoBP1E/4GxzMB9K/wrc8F75/sI/yW25T+oEyTMs+SGeUFUH4HZK4kRkFru0A193VXJzhwY+thGH6ahf+sTYHlHodoPqnHewePczOvwxBZawILa4Xpit1TvTG/SGPNb5LttNXkWaoCd1gWVgmMwQ1r6di4IfpLHVuE3i+2QlHBJ/hZN/9bFRnS7y4i7RMGCYdcYMHN6txrbwHL8stho3PBlFbr538Nex4wdbZ8A5usN5TR4iXuEShGyZgW/xcLrP0hPQxp7nn7jOc8u86qgylYZ6+Mh77TwNeDgwS32ij2U1y7NHqhTNWiqJIpBaGZYVCyloz/E/6HPuLC0BrcDfpCPvwcTs3DmsKJpPhl3TcN5oMT93mGWLzIC/nFxmvloDxR25ReoosjVv1GROl/Vgn8CZMGPoABocz6cGdeny7tQJKBSXAP/MYHowPh4adO7l29BlKWTkMLVkraE1xDdmIAXx4mccF91VAXKSYfxXWgdPBQJSukQcXv0S+2pmMc8r+Y9/MbHb2f8/zb1iDSaUCdizuJ7kHS3FRVyz4VOlSas86jC6W4sCqNZhrvAGiNK1hTtYDstCSxTEvkrHhajdaUhL+TpVknS911HhrPaeHqmLsmQlgovUTv69wwNx1yux2axn9MEQoXBVCw5+bUVClGlFdlaQ7xkJA/B7qcRCHkXrJvD9ADf5Fz4YbG50wYZUPRu1VwtmDJkinRSGm2IUkGkPpZ2UYfHJIp+y0jWQ2pw5kn06CSSH7qCZfAhNWm0LSaHd23HYcvp32487Ph+BHdD/klg1i/ZJmiAp7SxYRx8laRRNa5dPxTf4/2h/rB7NygMa25/J74b0QNWIGTynOIbFZ6zAjfxwE6yxGpfTX/HuHH2U8igYPKuKw9newMWAQFle+5RvlkynEXQH6J/3h9ZHncdCvihJW16FlwV6Wit0OxcnZNOpHIxz3L8DboirwKXABFJZsxn9rfaBVdwe/8n5FC3a+pbFxpqw24w8pmabwU10Z6BHuo52jO7BsTwRLL/Uhq1GueF3BFU4WR/Ch0LU8ft4qfBMzGnKkvehy50m49qkHddNf4WE/P657tQIUvzLtPt5DRzdrskGJECiJzyc9ved4IXYt/EpUw9Cz32G3ZgipHP3DKiH72f7RQ8x6Pw6GZNrR0fYM3VysRR/NEnFKSA4lr/cih5v9vF22Be9sfAPeA8rwzH4InqgyadycCnsFuqBxkwwcEnfBw0mqJBhrAS+MWmnDK0toCd1Cm25KwJN9IfQ4qRbGaZ7m1JXLaVrZSa7SaoO4ziP4vEMTWNGUVo8PIHXXVApedYVi7F6gpo0iq99r5u4/06nlTQDEBuuBTawgSaS/5OryENo7ZQ8U3BBifeV6MFL8SJJ5TfBwjRIt8JKFXQs/cruLEASlzYWoaTqoJiMOhhllILTpDI4P6yZxKyuUPugAB37ugZj8hSjaH4FWMszFo9Jw1jpl9BKt5eBOoJNVUTD72TjQX/YDFr2Ugf3F8vBF+SyltbrSsRu7ePmZu7RiXAdpTC+BGntZkFz9CKRnNLLLoj7wW72CJuYmYZSiFPl5rqcrAXPwl/Ij2lojDVWN6uh+2Ju7hAYQ94RyY8kBbKnYSjqNwyS9zYFl9+1A3CIFhVOqyXswklPSR/DVCcdBTfIwfzp9EJJbxsMcsWZ84v4P5uXawNBgM+acMaI3I0bD/iQlLFodQW+k9bEYRHDLs5PoOzKH37g6QnX4E9z67AIqD6xE+8I5PLqng+Tnj4A/hl/ooXsqbRILxNdgD3syC8it8DZV36nmuNwyMgtP5Hg/Q+opWs+j3EJ5/3tnHnQ1hkv9zyE99w1/VvtKfkvi0dDsKz770Qg5LTFQOTad5hS94NUuYyBrVhW/tnqEYZ0tLC62EuOvVXDban0++SIC9r1dyas3n6b51WIw+d9lKhUOoEn/9WBBpRMb2vXSy7tunLgfSFZfjV9u1KQ5SwxgbZQmT9CspjO6Z3lRmR/HHZtMwqbNEDXEXHHxF1XXSpGjuBVQpjtmLo6hD/eLicctAv1p28G1uwp1/8bTvsUx/PXrW37qKQ/79z2DSgkpinr4mS4NJ/PCC87cOMsYb+gMsFvVIs5xWYWithNgVmgHD03zg2fmW+naiwG4dmo1Db94iWql4iTiKcdLRIWw4J4p9Ae/pMmulrBiymX6HrEWZ+ia0PtVEpgmMhbPhVxC74JJ+MpsPMyacY66Oieg3oppPMq4DzZoPcdW1Qz8EXKA9kW84IrLbRSzTRH6fsWi4qavPNLdGzf5+oLTxHO4T0SKcobG8Kkvb7Ek8SkKbwQorwqFo66XIcf0PdS6GvGgky0mJqiTTLYVrpq6EEZFDLIwiEPHGWNSutAP518uxnnbq8lHoxxcZ4SR5Lg8CNQ+QOMPncbkbCUwnVuOG5/GY8Chbp7+M597RgCCkxk7jGnH9j/q1Gp6COc90QWDVmuetzmEZjZZwQ1Re9oQ0wGNH11wZV0J73vfiS6zV+Ixn5HgP/IBRo0UA7+wGTgv4z3GVaTTo9Qk9Ar0hXqpXXjDsxeKjURhbrMXXNcYCVlxamQtbcc+f75zn30zbl9xgDIX2ILKz3E0u1kUZPADyTqF8+usi/QuYx/nhfmzkjjAZD0bviE7HfKmZdP5myNByPYc/Io4RpKHf3F3khstdb+P5ybNwVnCJeSWYkBz8ufh5gxp+LHwElTccSdu2MiHXbppx+MB/uarQfPibPjd+bXo8e0pPdAwB8GH/2BFcyPtWHADjb+egPUSbnBZoBFVLFNxbPZyjpx8Fe0sGdbsyKaWG5kQuFeU4rreYlNlKnaIB8CikGra+cQJWL0LHvVIwYaLO3jqI01e0HoJF+sqcuzfrbyt3hlPuJzH+6p66CqhzTsumcKTTWa8deM6jB8nCmNrRmHRq5fcfjuGKp7n8b8xVrBZZQPYicrAnfo+vinrQxaJi5jVWulP0wG+0OyB02d+pJiXd8Encg7Xl0tBf2kKX3S6TQH8jnNub8Jw1fm884sSj/2vF1NMnODXfRNKapaHn3Fi/GOsHpq7PSe/W+k8u/keaWXIo/+UCHjSlwNqnrL88s8YWHd7BKj1rseVU515R0c+Zd8d4oVj33CLXg4+7h2m74b9PF1QE5JrlEDoZC0ct9WAL5sqWDPVlNKemDPeiQABo788foooSK7VhINF89FpzUa+FbqE7FcNsk+LL+l+6qfCy2HgNpTIvR4XIeaQKtz4c5afHE6mb6KuvOBQAUUaRXDJXh9KffSJohZL4NT780HaiuDbeB2eq/EfXK8PwAT5Y7QAvPBbz1f4k+8H5TNrabF2A+Xs1YMj3eXY/m8Z5XUvg+3PszmiYSt6/RLh/JYSbN6WglkPJuCMOaPh0uPZIPtfK0qm/kBFgUlwq3o9RjssheHl7hwyJID6wasw11gZNgfp4wfbVlzYtAX9znrCorXTcHfKGyp97gyHxpiy1JfduHeKHfip36NzbaJ8vv8IeSgmQofPc1ZI2cEm8XK0MNqXp/rmgNp0gBcKs2D+9iZOH3OEzh44CTfj/mHeZjno+xhI03tuUJN5LQx66sHYM66oviqP82aMRMGmQvLs/4/miG/E4KBI/JU1CbrPNIDiL1Govy6Js60RLhja4OLgoxhb8QwHbT5CQUwu6fcGoo5oHP9KNweT2y4c4roB7v9BtC1fQwtC3sG0rwtoVV80ifRfoe9lkyGozwgOOphy6SIfWIX7IeenHcu4DcEuIyN4YfSGnv9Rh5SJk6CyVBTqLOdCU5gnpvjq87GTrrDe0YUU5Tbjwot70NtGhf0Dr/FxUT0we3aA87f+g6DJG3B60zK85DiZTvZ7UrT+Ahod7kSCqnXw9aEkPNy4j/sv76AA30nct2AJWatdwouuHrhMZQL5a9pQ7cFMNm7XgjrzN2S8NBzzJs+laaHp5Hh6CgqrykHLUgPIGnsIBdYmc4S5EFzzsqOzM6/i8jmC3Ffkj5EVOrDpbzOHR43kgcwksHw7ktpO6kPh4ktoPucU2IZVcNGdeeDz2p5bzr4kcY3L/Dn2OEToDfM6EIOXIaGceYnAfs9W1hm5EZYpWHLndB9cWxZEQjJCNCZSgVL32sPN+d9gx4xYvBibjz8vXoVNNYV4QHEKVMq8g3M/EjlBuJNsg0ZAS10RX5bOQttgP5xxZT93r/uLi2vUoWZhA5s+scfQaaI89YgaPIu7jVd3qsGC0XFoqBVMj0dlwO01uzDl2GZuVKqGPB9ZTrghBDNrozHgy3z48PEodgkfAvfnK7B3sQGMOdHN4at9WX/yS3hwzAksVAwhXugDLB01gU6njwXpr//ggGkO/ispZHPV/dD1upsOtZpDrOMeXpYUxE0nd7KqagAUeZ+kjpw0MNixEYRijNn6cxx1XtOGkOfDvEXxIR9SbOW8Zjkmz008ao03dh9voSmpASC1aZh6N6nCjmlilDv6AIfNOUyK3gZgK2UBhVad/KDOFm/8DQGT7Srg7GICy0sYHE16sThyI1fcbADTeVNopeJpPnIihe9RAYRJbcIgwVEwtCEQIsavxfLRfbBgkQ3sH5FClZTPfxK7MFDQGPYILwXZK+Nh8hZfiIgah5J7g1m+chlfaJDmFr8WPGZ1mwVmBdAbyW3865sRrDm7m3MsPvAfp2W8/ZQn2e69ArP3zudZ7yLQs6sZilJEeesYAmcxRa7Pv4zDC2+xf08LX/pSx/vaPFH52R8avCUJxavy4fl9Tbj3XxPdehfMi3NN8Nuzt+AwVxjMj07n3PKrcPj0Rt402Iuv32uB0/TpuHNFJf1Zl4lmZ+wgYPUPlPkpiHOGDsGDOX9pg3Q6TmwSg+odK/DBPDtaevQCvjI+j+axSHek6sl94kyU85HGf2UWKGqoAIXvG+jbhkWkke/Fn14UsmSMD//yP8Ub9uvAxGBFqvB7C/lF1nBu72jOWBLObriBXF43wUwSohLJQyAWvxJ660Mp5OIACQaPhGJbKdCeMRJfJIfgMR9NbgrayQVla+DqwTBKDX7Ok0LO8N5fhtD7tIEcpr7H2vCtKGOkC36Ru+DMgi72vX0DrtTqc8CDIvD9agu/13nwzj3ptLsuFO+riUPx0feYYXCBZfWaaZTyJTL7ZABPZ8hD1PdMvuE0TFXvxuO21C389flUkOjZSzbVkRjeIY9e9yR5GzvA4wRfHL3mALy+7IKZWIRNS0r5a0URdjVNoQ0xV8FkXhxfyhGD6xqV/DIkmD1P3aDSd4/Zos2P6k2U8YPeCMxwUGGzG9Ope50suE+6yBKqP3DvE19IWLYJPvJFygxXQNmdc/HJ0Xv0rHwjSTXYw7TXs6mqxxmm5XbBJfFO+CAqRvnB7pQmEI16p7K4bFgDCsXUQBtbeKJuCGWZ9WJn5SpQjnqMyw9+hKa4K/ytQJ2vPnnDXQkKMKq9jfVD5dit0p2GViqzntJ1uBNkicNz97Pe9mvwyMMGfuy3B1vbJHBPmMb9k/+iaF4NJyxkLPcyAocVBzBHSIZ5sIM6fTVA/PMZqrwWQTdy7rCUsQk9SbSinW1x3DTcT5kCFjwyqxc6p42B0OexZJZ6jczfadLuKxk4Li0BM57fINmOY9h3dYj/msowHNOD0o1d/HrWOsb7BaCUvoF+vEri5HZ7PjG2BRX3pdKCk7rUd90AXMKTaY/2exBxyOFnX+7BkFYSy2Q9BMmzkwGuncbZy3wwf48StMbtANGJWvSxrofCD4+EyQVNvLFwEn+y3ExjXMVh39d6XtlH8OZ3IM4uSqAD+97CUMw62HHhDSjX3MJTtw1Z9HAfDz7RJ8UuOTC/H0mJuf006bA0307fwPId+3jZ1XOo+siSGoftQTWnHW1faoOS/S1unXmP/3gS+b4QwKpOZ6p4l8tFI+vw8O8aipIO5AnbnEDO9C5/GtrGj/zn8i73Cur3nkorKnP4dWAbbrq6AaaFeFOIgRY8zyrHPeaZ3FChwT9ypuOiPCm4ozOBVcsmYZrDSV5nNIQ2Mx2goq4ZLi/cR70ln6gkvgEiC67SqWZLlHNbDia2CXDUWZrvzLMBbUwEmQkv8f0tMZhmroxvYu+x/fJMbjyoSwIZO/hT4BKeeno8NPx5ROV9kqj1SRvXBx/ASN8FXHxhCreVC+CBiO24tnQ+v33nCAkbttJlxw4srheGE9cf073kpbhXnCHL+g017RyDvydmoEeROGDFQTBxXkK16sJQc08I/V5osc2nK6QRuIiF+61Qp3wsthlYwtvl5eD4dCr0DJ+gdz+KubX9IWjImeHhLhkKmSCMfjRAeg8RMjKm0S5vQZo/biPO+PYUt+qK82xTQwg5oYQXelaw2oNeqlCThZpdWRSxVJV+gSMsvTEVHvkl4gk7Q7TfVEkZzT8g9m4JhNiNg7F9bzBtxHF4veICDvV7oNIjK9BKcGZ1lTjKrp9GV7Rc6HmRMCSP+Yi+3cEUqXSNTmhIoNvy32xy8i9MWS6HdW57ebBwAC42i0Fyhyw6t9rg8XvT4YvUOOjyEMJdk6PAspdQR6uEJcvtYdwBfSgfeIZLjo7imR6KcN5SluYmOkOthjesr9CC9k83sNavhO/EqcAU6U8w69hTjnV/hMpjj5JayF3I2+8CGqtTeeXNO3D47WI8ckwCkrfbQEX7ElDy0sGBsN2Y4yhAuv9Suf2dGT++LEVTZ93Fj7vUYWaGLYomV1FdqDzDrIsgbGvGKdsrycd4GdqXNXBfeDV1a+vCsTmNaG80AzxGuPJq0SayHxdJdqrTaf1Rdb627RTPyQmA0HxhCOrOhPqTjvRQZhNanLNildszQCZtMifln8KRWVKUesgHfgTYw5GLkfCflwT2Vq2k8QdsSUO2kT8kboOhsg7cmzSHTFZVYkqnFUw7fovqX3RC5p0TfNqxh9qXz0dVgXfc9jIAtPNWss7wQ0ocNIIDhWlUHz2dPptsxKUDi0g/0BG/ljezv/gpLHuxAsT0OzmqWRwiyogmTXFALw0rXNt2BHh1AJa5PMXOliqYOmI6blOq4Xr7MaA7xQArxf3oxYK/6H1+Miy9IolPHa/j177NcOEDQ3WlGNyv0oVLcSHccuoDKy+vx9zOfvjw+CVkZH7DJ6k54JS9m4ekveFRqSHgvDS88laHgsRbqOvcBZrxbDM+zKjHdaNuwxL3MdDRn0Z/PJ1gaN1fvvjcCufM3EFyoamwcIsYC8qmk4H+MSpd54mlCQk4Y7Y9CFvM4XuW36jJYglv7YvmkJRieO6my0EuH/HUngieMNuaDz5wAg+Vkaw39jtYe4fD6SdjwPnnPZTZfwTmeryFRUpjebnlX9LZaAeHQ9+SwtJw2Pwin+84bKAg/WzsXaVNExM06MV7H159MQLSYwCuXAW+FTQdNWeasGnwMjz3+CtK+95li63mnFgcgJV/D4L6LnGYt+wT6EW/wB9VFrzf8z7KzQnF/27OgnkSEmR3YhaJCxvB5XIxaFANpeDtvSxQmQ4C/hPplq4um12wpVFXfcApUhveLszkv+8UofDwB3gUWEhX/8RxUeI9WjCyAM2XXKXjM2q4d3gMZb14BGEPANbtWcTLP92lkjMN4Np3iscKGvImw1lsofcR9OOOkGjbXm41EAaNpYpg0zmG5TTHkBYdpc5j63jjKXfucb0Hr07/5lz8xIaCkrDUwxY0Fkdg8XRN/htuwD4qfVylsJKmdeuAC8/A4Sd7WdFfDzrb3kOQ0Ua0WqyFnhc2wNBLTXRI2MG0p56C572jv9/lYfCQNfCvV+SRYwWVDdbcopoKw2hGHxsteaaRGl0ctqBr/nWgMUIMzDf7kZjQLtCZ5gbV3uHw/b+nPHr7EtRQMGClfBkWib3J1XXj4ELIUajtS4UJD+6BlP03Sp/nAjd/TeLp9+ZwZboUvUucBX3qjtDrp0GHsx6QQN49TirJhnaPv3Dw8kG8Mmcdt+a3UvulFnApUYHs6hUo9VYNh3w/s3DCMG/2/Aq33dXIPPQExB/xQ4PNmhzuPRIufhVC25LjNNe2kXSj2mjPkDE/2baZD3a+Zcm3BtD0XQLSZ4yEXJl0Tjf/h/KDV+jNIgkMsVpF5m1zed/EcGgZIYXa2U/h3Fc92HtjHR/W1mLx7ot48JEBvd4pTp5BVmw89h4PiSRy4YOxkPtFCSLvKIHlh2RyubGNzuu0ounqs+gx+Ajq84kLNK6Rg1YttKeaw97hGvxeGA4r/jPBsArgdh19PGv3A6wk5VlDxobSOh/wzSICFYFrLP1Nkydu+gBGEc/5QHIcJJy1wn0jJpD7xEy6t+ccLDw7Dt7sekvzA1SozKaVp79/TCt/iPKJW5dBq+w4O971hyiJXTCtywJcS+JBUWIx/om6yz6pPnxPNQICwnOQ3LPh5wdFXPtEErofKoDH5+ucN9EHNwuakJumKuVXO8G+vqXonC4NVVbb+OP426B/3wE2LWqmLiNH2HfxGK+8tYtSXo8iw31+0DVJhWPPCGPDXBW6WSoKa9fF0ZS7Lzm/dDMmuqvTj3N6FG/WjwLzOjh1biva+2bQmvnyECq2kdZkBMJrjR006L0QH3ruxjXht0h3zjCLTx6HMZmHYY2hMdzs88DTN2Lx08Ru1h/hS3+M5mJ+9RgynPQTTQ60offaaLJtVYaCitFwb0Q2Rdfe4SXn1sBJh3DM7j0MgiG/+Wp4FmTPOsBBzppQ/PMgqxxMwPOhziDhtQvmKa+HLdNucehDNyiPDuM/tabotcIJPC+r4eaDgrA5xBYnOKzhfjqJO6b8hWDfONx8MAAv9tZwm6wknPvkC6vmLceJW8rIUVgGS6OUQSPzE4z3aqCn+cY001UYOqR1YYdEH6WEBvAuhY948vQhEhmxG5syOlHieRx9nj8XzjVYYb7YWDj8VR7PP/2DC49b8Ii5c/CAshfL3e6FET672EPfhvMDRnLFLwVQT1gN8qsvwqaHBznErhp67WVxYGcLSw+PhYOWk1CkQpFEW1VB9v0deHYaKOiyBzo2jcEb7bsx6HIBuP39SwKh40nr629wLRgN1jatSP+JoZr3L16pY0dfzpehbnwjZ4sNoWnqGvzYUAj3+tRgwuB8dntVRD2DvbhzzCGanavERy9OJvXOQkr/nUDGo/fj9i0MW5p94O3q51R6ZpiOStzgrw5abKQUgdEH3pDE1ngsELyGzk4yoPn1Ay47bsPWiVpkfb2H82a942O/pvDqs8rofSwZzz0XwNpsY7DfMRXF3npTzEANSKj24nzzy1Shp8b5W/6w/5VwlmhNA+OVjvDP+DyWrJvIIokBGL80mpYVLOU5O6fSiooyvGztz6Wxu4n6xkO4+EE6deQXihZPAN/QbXRethZnRALK7b0AbrEz2eThMVDMkAC84w0iB51heMx8nL5/FL+68IrnnwyiH+/Hk2lvFW69J0a+20dD9IhIqunt4rz5i2h8rilsmyWJFllTIGWpII++cQv/3vbGg9qSIGTxCpXuyfC4s/oUe+Uu+AoGk/TtnbhmdBjMuW4OMomf6VAWgvNsWx51VY2N0taxbNA2Kv2hA7wim5raXuPvyiNgvHcvp8mLwQvlIph4N5Vqbi7Hta7CrGj3nq9UyFL+tFrUGi1Ptwx02dzfECpDEzEy5RtnCHaiY/oYUhMa4Ilen+DaHG0Ijn/PFsMpPPmxBTQP1PNZrIbFq6ZQjWMQ+peUQemK37g29RrceIe45QaQl4YWnHufhNsqO1Fn9UYuuTGCPo8PgMPbjNh9+jOap9UBTT0NHDNRHUb2+XBLbTl5NbsQ639HzcZKXLjIl7s2p4Gcdg9K9L+HUklZsG6JQJPxdTxjXwMmLzgEJbLp4OkyGgs0DEDgVykqqWtRZ6I8dCf/gDjnQFQwHE0rJLQpfmogDDpvx5agZJzSch5Pp6zlz56mcLFMg4y2zYXsb+rwY2AFevllkkuYIr1fUkHKclsoT/olbj09GrwTm1lQO44zdEv5j8Io2C+fxaW/d1L55m100fktGF49SaFBVrBn+SzusdoCNLuVxt0eDS8f6rBK8kuIPdzJ3ZePo0S5Jkn16EGk/FauW2SISyIC2DEvFzKds1HfIZKzT/8kAyVr2uXtATPvOYHdwD/GsBOgnNKE1t/PQU3SUu6peo2el4llE8+Bx8kmcHe2gSD7V1zz8hynd1TBdI0PnH32MCw8JYuFZr/h/c5oXlw8m/4VWsOnqTqg0jqSOlcok2qsMZWmJeO5UbU0rigAkr8MYqjrCjRYbA7eI8bBXUF1cLmmgRbVC/jalLOolfYRH/7T5rnidRR4MBsDiqVh4EIi1Jv/gIC3v3BWuhqdsAJevFSH3v4M5LUyIhgZaQvvtjvAlSUu0FIsgekxtRy/bR7snyvJF85Ggav2LoxgOTpw6jL2lajCtI/zcGxvLelv3sOp5bXUbnQCGkyW8eP5wlR9bSWKeNiBdaUAbPmujXPzFHl+QylJzRUAgZxy/ntzNXd4vCbJHSbg9FEDLxvbw9FAZxwZJUR2fS9ouGQMq96JpouXtcnz1F9OeF9Mq/KcyXajOfxJ/gynlQZZ196f9tUupQ0CR3BiSyTu/VbNbudFIdh+BuUNaYLJ2k0Y8mMWT0nexMLVSVBdsYGWFlpSXZo5FPlf5Ny0/2jiD0XwlY+Gwg9zKX1BJZzgH/S8OgYO58cR3xQipes/sFVKnpyl7UBuUir+GhvGDytmcXnLKC7OW8jmMdupoD2ep5Ebzbd4iJMMpCBI4gO1Z/2B1X5ttKTkN8So5MKC1/9YV2IdiFx/jHoXvSF8lT2Ue2ynY193QP09JZKunEYflo1C5YKn4D8/ANWtdak5vYP1JeUg0uoLWOM+dE2KYvscLWw88I6lVVaAuEoeXzp1hLpLi9BEWAgue87FJdf+growwOupv0Ff7Tc5aRDu2a2KW++tg2udz1HEVQvq/L3o38JyfPRWh3dt3wFfJC1I4tY0vPozGie3z6R7gc1gkDUCbjSfQSu+Te1dz/nf0Ea0fnsSxufJQblTG3oJF3JcYQ8+XiMPjWXmvKFxKykmfqdrW7+x175j7C/sSo7NqvitpY1HdcSR+BYh2PqrF5zGnEAX+1G4Sz2M9LsugsP9yRxT24CnlyK8S4xHZw8D+OnmTnYpWpD7+hn4/SfF3+on0ur2Vqg4bcW2PnIs9OsXGyQTCDrKce+iZq4criNLUxP8mjORvrtkg4imNFf0X6MTFVdo6kEz8P1yATYOpsNOwViqzf5F2494ccijNnJIXwRfLceDrG0wNEeag97BqezaY4ErB/W4//JIKlh+EsIa2umD60Yu32tHrmEhHF6hCk+8GsFNxZw2jHzGkwZDuWN5DjcdeIQ1vcch+eggQ+c68sRR0CjSj8aHWlEp4QD1hKynpfq3IGdJFZt8GGIbqRIyMNjOS7VVQazyDtX8VgD/gwW8dfsIEoreyllnAqFsURlol/RBo1EUzkNraBSZDH1/wnHEDmls1Eynj1l+ZLDdG8sULsD6PYG81vM53VTRAg+R0+xlWQJj7Qd4cEMeS8wxQTEhpqSXorwgZQHa3PdDs2RziKhQA7lXsfRgohokvT+DFqYt8My/B2VijvL0mycp/hrhWmtFuLDsO3s/GMbF3/252jyQdx3+il631+J1ZzdeAd/5OLzCnpMO8Ekxlmp6bqLFVjEcVt5NJerbeamFFPt/jqSnGtPo2ZhmbhLShfVLY0h6IITVtpSAwZhArHNMoqYvVRxYZgAtRt/44ftauGOiBjsaZlB3qhgYKYrxn12q1BZ/FR6+SGB+YAMZtmbUePkfTemUh11+oRgVz1ysXwCPC97DuZIGPvWuhazGa5B1+AHuxRraFCIAZ1ujsf9HDB5aZ49deoeoxPY19Y4UIKe22xjrnoWpsQZo+28M7NZ7gZclJGHd2nReKZVDodK/4G/dIJ+65oTzhr+gjWYx1y7XBtFNLRQtsoYdtLXRu3cimq9OgLtnS9lPAHledwYc6V4Le60tAT/toAUzv/C/cy/QKMAW5ryzZ+HCubAqXI7uG58G+9chfNhLAlaljaZb17vA7e5r6NtXzet23Ibdgrv5/PX/uOPsSdyjshDu/hSEY5OLaevWqdQddpd/xK2BNQ+O8L85FVyTGshL5w/xzG4BjtksAC+cDqFxzS1oP67Cq4yPUJ1LGCrfu0CcFgsh0tq8siCAjB8CTLd5A7KvTqLcg9WgljsBm1QvcnVxKPwSXgjSgjf4uk8S+e6XAtkNEpwvqw7mQg34EgZwz4VmnFqkj94CrtS6ygiW2cVTtOYEmFDQDG/bBPHEnqXk41fNGo/jINRgLs98uYSvfy9lARchjFqvA9Ip6fzQy5W+hZyHzx8DOcirghpsX+Kf4Wg+8d0Bz6Ufg44/piDuqcq6chdxa/0lzop1wIf/raOXIe74pGoZRW1u4tFNY7i9XArO9zag5NszpDB+Nd28LkfyaxDanKLpya5B8FqfzqY38mgqq0HUbGFOGDGD5WY8gaemuziush/iooUouTiEL+vJ0rbnB9lrpjiUZQfStxOyFOhswGZROVy9gODn52wsES+A5Yl/4NOgKl+fNAFWZ+bi8Z8RfGaBGAesOMpzp+tgbF0+mmw6iC/+XuD6nIvwPHgUTAs/j9bHonHS51AOdHzHtVLCvHnzaT5xcAG9G3uLZx8YCxMmCkHo1zqo0tJC935l+DFKnnvGFtDd+AXgkeRAZ6TrYambF/gpmsKytG44a+rIbgpJmDBRHCt9QsltxXcqG5iHZ5c44hGba1h3zhzSDq2ECdeuMQcegwN1xjBp3xHi18n08MB9KA9sIhfzLtoYLg8zRBZg9B0hnLZLg8Vmn8NPulthnucsWnz+OGnutefvE0bBAjWGLZEymLZBCaVlqunZ3LfgZqpGx8/sxN7/1tBkCQf+cusea2RJgLeeDN46OZ/WLX5Obp/0SdBWFrMcU7Ch6iyYvHUHuc/vUCZGESb+2QJj1UtYTyWNbVZ/xQMG0Sx0ZBaVGO3GqE3l/KW+j+elakOQ9FvWzw5if9nNpGFTRQt9hWBfiBRtnWEMSoaX+E1ZCydECUJUjQpG3Rbhzl1L6LqWNxkeeczyMq50Sy8Yz6oZ0qbMuzRnkS68EY+EQJdnIFI9HwNoCT4L/Qol3AcpZuacq1AI1uYNLPrZCJa3/6GEzmd0+0cw57rF8QO325zX50Wy8Vr4UkIfjmrshos3FWBy+0lcs+QXyytXsbz+CT4yX5EzlKZQ96ynoHPqOP+OOAJ7DOxhYJwaeDzeywrGXXz5ai63SXphfrEohdTVYHzCVLx21Bmu7rCC2Za3wHryPN4nMY2VbgOPvJrObgv20a4JT7FK4CQ5a/rA+xXWcLoiE2zTD8GtG+roMzmcZiYe5rn64TDrhTjVhsyDsofB4OWOcG/BMBybnwjrjn3CjFUn4e/cJfyqVpS6b8vAiSIp1P39F889sYAErZM4XTMTHgavJcu1IrzTI493b/9Bxd4moK/cjG3BCrR3oSW4zP5IE0yKacy3AvIZE8kvduaSh48ib9vwFd9rvaIxPz5iTo8B7Ivw5hlqF3FmWQ+UD+1Hz69TWGuBDA7JhWFpog+3fqyFaU/E4eMJGzzachhn5BfTddV82CprD5bGDfBm5FV6tfANFB4N51cHRoH7mgG4+eAcDNgtBfuHdhRh4UjH7OUokI04MymO2tfcRIsXeqBhcZ0rfBEt5Y9SY2E6LLyVzwMtS9jDaBrg28U8d5QxWTlaw2OBJ/wsfQYES6+nm0Kd8Cf1BV7M6ednOdpQdeYB9BQ1cfoodQjIeEJj7BrJvL6Noi/pYtOGeDqct5KkpHogccUl2rb1FDZ4jgOTXQagd+UVDR3bgzoSPTB/Zxw2fo7gcMk+mPT3INb8FwD3ZM1gJI4jERyC7ftWo/u2V+Dw4ClMikgAw/GfWChWBjaLhXHCGwLR82cg1NALF7tKgYfXEVC28OWva4XII7aLi1xV2XzZLtA+JgMnzA1RZkYPLUo2gr4SO16yJB5+vbeBM9tUqa13PmwZVmb5TEc4Nr+OxzcewVG3wmDRgCmbJgXTwplprCUuDhvvZ5PGikcYflMAlkQq44l/n8DQahnfGykNeffrOefwTVDKXkivrkuhbY4852/ThCtbjaDCP4uv2jvz814XDrhQzFuyQ+lalw9kGt6iFX3fYOC3I+hHO/HUrFpY7N5KwRr/0CJhDU1Rm41jHUwh+3QB9nqn8+g0dRCMTOSed/vAJ7OEj+1YAwZrnKE7YRd/uLMLF5r9hNWucTBptggkxHWg/ut+Wt6USrl2HzjSbpCvbvpOvV4raefGTbRARRr61orC3ZRl0LF/LH4UHKJLEzfTQH87Da9/w5kCimT98BKcjd0LKYO6cGdQiNTWLACd0afw4MBDiHZfTI4pUbhdtR/0woienW+F3Yny8Kt0FvxIuYsTJixCv9ZgVLL/yqsKP8KkPGP0SPSkMV3DbFMvDa9isnD96IOgpRsFvvUJ9FNtE2c/P4Zzs6fQpBoC1XPtfLzRFFYe+MF6mR8gdFQpZy+6gMvbrPBFyE+28vOkoC/2NKsskvfMMQYP7ieF8otwJFeNw3AsfpTQZ6HsXRAocJQfXd2FZxyyIOu0CAhJjOL3hRvAMFwJbCOuovW6ZaCAUny56DFLBB3k2uIKqrlpBokae9F5z1GOmxZCT4LFIL5oEcw3Xc4PzolCsO93fh2VRG7ntMA2M4hcq5sg42QtN4Vr4/zsMnjx6DL8HV2AkToHeNPmQTbtM4Ejdr68NtqJRn4+CkJnVfG+F7LxnX9UUxYPEUMf8dvCd5w70hAOybXiE2tLCnNR4ZlZ30BeXJiKHrtjkl4qqkS70QilY2w7OA6En3WgQFAR+O2Jw473U3Dq1Z182fI8Gd7ZxR8XEavljyWvNnEYLddLVbcAjpeq4Vb17ezoaIzHYIBC6oMwznItrbKMpZp/InD77Anoak6HxHZb3hh1lLZLduDi8mI20vOGU88IXhtMgbf/LGFlkSsP2bTTMnhLU8GL+1Qt6dddY9ok+JANs15Sbr8lWOk6wf6ME2A4OQBMGmOpRPs7RewJZodQZUy/VYVf59zmR+r7OI7UQdZnBCsrBMKQuA4ZNMrh8FgFUvu7GJ36ynHrpXIq5o+wa6Y+fPtymz+8/oUxTePgp/59HOG+hTWEluDS9S/Jc+Q8bLMJ46Cj4hBYvQjVRSxYbtRv3KTawpf6nHGyiC0ll6hy+9AgOttUUZKLFMym19QlJIVlxgL8VLWBDadKE3olsvfYuXDB1h5vyNxA3T3KMKJ5BAnGK4Bc1X2Y9FQez6gaUXH/LHbtfgEJL2Xpqd8l6qsShKV+Z0GyvISsTr3G11PWsP5ef/6v4T4mBi/jEPF+fP1XHOOCRcCxUJ/PN94FC6UfIPJ7KnhVB/CA5iTU1L0Hp89I8F8TR5jkawtvl+fyzdgO6lN4iqvOLIbU4eM4vPMgGV+6xIu7Eujf4hU4dE4W3H3PwHe9CsoTUaXr6QhtcTW8eOlZtlkbjzrvxmHDqf9wjbEg/M/KfSiEoKgBAP5HKUlDRENLpak0lJQUpYiKhGhQUkghFEkK4YiEQqJEChGiRWmhRSIkSShlpKFFuC9xX+QLk1flGZ+VaPxgH30I/g+a1b152SMz2lgqgXetwslQxB8vaKjBmOGZ0DZoQiveLAWjy220YE44FT2QI4UzgFtqP8P43GL43iIEwlrlMPfxWY6aEUyrxyXQqGOHoL1EAW80OeLogB7ssyikSXYGcMJyJ2HmFDa4bEcVwpZk+ESYrGO34dA1ZfxPRh/frAxHl6nyMPDfAZ439in/ChaALpF1qHrwEx2KTmIlnQTybEik0TdSaK74FJA+N4WjWqLxh1AMxqIHPjz1AU6ZzmS5/n42nFCCOd4n8aKJMeSJfCa1Nc48L0udN5cVgHPqVxy7cQoJmgXyWqkgSgnXIeV2I3gZdwi7p6+lryuGwHHzIcqZfpb/+1dMwcfWkO8Jc1Bx3oaVc0xgo+ogjNvRRx7+mayUN5tD78nC8g9u5PpMGx94ncD3bXugK0kPeoWfwYjN0Xi0QIt+7Mzlo3s3wVGnCFb4F07RM83oSo48Wn6VgN3peaw1zgybE6PBcViW0u/vgVMiL6h7+CgcN1DHs2eNUYbEYHzpTjx66xD+OVSOCSGXwdViLfraRMM6TS/wdDWkkct6QKh6MqSYjsGIOSpgZGGFImEFvEakgCozNdiux4lOPuuioq+iYK2gCypXHKhoTgbVZX5lxam1XL1yAcyOHSKLDDUcu+w/Mlb3YyvShc2GqyghbgLKPpsMW/enon5TJ9otX0D/FvjSRrllXL5oKyQEC4LjqRJS1bnJYpceQUaMKr8RasXPQwtBMiEUXcW2gJltJMaUAuhobOF4s9lwxmcLlMzUx21joiHToxuP9k2CvRvfcahpMZ54MgXm1Z3glCUl/Du6h1fsasXaZUaUuckcNVyGKMIlDT4umQQzbk+ERIMEqv+gjcceHOSlORsxe+V0XuzsBfe67CHNfSP9bGujU/YSIB3sx7MrZSHH6gQd05Gh9WpBnC71l94kjqfcWRaQ31eMxjpjIXFgD3YZOGG7YyPFGZ7A1zbv6eDmDAybMoj/FYSz94YLwJtFAVxU8I59KI1S9KQ5L67ykN5q9Ck1p2kLFmJJWCJoKhXT2kxV2J3iAcseHiL59ZPR8VsxznO4RvuFroJn9n98wjqZZXo6+Px0DThz2Rq2ta3DqzcdcPazM/xZ/RaMlfkC9WVH6Gz9EH+vqMO2RB0orXiEx3P8UPzWM7xo9QLs/opz/XZvrJX5yIFfPeCCVTvtemEJ1sZX4HXWT1BQPoJN2cX8SOwNaI1+QDtzY9HRRBzVzENw9DMLWDj2N2fOWYofYvvh8qMZqPrpP47NywezdRb0qD2AbT1yabzhDHC8vYG1Lr6jdSG6fKpgBKo12KNhZD6n+RdjMWdT8o9GetoPMHXDB3hnfIHNxoTD/pGV0P0phF4tusLFufG0fUUi5av9BoewEVCQlwMzxbRAKDuexoRIwtCnGPwwZA9BR2bzzD1ZcDdRmKu+y8NhiRX8e/c1vBehANOu3sDlK4dhydl7sHmfCWdX/WO/S71g+1UcZv9dBCffXyVHyU7Ky//DLnNsSOzcKjh9WZV8cps5TjYZCiUsYGZeJTtrbYeKMTZg9HAOeybY0AtbBz5JbVR/dSY2zrsESskTYXVyEd1y2QauI4qpSO8LX9/pBkfqRoPAZzeuTJrCksd9wVhEGXq19XhNez2rXvMii1cXsMh3LS7z3kHRtQ9QYHclx0Ss4AsDsvBuOI1Cesdw77HFFCtngnMnvIG1qyxIMrYF3lm/x429Mrhk7RiIokza8rKLjuTbk0u0NzfO6oH3vTp4pEINm0mBNxe3cmS2GQidroIjcy7QVNtP9OVcKIYofIcmdxfqtjxKFBbGPQ8M4ZyaIrweP4vnH60BSbl04EkZEDIwG9Kjv2J0sT/8XH+LG82+s42wPlyQdiHbNUnkmvoE8h172Vn3P9jjkUDPalZx3rxaKlesoRg1NdC5Fkjf7GUw7j8t+pyKZHpPH9XbO+BQzStY+6YB1lsWoONfE/ia7gVPW4q5YSCCxhgIkHS6FdbpCeCdx0cgM3wvtJjIcWmhEbiufIdJk2qoiINwvLA83s6dQXNctdjKYx/K4AcIP/oKcm+Phy1DsTD96ngo63uMb+fs4bY14hCNhWDntZ6sfQ9ShMNz/GugBvflOmDSYuQjS+yw1nIMi+SZ4j2/b3zgjQsat93AgBsipKOoBcvyfAhzs/jfsWoujU9B12/3eGNCB1qJlHDbrsVo2KfI417PhJN5e3mJcwRuEN3Dpn5LWD+gkIae2fESCudWNTtoPZRFbvUGsMntCE69sBsXblLnsoQjVHhaBhGW4mqpJm4JGCKdgIu42nsqkOJRbNmykQ1jnGn9pHBWOC6JzYE/QbZDjeN0n6G82nc6vEkd/oTt50HXUXDVuoDThVtxobsvW8fYsXv9bew3zGDZDk9u8pcFQdk26pUaCXNkT2PG3mZUf+LE8c7H4a20HM+rfQLj1i6mwHuiEKFpwNOS9uCOH4E8JvUjlVy4xXK/j8GGGd38rCieGyyS6IS2MozM0+bZQivozekG8F3QjXTMmz0VbSnq1Gb4M+kKVYiIgcMtKdg06yl0iB+hAzsjOWuaMElPqaeNY6TIuWw0bN4kBXKFI7BdRAEaxUrghepBGuiyoi6pLJTrteTGOUF8vHEx5od2QvfV6bTDdywsiBqmMy0jKcH9FgwpA1+vCQWxHX5k/d9yftCrT06b+sm7RhNuhJ8kw+FG9L3TS0LnYqHz7XJ4fmsAt6X7oPPTWJ4s4Edfhc1hXJgT2Tw6Bfs6p0Hah5coJPmHSi+5U/icVbB21nL0hhus26wCO9+awCw7f7L8UQPq2kEouKgH32y/yjbK5fBUYxC0mh9g4ElzyC1SoecPZ+KZwN04cHgk6T6L4dsK1jDBZS/mr+ykrM06FN4xE6QPPscJ7Z5UTpVsJGWAMlJCcMVelbI++8IxvMp2l59AddxUEOmpYZdRQbRR/Q0O6ozBfwtd+MkGGzCQmkFmOcX4+Mw81neYCmgwGzOjImjE7MO03ecXFb2wof3aa+nDelvoqxeji63HcWmiIswZtoZZwhq0yLgPDSN+wfVHEdAxwhk/3nRHv0/lnH45DxJ+mcHbFfP575w4EFo1kguuh/E91xiIGvGQOWoLlpfY8+tNh9lzugKMGz0Vs88W88hxHeieso+PBt7DVM0GEBW4zjUalrTkBGHMD3FIWfkeDl4xo1dx28D+P4JVd9bSPcXXvG9TGfx0ugZrkuZh2ajxkK+ugpee56PcFBHY5v2djpctQ8VbMRC0eA/E6o6jszrN/Mp8Bsz0XUtziwS4PGQU7eg14yar9ew9NwlTnx2AFAMTmGxyHKffkIZebyX64F6K+P4kfXvkSOVXr+I4l4X41C6UJ+X/YWvZ4xAwZyZ4qMvyb79+jFRRwsrmMBDkcnjpLwYeot7885U624+ay3sFxsKgtxpGi6rB5tJnWJvfwau+fKa/VTc5WHQcV70bj1cCRsJHdWl4qXQOAvaZgcvJTPpkuJmOy6fxhsf6oOegxXGVo2DT337UqdKDaAUV/tjlAT81lfm1fSg1tNjSKf0StJszkUtMiIt2GeKB33Kga1CA7kUf6E+2Gux/856fHx7FQx+kOSfzBe5Wv0ZlWYUUPmQC42dU8/4aO/Bu8GSngja2wRGoXLuKip0n4sPlQRA+kAxPxQTg8w1Vjk+Q49jH7zlPB9ndbSkf1LyFQQPmsE0yAUo9N2LgN2OI+anNE6PXQsy6BJrj+JD744fgYkM2f6uxZvPMENp6axSErJOE1wXO6J4WCwc2C6OxdyAJzw/h3L0fyDQgg9wOHgKxri006Ycw3Bbug7SyTOKwvfxRfIA8BTYhnZzMeRcGyC/Rh64UnOK5c6bD104zGNJSwVdb92DpGxfecEqMum7ronfVTQjeMAYcCr3h5iZ1mP3nMjk8e0219Yeg+dhjniIRxwcldDDTNQ1nd7/lGOtn6HB3JNy0nQ9pm+3o4WgLUrIcJIiPwJZQF3hWn0Jy/n6wNluZT1QZgrpRPR2u3Qj6aiGce2Maqzf2436lJuwRucBKu7fxA1Vb3P905P/d/7vGDYSX7/LIqla+E/8cVw/V0/yic6z/R5NjJFPIpM0D1eYRKI6s4ZcXmZyHozD1QiGrW1yjnZcWkn5KCJ9LFkFLC8ADJ/XhXNNyjuqQhKmbxdg7YBx3tIbRndU6LDBDGtfPXsCbTDox8IMU2Ge5YsThq4jFffjxlBVG2inwsW9i+OBnPmy6tAt2qNSTyzkDmJ4bDB4T54HkhGz66fKExlkV0lXdw/B7dDOPTY7nlgeK0BkhDvknBOH8yS0g+iYXM/tLubx1FzV4P8StXv0gOeoPdjV7Y+5CI0iQ7GLLxaKs2bcCDrYVs9/dE2jQnQWV+fGsnyzNHysFOPmzAUw8e4qPTDRFQ4cLECKoT89uWbGNSgk3H1Zj+/TpkKsQQT9vTgCpS0s5efo7Tu2dBNXSC+C+czfetDtEZhq/aNltVfx5IQeyTk2H8NrxoCF0gOKOvYaFJ5fxSn6NI/zt4JDSdRx/eCyOaTPHhyVakPDsMnYaXeT85ScwY9IITo/y4Drh/0Dk71Ge2PqaR2u40Oqb+tBxpxM/6G2BT3tV4a70OPw2V4T8FxbAXVkBXpmkChunHaDD+fJgXWfCA7934WmB+RikcIq+nS9BxZeDFKaznyWmNLJDxU14rycBB5xmkf85L34WtYR/inSQgkEw7S2qoJsdlmhRfJVcXxvjdg9dKNGJgRNdu8mzeBlMKnbmzlFHcFOpPFhpPYWen2l4djAL6+6ZguODF2Dar4AfTRp5c2Qqzzeypo37IvDRdS8Y8e4xRoprcNUvIVhm7IbSDdfghvZuqjswnhSFrtGul9NIKmSIsESTJ3olkKWNODg0zwaZrxt4XdhmFFLcxxfeR8K+FX9o4vEzZF4oRLbtL/HGTUEIsfoCgiPlWdy5hiceX4w8JYQN1JpwnbkNJKfE4NZnm0FLHuHlfyNhY9gYDE2+jlJpxeh3R4YNghbyeY+xlGS8niSKM9hfnUB1+CZ5rd9F78SW8p/BTfBaQw1l4lS5rkwWtpw4gVPaZ2HHChOoDE6kKMlHcFFgElXfuYHvJL5xkudyKFIIpJiiVfD8ZjgfGpKB8XHTeNndUA7OVMBTeBGny1fibTPEvpALeCBuGV+s+gdjcyRg6T1dOjqoBqVW7RiReounp1zmsV8isbsvBH9v3YCmvoqUtlET6EgtOrpeJIUDxDn9zTR3nwQkzz1KZ+z9Yeb7rdiqm47//RUACaMsEN/uhJd25VGs7ze6MaeNb4p+pxGrjbnssT8vscmCJ68FoCPDlmzM1oOldRbnrT5POVXuuD3JgPO0B/Fn/X0WmX+WM73U4FSaK31Rdeey33rQWTae71QhZEwvpM5rD2lxQSK8EIvA83uEQfbTQlhz/QmUrDtDfd+D2TUxmpKTb8LaUcX8R0ITHj13hjFyRhDoocmrzVq4e9EH+m/fM9i7MxFVD1ugY40Id9615r2CDrhbUBqcJ7/mZS/yaMciF85WuEjZNq6Y8s0UzBxHYJtqGQV86yXLYGVYPXSTjrfHgM6yqfw25RI7R8+k5RajqDX+BR7S06dUqb3Q8EAIZJZYYZRmDlHJUaCgYUpNnE/JHoUcdW0Yhbf9ZqtFp0nxixCojSyg1oA6vA/atOaNO/535jTNHZDDGq08sliSRM3Fm3jc6BGQV5kDntF54B6tiX89DCFEpI0Gj2fA83n76UWhA2t7e/KtPAsI2jkdHVKM6R//xfzGXlr4when2ZWDt045a6VEwNUAHRY2UYHpSw6S7yklSj66B//Ki8PYtYXsdcIFN2UVs6h3OkgbqLPpC4TD1R8px/4Sjd37miaOPEdJS2Xg++ck3vYigX43JWFZ8ywKbTKC0cELyHHSAZ48Jw0LoQ2yonoh1FGSMiSXopW0Cjz5/BQmaMnCKinA3a8i+eqUD/BUaw/FhewFE7ffoC7WRI/W7+Ns2UU4jYQhwPcZ2zX4s59FOM27LEcfU9Kp8owcx5Qg+RpUUv0VI1aUEQKzjip8p/mPu8ao09KzHnhHIw0Uv6+Ap9APePI5vRdcA2b5qjBW8CakB6rgx7zR8FYsltpkvaBulR5s2/IRxJXOo5nbJc7axqB1IYrKd1dB4aEV8GOEAXu8i6TMGYGwSCwcHwbW44N3UTzGTh0Wfh/HyqZX4Um7L7x4mIb9U5Px0lkrrl9dQYMCB3m10ATevMoUvnwW5Kas0fhJaQgkC7zoe91s1DxcDRY27yAksBdspIxRqlYbLiiqYXx2O4fGVdPIHyL0q6YAQ/rK8OPyYLgWsZeOVa7hbkGEX4vu0Y1ZY+D46XaKrp9INy82kNihbvRd64d1Lzzx0Zh6HLojD8K3OmEBHqb23Bvw7lAG9TjlsKvQAzp3QhnyjfvI/b4nXE7QheBmRV7hs5DjXizDBQ9XkXraQ3w04Mtp9TPYY7Yr78ttoJePxkBj7RLEHB8Y2FmHk1sPo8vG33hn3yCamq+GcXYOOC6jHUtuy4B54G2KzZwDLW8SWO3mdKh89g2jHD7SCI+T6GHrCvc3lfDU+PFw64cnJeomsEvuNYK5fbj/fSdmWg1Dp+hT6Fktg3/WLOGr8bpgHfkUpbx8SGfEKvgdvpSuTdoD09dW05LRx2jD33ZG5+cUZDQaHB7MJAXMY5eDt7HtVTGaOXmhy8IKCAsaz5ueB5OUdAPL6U0G93kxUD1ehAaiv4H8q9uUV6AJ4QLVfDlDiNYfFYR2J6SKw5PAOkWCLB0WYNAhcdjcGAbVx87DvzQZWCy2E+vnNFNv5C6W9JkK+3Z+wBb1OxDlNJ7Meomt+y3JJtwVdoS7oNkEXUw/mMcz/gK8sfKkQ89Ps/zGaxw7N4O795+BA4UNuN7jE8iuv4kLL4zHRSemg4/XBnhq5Ifje37A87H6tCJviGpG+MD3I7tpjuor3NzmQnkXjWH79ipUOjKV3ihVMa4bwI/muhRakkerKqbg52mj6EdGFTkrTILnhbo8tygUbkmowcnbJpg2OwOOxjvz5MZDoBjQR2/l/0BrkDi8q/REIZsV6L31H5apRXBkth8Ub5/Dwxt2wOvnUnxRZj7PficL/56bcpfcXw68mkUHfzyjS5bpvDlSm4dW+WLl72s8pCcHaWJG0BahSSp3Y0le6ies3RNFfWlTsOBIKslqvOCzmnV0p+kndqoowRH7s/xDPp8PDfymXpt0jHr0lcBiIRT6hWPz0U8UON6aPL4JgsDfUKzZ2o7SR49CRWg6tQzlwfik/TjpwAg8dl8CpS0ukeo9fbCqnkaSDy/SBAqigxVRENy5k5I3TSOjYyfxd/lsLDzth0HHx0Or9yPQOTUN1j43BgGVav5amo3LhIvgxtB6mrOhCPWF5vOiO2rgnLIVQzfY47JLm3ni/G74o9MO7ZfUIThjM6quzIbZyaPIOksEzpal85y8E8j/gA6uEcLXDz+g8wt7FD3qRuaHNvB5lw2oGSUCltoCpPbyIL/JquE1gqex5occXR6bTnG/bWiB8WWe97gHHf0A8lZ7g/DabjBy/gEjs2NplmsrLxsoZfUNHzFplDgsP2MOA8sNwY1leNGHZBIwyYbblnoUMdMO1G9cooH0AHTat4CePLpEEcaioN4VT6xkR/Utx6EqIRZte8+wy6A2rD4vwacq3eHMoUtousgCQs76YHh3DOWv3YfDG76imvBHytswDJtMARxaFXHeA3la+90ShFbk4uh5B8n7jDoUBKhT6zFxUDS5Q+uf3EPvFYUwLnoGBW2WhFxJERLdoM8x46UxyikJ+o6mQpNgCIpsLKfdfpf5vy9xpNQsBKGvf8Hnppv4+ocqej3qAJH+RJpT8hw2nr6AoO1DMl213FkuA7FDzdRWLczJg5Pg/tQauBf6A4Ut9JE6RHnKWT9O8AiEyPOyMBjmjR+dLGGFRDq/PymL2SeTQXJ1Lq9z8OBX9xJR/O9G3HVoOghsNaGTUVdoTH8KROcNA+nlg9PLPvJa9ROF3pyh3QnPyVpeE9jfH7Y8+kEDhbHIzxegWJ0sBcpdQr1HouhvcwjtvcVg3M8JUNrdA2N7kb9+laT+CevwUzCgXcEXHLu3D1eNRNaYmQJbvLTglq0UjS4wxvSOeyguNI/Pm+aB6H+jQVSmG15fXMzacm58Jd4A4m1aeURZC0b+KYFbvv6YsCCJilqukobdbTq34xRvrNrI7x1N4eYbcT797zRONC+ETYbRvDvsDqb+usLr9k7AqvpXpLO+iESuzgSfAE8IkPdhpc1vMPD3HDrStYBF/yvAlveZfH7aP1hw5zdpThaBGW0/ybLRhw0aWjD3uwkbXrsOqQMrKTFQnwNMP+KZgkP8yVwBhNuu8jrZHvSMG4Hne0rw3txqLjrXA12iD7nz8gbI1X6KdTqToaWriaKKnvGEKXH4WE8b1ZVvgk2xJKw5cRHMpN5jccN32oIy0GskiEXpsrDRKw00OhfDWON61hj3DyonXqLM2/tw+yIjXNYiCYZ5yZSwKQ/y7YYhW72GV0kn8F7J7ZB8TxgO7HjIa9d/pKyUGfAgsxsd3Q5Q6oZB6F43AvnGeb5dEUM4lMfj2hLQ790LmpUvBL0O72DnBBc8fdUXNBTqoXXWcc7zXQoBdSU8JPYfjC2ex+ukxMBXUBcPXmvFsBmX2db9CYjMVoR7UzPhzcuF/FdMk/Oe3cPuXGO4qzaFro8Q5jzp3Ty3Xo0uX5oEx/4WYqRQA1grS0NAeQu7/JSDDynfIMHIlhfcHsvbhN5zlrIT3Hxuh4Eaj1FoyVLwkx+NbbV6ULFJHrxT3uKj6Tdwn0QCrr0xgTraR0PMvnyceyAejZU+0K99kyFGRIk/6Z7A46+deEZBNecXlJDu3pHo+pL40YqjsNPiL5qunAzlu+ajthnCvV3KnLzDm1a17uFV9c/poPQm2HZBCReNV+fDttJA/fUwK2okXXHbgbfd9tCDRUV486wo6NYdJLfNX7mzfhjnngSYNSsATvzUZakFk3lcSDwf0bgCw7tEcNHnZviQ/gBEMlPo7zIh0HmyDaus6rlm/hnwknfk6Tv78Zw8Yn6/BFUfdeDeTlUo3y4BGcss0N/tMftJnmQhZxu0a/cmcaUCrHt4CDUziyCgQIgOlGpA8X/toNOdhC2xX0lW0Aftt24hERMzLFHcwrnLcrB4gissDjMG0ZZBFlj3jWosQjjyVBor/B7k5CoLyi+TxN6RqRSy4RJeXzIF4tb7oVxvKE/D3zAHWqEi/ACRjhKs2qwF40LOwr3VUeyYLwpe8ZL4xdCZM3aL8fi1MaxpdBNmjyzHrgvKICsXyCdeeoJ0iRzIbbTA4eWmPL3kAy48MYXDdgWwcut9bNuuhp9i//DMuGrK8J8GMSkVAMXNXNU8FnsNJ6PDokHQH9FNyl2pUNyXSo252/HHdQtY2LUMh7cq4ibtp3RF2JSEg1oxMcKJXn27RKvHrGMf0b/8Y2gqFK+7B1/u27GYy3qWSH7Lzv85Uez7fzQpIBdO1I3kO01SZDxdGm64qkNKuwZb9i/ipsdbYcU+a9r59RTbeM0mU/H/MGHpG/7+YwrYn3HBSdtGQo3pZrxnrMXNq4YxtTIB12Y3Y8zUefifsj0mHhAEy84d7Cw/in8Z7qDWycY0QdiI3vuNJn33EEpoQpC7UMG/rlpAnI4YV53bj43bfqHu3WLUFiIsvOxJ4Z98wKfNjhNKvoJS6XT4GDYJFqTr4IRxl/Bi9nUUWfeGF+T2gk7HXZAOkMeP0iH0+bs2ZDuLk5mlB3qaWGGk7Us28fEgI/M9LG3xltjwJz+84g5eclpwvTKdb8UvpFcTk+Bo4Xu+ta+TNsRewvKVZ7D5cBSs/yfLD0W1YPL2xyimIQPfghvwlidS1YEPlAU7uKb4OPQ7OPHEuT4AHQLQELwOd0aE8KPwANR4oY6XZ/6HkF3Kp+ZNpYb2f5yYb07TlytDbro8z8vvgdvljeC1UoqyS7vBY9tk2j4rEqUe2HPcgCYdOKkDb5zz6VfuSjjdco2fphnh3e5O2h8WyG5af8ncfTYsUiB+bq8CT8c5sVPETIjZUQ7Fsj0g4FNN9wxuU9GP9fjFTZiyK5ohf6IArI8QxYwJVrx1433oun+YCw9/Bn+6hREf1NG3s5BU0IfjLo6BqvepPLjOkLNGFYKH9A4OVbUgy5lTecc0HRJ0/E3hujqsbiMB6YaxLJo2n8Tm9oDq/fEQ8u02VN6eRXkV4yDTqRjCGuPYdbYB3Lk4jMtWrSHJRcY4f5ck55QowW7vGjJZE0fflkaDln81TbllAaF/RoKk6wHoUqmjjMTtWKjkiyNvZ4MTRmDKsBWNdcvH54+FQe7aLny7UgxniM5guT2atEPiFD3SEKGshvu4omE7lhyK5H0PzOHDdi1cejeaFq1Lo2fPa6hXzhWkmryh9O4rFju/BXS/P8G8OWOAWlRIbOAoNv7dhVVjJNG41YVvGq3gidVf8YJDH2evfIGxnfIg7OwJiX7meGTOFZ4oWAbBdlshrKYc3N7Ykp/xdbjwJQOiDppDcYQDLr5bzjEtWRh57i2uF06l185D9N1xHpR4X8EMNRX4VmcBweecufZxNjrNCibaR1yjKYJ/u7Xx5aT1sNyS8H5PMGksloQ/obaUqtMNy0OrwLLCl5WUDmDswd+sf0wJ/QVVOWZOG7rFqMLymQ0guE6P+r/thhqRiXi4+Q4Mvomi402FUOZ+ivrdxnPpDQNYPLsNX32voeMTPMHf4juVFVZhm8FUlpytTYmzp0JHjjxeChQHswkLWdg9mLd9fUfXvzM0bAqg8XvD4azgFGjXK6JfxSpkZESQeOoTzIoSZPXHmlR335M10+di8p2T1KIoiy8Nz8Ob2/tgoAdgTcpC1rX9AVrK1tBx7TTlL1NHgYB4eLq3AmoalGkgTJ2XbJaFa5XnYLRLFBnEFaFY/jG8+CgR/4WIgOq8flKu9oTgi/+w19QIjnnvx6VdzRxw7jOnRsTDRal0OnprG8eESeOjLA1+US/IAiM1IcyimVy3p9DyZefYf2cXdONEPvDXn0bb6aGwSC5ez94E6vrSsKPyJ16/pkVLlQrQT2w3+ayqZaE/+3D8k3ZYadDNrY+FYGuEJlRfngezb+rh/ihRWvfzGZaHfMaAMa+o0nwluEc6w/KKaIz5aApZPR6s2pkKxdmrUbe5HlbPM0ap/Rbk/XIk9nuYQlG0Ktn7EewxXYjthS8gvfU/Gihdg9JtNnSzYAEcCWWuL96KSWbH4IznTBDXmk1rtJ+ww8zdFOi5H1YsrkXj6jT6KwlUrivL47QGaO1/grAoowIqWipJJU8Dl30Yh3GiW3nHHCVuPPGQb+T2wnGD22C9WB/Sbm/jvyqRsOt1BktpG7GfZx9lKRfiZf0/+HC9Pz/SqsNcP3OIqkujOfKtGF3uhJPH2vBoiSa2TRBBNykE8aOL8LulK5bc0ge3IEWe+uIK3n1kxEn5+6C34h6Jj3zJA8tOoW+SORku3sImIqZQPaKd479Eg/LXlSSuLAJPbNfiltbRvMvmOlBdJChnzMKnRfoQJ7qO/smmwce3jlQllIjy8y7y2G+PUczoO/zUucOrRiVRXPpkCFNLZvMjbnz56Ch0mrgGFdbHgJuqPj8f+ZafjE5Fx0N9aKcjA6Jq4+i5xziyUXPiid0Z6KnsxIumfwYjQ1246HObemq90GmiNpSYLqLoi0/5UF4uzHgfhJ7Gs2BRQTJnS0jziAxXeJEjBjPMBUEltIs+PUvH9pfTcYyoF8PKOlZMkqCPW4bRjrZh1AsLvFOmBbvipelduA2M9oynL9djWE7wNu2zDcH9TerI1gI0XWIdjjUUhtWjNvEH5+PgddYSp6TvZ4+OBajif4a8Oo2YFx3D4x7GeKptKszZM4uPn3pFd3bpwJcnU/DZnMm4bGEBrTeRQ91VglT1wJ6+gwYE7xwNHffNSK+lkrO/XgJDeMVdT4spYaMGxUjl0jkRKUyWGwMbbRxIszgCFk4pwpfO2rDT7B2XGT6FryajIG7KGhBtfMLn20fC3OFWLhLbBvfO2dH3UWt5bXE+87LdfM5xD8qc0qZ7Wb0k8t0crM0uQZ9GMlfOCmf7nQk0vfElqmcrUbR9G1cvuAmnmiaxSJsc6OQX4pH+V/DkRhItmbyblscvQcsjmVDQFwcj9TRQUW8VmOaawdjbP0hAeixfCOzDpJM36OWuWv5UkQZfFnjTmv15ELNUh9aFq8IK83ziwI9ooD2ZagsLOdBSFZOPOQF6X6fcI9M4sy0I7ozXgck+mmxpKQUmhbdYpWcQ74qOokLTw/xibCc0bxDBL44XofT1BFi76DHctBNgsU5L0AuzwqlFHkR5NlR+1Z1kjziCeFoO0W6CiQ27YWZuBeRsDuOnkbI07+lK/Hg7nZqNH6Lc06n8xDYY4+rUYGikHqVMuIy6wpE81+gglSXNBIHtqdgy7waFtA1Crs0BHDYWhuhnYby2aieHxMvRkjVVuHH/ANYOX+WNLyJh791srphkzZZyoyHMOwO0/nagwuBDeCi7h35kbeOHmg9QYhpjbtFq/hcwmRSSERZdbOUumcc43Uycp0Sk0ylBTcx9oUU1yr4k9WYsLp0XypeXG0NgvCDN33kNfx6bhQITL9AVlSzYqnSS9WbMo+Hn7zmKGjltwxTYqRPKIhsCqG/3A15V9hNWLryA07bF8unV51k9di+bBBXh1odC0K7lz5u+qPOXq6mw5dIOTi5+A4FanjSgkIN/HXOhU9qRa8qEYav6ZjLMOcoHdDXIJk8N79YakJq+Gv061IWVP+fijh4pqsnSgdEmRajYZAA33sbR/GpJfuCqCMFCtth0ZBPIG47A45PPkWP6aNAffs75DX2s6S2FDVo5uPGQBeTyXGwWMsbtR+OwYJ8BR8RqgHX7DoqoFAFfyWR4evogex7O4j3nGmiypj243vuGOqvNaTBFAFomCcH7T9NwuYQ1xH9yg1HLVtNc4ctYPUEJX072xg3pfRBuLAGST/ppSeU3/DZFhIJ0VuPGva+gqDyCV19T5br7v2DonTr2u+tDTS3ArGMrcFvqYfg77RJYab3C23269NZ/Ph24sgAPuwMs19KFWmFH2DONoOBkIn569xlD9X7COxEtco+1oxcuv1hiJ+G5j5PAoTcaKgersGHGG3LOzcUtrdsocdc5OH/uCje9e46jymxpcL8kfK/YjleqkyDkbTdUKvTgT1Fv1HuchKFHV7LJQAW6TwnHrVvNYLJ6AqmkN8DFwRa0GykB0nEt4CfRTcMKh3HE5n1cZD+SVx1WgaFDBXSsXgF3PrkHReLrcdqc8ZDRuQo1vm9HNaPTNOAXDc1TZED46AduXjOXd/27T0NxGjBn5VLY0mFDqm/X0+nxNiD19i7GX1eFHDFnktj7A0OWVtDZylr+z30H34/6BO+GL0NMpj7uiI5kLymG8b/rubQ7BauL/vKBdh/u9V1I3xX+w02yRyioRpGSlrwjZ1FNkHw9kSbXHcdr1mnw+c43vmX9kidLpJHjvQ58NEoTtd+o0ytfQRj6LcbvjHNIwLoG8/ZUoWv+BrJZV05PLCfh/JRoXLJOha55j4WE7XV8XMafHmyVJdmNRWBltReOrK1nrehv/PXYYwpcLA2/Z1jAxAYrDFdq4a6OH+gEpjA8Yx4fXvONtxnkc/uBCl75ew+dLrWEroEKWlx+GfLkvSlZNotM5k9AldNLKOuOCWlJ6ULYyMuYYwUQpNWH3oWPaaDpJ3TH2cJ5MyEMv2TCOvfr0eHPfD4jeB6mLpgOx626IaNoJm25IACYlQXHw5fDsWlp+F7xJFSDDxj2bSM90oYRBUH4sXEbxLQt5dTijeCpqsIqSxuoYosiJsFqbJr7lM/tkAbT3Hd4Lk4Imr2D2brqJFj03SfxyFPE4k24x72WRz+5jC5JerC5ei8vevCdAvVe0YQlo7BVfyvol56jBytCyH+mIPp8SgfRQQu4tr0B9fpd4So3YeDDITyvupq/BvVD5B7ED9V9HCt3Ba98kwHVy0fwhGI1vdKfjZLqj2lNpQK+v1dK2e1L8MbN6Sy0tAEi4i3gd/YB7jk0lzbNfsyLhSdBUK8MlBh/RZcfmVw20wml1qyC8LEzoUhrLO6R9iKZ0qd4NKQIDawk+GBCBb5e50Jb9Zby4Yky0DhPClY3veY/5ifQd3MiXt7xEJcMNILLgBgtE38IkQNalK5cSTtfj4d09Qbs4Wl0bccr9I9YwEdjPPCx+W/86XQe+j9v4YZ5WZwbrwGXzp1j54NfsCx5B0RarqBpR97h/bTRKDdHBHoCs8D04CV4dkUHfFeZQ3d2ESQHAMu8XwZLWZDXqaviLYNi+DdqNoXtSOPkPEU4d3wmHgyvQqVHbjhp912o3S2Lmjr7qMVxDGTb+2KNxi/oaGSoaXsLQ8uv8Ycce8oPPo7BGWos8g3x9JhZ/GtbMua88KFZIZJwN6IPxUe4gmjfIlIuEIVnlXdhuDCR9poIUMroIBj1oYuM7mpBZt5tKLtxmPfaacMx6WgoEj+D63aU852zq3iF/CSsmPYAdigIQNuPaXDJcCqLSTzkSUXJqLNOm20vd/Chfdb455EVeepcBqudyvBs+TluKZZl/y9bscfTkj2NhWj/7yB44laAChuG8fD1HLpfNRaSXBZSqFI8DuosZHshf3TKVKc9X5ZyvPdj1DOvwmfBK7hrwQS48VcO/mwT4G20nZ3GdnNrsi12vVzKK6Qi6KzCTGh4epbGJY0AxQWduCRiEU4y7kQ93S1YEPOFzfd+5q27RCBI1ZnvH7hJBydIwoKO2dhX8AL6D7RA24okIqkm2hYVTyG2pSjxOwV0Qgr4Xq0ZHFwQh5Kha1FQ9QUZnzIh29cO3BTey5vrR5N6jg+rOQphYp0wfI7fymmxk1FzQRSu6N5J525vxSlXzvNyp61wVcQRXbfcpmHdsWDw6Qu83b2NbPNyQC11BmzW+ceCjUm4IEGOXB6/pF9NXbQvcAIEuyhCk8g3FJcYjYcnmtPC0584o6YOr1U6c96DYIq9UQPfLwhA5MUeuFOkxmtXBIFfgz70OL/iGpFV7J/QCvbftOG5whQePGwAo189wPfrs/hIgBL7SG2AkbMM2HKCMuzdvQznJ26Cv4fice4yAsmJ/6GHYzH++dJM8S8y4cbJWNQ5vxard5tgWLgeb3xSxAKeJjDqXROnPXSFRUfV2W6aOF0U8Ye4cy6ksbSLg0RaUF/CCjVeyEDArY/ckDUN9oetRvEdQxz74RZ5GM2gr+mXqFtmHxp6/aDlZqZQW2NPnskHwPb7IE6OnYEb/myFq447ebZ1OhkdySCz8294oTxBXqgY/F49AdVxB+mbx6C61xXefVIZi8bf5d0eXmx+/wn1nBwHZTq7aGCPOHqHKdAD4Zf0Y+gEde48zgvltdnKcBA+XxKENxryMKJxgKMyjqPp2p0497ETDleMJunFn8m10IpH2gXy+pqF/HiNOUS9FgXxtLP4z02C9vqOosG5dlBxwQLcpMvYodwNPk15DRqp8qB60JT3fn4LkpUjyL4xH59uK+KUV/VYMiWT7LeG4FmjpfBNXQwO/h2mD4cqSUfYgDXG/+OEZVchN02dnc7OxzeB/3ibUABa7zKGo8r3UCI1BAfjLkHgqgxYNf0f7JTfzZ63GtGgoIozXt3E6M/q8DlqFAZ1J4KFcSkutBqg/EtfQOj8R7i26Dyv/jKB2iZuZxcpaXj32w503Kax35Tf7NQiRyKnm7C2QIuVLVfyp/oVtDhJDkOXi8LzySZwRn0Ip345hJLewtz2/h9PdiyGY2UPMXRCBOS/fwHNHnLQGyCE3vKx4B+yHO2P6aOsyzoKz47BioxrsHHqJro0zwZfN4wAkexwjjgxgEIbyqjbV4LCj0zkOUuLsEy4HGXCvsO3eTMwpEMMKooSMMMvC+JnFUNGzBJa/LIdLo9rJv0PYVBaHosSLUNkmzkdIvv9oaaoAv8kt+Oa8+uwNU6OtVQq+PTvSoDlwWC88hH6PhsPpRI60OUsC7tCl2Ld2yS8npXC7xo9MMR7JyjN84KGyGTe1CUNiaEGHOHzBAYG8mCN43OKs74DI8ci1f2XRo4+69m2cQ4MH5UBRSlTfOpaTQvt9UDrWDzu62snGRUHyjEKxGbF4+xblIinRJVhxvLzYGE/ipe6mcDIHy9or/EiPna0h9G7DBVMH+KkLya47qskFPr44RLRCuzzloatFnKYZaKCz0/+xry+VihO/ENJmbqw1lgPGn8twlFzZPid+zh+YvqHvxxMxAvW5+DuTX2y8DPm9gQ3tE61AJkaRKvINryaXsfid87jqbd7ecyPj/zsjDz4u/eAX4svpM/QguHnvWw6bzvHFD1BkfHClDjPlzoz5OlDcyl93T6Gwhb+gjvhRrAgqBfGisdA3UYDril6BJue58OId6uxPciSnYcG2C51LK8ZnATfwwVYRmImqIuI4tULv2Hb7hc06WY8V9u7wLGH4jj71GqUk1cH0f3HaX/bMYpVOgVfJJ342BcvDnZVQRfrM+Q84EibXz0goc8mUD21CNtSGrk69Ql6yUyAVuVhLHsaz5ICtzlWPAgMJ7/iad3moPZKHXuadsHVdmvwaLUF0cwWyhVcyT8+34I8F0vwP2BH55UJNOEmVS84DcOmRrgzciFOS5PAKT/OQbzbIAn9WIYCJl9wR6gRTBgs4m1JouzZMYuS7lrje6unXB8pgD1jrmH52aVQ6WQKFyosQE7EAu7cmkzG0/1p3tjzpLM0B878+clGEdqcGV1GhSZ7yERIGn7tf0VunTdwcDgQc78cgtOJUfxlyhYu/7SRJ8Qa0rByPC6L1oDl3f00Nv8oN8oW0ifPBow28cG/WrtRvOQtKLR5UkDlfJJmWUg468vWBi68KtUadodng/FHXzqSGUVYfgFG/X1DX8xH4DwXJZj7yIffff+CanvKKDvhHBu//gNXreuBtipDb9ZHOp/5Gv/N1oDqQkmcNdUOQsdnwZVNsuB+xpbCpsfAD08xXty/jbpqv+L126pgJL2Lq8q1acSZBNzjdAYtXTv41215vCLUgVvCFVD6azJN+aIFZdlzudzdkYpCIqDkUieItyyGH/4T+YOnLlZsLkPpChV0GDsGCn6dw1OaErhqqiweNuzmL4aLYdjOkmOC25F+alHBrCG64y8Bk82f4wttcV6zvZDUgzt5oP8nORQL0f3mSqiteouDgc940lIpWCGUxfctxNjMbyo8+amCV04V4aXaMzRxui1FDLpjSkQaPfkxDhTdhKEzPJgXK9hz05zT7Ci6hH3PrIH5OT7456YzbFG/Rv5KKnAtbDqvT1qNDe1T2Fv7CWu0mfFQyRV6ddqftJbKofZeS3hmPRN+1ibiq5xD6Lr2LW9NYB5siAWB1nRuHhGJu8J+ooBVFNxZJQ2OEdV4bFM1XOxpIKvHpTQ5ajlckX4LDkFroTfsPJikqlKf3GhQ37OVYgxKOFC/DaQ0P/KsR4FwbG8SqFZI8ou8u5x6Pxs/LgH43KvN/TuaeHjEaV4XtwQCY+fTUeULtO5vD5Q5u8KjnidwRmgGaKamcfmv9XBo0wzIWncQZMyf4aIvorz/QjzVLp2GZwVfYoTVKDCrecHXWo6jQvASvJwnwee3O8HSgsUsPXskLiiswyNfj5B92wzI+bmDbVmS7vvWUaJlCMoIqWPPrH4K/vUdva1GskO+Ko8CdXgi4I9tReUgsqKU5mv6kL+/BrTHnsWvD16R+hULSCtvYOEr06DvajsaNE0A/8t3wLbzBvR43aG86DA4kHgXlPOvoXfQSz6RJwq7Jm6m8srH+HqREcLVfpjfs5mTEnt4QWEBXv+UQ3UO2rz9yFSQiq/kNQ4LsHtiOeadVcOMZG06NqKO/7gzpW6XBl+zFNz3VBe+X5Ehz4DpaBBkwKen7uBriTZgd2UP99M3uuwbBX7OlbDQXAjEZumhW0I+St37xxOLLOnHubm8b3sj+WqZwC6ZIyg/vpf6i4wh64QXv6wtwPfPbXjrs/OsP2E87N+TDo+uZ9FDG1twNy0GpVnysKxxBfd+K6TIvneQmBSM13qeoMP1tXDK6B1WeRfhWY0J1OgxHmaIVcCsk2vBtK0UUqQXwAazFHCt/gD/thrxzoLF8GOJNZlq60PRaXfqOO0G2r1RYFi0DS4Gn+ElKsVU7L+JhtWbqa1Flc8IyYBKSS0XC76FzxPXIzXNoJPygVh3awzPKzmCog9FecfUAbzarAzBDvIkPtWC7PNHwVwFUxQKTiOdmxIwSl8CanbKop6fP6Y0ToL5865jp1oHy3WtYHXzGCicfhRVT8zGie4bWWfCMI1KjKZxhyRg3L/X0Jp8Fe5mN4BlqQ6tr9XnQqNmvL1vGvWnjkNn6R6Qey8HFYNmYHh2FyW/9IPSop8cK+wHMea2eF0pliVTP2JnpyMqLRCBvmWl+E4mAdYEDMAs84s4PzCVHx6ohNPVu7FKdAX+y3DHNuWZkG56Fk807gDblWkgufkJi9hPR1T1hx1LC6k5VpwT3XIxxGUShN9QQ9OYT7R8TCT0iL+B2al1tN65nXIkzvJyC39YN9xBErFqIFY2EsvGbgWfGm0eoa5MyTaTcfBBAR5NbyTfExt44f0GGL1LDISOlUDoxlh8tdELNMIC4KirGnffXsoTxkylF0KLwS69hpr/SUHonxmoJ7IVHr2sB8uO3Th5gwffX61FaZWZ2CBZiVsS7oP8JhEIHL2cTg/pYdG+U+C5xZDu5d3BC1GeJP5kDAz+yqGZ1V286LQUTO75TsKKQxjkUA2tSnW4avUh7oh3Y1/hLrLW9sCf4Xf58C0zcL0ziJ/XOzBMC6UFtzyw9pYGvy6rASfzGhRUmoBW9aFoVzcJpB71octdDUxTrIfzHy5D1PMxrFX5Ca4XeXFfYDRMaXzHokHSoGJogbZmZ/n0ouc8WlSF9l7K45yrY3BEjRF/7GpDXztJ/FclDXJnYzjvbxPe9EFGQQtsez4TK2QyWbgmgPb+WUlfh3ywa50s+Oq/5pXz49nFzp+szV3oj3UHTRouAF+FD2wa9Y5lR+hBzOBEcGg8CLpT7kLPi1qYcMQXb76pAivrH6i2jPl0hiYFVpaCULwsrPR9iF9RDtdezGb9IBtyvTGZlfp2sryfF25p20Zudua8uVoJTring4GzB7713MB5biU4PDUYN75zxxGKPvjBZDRq/Z7Bsr0A/aOP4JOAYeqpTYMxFel8MscQv47QgbknBcBQKRHDZ/pQRaIuSCfNhFDNeZC9uI8eDV+Gp0c28g43K8pXzeRlh/dyZq82ajVqgG7zKZK4poxOf+xIZcpr1vpwlZbW57D6Gi8OFD5Gao98oVUBYCjRDgzgL/1rsaAUz0KYufgplWywg8ZJWYC3l8LNsR/ojaE8hEiMo9/bLlPn4wDecr4LhuMk8NCWXPR0KaIHjftxXbA8RAYZQZNfPuS2P8HgxS/p11QxrLh8j8qyt8HhKF8atq9F7b9X6ddmhOXTa/F89WWwXj6DT2wvxniL3dBeYIVrfE0xP38JxP66ywd6BODBwy14s3yIbWwWYW4ZUVDmMZ7vLUF5dnp8f3kkhO3Lw0+fGLwOH0Hbj+68iP6ibMAhmO/kBcsjV/EerW+c8+w7ll7Ro9JjUjCu/TQXBF+AWTdm4IZ557jdPZM78o3Ia+5Vunp/B3wTG4N+C+Vh44NGaD2VgLZDx7hS1wGN0iMgpe0g3nSS4H/5Taj40Zj0xUZD9iZlMsmzxeKhk5AbGUZjg5Ixd686b1/2FSKm3MeS0lSed0YdeiX2cJKJIDkfLIV1hns44nMQq93Zg/9j5T4UQlDUAAD/o6GtaIrKSElL0c6ISiSEkMgu0SARUhonKiVK0aKU0ZAUUonKlrJLJKMoFYqGhvsS90W+vpkLcev8bl77zB0SMnQhdMxP6OvQxrB/L3Fj3jmIuCZPm5Rt+PrjFNqUYgbn58eyQrEhGE58CxPsXkHYgpdU9fIuhez24e4v1cyr7sEnU1euLXqNYqc0YbCtExwrNMEksZL2N6+FXYbX4NViR9RNXIr0Sgr9yh+h0UZT6Cw5CbO2e3HL5/kYM7SBXbJugKd3INq99ONeO20IvnCW55+YCI6GonzqkTefqvsHT/Y3Q0CaHeQ/6CX5L4txnHo4zv0yG/eXiYLDK3HsLHcF+DeWDtW3ccSAJXm53iabXbF4QPcHL3vQAtZjzKHz5CBFhc0jo1kGIOZ4gV3G/iTxuNmk1tzNqmO38KNrYtDkPg52L3jAV9MUaMTSR+B7LBeHA0KgeckiMPoYTRvv/4aPHdMoPU4FyuQKMaCjEisuV/MOi250PfOXlwqN4QfW7by/9ihfOiQAV1VUYXvpGrId6MSWJEtMyFpA/henUKu6BuU4CHBH7hF4mBiPtV/FQfBuDI//vQkzXj2kWT010NC3iwvevMS9q5aRxj4FurxOF1uLRMHKJIeP+t7CFcNiqFGQzHO0U+HAfjsIi4xizwAZ2uzbwJMLR8O2pSMhyPQo1b/bgJI/l/P3bH8UtB0JyQZf4erieMhxbyWzpBHwYPg57921mT5GfsDMlgW8s9cF3755yB9MK/CXcz3Woh/fSJ4GWfoJdMl+BTrkvoSYxa7oN+4dL8Boim81gnlu++HUgXdc1qAOwm/X0wkhonm73vHTnEg+0lvBvgM70Eb4DVrKGFBg3CUeDtCD5iPi+BY/g5RONt3ODQex97tJddQTOp/7A2YbBrHsmvP8IUwZjI79gFPXmqHqTyBv3bcesuvOkswGE1R9d4tvH3mGG8J/4CEVVQhODKOoqgu80vA4WdUe5Rt7d6HhEQH0mluBdfJIOwqz8IudFtQvfQ4TXtfTxE/BuFHNjuKN/dAmQZo/K3mR4rubMH84B6ZnMUwdioGGdRUw4/pdfFcYzr8SSun1ORfcqL4Er4np86Gwy3AsBMGwsgNuODag1c1AnJNVS29ezcBxi4xg2QF30M3Yh8Y9Snz+shZUrz2IJV8EuPXCVB5r85XeK1njhxIjKP/oCzPeMvovuEn/WlVhK+dx9bcH1PVnFc+Z2o4KMe/JIfwoRgcKwEkUotnJ28A+SBlMLl2gjvPMPctz+LNmB27MMsIZm9TRTWQ1qy1YzLPW3aKz67VBxXw+2735goM3bHh70ka6XJaNNlP0cN5RG1yar0f3J1phUZQsFLdfhcGnmlyrmMObklJBuCSZavpeQ6qwMf9ZEI3++euRhs3hyhUljm/5y7YtOmy04BAaR9dwYV07SJ5aQe6nXOlnZDckr1SD3OCt3Cc+i4wFDODny1Hc/HsjTvF4SAubdPnCmyCk/6J5qpssiHoPolTgbzg84gRpohMkpYhT3uGj+EQ2lJ111CHsuTxOvyAGb/ctxea1p7HxgTQ7XyGoO/8bE5uSsKpdEJT67eDWsC6fCRgPrsM/wKFEhtSylmCkxAAXrVZluflLqK8skNQFAYLLTEn2lT68HDZgB9cI3he+AyXTxtLmmyn82X0D/dwdhhPs92HgrxweiJwB5X7nocxoBUjM1cKIa4sgKW4vCNyfCad8IvHWPx1YP9RFXnZK8DTnKFiKZ2P5MTMUNNHB4ZooLJ4sA6e1Z3Pq5lMwwpVoj4EKbJoUgY7RIuA/+A8Cl33jO57XKDXVjG9dsADxpiyoSp3DKmtEwfrmao5r+UufJKvQ23I61T3aAlIxP6gq1wG+X77MZwwT2PW0MZx2dCQ7f31qWfSdpofX4Ws9P+yyfc5bY29RzBwDDvw5BlbcYeg3MILc8xsh5o478t6JdMHXHpYnGbDk/GY0663hhO3yONN8POzo2kMxCmGwTL2D+xr6YbupO51JewSDlkEkUDADHdpyyM5oBGy7Mps8DAdpoYAAhvdk4Q+bF+izpZxXTFclAakIvsOxFHBVDhbfa8JmyRVUt6UUbe7fhJgyZXqwygVmPlWhnRo1eDI6DLdJmIC/9CysHx/PA/7y4LpQF8tsBiA29wnSZSEQ3nKD3UK0MEtGE1L+quGJpmh68aQJensncND9bvp+7BJ/dvEgo6EBuuO4nNq6xGHZ5JlQCXPJSOYcvB+RjL+F/SlJ9CRVyfVCwMkTGHbsASwcKwmLPm1H2U2vwFk/CGS+9tHpQ4E07W0et/nqcFbSUq60UYAF2UIgYB1NW8MzwKX9ON48dAgtv6dwY6YEPt+7BqfKryEF7+U8bYMK/Jb6w//uSvLiY5lQVg6UGORNp6d4w/A2NZojt4PEJ5WSsIsC+F+5gPUfjCFTfQmH4HnOjC6Ed/P80WStD378nA+lv+Jo6modKIl6ytP69On4tGzW/6WHZt8L4cm+vzBibhP+1n5Ft3+2863G0eBlVIlFKzbR8abvVBtmQJs8F9LVuEx+duwtWrzaQSx1i988FIDhSxNxaPECOuu7nLfOzuE2fUeUj1On1+s3wXezcryw1YF9900Et7oMyJnA0Pu3B5v/LmORE+p0YZIy7PjizvPvMFiOb6H9Z8whOlkcHddGsoWPPmXGh5J1dhXl+N4De+9/fOn0an4R5QipaobwIvkHDX9Vh8dfvVHuRBVbRo2FA0o++DZ2PB+ZIA4Tuj6ixDWCiTrmXHKmlruGKiBgRAWf/mtIV8RmkqKCF7apR9Fjq7e8YdVUWCxrSl2KozDTvwv/mR2ki2OD8KX2QfBM0MPrAi4oaJiNSv9MwVN3Bh4bEkWV+Cugd3ojPAjx59kzh7Dh1C+MoVeUXFwNf8uNQTbwCXT1eYHS9iS4b3COJ38EurPPhEP2CtDgv+U0J0WcrW9MAoiRpX0lo7BzeSj3t1lTSOJoDl1kgCenn4C8BfaUOccc7h5Rh+m1JfQpMh/+OjaRML0A/ejfuGtkKW4++pd8zv3G3Zk+GFk9BtrrnFhA04rEBPeRrqIj3e64h3uXTsCijx48QXkxdquG4ncrdWj6T4lY9TE6eQrR6LNvISHkDg28iiX53jl4qE6N9WtO8ZjJ0yDx3lkuenObbnZUoZBYAG0XG8bi5i4KcPcGW+cCHCgp5ocDotA2HAt7vL9w5ftPNDqmFT3HvuWCTz1YVCZB3+qKKGNxBNYIGsKpIE0wb5Shz39f4ohHKWzzMgCv6Ethc8VP3BNxn11yh2DWXwEo1A3jt3Gl5PBvCofJSMDJKScoo0ufHGZK0nKrelL6WIF6t41Bb/px2pyowsZf5GFh4EMIKD0C2s4LKD/EClyG2/Gu0Sr49kgGPFJmob+dBKL3VGruqOfirlxuS43mlhkTGBa9oH2D4dS6QgzOS+6DwDkX0eGDAZWsyKOP24PwhOMSXDXXmx8GKrHXeA28KCUIV2vL4PoUXbqvdgBfGL1CGJZDIRMLODQ0wC/ctTnnbDrPy9UCce+tWDY2lEvFjOhueQMf1fHmb/nveXfMfDDb4YER+79zc/cUGKNaT84qW8GwIhu+VC/nTX1m+NjIHByqX/LixU70x0ucMutHwqYxZ1GhazrvbMrEk6v9YVp5MS1cu4LjZpXx1HgZXPLCBmW9J8P+wSyy1amDzI5y3ONqxaMzkjkgfxt4dJdzh/5Str44Csq05UHwoTLojFhPs70qeeuWTXj633HObtyFd1bEM0bfI/tqSbRZpQFtexJ4grQ+O3T/wzGFiiwu9JULpsVzrrsz+773gpO3n0PICEkQaTlD9ndl8BjlQseNVTj58E3IkLxFEXbemHvvB9Z7FmHOHkOQ0Y5huQl6NH3AAf6T2QuLQ/aC17whMm7JJ+P6+5Rq+xfGKo6C3q6LsMNjOZT9O8XHJEO4Y1o6es76h39G/OGACbKgViwBFt8UICVlIiVVGvOsShHujNUEq3cGcD92JcDn+ywYkkA+JcvIRkAdFiR9p7nrJuOOK3lwsEwPbugq4mDSb9q4ehGJCr1j6smhwjIDKC7fxSfX1ZI8N8JUyeW879Ul9B+bz52vZbDg5jVcMf8I+r0zAcMYxpg7zlxvPIVXLtsGyhsPQ+nrlyQS7g6ZUfdJMFIIjcslIEPOiiOGfHHGCnUI3jmWkowt2eGMHzoeb+Pk0HSq7dsHe0TU4MoqZrh6grLDH8B74XGUfqEBj4nfwHWZ72Hqu4mk7zuZX54WhyPlM9Fj+TZ8JKfAbnLncUByLvZcTMLtYib0QCmPvTafBLEFKtARrYCxbZNxS78nPX4+kUbsf823zopjl+EvMhZS4Ov+k8h4L8PdhWbQ3rcPWnUOsI9bK+lrOBG0DeJwlTOn5upxpEc+bv0pDxoHilCx8yuY2bWzmp4U/PE7DmUJ0dRvrEYliiqc2H4bzk4wg9GWfbR7hgAd+qoGj1+a4prup3j52010sOqnKx+v03WjYtCbMgEOR8fCiPlp/HPBIGV19JOy5WaMTL7FrgOzsL+rBBasnY1jGmaC6E5TkDb6S6w/FlXP3wVJmbtsEnIVFowKZ/tFPXi95Rq5vRMBFXtRnDr4AkRrF9PTrWlE08bz974YrM89zZHH13DIr7Pw+JguSOeNguv1y9ip6T5aTvmPXzfcgU++K+GocC8ulHEnfVNtDnXSBrkaP8q+dAw3Cw1SgX0dr5e8iLJK2fyDH0POFTEOtPoEdoe1YGFZBtTUbaZhQWeUVTCD/XEp/Ny3h73cPnHAlzLIcC6mfIkJUCEFsLt/IsepVEG8429KTBNk7z3t9PJPB5wMH8lzBfeRRLI+vF4bByVKTzByUxBu/pmJKSMrUGW7Ks5d8RMjBC/i4VQv+OYDcLpkNSsY5fOeh3+oPUEIV8leJqXbG8gh3BVqSyPRrMKPtjzXhEkq8TSu+gR/mTEevshUwOL1XXijWI59QYDX/Igl70YlarExAY2XAsAXF/LFlPn01boOpobPBxvZV7DgrhQHJHtAb81HGp+lABe/2fKZo1chvbEBz302wT1/JoG2ixy6BM4HnfZgyHfXpoxtwrCizY2SciaQn8M3fv0+D11fCXD8gts47k4mN4TbcSW7w8XHMvBMSZw1Ljph8u01OFFvM86VloNvmyvooOJMPrdvFSUtCaazc41hzJafGCZZRF0fr8GyLR/ALSQUfET8+I30N+4YK0kxwvN4gpkE9Khq0cHuMfDg7nxqLtxN5xuEwNXega+MU4aP25bhVum9fEtSC6aXr8P3n8eD5OTRfPHjc+jSC6Y52dkgXhVIj0PX0C4fA34aKQ+rrPxhTFgJT/5zG83tBnnuhgCs+RrEYYu+w6mqT7w4vwGvzpWFlX+0yPLdTI66PQDZhd8geUoTzprxA/2m78X+emXe0hqMXSLq4DT/PNofl0LNnknQtPw56XReoNGQgiPH1oCVVDHJfZsOdx9oQwxuoF1N7yHfwpVuzDCGiJJOyF7zlaxJBNzujqfOI/W0NnAkTFd6Sk9OJZPPiR6av60fcMYhEiushOdq/9HfKRm0oimCVXeKQM7oCti99BHtj9LBsKx7nHA9i37b/AD7/JnYt/kyvnP5RfOWSMJFyX5cui6XKkkUTCYaQNhKU25NTobEEYR22TnwSFqYEoZHwvONNpSyC+h+dx4aJ7Rywe1CFDbJ5Nq50+C1Vx7nvVqDLX7ScGBPM0kpt9G1W774buwxnmK1A+763yU17fGY9EwRXi0pg0/X5cFhQyEcNhyDng5K7F8TihiWR8YGKyn0bgofLneDB7678ZytBWx5bsgSknNZKNuZry/6wQ8jrnDOrBawdormXTlveO6qszS0RAwm/6nGf8aSPP/BfdrU/p3fbrtOMU0xpKQoQUm3DpPtr3Yuy9WDNP2jlPB5kCLjonFkURhmbmsB14I2NNgshrMTz9KJp4vZ22QMzFxSg81/lDhCby+PNgvirgvaOHj4B0VZWuKAXBcs/qQOs6wmgY/ufKqGaE45sJBE5cfBM8XPpHT7G3vLnoJrf2/zj9snCXUE4E1/Bm8p6aStBqLQ73KfZ69Og3fz9OhK0XYa2pwOyuKb4ZasCXzvDQWpSY+oo+QbGZSVYutAP85MlKabp6KxvKkC21dOofVuslC+wpAu3jiH6Y82ok+QJQqlKgJor2bH0IVgYBnDJ1Xewh7WgNVTHtGAqiQb7wgEH60YGLvHm0X77dHsPzm4S9XQ311PYi4jYNFnYcqyZHzzZR1cNJ/Gga+ywElxLz4cp4KHop3JY+gxXX3D8FizDQS3hMPMdZbwOriZA1a605pbfbgrpoeTvyynnhAdeBI0DpRrVsDgz/8gJ2gDxp40J0NdB0y6dYGDfO7Sf9t285ULOvzznwW8Vj3Ml8ZqwNw5c7GvNZ7jkvVYu6aR3F+954dzU9Bf0xTy3sjASttnvGLuIn7vMJIMr/oBaJiBy4rrcEfPD0LVikjqQBiXtopDvc0KHpt2DeIF1+EE9z/c5FuM4dpr4MnhyfhY5jXp/jOGrGOWkOj/iG8WRaGj8C18NsIVPgfmsuUhYc6aOhf2xidQSuMs6qnQgKWyH7j3XyLEy6TxglNS4KifDkXrIqHZYRi/LcrCI92TmA2UwH9GCIRMlOdtM09i2Z0X5LizkYwntGHB+SrojI5hI2wEw5868HJONglecSZX2UyurtvCE/vfQuvhFNgalIXZA/fhTdELCLBWBDXNu2QYdYzsZ9fw3G1rAO0dMXzBKD6b6Em2omW4YrEsOdhMhjk2iHWd0tgYVID1dyXJfGcTnt/1BSQLdqHhu9cwcGQEdauNhzWO+2BcgA2NkOgD+SeX+dUFR06+lccb+6O5+RxStDqAz3RheGkghPo6WeRn8hgvvBlFe50F4WfFNbpkKYaaVvpUX12MX0OmwAT715y5TQk/yV2F3swE7usM5qVdg4hV3+jlkAKLl9yDWctVIeplA2Z2O3Bc1i98nVtH966N4eHJc0DxynU4HSfDGmGpMH2jDNS9jiEt0RNUtTaAJQu0yJrjGNp82F10FZ2ousozVnhDcdZYMJ5lRvatVtR6ewjaCv5iQHk2fhtKoKS/wiQ1fQDqStRY5sZE+OloTUbuynBWwpsEnytDQ/B39NPUZNj2l1eMKKRR86awtLQO1J/QBM3GnbAoVR+Wmr6i08f88MyxYBj/2wAnHr1HaXd7wNpQAg682Mu781TQrd8KVp1YB0sfS8OHic+oTPgDaIoVYsdqEepbYwbDNY8oQHgpyl0rx5OiQjB68BLOOlsNL22/kEHmL5J40cOzd42CwCdzKK+4juujbkH8nYf868lUXPZ0LgjazcftEsPwIcqXMwoM4EDbZbwVLIkPxp1hLy0zXOIjwEOnlXna0u8knWQO9vfVObdWAeqj7tDI+Ef8MPY1ztmwlu+LJoNzcTCaaxmxvqUGemgO4bekkVAUdRUc132kwsg4+GQYwIFiH/m/mw4sde4C75scwR1zJLhjgg686d6MJ1+18n7F+3Ar1RYsHezJeFs1xRUv4CB8BG3WuVR9ZTpc7ZOl7per4Py6j1yrrc9ngjfgH3M7GnnlJhS2dZKa1EvwmMUwW9oC52hP5Jt1GSz+zx/N+15SYmc0v12xH6N3VrLh6kugfUgFRLY2oNwOR4pq0MDsyFcwoKrBOWkT2GxwGp4ePZ3PNX+CHU2SMPWfK37IekRBb0/hlWXKPOVgGe8w301X1Ezh1dWHrOy0n1Q6xWBJxiiY2CsPYfPmoo2wKkmI6uGRyrH4ZmwSOl9Jx5f5lWCkogU11YKwNOAjXJW4yP1nvcg/LoIdns3lFSsz6VrLA5jkfBRsJpiDY4Mi3Lr0CAvuCfAR2y2gFH6VlP3/wqTQTXzlRRR67HbgyhYLMLT6xRVbhaHvgyhXzLyDl7vDcElOPz303E4uT8xBOdQNF182hqMWMbQy3JBFxc1AOHc+b9NZBM2bNpKgiBHNd7Ol2iMHueGYJtw0Gw3tqRvB2vYFrpg9BG8/DYOLiRUVZgdzo4Un2qoexLLZU+Cs2Bl0xXCa1R1Ah7qUwbnrPNvZPMJv+7vhy9FUtofDmNYlBOdmNkJ6SSAqP+ygKTpiPNPNA/PqfuEb1UPwaqQ3npWyZ+Xv+lAfexi6GkT5aJQhe5t2YH3xbQgcfozWQffA8GcLJurF8/znUnAx7wgfcTKEZKE0qh77G1rPOtFFw61keOUd50TL0t3o8xTbNwUat5ZB1ywZeuppjuu3hKKt60e+vUIdg3e74PqFN0lKxIyvzhICCaVaCn88Aq92aHH5Ogmq/KAEH/IX0Z0X1+jcuhoa76JMl/X0YapPNqeviocDd21AZfx5/Cj1jKr739JYVXlo+jwO/7S2wlY9c3g9ZhXaVHlASCPjitFL8Ravo9fVevxvvSxql53lYzI9PPmnIZj/9xmzj76ntAWTYHPqMsidF0U/9IJpjXMHzUkTxI0BttSrweB6cjnrVtTzkgep3HJMCNNFR6KH03zCEe7YWZGPx8sncxdMgZmxwRy6tBgeyM/n0El3OWnEO7Y32MC98Ro4M+ANlnMfREwXgNJxAbTGbz4k0kue/UKW9qMhas62oOrXk2lSmzCeim2gz58RVO4hnW7/iK9yBrhKSIXPSIiRYXwI9gQG8hz7HZzxwh4Srk6Fq5F/qMH3II87+IVqXJvgr9N2Mh6hiPsj63n6/Vp+d0+bxPKNwHAZQW+/EZ0ZSxQydi9pBI2mia+EycM6H2fn7OSGZi06+NECvPasYZM+DxzOdsEoPydcM64fvP/50vNFtzhvZARvXO8OH/yEoffbU3zabAxf9RzxY1IRRCsbcVRuGDSXj0KnaR/ofZsfL9hkBpnOjnwoaQ3YHqign69E2SMiAINkJtNOlx20K2UF5NleRNvjyvDnaCmpf19G1i+qyEjkFYfEfySr40vp7oI5WGwwDQNVvSHVXATkpknizrjfVFPvg09NtMhkbwb/a37JH15OohE+KfB+7TTUuiP9f/f/tswphpKaTFTS+oWOaZ3882kQ3HPbCPNOW+GIeSPpzIRovu6iCQ+iC/CGdR99s0xDx5dpNFLHCsRmbMThfcU08THhlq+qfFlzJJy09aaek2uw/d0Nvqoeg2fMvOj7vX7aOmIpLelwQ7MfG2BXwmSY/iCYdp5PgZiJS7gyaD24uPqTbZ0+yqa/4IS/B/B4gzb6DoyBO69T0eD1TXLzsMAVUl7ou6iCrK7Lwx6FQaa/L9n38Q4WfwTQOfwXbvXfxPbcONBOOMC/ndVhwroQMI17RdIZB2hIxhjUtynDmYPl8Gx9ETuahGDZrkM0acZneCBZiglpnvj5uhyGOxtBcK8mXMou5ZZlyAI6l/DXX2ab1Zsoa8J4NBCzg9C4BMp1yqfNMZpgmjidFmZkkaLmd/gh8A5GRnzGhWEz4Y26Cfk4+kBsZB69OGEANY3maHVvNdfkzeIh0wjYvH0pLx6bzPOpkf62d/Kxyl14sMscvji9pVPjV+H1/9LQqLcET1UlkrBXFPpOaUOvrxvAJPEzzbBSghKDmTxxx2a4NseCVpj+4LqNfei4YTOWxw5hW2wL7t/qD9dJDR625GN8/SXacfoBFH+04P51Daire5BnDGjQ5yOHMXFBJl/2GgWTnhSQk2wqxeX9gNm/HpH0iZV8IOIwt6hn4bPr3yHWPJ+LZwrAgFw9yYRaUpqpHU3O7OXNQS08bWgX3F5dyQKTmY65ReOpU3oweu9h+GZXxtvCjDE0N5DbYzy47UgsiMknskXONv66zBjl/ppA/M4wdA8VgkVyP1lcYhC/PHAHW41wGlT4SFP/88bfw2JwRFQT7hQfpIJ/78FjuQlaz7sKFWcng767ERaM96BU2d0I67t46gVJmOW8BoL+dJP7p2f81XMcnRST5V49A9Ix7kAPR0N2LH8ADtqaMDTmHhbO248qFqk4/70XPUpW5PXugcxn1qAMeiKEPIWKEgNIvF3Nzq9mwvhpQRSbbQFNosvRW10ftvf94tZTh2HgpC7bGUvAJ19fOn39Hi3cMhM23KuEJR8E+NqatRBaupA3Ry7kojfvKf+4JswIGoCEKerUH7aY3XgBna415TNpf/hZgDRpPR+HcgNL+MiQATSl/IEjr5+y1cpgEq/byEcy99KvxQq0csFnlvcohGVl6mgWYADHzeQ5481NrJb244Ora3nnQTNYveoFK6Trk9cjGyqpn0WGFgJQYa3PK8cEwbEDDaS01Jf8So6RzpynsHp1AYYWLkJ5kXiMtFKDNyeswNcsEVvGNeLzlHj4l/If9605CjOOBKL4x6e8NwIh8IIRVIv7YLPZH+xveAxfc93ox47LHJRUhP8Mf/EiKx/UiXuCS+tHwcr5dbDN7ze35K2BqwV3qVF6G6kZLGa/YkWenPIBr7mLwU1pU0irCYbGcYoovkkJQu7XQ8aSXG7QbkGB2DIUju/DhUcGQee8BvjkriSv8dHYOyKd3Szf8DO9EpDM2EMbWteBRpQUN2pEsWbjWMixSsPAnw5QtPEuHR+0gdCr4QCvy0H3YyK8K39AmUWnMUlBAgomGsOL5bdoWkwWOkTUgvoXC9TdOZmK++zoYkEBi85WI7n3M0HAWhF6ZLIp9ZIYiPIKCFSwoNPjtUHBVRR+JNbRlvhaHMyTgm3X9sHIjKm0yTue75tocUJvM8vMHuRr36WxZfdfjlqVhd7OquC4thwy9OIJCoL5r+VXHjViDF9Kdgcd5WNcbP2MfG885JwMabD9lMcXpWRxg8dM7o2JZe+dxN9LS1hXcCSXHvUjz3F+aHLKBLIOn6ArXn78eN0xcn04CsOuneB8SYQNvlNBzGUKHF3Sxr+qBGH+jNEkmm9LEwUkYbVbDhy8+RzMx1qzZ0cqpi/+iamrEVsnS4NyfC/2P4sAob+T2CdCiLWHqlg0fCw3LnjAojKIol5pWPNoFFg7HaFdrWPA7K8AnVASR/8dtiS97x3sd05E+fcq/KwTePEkBklBZdZVOUeWje20dOdkSHb14eUnC3CBbwSPOf8Np2eGwHkTc7h88yX3BTTiTyVDuq2Qgn9zLlNT4hNa2ufLCv1HcHWEC0pcMYZXT0dydN0mlOntg7eO4ZQebobZ7yWp+F0CdV16RFZNYnB5vDYkvA1HBb3f3L7rONXoH8Cr+vUs9EEM3Z+sxL15n3jWplx6fEkRpo7rwCcvFHjUmkKsrj9ANs5+HGRZgEL7S+ByqRKSTxTbfx8PNu3f4YaMHflZpIPYvChc1KTDF1948qZ9VljX3IsyY/dgtLYpnK+7So9376VH05vYydWdN0jegkOD/9B/uSIXW98AFYG/KPZUHnpuJsNo2xPssNqD/m4m1FDo5TX12SSxvZSnYio0SHjyZu+JsGeiHyuHP4eMnVfZWuUwuqddwg8VhdR8wZM/ONymt6sDcPCdFEieWQyGXaE0IDmPjpxajIYVU+DmolwQnygMQkpNvF25hB8kj4Qfi6+S8Iq1VHR3J316dxR9O6p5hI8e7sgCvPzLBqULdaFqnAHkT00mv40LoMkyA583RYPaOQ2wLc4mo22lHHaolwqW6INh9RhYFhcCjx6tp8ZOSzh3TRXU7a6gapYZtzXGwEifQyjp/5pXpUrB6Q0SvPugLM2+sgOExP7DO2Pi2dVBGfIePqHAxmTeYF8Mjk7TofrGRJT45QJzFB9Tkqo6ht3wgVC7EzSv2pMjJcRBIOQzH81TgMLGLjxlVgwrDihye9sl/tn+DZ+v3cnWf77DmUolWHjVkLSfKcOnojWY4lJBzhfm06eFaahduhKf3m/Bj1sG4Pv626xzLIGto2fAzIGldPTqIOQFHCDvzqd0zP89akQYUkRqKG5X1oEdTyL4y0tJ0M2UBfVNCTD83p3+E18HDWWG4FweRyWHF/FaMyUe1/kdncSmwar7chjSrQAxAQCagfn89Kgk7P38g+v2ZHD6hhFQovuTa19IQrZ9B4k0/seWWzbi+uZ4lDq+GC0b/SB+3x1QSh8GNV9x/JprCP7fdsFckXA6uK+NRoV64LZfU/lLXyW/Cf5NUfPGwJk1Hri20wQSUy6Q5/gqjDa4DFnXEqC8KJl26n2A86QGAeV7SU4xCtTzBOC/haLcZZdHJcXaMFb8KQjJakKMcjqFauThahKhxfNWsuxdQ8i4HkWCvRu44kgMSx82wBwfwnWStaQVDHxhajusdruFG4QVwPfFR16r/5V9UBVXJ62hNaa54Lp7H1x73M5Pjq2iE/GKFKgkBW/WN/B8XQuaI428YMtfXLg0A/WGRlN+5WMosk0l70clVGNpCZNUj8OVnWL0d4MC9My8x1LtcvD3fBcnyTtxQqw5mdtm8qFhE5hYJAST5KdBtoQjKwbFYoZWHfHcnbQgZDuX1h3FRaUSLOeuBXH95txxSBJknn7j673aVFUgi6P+7aaHF7TpvW8mr/roRNlCquDiHQnSKnlUudyFlpfmsdrdGnp9SIjlbHbzfXc5osM7OWv3DBjjdAtd48eTRWwUi+1346VqvYxzr9PCh/v47JGVePrBXcj21wKnd+ogW7sdT/k856Q96hQfJAa3O97ywwJNjj1YC1s9Qzn++TSIeeFEtjvy6VbeFdh8+DsYy7hRjqEWq77YCh2DFjjdKo1UglVBUMOK4w6/5gjxN6CcLAvPAupBP7OQrhtkgV7BMIpE2fGpmxIw56gk15wSh9uvuvhlQC+FBmygr7cjsNt/D3du/4GVqRfB9oEO1B0cIkvRSzh3uzL9Qh0QfW1G7wQ3c126L8ae/MB6kr0wLDUBVpWNwrE6Z/HBbSdeLKJEEX9EoLXrHXTn/OC1ahPoY10wKOoKg51lBqWqRtCpqAB4IalGSXAdcwccKfrFHVhdn88XVi2D6lJNeJ0Tgfu+CYDien+OnXYT304057MGEvB7+luYK5gJhae+YEzldND6tBvDT4pANHnT7S9esLxEjrtPb4JUjRpceEgcjh635ymKAtC80wrWHJBArNuGFRdt6GqoHDRP7oe+XCdWQRFwltiCd5wtQMIaWb0kCP8c+gY+M87g6qDjuNayjI9lPcbRKVK8WDoZNH7KwSTTeHh2UJtnfLzF78aKkaFwBewf5Qh67tNJVk8T7R5743ZjEfiy/DB5NzFWHThEJ05MpltTpfF9uCUtySjAwyUrwXntJloULQt7+9shruYIFj4ZQSWhq2GWtwfYlEayW5Q7eRy+An1Ljfl+9RSYIdcBF6cU889VR1Go0hv1MZaTZARgcXwgCt/3xLVldRAeIwKHSkXJcXgYDN5lQvjugzD1PKH+wwvMnpYwJbyHFH5E4aNlAJ6bGrFpWQzMjR0HaWkh2Np9A6OT7VnTJJr/XHVHhZAaDGsYA5e67LGx0w29N6ZDzYdTbPCfC09vKyHPwLUgf+87+4+LhWtnZ4BL8UUSu6nN9o8m0IzQ+eQtaA97tR1pTME0Kh+5EYvvrKLDZuJwJOYoRPyIg/3G9ex+r4MM9L/hh5OrUX+2IHldTiZx4ft4TUkTvu0Kh5H5E2AwZQKd7XTjaYFTwFMoHUxPV3BTjy/+nmREPq9EwP2BIkdlj+Femsz76nZj/0UFMNLq5vHHQnDWhH8gn+gCKCQOP1fcIN+CsXy7/Dz2aGhy6JRHHB25klWtNtDHhkbiSXvxl7wWXN1ezNu15/A/gWtY2eeLuVdU+HmSPUypmwiyolZkpvyJRi5RgKwcAVDYJY1/u1p5c8oY/qcYzmKDtmDt/R/eXr2KJR1CeL+SBOgUTeSp8opo8+Ufr3u4hM9c12Rh8U0IlwS5tsQVNI1sqOelGmwvdIJzQ+XUU9AAd9/bgJ1sA60ZGcgLD24HtbROCo7uhwXJo6ApLJtl5oZT1Pp47t64Evp2mXNr/2HYm3mILfJaeNjvNW6WVgE5p0CW3JLLKzZ94mp7Z7gyjjB7xmtuMdQl2wYZqJnixOcnjIe1qzR4t8JGWJF3mKIFP0HOJDWeufAF7PL+xkZGlrh6Ri0r7iRYNdTOU1d1wvn3TbjMbQFYeMnD6v1n+cC2T3ToySHsUP5AiduloEJWkdz60uGk7R3oWivJlcsd6NiFxdDTdwZsnvih805Zmmw7FcoX9nP1L3Pod5UAVfELOEUqASamh8H0uAt4sWUsll+U5ikpU6FpbDyJSEjgSbXTsCdvPRxpmoeRbkuRS0KheIoDtc2VZyMLQ2htYV7kOZfvbfWBRZfe8rL+yXQ8GfiTYzAf1BfnnMw3fOqGCkQ/XAbHBi9BfoQYJ0z7TD/ebsDZDi84Rusxpq9cSCdPxZJ1gyDkf2/juKJKDPMsxPQ4Z+wZ+YWfn6on83oLrlWewmZ0CtJnWIJry0b8b0Qt5X2ygX4PQ5LxE6Lb313A9IEvCm1pYPflFtB2SQZOJCvxe4UDOHeCHTzSNgaBrZsxw38Uerz1pOzH1RwVtYR+S8mDw90EfrnrAPXvsuaWhjK6lNmG7do7cMnm8fz7oyYkvwiCgqkC4O8TgzsPzCT3bbtRStICm1qH4GfdEUpRdcHzXl9pvpUkndY2heBZ7yBw2h0+qZnBY0Y6geSD0zS7NIkXt/mx+rYA2vxDl7QS1OH70Qp40RhP/q9TsHeTMg6ZVtPanU95YOMZ3vxlH2SPbOPjV0VANSwVVppN5YNrsyHROQLctbswRewlHTSyp/wx40D092WYvlANLr9F1mgJpNkSB7D/nwGKLd5EbXPUaNaP/2B3ggJcnuQGNxdpQadaJQ0353K6twTFhqjwqwxNPL76Hfz1KoCPHSI4PnQ5XDo1CtZrWOFth6M4rq0ees5oslRyIE5ZsBkd1v/DilJrfJIvyqtr9GHQ9B4Ifs6BMX8aeIOoKT08Z43TTM7RhKIBWpA/kwvE/SFj+mgwmdpHA+P/QP+/YBK6PZYGJmiRyt9aHJGbisa1Symo9Cvol4yDZc/iaPryubT/XQ6n6V6FwiJ/9BB/R+4jTqGmmjOf+DMSU3qnQpz+bj4Tk0PVDzXhzn5D1pLUIcO0QqyT/QXbFLfS77AL0LN7EvgMyWB9tSpMrxigTYeJZ73wYEfYA0rv9+LI+ince9qW004LQsQuQ6hpvEap3YvAp3EjR1qVUu6PnVDHGujmMwbez9iNJge0QCpmAw1GrOHNibFU8iibLOZs5mT1Ppq4OhbEpA5j+GIFGLyHYFh5FpfoyrNTiRjsjLqAyTEiZDyK+I6YK0dpWbD9Yhe8kDoaGrgJwzUe4jmPI3C2s5UNylTgkrkCdX2LIiff2djtyuhtDlAxfjEKu6wklydtvGTlQ/648it/X3YB3ob5w6pyWzy7MBwy80zhycNyfrnHnjbsDsZrGU7geWgOSfyOhLZnLuA+YRY92/kE9mWpwvPR1lg50xya83ex2stAGLtMAoqeV8G/dD8oqh+E049rYXGPObTsWAqWF5SJyw7y8ynSLLEpmSYXXsV9D8eTRs9hUG5pwNrvY0A49joomiyHywI6XB4qx2ffL6VfJ6+zwMtIastZQQqpUbB88ygovLgU/9OYy6mjWjHDPBSv4GzsC5kK7Tp56NYQAFLng3lyiiTMfxbOp9quYerFs7hS5y4/u/IJC0aOgjOztdG8UZdne4/hn991Yf4zeRwjXs5qt5bxmSlb4eaj/2C0difP8Krkj7F2fFW0jU8Yq8BLy6OU3KoON/R3IyvfosrnZhy7xwNrd3zmqgIVmP0tki1LTOGj4FQaurQAJT7twYG8HnZonoem/5RxLCeAwxV3HnmhGGvvCgLb74Frv6Vx25MbcJfSoHH1P7SZ+pGM3zXxyjNVKBzXwcM5xrBfrI63uH+H2qJi3Hu4H089tcahSEPsLQtA67XO9E0pjVK/y8NFFxv8rHaAUv/8xmL9TPqvUpCOhrdRwl91floxzDkZjjjujzFEpcfCVUUdLnNdyVw9i/tj9uCLmCpestgCDYKr4YeJITh5joA0FxfQ3v+ahDZLs4ThCtxlXsw/94XQ37rDRDf28q/YHjpdZAmSjrpYvVse0mL0qOFtGW9x/sQFESV88vgc9I4oRM2vBvRJfCrkzaqHHQ19fOC8EfpUROBj4YlY2pkEXhuWU+RxHfLpuc0TfSbAMjsHrHSbxB1eiRS7dAg9NDwxbc1VsJ/tRisC57BJgC5pfDKBCQdNaeGYbKSrkWx/7RncmqqEs/YHQ0DKUzi0QYkCx58Dq35ROGzmRyl7LuD0Y74QUhnCYo/loMxwAnZ+fo5jS4KpdV4aipbOBK2Fq/DViUEOmmbBWpyFTR/yYb2fOY/2siCvN0OwZHchr5g7ESS6U7Bt1HyOS+inPw9T+JP8QbZ7PJ3lqpbwtrd6WLOliqc4mcL6rJu46+sGekp7aKJHH1hGNpDUvU52utfIWxKnYWGAPxVfNoCBi994g91+PLfoPY32MYecJCGOeJHDs3TvYOTERF5ovZ6+uCvDq4l7MNHrIvSO1AJz5fsY7r8EJQxO0q1fR9ihcRzMC1yAz6v0QD3qA0cuP0GxpqOpofo2i8SqcFBBOOQIimL9c2VwXx+K+bcl4JfKAVwQWYmZLoW4/eQX/hL6ghVmWbHqxUQsDVzPk2/HYeeZ8QAv1CDnfSVdSpiMm9WVyX1nAHtuzkZ13Qq+pt0B41Oecd8sNWhr/0CjEkO4pc+GdRUSMPboVqz4FsuGcdNgvlsSq9l4gMJ2GSjS7MDWMVl4r/AZZlcdQrGQP6jWlUjFAddIsnoAm8ddQ9UIcXi++hmkJVXx70WuXOyYR3khj3DvQkH8oCiGVabP4Ix8KN1OEYRD4TIUs2wYl78fCUP+nXRz0l7MELGBm4cKQT+uiUX+tuMEE0nIee3KM3esgvqeTFAysaPZfcdh1onFnCc6iTd1W+On0rX4Q1QDdMNV8FXTaOIwL57fbI9J+WJ8M+0s7pqYzoGfirn231SWDlCEI/H7sU6gDJef7uYCjyTa876WMm27Wa5lGh+2mErv7n7kmRGmoKepggZuw7x/1wxwu3IXtvgYYcCks6R/5QZuOq8C08KOo6+rCYRddCN78MAxMx0hKjAdRp+djnuWmbNytBVtMrWnqKx01pYVg5Paeaz31omXhgRh08FuutmviSFbXehZnSns/xoNo9aJwnGvaVCwZBImfo/kEes/oEjoQeiOmEwWIil4eeV79pTehTMz3chwjAjs6W/G0kureKipGl0N1vGIe1J4omESlKsto/Qt4rTQbhEmRY8ErxONeCFcg61zTkHV4HFqfz8C30joo0v3TZRJK6GHg++xav44kLr9hMJuX8FjLx15+7MxPPxakIt7VOHBwleUmunP6SPKqcyc4a90OD1f/hXCtSW56sBcFnOww2WP6tj9hAP9+M+Oi48Wwrt6hs0h4yDlrhvsit+JM4NycL9bIr/zfIIupMSSSRE08KuH5oRNBpWHWnw6QISvv5hBajUKvKA5EVa4WFPIlSCuzD3Jp22M8ewbBdA3/8OLFft4kuUkStjYDmLfeuG3Vhu2T57PPphMz5d+BmcRMXDL64DQVhfesFcVvi/J4NJdSdAhMgOWNy8CndJqOBr7hcuWzgThhXtAf6UhiI5TptpLB8llRD1XdatTwuXz7BjSAfJb+iBe3hw6NHdz7bVMtKtQIuWTX/DXzodUalGNxYc0IKGnDibNIZ6bPQ1q9iDBl8/gP1WYdo9ayJu/nsCPzgKgZbIO4lWM4fSBaHw7OBaKn2Rx88UlJPl2Pkw6+pWeH/xAIzJlSXdSCJ1JO8abt6rx1mpl+JQejNNbx8NHIQM6prWUlEptQD5QC2/mWcLYH348y/spqZgIQavTHvB96Ekpa+VQtv82yF+ZR80dn2n7nj882KSADXbx1PXfKLDfsp7Ptdfg5IqfeHpJG9mpzOJKUSOac8+CNrsmU9KwF/fljYWhOfYQfecuVRp5sLj+RZpRdZLk/6yEC8madPzXd5aWz4Qpi0SBg0Mg/fBxdn7UDX1rgzk5Rxd3rN8OdXFxKLK1GeIqaiF21EjQc5oGJsKDkLzVGVp6yuDuYwf8NU8QLs74CM9K7+DPL8vh2ySEBdNduFFSGt9H+PCScSfIP9Kd7b9v4CPNt3j53PG8V+cCPGoVhLY1zBu3ePCYKSfpXJYd5Tm+B+f9evh5jx6Udefykv4r9Mt/JGxSD8LWPgn48TMXmsUH+KDwJ9Yx/cE1KdWgNjmKo4clyPqcItgu8UOdOfIo/i6W2n6txpXj5pPau100/7IsrB58yXImQ+S7xgAM9OPhnnov2rQokfLzi1B4NRDbjLr5tpAGqkb7skSHAz8KJngodRmqjx6H0ribUFSZzqEZXjhhYyxe2K4MUqWDtHpgKli7GYCr0zoY6eIAwX8e4vGV6fRboRV3K4TRi3VpfEC+kKodaqnphhrcfPUHDTSKsLSrGdUWqpPu/ulUf86SWjRCwdtQhRce/4ZqW3Rhjkc/nha2oNqiSXhxKAWrz1ezZEwFOJz7BcJXgrHR+ACEeUjAH9NPPNL1KO8Xe8vrJojz/HWTYLtLPZ2XC8cWNMOqsnnob44QXneXrQry4OCIKlhlt5iC5vbDorKfuMG8E0RiqnFimSce7J0Js/bMxMCnp8G8YDWt/XoGzebZU2dREp5OL4TnH+bQgvVLKcpHC/Irbam1tYMnDjux1j8RXK8hBaf7tWFTQwUJtMfAt7nCNMvPAPbdHwHFhn94//IY/HnPk9/mbCGT2BayPjkPTV75YP4nQzAuUoMm103s9KiQXj+cRpNCbLi73ghHhpZDuVouvjzliLEyRjTaFiC2vJBH543Gfz1vmc8/xzTt1bTmfAzIb6thCbsdNH+yHSSoK0HFB1FQFQynmDsdqOXuTHpaWVim/prko5bDmVRXmH36IATKy0Hpgjf05b9Auvz+PJh5LcHXzYK83vkgH2+s49GjW6FNLYfTX1tAxJbp9MC+l+DIE1xrfJCCp3lwVrQtOy9fywenF+GYxLV4rncsRG/fzBYDKUBKJkiS99BF9AioZA3Rot4GvnvJjMaNOo9uPUqwwkkMWkQ20Yrdb+iZeC7mPv4AT3eX0+OA47ROXgqDmobYbZkR6HgeBU9BWWiMlmXjqH0Q+0EOOrfb4RmFdHwjEwNBxztR5JIouHyfScUe+njP4gccHvhOy8+8oHVdfaCwzhXuSnbSwKPRrGY0A/5u0UIzu3LUqPZjX+ezsH4gAV4WzsBaOTl66F0BZ5vf42VnYSgvz8BwzwG4nFbGIl41PC5/K8e/N+KjyjNITNoKjH/Ycv55ddjiaYLHzfPpm9p21m8/B78NtjF9O8JBB+Sw6eQRcOlfCpLSmrBa5wuc+3cB1Y7lslLcJ7phYY8Sz7z5nPVM1GlVY23jp9SyXBWSURTeFBhAAARx4K2VZFsQiX+m9EO2wAj2S9cj1dBMHJ8mBSMKjPDzd2MuWkJ4LkeHelRN2X3HQXQ8PJ2Pf7FBVxwGixta4F18ijyfMQwdF6cQ5zbO9x7F4r0TQHPsDF5UO5KS37yjnGMioCPA+PiaLgxMLMAdJ5eBeGUJGrbvg2eC7lQZqoONZwUpyUkXgrd0sk95LSp9fca44zDETojklT1OvKF4D14I04B0oUuQoSwFl/1kSX5OKs1VHsbEWRPAs6Yc9N57oW53JqZ5niTIDue+n+YQb7KFgv0vUai9DbH/E8gVdaO50hdBSaGd9sY/ghNfzXgOG0P4xhPk7P0IxtQf5Ff+SWhp5wG1k2+SoLwSv+7uZ+c4F/rznzIkHjTDweNn+bHjD1ANrsf2b0FkuiKPJj+wh8gGXZr0eRvb31AHWP+QPuJZKt8YDeeTtgFuPAvdPQe4oN4COgI9YeC2KUs/lQJhmw00KJQN42rG8Bvtn6jstAVNvt7hDXMXctwySXj5Zzmc11eGHrmnfEs0H4VqR8OdnGZ4sS0C6uUAfzzUZOM9qyGviMicTYEWVNHg4pX8P1buux8IB04A8HcgW0IysoWSEbKaKKtSitLQFmko2n4kIaKEpFIyihYlpaWsJKOoSIUUyS4aKqX73L2GexXPf09pSAAp+Z8Bj3WjOWWcNS9JMoe9wjkcuH0qhycYwUFdXb6U8oOyfQ/C5KfGbFPby72ufXx52jhafOU/2DtdDReuEITtJjH0QDIFsP07/bckChaIuXCjxRqqjJyEo+brQ5D6GKo8qgiftnmD0rIcGvdKB57E1WGzwghcmmjEJ8bK4TWRhfgorRDuFJqCWUsDy/u58Kmfn/jkfnkseXYYvxpPg7WFpVBVGErGrsrwy388mO6aT9O1U8HJwIZNyoWgW3wxfZkyjbwcVTDN7i3n97zHu3kIU3aP4+rMo/xc6R09CNjCNhefovPrg/DaRZQqwmN5QbEl5VmOhOuRY+iVhTJ/zlfnVQ1/OKfFDsaLP6QV4+9D22ITvr7PmfJ6DOHElJkk+liGVMOr6GKzKr6zNqMagUCuem8IepXu9HfzLdbXV4A52TV4eEcktNy7xtuEC7grVIOyVcRxg2IGWC8ci9pCZ9grXhWOvbWGvvXnSFjvN3jarqIR10fB5V9B8EbvCjTbH+Q0jzXwtlkTauon8Mimj3ziqB1seF8HGiZWeH/FbUiK/w0OI69y1BIblHlsBg8UI3itZwcKu+SzfOVbtn/Vw/pG7/FWmzKe+LofA2atAP1bilDicgCCDtaSzpfJULmwHRNnGKCFdxicvGWPrRkrcXjFJLYpnga7j82C+sBirJhdSz+LRsDSIR12WfsQ7x9oIA/NuzRgu5uTu8Qh4vtDPv/+BpzNPUN308+ytpkLjbeK56uPSvm2rQiXVUrC8Rwp8JgwEu9prsWPbaH8ZIshDExpJMtJU4mqnrGp1Xf2kbuM0T5jQGXZVPz96Sy/yjLF8wLxsLH4OhyU/MF5uyrYNdUBl+WNhrjT0yCUfsOKcd95/q475NB3mfqVI3Fe6Use8mihi5rTQLb3HFjeN4VZm7/iZtWN+Oa/MGx6IQr+Lxrxxar1YBH2niZ3rILwuhEUfMEcRMy/g/Krr3ilMBxfuheRw8MXMFzVySJKtyBxWw+Z6EWw71Ir0BB9gfIKzyhkw0taX3+Xs7sEaHvKcajxTuQQ2gD+kbfYJnUs6IQX86nJE9BA6hsfH5MA1aZfOHWUGZ+RusKr03wxo0WXFn+QgTetcVAmpo5H1uxDpeV/MPGgHl+5qQs7OZvdR+VRpmsN/vppBRXlb3D+fG1evUYcpzr0oEihKqv8TIAS/Wnw9IMBLP6hw3plOlBU28DtKScpKb+RVh6fQMOdQejtc5S+GX6GA3YlbDEpEwcaNeCS7Go+F+AFndYu8NhOhesLn6B3tgQ+Va8nv8AabnNXxlUtkuCloE3KC6opY7Eya1S4QlfvIlrgJEybbiST3Atf6ony5ZBnaoCf9ElgWS2UbwvB1ktGFD+7CV0/nyE3Y0TH9X/x/LztVNYiBu/VErkjvwl+hJujwwx1llZYRp++ACd8nERPzx3n05VWIBEOcDPJBxL+84KWR2dBqiCWTk6ygy+fxaDeZYDv/7ZB0RMOOOKSIST0/GCxG7v4takRGtrNJz+l//jF72Aakp1GthZ3+UvkKmrfogVDt76x3nUtWjY7EDcOq/JRgTdU09zC32QlsOBzJf0OeYOPpo4Giwu7wK/cm9Y0K0CdVjFFKgbTiA2/afmGBv56cxE9TfDE2bcZkn16ac9KTZjbvBGuNBvR60vARWYS3Ky0hv9W34YFtudJZ/oIWHiwF7b9ecBja5fwdc9MMoiYBfPGTYIzXw3ZKmgGPCv3BRcXa0jYfh7T5z6HcTZrsUVSCELMZ4C17wU6cYJ5RkQrjv0kTplfEJKaH+DtD2Z0f4snhZwMp5lhm0jhnwsc0F4NbfpryXGCImWJjoXCTcrgdmYdjx1YBoI/jElIaCMYvHXm7kvK6P/2AGsuno/v/bRANHghdGZeRC0tGfi43QsdA6TQRUuQS6y8qb/gO/SO7gAFLQ0YYa1JJXdb2T9EHZ64zICP8nY8ETpIZac1lK9LoF2VcrSgbCoE/9mPY67PpRjVWLxW8w8G3lyF0U802fhULsaZ+PGL+FSqyheGne/jOVRFgj7v9iA/lcs0VSyL1cY+4c9tNjSQZ4yOTd+x5rYpxIk50Z9TgdD98Q15TjpDztoDuN49E+WPAlXMzsMMsXecECkMpp/l+G1ZGvUdVoRol+Wsn4Eg3LuK9wwdY8dpQiwF8/Boiy5cF55LYZ7r0HpQELNPCrFGzGkuqTKixAgxtNmrAXeqTtG8cwpQMzOP53WWIW3YROPH/8QVWqEUCx8p5cA1iru7Ht1WHIeATZJQpj8LUzttOVxCk5emdND+idvhnrgQXez8h8me91BLW5Cd1mrCxO1j2aZ+Ist4vMbTC71Z9+1Lssm24e+N1iRyeh67Le6lx7NFoaxaE17PjObCLElOr8xkieAQnLA3Hl6uW8Je8svhiOgICjxhAeui43iLyxkWe6kM1P6DtBcY8BWHTj4sYgnPmvNhOKAXttRJwsXK1zTTM45FO96g2FUPFJTSpHbZVGqZ1UiXxjzn0JII2DgsA1TZTG6DFiziVwXH0gVhcuInDjtqiHYTXuGtAH/gZcKw5JMSmErJUd3kSDbid/SucAN6fEjmc2nbkb6E89xb9tjz8Bu3/TIBr6IIvlt8ijvSfeCl1i9IWxQOMYJmVFb2H+8XTMH+4UMwPEUZhhQG+Wf/IBfOm8OV3ql8Ycd9tHNRxswdbXD+bxmXlU0AqTwziL+zER7Zp0GnPVPeAxcY/04H90kU0J+qPXA9cCIPrx/EiLMSkA5JUPiijX+m5XBP0gOa6gs84fs5FH7cBTuaxbhPTgZ8TxlB3js/ppEbONelHLYFRFL9ytl0NG0MrW5cDE+rDqHOv154OUoXrHyLMFIuA67q+bGbw3dYdXEKzrEvZIHsCWTs2MPFRQNolKIJXo8+QuudUNLr3Y/bbjnCnRH53Focxm2HR8P57q3Yfk0MxbYLw5XnGvjwuhKb0lMan+8Iw00juXLXexSRnAIT88+Qzt9HbKcmCt5pNty6+CqH1BwFTTddfFnSxHMbtHnV9l1QrinPQ0uQf/vowsCv0WTrsByVxQ/TL1tldrmfyzuCP/IRw1jsv3KLHTwjcL2YFry3UCeX4U/0RFSXVYUeYbpFO8q0H6JFQoLc1fQcP/o/gA/+4jB5Swp/fXIL6gIqeFBXjPOmfYbVFyTpue5U6p3RynsHlKnn9ChY47aZPS9v4eszrtG4B+941vf3MGpaApWuesxHxpxFxetv4J26KehujcYNFX/55MetsOZVEAfML4ac6lqMHFTElK0BfOlNMWh5aMD+a2m09fMMyrJeST9i1TDjBlJsoTRl6rzkb6+mg5jmHZgeNBksVu+D/in96C48GwYdLGE1K+GrlvPc6xoIy8qFOL/LG2N0heBYUyK+8pzLxfXn6KmKIv07Gk//9QjjrM3u+GX8MG3T+8Q9O6fCl98tELvZD0YFDaD7ykQ0E1BHt9/a7PH+CEWnN9KTr70YtmMMCK/2INVoxNvD/SyRuB0W/+omceNB2jJODErHS4D70vn8s1kDliYYUO0qC9aI0oS6rDzYK5XPRlr/eEtICDmeSsFDOxjsVpqCyXAfW8T+hpC63ag05xfX9PlBx+9KFMjtwv5Tuth04TjW1Y+ElZtqaMqD8Xz62WlaZbKOvnibQ+OvCtj5owZUIosw4+leFjRkCAt7jove76ToZ2rkNNkZzmm+INGYB6yQvw9VDo3iKO2RXNc7/f/+zsT9bRD/Yogm/DPkiYdX4LqspbjNci+3iL0iCSVDOiA5Fmwyq6DUrRBsZNaAQ+dv8p79HcIUjfit/m0oODYB1iq8guBfljDv9i8eO86dPP88BmtBEUy/18IFAv24aMwpGkxZQHsfV2LFdiO488EMXPXU4aWLPxdqbKWH2f3ofKAOnfJ18dfUm7xVtxrHeGqArt0b8BF14u4Fymw2ci9++0+f7A/I8g3rINp9ey/E6Tbhi4saYB7/ELqb5mL6qDgQS5rBZ94dx2361vDL6gusLGqCxN9tLDzaEIbGLcfHljN4a4cZv30kQOG9B2nnIyfaWfMIyu7bsqH4KlwoawwG6UvB+tcvvhxkgluCbOF2owlIPoiFmntxZLs9kksv2oGdpjQ81sjCoyWtXDfHiuKH5oGhsBWcinLnpukj8fenubT7WzX5rFOHlf4hVGepxk3rPUDU9iGH9Cvw21ZXzOmKwsbQeWTn8JqlIwzgrk0fbYZuULl7ASNWXuZNS68irvtGGpqnya5WmN+5IJR2W4PRjWCoHbeb6r5bgZjLax5nv4YeH/SlL0f6qejAK/zX50nhFqPgxgQDyhA8CK42brBw0Um6v/A0xc/eiILz6+B0w37euIV57WQGQ+tSpKJGevRzPRu4R5JZyEzyPT4LnVEE3GNmkuZBFWp6KwpHzqxmo5bjPCBYRTZOB8DVtBlznQpxlHY2KMTeY7FyGdzdqA5VisOQ06zGv5skeY/xHjxjdB2/j0min2O+wrGAerwUOZmi2sdDk9xHeth9kIp0bairJhoWCpyhw8GGeNlrCVsLC3Ff+zC15+jCKCohvHKeSmZFoNXGS9Q6ABC1F/nyh/PQ0XOVlj/aBlsPjobX9QcpSicbRlmbQO3wPlLZ9wq3Pf9CS/5O569q6WRi+IHP1siCfc9UTDXMwOSsr+h/uxTsjvaygjihrHkxvZRXhWwdcwrUV4MDqvq4udaYt367iYtnRsHr+fm0q3cP+W7Io7RHM0iidwHvrxaB/QlnOWxpGod9PYKFdV2Y+dmCXfEYFrdp4ZPXxkztI1hHTxROVGqi9dphNLq6mP1n76GW7mk8r7WRF2vEoe6jSZgen4k/Gy0h5bI6NllUUdW2yzQ6YyumZcVSn80aDDdZhekzL3DFZn80vKkJR2Q1+cr1FKpPbKUJCUXg0fcVNJ18Wf1gOg/RXayvOUvP1wFY3/gEby5OxeEfMfg8+AB21K3HDVvH4QzzWZQxuoB+jqlnvwaEQYu7vMAjFOImpoC6yV02GvIH2Rdv6YjKVvjgVMlHTNrZb6cW5BaUUuNwAAtt1ET71GBed0MbR+Uv5ZOLL4J2gST0zwpAwwIZyDnZAXc6XWG9uDfs2mSCmuczMVb6A+pJn2WVNF8MPDsJv1uagFDuI9CrSsNq0UIuEXdCFx8v0ji6j0z1H2JzQC6ULbvIt0fKw6fg5Rigshnd/6tilwOr8eSSYIizukknsyJhW8hMNto2je/mqsKb0Q18fcQoni5aCTkYzMa7J8K7BFWK8ZxFER8XoJ/2XxjVZQmC4bPITk2Tp3/QhiPms9B5Twwqe5jA+0vVrNXYQcvFUkHj7ygQf5mCFpGW8E8nj0Uff8XeulKa4+lGcyY4kJeyFnh7C9P0A5qwP/UQ2rw6Cg5zzkERX0T7i4Ow0MyP9QXzISvAiy8/K2YYnA47dSVRd+dI+mF1DVDSj7uPL8YehSrK6hbgDcH5ONquDVc8U4PCgKnwqKQW96UgHYw1pZgZhXzihR4bKNrBod3RYGjtC64NAKXyM3G78zIywRzYIR8LnlF+PPrmG4i9cg2zCzIg7dZLDtbRBMG2PipLi4Ch4FVYq9hD7w824d+YJXz0vyDGQxGY6GHEvb4GkK1mDGsepWOsdAENJr0h0HjAU2Y5YdvOqbShSpe3ivrgyDGWkFQiwB4eFpx61hQiJfrhqvp3KrZTgoR2V17rVE8xu99jdoYQKDVdp2i1MyBYpUKSqmvQcqc8/BEPhVluh1H13RgcDA2l6R8l4Jn+IMs+DaH81m+UL3ITSwuS8eeGMPaV+McvPAHiukdwz5ixoL7XjSQmW8LXfadQOUAGP0tV0umJMYTNhbjujwLtd++nVTqmUPhSlKKv9bDh93IYujaD20eewogbdzkzTA0CvuzD7GPhdCzGAloCL2Dwz290wP0qlYzYTsuvT2LL8U5Q0d0Drfle/Kh9LAkcRjgnkgvHthiSybV/fOfFBby7r5P2Cd/jmz2bcW2EKUR+KoEj88bBjOea5Fw0FhLwEbpWuPDKxeHYfj4Ay/3WkuitAfK4FgsyXWaQdWQlOJqfI2eJWDL1OMIO22vx14ZSXPH6Gy+62AGzy4E6lkyD7pP3cXTPYryvJUwTd9bDwO3DUC7yl1FzOx8hKQqOHgfr1XVA1bwSMjp6oV1dDYqqFlD03Wl4+20DeLkrYOTgV5Y8HYIytpJwixdTflwwd5vcISGpbDzo7A+jS2QIdp6GQ7IbaOuC1fDafBT0+obyZDdH+tY+AGcKl0C0sBo9WX0A3ii2wsgbsdgstAk61U1hzSttGGPtStEf4sFswUFK9imirx57aemt2dycfw3btqni+fyp8DliD3Xe+QZqp53406wJUGJrxhHGq6lFZwaeO97D/56U049SAOdMQfxlVAIaz1W5/sx4zJkRwdYzlOD5/sn4d+JkIslemnVQD/6Wz+O2bf/gb04LfL27iCdNiWPJQjcYvrifIqcKIuSZ8c0ShATF1TAudRNHVzdi5h8Zaj6SDufPLyNl4cU0RppobOJcKFC3gMSTs9j2VjeUt3nyrAQFvNP0ndTuHKNfWmexPzWHfiw8wx/FJ4NRzm14cUiOJsXb89Licl5WuI5ueO2m3u9b+JV5IHS+MQGbUEnYeW0TlqkqYuFhS4iUvA/WdiXcojKaYtdsZrv7P1mrepC0To2BxlPAKZXTKMknCJzmVFDEn5vc8ukevHjcjL/dPuHqm+UIY0Sg/ZM/1j7PZtVDHhD87j38OOiOcXEPyeafNUm/OgqHL66jufYm4Kb/Htoqb8CtihX8xuoZfBzwRJ3la6Dg5g8yONtDIgN5aOwgB88lfFDa8D+6svEWt266iH8Mf6Nb3W/K73KC/g33oWVXETSnKMCgSgLdWeqLHtLHef6kURRQ3MV/rirB7KIv6DkUysvCAyA6fjIY+0jhcaUYOF0hSGfKg2msmDemvLrCO/P96ODfxySnG8tSNBJq/l3CCLFl7OKSzsntQvBReSwVTUeIsFvAa96KcLjaGAg5IgHrdZU5bPFJ7q5Qor8vn+GfKhMIMfpI/UX/cUNhBe4960G/VQyh1KoEY/Iz8P379XRB8SPPM3Ul92Y5aC2ch/I/88D3414odFCEZMVkXJ6aSYOaivT6SRoIz5Rl06+KtKXjN1+8MoUuB73F7neiEGgbjAvy5uL4mpOQbW8LHv5jQe9sADxJDaNRtvdY9rMLlcaNg9HGyyjZKYMnP/mGjYpvuH/ImRd7/oO9L/pR3OgN6B59SuZrNCHxYiYL1fZhfdIgN37bg53SbTxcfRk7kxpILE4B55xaBs6FKpDsuZSbLoXT+87XeG3ObR6XKgDvNZjivs1Fl2tPaZnHW963dzxUvQ/Dxw47aNBMmC2O36XynUGst/Y3RkV/wFqJh3DipQ7eCpWBhIHXvNFrNPr8cef/nu3CT/U6bHL0NHu+7CPj+HJOLrBhzpCCswfiadEB5n83K6jZfCfeW6NAtecTOeJkHc8NcYbcK8O41tEMBmImob+IJz09/InsA5xBXUEba1rXUFLMa7ztdw8/LLXB0ERZiP42TLVRNTht8hucXeDOdga9MG/DDbwUaYvyl9/i1IG/qPaJYeF4UTa/VsJdn6TJo+UZVYytI60tXRAwyxK6vqynkhExmPBeCXKHrVl5hQ/JLPiKIZcqcXDRQ1g6LpmOd+3kzRViNOvvaCqwMQP3GaZ0I+oUgfE17MbxHFH+HnwE22jDipWwbKsbv9DSAU95cRDMyoByncMscII5uLAeQwoNoHl5N9lqBNMqW2WIuHgHtVIQjC3a4Z6/K4LhRYiYe4REqvRpVMR69p2phuY99Rh8sISdG0Vh3bNCENAJpJnRD8npthAHlj3HxacEWMxImm233aRTvYn4+IQSPOx/wOIf1/CGB0v4WPpd2DtalOBiFf4IL2PBnnh0nridfYSFYXcYQLGIPovOcsMecUXa5OLIP0+lwrYDU2l29E7kxhxc/n0MEG7Ek+2ycOitEZZoB+CK5iTcsnk8PZnqDtePSUHLNDmIu6AEi7ynQHXvTZ58RJ703/hC571aoiuHwK2iFj4pDVO21Wrw7NOE1OUtcPXhZTzWNBPjul2hON2BvOds4NWLUsliJZObXghM6x8PzTorSff9Oxypa4+7igehq/43/lVZBApGRbBtzHwO21WOBnfHQUvwfsx99g8fqF2glJwNvHr3FbiTYczBNXrU3VcF3yaIwKWfo8H/aw5lei2DD/enccqIEXyhxhXwoT8qJ7ymgHZN3Cb4F8VuiIGvWg+Xqgry0YwS2vNwHuwNbMQTI7WhfNNzmLPXEJctjwPDGQYwWkCYRwzr4sxqL77Q/glGd41lC5lw9pCQpn/NtvTTUYh3h4jAC0cXPui3lBW076JOqgOsGBTh70ZuMO2LN+2MlsZLboOkkmYEY3giw8J0KJ4fTAPeG3luiQUo90/FaKvplNebAGGTb9P0PDm4UboItl9aCD6+96Hz1nlMcz/Mcd7F6D+4nm/+fAeiv0biBUcdcBDcjz0TNmDyq1vU8esgNjg+h9AGYY40+ABmXX+wuMqFfLYZwganqfyvTQ5+Hb6AGdL/wfVKR2ybp4sdj+/R6ZpavPmqA9NmKINGDZG8zC5OmnAa0oa7MHl8Pf/59Y6T19mxy81AvuUZjHOnG4Pi+FBIi7oHKR1X4WJ2H/rll/PoAlsaWqdNJ3xlsGfGFa4ha/jkuJC+yUXD514hdrh6DHXEluChdR/hzKoqLp56iVrNXVlWYBxkivXR1eEGMra3pNadoXCgtpB2DZqwf4Unmkc/xJYHSvz8mDSUxG1hN6/taOioCS1qGTh6gif+rI7hR+tP4NqYExTCbZhtoAJfhBbxol9nMXjMINfY7YIRa2RBLi+XTmnXksvmONx8WQwj8mThnBnif832/OnRTLipMoeTnV+y5INJ9E33CWcaTqW8ylFcnmwBr7J7qGTnQehafRG+ysnCM6lpeO6aNL27NBXDLhyABqHjnPtJFnIFJCjk810I1jGkWMHzrJn9HEX0YnnwfCBHrRiDttvc0fq9JWytCMXkrVPRtV+a1uT+xxOjE+h480S2rLeHdXO+0ZxNHbT3jyhsqWEydE6Eqd9WUE/mOfg3UQMGtQ9jZGwXjBV8Bk+Sf+NkBT2QSxciR/E0ev/ais4/qcRV22fQygO2dD63AdpTvNjv3xxy2KkHtd7WtKH6IJqdCaTZ32pBYm4v7uV2LNhoxDWbfFjNGjitSh3+Op/khcuGYNJlb7xl6cpdFxUofudTMhu0hBJPB3r8uY4CMrTgXNdHlC3qhq9D99lH5S/p3T1PwevvgvZCNxAdoY97L37gkwKm4PHjBy53nAHbD/vgmZ4mPiAjgX3ZHaBUFwzXpezp39QPcO2YNjx/IcyGA8tgKOgeHT38DEws39Gvtybo3tMDzcFZdMGriVfnWkBdvAHkd4WipN8J6le3hTdXD7DLyN/w85Ypnt73GmYufAe7vgjC5V/jYOYfe76/u4UfulpRVv11uqEzhcfFHQCfvTMw8sAx6KywguATE2C0cDqlOqQRJa1EhVMpWDsZULNgBg7nxtCM08IUuUMISld+xw/d4Xwwto7ObHek4gVvOGltHms6X6E1czdA4vEdMN1eDErvJ9NgxwMa+SOGBmaeQdeu1bDobAZ7Rday3DwLXvNLhA9/14SOW4boVZsGvWHSrKE5hbfHL0O3+dn8vb2PN80ZYM2oMPrqz/B5Tivt+lkANo+TqOGQLch8HmTh/eqUtmMpjXwwjpo7JfnxMkHYVbqDgpucqSkjF62q1sHpDxPAIqObHBNvY4fcOtD/6c1i3uZQ7WWENzsy0XL8Nj4RH0erU0TITj6TrvytRnDURm0DX5g20xKczh/igJuvIM1AFt6mLML70y/ANiNnuDx4GPLvGbCT5h5qnS8A9cudYAFdIIfCl3hcdQGLl9RRoOpVMlrWilHLJ5FGQDwoNErAkHAO9likwJPXQQBmoviyuo/9K1NhbDrjdOG5OE5jHbRvNgR3KSV22zQPPxQuhDm+RXB4rRiWO3xnhyOheEnjAdR6CUB3HsPUvMfQs/Ikfy3U5ACVaDLaUAUnU+QoL0Mdc1WjaeF8X0oaMx3Cg73oT74iZxhm0X25X3hrdiTIpUvQ8xc3Qd7xDOLiWhgZYQlxr8ZDUHMEWBhPpY9fJ2LBvvc8PyUTBz6uwkbD6ZBn9pq0MjWhOsAfnVf4YSNPguhzIfjW5wR9+DOBvL2dgWLl0eaVMq+x1AcRA1U6W3eLlyRWQ/XJlfTZxI+xfgUFyrgRruvBaW/O86IZY2HlnGqSyFpIFTo7cZOnDanO9+O6QH0QXR6OXxPewLzl/qCWpQ/yRwQ4qGwUy215Cdfb2vl1vz9PP3uQU87MA7lFLjjvXz5kW2vCrrwStJ7xgH59YVDUuAKhLxJoweunJBHQhZgeC7udj8GqCwqgsmcVFa2Mgx2t61kjKI8CZhZg0/N98CQiBOIdT0LNYBlU2E2GpsqP/C14OUmfFoKx83URFF5RuUgUSVkdJ/HXUrQ+dhaODzSDhsglbPdxNe86vYOn74/BMcdXsmqdJ47/Mh23akSiyepXVJ5jDHY7hEnstSK883bGGaFN2FN/CH+s38HHh0egT2QWbnGZCCrWInCy8QLL8gJysixk3ZMLqC+1AAY17oGyGMPMM36YvOslSUsawjHdOphcsJf6x3/HbKk1PHjOkjv/PaLYZjtSiDGnR5VPOO6LJCTnC6JMlD2Hy0xkdb1zMCtrLkx9PkwzGh7QP70fsDsqA6I1p4Co9BNQmeJPvXW7Kaa0Ct2rHNlzfRyv7m/nCUXqeOn0Lf5dLQ6Hlrri1gYF0D2+EWb3LoOPOJ7lR2TRgN4T1LPawTEZfZiooQ+ZmEEbzM/TGL0tUDjvL3fnpGDG0EjqrhXEO2RFLFbBdz6awNAZR5jiW4mtE+NxWeES7ExHyN+5jdwMosiAxuLBECM6VmgMFcry8OmtC5l0jkS8EYQ14r58xeMal0Wvofq57qS65RA8FVaHywd+0nilLIhbsRU7p3fRu+fvKDVUgj+p5eCH565s3RdMLfWWYJ2vgwrCHylOWJv2awTwGaMbbHspAB4diOOgG418LLSSUl3UIUh2MszvEqF9cdMwWjQcAldkY6KSLSwW/sWVDz6Dc20Hpy8yhLs3o2D7pmDefTOUN/1YQ9e25PG1+D/wreEBdMmb4QLOhqdnLMCsyhMr/a/SYJMoOOveAMxbik3tKdi/uJ2kVN9Dpsh6qrlkBRP2eePnBb4knB9JNyRN+ebfo3T2+zO2ZgE6LCjNfqJP4Z6VPHTafOHweGvsTNuBZo0O/DxoFauOOs8XkyrIaUcH2eiV4YtpqvAoXwSWrlehK/1CNMNdneTv7uIVt5bxSKkmfPIwnwZzVXh2vDxov9mM6Qu9+W+YEDXZXKfa0xcw6tsJ+KJ9FEoMf1Ge/hXS2aEIox9Yor/+bfyZ7s1VuIoPbJiA17qvstQHHV54wJ2TNKbzdSVVmOgoCRtv3oGh+dM5JNoJLzYwlz7zAy2zbpwwNJGmHaxB7cnm0DD7NSoXuMJizqY/5QVcm13JB6b44OA/Gc7SP0621eMwaKE2tMSOgvgmCTrRoA5ng1P5S5YUZw28BS/JyTTmzWXeaKDHHseVIdjkKKouCaPpOm78zektn6T5+CPrLMikr4bz5nPofuQNjmuwBtdkXWx8EoiBxQvg1B5v9PKfDrt3RLLn4kpo+ElYO2MAA+6bQv1dbdrpUwCWOhN554gblOMpTS4/bAEKXgLYZOLMt9rgmT4FSv1PYyif5f/sffmPfzpJP+pHvZAw6NfbS4Fe9vRj3Xjye2MFCya/xfFbPPHvJWU2KbxC9taf8dm8SAoJM6XG4RhYPWo3axmqwG4cBJ0lPfDN2RqrM1fjo3ILzHq4EkWEX5Js51yIfHCBjpqJwT6FPm42DCID1wwe3xAA6nfOgf7oDRTjK8lGj/+i3ELEc2tHgaCQIBT/s6H7C4yhs2k7bk/O5fOvx5J8si3sS7CGPqMQ1ipWBFf3tWT4pZWFnGNJvFMP6+6t4eC38fz9YS886vhKT3NKsPUTQdLcFtjzrxt9NjRyp9hJzNWRpQ/7kG6Lvmb9d5p0eIEOvpyiCAVbvFFXeTsWHzzA0bcuksXWbrx03Q/1lUazxM92rqibDw+9BWDktHmwZUk9/FSqpvOig3ywTgvNrtVgqpsnHxDroYFZIvxtqxnEy2oS1jVTtc9LMDYRJ8WZiXBxjyXUzJzHViES7K9kABeCp0CRwyE843OBElGCg+/UwpB/Pwd4vWPB4hcU5meOp3q7UOiQGBzQvsymVUK4664bV7t+Rq03AuzssZUVmg/Q9gmPaUNOHkWJasLri934SYrQ6WUc7M1dxduDxvLN5SPIv0gS5MWyWXtoMinLTwb7xRngFvyDldf+hqc2s2lO0Gr0utSGjQJBOG1GLC9SqYIjpaJwaMVtGHN6Kr6a7Minfk+jcYo69NmmA+8n/EWeYkH7tf/Am5OToSnWlOxtV8PtEaPp2edA0hIb5rmlrbR4zy3SObEX46Ic6XK6DMwRSYWNezfj/H+P4FeXCf0RyAKVnyI8L+sLiXUsoTMHQmHHFnlQsDiGe+ZKodjo/+C4nAB827+F/Vw8YeDPFSqImA7jAwrhwjkr+C/JgUX09BGVxrGOlRFfjJDg78WPcI/zMdwgvYInfw7gkREA2kKytNnKG45kpmLiKEf8IKaLV+eo0ryZHezbJYgO5mUYvFMSWjeVIt+Nx4HBb9xwSAcjl5jC73g98psmjCdFUzAVn/NuGSvoXBMIhQ6lvMOnAdW7c/DP5Sjqax9A8zFb4N3kGgiTE6HL0QawrNSK3JNdYGTYfXCQnw3qBx9i9w8BPrwHcYTma6wNHYfiqzRAbfAFbB9zhdX838DmjD6+t/gxR30+TVXp12ivz1VcPLWLju8YDXLzvuPXjFrse4H0+EwNy57dgkHyXvTKczkfTTUCjfU7IdZnOnyekc6ezVGkOHYkXhL2pTcd9bTztAy+lavAJdaG0JcfwaeT9OGiTBTuOaJAphtXoUmjEnbneHBzQQY77qsE7ahOSH37kFL8lGDvtCWw8WsZdTz1Qa2V1lxm1YhFizexgPZvFlrmyEdidPiHvQJEpflA8oKJFH7AjGITHXjKrzKwWuXJoTYdXOtaiu7zm+HtbUtYknkaVZXW8C2xH7TmuQf8uHcS2yIXQsGUeNitPZb+LlmJQnOVodVSEIhloa1Tm349mwSTDfz5+/pZsPH+fAjf50A/sk6ijqQstN1DtqxPxj31I9DaMAkH1gFPEe5ieQc1vnz7PP4Xtw+//JGC4vkqtMVjNo+WV6L8zj5IUbHlu6fV+XfhPR48lI1ZE2/QcLAh9JYdpnfNkRD3q4qOVOWz0t1zmDrfjALX+5C59DoaGXQPvkcyZMTIY7yxGYxom0cJK+PwwvtUfjG0HUdv28tbz06g3fnz+PZ8gPooBSyP0sWpOVtgnEEHP0/RwJDdsqAfHMRWflPpSrcgSf8aC0mnTDF4uz4GmGVD0PmtmBrVh/rHjUh80w3eWmcLcuc/4ZM1U2CF7W9I39gJmcfi+Ny/bHbfkIxlUgc5+fBUzKU22LW0lxNvjIa1yuI0J7UVAvvW4bw/c6kzXJ+LMk/zK+1a3u1gxQoTZdCuXBw+LxrBH1kPStb95urbapQuOAOmfxaingFreqK0Cd9dHcHGKAorjEzppfYlCr/2E79LnWLJvxV0qq2Wd79sxIbcvSwVpQCZYTL/7/9fdZIqTNg+jh9GG8EfMzmINHVF4SRjLrrYQN0l6mjvlIWzJXXgjMcf+L7/BH/yPQLx15t43MJYjLVMgod2X2D1ih0810mKZbaYQ4+IE75pfsBmAitZ9ncCjXshDhedtuOZMkPQm7KK3dZMQjwqBkGTHsOac+q4cNR66i3qh/MOLbzxixiJaWXjYP0D3LT+GAyPALgx9xa3LlpL+2Za4I5PutzWm0lmfQk8FHqPqWkSF+jFsfAsI3jgQfAv0wQ0Vf4jObOZtH9HFn77cJ5dmnvghOhDdFjWSH9jBKA9MJkveZexoE082IQvBd5mAj7mkdyavxJvq7hDxrM5lGVhBYHjJkPa1RGgb53JIq8koV1kC44+NEQ3cgdo0uYA3Cr+lFflSsNsFWEGiVvcm3oW5dyMSd3VCpVjHKmo+DWpxZZjpvFPfj5aCfyqh5gMPnGtwQUSvixCz2pmgsqvKJ4Sbs/lD+bzOMdtbFc0CT44ymBgfgUILykExxU13NO6CltvCuGpIFlKShHjO2VavAqnwR9tNU7MlObfdYcoP7KOkhLm8yG7LF51KYTMzZfhIdGlFLpNG5yr55L0vUSumDsK7Ne582MjcTxmc4WWe/lRXVw+iW9wh417LUBfVYCzTzRQTVwuheVupFq7YGpb8YROmpVSc5ksu9kdp+IoOSi+8ZjSPObxte838XuLA+VcGUVZ4oV43UKUK0WfYdiKKzSuTg8+d0XQuuVafO7fZiyd6wYLfFewk+p6EH+VitWLYkFZ4g5+m2UIU15d5aiHY0mwJh9Oiq7j6tdHQVgwn23mZULz+mKSvrqYwjfJQm3DZN5725UHLzizcvoUkFHbRNNGODMGnwO3Ey6sCiNhjgrAcf0gzFm/nfPHN4CKQRhNmL6V3eZfp6xRpzD/xGx2yh3igZBJkPZuPmp2e5Hnl0r42VvFQiVWmKsgwPvGpcH4/6zh3aSRKJ4/AZy/ivDTiQH4qn0TGWsmsf+hj7jk0x/YqneLwlc3k7L1BQ4s1Ib4xe/AyFadq532gP+/j3BfYBtXn3ODhUrMO2ZZQ070PR61QwrGHFxEvnaP0d84jldp/MBDbY0kFNMMghNG8IOMnxjS9gQ2nRaDMXfSQOBaG/qorGSpiGc49ogzeNiNpxMOxnho+AHuGjuT3liNhdmGKvz5UBIvx1A+o7wXBv1cWe6oGQgYeKC08Wk8qz8WrkroguONf7T41G7wd1Hl4uli9GG/EGpe+YQZG1V58PsV7ORz2PbZCETGv+X9s+Qg8cs93O+nSjbGP9D79BmCQ2sx56URlLwWAH8dfYg/dx3OPf2BvXvn4WXBhax0fCNx3l0yGx0Djeax8CxkHVSlaIBw1xxonWFA1W/Vycqig5Y4r6cEacCF0hegYKYxzbv0loJSFeHrtzXgZbmPFTYq0XKpiaiokwfRSdNJdko8ztmRiG13BejYRICPHhfBQXgepD2ag/YGXeD4/hhnh6zlkAFBMg96CLVjxfiR3BjISgvj8oytFOlZBpFDX8h1wWxKCnyMORNPYb6KGm7cmAv3w8eB+QpnEnNVwNRj0jAw7TEobbpL4/s6waq7iHceEcN9z9fzraCJEDs2HqjHlv/WVVG3cDBdD3wILfEWXLB6Gt9PuM0Bsc/plrwYhLYPweZV/fDmszKubNeFjVknQNLqFH2boMD3lKVQJ1kOmip1YUYhsO/9DXDX7z59iq+CdfccKZM3YusfJzy2O5bDtUp52aexULSrn+aP8Acb+TA+NbaMFKw1MeJyGmdFtPIDNUu6u/wjJjiZw3gpBe5bi6SXNhtkxVaiuVAr38+po/8mNVGczkXY9I64REsXPA8FYk7OAxhrN4dGHNTD9BIZjOvqxaStt6C8TQ6PzDrKvwwYisQbUPTmPmh6ng7mmxjEpt6G2Y+W4zUJaU578QXDq16RqbMWmJ/vpmspBLerf2Ju32Ze7H2enkgkwcK7B+mEhgo1vtvEOdEAVeID6DpHgI7uksHVWQI4QW0hOpTtxlf3l6OR7zku3+cE0X8NYOjSKZYTj2Jzekgx2XsxoOIc+rZcwRunNoG/Ui432RyG9pFC4DvxIdofKOUeDydq8F5DehZjUH3qUUzTM4IXApM4ciCdYmIZZq3awps/a4D6ASGOjC1H+4ormOe0E3o2VWDZzFkQ82sX7rMeD6NSt9Oertn0Z5wYxcoa8uFLA/BF+Bfc/l7G6h982PKaLG/OnwbH31WCqvVvyM5bCImj9Pi6RgLUHVbj8UYNbFtUCsqSDSSWZQKbwImu3F2E7a8Xwg1rB9S9m8viE/Pwv0Jxkrmvh8ERm0EJpsPe8+nYE3SOH92ciSdl68msNxifOKWAyrWJcG+mIwQIjuOjRdqQ3dJJinyRQkNNIMLtMkw0FcRJ3cnctugDOcdfh6OLq/FinCDciv5HE2u/gHNgDa+q9cDZl9LxxxyEjXtmYueLCF5hkYV7bqnB0zsZkOORxbVpI2HcH1VS2SrMYf1ePPLIWdxy7AKfytIHsxpN2LNsDXotSCAJ+2acO7gQDjZMJM3ILNStqKUxN01Ja4I/rvO1BLPZX+HX7jzckZLAoTCNZE6KcG9ZE8aKviJF7wqM8syAVj8RMO3KxWU7TXDmx+Vk/1EMLt+OxymZcThKpxR+7/oMm9Tu4sFQMfgMPvx8pxH5T9Sn30JPaOZSYb6s74RiMRv4fu1mEHLPx7hVujCh/hisKghlD8VwPBcwGau33aDfqofp25QasLxVQ15OglT/XRnyTPZBR81IXvKwhew3efOmDYcoL0ISs2yq6KOoLcn1B6KWshSoSm2mPC8T+D6pFI421dG1InEWXfcBfxguolbxueg3ZSkemCAJrfuYw0vL8Hx7FbltGA2Ctn1svXsJGJU95s0NtvR3dxlG/LEG7ShdDD+MdLpgF5p+XMGXin6DpvgLauY/NOv4Vny7ewfFrhoFPYc/kHfRZkh6MJm/CSri20XBECT4mlYpXoaniYvwrcYZ2ucuC8sX/aVVJ7ZT5Op2iHI1p+kygbxLPR8zRs5EydgQdg3cgP8aFSD7ehBoS/zB6CO/QCminve/6mLFJ058ZvkATLmfgCeqG+iqjDT4Bzfx86ydMFX7Dc1ZeoBF7LPxksMsqordRMFq/9BzgQ4U0HioSbyAp3wkKKp2Fi/V8qDp6u8oKYJR7E8Kq0aFksqHSlq6VwkcbjnB6iZn/jBtB+f8+c0nfkpicgyjatoXvEQr0PNlPRuma8B+lzOQl3AGbWdfJsnCR3BD24c6hjfilZ1PuM1LHrBfD0sfTgGRL/fR6PQZ2BjZQ3NetnCe9CDOXVwBhfpSJOD3iPM9GYu2iYJ/YDWp1/zC2/99Qr2/yZQwKR61/ptLLjEh9OTxTX5Q3oNKbWOgZX4hh6Y7ov+/hRCQW0YKqEYr5yeiiLM0KdfFoF3VIipsswaL50I86mgZGyVPgYDqYDJSXAb7M/u5fPFynGsuSfutd1GtpznMbpSHpu+KwH0jgE+uBUUtEdI7UA66ztuwfdR1JqefuOqMFkxI2sdO/+uq8GF8KHQWoobEYeDwdlDue0AZm3L4v6095KChAB0Lr9HaJbu4ScgLbjxPhdebpUG9qxBlKyK4eGwr/PzbAGsrZWHxtklwd4EViGl7cK2aJj3ffoe2rdKi1oO7SagyDq4MvgFr+XGwx+kYL7YKwYaoMSgTb8rv/lbx6PAlXB34Ak36H9K+i1NhspA5FFIhXS1YRi6uo0nhYA4NmfxmY6P7sPtSEFhZEFeNMAQZtRHwV9SdBXAIxu6K5clPOqB6vRXPdt+BOtoe2DNdhg5nzcFHCwBkImbSlrdhXNwpDyHyk7g0bAGXjMyn04klaE4zsHPfUjh4ZDr0/DkLb2+M5uPZViSi64FOq6dSjLkVXRB9z0/5PHq5LMP0ZQJwPDyLyt6VA0wtgG3XfXiD5wl+5PQRcj4v4VeTsvlUPUNjmA6c9D7L1Wt98E7XI1xruxCmfC9FNaXj4LBDk43tE8H+zQvI7xoBr3LH8IdL8XxicT6e3qgHs+d58ofGw3Q8eCWokjwaFpzjp8J6UFcohyvqVCj5/VIY1E9hq65eiH7XD7dbIvCAgwq5Kd+htnsmIJ73A0mQ8djGfAyOT0LZLdlk0GMOLsOZ2JNaDN+sZnNSkg44PFHEE4Z2tPR7LMTe/06Xp6/jhFJpCrrgi2lajdjcrAGugZYwUHgTc93ec+FfVco/xvT84SV6GnoBQ3MMwK0wBvpu7seer5PBZdp13LVhGN2ytFBu1H5aKbue/iXfBB3PqyCsbkMBVbN5bKkQvItcCR9il0LG2gHsLw2AFzgHc5e/xi+Z9jQcPAuTFUKwO0QRPNWNsDx1PkWHFsF5OWtM+DsOinxOUG3SMXgtUUOHv2fj3AdyIPDmMY56p4SZL/dSZ3UtW1uYYXDyaxDqDEZf/Wz8XWoIjUfk4LLaJ/pAV2CKaDKd27GF9ijns3pwPd6RGeQZHpfJxDiVBOzNIOf5V/pPT4z8DeMwMGmIqhO+grvbQfK8+R95XJ/GWsVXYdcxQZjAynx+iTe/3P8EH3rqkpfvP7z+up//3pTGwf0i0FL/B7r2KkOKmTeFpdfTXs8dMLFpFivGb+N3Bgtx64JVVLBrHq92XkOlD03hxZJX9EJ0G/mF3+RzwQfwYfl6Mrh3GPXMUnlGgD9vO6MA27Yrgkf+cpxwUw9EksJg/b09ZCycxWHXNQn2WoHL7yTyl5bB9r/TYHWXF/bN92Pb8DwQPVuMSQe3s5PrXNSvfEGz5o4FBxtV3NoqDl6nXOFIcSOWGD7gCsluOLnWF79mDuEhFW0Km/iVPu+RIevbQmA3LMVzdldS6jQdKltcglarBPjTwj94PsEeGo6p0aQ/S0DSeBzIYigfr3HCOQ26ENeczD2XTNFftofvzVpGNgXi/HPachjYMxIs8tfRscR+No1MBif53XzE4zEbbisg7QFFzH0wzF0vPfmIvBT8VHtNwoees7/9ExCavQmL9MVJ9OxJuhzbSrYuF7l4ymaYVSwKjldGUWDaalZaoY+y10+C8rrJ1JM1CVzN76Fy514YN6KeTJ0tYZlHBSQWJnL9kWzO81LEWSpV0Fu2BlVfZtN705t88vdpXOQiCQ5eCzDespDMtrvzlruHcf7WPo65XsgtsiWsBDEc8XUO56RKQEWUJV4edRTKr7wip1tfSf5IPofMvUNPnQfwb3oQ/Jo3RD5ZSnAoIYguzchm4eW9zNsSWat3JwmtLcBPZf2wc/Vs7Hg+lfUT5EBsnTvenOiKrquL4PHN7bh5+WrWfPKE7s35zv+9lALHjp1wWVMeSnX/gd+FfzDmvj7oJ0vwkPxcdO/sgRyBZyQ8WRq/XLsI+8vHwuGaQXwl1MuPHi1l5ZXetC2yGvpaqviTSCU9j4mCQat4uF2kBt7Dseh54QRPGnmA7RzH8DF/TR4/nAv+b7tpzTdVGvUpDIc9pGBPsyZCpjFk79Hn6yPOUv0xP7xT8QVKE+1oQ54jnXCoY9E2E6g6/xoEXTKg/9EImjy0AAyC9SDEJI2GnN3BamgWKCbrYezC0dAxZioaLAuCaPVmvJXuwN+inKju1lK0NdJE2CkAG6PN+VKNDihM3cuH761A94sqrDbyH0yKucAz+6KgU/c6HDO+C7lxW7H5sz7krNzBYQJ9dPizCH70/UUb7pXjYIU7h0fqgLxfF3+bRDR30BwOhNvh5EoJmDinEiucLKGhaglI9Z0F/cDj5KdqCqrKz3lBpRB8W30U/lP+xR+WVcDqiYPkK3IPOie1gM/fDij8WMDnjp8iWTaAkkkp9C7YC14nxIF0yQoIfLUdd+SNpSHnUnRRdsfKZUVUECsEUmbnqPj4TL5WMAwOuxZh3Dl/GHnsBhbcs+TFG07iqf5BNj82AYx+VsOipHD4HD+etQ/fxnsXbnDQxqd8WWYndD6dCBqavSR7VBWYhil2fyYmfjmKGjNPoPjiPJpyYQeU9bWxgPFJztqdQXVCMjAsfRabioZI4u1YdLGXxXnJ9tC/Pw7eOAhA7ukA6i4+jz+GZf6HlfvcC8HxFwD8HQ1NDdraS1tL0ywZmZGQEJJkVrKiUChFVEoIDX4hkjJSCim0tEOSKLKKpKScz7mH/2U8bx4w6RQD8eB77DfrDDc8mU1xynEw3vM4aGwK4+pZP2F0QTOOEZUAje4IfrhUgQNYEJQmv4X3gUzdGgf46ulSjo6L5z0v4lB5gg0sNX+AxgFvKC/HGfY5A98PPQ1RutvA9IAqdr34SaIBAVA6mkFt0158sW80vzw6HTLLCvjAvSr4ajTATcLyIN+kRve3S0FYtCQE/grFoxu345tMLXAOWEQpPdk0Tm03B0U5UpCMF7VGegH76oGXRRJ9MzbkRXLN3PXpKyWVy5OGuxdrX5EjzxJ3uFzvDcXe6mB/SR6cRRt4NRdzkJol/lBeyb0udtSfMoN23d2Kxv1LqHChJAgoxYFebA+u2fsPEid683eRK/gy0IeCOv7joKFEnPZ1Mru8APhiPRICyuZSx5wXpLCvGEyMO+CVlQ0NjTDEqYuXUoa0NlmX24Hg+bO8PCCGDCreUsQKPZzvdR2aM/aRp2QnHwldBXpPhFnJTBqKUvai4UFTDP9Phh8s20MOV77RDvG1SNPqeHDkDZxt+ZCXPhCC4Ufn6Y3rEx5XvQpV5tdhzM45YCdzG0QjhnFwwmVKXDcKfD/bg+BeI3hkLQly8Rsp5ZQbLks+gmG2k+FkfTq75xykdNUBWHNLDrZopcMZh3B2GxTC3JYlpCg3Av4uCeIly7J4+tz7YPpVmAOHbMAo7SkGXP5MQQErSDVOGDcMZ6JHiRYE3E9CqwNa5LnfFysfm0J89UnY5nuY5V2v8dnsfTT2uB3cON7K5pKylGctShnTuzjxhA14/EzGjL1uMP9xG0lHXMO5b37TnnMGZLbZFvtHzQHHkzvh/VkzSHpoyRUtCSBW9IpiXnyn+IYlAIfF6d3nQhLq3AS9Cs6wvVsVzm4rR013N7quO50SHfLgUFATb5at4fUuU/Fspi2tAUV8OKQKd2c9oJTzYTTdJBquvQyGZ1pXWfP7STQq/4e7Vz3mL2cC+My2kVAk9Yxid0ng7A2J8OXGL5ZM6sJ9Vm6wv+cYnYkaj9oZbvTUVANUt5zg4BBVFJ1yByyW1dOpDVlwU86f9p8fwetEjkCTiA6f1DSGXIMqUBKQwHTPYWzpXo3HNnjTqqJlPHToAzyPdkWhvlCwd5KC0UrvafebF5h5aC8UjFoCOxb94rs5WmC5YwV9uvGYqnA1Vw9ogpzQTnhoHQrTvR9QwvJo+rQFwTi0G8v6bzDfSYEp8VZwytUMxsSp402Lk5Rb/xxHNUykmNfLMDFnBhZunYBvtv/DfO80TlgjCZ0xu3C0+hIYbHfBUUMfQTLrETnWKeCaET8wIOIIXb+1D4QU5WHxn2SUW/QEPd41sEBiIr+PXoD2Wq/4tcZ93ne3DffqV5GbihTU3pkCYvZ2NOpiLDaeA947t55mDPxHPs2RZJCvQLHbhfDHUUso3vuJZq4bwz8Fg7lh6TmKe9PM41od6VAS0G49bZxbHYelXaaw/e1ssrTdgGESs7l30x2UiuwlhcgI3tYXDGMUG3jzqm2oOFcbNteuo2NegjSxYDS561+hJ/m1tGlLDK7Z8oTL5Yzpi8Qj8BYTAEg+xZnzw0jbqBZOzV5G8eKDOAk6mfQNSO+AMMg2ZGNgCINKBtPMF7EsNHsxqKS9YN8d8yDwUiYZOsnTzaOBpJ0jyDcWa4Dw3+WUnanMrWtnwEC4Hf42r6XawmoaeOAA9Su2QHeJCcpvZxh19wf6ODWjxL57HFbkAalnV+EOkcWoO3IMPfg5Hgdup4Nxvy1Imy3m2BWqdOt8BrWueMnRJXUU+d4MMrep4hyBBWSh4Qk539ThlGsd7TzyFYPHr0KV/HU4138pWD8eBRUdnyFq+n0MKtyB53+IwJrHL3k32fHy3CsUG3URR57upVNHw+iz2jgM/RyK0pofsc1vBKj+UuJu95M4cD2U31qm4Z3aU/DCpI9W3j5Iw30TSeP7QrjxUwp2WhlgxZYamN2/gau2BdIq5zPkFTUddvnF8vzFmbjwvgl6fNOCr2AMvyuOQnPrKy6bkIIFo7ygYF0yP9nlhrtczfClpChWhtvBTp9K8JBcRGvX3IXJoRY8J/IwWQv4w2P3WhR2/curVxbDfZQCw46dcHdpCbsmiKHx2cmYutKPZDp306WLehA4u5jVW/RwsHE8OJs/wTgzU5a//puXNBnz0I8dmGcwDTpzF4Bx4EaUGP0S5lhLQXr8ZiwPXY0Vukk4/HUyL1D/AS7/FoEjJ/ASQ09wEfsOp8JMYK2qLElLbeYChSM4b+lejsvVh219SZBXYkrUl0pXp/5m9V3WcExOmZTCEJYsU6T6m+/gs0oWpI9fRg4rrpHJnXacL/KSw87pQN2wCkwZX8j/SoLR8L/1AF818XBMCHSKBDLucMeKxr+4Kkkc9CSMuTJjEji+Wknnht7xf0f7uEbtPBs8WsSfLxlx2sbPvHz6OPji2Ux/nqfC+9dXOPlwGqgnjwFr/TVcJHsVwq9f5M6MsyQ4UxfWxoXwumc3cOrOAL6aX8mvXp2Aydqz4VTjbTA0Bdyx3gUvttnB1Scb6NmuFDLL2ooSrj9INXsqff7URdPeXoS5EiowJXsFvmV70Fn2na0uBpGUdykbr8zCcXsqwD1vA1Zb3UHvd9r4wPMNKeaZQ27yANQclIEV0U85ptGYxQ6L4LELm1ncZZCFHs+k/QpVrDBtHBx+3c3XLyVTuFQM3L51D3OVW1BxiwIKd+Vyu/sfst80HfIUxWBKRi9suriAdqyfDIK+mTRp+DBtsHAlHlFIeUk+5Pr3BirrC0Gcjz0Z+mXDfv7Mpz8XceNXf0xancd5lgV8y1qGzJd5s9kqgKanz3C15WMY3v+bnYYyQSzRAsV2y6OKiQ+f3C7ALxtD+OUVATAPGEUSnlch9Es7yf12x06z0/jL0BC7xQ+SxC8BOjkji/QHdeBIkwj81/OA5lu5sN1fTc6/dIsKhv/CdNtK7ssth5lWJnDLTBQEbYbpzS8RjpUdQTgrhI4GNtGgej1+SNNE4bzbcCYnioamIxQ2xnLDOQsuDhTCgV4vHBsoTS/1NlKjihlVvI2B5PxotPupDy9dRemH4k+ovDMarKv6ebFxBr06JU+XI2/ALpOjuMizCXfOsoK6h5WYKOOLund0qEL+Ou3xbwHPrgdsUxLJw3GisPP0J5K8YQlRsplUGWINrT4V1FZgCve+r+Z9Z6RZ4f4E+HDhDj2qnUH9K6Rg/UclqimfRipDfrQId/P1s8Ucf2kCpNSkw4j2fqi534je0QDznhnRoZeRZCzymivfbYPt260gXegF10+sgMSuSsivXokXasdD1PmzqL1nA0w3ugVuFqY0y/UL9GR8gDm9H3hu6QlYvkqPFn41ghqrVEqe+Q9WRI6B+VdfYeTlEMy5oIcJPSkk8lAPRRN30MlmHTh8JYrO+NhD5WAtbNZK42PVL7l6wSbYOvkT2MYmQ8DaU5iyXBZ0va9wgFovKmZcAs/dz9lA2p+b7fRo55dAXHGlDcNq6+mwuya07aoDA7c4LPwqwXF3tABXX4H/tuwljyPKfH3bKxrnYw9NJo5Q9ryXjwqXYPffNIy3yIIiyVDokDyPndN/sBxvwZgUYTgYKwcFM/9QgcoQyIEhey+xp+BzbRwYvorHXC7FJxPP4Zl6cTDUnQCq1THYeFcIGtf/h88r6qi+Oh56wv3516eVvH3zfdiV9Q6+TxKG9r2u5O33HLaZS0CrQy+5rlyM8VeNoXNLP0et/0RWbsqkK2oII67OAL8JI3hw/QGelPed0yJukes0P27IccbTl/5h5Mh5KKemCH6T6jjTLAKMm+bSWyFpWCmWSWaNSnTkyjwwadkF0T8q4KiFGDyEGrwt8hhPSN4lxZpLZL/ahY0az9HDl19pQNAO7l4p4dXb9KEl6SB+NhfH8UOz+Z9mKholl4JlviN1reiHQ1OS4GjPRrjrYQDjfmSignoWC5ml0hTNb3By5z1ITroHoQa/aefVCJhT7EWjDqrB+cqF7PdcHZzWl+Psylq85FUOe14t5N1P12PZFR0YtNwJAl8c4cjxSrw9wh/4xG146bGJ6icewApJJRhYJ4WyikxTVY/h1yAVWFF3Hou/eGJG9E0srzvFEw13knfnDj5bfp7n1G7CqJ3bQV5CGX7FD/A161Dy2h1FSmte4PH5SxDHFtGb+PuUNSKM7hRMBbaShffXzdj0yGV+3esCC/9pwcdLhdipHsZD12QxdkoUfY2I4jvV8pDdOBrKBxShOugN3iypw5XtHXh3SwQtvzaS1ql8pYfHj0LWDHtYYhSBey9Hg+q3+3xvYCxrKVnDe8duHrtZHH9mScOCq1d4/AwtyNRaxfbSbRia2keL+4fQ6EUWVOVNw0OCcrTm5xuu3zIMa1/qQPjsJHA6exdt7Ds4IPcRHXftRscTYVyvGEhp58R4+rkYjlVGgMjjfCczjpfEXie15cfpVZMOLp40BHfeq2GhzATa0niG7vnLgOzG6XDdHnDu1EtwW/wAe56N5cQx2pR3Uw7HS7vjjIQ86FlvD8cf5HDfTWW6blLCKS8P4MnxL1n+UDA8/5GBi2Yb8x4vN5Zvd4SzA1KUuCuW744xpriK6VC9zgJWJRdj5egXcCrSBWaPFoUcS3E4JqgNz07VQcHQevZ0XIdhemKcddCLPEdqQrjyNfga1Y+fA60hTnEGtC2phFUa0nxjoJeWbXsPVYkOWFQ6l9x9r+JpFX/Q3GYDQo3mLHyCGKLWweUXsVSuIEQfN+tA6lgJLCn9zjn3/EDGdiS8b94H/6IrUKz3CB2yGonuL77S5AVTYIPAEGnNbMP2zGiY12ILTqFi6Cr2B8dkPaPE+hi8e+g+yBWFkMP9LWg5ax+5Zs9gT10At5RCsNJaBx/1bPi34BZ6dfYD7P8zE0UOpCGvcwWhUhMe8coQuk4fhrediWD/cQa2V8fxTs2FdEikDVMLEnnhdWXWLpKCSltzeH9GDw5snYovteUxymo/tF60Y0k/A37iUwYTB4pp8j8FSAnWgNvGYmh3Yi9EVJdS17IY/n55PAaAF1hWHKS7mw/Rpy2dNPWFA1x2LIcQRWk+MKeN3u45A5qy60FomyqK+sViZqMKC20+D/WBStCx+xf9/NJCfvu88cujNoxKZ2hzeMGGyU2YkvIKh0WHsWCuDoSLFIJAUSoNim3lPYmrqL3qNJxX8GcFcwEOGyfCKUleHPLXAuKeaHFfnj0lj4on3nyEbod8hOPCaaQfc4Wb/WbQGLvHsMzAFswcVtGFVb/AfOt36tMeR4JLtelWwCye0Tqbzujext3RC/HARwGYOuoHj3sZDbE1Bfg2azvNOaGAo3x/YtbEsdTuUQ+uk7NA3tAQ+vNM4eGk35Dtvw4HXGrwQ5gKm9a9APNjibQ/y5p80vpI+p4+uM5bAp+/feerkxVo8IYiD0VZU4KFCbXsiaSHMtV4PayB100fC5cuS+HP389JQt0Dc7O1UebAWzZvGsPV5ZJ49FMtO5R4ctcFQXAJ3A2+Ex0x+JQi2T+bwkfumJD1uWQ0kwvkfd2lYBpvw4XzEdy1NaCp9z09UFfAw2HB+C6hlGXFa1naJwwDPy6HKmFdvhgtAM8j3vKcv9o4qbwHeo/q0afUbrz7J4Bjq/bwAbGZdPJZO1ZdUgLzRVNY66Ekb1wcydWjj7LxnDlsG3qCLeaO5/lfA3Bg8llOyxcCaa/PNCnxK1b41oLluD7Is3qFt3aJ0o7Xb1gquQisFuYgiGnA9F/FkAkC+GOSJsT7BfBtpy+cqCpFkuF96Fm4B8I856BEKsOAlRqd7FcCE5mR9EJpA0TMcme33YowS+MG5k07C6q/q6lM3QyOBbylTYvOoyx/hqrHidgR3oWj/ExA17QV7dpCwFLmKX3pcISJDhs5zH0aaLa54HMpN8z2DuEZ9yrJ94kj3WdZ3KOngxO1FUGuWo9yWqz4wKRlHLJqmB8tcobbTjM5L2cvTZZOYraZD8ksAXuLsmmsmg28HH8W7WryuDf/Mu45tI8a/tyHRbc+g5RlCEVNIVhcl8qy2ishfFYzFypuhgEtf365LI2UegY49OMBGv9PBRwfGUKIsgc/2vIcPuj2sM8ZBdqULEwxSzx5s+UgZfh3Ad+W41WjrcHAo4xX/B5Jkopj+EHDEcyP/MG3lafwU/tYipu4jtPaUviZshxwRSfO2dOFVrqKJC61hK8kCEF1Vj1cuBcPu2r08NfQWejslIJD5xxIdLU9N0/5zst3bqCmdUJQ/H46tj/bhU0Ve8Dqvy3cHaQEvOklwfMxcM1mJRpqvecQPVeuXbaUT7bFop3wZNROuYLhN6XgZLAlpO7VJOsdXawkcJrCNzWQPZiw2uxKjtVZgSplupxvqQQ7Zw5jVFYBPbdbCsckg/nsCQ/+vL8I18w3BVGZZhp2rKWRpTJwd4YtHnjjyxVzTeCCVQb2mxvgwS4VUo76xzdvz4aP9gf40VwzUKmrxnIVGYyvCYLQjkZMydyEi25NYJMr5by9/jw7PYjitpOOsGL3UtrqOwVGaI6H/DtEmuqPWENGBV/+VOTp+7Oop08IA0tVoKosGVdLXkSfgk2c07kYGiVUYM2qm2Be/ZyqRP7w8KOHcOHRSLB/fJZUZQ0o6XUAQ3o+5Sun4vn+wxwdlACPVkSjiqI8O4/UhXSnEjRuiqTbU37TjA+H6Pj1Idj2RBgPhlkxmvzlWfviWdrSCKLqQ0BOYi3cLErBlU8O4tb2HRA0OQpKbl1h14Vz4fuFkVziogHGwfEwrHKYV+rs4BL9NP66/xI+K9lOT1unovOsILS+psQvOidAkrAPbb1uSWOTW0m3JYmyE4Loe9AcVMx2gpWOOfT1Sz+OzbWBN8b1EDpHCFaah+Nd+R+8If4R/qoeoNAOe/bWEAD0EmBB5dHw+/hBGBH8Dv5+iMKnmb/54rMCGq60ZEmHBKpbGoViEjfB4ZApiOX78WsrdaQQXU4Zu4A9iwro6UkNHl/zHC931qCxFXLrB32ozg4mw6lnqUfLH545vuCuN0GYbj8AJzZqw0fhqRgnP4PUWlUhrX0RGi+7wnMSA/lm+FTQWezMx4ryoNMuhkzq50B34hPq6pKDeU9u4+vM/bBo3yQ07VXDnKHfKFhfBhW2z8jGaDk4NT2CP6YAYT73KDHZByf4meGjV+5wa0wFnth1jOKyJuLxS7U84ut0jvA0gQNWFyHc+hTVRIyjF2UmNCLzPpTOSsIZ2jsobsVY2GTmwFYnReHLt68c6bsXD/0zhLqaYFi0tYePe7VgYHQxJXXOxa7zKfQr2QGkHiGy0ASoj9YHMSdjWivaQfGjBEi/uAPf/ZbGhUVTYMmq8bBkRQI8v9aLT0//IhlLH/bl5yThkMklcVqs4SyIWTc68XOuFDxfE8lfGhKw+MVpttW+gB9drFn1qRT8q/eFPSWVkPqqFZvKtKA9PheNzq7gxtNmdH8glWrC99PQl0BUGpjEC3+8hsaTWfzrzSgIcnXGsGl6OCZqD56MqMMxaXIwIq4UVt2bj1bdEmy7yB5piSGIiGSzpvBKNtJbxverNKEu8jFmzXhFIWc80PA/DY7EVlzuNRLsFrTgB4UXFHpZHqwGFtNyA02oXvAPDlbvZZZOh1cRCOoR2iBWuBfuqOfx4VoV1HyzH+4u78MTI95xfoYGXsk4CaEqqdSgNx7al5VgplILdH6ZgGd1l0DggT0wK3Y8CDU2kkBKIi04MI0Wak6E+5eOsHr3OxD+4ks/lEdxfIE+Kko2wPfiY3Rd9yNfaPCHZG09aPb7jx+sWIGhK3I4z7MZH+xWIAGXfp7j9QpOG0pB10ZVMnTWg8FaFXxjwvgqooMzPPvYwmAm20m/YwXzt1T0uRXmTByF4wIEIEJCDuOzSvCkgQsH5vSyqtgfjDFrhxnaMVS3ywUMjxvw0v9kIGTEUzhuoAQthkHglBJG2y+18YF1q8hAMgTSK6qg7clrcqg2gKvWwJrKhaw3ohWfhYaSfkU6f5w+H1YsG0dPkwup/dw0dl2uDzOSL/PbwmCaOPMP2+05T8lrVjA9cqBgo/kwJlYONg+egIY2A6DLY2iX/SBY9/egl1geJ5mdpTJHYbpnVUdZ5k6Iu+fgswXKECZ4H9LmnkHK0+CdNjeJzV+TfU0F5OqOhTU5PvD8XyDstTeCxh9TePprJwwzvwyDTvXob/QHE1o24LTwcZi9ORW6123CwmeCkEwm5J7bzUrBDlS6rom33nlDcPwjtPp9YbHceIj97c8CCQgJn5Wwd+YtjFIJh7xJbyipUAm77k4GuY0ajAeaIc+xiFumaMKVkL+Qm/KZLtFT/jhZl1reecJ5szKMHRGHqpfKSGiwjOqFjeHIlFY8sVaDrMr3wVO/+bx3qg1pf36OM28rkcnRBEhXDuDZorIgftuFrzx1AVkLZ741aIYdtojB4zI5c9FeGp1qxO7WBtSwzBqgQJubWghWlenTO63l3POkgQs+TGaTmfvQoPUBfcl6yTI/VWGerQk/fKRH6iqdXKU9j+0ujOdDzQXkfdCFN/Qq4x/Zl1RTNBFuFvfgGbVjYPJPGcr0B2mclB9J1M/F2aneONXHHj49m4nzEiXgZZs6/OqL4r/BWui4qR9l4v9A5b523HVGD+8U+NKvPwoousMCijeYYcjLa9zv9YUWZabjw5ByyEodyxEBSdzm7ku9487D/IsMtrcWU9aEIprivpSLLcbgQRELXO00ik5rNUGS3V/aLnmAvrsog8fr45xQhBCwSgG3NAtT39ZoNjFfBONGvue4yuN8R34QZz2Vh+esRrJ1R2jLA0EaY22Eo1QvUcuIfUiThnnTAhXYFJTDBm/HQtOl0TxQ8Rgnf6gh+ava2J7SjMZLdsIhwzDIjevip+q2lNMoAs80a9FWRwIi0BssFu9h8d+MKy4uJdtDOVzzqIs3fzFhzyEjCEoXh9BcUS770kNrSt6R0cd1aGNhCfmS1TSj8zQc/pdCDyxlILXwGk/tfMPaOyawb+QlmHNqNns6lsP2KlE6WuyN0zT80CbLHBKXLqbj8iP4jksInL9Rxc0rgYpVGnFM4h5eGrCIuwKvwcgEGfh5xA8GLo3E4R97cItYPucLHIbq+M002kWEJJfMosYbP2CFlSycLt6PP2d9pe8KRphw2A03SvWClP952DnrNMjJ5pB53m5+7WwALb+28hp5HT47KRa8j3dz/ypxjg79DV+99+OEkWokHjGGN20ThMKec7zAcB7S0rfk+s0VHf844vc7eZScpIGWB7XQcXYAjLgpDZsGPuC+03a0v9gKQs39sc2siApaXFh9lxA5TnSh3MO3cLe6A8TXzuMVB+/SQbFj3PnhAbW+quP87w9gxGQtur3ADyb9zKfZk41ggp0HihZ/phFhobTIyIcEF2RDqcZaLnwVRJ7xrVwtN5EXacrBXJll1Grugz39Z2icmwWOHU4A22vrKbL1F0j3L0OPEm+ILBQCifA7NLf3P4jvVwXz1v9w938FnKmwnCRfR1D32pHsuIi4+70SPBp7knfPKwIb33EsU1hJrRvbeSH3YVO3HPUfeAMFEy3wb4cJ7Fw1iP/yutm8rJ7PipuyYH8ap8ZowpQrS0g0I4Uj+tyws0wERioHoqraDt7YJgfFgU5YnnuKpD8m4lrxMs6uI0xfa0HfXHVgtv0erK68Rk1ed7jp7xbazL/p7cWxtGfBKIozrsbNEYepYZ8I1J5Ih909XXhbQoF0ZDrYt8GUU73qKLa5gJfYXMRmnY90ZKkYGNq9w9EHhnBHbRC6uEuhSfpMzKpt5MdzPXDZjmr2vXmfxXVHg7JlDwYFHMQe0VGo3KaPtw4dYtnxz6g6YzJXvfiP6u5GQ89eNZiZGkQrNo6ic+7XoVt4Gz70f0237erIoekzmz3ajRXR3ZQqIQHbKg5Rbu8QnZ9fzduanbnmuhdklImDkMQ6xJzJVKoTDalBIuAKwly2I56CZpoBOXyGRDdPCB73HkyfiuAcxwfUf6iTg78JgPOvWFg8dhRWz1gL3g5H4eP7OfD+siFWP7cBvwVnYGZ3DexXNAYR8+m8s3MfTHL8iIlfZ4F47HK8NSUfD8sZwAXZw/BjsSHeN5eHEfKnISTQhRs94zDY5Qu7vRRk2bNqfM+vlAsak2Dp4yEyeDEBmv/uxfX7kiB6axs9LGvifQN1LGf0nrROPeDGz7d5+vAqpF5NwJqb9Kl8CwmedMNcMaTJB2fjl+SDWNMyAq/9EgXe+Quk0uTg+uo+kPa4QScrXsGJ0sVYExlAq+WWQmVGN/+q7MeZ+WUk52wDfcdXclmdLR+/1AJ26+azl/Nv3phlwsHH9CEi8DQ9VTmEEy7awpDvaeyXWsNOeikwwTQfF5RV4afPiuwVp4KztzUgFZmSbaIs3HD5jq/ac0l52kb8FbcJLqxMwt9uH1FlmxCbZc/imuMDePe4Ghz65UT7F0/FCXWW/ElDi5TWN/Csj80c2jodS5rC4IznTxpzVQPyg7bRihXCKNueSFflD9C406lk8GwBfLxmxHOtC0H/sR5tcxGGs2PW8wW0RIGQw6ywNYZsdVrxyydx3hR0Dnv3EgSdF8FdC3Wgzmk2LG8Nx4Xj1XC+ZDbNUb4DKta3aOGYI3DpzEr63rcYH5SJwIb7VgQr9uE06UfULZUJ2kkzedPAFfI6e4FOPs7lhfebKPvUeKhpMQVX+f302K+RjWJWg+VHFe5UOEe1so74+ddS0v36BwsjCezC/4P+RW5Y/tgK1beG0rG5D+C6znLYqufExtcmYa/RTFh7SgrCb7dS7N5sWv+nBR1MRSF0Zg+nXVtK5VJIJ3q+42erYMzIVQCXuFZ+L1BODX+NuN5jD/xX3YK+Ro5w3+QJj559DDd4tPHAA304J/CHf5xBKHzRAgvrVtLHsUU42/8tv1L+wav79cEl/CP2acrBgqBj6DHtPR169AdGrzQh2ckFePvtCJobfIolC7bSqA/ybBIHMDtbCqM9ZKi7vYd+lXfDZnjJgtv/cFBrI1WPICpM/guuT1SgfVCSJibfA+2PZfRXzBcfNtjzQY8qWBXmQA1KV8Bj2g1I6BOAaw030K53B87YOZ80ndLIbE4D37TphsF5WvjoswP0fJSADvuRICp/hoL0q8nnahd+kw0kFzV1vtRkgQvHqYL57mCWFmnjNZek4N1tZWrXNaLlDn+paqU5bjA7SqMOJaNDyn2IsjSAxelbuPiXKZyxWM2+LrFc/NAEe8vb6PQFpK1Bb3mWsCWJZkfh4ZIp/POdPoSYvYU6E1O8kL2Ypj2/iZJnbDF9GsLlgRVcZhBNc/8bB0l75OCI2xQQHl8DfUmfITPmBf7dKAVLD/+BKdZL6bL/BApIPgufeQIo3t9HnR/CyO7DJIxwkKJxD1NIRWQBfjReSJ/qlmCVniSJVZtDp/pVPCKuhOICJuxUm4XLRq5HsdZieDp7CkdZ5VAzCPHOHlNwlg7jtdesMXh4GKr8foFH9H5+U6MJbZ4n8dr+bt7tH0mTqibAjZBtPLVnGEXeCHKfxzpYbDCPsqpOcfPyg+zj+JxXlc+C7VHWoLNDEAamTsKVm824P84Gn613ou4LZ/FykwcdCTtNblbv6NYNQzA3labGt1IcH9EAhbPUyfTpLrzXFw1p7sK4wLCRNiq70LzvIjAsEAytS4vQLl6eg47eAD2rHZi+bwtkLXyI9mOn46E9i7nwiAnkYDlPH/OO/e5t4JcRV/HOwq+4KlaM/J+OR+2eJFpY4M0tjnIQMO83pkufhOXOkaCzdBs4l/zC1Mex3Fj8FaenDNNUuZ28aC3A35YEfObeQ2KXYvh3WBq++rGSxVs/QdR5Jd655RwWz1PDtMOG0Chzi1MPdlD6ThtSnFTLV99LY2zrBpCOKwLfTSLsEazI4poCMMdpkLdNHeTwmy6Uey0SXn2zhVJtO3xYZgy1n2dSSpcSlJ6zhjGr9/PoG37kVLYVpF3deCvostO3X9SfvRzG5V5H1ZXneF2YPZiU+OFgfjX1TrfG1LZppL7AnMQbHDFHaT9v/n2T28aV0LI39vCP1tNsm2z6Lp+Oz58Y0d1PMRCyfwCb37XQoe3rwdnJjC5MM4ZFQm5QvX805jz/QM8NbnCjSwd2/6rg7XZ/qD3mFwiazUKhB2PhVZgTqC0ZBU6OwPudX0BbzXLwPSTMTnv9+YzTevr2PgGFTOXh4pgE2HxTEX+X/uPbx6x4++enYP57FqYtUuEdC915yYJOaLxsBqtLL8OmRR40rlUSivrf4c/IBNq7RpY+nB+Hu5vHQk5SOG4csgWLzzLQOicC6xf+v+NTwXw+gKTVQRZMnU6P5OeBzmFnFrpnDFnPXvBysxX8w/kd1bsVodPgf/R0fDwU15uz5bwCtBk9gm1FrUDw73ycH1wKHmpV8MvgIM14JctNTtn00/sx2e/qwxMz57NBkQSsTRpGtQg1+pycRT97fellxxb27nxI007dwy/hFij5bTF0FKuBdYcwT6r2xrZTY9Cj7AyHXLoFN50OU8HY+/hbqhlt5FbinogRIDK/Bz2fR5Cw1y+qHLIErcaNaHr0LfXUCcGmpijK87wKqwwQQjdnU6dzFRx4Jklhn2og2taX59vEomHie1A7eRKEXn+mkIlWcCKnAd7O9yelTzlwc84bPhb3ha5Y9UHm9nEwc3UOW84CLHa0hzCnWnKLY7b9fRdSJF7wfz0+kCBYSqH4kDMvDFNSnQ95CWnDcl0z0vIQZP+NVSij94LCb2rzvqMxVPq3Cpe/TYMma1ee6jgBpizWxY8tSvxNbD7ttRfFey43OGXrBXQ26+Wtkw6iSdQSfNIhCV4B3+lStjw6X8hgmZBvJL2rCi9Yx0D0OUn8sCYNjM78hUB7W9AUWcZf5tlzz1gJeB2+C6cU2/FnA3H4OWUDNCWfp7dLZfjhUzMo9Z6JZW4vaKLNOFp6TRPtbrjQnG9XybFgKi7GaFBI9cFJL0fCdNzCfSnKPPPIIGb+9QaD4Bh4pH8HFtcn8J02bdSPecZJWjawICgXbrSrY0DDSNwkKUnfZ1vC1TX38NAXOzrChvjeqh5HhQrAzVv9eHfoOvpqpMHNW7282kUAXdxDYEXJCFqeKkRBa+T5nJ4DNFiV8EF5b1aVd8HRUgXcWf+NwrQ/0vWabpztMxbbvptA9CWAngtXWSLiHRq/EAXv8ZMod7Q0aY89gtuv/cWwX2LQvt4RM3KVwHjaeL775xlruKei8AU5Lnu2GacW24FLuj1/OnGSbALlsOeqAmywSiLbHhkerLRh1+wL+MJDFcLjR8DOVhOqrymB9s3b8PZiObilsACclhbSwWt34NS/EzQqdjMuGHCiihQXet6cArnKbpTyRx4enG5htV5DTC0MJstsR5zvF8zu1dW8c4sDNL0yALV2J1LeIwBRhUdJpEofRA/upoXmmTCoJwOXN8SyF8qj6pYRcHVaFr0/MAI+Pm6Aq9mrsGFWNA962rLk7Xnkt94VjLa85E7D3zxCYTe9/cqg8/Mn7xicyX88t9KabZUsZAtQ01xNrzru0eG6Dp65TYaMJMbAyxMJHBhhRe/UF+KmbzYwvNAC4hYeoyrdeiod5UzfUh1YTUYFLKMu4U67/0hm32oexSowSU2IDMOP0OCQCGe0J/CYf6UYHmMNm8da8fbBq5gSfBHszh8i5Xgr3rTdgX76vEPD4SvQ+UQU58/SgQyDHtzeEkkxppcxb/EZfPu7AfafLUWP4vv053MJJH+0wUc/9KH8tTNVe5lz+U3gw8cekvzMND5eOQqMutdh8st/aB4tDaN8xOHxhSx2VnoCa0KsafaDW9D/zZEOyBTBWstqwC8unBd8FWIWKMHEeRVkZyZMb8y0aMtkH7Ab9kTVl8tI86YQ/TdogA/TDCBwhhGIvs7DLwMedH3kMKOfEBf0XWfRp9V8NdqV+jc30ZDeaXRkfThX4ULDclt5WstS0trViV3zwvDK5gX8W/I4JOxyRcVnXXzyuSlMqr3CpVdE6LvTa7RatZDfrN0HpkXieD4pAMX//gTH2SfgR7AAyCzfxp1pc2H5PBdu3Padpkxr5u9RofT2TCpcm/MPp+UcBr2zQvDe/SpPd4tD2S2ZOFU3A0dsW8mrq66AZ2cUvsixgS8B8RiYpgb6K++xjf8xXvxxFd897I5LVu6Ckv9cOGaUIQU1EOU134Gfb80gfG0zvTsoi+e+6ZNaWRtVO87BfMnNoKNRh2VbfbhPN4S+uInDeOvn6DNyDm/csA7UV97C2S1b+ewPB57gH4LHz3nA/C5HMM2QgW9J3mS3QIfeaJyjAzfX0L6vojDZfzydD9tDwZdl4biJGyUO2UBWzgcssC7lNSeugtuIWTi1cClvkrcngcPiEH7Jh+se7sQTAY7g5hmOnhyH/f1rIdKhka+HHeTXo8N4SXwpeO5NxPH/2iExD+B0dh3ajdqMblcXQWNuE2mZ/qRS0yVU/O8J8PcpvIib+MQEW4jwvw12BsvBwMSCF70vomjZVj4VmottciEU1l6MlYly+CN6PPRfVsKZbu/pk0I8+I71gWl3SknuYDop771Dl2y8YNQtW8gcow/xVT9B/PFv0rDfxK4HjPCvhD1MEFpJkmtWQFyzFyVMHaIXI03gwLV/eDKon1ZaWPGhB7o0vKwDrjyIZVOj77B46T/OLhShiVcswGPKYVp/8SLLzrPH4EXfqfbEdSyj6Rw1+RMp7/aC3rdGnH1UBPDwEVDXtOBX9rH8Z98k8tCJokfnA2mDkT/eW7Sdus16yPKOAAiVb8G7v+fxtIcvUY5ewengLTTFtpStDKaA7ON4Fpb7CEsydeBtrA5Jdu/jb6eFKUdDh9brTgelG26w8RPhAz9rlqx2wVi9MeBbuIA0isQo60QHnPGs5LO/rrKAjwUfVz3PsU8a8fqmTPI9KQ1hH0RgQr8uNLzIgAcJMlQ6tAXKj0vhj5grGGImDluHCpgCFeHwsVm0qFsAbtwfoCfvl6GtRQLKjz/Cwk+U4OybJbDey5jn5I6Fyd6iaD7BEgKVcjBLsR69kh2wXb4QKvMXgKDjYdSQWM3zcCRkyPzkr5OO4lrZT3TAdw8d1FdBmzOVJO9bgNsENeDc3xh6qG4Bm+Jz4JXKXZh8aCPmOlnAwolaaGmfC6e8S7FcXRhmydyFRjaD5JXifENVlhQ7qmBriSW1nZKF328f4HY/dY6+a44Lxg6z8DpBaI+R5PDQm1R61YdUfmqSy8gXWLljN57b6Q/JJ2XRuLMAV7opQpuwF3yqaeLLSVrccn8rVVoeo/GxC1m10ooPdD+FrzVtaBRmBhmKEaz0uQmyn01i+z+X2ei8DZ1oFwVfxyDGadmc/tEXLE4Zgs3GBpC9aUnfcrrRabkuvTTcQSuyLoDP1ndwvPcK1l01Iws1fTj94AcmzLvLyT7zqTt2Ft+X/sHmNQ7UY/GSm3t3woo15jzkbgilN5ai6BV9bvGWwsiFRhDV1Yazwvfisvd6cOzLADv7B3BarQTIKSdwfeUO0Na35wIXFQou6iN79XW48sU6LnphAuoSr6lzwxjwNp1PftGHUNTyMLnmHuaK4+7wvNSXh6tSIV7Wh/37ozhKSA6KBErJ+Ewu1PyK4x05B3CagDuIqNbBpsh9FF6TBKZPhTHzzViY3tVKasU91G8wDd2rpVnthCv6/RLlD4fbsOzkRLZ68IGENE2gZFcH3PQuQl+DT/T2aQV1746gyux0vvQolrwiN2Ld7an0S18Cbs6+RaXih+h2vj7MXNKF/bf28+lxG0HJapCsFmeT3t0HOGMqwutKYVZ1yIHxcINMfbro27lBjvtsgSVuG/GOfT74yAjBUq+xMKRxH5pG1MCFs+s5NaiTeM8uGrl6FjQFWHP9t3Pw6UMVJDbKwIxIRXzTUAqKUetxkbYkOgyMoifyd3DFpFJUOLCW2dwAv34cB3Ghz+Cobhd/cb0He0zLWEjFCC580sd52vchxfs6j7+/G0wyFOBDTQVNFP2MTw1LqDQGqV5jG3+/4M9uew7yqoMhMPLtNSowVIewvm4o27mFVRuGuarHEU+P2wp1F09T12RmkQDC4tX32FlPFS65a2BQNKOuag7+MXmMF7+bglpnEY/OP4Ilm2Po6cwIxm0KkLx3OskefM0eaxN4wqZ/dPf+PjRst8GO1bNw3+btFJ20EvKXKEJZtRh0LcjiE2t+gtylElyTtQRGXUeYJNuJT1LT+FCVA435PQpeTf6G4UU32OPHWEx31sWT6zajyL04OjJgw8Mjv0PWkD0KKQvBjvwofhfziuJ6VSFP8yMEJUmzh38NXvuxACetcceMV7txUEcRrKYPslqXENxKs6Ww6wJ0bVklmxleQb0fDiwn8RQnDt2GnX9UIe3OYbJ1sQZF93n4bkcsT8jvwhNJo3BmoSy1VjfzvK1DPDHHBsw7VTj8zwb6ZjcEGrv+wr1PybDcbDTfnyGB02TjufiaLJhNFoH5cjo0L0QIL/ue5AuTtzJvvwxmWn707fVUTllbQSfzVrHWsDlI37lMfnOVQC9lJRubOUHA2gUoGbQDZzrr0I55I3h5ySZ2+2IHSZIL6ES1Ll/2ywC/Dn8qaLaA3m0vQVlKHjP19Ch72XEY+V0T8vN98FOfPh0R08Xjh4JQjcezeYIg6He0Mw8OcdHjb5jsIgQZEmYYK7aP/ZyiqKl2CFs7ZnLBv210rmUumB15xmuTVoKdogjke/2E0R0hdPKVAUxxiARvwWVwTmYMvPQTof96J/EWxRAKXWAMZZFrISnkElPzRwqMegIG4Rf5mX4SxdxRxwUV76mk5zMueK0LPoZ5cHBXDtQdLQalHDcYEPjGS2d3QaTHEIUFlMOJu+kc80ISug44okDuEG4v7YJppkW85tETMJ70B32uOWGFvShueFuKs3+oQoNsA7wY8KU9VR/5x8Bfthg4yINyjyjpSA4724txyvw16J80AuqfvQQJLWn8oCfHZyanompzNbXu70Ur0b0oIZlAokfHolTmBJD7681y3dX0uuw3hHmc4nvenzjYMx5Vrimy4ftI3pppyuefGsCUwkv0+k0cnv7mTAPre+mcy3qexDt5v18hJwoehJtzt/HzClP4Fi0E46vdOVEgDEuyBTFg3miwv7IH67e+p8R5+fBzxXPc56MFHu//4ExbGVg1dArym0XQUzSKyt/s5XT3FzjFLAL63y4DpbpxkJi7mBcJXUA0VMK1FZPw2XJR+Jp9Bl0nm+JX+R1woqofP+TawUicwnkhrVx7LAZbp5yA6vc3yO7cKYi+d4/nOX2gQxsmUH6VJVSrzeXyyTb8Ovcwq/WFcoSvOSuf7OCy3dF8IGsGq9j/pNzo0XAj7QdPf+yK26rbWEFZB+/LtfBOvIJ5wwmw5YQgn9mRBy+f28GSfV70+4gzm67YSuKLL8P5GQpoJlLK09YnoYTedZTcswUtRurApnu+dLJDDyfjfP56TYN93Utxy9s3qHNoO09ZMcBVHff4T60+DMzppBk5b9H+SDSMybhL6dqycNTBmHQmToRdtrcp6MlW8vZkQH8t+vfoIXvVdVLGGQnYW+vMfrd+0pxrg/R0Sxnrjp7GdRcnQKI54NFxhuincRulHIMx9/wbOrY7lh0X5dLqkgdwrMwEyoVUodsihCWKn1LFhTlU07mBi1acxqBiMXyt7c/fb5aCufxZfJCqAn3BcZTgnox+zsdho+NjPD5tMZhMOQ1LW8MxvOk/PodxqKUvDF1RF/lh/hz0n7wQZPKvkmJ3Csw3HcuFDjrsUi+O0nSFNXcLw5TCADCOdGHhtTUcsjALNEyOotA4Pf6mlQdPLY8A1EfAhRA70FH1AvWxZSQm7oKz3m/ipJkWlLDiA/+uv0RzJ9RR8KIRbDvGFLL+dWNnfCD2a0yD5vSbOEdiMohvmYs9L4NZ51sknLkljHpNmjBaNR4U/CNheJEdTjihg1c7dkBa4gwSEVxGGbfycfBGD9etV4G96ZE4JkSRRv9MY8thf+hvPE6VxdPoWrwwFe5ajOaiaTjL3QqanmzAk/MAtHU38/uobRD9NQeXjXuI3f57uey2LJuElELsSAFQHPOWF4xcQ9Klu6gg7iiJ1Nnyhg+yrPgilHVdxEhB04BuWo+FH4vTSc0mGZR3l4HapGL6+mYTjb4eiOlqtXg8qRYX/1vHQpXWEC72hm6YLSV3hSiKilhOTS8yyOSAGxd1pZHdhc38af12nD1GBTz3J5NBpwD+CpmO09umMIXHoPq5GeD0uI1kkpqYQm5giYgkCB4u5ztPEjCorZFic9txvU0GKN6I5V0e6jyUmIx9XtXw85QG3FdaQtB7Gr6cOUCB5c7UItkNVZ1fIXSyPP1MPwNtld7QIWMLZzKj8ETdKvr7Zyl/V64ACXd1+uuzmtNDZvE7hTw23nmXfm4bB+leajB++AKZzQnnx4LOqFWfDRm60riv3BquRkeCxacYmhpgAIvGncKjb1+Byct71LBjJvg0n+ULCzVh9oQu7v95GNWfzocftfYgkhEHokbLcNzE8xDaPAkC1C+zRVAziJ9gGOXiiD177rBpizIcTrKg2C87oHzdYbrScQUa9Vrw2ZMYkOqYTPP6OkmnVwrlpZXgVu9RLujI5J5qCXysdhwSR00Dh/jrVKHij7WPpXnsgkN46r41zNi9ivdfF6Edm+/CMpVr+LxJELO2NsHRedU0S/QMT/e5i5822PzP/7/ljtHUzT4oklaJMhUfKEsmAYyOqoKIXhHOEkHy7AvB/BPicHDPFfpgeATW2R6k8v5xYK+hyLXC+WQlLs6PH+yBvMDFFK2pCDNOxZL/27dw7E82HhhvgBMMf3OoJ5OCrzmmjtDGzRdV2fWmOLTnHieHL+k8LuEGddzpo5mRuvCt7z4adl/E9PptpG5pyDN+WkHthHoWa3Amz+/lFL/9GwdOlEOZ1mA4KdYHm3Kf4bqkeiaNEWC+dRdNGxiJWxOPwBm3Snx8aCHdKMxCP5cC1pAQoeLKUzA7wwHex5/ic3EjuK3tDklHvKJVxeuhVGmQt/iZgv7oN5Bob8+zntnB8Hk3+jzrEt/+9QSdtOtwjOxiblg5H65b+uBS+EPfEpZSt5QWWC1LBe+vN6HgqwbqbxlLTblK+M/OG8+RI/Z+64AcyT6+fs0WCoSloLMvDRbvOYMZ3wPJ334Ygz0awGZCLyWVz2KwKKC/p4Tg4oA5TI9sp+nl/rDv41Tc7F7JTe37IMd1PN3iJNhwuoCy/USgu24+z9Q/CtvPOfI6qe90IHEROa5xwLm/zHnZjfnolGFP2esdoVbCGm5YFnLdcXWauuoVXL7swt9sDnBEqBhrPvOh98sCuWSUDezu14a5a3LYwPA1T1q5iw/dXQWClzeioYcIWHfeh+b0rSwpPB5aJprhu0Wd0LW0llzW/UXnrbOxf68MSE2VoMTnu9G+FSkmYSzwoQ6alCqD1645YP4EERgTEUFjZtlDc9NUbi/civ/E4+DyalXoak2EW4mKWHzqECfd0+ac1384/pQkGSyPwdB12Xg42I7nCBqA6ZGN9CrYj9I8JvMGsRZ+m5vNoXPbsORuNM7tOYDVq9ZgZawoHIlzpVsLH4FcxH9gG57MvVlFMDPoHv47tIN8RVOwvnk0bzqvAE8Me7Hz9F9UaLbjCNfxmDDkjEOb7qHzsQCannCBoo+fx55eMUivqmTNT2f5kvoNXurvy94SBhyT1w5P4qfxrg236cvIHN5SLAtuu2sx/cQk/lJzFDYWlcL7vU5oMnstrtJajbcLRdBxZRfqfhoFu5Y6QbpJKeCSL+gg/JCt4lvRalso+iv30ONhJRZKuc+DYhMgcZcBKEbk0OolqsiKzXRAJRfGGs+j4im2sPDsNRx8UsAVJjqQmTALpiSc5VXvyzlzej1EjK0m7oghJa//IwA+AEJAoACA/tGiSXRpqjRIGlLaRUiFymiICiVkRAohEcloGEVSKKQymjSVlZE0aFEUKSOkhYx71hS1MY1WpxSShqMRHDiUQ9+eSrNGTAJZ3f7CjwrqudHgLPh9kyIvr7E8/8wk9iuThxd1N+n+yK28ceMlWrrVEG8Za5Do82IwsJDk8ZIiuC8hg9ee14KknwjvHLaidZIltrYcgC2+TXToyQz4q3OS7eU+ofzTY3RxqQlIPIvh1TZvaShrI41OGeKNSxtQ4GgGr7e9ix8b8mDJ9POgvEQZ3E+UQPBeIcaLe/ioozbErrwHeR5WXACGlBShj3oHGVwfT4R4R0H896qfug+mw5zULzDm3hcIKQzDsj+KmL/rFD8dNxc37ZaGZeK1lIOfaMq4WFAZacxCL/Jhq08kqTkmwJhzCqQzwhlCxQG+RCF0p49Ay4AHVOO+DTov1ZJy2lw+XSYGjhV23L2onPOS9GHSMScIjppFyqGJ1JwUQz9XvwK3hxo84FBJm/8WsZVmEOhaqcNW9xYsnfaR3cISqKzsDC4vSSOveAXIzBoHoeIJ+MlJhYRfCoP9jTu0f5Y3JSrdZM1SDwq9fR8eRZ3EnxGL+a5JHkg87IQ3gZIwS/kffWgKxpeaFTTCaQVkaLjD27zLJKiGrCnri7lfTvC/QyowVjiHN/fsxlpXd3q5NQkeZbdA0eYUsMwf4PGrN+Hp25aYtFMWqrpXYOCnQ9im/oE6vpZx5MXLeDpoFft6m1KdsQs3b3uGG0erw1ny4paVnrwgp4yEo8tx6J4c+TbJ47XmKhTpFMYAIQeMCFIE/x1zuC6qlxQWW0JT4X7cv1QVY27UwwQDS9iTG8iPIzbwlXNmcMnkAlXVBPPDktXkllmAZnWn4M/ENgxweA+XtbfTsNY0imgTgYpJX/Gp83UOdEzDUSIPcJxvPH8ctw8T13/jktxY+lc0n1KrTOCbsyDZ+iP+ct3BN2cswVMv2knZJBOPXr9A9ZfmkXvqAWiZZgqJVtuxRVQQ6/v+wavul5CqUAYqUn2w5WMM6m505qYoTZjwxgw2LKmGcade4V7nH7DynjEFr4qFg4PPSXyOM7kmPcBLQW6opCsLP49q09G23WzgqkD+jXPwpfJc1N08gXVaDWCtEXOr5VE0DhQAvdYNmNj1CGRjbDH78FzuuvkfNFtOoOkCRlCYcYP6DwfDYMAo2NHUwl45GVQ5UQGVFyyFaZMuc5qgFHeYyLDPxSw60NsDD15qwuTkSoqVXMb+Xl4003gD+q6wZlfLT7yjcwPONgyGwWPLKETcCI4ml8KDgifkqhiFzQ2HQerNX5jSpgcbv2Xyc6eH/GfrBjzopQl/ZVqhd9I4tN38Ev3CxDBTdx73LF4GslcL2RRFeVABWbh+Mlzf4ovDf5TZ1d6aIwX1oWMyUp/aSnTPW04zzCqwXXY9XC1Vhs6yClxw9xLEhShyhnYlhZvPxz39FmQXZsVTZtxFAxVdCiyfBJH1K+nC2Ub89SOdBk74kJDbD/b1TwX9QwJwY18NbEleRKXhBtA92xVbb1yl2hHKMCQgyN5NaSAqms3VEbEg+fczLpySAG5kCsIhqSC2cxNsvfiMx96IBPdj+Rx82o1Gy86ClFNWNBx8D4avGIDmIRta0OMNaqUf2X3nElimPoYdlafjFYcBfDv9OEx+XQZ61xWgepUBP6k3ZJsnn3jVgXbYfeIhr/qZyCrGuaj2bToIfImnuxHC4HUomVoVhDB10RdyzFaiDOkIFskNA6n6Phhu76cDoo5wZOYUSLM5wT66O/F8ggw7jdgFdcr7WeLGLwpa9BbMXs0j5ctulPBKAZ6PaOMP836hlpsd61hUYv0PHXxc/w1vPxTAxqnd2NZsCJtbp4NAchoKW2WhmFgjfDy5EGe1fQBVhSk4f5c+zp3qR1V1TZTjaAZvChXBy9AOVr68SbvrciilxYX3BsnQ1lQFODlaBFjRi4cvC8CdsU60JE8Xr2i4Ia+9B7GuPfg8u5FtdAtg4qxefBldxsFPtcHCIQ8fTjlGl8xPg5j3XzhUvATL9pqAYCpBrGgYisS6w/JLhsB2P3gSTgOdNyFosz4IPka40bbeJRTwdiJd+xvIbk6W0F+qAZZehzkm9iAkGIZBVYYW9B7aCEHFG9mlbjNYR4mz6VRZPNYyGaYIeoHg8Qvkmu1Oc522g6J2Lg8LD/LFqe0UP8IYb16YREKKytCt1siqnvK0Ya8qhu8zw+1yIhz4LZHbur1QWMyWh4Y/seGMCdAyQh08IhGf39jGqrn7UbQBqD/zOE5erIHLVl2lpU0aMK10CsgJm7FlnDXwRE+covwErH46847FjXDgUCeHfc/lPQYfYO3SUdA55w36LCnh7Zsr8fUsZVZUrOGl+1Mh3jySGwJsuHTvHrpdNgXMQ6/Rw6Z0SraWIJNfe3FWjw+AdyxY3khCr4kjcGSwDVw6aA5rbm7AYS9j7kJ/mLrFj+WbpkFguT2aCuXgnaBX/DS7jGm+Agwn7WB7ZUl4lx8Jj6q2sWR2DR5450ALkqJ4yVo9TI4qBeNQDXB+vwPdkxag2a3HKFiiTaKVd3C7vRTWDz6BLss22OFB9HCaMlDNRBbR1ITVj46T7+g/0K94HhR2HUXM/w4KBZ6Qb7YERC9ogp9CEd3Xtue9sVqc6edB8x7NguGpTbTTfA6sGlPI02dLsv0dI/iQtR4Wn6ni+8+eU1mSM81YFQ32LvpkuOcij71szS4N49nWQxGEJ3rjw7dzUN2pklfNr6ablydTKLbRlwdbsSaDKfyNKvc3a0GelDlEXRPlsTPDqOSINBw9Vw/r/Mvpe20q9R06BJkLEPfajQBl3f0Yfi+P1t//h9cTszhUQYVnXLEjpwdveU1cLMj+58nSh6Rg+KQ5H1+8nRJXJkBt2W16qJQBn+NcccggEnOr2/BkZhxs+DcCpnlM470eW7E/6hXqlWuS24IdPGv5EjS9N4N0hsrg5VI9+jJsBpICOuCYM4VDlg9Q9V53Pva7HxN833MXOUH5j/N8Kf87n16vAQvMKtBV14szF9XA2tPBeF47lh6xD029UMs/r8bS4Qvt5H/MAia6KoB3Yzuq3TSm5WOa4bXIcvo+/ylvNzbngUkDWDOuia8fEIS5wbdoysAtKradRAYn0vlu3RGOrA7AQWFraGyayHKGb3mW1US4eqSDvTQuYEyTAMqeU+TokD7QHn4KwfUtOPeEMt+5LQmuyobgKuWI4okR1FL3A5Y8Qfjd04/+HWHYdLUb7d8U0z7/NZT2whiUA7ZSd+UPvqY5TJuvLAHHynegqbsFTwoYctfeTD41cIv7C9TBYXwkWtp+QhcTP+zd/ZWH7rXwtLxeWDVtkLMnL0exvhlwppLh9m0tmjBSkJ1mbMPJD3dS3F55Cr80g9deU6Q/rSFgpBsIMiYWoAhfMSE4ChZ81aQNKzy4+KcKH+vZRuW1orSvJAd25+iwv8tE2DdnBfxeE8Avrgqy+uEroDTmE431nUg9elWwS/cMNgttpzY/JQiJ/wwZjUnoNmU7jggdpDEWxfAipwCUpnyihzq27CjwgddftYB/OUG4PrcK4x1F4HVSO/xcJUwVLv18dKMieh65SlMb6jjJVBniBzPI+1wBhpmcp3f7XPHXlbXgbxkCSit8qT3wGU6yKIKcE7ogsagD5vtpU9WELyRakg2vBoZ4U91MLrsizd9Gb+R6yUQSUTAANf3VtFplJt58EUUzR4zHMZQCNTFFsOKVBGYdSeaKJ5qoONUQhhNWoepMF2q/doeXN4vj9R/u0GJTRsconip0KrnPZjzla+tATMQ+/lP6D6QKw8n/RyMsTDfiJ089seqTAASVPQMF1dfcYqcGI5ZcxDtDTvhixQGWLttPNnkqFD25lb4tVKBVNnIcvbgHz9ZLwONrKjhqxSIs0C7DK1OCqdA+gitXL2KFujvgWLuEIrXTQGyZBaiTA8w44YwhOXc4pQrBbbM4bJtwBPNDx+OBx+8oUXI+3XGcBBJ9LZjdI0DqqZ/Y679MfqaQi48kP7DinGQ+vtee72fYUtrwfyAgHoqnZheg38xr5OCnB5JlgnD/wwjocNGEKzGepLf3JYz/owZZx8aix90S+Bm0H5rfGXLXhUUQbdsNrQHWfOrtCrDpIjRzQQgsO099T8+B19UqrlsUg2WhkXRwWiCvUtXkHcUr6WDHOjiSZQyaAV4ocjcT38xPRf/L+qQyRwCM9Lpw68B0VqlvxKhfNqDZIAtd0R74zLcWV79/TJv1Y8j62hG+IdlIwfKz6HetJgUfUkHDyZIw3egSw4wNrKmZQ/C5HwU+PqXyb5V4wfsArAqX5deuf9kkieC/485ccuU6r9xlBNcPBtKu32qwOlSNDheO5bDuaRi6/gGGRBpBL1iQETrSHLlubAu6RTlfnTnz7H5StougcdX2pPjoDtyyFoTvabG87ZkGbY1pxLD2YV79cBP2D08lD9/z4Le0GfZ8vM1tTQSNrQLwNN0bli/YyF8/loPRwkz4Fe/BN++6wNdiVR7fEI8/70vCKPGP/K00g/cvLgLvQVkQthtgwcFv5Lb4IxUV7MazpffhY+EYcPn0kz4X7kUF6yd85elpWLfRAjSpjR64nMet775C1lQfrPgrDgkH3Dkorhs8BB/RbN8G7rqoAQKTbLkcJejpB084czmW68ZPgky9T3SnZx1EvdCB8aUjWVVlmGcd9wdfm8lsJHAUJMcFUGAkwEqnTRCpOYrdI87yfrViSF5Th2tf/SWDa1vwyZM9GHc+iF5PM4K+nk1sJK6NN3yegXpDD5X88kDrQAdOu+lCt7LbwdijEtO26kBHdxbP+niPSicm0ev06UiiWnREcQEZBsZihP9+FExthc8lFnDc0wFlH63GlOZg9tXQgwVPF9He94N8XqUXA1VkEdPTOU9AB3pk9CHqsCmbrIxkZ3UzMtciTj5YzHPmaHNkrA2+LM1CYQlzWPxjH5hOE8KbAQjiMTq8/q4WnRFX4FE2yYAP9uHKeZt5rYgpvNbZj/Fy+/j5X0u6sVCWx5kdxoZcQRxrI44pR/tgYOUP/h6qDWvCJtBCT0mwdWsCo+0joMLqIYxrPI0nHwSwrB9TdMRMmr1BH47CNVx0tp2Gx3TRqF0ryMnxOKnrzwLnKBn4O7oN5+9T47dLR4JaiTuf7BfHhRtmQ4jqRrrg8py8hV/iuoUH6E3KOapUkUKhkOmgGHQL22ZlYsLNRrI6tI/Ncv9x89ZEspP5B/3SHqxdlAWnNP6DwPBaHqW0BLOf+LD3QDnZv/7Ns5ddx3VnjpFEzwcckNPgqrdj4HfqZ6hvl8E929eyk1AVxyXJsvGTbqxaOJpu6O/gX59HQNocBJeWTaB2tYaiqy9yca8Klbid4d+/DvL4Ikm2ix+i1qN3SPq3FrxfrYvt/dJ49NoAnVt1nH1/p1MLhWOltSYfsnOAbscheLxXHNzO1bGnnBK39hvi0KEq+ttpQ6E+w6DeuozWxSSDxfTJaOIoBmGHsjF8pR6fXLoHf0y4x3FyFrwycj5MMXaCvbf1YX5ALkXEm8CJYAWyONeF8hNysfTMFjiy3BCKNrSC98J78LJ9H+UNL+KQvdOgt2wvqohWkURhE2rPNsDxtqf4oYcZblbTpeuLZuJjm+c8cs44SLG2J9fpR8j+dxzIvd4Cs5U66NF4ddzW+xQfKj/nesXl4CiiBH2zNfh+y04Q/P0fHl0TgII2+tQY2I9/B3eSgQLQn8kBOHBHD9RhDbblhoBw5F3IXNJF70q1MXB8NCg4FfOwSBx1bboJP98owccp3/HrwFNy+BvOb/ebceNMNdQOquGHxv6w3e8EdxQfJtuNopBj9ZKbZlth21l56vy+mUZ47YNHu7vBecYGkhxwoObIxby3YBKcNb6BO34no1qTHqXYenKmpy1aff5IF64You1aL7i2cztM3DUdHAJe81v5EnZ7nIZ6Ygq8dKQqZxx9DG+karnA/hePbDrD02TGg3zBW+zRmocNCUW4SfYinThfSkKhHrD84Cl0OSSMb9dt5VESsrArfRs5mdvDyz/vUKAlm/7d+ENKZWupqSKMxSs+wVeTMv7yeyzM3rCNvxdJY99Ucbz48QVuWveGzjo20Fi9BFg/QQAKNd+iVO8EaCpbjD6noul7cBynHZkG/d0X8OdlQ1B3+cJb/4mzqZo+rw9UB58WDejvSuOgtgfYfvAGu7m9gvgcddg9eSnfzdgHHlLbKFLVEpa+GoVpW4Jhxrnv2K69GOao/qDqBUIc3uMIA8ZX0a/uFo/bKwrLC1TZ+d5BND+5GVy07Whw2l9asbqa1WST4NakDBy4rw9yRmNBrKeK3vgHoXrJFfSItcGpig/g5+KfFPujm+s+r4TUhQsxabYhfK/3gKTdGrhA6i5rjU+nQmiggIX/2PNgIwwEdcO8o+kwt1EQJN7+4W1P5+IM4U68fWgHFRvdpm1SgqA72YLl1knjd5Vf7JM3FcTE3WFJdTX2yaiAzawp/Ee/CfemrsMrjmq4ouI6tfuq0a374+HJ8ykYuL2EPc7dJ81vn7lt0SM68+Q5nCoV4RjbXBZu0eOVycqw4kQxdIa7g+voHbzz70Zw3ZLNY0tK+OyiKygllkPzLtyDLTGGIOciRjbCzSA/diYeUH7GJRZ5/FIin+crCdHE0/NhoHA3nyzRgG0lO2mR6WL+kDIJvl4g/meVTmVBkrzsgBS6+M6louQN5MgAIrXneDAuH54ciQa//Wd4qYQ0HQzcyErb+mB3DEK8fjCrelnBefNlIFylgZEHz/B5XYQc+7Wko7MeIj2+EJXE4eXaNkgQmwCGib8x/shIutYnjtajnKlqnCG4745nswfXQN5+Py5wkmNM1oL/YqNp/etJ6L3/CXwW+0crpd/CdR1/nHBlDHRHpuGhcwuoWW0ErGtxZX9TUap+Jcz37m+Au7CIxfzcQPNfI1evPAArzqTADSslqH1zmD5arqCVVQyv/Y0wq/kezHQdzYXFP+E/hVvQOLaVAmSVIGQgko7UzuXnv3LxY+ZRNig/TMfc5sHN3Aq8f/QdfXh5GeK1p4Lys4u4otiFpr1TJYmcxyDx8we/vj4Z8n//Q/2uapojPRtXh6nAyR/Laa13KM5++J7VJuqBwsk4dLpQjbpds8CoYoij+6pRa58F7DqXQ9qXPqO5pSu5z2ign1eu4vINB9HVbCa5KffDnTlVPN5CG2q2R5P30Sm0x+UWzYpTYOvVRzn78z3YbWaEYuXtNO2fJVvayIBktyc7pFuzx4vlIKVUxcvKJfHuh+XQEzYdpQ/KQMR1X94TaAmdb6/ysjExbPCkB1Zus0afe9ugsYqRqt/R9MQj+G7CIs7mEfDxxTZq6aph0Wn/gRk6gNyX83BimhU/toqiiUuiMU6vGKJ3SUHfrM9QX9uF8TGP+ZjhW36fb8gvLW2h/Otx1k6tISuLnVi/3AhSGjqo7wDD+MplaD9cRSWrp+LoEm10NMoAGatWyjPfAkkZyrAmqpOGxOrBKg3hy6ffmGsgwlbFoSQSYsXjijqgesJBGFxiCO691+lfTRgf8LsITXHV3PVsFP0RnQmVi8eBsdh2GFOaRGsEtcFwwjSKPngOTeSuQcmoQm68tAf/WjrS8Zef6VLUVH59OYtbbczBzqSJvKL2cNcpYai1VIIBUzXaHToCJSr/o+jsgyAoI4RXRMZBXNAZ9ppixrfNNXiCnTZonRSmGvcCbI9rx0H1WTT0oAyzq0RB2DEcpB958Fd9C1IYrCDTTXVoY+BIj85NxuREBxLxnkTrMlShY3EZBYZY0dMF3vAvrZUcHphAdoALJK96ALm//0Nr8XuQM3McVPc4w9wucxI4cYovGivT+wlydEtSCn4ejYDF+0v5QkoFvHgzGhYHhIH24FqIlI3kGI/HtM1sAo54fgMXx/qz4arF2DZZBUMlBCD1igAXPXJDk4ku7ND8CgOc+3DqHuBGlZn0db4Ma916Ref2SsO9EZNBfYo+VfxthY3/TrD55Rew3/MZBv01hFerB+jrlgpwCJ8CFsfeo2D0Fpz531okoVcU7xuKDbZR1JIFtPXOLrDevYodx4jDjrdCJKXdhhPktoCNvgvJHpnH9VENNNuqGyxEgQ58j+SMuTqQWXUfflslY1/mMe7mAFpYrYUrSyZCQ3UGuJoZgdS2RnwqPA5WdfnQhsQavn50OdRbLqN4rUG+0lPLsSUufH1UMU73+sBNy6TAxn8kSx/bD6+dD2PX83a6Od6de3pW0bZJBA+z1KF/6U/M7pCC/QHfYdGbMbxOMY9OPh7J6TXDeFN1Ee7fOpONwm7iwlWzUf+iMgioG8Py1Z8pPj2VhGvvgk/7RUjqiYetuxnOwSHu6HZklTQhKJ5fAqE7hfFY7nX8XLgOpgsVwxuzaDj28jPM+LecE0yVoFNHBTw3j+QZwwvIVOUJhG7SYuuWz/BoWTvs7MnEeaVMuhZDoJw9AQyeS1Ec5mH7t5Pw9PNM2uAoyCuDz9DDKYMUttQAru2wwtSM8WCTtxqczjwjOcMQ2PvkGy/97zyX3f+HNffc6eGLDSznmcnZxROg+3s4Jue0obWdPJZenQ0m0eMwSOUgjfpPGZtim2j+1HWYnDkCVtpocNbxf7i84wGZLpbne0MCrFGxjc/VtHNzrBQXPfyAuVMEYGfvAJsLT4WIda50PkiZq00Xo8AFI5TJrqWDty1JhabRqiEA35OMWnaVfN9bDNV7L3PVJC2IePgEF64ZR/cKtvPXc/FcnjEZFus/Ba+KY/RvZjkVJ57FmkQlHFjtTw1JRpxn9JoaNTvYTAfheGEva6uoUFNXFY2x9IPb+V95QV0yTmxPRP19pZRqbAqHbERB4E4LDbRa8b0tj/m84hdedLOfWlQSYe2dQ6C6+Ag+bnkP4Snj4K2zCNUWTse7ja5gc/k4/hPbztcDrtCc3QuxcpkXqvWdRNdBE1j2MgnmLU0ie6MBMJw9mv6I7oJX6yei3aEldPBoB9dlF9E+UwXIkD4NI9pe4fWrwhT14hOIh1yiHT7p0L7/MAY6/UCRiMkg2SUBLhNCSOJcGp8KnkLwwpyNEgswduFsspA8DSaLloLnsbuw9bEEDPpdwgc1Z9C+bwfcaVjLmm6daB61h3/s2cs5e/Zx+qAVGpZNhFd7zrC10lFszRDB2KNSmKn2kRdXW2Ln4xGsseUllr7NQnhuDmG9yFfsLlFT0Vf+9Owta5WrwUOlPVBwpxNf5u+gGEsNfOMlC8Yuj3ncPXmq2f6UFzpngcwSdeBpP9FP7Qur1gZwlIwknqySByy4y49/LCCx+UbQ27kDxrisxp7Fl3FPzll8kG6J77TTeI6NDOyKvgcqev4ksUgN72Z/xM7EzyTz+wwpPdrOMTWjeUdeOq20RXjiow5bEwtpzrVRXDQ2hTfFhQEcVKPH5sdISKqcAyNlId9zDPhL/SLdti+YGlXDr48vJ3e71fQsugmO71LllJJ3ECyaTTGHzGB1gz3fL31JCT9zeGbaM86Pt8eD1dE4eVI51r7zxk05Eyh59VRwfPYHg0eoMzq54JrdfVBxdiLHz6kl55RhatTbAcsOzoeweC24/DyDHBqng8+nRBp6r4GjB0aTV81hmB3Sw3EL37Beui/XflABQ5GV3G/ZDa/DhGBdzHnoXRkBM8an0roPhZgvoYTO+kDdx0Vgs+oO6H06ius9h+AEmeGxFRa4a8YcSpW8Cb2b1rBlsQEt/DkFguzO4YzweNhw7iSm+K5n7RIJCo8Tos//nmGe7TlQs3amqS9Hwzvz5VAjaAtDRedp1I8r5HLsKhq32EF1zztcp9IMoTN+QeDrqaD6awVufraGpl1tJMveRjjl8h1BtJ9eilvT6pc2uI8H0H+dJRQpzwPfidehSCKfz52djSMU9LE+NY/W/pOECt5O2gG/8YK9Fqi7PKdTy6Pxr0ASTwtO5uWj7CBjwlhMnekCa5wVKNB6BkbkTwCl5LP421yHhW5rUHFODnZ9b+AzGbZ8Ip1ozsLpmB3VTUOhOhCRF4rNawt5daMaDFa95U+lq3jZ/aucPtsIHsgZoYXKSii6pAETJr6HsJhrHDu7glpKOuF2qTeIJp2AvtOCELIgFy8tKSLdRZPhhVgTxKfd4uXxOeBxwIDlJh6h1gZpen4zDYtz3rN2WyYl2DL0VBfSrtLfeG/tMZzIGZyd6IBzrJM443wS+61UoMerc/hKuQysUlGGKwONoBbhDILbvDFp5g9e0jSP879WYpJqNEx3mYdbvk+F3N+BFHh9K1+KuEuL89N45PYd+NZAnqPm3IZC7Rvk7V+Li8YLQgLFgHPrZXZVfkQVdrX4rWAEvj25FvqHgHJjZ/KJmM8YO0oEPrwPxRULS8jh61wM7k+AFaPlYJ/KOn7TMA6yRGpRa/k+PtGvC9V9+ylGcQnU3zeEf2166OEuR+VnV0FQpigu9A0HHlJE1UxtqPvkB5pC1+DsVAuoFYrhF3QUdpVPB7+OdWDXrYXVn1NQ2dMUToy8CXG2dhh2sADmnsjkzguzuXR/F/toCkGeeQIt0onDuvMGcENVm0K9xvHnfX0w7dEf8rCJBNc3C3iP5Rj+ErGK3NUUsDRaDWL1lpLPmnK4ldMFiU98wOX7Chyp2cgz9j5lbREFfBzjT/3h40BpTzZ2+LzAmtpobMm7R27mJvx2FqCsxkr6+62GXjY70Pjx8tBodRgT8vQg98IF9phjzfcVUsBPu5l/xn6g2LY7PNa7FkYZS0FLaDNejHXhW911pL+pHo4kfITB+gzYMU2S1sdn85rwB6wQpwl/vo/iLSkzyLtwL6efbkCXghD83n0RbBojKMxmMySNkcGpjXpg0v+MXGuWQu6P2+g12RCvzbfBUa5hUC/pDCPPjYKXqzrpwpAwLGiX5wiHPHa/6kdTlhTyxa4U8g+tw96HN+mp6Sy2qx0NSg1TYHr7DuwT3wQexwL41Zou9nG8R+3F1vBg7n7oM9lIffN7sK57FCy8LI8uprchWLQexpzrozu5u+h382yMThwinRu3wSVShZd2aENjuyh5LVbHd/QdG8Ons5d7B+90cOTUX9NRT6wIH80+jc2vjUFdzgU5RolbQlRoWFaD8zwS8eFlA6g+ashOQQfQfsVvLigfCyobIzhi9DrI2qzKfiNUWevAYZ6vUQZp49/TUUFtmNf6CgO36cCUIBu4GtrAt1M2wJsSJbw4Rpc/pKnzsMsirHWwY7nOE7jiriSUXf3MfdHz8IFbM9t+ugHLxyvx3jNK2H3Dk/4bNQRHvqvBywFLOJLDLPZAld0W1/G7m8ko8+wSFJtp4dUuTxBTX8xZY2NxyXFlsBs0pim6ISw+OgAqPmWi9P086Nd5AX9SImGXVAVdrK+Dj3rSYMCOsOE/FVq68wT57LPGsZu+k8R7HTB/7s9lk25SomADXbwpDtl5MjCjRINHrrmJ0wUaQP5hPh9+10lCz7JRtbeXa27tR+nPanCzTIN8K8eTd1EwZod28GJPLf5VsxKM60woft1CmK90FpccGQGp7bfAo9qPFyRsgqwj5Xj02RroUEjnO212VFcUB/4B13mX7XQYVNDh5SMd8ZGhDRtZqqDC1DeQab4XV9W95g+7NeFl2WfeniEE/xRuk0WzGrm7TUawF2Hj859o9fQRPOu1FXxRKMV9sydRo+tY2HmrG+4slaQSNeSfu2RhQ2k8CngqQ8qGR+QZUARbzh1H9Ymq0HoqlqcdKscsO104e5/ArTef18+bQTXzLTlh0yV+KJuJHbsUwVgtioPOBPEJz4XwVFyfhvYnQ2JJKuiTDu274EM2IUdB8QLB6DFbMfrJVjD+lo4x45JprGc1Pe5eAl9TbPDfdnccv3YHGGnJwxhPCZ6/pI/n2Ctw2RoV/rUgD0dn1KHEudl0bWEFay+Nw/JYTdi9LhePvHWnD3cjoFNMgHzQi6+ZjOTYtBCOmRUMt+ft5h9rjeDn/r2Uvk0WBtgKzOX9wMkhi/zlQ3HLvoVgUxpARViMd1+ZwrQ15mQqthwNI0/imrRtVNRnQkLdW+BKfiFka5lgjeg37D2oC/UHG1CvVpCy3r/n/SPnY3XgGGq+GkNK4eOx5z8nnGklTca/dMGj/BcadNnBz2gtdB+VjvDhDjTau+CtF4impgUwtmIlvhdTANEHYWxocJwTbKaS2/ONuK0niPaIDJDkWmdKnDsK/1at5jerdGCZvxTOO1PHhRJinNwgQ/37VCF9pQHKx6hDlG8dKsY8gUPjNcHKShHjO8wpMq4YrROaIEXBAo6ukmOzfUU8sNebNkuG4NON8iDu7sRmuyK58tIqCq/2x8g2STpzfA5Jz/yACls/4ZPAm3h4myZcX1uO7vWRXLoknOuHu+mYYCgnfZiLnjsdOOu/n1Th8x/v/KMHmjpbuLdyFKwbjKWepOkorNJAHrPjwN/7Md3bMRJWOJvC5OkIWkOboX7dCpisMh9l1+XQ48F62tjvSPcfVOF84Sy41t6NBZv/A5P4MTx6ZR4LHKkllRQvHGfcy6PCmZSSu6ku7QmtFNtCTj2qkHJUES/aiGC5vwV6vnVHsXfydP/BLJAIK8U0/TKsH4rjSS8ngtuvtxi1xA1Ph4iTwOAhvhJQD7LXhEBVzYlLS2fRvSwNqDpIYHn8KC+Wl8NVtV9h/5lZ8KBMiwyFf0GSRST8mjUEvcEZNDRdHib91ICdiYtppHAh1C8+iUJy6/G8RCuJvvSEvt1/0Cr1NFo0GULjOHNYEnQMVxe7cu4NGVxeXEwlqSJY7XkB7WO7YKR3FWjl68HRY8KY/eYC6IY8wlpPMbLfo4H75tbwUP4+dFp4CPeU/wT/deOgXmgC7h/HsL1ABCxGz2OL9hiWLfCk0iNylLrfnScUyNDKZXqQY0a0szEd40/XwouYKNrSNAZ7LLLh9wtvHi8YhCrny8n1rSy0u7+iwSO/eZVzJ90buIsbNkdg9PpEPCIqjid/h3PVwhOQsU4dZlyqo6Grmzj70B6+dXgZKtwe4nd9vhhv/JdsYS4f77bGuBApmDX1Ol2T3YROjsP0Iu8nG6m1Y6DvIvyv8yIfLXTjN0dCwSFYBOq7p5J1Zy5Pub8Mz1qUg5bfKqp06qJmz3c483g4VOruo16zsRAt6MNGJ3dxTbIUvvl+Fxq2fwdT4zLc0C7EF7ru8IfiFailrwtnJCfT4xN5GCZSjh6/0yhacQs0RDSQ0YFUkK+9Rtm3v9LG40bgEfYfmv5ppQPV13kq7CYF1Tpsv5GL2+4GgKXFPvCKCQPfAoLRvkWwWXIP5n4QptTRl3hTTAXrqV1CxYIeHCy5jw9XbIQ3PaMhddogV+ss43k+rpR77j0su9cOYckHGX+8AstkR3D6XMibN1jCYrko0OtaRjtbPUnc+xqMsu+B+a7vuHfFCDruHEl7IlzxbJQmaMrmk8HIf/wYn/P+Ln9YPuM12KX7o0awP22K+QPCOR5kWjwW3PZtwaiit+xkPwZEZapR+lsVrkn4wU/ym1jv0GOs3BiEbR8F4bziEfgbfh23tHWQ7OlEvNN5hi/PeoupBdd4+6FnICyTT5cqJSH+1go8WX2SNwko4VCLA/rGe+HtQhf0ffYF4s7vxpzds/m/N/Kg7+QCt3arUWKHEkycHwyrz7rjt5FP2cFQginUizeOyOfS+NEgFDoSDNN/gM/jEawYK8QOt2fw8b+DfPf0GlhA+rhX/x9ULQKoPNQNr7JTMOjgKxbNcyTlPe/Y1TSNV9tXQhO9JlabzQ82CoHXl0SYdM0ATjlNJ60JY/iRBLC9yj54lbCe5oo+hJmqUZR0QhFqvi2E4aSnlBfqBzZe0ayXe4M3Ht7EjffSuD2rjJs1XUHs+XSoXbAZFHrtaE+2HZ6VPMR3x3qgT7wLiH/8zkVzKinxVwVMrpaC1sw8/gEttBYes+qKpei1Wwvir91gkStvYVnFDd76UhWqjM0gu92HE89PQOffd/Gb/jnIKPjJwu4jqSJvMdSsmEMvzn5Gtxw96DO8wtvPPEGZfT+gc95YODFnDDTkjiLL/57BmW2ZKHDyNHjMkIBw6dUs8niY1gvkwm/fRxgedIBrf3/GLTcVAW3XgljbG+hyVoCMB1/QyUqHhmo/wc2/nTRd4DWst27DPab38Mqoash+LYwjspWh6xvCx5BrPOhjysvWvkKPXdlw1iQThe7+4Vf/neAXlrK8cDxD+lIluJihyaVrNtPXb//YqP49CS1bzj9nnIP1h38Q5bThrkWT4K+0NlX4C+Lst/oYvUQGnj8Uxt5KJfz6NAZyjEfBmjB52jZCAGTCI9B1uxMKFIXStu8M2Y8UYKzKRZaq3gxjfsxnk+JEbEsThNxTgbTnRjNb2E1BP+kEPq5fTqH7srHX+zqZjF3JOUlmLKWpD96f/8GOvmqarGOHmk5f+bXrJJq+PxzVu4/jto5QPiyvQEOOCvBJVQZ2WOfg1xMnKcP7Ee1eKgVuKSNQZGkQF2cd5NmqlTQOLcF2whpqfmHFC+btoA07iSsjXWmmcCip52/ioa4LdOOUPN9dKguyz+V52l8TChe8y/OWvOebG2RYwD2GU2+3sneAD2x4+RTHTlUBa60EqOkowINrv2BH4lk4qTsMkxQuk/1tcTzXOx3vnRtJ0pul4MN7SQwJ+ofr95mz7kZdrrG+jIdmvuXbWVOxcNUZEnTz5eSrKuA/Yz2liPthnVUyzbnjTPs0a3Ga0hV8s/kZPHm4Eg8Jf+GOkdKwJiQG+qe28AnrQtZ2zOIx1jfZVmYO971U4mUhezE4zBCvKJnB02eqoBXlBaIOH1hCuRLGH8mhtMpUNnJ7RB1N99B7cgjYe8rCQFsGLjNNhuZvO8H/VAj8ergApr61gubw+2y87B0fM9jDj511YU6HIIttekKtfhMpWMaSlc9cxWWx5Tyn4R2O2+uPEc5D/PSDIpxo2ED9q2LYq7maY3PnkfGF7QxSK6jWNonVR5qCe+4tyo6eAM1hM0FBIBjThybQq4lh5DV/Au0xVmW5J9GUo9xMz/O7SNXWAAaL1/LStE62ybDG1qb7XNQ5l/8Tq2J7736YsaUOXQJUsOC9DvyZqQCRBT/h3QE1WBbTis4dWvw1vw27v7/Dtb7NsNr6B9z+ORpWLWrisfbHKfvlAnSOG0EtBnb4qHQnOO43R9ubH9hsihh+nCQIjtFGONr7GE5wtsaskGxa2xPCAt4JJKr5lycu88W/0Ub4onAMdN5Jp2mHPOjXBgVKywFuNp/DDXnODGnKpFsvxoYj1EFuigK4fSiFBAzkt/0PyKciDr1PbEJh5TvoedOBV9y3ZqFV4nypxxDmH/GCHJWRYB/Sh2Fa1+jh/cPkkToJgyIf0orBXZywYDKtPScE3qJuLPLHAp5m1fDT78a04ZY3HvLPQAXTj3xRTg/VE9Opv9oS7kdeBKO0TqIJwiCQ8Q2+yVXSl5jPJJS9mHSyVGmBhSK0XJOGtUt/86mqhbhAai05Dxzm/RMQE3Z2grRIBA2OF+HWAjPwSFQDhwpmE1zHlVeE8U6uB6/JSoILYrdh/tl62nW7Dg/8XAZ+u9Thumkt+cSNxF1KvzlX6BSnWBiRUWAQerlPhJeZk/nsRIb4eZOgINibRGQ/0eCik/QsYABu6dzhae6z4fzxz8hnEthxvzWvezwVFo5F3Orrw9LFhZS8ZhgK3l3ilPIiuOUfzkHLgmh1QTVGvReD006uaLo3ggf1NeD1WT9WOqLIE/vEWSSrlUJ+f6cDrwSA3M2gZJM5vV6wlarbPsCFQ1IYaZSCu49qQ77aJ7j4VIvVboTy5GFT+CgQAy8js+CiXCAMRYbhYLMWr5vqwGkX1PjVpFSUj7hMLzSVIVHsBOjmEzmKTKWaTxFs/kwaRUKkUXO5G5qsqmLBu7vp0A1RmLdDCX0GF1JtVike9ZMkZ+vR/Ev5Mjgt6CC98504tc0f1lSqgojodThAFfQiuQvtN73iMQJjaKyTNa1MLMRd5S10mv/gdDdx2DV3DdKRufBjYCOW6eTA9iIV2PXkLtJ5O158xBx8z7fgsVs6cCMjB/4YSOBg9EH+IDrIRzSz8FfzUjCoAygdF0JH7m5GgZNjoKNCCPxsd+OfAmtwmLGMitOU2G/TLBg0kAC3mN/glK3EtQe0IHT0XnRr9sfCDztI9+pHbL5RxNJS+2jht1ic7f0QxUouw6Tf/0H4NgEa+3E8if4NppIoT8jqlcBukyQqkLOjtb3fuTlSm8vUVGCycy0WPDgNw7Of0A5jXfo6vAITP+2mhrBpVNSzga5NWwuGP/Ths/I8GNaOA+HydfTeNgTrOtqBz+XyAT1NHEj6C/oTejnKRh2C3maSt/hcFD9mSibKsnRK+gZ/VnuFHRNWcFTTQojwfA2J15VAccoReLAihbcOKWGpG9Hg2TKQdr1F0blmKJhnzTp+BVA2KAgLdRIp9Kwdz7oVgKPOP4Ej9fewUSCDL/5ywjTNXxj+5gqksChEiZhjXr0knGzRxtZFG3B6iyIscSwD0bhs/HouhBMzzsP9E+OgERfx4Ir99OTDLey4uJuPvtXnTZlhlHp0Bt49vxdNDE/hfUtJKIHDuOLnJZbQS4HErAmwbuY3Cgt144/Djzj2tgrcn6FBr3ZLwrz5AvzLcxZMHrUdzE0Xwa3rcZz8yxYUigU5+nwNjUwZA21RpvAvNJNJVJu2mA7A4eylHLNmESx4HsJTVM5SdLE6Hs2+wQdPK0P1LRd2fP8X07Ir8cL+Weidsgv0F8lRT64Ku0x/jnLfx6FykS706klS5GU7FngxDY4f7MX+FntyFfhHe0ffQ6fQ2/AktZI6TolDd7sLxYa9h5AUU6iqS0c/zXbub9TGjRpuYHXsLN2o6oORRgKQsDwM2xTfkrxuILybkgoTN71n/cKPOLzzBX0cf5LMUo0hTkwGvqjthJFSljgp7gmc/1SAY3+lQbCtE+vPVaKarrlcpnuLH7dOgefpYRScLI2id0zAC1P5i6QpKay5BZmjA1DIYBvqdW/nPdeEYZPGDhzXOw0Gg97ip/CFGNOyBMdUj+PJ811wnGomxNtdxgULpsDX+vcMGxz4ZrU3Jz/wpQtZrSAWvgV+v2yhu3PM4b1UG5n2GcK8X34wIaOSHa+cxvPhohC4UQtr11fQ7T5rMD0pSL3uT0k83RhSy4QowiWIzy94h825++CH0Udw2hJJPXZbcNvDZgr5UUGW+pow304U5hoTfc1dDac05TDFthOP23di7d0HeGvXEG9b20ie4iPhe8E6EDmhxF+TV9DF6ls8eFQflS904B05pqmC0eij0wISByfAc7FLOLT6F41KssLA2w4YLyWGe8p2oYPWO/7yIBpuiM1kt4j/wO7pT5zdrwfvEpRIMEAXk/aUwRe9LIhK3kVhKjL0beEjzM+zAKvRzXit8g18aLzMqrsDYPvviZg25ys/jvbCspIrmLE5hp8LiYN1YjE8yNxLybUbKH1MEr1v2wzrjOaCzbfv9GGHDFeMm0MCMjKgdt6ITSIO4I7yFywe7w3tl3/ha4vJ8KJ2OloFTAF5L1cU3zQJsg/MIgkVefa1XkPzNGeyaKk+vxOvx7yHa9jW8y8sWB7IRW+l4N1oV67sleFu7xRac9CP7BVPYvoDFbgwYh5dNdmNHgExlDZGFsqf9PHcxh9sfcwT92+xxQy71VSoIkKrVVpB1eIi5G6YRkNHpCC3l3H+DVN+XPMJD9zugZvieWQomUgqlxawTP0gj4w7DJm5clA8twLHbu6iOPEp6IGXYbgpgZfNSUUepcc+End5zbVeHCwWhp7fhdRy6idd1lIBoRYC1YrVfNrOH6AZyU7pJcmY7uLfjeNhqOoOyh/LgU/+gTRbXZ0X2S3lK4K7MaVpLaZUaHHgiCv447ghjJlgCd8nJdKvRAFamXwRbEe9g9DndeAbbwxme7xZIlsKK+NUwaQ/gc75HoEXpU50TWgnjH0tB6elZFE03YVudDwF6ydK0GlhCkLV3rStKQpmNK5hjRYNLE7vIR3FvbTbQgVWfrSFta+aUSJGEt50vOMr07Q59v03fhNXjIkvRvMdkb3oMfs2pzZfoP6ePFh9djKMX7OVTo38iPMtzoKXcwZHRxeijnU0BX5Uxcef1pG08il4v10BSuV0UWPGcx5Ot4HstAK6MPQBVptq4ZbPX2Dc9DoSXxYEdscF4UXCNn7gPgVV1R+Tz5Za0CptxSFrQYg20OeW6T04UD2XK0ZqwtT9Z6HbWgTjW7QoxnMsn8sTJzWdWSxQtZiryz/T6OxIqhhiyPUzYY24Fs77Y8HGGxwodrwMVZ1wQ49gK7YOmI//lnxnCWFLGOoTRtG5CzAmQgXOdp7A2ZdD+SHPAoGlaXzv0Tyq8M8G9SvKsEznOtVVadGxg/tB2DcJvudPJVc3FTDTN6FCmb24aU4/zFSWhPsnr9Go17NxklsV3dkWQM/3XyKRS1/4HtZAt/IrKHv/l/Oc5WDF6FoqqfQFWfUdMHLLczITW4O5Yk/wREsVDUz9S+nr/+OwTE2Y+ns8vHcz4Czj+Wg1EMsSAm7MUvlw/Pgw+12/R5UWV6lvsyYMP3+BfWJy6OfeDlnTtoB0wxVSkghgmYMv8GJCH1nk6/LLGdPBZNcqHlxrCrpjpMn4bDUWOcyjmF0xdLzpBFnU6bNAUD7eum0Fvj+Uga/6cOmfcZgZJM4J8nPIpsgEbgg8wR+q8mDfr8Si3hawPvs7Pn2SRm6RH1l+fgONfDYDBM5uRPfbO7Asfx2LF2iz+TkxaIm7h2eW3cTiu3Vs8VISG+dvRfFPq2Bk/FMYyrGjGYoPqCXLADZPz+K5vafBarELHe8/w07h6+Do6QwWOF3CnUpHuTXtGBvE68HHHRM5IHQs3VxYydbbbnPJ5jwuf2pOaeW1/O7mX45WeAxiLeIwPXYybs/zwYbt8+henzYbrA7mQwrb8cqNDF7+NAUuFArSq/dj4JOlPw4lmMFlU2k23NsBn4ws2XyKCqj7XsesnKmUGLMFE3u1YcSsp1A16TIoPfqDNxMWYaaoKwl2HaTfle78zf4s1K1PQBFRgI81feQZsZ0/nxen4VZlvOfvCwLd1bisWw/u/J1JBxw+YdkmQVDt2IcXd9ej6u5IfjalDt+veEOjO7XIdsCKRfpfw4EZWhDWYgb9H/05tuw6Jyuf5rHBvSxvEY6S81aSi7gM7NGTJc2fJRB5TA7OvJwI8i4v+fjBTr4+qhxeaNbBl+vvWUtiE6R/toLdk4tYOnMsCFyqgEa9YgwbjIWKhQ3s4xMM7W1fcavwLXIK3EBaVzvptZoirFJP4KA7pSixcTELvbmKX3vO49FnwOtvr+BpivU4gPUoMB5g54k9fONuFUvMGYuzJP7Dc5qLaH2yDW3c3YlLj5+hm6F25OpnDiPFokktpgdXJZfTDNEsrEgww3JpXeiUH4frr1/HUe7nuXyNDPhYh8J1n3Cc9HUOrSl/R7OfPqeFu9SgasEQ0YcmvCC/GVZfAdjS343Wdo9Iu/MSKH/bhq3+CfTd1JRbJSXp9vw2etW5nfX3ToDw2Os4+okYH04Mw10GbjC8zxdfrFxJ+7/ZcculZxx2agaEPZ8Go3df5zn5QTzKQpKCH7+jF8VT6cG1nXjQYSL/fufMhZXRaCVtAKqFafinoZJM/V3QhoLxddF93pItRe++m/C65RdBsr+MXmuMAX+JNHTsi4BB+Z38dpIQqwkJYU7XLJ7n1IBpicvg6wai7abjQXhwiHwdv8Hi4WEw2DqVJjvH0sl0C5Lo+o3Ok65jlogdxwkawQypNMjvHU9doQG0MuU73luQw4YObYyFV6HTp4FdEw/zJBdTCMyPAvN/r9n0mgHaSWWjSXsDer4Qh68GcmQmvZGu1wFJNo6HyX3rwSEvjrTH+fA3uM9CAVI0sz8Ni2MDOLRyJeTbVvOiiZKw/pIeey42p8Nn/mflPhRCUNQAAP/jtBeVpoZ2SEtRikQJpUhmERERspKsUqRtlLJaQpKRUWlpiCSjiCIqaaqohMz7EvdFvkkw1PKZRffewbiKW6hivwQbl3iDyic7vBCrAJZPQvmxRw0Nd+1klc03YYnxZPBUV6Lw+TYgfSAfRiyLJcVtcvC0PQN+nH2M8dYL4G1fBGvaLIAtrv/4evIJjmo7BzMin5KQ6TjQu/YVNlxwQFWFbvBqqmTTGnWurptLJytsyX9XE4lbL+bOYn3IsQxjxa1Hoc/2CC289wU/xYrwxX3F2HjUl8wlDtG3dw/4oo8QBKoNY9Q2b3r/d5jniNaTxmtFVlK/QM5Zc+FsswX8Kl3Jn46Lg6TRBh5IicKNzVKkE7uBs9abkZhPA0+sqOVZYeexQi6FBmSmwIFf2nyLOqDWZSMHuE3GUc2d4C3tSU8XvYMnqx7QmhVt1J+lBN3zbWl4jR7pnP9MeufeoWnhFPJ6dZ2nLZ0H25ath+arR9CpxhDIaTXezkzEMYO5PPjxOi3OOsHTbvvxO0UN+Dc2D54Z3qJTF00hMEQWWgy/0B4HGc5MywBdM3GysfsNS7wWk4PdO9AqWQnR5cIw4bQJP/5jwSuD0nmKfDbOPegPy+daoVucLrYYrYQRbgQdrxAOvM5k44eqsO9nLvtY7+WCeZvg7No3aPl7DlQFtFLMg6mcWS4DGX3tsH3Wb/B9ehw2ikwkocyrUCV2BQRbo2G9xzv65L+VMs6PBxx3kvILP/DXg+Wkec6Wd2Wl0z/ZLEo3z6e3pc2cZL+DBLVNoFp/DRQ57cNRz5PpavQS6lM/Qw8WtLLfuwM4Sn6IbtEyeqAlB/eXikPl46monLESTUQLYNIuhumdh3jxjFlcXPCWz21WwfJgALMtzVRXv44WnjVk0QNWNNB1Aw++7+YG0YP4n9dp8rkhDBorxsPr4gEet+Esn7WSgvTeBJb3WYFjUIf2zr5DZ79202KNh2yTagkVUpakN9+cttjU8Kc/cjx8oIc6Vu7jm7oqrLallRrXiUNu8Ei4UC0EZxKrQe3pPvx3s50PWRWBlWoGtBgvQIhZCidESmnNHBlorQ+C2Qdfw+6bpfBVSpS85rqCT8l9ejJ+Go/buoNSpB7A7IvW4Dv/Fy37bzXi8DNSevCOdqvLoWSsJ5vG74Buj1A6aJhP0xZawkKqwmtZ21krtge8lZ7yJAcV/O33AdSfLORRAVkwaocoJS0YCY4ejDPjUuhvgDye26jE8dU9eEQ2Fq7XtkA2V/DnOWsopHUK5Dz3xfDu5bhD9hAGXX/NMlOEqNBRlKoKzFjbYz9INkdB/CmAwst+3BrkDkrd+rj2kww9vm1Jmyc2w5yJ/WjtqAA73jrzdolJcNVAm11vLqWMPFsoWMIghU9Zqmw3yGroUnvjc3LMD8Z0YQTlshd0uHc7p9gZc7C+FtUk23FqRzylXVCD+gfvqWVwMi24NQHy7reyiLc6jhwI4lNuFzB68xT++bGHpa7kkVv5Jsra4IhVAiowQec6276L510tZvzlbhke6n8DrprpkIZWcEXPln/9qoKaWmM4P+oVLkdxzGhaxkkON6Di4zXYoVvAoyuEQPGXOIptuciNcybDEbNvoJkyEgIfNIC8cTKv/wGg0bUPc4rk6cTu32B83wbkxoyBXv9Smh4pQZOPOaJmXBK/32aNGp7mRC5nyVY9GE+zKI5epwc3f2fiBocKsNKswO07YihHpJU+Ka4D4cifmPvoDixqvQrqeqogpBrF2oEO5NHwmwTif1Nv5H0+GjmDXhQdZOW3B9AkmslTxgw6AtfQDYPVFP3lNP9d0k9bY1Yye8uCwsEDCOLWJHh8GUw8Jg/12gd47UARNH3+D7auX0Mdl+ph9oqdKJi6CtNmzqQzOYXwylgBYn4tpClqT8mkugauTrcAizev4ONGE/SPEoEpPt9htfJeuHbSBNLSj1N6mwGJr9VHO7dV/OyGKR4yO8lqO0oh40MNLyiZCnWXlODw1kVgXYeYuWQhyfa5cH7nD1jc8JPE7oykdqEbtFstA8uejIG48zGYX/mFQg+lQqyHIb+QucATRMpooq87qM51hoNThzjAZQos2HCOEt4Kc0JaHpzUF4fj7XI4ZrwSG0nqcfqgOpo0ZKOZmDnc/dEMriIvaKdZKHWK7sNLsSP40vfr7P66Bppa5Vmrt4ky803ghO0W7m0RgrQkGeyPq6OArhEkVlWGg1GF6KBVDROTl/GK+IkguuMgxXWugrf9FxB3t8L6ua0cdruWNn85SLNLkuGj2wzuadEH4/hDbNC3nb7JPCPVkmq0nidFLV62LJtoxJpTh/idQRpl7tUCJyUvfj7GneZZiNOub43gX5bIC/740YJGbfjs9ZcrN00HqRMq8CnPGhpCzPGLqwrsv9vMnreX097m77Svx4bEH0ryZ1NlPLBLAFxqpDHszmfQbr9H285FkWHbAtrr8Iv6Lzfwomsu5HpzGWb9VIeY9tM4v9SRV25th811c2j/0+cw9XE7exZpQPjd2yyDT0j7kTQci25H4WpH3NHtSY1np3HN4FqOv1DLlp8CyMLiDv/bp0WCvRMg+XgtHR3w4LstsRy1ex0+KVJAv3JDcj3yC4oUNDBitB8+DZaHz/3h/HQC8CvTZIwTKCONaD2oMLhMzz+ex2chcWCwbBZ1KZpClpIBrbt3FUtrVbD5zWasvl0LPqq7MP/+LOhRGaZFzhZYtlQbrJtXcpTEEgz+bow3RNzh99JMKOw+wodGfmKxIkXoXfGJLhzTB6vV5dDGuZA0tB9PpWtARkY8N3joknrcXYq77Ew90vdoZddUEDnozYbfvPDfyA347NQy0H+8EHLfjMHfdxaxd80onhz5m91mWIF15F/uGe0Et+JmwNe4mdTmr4X3Nw+DVehalo26zvnu0tj5eDJU/fRnP+dMDjMawRf1UrC67jnpRF3CW7cW0hurJjiap4xvv+rCqodbaOUuB4pOPMthL3PwjOJYMAyygOWVvRQ+rQOuvQvjrxIGIC/VRgcDiMozfehkUTjslpjO8xUSybI2CBaGFWOljhgV7BIHjdK74LreCDYpV/D9GzJ8PykMBIynklehBhYKaKDyj2uwyE8D+ur+0f0mW77iIcGzflqx/lhR/PxFhhWLFEElt4Crc16hIyGINu4hEdM2OFB+le/8aUf/BGFwPybLXbXHULNxiI7t9oLp1dMg4HM3JNxYyEt2CuHS9Dl09kIjdvsYs4JuCtjny/L551642tsQLMvWY9bTKD48vp1G7HABY4XDECz0hEY7tcBI0xy6YC0Hlm6WkHRbheb7mODU4SF8ZJ8DyYa3gUMlaNuSTCovUaPdK4e5b6YaNFVZk3DiFPqctgJCSy3p6gJn2pZnBNMXHcdxNA0Ofg3lbV1CsPtEE29cbQydddnc5qyPMiFlOHvZKLjVX8jr7HeSdrIIbhwvC/tvv6b2KRtZOv0eX+5RoxiPYlgdVMn912p5tPNiGJkUjvrxBrBuyX/0vXAH/+n/AF0/7XDi7XBW8fuIEfZPyPfdfLp3vwajPhmDtfJ9UldZxOVz08juuCNYpFiz2f2duOfREw4wWsIrWwpIW3MqPDwvTv0+lyEy/zb8aAnmM7fXkHSjOIyabsMHTxjyb4lzcCLKGAT7qvjjEjUMGKxhk1ZG3ahO8Gn/gt3jZFFGxI/W/r7Hzx2nQfq5JnCWkSWpG5+5qeENrlxaBeYKozFMRRzsG+PhXs401ByW/b/7f5+DNtL3rEvwbFAL2oaW0uPHW3Gr4WfQEF/IDpoF4N0qSeuOGYBd/lY6bPCbjP7dxGjNO3jt1n32DVuKm/uvYlhuMA8KbuIxyQhqd6ayzbtCdpUeAx3Db1AgPIfXCOwDo+/meEJzAA42fAFLfwtoSFtNJ9duwXMJC7l8nTI2irRBYcE02ndBjq9J/wDVw7kY6CcDXUcS0THJii1uZ4D0o+uYL23NS1OWEr3wpF2RZ6jcchdZfhSC3VNG8i/tA7xl7QRaePIXz580BjLbAkHXehQssgylN6P2UvQWDVizYhTz8XMYuH0kRKVNxWLvKzgpbzOYfL9Bo74bUeG+7xy+bSwkmCjTqGfVPNgiyuO2CNN0jzDA28D2GvvQ3tUVfgUs4uoJ1jBeYzU+eVvMhzzH85lZ7TiT39O1l7XwIp/47p2D/K/XCS26/gM7VIex55fCY2FH0Mp9jxXDLylOZwkHG2bB43kpLLdkHibvNAFb33vo9z2LplrshNX2vmS9+zu9uHsLgxfa8101eSh9ZcWHxSZC9cJCbjkfhaalmbTJcTOFXSik2ccmgoSuCc/2DIeYqkF4d1AHCuyngLXfCZ60cAFpfYpFy15p3LJ4JHmUCMHOHVfISvMezfJWAIcMddhu84odPtdDQdw22pYxGvd+Kka5sEFaOOc4/xkU5oCtAHu1+mhnRD+9FOyDWX9GUswsNXw1vB1WCaRy4KOVfFgwCBunKoHHYST7yGZuefOIR8uMhyXRpxnLBWGnrRk/aVhC71ZPpNszTWHKOyXa8f0HtX2v50ejrDHudCSGhtvxjScWoKUyj8Ny0+lTuCW864iiTbMi+M7WYpxssYylbwZQvVgCaH6yIvfdK2Hsx3b8XW4MC9Xe0I9vG3DisAe5RAnzgnHKZCfrRNmibrzqWggOWN/kP06jobC3HG9JmNH10AKcpuzGwV8+sX7QI5Z//AYSXiCZ/VdPH4blYfF3NayfUEyd7TpktPU5djmeoZyreRgphdi9YIgPbDTDuPlyoMROmHbzDEbcbOV/f3uxUPkkFuNWxGimETbnoKlNnJxCJaBslC97/a5h1ap+eKrpCms6rKHWZQfJJG7HjH91mFq4ADJHjYGJ0+U5Tfwe96ut4+JROiD1yJGTO6bDpJ7Z/HXPLQh9aU/+myfDHc9VXK93EvwFCym5/BhMq6iGG7MIEr5bQuqMKvg+yoLOZAmAZGMqvPqcAPbBn7mzLJsszVvALD4atczWcP2EYiavZVQXgjB1tzK1pu+CVyHzaW55BPVteIEnrkzlgeoJ4HdqO5gl7kW7ChkIT8xnvwNG7HwlEPTrxuO/NyVkqmfGd8+9wYGOj3ROyJsnaxtBnsEtdkqbiCcHj7FKgy6+Vn2EqZZiWDkjlbY47ie3+/H08jiA5/c1lNntinHxSrA5eCasv7Iafp6U59EHP1Dv1jL4tzyWf+kqQOcMH6x9FUK9Hsvg2bAiq21R4SOlXpA6R5M/YguJ6VVCSpoZqBvL8GmRMRyXFk+yLda0R3I5p03uQfnhbDC2UaY7X/9h9wdzCJj1HFUnHIBD1nXwzu4vh+S/w90XF3OMSSq8XXCelXUvk1HCSDhQvxPdZxzFtX2r4UGnAJ6+s5L+eTSQ7lRF2G30G8r869l2QBXW/XeG9RcXoGXgDErdIEKlMX40WaSeH+1eB9468jxN9SArFgnAK3xHF3+ok+c1SXS9fhRdxZaD2AF77Bu7n9x/CtJL7bv8q14URhx+yMM50ZS8pZ5OLLwDcj32YBaXgpKdouB2MBF8omPBz3gkXKwVIxONl9CxNYpWzAyk9YZF6H1oLylcnseLv6+l0IhB2iAvDLf6lTj1+1H2bnSH12l72PqQIbc7h+OY4n6ceyYVbo/IAgE3HeDdH7GnXRvDq8J53qTV6Jr2gWsyzUHH8yAPFt3Do+e/U0uDMdhYFkO1mAQrL4mAKpcNqPYmib8qakNTcCx2XZWh6vG5OLpIH1zG99P4iz1k/7qarivU8xyfKBpqX84Kf+fh6UkhHEnLMCBYFb7oZLCAUQKRpDaYeHZRw8PtJPlTFxIWOOKBrFhUSzCAgX8a0JywCQQcJtGeyVUccNUKxtkep7KNs3C6uhMk76jENepZuKaMYXlBNR63FIFp+63wVX8ipXfUoNvxJew+sQ5bl4vwx+hqnmKgA6cWzYDKl+GgE9iOU2wEIShgHlQuC0Dxrz4Y/10ZF9roYbOCFcxZ1cQWBfth580VMPpROj5Nfg14+Donb9ACT61SMHyeiHe/6kO04xl0kzTkL4sOwxb7NhT64kq5nYZQ2heMqo8FoHTuSwjJUIDYlANgY8EcIlLFHlmCEO9ewo9d9nK6ggB73dgL9COUhXInwbd7tShbVgzLP+/h60KDuMi0ETqrLtPlghjeItEGtuJf6arySFj+7i2025WgoLcLJm08D9sLpakgPpsWhZnCVeGZFBhTyZ3zpoJXtg9/nzwZRsYEw8g0E/5gbIFvVXxx+hEVDszNZmP9XrzwfiSs31POWRKIxQHN9ETwNY7aO59/dqrAleO9GN64gvdeyEax/eZwf7w0yMw4RVd3LIa1WqoUpxxKXqa6GKX6EY/9OY/10YbYED8K/kwy5w5lT0rXcOfG1Ddw3mwBhNRehKjt9RiX70cL1zH73BYAGfWnFD27FyXu3uafbTUoWyBCEo9r4YPDNPQzLSKB4hmsOU4ctnorsMglazbI7sS3cUmsxZdw/j1t9FW9x9c88yGsuYrqRo6GTdkmMO2cOc+QCcKcQT/I0NoHH7bF4OcXrrRC6gHf++8Y/908Adq/N5LJmGIoiNgHS4oDafVWQh3N1dDRbEbn1PYyltRgVJMqzPysA35PnWBrRhSVK8hQmtsd0h2Q58GRG3HGoYOseG8PNvSLQNOsPP44fBIifu4BPSU1jOoRYleBQ/C+xBRPy8/E9pOS1Dk4Aio9uklZ6CA73g+BK9034ZKpAfsleLN+6Rfuva6B+3v1IHGcKfzJkQb9yCNUpJdHJUX9INCbBc+iX+Ktzz8IhgkD152Fo8us4M2CFPh1biOvt63iwONrUHChHJ0on4yXdm6gFeuSwFVWHh2PioLRgkqIFGqihrRBEIhu5KUJsZz9bRfPHpcCOpM38Ho7dVCSHQn9j1axYXo+nzWXBfVJx7F4vR6krMtE8cMaJDRuO4udPslXDhvAJoF3OIle8hMQg6o7/fBL8wLc8JOms79345znl0HsahWp/xwLNb/c8c+KzTQr8wP1Va3mC8puaHblGzZN2k7JOoM0FsaxmQDBZMglicIJdCJYF15ub6OQTQ6wvi6S9a4p07HyXZCn8BieKSrDEt/tcFVhH+vM16c7Ht1kZ3aOjxwRgp4n29Fb6gFFBYwm06W6sOpaAC/+IUiKqkkYtbiXaopD6cXBYPpZvoTu2P6BUeWfMFdYGmbEn8Zuxyx4pzlAP7Sm8IV9k7B/+Sx8WaQMi5wfoHH8OvDeagHvL/eSRNUgRLR5k3WnHV5c8A+9mOhk8yn+XFFMv1t+c/IDI1A3y4UhyRCaumY6Go3yBfvIJB51WBzmZlaC1vEXzEULcPfbUdBkNJ+mXSJ8uO4VnX4Rj6F9Zeg0fISFx4jznb6nKJKqT+5OlqC0vxu/SDlBzLp2FD1URM2Rj2Dq6Klg4dZCIyu8EUqE6HjCOPg4dAGzi5PAzsWLVZ/9pi9Vj+jnYCXZQByPtDtBwbvyOPD+NFC27cRLfsfwquYd+NQazPcsHkLw+mKy8Pbn7dmHIfvqSvZ0JUjfLUFm5E6lOcr0+WwTW28ch/NafKEwbgm9+mHLCbuUWeqUIIjeXcyqW+/ykYvvaLfgCrzaaAjHPwXAaJIA3/j1mFF9jH+6WoLaiiqenuDLOgHb0XJJNskPDNLPwfvU3yDDOlM0qTTRhp2dZeBKrSNN2j+W9j3YB/dMvlJWqDO+mB7Bibn7uM7wNMq/ek0r/iCse26PMakRpJGXgffybbA4XAVGT5iD2+ZZ4piBhTDzSzymFo0DcyknOnW8Fp6u3sJf477gyuEdEC76jWWaK2BsYw80ilvS5ToxeHi1g++uE4WAo4ZwONmAtmgv4q9qO6kkcDa5FM7hZ20LeXHQeBDQlqKbUa4883oRxupEYvfqiyD0wY7K8u1xyREBUqhVxHOWUpCeI4yVfwTIzDaK9ngqYbX7d7CrTEG+Pg11xG7QkEkxbfpgAlN1VsCRa4tg32gXEptwhWxidFkz6gTpNT3h4BsaBJaj0M5CFpbWpVLNdAnsUVeGxEWF7FHuzJk/1VjrlCyobroF0Wds6Eq+LPgPikFaWD+FpMvwynG30STMhGuUm6B/xFE8ZnOJBoe+UEGOIShtjcaM4ce0r+QaZX75QV05N3it0FjuaHZGEwclPPZqHTy9OQVUVQLore4SlNkmgXc31FLfbXX4IHKRNwTsYYFgXw6J0+XxEpOh4uBO6DE0JU2tG3QmT4VcBQexkrbjKN1eqKxPw6dvztLJDwBL5vWgTXE5yY9zgIfy3lj97SC+XZrAP2NlcffnQ1Bv/AgOnxkNw/dTwStDFJdr6lHT2Bfwd54zFFWE4ZsQMTA2rsIijVjeJ6AKowoD+Gp0IFxRVMUmt0Q2uO2Or43k0PjZCfx+uYgsnnRi0FYjGJFYy29nXIOPTr5QI9JIT2Oz2PfdM3owcw4dGylDH6YuB93wMZBv4sZfT80i98uqtDZYjIqOXeDozf8o6M8qalI4gc5Bb2HTGRGI/SqFfX/T+G5YFEjP0oTEmyWoozcW6qScgc+U4u99yI+MzEHYZR85PGph6Q3tvMCkAWImi8Lkt0dwm85dOr19Fq9eehPKNo+B2AlH6VBgDD3rWszzq3fTmFd32HdyGNc4v6OmxMc0e101ZfgrQe2r0byreT8llOaz+IrF4DKhDfM/OtP9Y195utdUEq9wok5DS0iT3M/Xf2Zx6A9TPlaXQkEa7dill0uKbrH0yPcwHbvLcHiWBZxJS4Tau9tQ8tcU3jo/BxJSrGj5Bgd4ILGMg5Sa+fDrs7Dy+xhYrGlLflM66NWW6Rwl6oP/aR/Fm9t9oeHuLjK4Lc514r9opZw4HNAYoFtS3jR9TRAveBBK79cL4917OYwxlrgvfSeOXTobPGQnQEeeFVXXSYKlaTQJd5eAttgMthEygOdrZ4CR3FyY5jQfz61WgQmdOyDRbwu8bflHoQ82Y5tlMuP9aM5ZbYqCF4Bez5mID22MYWC8MbV9U6LkkXepLHY9NJwNpRWrD2N3pgY/XRsC4SkncE2TJNyeXcMiFx3g9lknFt+iTu2xPuz90olfPq/l9FsjYXyEP0d/V4A9zork89AbvNbX8z3tVnr6zoTSRefy+EtGfDQxhC6eFebsDjlYdqKecxMjOCh1NSSkyKPcUAtOdm6ggYWiEFWxmR+Uy0LuUjFIjRXn+bpRbKT9Evqk42mcjTQteJXN+mLDlHjoI0/Y0s1bJ8lCMy/HJPNjqHBGDTZH76DkEFOOrNPnPLs2iri/BE74NPMNUx24VV0K04MKaOX1AXL3zoJDWZOo/sFOXHg9FiRHv6arqSsghkdAwr8x3JJdSvP0g8n6ugN2Dr2FLuG5XNszAl3dlNj13SrMEhsLUwK8uWaRGseeno68fiNuvrCUrqyrIC3JPbAvVhMXRS3hK1vMoc/BkaqlVCn8RiF6xMdho9QVnPPWCVdEHsdrrn9gkdofiLwrCDIh51AlfzTYTR3NKq+/0dGOYc5Z+AYV3y/h8iOrQfrGUf4zFeDGDASruEtkKZWLLQ9mkIFxMT9WZPjxYif26vtgcdF5XjZNGrL/3aLGSdbgcbuA/I6VgYxVDqu3OfKXkYoQaerH5lZPeEHLKDCMbEellkJ4otpO1vbnMDjbAJJOuaOQcx2Y1bnw6ZL9XHRTAlT9LbB6hiqIxlWD9A1NDvvbjYa/+uBEXCduPE+o9mQOCX+ShalHoqhSewdm3V3Fu9LWkNpAMjx+9xRnvfcGoxYRcNz9iEt7BOFTRivKG53mAb+tPDZqPzsliWLOjLf8oP0xzsl2JdGoXnD4Iw2Ojq2oeXyQkmZWgkxNFEtmLsILhtMp4K87KZQ688XBpXjSSAY+vtxEUW8PUql2COZcLwLn5DyUKfagU98m0WexIvS/IogGbiNgdK8HT7+wBivt39GRWev48rzp9CfBBl7N3AyuGqupYoYLT/8kDE55p7BdTRYkHf35WNlbfj3xGP4aeQp+3p/HmWn7SP9bDN4WMoKn7vb43DWH/x2xRMvqdG7unYMXxBzYW/U6zl9JsHp3KTg/EYXRQYfBp/QCG/+aA12HtvGReF3W6AjHyUOHuFT2N0z0+AJev+UgeZsjhzdYc+VCAtNHsfyhwAGXui3g+a9toVfvHEtul+ZjC8fCxr+voX0Gs82RcxT6Qoj6J51gGYk2GHy4jQ3CY+hN1CQuvAcQp7KDrzSlsvt0KVRa60Kbmuyh/HQCFShv4+ZWfXAQGgM966bC5X3xkCqqhp8EXfHoeBvu+jYfmwZ9sD1yE3vssyHr3GWcvFAVrm/4C9VRj3BWRgaYja/g+6/vQ1xaB/2YuA6jBE7gCYlBuHxQDio/+uCPA1Op1qqPmp9r8Y9l5RRgUkIqvpsoaHcKp8yKwL5pYhBQAWAa6gQOWg/geRFyMZyjA9NtuWH1BjotQHwi2BbMfQ3B2+UmJt51J+E3u3HcpslYq7MdjfS2EhQaUJjbdojZcJhjzKxgU2UFyN+biE0x0TBSNZJuul2jSaU30bZsD+5XLsMPYo94x5PRMM3aD4qDfAFuX+TtrqlUNHkNrRwWwudFVfRIPBxzfTTBN1sZghUVURmy8H7Rdr5rMsSbHl3m3gXj0Wb3Ajz6wJxWTZxH7yymQNs2W74z5I7Su3/CN/da8lhzlUM2LKfA16EUlFSMbhvb4M2QEXwQ0YCzZQ9g6EssfLG/Bwm7PFh5+zK215bhcXm2UDeujh3LCSIUZsHi+5/JVPs1eBUm8OUZSiS9cANPW3oXYgutaNSDDH7yTAYEzL+AQ1YiDStr4b/AIJI5W4O5X9R5IPEWRf47zBiyB56aS8P5UxkwfVUzfk4e5JQqc7hsEgMphW2c0jILAl/uoZWbj3LvCEvY6HmaKmL+4d3Mn3zuyUdcU1pCzTI1mPbWkFXi7XD+CVUwcdYB87PdUHEslzsyFvPuCIJai50w+/sSGtzhhKMd7GFl936KrNSEtP2e8MTBApIO+mBJ7w44d18Bq1rcKelbBlafPkLVvf68IkIf8obO0ui0JBxMXci8bCx3R0dj6p4/3LVpPc65msaGXz7x5Xcm4P1ZAxJuJuGigES8kTKGdtZVc6j4Kc7/q4bfcy9hiD6QVos2uAndwzOztpFy7gZcukaV/2i7QbvubdZyWYhmbwsYDS/SBDFZCO3s4S+n+0hr0hQ8U+IHUrsv0j49J750ZjI83K1Kl40lcdhEGzx66yE42xteui3njR8bWcO8BMRKLFjsXx5t/7SZTJ8dB6VpllD5sQ0zEsLpd8ER2v9wJszRaGHD9o2c7itBrleXkGL0HWgT1IJc6V7WC1rOw+QG4XMiSP7wSGqSvAFb0taB6ypNWuBwm2a80IBln7aB98ku2PuM8E6sJM7/z49uuhqg9qIrNHtBJM+6OEA/leXA6FAU/fLLw9r2erAuFqJvBvNR+cwysHmwi/M8AHtSnvDZj0bw0D4U35eXg437ViyI/Ea/e13A+4EfzLRQgR2WAzBjsS1tGaEJx09N4sd23di5IoSm7FxF1kInOEe7hA6RPOYm5VHqiUHKuK4Ec+Ii0a71NCdJWuKF5kuQmbCV/i1YyYsk5eiBkS+Nmf2QlA7pwm+jMVDedIVybAtRZUIv+9dMoPS5PTgPJsLrxGb4vEACNd2EYYzoRZrWZQ5QZY4CkRq0VMSb36vqwtv8NoqQ3g9GWbpY34YgE5eJSXdN4fLkyXykqBlbkpLJ8dZGVq6+iccGHlJ38mEu7ZoKY1MjoTToPqjrVeG9cX8x4rEOGPw3glXM7djOJQD0xzXCmovWcHf3OxTpXEkGR5zJS92AZizbwJnLJal65TDeEFPkkJVi2O1tDZckpLEtwIvD508kk0tN8LxnA7+Z8QcHeuxo5Q8rGD1rPNvFToR2msnfSp3I5vpcivfRo5b8YhqRmAP3rnqSuoU3Zj64SAmbAG5ZJ0F+31p2SJqHrdHOPCS3Eje+s2Nf7yb6uT0CSi9Es0jiSIgbaGB6cwLM5zXDgE8AvpG8h0VjX8LFpUa47tJ3up6/np9VMAgdUkSNyftoRt9HtJzmhfv2uWKbfBNVXZgBW+dtw5ZgKzLql4NXv0IgQiUP9lAMOYSX8CEfS1p2+jp3KN2gnz9ectd0f6w5Lwf5T4X5gGMCaOd8o9+VkZSnWctOMovIdXEl1X9W5A8zJpLTLASN/BzqLTXCf8HHuKR+EV/ddRN3jNPAszPSeFFlCtl7rMNZpZNg+8GR+HCfOQWnD0JkawZlnomDNeG76Ja8HgiIioBxxU78FGgMtcd/s3qTMZqNWQVTxYR449m3kBS8h1f09XFg1jsY87oPDTsVYI26Jku9XUrZYIcTXZ5Q1JEjPNoqg8+ftcWLcAfUbk6m3dpTYOXbJXBfWpuf2weRVVkhBb2RoxWDb2BEnQr5jtHD/KS75FGNUKwtA88Xh+Pc7+4wOSmL7kgkol0e4m+xdWx38yd8SY3HB4MioKDlC6kFOdAuUg9Festh7+NNVPpoLNpnzuevg0lUqP0fz12nAJ8stDhk02cQNH5FMMGW19bF4LpOKdafuYLD/80jl2RhCj8gCS7TXvHGna9xtt1MnNdKJND6i2b7nufjNUfxWvA4cPlqzZazTOFUsyKsaV0PXeGb4fDGdFS6voKlP2lgyBV1vtwdD+kvRElmqyBc8XLgrscy/OfhT5zzUxNzf22mncv2oGjST/J5u5xL3CtRN0Ychg9L09smafg05gR5Pf7Kax3s+dq2JvRQGY/3r3RQyphFfFxJG+57ttPC6TYoP/Yza9lLcv9RPdDb2wgpU/s4rPcOrV/shLc6ZMCjvxKNIxJJdGM45BdbwKIqUe7q2sSD0YQWPQG45NplvPZMC7oFttKGir20rN8bv14F3nNbjp+b9QAcKuCov1qUteIqHF+jBcERLzjwXCz1HAqDKtk/ZP4vg9Ua9/J30Wxec2oZHw96AfqkACeX9vLzNFN8P2WIDjp541/j9TB7cwrwo1+kdfkEnfrbxVePCcI190oInDkF+8rseHbRJYoLc8E/PxVgjnAfT3bfyv3nVcFSSgn2qm+iG3WlPPfcMAUtXwRzskXRTfE1u/x7xcdmKfG7P5chJ8ASTDb4o+huQQi0uQrPjBfhGe+1pFJ9m5oPTse9OyV43/cUGlCVheklH9Cl044dDwF09ivjAZFzLH3mFf69lYot2q8xLPIp3MgbAVvH3kJbzyGSObGPxaZfZhHvK3xTcTeothvy6BuaJD0hBsUKrEFdZQ9reDjyjUtbwSA1HU22K/Dn3uW0R9QCxeUTWVBkKYcPyoD8suU0vjaRiyf1UdKpi3jPbSfL9K+iOxv74IORFgnt1ADBZSPg6rNh+H7DBRLuj4S20Sdg4uAqgE47CNudzWxgj4ZNerzWazJAay0Xz1oMaz+3knNTG34VdSPZMnN+4bmOb/m2cRI/oqvKkiC4sYatXawwIiwcJgmLsFLGKdTY0UO/9l8BHfFjELP+Fa8okILXNct53x1v+JyvhfrucmA02RuOD43ja7cceO4eUQqbZ4XlkWqwP3uARjalYuQuNSyWO0DKwqvgVccO2BneSz1349FMzBRrvNShOFSX0nP/spavP52W/E3C3hvYZK4WuuqowAzz3xB49BHNVxwNilfr6OXwOOx3DmGBnEYI6y5Fz5n+ZJ/9CYX1b/Nel3ZSFxEDBennoCP7FY7ck4DrrQrkPSUC/TNnQ2hCIUw5041SEhsww0oYVhWMZYkZpjB/5QvckbmEEiLaYIH4fQhbEY8RpwsoNd+M3/hYw+ShZDIZ14tTN2vT5eujWEH+EXxwW4Qeovm8LjQAFJ7lgqegAQhmKYFo5FtwezSJBp9fIKF4M9jcdBJVtizjiwVZ+EDyHAp8nAbrc+dThNooFPWUpMs6QqA6UxG3Jkbgcgl/qGuYxK4D52D/R0H4/K+W9ms/4N8e22jP800Uy700FFhMkj+2w8wSMdTkMexxSgDeO8byCiMDrhWZiy2bJan8sjaU9X4jDpXEvXs3Ysa7SnLSJJA57QAHfz3DAL8ENPy0hgqa5mDIFk0c+d2Yxo22pD1nTOjcmkkQJb2HrTKSYOS8KVC/UQCSPpxDLe8erBDTJ5O6v2xf9hySksfAkkp30g3RJO3ORdS08AkKOQWRlbo7vV/UgNZLdmJVei08K5GHzSuv0ze7TmwZaoVFpUa0fqc/LhSeBpd86+DM3wFelSyBBhrq0H+nl168OwWJZ2VwSvJqanyVCQ+TfpGddiVFzU2B+zsdqeaaMgyvjuIlsXP4iZsXmSVuwNevV8KKM77oOljMhidFuCmlh6QGpOD62X/gvMOJzgn5k9O4HDa320gnZznyfhN7dvuyku/pb8EDi5UgZIIi539/g69cfrHV8xcQcUQA/5aeIP2bHZwe8BpPC55n926A7eFKpFnnj/kVRrQqwxUGVnaBym0HPADlJCoHpJjoyzc1hKHUYAyjoA3DQx/ULtnAd+xegdngdIhJeswXz5exre1uLN0mBKU6gVw54SiouW7gLeyFm33l8JHkDhg9QwPPldhD6NAs8Igyhy1O32FKgQTNX7kAU1bIs/n6F2zgfxL2yoWywyVj8jiQx23zVGBU9i5ULKiGQxKenCf2g1eYMj128QO/ej+a6jUM/Qu3sWWyCmyQ10a204Rl02zhis9XzIg0goZdc9nkwBHyuXAVpy6YxP+FjoCE7BvUerEeH2/xhXaHK6w70R6mlBvTrNBcML0ogYJelSDmawVr5uyiuJJcLA66QBfED4FXehWvdpxO62dooaqNP+UNSoFt6RiwuhOFW/NuUH6EO5lG/sOGOlWw/NiNH6IKwbHNDaZ+ioT3OZZg814IhbsF6VncbnpTuBiOzBkkD7mncCv7NL2cuQn/rvUiLB8PS56/J+deJ6oYPRl+6QcCn61A/QehcPWDABUa+7LDwDBYWmiBmG0uJVSm8Zxn2vDmRThOCl5O5sIqcD2tnPYo+aPBksngpC8McvXmODt0H/7ymQJXRp8B4U2dJFFtQcvvC/BP6W/UscsEfGqs4EJ7F0vOTsaaxAU8vCmZxmuY887Xy/FClguMn024KsWX+69oQXLLLz4q5oMXrbfSsvpwPKA0SNkHotBKKIsW334NMubTue7FKJjyZhHHHTLEbznRWOzaTt/CKrgrtgOPvFqO3qMK6dKyWzS3Vgw+eZny08FdnNQiiHJnb9F/DwW49XYfzocPuOD3aoiWK4OOq/rQuv4iK2S6YeW5kywy+zGtnT6MxRd+0XkNUdzxXIM8gyK5gAhm/9GnhfNtqPJsKshc3Qa/ZDJxQWg+bileR2EO1jAx9xDfmioDVnHfKWibN/67ZQ3x4f786ccQymd08FLzN3BEwxwltN2o4Jc2DCt+hPFuaSQ8uhsOTw3jw+aS2JQuhWaGb9n3sAH7eLjBr8AJkJKrQL4sTPsTRtFwwmXIbjvKQWdU8KLSXuxIvIL1WvnkHasA7ud74EWuGi7+eJT+Jkmh7P5J4KBUDZsLtqFOtj/XDOhwzMtJIK24Hc2OycEFk2Hq6UgAi2chWDxVB+b+MeOynEYIfJrAgWgF774pQXLlSwg+6MZCmhpQ1T4XWh9tAKOhDeigXAvTm6tI/M40kDJQoz+Nx+DR4fnkoTXI+x5sQ53fGSSY6c4PK2thv9dIlkF9uFsgQbfCfOhO+Shwzu3Htlxz6KgYxksnrfFVah8YRahQzmt9MGv4Q9dMi7DkzV82eJdJf7uP8KDGGdTQn4fXt+3irBG3EDyVQF1iCnqrJkOclBQ06+Tw86ocljIZCSYH73F+2B5YbaFKM29OAr+R72CzYj95rG6A++NloPG3J+xOrAKV+g+4e9kNsJr9gu02GYPkjn3o8u8pxWer8bb8t3A+KwXTqxdCF15Hz40tNNs1HkrkZCGz/ylPG2OOwyFRXJhxhkwmjcVGTKM9kV85pvkhRR+WpN0x4+Gt9STKsMzDyDkrsDommF6fOsWP9pjhH+VjuGD5aU7QrORzbrIQld3Fnrv/4ZeGUsxxeQyHL/nCHL+1NH1xMwTP1oHwubvJqVsG7OkAx3b5QMXXd/yoXxc3d56gfLdX9PxlBqj/t5iqfXRR8ZkB7LEZS5ZL4zjBbR7GK5/gbRJKFHhjE1qFm6HBzrG8Y+sI/nZKB/b0KdCIulUkKzOB/kuxxuCYKew805/q1QbRfl0wKcZGcM9qOWiIWc6Dc0fhkLAZHu45wg4y6XSzuhv13nayyrmX4Cj6DZ5e0AL751PY6H4TJJs+wRybJho2ZVIW3oCfFj7CEa86wGcq8I+90hAfMJ311fUpLUQRlHoW8xKpANjTeZGcwo+BzwhrnO/ZADOz9WCi7APquNyDB0cV4Ty5YAh4sQuG9G7jTscxtPbbfhx925F+FmjBwvsqZFkajHn+RTD5QSsUdEzAyyJDOGXuYW4W6OBVysdQwsMUXm3spTGkB3X/EmDiz3g8HH+PHPatRZn9mlByq4OaH92DnJ96QOd1qEzkGlt5uoJ04CFOE/QEOPyTl2Sf5tuesZi6biy1qcvCcs8NJJR+jqR191FXxWYsMzyPc09chMfTX8H9L2todn0EuGnIwixHE74zUYS2Xv7EHkvjoCToFXidU8GB3Ec4adwzWpGkQb1jR4D64sn4KFcffHSq+E5YLJ1tOwcfPbwY7lbBnvEGUOIyCo82y4OMpDJd259MTnGt2BKojm6vrmJZnyuEzDjNE79mQ8XhRJwEQjD2szNK266hrLnR7Hs2FjMmfUSt1E7c+CKEbrVU0OD1Qh5qtIaO2Tuod/UA5vXGQExwCrw9UEMCx1PY/fFGsHw2SCtu/ASbKBm4GFgL7bOlobb8J5+UHQBlnABftk+DLq95kNfVyubThshlcDw8qb2E8e+KuPrZR7y57C9bLEqF96IDbLb/EzRa7ESrca7U8MIKvuIx+GUdTcEd6Xhqzky89zKD989cBNMWtnNXSwNbfvSm9y/l4dCqsZCr60JXjIwoeXkPBQ3Lw3IdR84p9uRa2VwSykuGMzJq8LtPjluLemnGlRW84lgQTTwhRM81Eda113BFQTLqZqTSkqiRcGjnUxwRfBodA0zY66s/io0IY1FtY/aK9iDHFG0eissn1dFCIDnswdnuD2E59mLKKk3ek2uPmYuf88f4OvLNfMfdKQvh0ltN8HaPRf47wOu+67LKpsX8PSKKxnqUwAAkcNDa21AicAttlkrBuhcvaW/ZXp7hMx7PVq8Bb416imv4gfrOS+mx+Xz8FvYUpu03hbg2LY6DzVD/YwrDfBl+qNYHURZ38IDLa1g1zx5VRNz4lpMe2FR0cePyIFBqL8RRXI6zRtdgRN5aetybSHHH4vG9YQ1XTZEEgd5NOLB4HNwZ+ISXDfIgsV0dAi9Npc3t0TCsmokTAnsg9IQAsPRLLH8bhdJSCfDiXB0Ez4tgZ6/N3L3CF77dvIl+iQaQXzMBrMPv4X8LFCFePgtOJPiQ+ImjkH1JjB/vPEbbnv8HLTe7qOCKOThb3uH+4x84VuQqtGX8hLzNZ8HfLBBOjd1OximJZBK6DRe2TgZ7Mof0pCbgwXzeWSOJTbtmsl3oDGp2q4ErESd5qGk9pv2ygNmNFuw0NgLHWXti3RkfPn5Ckx5U/iPhijk0/YYFXKfHNHxcCZ7V9dLejghqf5EO+hUmOG7/FZBLmQrmm+Xg+1oVCB+byV6LrcDDtoLNhAH6bAsxd8RycFJeg7bJAZRyUA6ff66A1XHHObFTHzZfU8TGVkGcMCKB9QfWocxaZ/ZbW4M6HSPgd9lGqH9xi0JMRoHbmBpMyb+DCk/jMdHmBa1fuQyf94dAkqEnHxQXR8uu58DmIrByci9Kp2ag7avLqPLmIb2Zch/1TwD9sKhA0xvpkHJNA148loD9p+thZ90MqJb9xeMmGPKL7/vI6PR4/G/LZHpj8wjrRb5Bxa9JIJt4Az/sUMGzS/3pyz1R6iVxctmaCQ8HomnvvDX49ONrqhRXAt+bLdj65DDIrJXE9CRn8PM4w6P1dsEEq+WYFz8a7nms4a0Px4KhoQIa+h/H9wszcMvbFxQteYh3/BXBE6eceHauLVdvioU+KWlY0pVI47d8pPjy/ahhGAE7N43mnKSxGNA/j6Qyv+I2q73Unq0Gri3leMWqCo7XBePq18dp1rV8DNQ35Nw7J/FY6URu/4KcUScJnTUqeMSyn4PKbCmu6DEJfcyBcdqTUO/aKR6oqQWn+kg0HisP6Z52/GJBD0q+96aW+Xm0XOAJTLtwCft2xrCowDDmiPpix1UhkBq4wP73fmH3x0zaVPmXzmoTl0mfJo2vS6DwWiDnqxeh8nh9OL5jLb0SFMOSCcHsN7CS2nMmQ+sGxtlT83D8ixLe8FeCDl2wghvzG2hzfxEZCsrhLDNL+twwgmsTr+O6c2tRZC3icsfjlD5CBKT8DrDuX1+Ykj6H9W0d2d3SH14flsPhsXko426KaxK2YPMrC5jUVshnlf7RgYR2dhlxBGbODMfouHwactTFU5eFGKOyKE90IhxwMSEx1Vh+/6+XZd4UoOg8HZL+7xSVS5bgCptxUHfoNBjEE6wxLyfnfTrsuvwofvygC/t6Z8JAwRAOeH2CkB8m8FhhLCpaG8OeCd9Z4doLcj1+hJdevkRdN01RreQ6+L6fgCnP7PHAAWc62CYHaXeTSc95K+cvMkXxXYM0JFbC38bXYGONIsrnuvB2Fzk+NN8cvG0dQGJNMWrYXYB1hj64jt3xc1Iq68isxIwuF9wWvIx//xOEWXluWL1kBYk6jEEHnyB8ipdYQvUGXnkyBMvuqNLioNGk9sQQNiqGwB7vPm7V6+TsvmGQlCslJ4ubNHJ1Azis9sOtA6FgdVQTJuxchvu3/ASH1s84TUoE/vvbSeIHa6D79hx4FD6Lbt37TJpSSrB9rBpf8DVgoa5p3KWiDvuShii7PgXa7U/Rrvo4utrQw72fx0GM0XJ0j10NJrbNKHZ/KctEjMSRcqvg5Y18dNLIhYr4texgOBaKCzTpZOx78H8wHeySL2Bd+W6ssCkjjfIqDHUv4Ty7k6w4UQBma0ZSYNp6XhX3Hm93D3COpSptzTzA657XY++OfxxmdACegjWskovEL/njaa3LdD55L4Gx6wd3qPlD8qAfeUefpAcuVyHjKELUrx/g37GFrjq04JbLm2lcoyPOLBnNd7IMcaFJENR7+tHmkxJQc74S1FqVcMViGZ5wzJUnyKqymo4Kx6zchvPc10OzYCd235WBkFEPecdvbX7aeQjCSt/SY5cwPHVUjBw8cmDZKcRnv1L5k/BEKK9qgJnXbHFvuCc1vZlGgv3HoOxnJkt5NiCFv6bab8nQXWMFAc8+Y411F6xKlWfiAJDTW4D8zx7X+86lKyo3cNT6PvJqkIM/f8tgzrdcWPMhAf/EFLJi9wi60Lmf7us/RajZzx2XDuHSWlP4sVaYCj0+0o7YdjIRMIEp20Nh7Sl3MN8/hlB5F7k4h/Fn+7EgVnsZxqyfRtdJGjfvF+WomWPJ5tAwb3v+hAf3d7Fb2kxc62IMXRqVJD1ShbTkI/Bz8T/cXxeGzbbmtGpSMsyZ2Ak66oiPA8ZCrLkzxIWY88O/XWRgeJczzjShwVA7nPVsRif/Kr538yjJKE+B1oC3nDqvg2obwjlwYyeXDYZS94HJfC9qE98QqaHC/nt4k5Xgz8RVeGXrH2ovvI8n4SNmLQiHHt00fNxsAAc3ONPLuhH89+Q0eHrKnqbIaUK79Xo0e5pKyoIeqOs2GedUjYLATUN0YNogic/QhVBwA5+6WkretIMe65lyTXsJlTcuhi+68Xw0KozOjB0iI3MdyDQwwjv6seiz+i2udV1E4/WScZNeCPQ87oLjv6bDoy5nKmuUgd7abWRdNh6WFfyk8REOOGLDCl7seo4/1T/E378X00HZ/7FyHwohKGoAgP+RpqZSaU8paUkpLSMjhShKlCJaRmTTEJKMQiUllUQhI1llFlFCDqmEpEWDpELjvsR9ka8ad58yBI9lWVwwp4jjv/pQ8VsrGA4MAMPDRbD41X7KPr+dAi6vwFN7pkCCwzGoLPTE2jI3mLU+nzPrlnKtxmg4HFkOC2/sg+w2OdAoGgXXLzhR3cXZMNEokzxKS3nZ8lqU8x7kwA+yIOfSh4cM53Na+jg4WRLDcwLccXXSCDTskIe2rK+gf9AY3WPiQf7taOjv3gm390+CJ0P7eM3NIBr3pYNaXPTIym8q7L4ryr+etYNxlSRl6L+nmIiJYGz0jaUfGNDzPfbQWxdNzyMisD33PrdWTcPVY9tJeY0y/1g+EtTkbtD6vnA+6noerkkv5BrvQrZNv0zTV9tCV3gY/C3JZLEKCVhwNBwtli7nuqGLFLDjJy0U1uWEab9AvX4KWu6XweTObL690hTuOTbDutUCkHLjBT9J/Y7OtdfwdUQBZBq0wo4gW7oXeQiONpjDI6tAivwpylumB/FjycU0wnMnVIyfhSPEJPBiJmP1Xmk0eaUAd35sZbmXE3lz9z6U2b2dtaSNWGn8IraIn8n3a+bjnz+B0LhVCOJFqjh87wSS3voL5UECM/tEsd8sA99KyEOP1XPGCeqsdlgN5E3n4Vf5bdxX5YKbpKrpw4352HEsC2w6mvhWqxAl7RyPQg1K8GLXH17w/irYi0fCf2PS6KFNJ78csoWCkgj8ucoE5ZUSsQDGQvvyTH79dzk+zPlA7v8pU6RNMQ/mt0P7g0c0bqgFihO04en7yVAUKAYTNnlgWshxzL6zkgpKTzNkivGrvBuU+qwXvxTK8q4WVbgYnkzSezL54LZeyiBFknx2EI74XmPWTaZRzgN4eVQ6/dwFsGauPApWboM/fo+4dnUMLwsvx3uXzkHjJClOvBlDg5Ps4PrCsZCfrAjlvW9ZS8gU7na/48nPbDAw3ZuivHaRqLENVryZC9NFJOGaw0L6zPcow1UYHC/owE3x1/Tf9vUc3XoDzypNI+mVT/jGHx1YVjiSx5SE8F39//BqxTn6sd2eUx9fhsah9zh4YAHOSbSG7p+GoN+xCW1iBOmjrTTM7hVn49kJINHvDBZ/VpHGttek0PYV5Wv0wermefaeeAfsgho5yUyeD2cM48TK6fhuzDTM7RlGKb6Oj7dLQG9/GYndmsmrtOxwvPID6F7Zh/J+ctC+oY/ibzWQ6u97NDNjMqTHFYNxzTR8dtyLe6r0YFDMii7o/IQ2WztKclxPH2PFIOWCFkirvuADhRWclCuEgncq4W+rCUWcqaY6j+W04fY3eBGWhMLteuBjpcYe023hUvYnLPNKwboDq7iuURtrrnViKy/mfzYXcfnRSdB5+ScUPWrmBCEfihIN5daTA2gut54RNsLeeWF4fPY9/pQoDdUZQ7hwnTeqfzOFkm0T+JbPTby4fxt9e9tPm2V12efzW/raIAJBBjKUVigL+6+8wTZKJNE3M8G0aC+9WbESRtU+gfl6k9gmSROmCPZjTLs3yW8yRD3zajL5nAdmEp6kIy2C5379ZjW3Pn4A5tB31YAxKo7dpt8Fl+i5ZC/VT97zszihgnit4iriI1egv0cblP2MSc+9GW56mcOdaXoQZFoBVQIvocvcnnWnVLBqkhR2RSrAvvmZ9KLZHez9uiFO+wP8uWPIbRb2UJ1WB2OlJHGr4nLY81IIqtf1YPp6Qjfplejr6AaFTyVh1RlTPrBjN49cY0a/tIWwQ00VXMK8IKBrDZo5P4BSsWDSeTGO8mRluMvKEur1jOn0ljooNgBYcmQQwtW0yFJ2F3WUi4PWcCh6tgtDXOMAeH3ygzqNt+xbrwN3rAmXWL3lF4rbWFLqOge3nOBJp+1JveMb3VcMJ4+bN6leXwmkbCMp/r0UvFxTjgPX43lK1hIW/GwBY+8KkqEZwJKO13jzoDK8sxlFml8T6OLbQLi3Zj2sqcuBoMJX8Mj/NZv7CJKAgjgs3zIZPm1eAmteEzzwauSI9x9h5OBl0LtyEay765k+9IPIt1MoqCIGc/86YdzTdFDMfIIx1o/pZ+UGkvDthntvs8HopSB8bBxBDk1a4KdoyWmiw3wtsgArlu3FMa9z8XIu0ZsXUZz2tAufNjWTR5sgWARcwg/LrGD/v0K6GelDzg8LAfWccELnKO6slqHDxQu5vEEUpo3LJtOHgWja3cW/ZNZytXcYjJ/0H75f1kDzBbLY6qsMROqZQ/zsz1CjuxIEEo7Aq4wSSD34ADxuX+dwqWp0WSoC6y6O408PJ0Bn9gQUaesggzmt7K6QjneffIPK6T64KdgU1vuEUv2CGAjUVITG3VpsclmF0nYsR5MfGThlbDbqhJxm4fe+qKJTQeDwBT1K9WCHzwSyXu3MPRmBPOXKVVbNjeE5fd7oriaNe658QJPB1fzyA4LfzBWwcWYFZ+ruwoh1kVzceACK3dqp9Lwf5cmLkvzFf/B3tR1UBdSCa8Fe+LPZDucnX2YVG0fIbxzB0UbTIcXRg//TlUPzOfIwLbYQ3IJceZNzAm0JU8Cwqaq8/XMy5K0zpyk3i+HM4H7MPKQH5zNmcf07OTg1Lp8DnzbhfPu9RCNb4I/INDz+8heZvHFms1JliHtqilu9j1Pz4iCauiAI931ZR6KVu7nc0I4qZsZzy0p/XutqCvdWxVKkSBRljJgKdwwreY3gNVYs6CPPmRHYWzOVl7n7o8jQaOjXi8RXdssJravQ/Iw0qqSK8UmRMxThtBnWaR2A7pUO/CvADtTmX6FQ7UYokLwEuQLf6XqoG3ydcQXivm6A1M5oWqEWy1ZsCKlj3/EU5d2opREATnER3KTUjTKJUaB96TdrbBzBl9pu4IYmJTjaORcTP1rBs9+B/H3HNS67605j6x5Rfngkn+gIYtUUS/gmJQ1SbWWoW3QeXHcEQ6x5HgzuG03v34mwzrMqjLGzgy3dz2H6CS04E94Oc5yu4cN5mjTr42VQEPkJfdsXc9ZWVZQ5uo28fVeQjqUCDEzYxr9mPMW/n1zQ+Ygin59wHcf7y7FUqDBmulSDj30ZX5o6BT5SL97z2sK63hchfVciuIXlwaKceDw60wDerrSmC2OW4cg2BOM1B6hvEnJhkxTlj10Lutc/cEu0C+koxePlooesmdgJ9gKqsC3FANKKpvPTgRj6omNB1xb64waRAl5j+hb3vFfmkxvaQKNsCqyoW029Qd9ZZoEBrT6sytYZnRwo6cMdQn8x+chLEObN8H7HeJj/MBK/JidCZ2wS/Dmyl4703qaDXeacda8YLX0b8Z2TKxhljYMpfmvBvlaNvYziSapgAWuY36JlM01g62Z9NFXZgKde76TbytpwePdnynuTBFbO6iAx4gZWOuXg6HvEi1eXgn39F4iufEqq3aaQZN/Fmhv9IfPEBRJS2s87yi7w6NJudrL9wN/zzMnAy5iTeuUgdONBsltbyLysAhSuhOGKnbdRaflZ+jZdDGUj4/mIgASJzJCD5J0qmOVwEuvvV7FCiQjuEwimhq9ZfMRsE6cEiFHb8vWouXsybO15zOXT6tBu0XhczpOoR1sJLkIhnng+loRCnqHsweWYHasIBwvOsbVDIu0eWo3HfcZQlIw67beMwA6H49x29hr25TRSoIchSDsNg+vtbs4btY3jKA6CUoJgxbslMEr0LPtKFoFzzU66Uz4KZGxHc92i05A6Oha0S9uBul/gHI+ztNNlEBbOTMMrIkOQmKUGzyvGs9WrS6Dc/QyLXCvQT+QLSVzIh11PczBsYT0M//TmV7fGg0pRMmUcsmG7Y664UmsnjtSTAqE7P3jAYA357k0AhZIy/LloBPjcsOS27m6aKF8CBw+cpFWGZyH05HhOuJhJdvNu0UZnbTCqVYTgk0J4S/IB3ffzwPDK75hU4YltOTfo+6AAlgc84hX3HHB0lCk436mlZeta4c0KX3wSYQn/VqVyd6wt1U8QZEMhF1bbjJDtLQejtbK5Y18Vjso+iuJt1XyrrZQ0jDZixktzVIpMJzUfK85KV4W/tyyhNFcc7xoTmK7MRlu/42jo7Qk+TWpoPLAN1Q9fI+fLehBsLEuqlvNB72IHpOkF4Sa+jic2O6FXxBCLyOnD9JhcmHxVFJzMPtPzlc/QZZ0elNgWc8xiQRbbtxzc5WO4UGgnmE915FpXHShKqWL1sHyKFJ4GKRqbSDxsGpjnPcf0RW9gxOIsCj93jO47mcDUzXV84uRs2PlQkeLv6oL3hbFYf88avivlkEBhHRdZpmP0kTHw9FwIVR5xgOjIZDjT9IJdl8jwv31N6DHzDxYkZ4OS4hxuXW8E2u/eUeYJO3TYNwjzEtXZO2IlCpfmYa9SI3VGrYAP6d24vX0CZMh0wojz83no6nySHrkAY0p9adpTXSo+t4G8RryGR54x0GEmAc16SyA5/BUKX1qHChN38qPDfyDGsBnXKTljzw8zenzuCntYCcPvLcWYbrUIe/c5ouKHp1BQuIMWNM5EvckxVDhyNN0M0MFqDy24YpXHugaqeFzaCr0OneMZyZmcFutGy4JL8PKWpxiXNQkefFWA5a33YDDtN8hlv6aHmwpRoHoHKX/S5uWeqyjwgwiGNV7lrwnGEOLbQ7Upp+n9tXboXfAXTx59AeuveNDYt7qcaTeTZPxfQoqOGtxq9iOV+DuUesOf7vTpYPPzZbRZ+i9GKsujVl88yZaLwsupSvD9vQWqhyjgfCND2ChlzcXKJ7D70hF8OdIajqYXwJ7tk9g8QwY+BccTt5ugIB1Dp9le8L5BC0JOpVP72AkYtN+ElvxdSQvDTUEtUZ/WDPXwcUNz2BgXTWOerMDxm5bCwOvDdLtgDl2RMeSd1wVhku5hTtO9SluGltGGrQ0U/jIUpV/6QfT7GdgZFEQVv0bhhSoNGGnAcFTJBnqDFqFf8x+0DvsPXN+mw71AC5Zy1MfR0vL87bYM7JlbBk5brXjdm5f0b4I5BUdeRvtWfQq4oA/rdk0GK/0ZqFBvDsGHwmBr8TyUVb1ER8b+AO3Z+VAc9osCXoljov1xOPgliBaPnwSFuz/QjWIgl6lhcNDUkyz2/kGdq/qUvKWCls5ZjFXfW6ClQhwivojhAXMFcHrnCWELvPDzRmn8c2Yhq8SWc+XBbVi40YnSokVAU66XFEUDSCEpCT/2O/CX01WkHuwLtQuGMNY7nxY3mfAtc3W4ofWQfoc+w4iSk/DcsogCjyeDgLwKK81ZQb3aadhZ/4aGS/QguM0HT5bc4j9vLPEoRNM/PRXMK+/hSrsE9rq7nUYtSsMnvtbgfPUX3lZSAoE5wRjcdJM9hi0o3z0H75xLx+ZJ5rAo+hHLDhmBuP5Ntp04Hr5qWlH32u1cdnsAg+r64V37ZZhbqsXHJppwebo6PI/6h58fmlPL74/QIxvJ4ZkKdK91H+1d/4MXj2/gU+ZyuHCzPoSuWQc19QWww2w2/drUxhaeC9l6oxddOFcJpRELcOGJKjLvEoX6fyNg3sZC+JI4ChLezMa0JdtoZGseOq1Sxy/qJmACoqjyxxL23DLHGU9j4E7RMNnKD9P+VQUQGb0PTwqYk6x9IlzKQ25qY1Dpy4DyZWUUU/QMtg0tYuMnOfxY4A1//z4bnK7ao2fDeno32gYaVsXwy5BaDI+dgiW+drxVdBOu+/ADxx80pGV9l2jM/U+8SF0WsrOncnb3Aq6rdkbu8Ke62DbyV+5krQmT+KZiCZf5KfM4GwFwl5wAy97G8WGdZ2wsuBB/VC7gdIsfrN0jC5K3asB/zTwOnmUFXaLelHH8HexY6wRfXsfik1R1MIZm1sobh9+KhcF/XCSs2DIZJundQsnCPP4lUkfPx87D0cofsfVrOQ2O2gpfhwqhtHoJ7uiWgZmtSWA+A2F+QS1WvjpEmbaDuDJKmdWVu3BH1jK6fzYCLhcqwLZvlSSv/ozed0rAzumWWH1uPvgfuUqFL/xxbqAuj07ehkpfVODcsjTavaKYe1QmwaE7vtgcHUwj3oyC7/LCNJX8KORZFO7WFQcF0VlsN+YlZIW1sKnfSZJcUQsab6NZ+NcGljPv4Y0C7rSjWwI+z7LFSt9QDjpQylNHd0C/ox78lybEnhEK3OZ7AqKTr8IkczXQvvQChdfXkdrT+2zpUUFtj/s5IyWfx/c9gTfdKzl/cR/G7TCAodRXvEfXH7SUZuLp6uXo9+w7a0uHU3uqLL90ucYPpuizxxeEiVUaOD3xE2SGAJUenA7qgR20PuADms9tp7tJWvwx7j3lbJ8AiRsUUaZrLjTUfqfRdy+z/7A6P6nyx6otszEvdT3ukv1C5zwnwXvFv/y4LxNeJO7kdf6lqBq+Dc3d48j2wCDa7t3N70uFoFdlBEgNziPPJ+n8ZlQNKVM/mM9KoYS5pmyw8zy6oCfV1r/AVSt0YF/rIjJo9+XbM5nGxU5ACQEge7fveHD7T7qodZvadg7j5iMIPjMzIWhBGN8T+ceThw/RoXwCQ2nGTAdtVNMNQrg/GrfVjoYC1yOo0lyKyiHzYIGnM2VET8MBg3XkXnWbk1pvgsQqM+p6KAKvXH/x2YmILaceU41YIs5OHMCVvzQhcK8DHjxfgjlXspguCoGb5l+qP+ABq7Ms+JDsOwzPTsaZJbk8aYsBKglMhPedKRivoAo+2cF08l8qbvVYhDMWfuPcTRdoy60bELdJCtNqHhIEilOCmQI89E/D2qM64LN0FFQbRaBSzRAd8HKBuIDbONFDnOt1EqCxURMq89NI4LElzREp5tn+U6B76QyebT6I7/OvQdfuwyy4/xxZSRrD+1GRFKQcT24j00E96S1JyNTSuuxuCHiwmK9nm7JV5RU2n6UK7s0f+MjiqXD4oQvOqx8DK87boPRqd26ZHsWuBS9gKOEtHU+WB1GPh7xS0w7qx3/C8I/CaDruKn81F+HrFjtQdusX4EXr8e8qFVBcrg3tz5n0y7oY/lsPE92K8Ur6MAZJ7uI5u/fDI9pPx6wtYVPuZTjx4zRkvBhEs3OdOOxjDrtWVqMA7IDzqvdRDltp7iUFGDPxNz6//x9bRgTxkpSrkPU0Fefbt+M3+zRqPzuakhWjqLBQAiqe7MMabR9cUP4Ptr9O5Kp3bTyiJBd/LW2kRbtq4eQBTdr/1wgux99G65wHsOfxAnAfMOdns/vh1wRPdPUo4TNNCigY9QPrgyVhf2c6Kalb8yOnTjqwdjFq78xhp5xfWC6oATXOrpT1oR+dNo8HqwQ7eh6znSYNfOHToS0ooN0JY/RPc6S3LwRlu4H9vwhetVkKfs9WAlXj6TBF+TTJVljDtzND/OTibdxba4R1IuXU+KcDXL9PBsUMfx6iWNrn64qjZ8xlG4XV0BItx8tnxIFYmRVVr1nHW7ZJgejxElqfMQ3VSzxws4U0Jt38BCbLb9Brvzd44+khKkm8xKVjbMBU2RuL/96Gl/dO0Pymc/jOIJtzTVop/5kw2i43gnqTQdwzThW2CiaRnF0vt38O4En/TWSNje1gLryOnq57BTMuqdPGsYaYsmECaFoOkOTTkTj1oS3J2ZfCuqg90K6ZAoPbbrL/tGNg7LgUeheMhKm5aiDm1UbZasIgZ/sOLTafJ//GFzizbyz9yvqIqnZ70OKeJnwvaOC7zq7g8foxWufU04mumViQWwZzWmvhbMxvbkyI4LFrdEGzcT0rvZWAZxkvSaW7B4oF15K6ry/Hz2mhTj9vGCdlBOcbzKHvsy2fPfWNa0/fwtqFp+ju6S9wKOAFxYXp85iHD1jpRitJ7RkJCvKF+KLPgTYobeNAG29Y+/0lRzn8Rte3fzAjczP5y/myiLUYTPpZjtIFV1h86zKumJGPies0+d60PZwtbs5uR7yhQzmQNybZwUa/Pjha8IS93yyEM2UteKZDmqfKXoKPNS/AZMoJ/lgpBA6SCvBNKYkvWK8hj0nWFON+Gdb3amLJe2fSnGFIz68d5H9HBLD4F0Pa433cuyqP857tJ6vN5+BWD/GlzL2w8LEBZwWeYYFvV+npx7HwYOcNjJh9iW6VVOIJk3dwwmYXKow2x6mL42HJsktcsuUqdT8Wh84GN9z12xWTnTLhZ/wM+rF4AP/7MQfqzI/D4O0zaLDtJ3l/kgdjs0pYY5fPK3XX4wK/R3jI7iybCQjhqfjPfDA6jU8t+Mj1qcZw1UyYBd5bso5VC/3S/Q5HK8KpN9AWmueb8pWgV/QjYh/nrh0Fe751wdLiozB3z1jos7TmH1MOw+aiMvh0NAQlHgmxt5oV520Rgc3733HrfwPUqraCXEQPUfmDVNR/upPKimdBsZksVbq3cuhbfRDR6WEpKROSly+kY3kFIC3pyKF+cvRdJJ69C0ZCXrUO+t0WBqnFuujzZhFUSK5iWWENTI4SBan6WaR8qB/rni+hvbapoLdfAXwimcdcOYyXRY153og1aOfzD4wMFkL98lya+fgYDj2LoSS5KXDU1ItflzjBqPoF/FEJ4XNTHG48ncKKurGcaXkKT6MjBEiowLQ/ReAmGQqnwt9Q97gSEuypQn+10ehnGEDCph8xvqAarwRrwP13S9BvsilsMhiAwY+xZKSfSGrFAaA/4wUa/3kBfxWbeel8g/+7/3f6yzeIyaujdRteoaV5Eczjp3Ty6GjcvnAFXn5awd8VTpEtaIGTA/FJkwuwy6WUDgl949q/j2DZtReYNe0x5uzbB9lDq0m5zRq8a2PR+KIuR9v+o1lnB3Dc7kHe0V8LifdvcOa915QZIg8/zEQgaEksr3JJpiO68/DzsX2UeqKDZwfu4Ley+2lFyj5MFbrLjcNWYBM/yH8j3Mju4mlYePsUR5ybD7OyRDn6jBC+adjCQm05FHtIHGy0J+DVO808fSCXyz2nwV3j93QmdhJYTPfFV4vu063g1XB6igxkpq2GVTpPQOrTbnyoNozv6kfTVac5oF/9kc6LddPt/5ZgugyA7lA6q2gM4v6zejS0xJUKHm/gyidXeWakCqdUGzKtvolXfSdAot4oDBr6Rs9XP6OfH79R49UB5Fmb2bfGE5+LbQX9XyHcpCENs1zXcF6JIMSdzaHaAwEoXiDIcfvkcMvRFLi//z7JvfYB9y4ReGC6mOsnKpLH+e1cH5fKTUbqtHTqeL75OhsOhEzAm/0mbPZSC5Y63MaTSX20cXkUjHatxzUSF6D3+C88GdJDY58c58mGtrhxQBFGrs7k/GI3EF5rywciL0M/bIJn9i/g/PMLZPhFnMoPPiKXYzLgvPkhhQ23kPD7Tj43YIoexrOxRbSI66W3kPeUAIxGZezUV4ZVTjshNO8NvEzVZ9WtehTRn4gJ1xVh/PJg/qkmBK/KS9Az3Ro8L0zCglE2ZOs6AbK/+9MB28d0q/wx/MhLwDXCLnD24VpSMLWGnDnX4Fh/HtYYl+LrrwosbHIU9tkN8YHBZpIQ84E2UUUs/ygPu2wCqOoVUvWTV6g+7xF+P1TJ0umTOSvCjh5VPOfBEiDxDwjGDsDDN+JwavIVEheqhH2DsynQcCG6umTQyYsrwLDvBtaby0KI/Vq2UGwk94lzqfauPNaEjeMjKACO00JR1vsEuUha0w4Qh+Jb4Vwuvw4Uzx6Fo+F7aWXJDijUcKUQl0eUZz+N0swWwDIXWZCMO8o+YgYocv4tNB+Zx6YDf1l68Rmu7ToCE150wcqZtlBqbgd26THgLLEb9MNrUUfWkK4NlbBVsCeccsyi/Usc4dpPXZjerAEG2+7yj+abcLrAAhSer4Ne0zZseeYNN8cbcfSSzXAhey5e3m4BG59Poh0zqtDgoy13XXbmlWXfWMP1ARtIj4MLX3bzP4N3VPrZDCa6PSKxVbOo4LcUm/v6kVyiMqSYWsCB+dPh8MswWvb9EF4KJxA9kor50v48MKcZVhhdg3TbfFD7Bmzto4sSdvG0Y1wHzIhRglPjA3GT1gyq/n4Cm6ZVY7uYCM7cbAL980Oo94ASrHs0khzdEXb9ceVLv52pbJQ/v96pwv8meNLeNjPy10vj41uqyGluCllEa0D3GCUWMu/DEcK24LZgFznnLabVQ3Px2skX7Nw9AfwMzvCqJxPBwbYcFML7OElkPE54NAWFbWS5wG87ibaPxP6dovRfWjOcap0MCwbH80bhbGpVtwUrYeRr517Bk848yhC8gsqGKyhH0pj80kRh/jFHmteig+/Wl7KS2RPoyW1H4XEzOVZnHWw94Q6k6QWPBaRhsrk71c7UB69/h7h09zsQEzvJtRcmgJiCBXg/XUPqTQOoNQrBsdWJr7+WA8H5u3lgTCDZnfnN9varsO2XM9v5OPF5/wk0o0IchGz24Lk1k9h+ThgJCj0Cv80f0CVyIjcXOPCkqQdoftdzzkgWguJD+bw5v5biFg2wtJ8Hb7J6xmcMzlJr9WjKijiOQrq2sGjTCBj6vITaaSy7BcxkqeHR/FXGG0K3XEGlBUHYLeiCcS32kDmIMDz3BNdvm4Pzkqdj41YH/j09j1TGrqE18bNw8Mo9TskOgYICOxidIkPuSRfoQexc0JYQ5cLWY7St6x4OlMlw1bN0enW/HRtrDaC/WJ4XuPXz42v34dnIM3DgrA/+M9ZmO8tf1LhwgB477eIH0wVAce4HWJR9htRdy3FJkgus6X3DkpdMcI76P5ol7cyn5p3A0W8VoP3RLdq+YxvuD0zFs5lBdJPeoNWULszRkQa1QW+ql6vkNH0ENe/f+M1fm2wOHAI9jzBaI3GevM/0cOrRnWw63Mvum63pfZIZzP8tiw35a3BGVxKHnpkI56Pes+7qe/iXvsPAjkC4FFzCQ3UacCYwHPxr/Hi54WnyjE5juY9q2NtSgil7zblr81n4M+jBD0VHwu7PZ1lJUJbqS+6x8DINzBk/m/w/tbOdlDIJr/DCT/In+PtvcViFRHkqhXhsrieNa9ahb1ol5LZhH443t+bXWi/hQmQCqa4Th0YtXXg1Ixf/HbjM9gkpvHHmeOLnneTs/ArllaJwo6461NyQhc3FW0hs6g0aFRLC8WY52CB/nVzeebL023MonfQXjVcogbyvKGzM/0zzaqNZb8ltCG624w6jrSRfrQDXpcXwV9Zy/PKzFXKNTSBS8zMUn16CVq1SdD7QmJYOS3CTTQA22Vnje9dm3hvjBG93mcCokkXUG2UJk4ePostlbd5pvhrGCmmyeYECH2zuoUvdV2Cagw3ctQvFApMoGNsWDanNtViT68Qf/UXYT305OI2Zzx/7PPHMsAgcU6jlLrM8EnKPhJmiwzRd4hK4BY6izOFPWN86D9/f0uDni8dAzaFHcGapCmwMM8aViudQdZ4Avllki6VpHnhm4Sw8oVYGrrmysDfSiE07C5BzN+Hf6iJa/3sX+oc5EL2ag4Uj3WmTVzkmTrWDZuUmvHxiBJnPOgLT0hYAvX2Aq94iVh08Tks8dfBS9x7U7B0PoyfPxxM/YtBtXw/3hD4goYW1tOlqKwx4LaSw8Xtx7bAy1jgZQWH0ez78xBc0k6oww2AjLU7s54sJh/HM3Ahan3kAxadN5WNWpnBQwYleBMzDtgARFqx+AEtDbnHT41FwdmUjbJgbDbdeJoBBoyWU9Btiv7kl+8xxh+KYI7Bg7xP8pi2AUQ8G+XlXGtdcsMdfIWNgRescXv41kZPS/lLc0mNsPkUdd2mW4ep/B3mifSMH8R26F2oDqVpRyC3C/GyKNxQt2kD61qdwhgSh49E/3DWiEPUpliW2C8JfC1McwMcw+9dFtL6+HR/qepLVaQX6XKGMZYbfyL+8nSddkoIpbIg+E73pxu3PVFbZiO51uzk9bYiW2TSAx8sACN28g/iWIXzXPE1Sv3vRafVh6DAtgFrZTry1SRMGejvx01x1kFASQ+MNhnBzqzWrzPNkwRwVMpy+FJ2KdPCBy1asLvXERw0p2NVzB+eJTAGlF93ccrcBh6tuUoXAAP5QLsJFbtO4N9oSxLr3UqlnNH+RlgWdolTcgSK446o+PareRnmnzGjMis3EDdMwJXMBoJE+Q7oAuMblsfr4g1iyLxdp/ifS397J8W+zaEu1O3Y2PSJLh0wwOTkSDstMBisbG3pwTx1XNImyxqcB6ij7AnVtBWRjJsDjco3AblgeHENrSU5yIsbMWA1hw/V80fIE9cgrQ9OqE+A3/wnHulrQWWcxuL8oke5FJrLkqVJUca3F6KnJsPpoMYTEqoCyTCqsG9cGjTU2sFp9Ea+cIwaGi+6SQ3ABU5kvjlvpSCv37aZZDdLUS564KkcIoo1q6anbSd5bEQQtYsA57uv4xKkAeLCsjdisgWP+nuQoQrgwsovMJz7FqTafYVewHIv66OC9XHV6/nIWPl7uRf53VkP+USMol54FL71uUp+OM9f/ZwjdE6UxP/glt/U3wVkvY8yqekquJWLg2P8Ltqg+5FF/9sK+3KtwfvtBuDMKaPLMKPLb3EtRaU60bowarGiXhO0Z/6BgSS8pJp1ikdvt4GKygq4t2gELv92EeYYLYccXbYj75oR/sjKgVH07agnvhJ3ZJfzS6gZ8+7MMRd5okE8Mk1mcILit2gqXr3ZCj9kQqzrMRbvlhvhsWzOM+OrOf+L8YfJ8a1ykIQQhGyZQXtVRLG81wmPfjemBXzGsL7UlGx9vPm/RB7aHdvPqFyIw6Y47dO58ifM2yLH78AHqr30MPhJMh8494qbYAZ6xvh/XPZcHt2AHeitoTIPG1+Hsc01ysEUYfbEIuxX+0fW6ULJWLaa5Z8VgVUUwybhX8phpP6FrjzO7n1wBFqd1uaclA94YeNL6Oe6YOk8SmnA0S187iQtHvcCLt0aRisUCUpP1plrPOSy1QBhvBr2mgpJRkLPzII7urAOhT585eXsID49XJ+m4jXhXvwxHTPbGiLVTibO1IKQ5i3KiZlFD3ToMDbEnsykHYWeHKc0ViSYprT30+ORLSFGXgW1pdvz282U+mbqEr+ZZcnlPHKrrH8emRcVsdOsz2NTOpsvjhCApHdgxUYYMv0/FV5/ekXvea2iUq6Ph5IOg3/wHRAvywev9CBBLb4TyhTp0X+Awn78ZC/0umfTxxkU4tZDpSeocan22C3O3akOY8SXS+vqV/rqbwL8SL4hucObWJZPYofo9Lg59hGWmL3HjUmHQcPOnv0FbydxmJVjecaKhlk344fM7XC0TyZoj7/PpMxfh3lIzqJvaSUNzwkkyR5YfKodg0d0a/GG0A253FPLPaTPoRk0Li4ibQd2O9zgDcsD3gyY8m1xI5U1SELGojOwGG1Fj3xjWyHYA3QNW8KllEp1o88Dquum0VCKONp+ZyyK1Q2DUf5KW/zvIB7PtcaM1QnneDpLsu062CS5kvgApcrcA7vz7m+7//kPC5/fAzJ8O+MNzFIxeLIQ3Pq5mJ9k2dClmsOrXhJ/xQzjrthRm+QOUe95H7TmGAD9DaLdPD0rqtvDwktW8zrYZVZcbwkFTadIKWYLJLqXUHCALR9vSYUPGfr78IJtjLw7AqcVzIWrlJ+o7949D5R7C8dIv1KAsCJaHP5B4WDfaNjeRr04hY40i1uwVhr6N7qS+zwKdWuygY5cdvHWUw98Vtlzbtx5FNrpytFAuZmVcxsBCZ37xQBy0Un+TlBRAt8IPLvEZYIHlnlQ04xUrn7yAY6du5ffhO3Fr5ync+dMPniwWBH+HMi5Z5Mh5Xz9ydYUAnvdwZpXnx2DayaNUlhIDM29/wYtzraGn7iop/XKCiwa+dEnBhOc8U4Bjdg2sPkePmg7vgf/s9uAnfUuoq9tDsXWaUFMaxLn6z/HCQxmQ3RMNEltLQSJAiKfcFUax45rw5qw/xcTVUanPYhy6XsiCy6fDzWYjlNPthAqVfaC3/T90DEf4V3IMfU9Vk9jXLzjF+R2NCQ8iTXsbOrbFFLqln4D/7aPw7KU6pIiEQ3tkNA5qDEDFby/e/zUYJCeOxTFpl9ByFlG0bDXNO64N8xz0wW1UKJhYyWJZyiQ+tecfXxyZwAd7OuhVuBDtci8iPxstSAm6D4eWWrN92BD6Jd/DnuAXGCzczK0X8kDCKAWvzXcjejYRXFqjoX77Ul6+zJXsGqtRZEklNSRLUPx4W4TYHIwoDuRr7yQg9b4e7HDSgfipcXjIegmuaD+KS6fv4kum/7AwMQo+Oo+EsE22sCRIiwPz/vLrYjP+dPcv+0iH0TEDIYxYtoLu1tiBTqEBSRw3gMduO+n0j3Yet+MKznQdR3N2LQOTL4qQtsoAax9rQO/6xSgWpA3LKrp46Y0P9Lsujzd7ngHhWAP6aWwA3vkSPPf+DpS32ktlZ9VB6G43G+XosajrK7K1E0ejhCJaeGstXFJXoAKRZrIoCKWXfibwukMYFknZk8F4GZhtuI+0x96kNYmOcNlcGS+HqbDOs7U8RcMITuaF8r19PXAox4tE7+9DxZzR3HmoilY2fsPKE/F8o/owv2jWBYEhVTjf4oWy8fZwKHo96DpfwkO6DVioVEI/jLywQ6sJe2/ow1y/fG73rAQ7owQ+MuIWnd0YAW+qP9G7uWt4iY8pN3yuopaVhtB2UAjVAiNpuEITxU2mYGhVAw4liOPMlk5eW/gCHfWX4/YNFvDt+Fhc0ZJGsi/DsdPYHdcG3cc9Ew0owLQG00I8YVW4ABfvsoXtBz7TY/8y3u3ZT6IayyF+gjI8LvCAzt2q5JVwHnJF38PqhbrQOtWNpBvG4NZtwSQ2bwz1rS+EFqf9YDULsKEqmW30Lfm3hywsSNTHLvOFPE84Ck11NtD800doPv7FELnf6LRzAAortUHbxQq012yl6ktbuavrPnxQtGapDYewKDAV8/P209fFiRiqtR/GJGiA9pwuWjGsyaw2jb+ZHYadU5fA9jl/MVfxA4dOS+fZc1xxzmdFWDsqj+Id3WHi/iOcu/MClXf/ABT5w9Os/cDHIZ4+T7Ji/RpzWFH0ivdNvsivZi0Fx9357J+xHZV6JMHO9BJUC4piYawtmmdZwxhdQq2RxjAx8AuvWTgDZis08IY9ChAjN4YGQ1LZ6scjLFSbAHsPJtDukyrgGHgVXtnF0Me/M5FP7eX74zIo9Ys+jOocpGmLxSD17iv67DYbYj084I5KCy9dpkr+tS2wf9MX6sDJKFOXTjrtQtBsegq6njfgjYlh9HjjG3S+bcMr/6yB5vXZtLEjjz7ntlDoY0XwPXyRMs/2o63/Ea55ns6Xr7tT5OgvqP8zCX2Fp/IWDW3c2SoIpYu78O0YcZq+KgTuXs3FxPvm6HAiBUusG/ji0qX8bv1N1vW3gYOnMnFErCRVhz3nbc3TIKikCz0utYJPqgsq5MygHSm6PHfWBNj2LBkdm0Rwfb4fLPhymwOvZ9NEizja9WwIer6Isd/RAUoNNIfE2pMgd6CVPpRGQdWQMSmMlKd29SyU9JZAJ7/RXGWfSYOnBGDpjFk84eF+EruzASIOz+b6I2dhVcgCVDkfTLcqX4Of6gMYdjGCtlfbIVtvCc2MXoB1OY0oW5CAPy324mLLN/xLIZp3THImIVkdSHcfx1GzBVFlRi7PXBGFrZUyeLPrLP1cMcRLfR0osSoLt4qrwoGkfBhv9YY+merBnLtlZBO6mPOSHlPYpGoePeYoeD54Tg7DduBn0kgWNZbUUN7GQTyeApb/gey0BSB9dw95X5jNRvVBNP2fKqi/34ORsmYwta8E4y+egAz+A7vXmfLEyEd4Q9UHZ+7aS7lXRoPPkCCGegrRp2Ny5PZDG0fnTaLWtdv5X6Id/VZYSqO+JtEfV3MY8JoDOkd+c8yrZLiw8gBYGn3igPS3kP5pGUSpnaOSokTYHqMCnw7GctvkVVhk/B7OXM5B7eYMFEgUBiXl6yDnfIaCfrtT4kQ7sFJyg3abCux52M15n6ewg3wi15hUU+8jd3xidpyT5z2Hqs9q4D5yDcrsKATnY/tgTKYi/7AygzPh6Tz2jDHknTfBUJO1sHhICmJ/byGLc4M01mIzdgc78kl5CQ62VuZDdaZY+UGJ3s8PYp2fBrC80ReW/EpnJfNo2iBQRpZRzrz4bQXeWnEW7hnfoIairVQbPQoka9vQTCMV92vNIJ+QDHBM305pPxU4LOEY26qYYHiuHqS6TYRoeSk6H7gX4+d/wzSxEBj57D6U1t2lEU3HQLUngfUjV8HlF1Ywf2EWa+8/janJMzFu63nqkJMiM/st9DshEWW2unPPvmgwuGkFWeCBreXj4CFNptgX0dx17jpa+WvTZFVP2nLgA5w4vg8zbe1AQn0dy4efRcc7j+Cu61PYuvUVtVSlYb/lRY51cOekMd1c4GMN+878R+lXa6CnSwo2WLmDV/VVsKnuJu8lU+DaFmlMfnEHH2rpgNNzA2phH9AfY0hD61NJT0sZ57sIgL/oDBarPA+e/9JB/5gGPNkgTXL5oeC/rB0uW+6nXV5RvK0HcP6YDdj+8zY8nWmOKdvMoT1JiSpE1DjZWpWiYDqb722DODELfDnrBs1oGMblV1dggYgE4PVIdvXahO/2JUDzUANs33AbXua4YYOFJDU2nKKv3UG4fdpEcM54zvzXgPW/rMNxVSnk2JGA5Vkv4cT3EvBpV+HXJybh2sGJcLo9hnMcZPjKmAUgHDORRBYs45va3eC2axt5Su1HQd0vPFNCDZrf5mD/wVFs8OoxbmpOg0Srt1wk/pzmaj+kz/ZJrHdREQIMRCBgKBynu0VjmIsWJ95O4B93rvH5D7XQFfkYIbYK7f9Vwq0LFrDL3pEj6o7jvzU/+VSuPlqYSIPhcXV62xeOY7AGJHrX4zxBcbh1rBt0wifg+voMGKj34wi5t5BTcpCCnZNAJmIZlQXuZ4MyPTh9CsHnbgS3+b3DksnRPLYjD0bKf8J3va9opeRrEI6ejRePq8Biv24OFiQ6PUETL5TsBGzQ4fgkI/i1vY3HXrqD6qpOEGCpCVPXWvG6Uzv4Qk8DvXvsh4uCq/CK1jZy9XSGzU8lqLLrNQkKj4VR40fB7qN/SVMolz1b60hs1lWY934af1mbwyaKB7Aw/xO0FCtBRcls0B8XDOX29awR8weDcoP50Uo3KrgBmDTpDZy16MItG3XhpeEQbpwmw17NsXBg71jILathD9u15GLrBu7hoehdv4U3VhjDCYv/cNF1FbhSJc1mT49SB2+DaEzCR/1BOK0xEpp/NbHtCg0YipvKSs7lpHouAsrkVtONGf5Y36eNt++84PUOkpz2pZJmd+hC9KStdLMJaJF4Cn49HA2+rcgn9iBEfZYlxW3j8dcZE9C9LgTCFAJ71iiBx6/jOPZvEM2ojyJtcTUcf3AQQr8dQ5XPHlzgNhKOvhGGz5GalBoWBZ3Nl8jhv6Pg/DQDL+ZJw7cHHbRE8iasT1IFuQ978Ni/SezbfxSarhxB6eFCuhxkRsnrRPl8wEMIOT2LP/uNg7bcpWiXWQbvI0fj7NUj4UlmChlENML8+C8kf8+axe9PppyRDFtffePAxDpO+6+Bfb/3kqJkCGjeaSeTOy5YdEQBCi2XcsllIQh81ApY7MR5LYizvRVoYY0wDh57D4aqpSAx5QOcM/DCDQfk4aaeOOoEGNDb2Uo44YcLXLA5x+YbqqH+dQ35jPqPHLO7qLrdGK7m9PBjlQB4NxCJhZmPScQklhxVdmBw3ijyn3efi62EsGLfaHgS/wQPZOTxo+YsfntkClrr3+fkhQ1U8HMiLzAZAIt3Udx2TxMOPX6Gk0d6k2VxDvzNy+exr1IoJOc7/dH5CFoZmbip3o2/bRSBa71XQTCnh9esN4CzApmUO94U9w6cp2W75lDBncd4KmAKirTowkh5EVjtsRiLNr+FT++KIGOTPZRYLwQZtavYphzNTSUmWHJdHn5+TSQnj1S6MpLhjEEEovcwmd6vhj3rt2BE/ypIxiNQelkOJiy5QjsEd1LMDQk2wFn8etRGzrGK44MdzH8r9cB4RTas0NEDcUcNHD2mjp3VBll2vy+/VownTZfHZGA2QM0bumn87zk4b5o5jJCuxxHWS2ldZhuIHvqIO1VOskDQBso/b4ebPghhU98N1Pe1gN33foKueA+5Z32l+vf5WGfszquL5tFKHXsS3mIF3X9zyfe5FHwweE1VujJ4wE8chpaGw8Cb7/jC4DN5ydvywypLKE2ZQnmaWuAYUcg1lsvg9NlF7K2tihXWB2jl+CLIv63Fnt2VLLsSoKjbBN4VxpDHweksqZYEP+ZdB42Niay++DgU3dWAj7tDcfWSMBD0IdicqYpBI5zB+dk/gqJ8GjHJnOSyl1N9QyEo9Jzi1r35bL/WEPoEQlBjmRz4WnnRrfRVPHfyLhAXOkYmKll8O/8NCG/MYO/DUyBhuiTvF9UjeYcm6uhLBSkHHZy53gCCXS3h8qN6Ctf5C0YoBpuxDZY8DGEs2oQuFrfZaEoUvw6Q5J2B+nhx22n2OBXFbYsnwcrty9lvQg8Pl1pRzREBep6/EcHLkzzKV9GXGb18YEQdLpFXgAUdmfxNvYz8XfPxgI8iOVbb0JcNrqB3zRU6oybQrd++qONpA3IbjuNZxTl4d9YluOwizL9lx+HD/37BkIUuO8wyY4kvc+HPDy1wzMyA2qz1/LHoM5wO1YWJqx+TusYFUhpypZkeG6gvchcXbdKG9rnaUO0ZjGXPskBTbS6q/VmI7zff4lMdftwR+Bzl/ihjU+JIGDTwgtVjE/DrnUOw/chJtBURIcnwRvrRPgXNDlnQ1kdO1DpRArTnfoBFo4ehOWoXDVeq8eoLL+CVnjB0ngf8ISwEeWuPYUaxLSxV2A+bjYHCHgfjQOUDVnhkxiuUNnFLaRVlTt7FdmMMcMKABCStc8EDuy3RvSCXxbdXsrOiNOmbieJ1cWUY83ULXVo0lR8lTYaFa8bCOPVaHhOjSEbpzfw95wq6/ZaEjWpxMDxuHLvldVGyoBEknRSi8ZZFEOq/Dpv6UjDY7CBmdr/knFhT0lOX4vyIBIq4KgyhOhtg0coyNJf6Q9pNEbS4oh/3PNPEZOmVXCk5iFfHeWP2wknwo72FrWadIhOvYT5zXxWfH0nlLKmLlKL9Hd9lZuP5T0G47YEQbBinALefvqJXs8bRlnk1ZDy8HSx+y2Lf7VjuKBnJb/98h+EyJeh0WgqXX8micNxNGBPbieG68vT6+jEakjXDJlsbmH/zFh7fawkD5TvxaWgFJbiIgvxbNXrQOA5nHgfuSbuIt67vxzt1G0liniVYL5lCq0J3w75fivD3WzDVvnflgtd36H6eDNbfkwYFhUg88mEs3BDfTecKqijs/G+Ku/6adW9e5U39niQlNZedlxvhfw/Oo62wKZDnDIbMBJofk4kf8mIxTrYHxh3KwU/SnnSkupAX6zbACEE9KJn2EuavdqO0CZNRyXEXXnH0oPN3+sCksxEWHTlDjl67qXfaBNAYv4gNT/2lkV4P4aTVHO5RvMzzl87ERSXrUFE7iOITfFFwhQjc/2vAHk/66d71ahI9pkQZjb/w93QVnpu7jITU46FOWY3fjbeDqGnHaNgjmzdcdee1qmn00rGXJw1cR6Gr/my8PAHqzp9iMT8V2GSmiyodzpS87iZW9MrwlOq/9Hq0FOnErWUPw1EgndiJ1y4Zw+2di/goHuPf/W8plVx5amsyftglg6fN2jhm6jhuluyFvfITwdasgwI+yYPk83QcEVqFO+PH0ddd13HB4ge8d+JOaD4uBxuWqILx94doXF6ClqeGyW3aP3BYbgUz14pDoLYrhQhWUVqSA/S8soKIY+dwfdZ4yPASowU71pB5XD7/GrzC16OOwYowO1y9K4MPnNCDzS52UMqaLGlYB8uix9OZLWepyOAhpJzVxZ96vjh9zHq4cU0fhrcZYE2UHj+dWsdnMy/Cm+RuKjuzDLUFJDlwmzeH6ffiwLcR0D0tC196PuIPh47AkhArnnbLglb+2Qz62aoo6juRZeQ9IOCOIBjoPAI/jRk49sIvOp30BteK/I+V+1AEQlEDAPyP7BFZkZkZKWWFUFEpJWlJKVJCUVKKJA1CSVKiaGidUkgqpEWEMpJKIQ0io0ShxX2J+yKfIuQcnARyBrMh/p48jV59k+9fmQRrn+ziDZMzSUK9GUe2z6Jc7SO4e6Qz+G5OA2+lZrx8shZPhpnBbrsFKDlLibTPmkH0jBt8z/4RbByzHhaFxDONqqc8k/OcMMkCaiXWUErVAXqZIkezb33CdW2/+Mt/D/hZtA62ZcTyePkB+OhEYNE7Fk19DaHFkbHySTY++fwSJ28cokFbLf4mtQPcsnLpcYU+3Hrzg3at14XeEU1YuSoKx331pC8vnuCK8U4w+XMDdIpFwvBjATi/DfhqUxefsTkH+9YbQbjRbnw7WQSGE1RB5+MxSr46isetmgw2Dz/ScHImWoTk0teMFu44E8pj5J7DmJYd4BkUjcXHrHnGb0kY+64CimvOcPnYarpfK4BPmruQZDbgukVD9O26El75FgEPEzXBLlIMz8bcx22XpdCA1+Dv2lfULFhA29beg3WR/jyi2wN+v7SGiw2neZfnchrWroKBiDJYvu4T3mpogLS3Cynx5wG+fcOb5i5hyNG9Rgq/L1CorxmKNc9hVZ0sKJB1okuGK3iPxhk8nDaBLbaYQX7EPFp4cy6fyJ7CDhdWUv75rfQaHLHMYhtt9R9FHTlxVF4xGWRCN5PK6DI+L5QG6ytWs8e371g6fzWmHWhnccMePHbuGE45OBbeDBxlewcNfHlVFvvnX6adJR5sn++Pb32MIffyVSoQnsfgYAFKM0qx1OYi++a34OsvW+mz6WUI8hMAiTOmaLf3M7a3d8L5aEXQVQmFw30zMLDCBSeADB1aVs6SmTMw+XcITZJVZNOgPnpePRKagsUh20SCM32UcGRBEko6/ISn+xNJ7MZsuDMBwNLuEKUJjIHuWSNQ2PQ4gMEMPuPgSr7JCzHJfRlUvk6CmLp0sE4ZCwEhEtCyEfDz/HTO3B/BM203k4WnEs7paCW/EnO4oCdA8UnH+dREc9j0Ng18xz+ktQ9i4XT5CTS5kMMr0v9RkqEAeeoFwa+3x0jlpyoczGiCMxucuffvZ1BaMAfmS55hCTsxkjgij7lZx2HcjnpcmiACQS0qMO35UTyzUZUN2gppUlQo31Kugc1ehXzvpj2+0FHETSGqoBGiTkdqXfGevwX1P9SD17pieHXrNhAMMAQ0KmUfh/1Yu1oetr+3pMH4RDomosJh/3lig3w2j9xyjqj8DlvKRtABTSHUu6cILxel0IxBe/DUPoLy38/zXvUVOO/ge9zN5rxcoJYm+j6kgGlyoPP8PuefeM+eP3+RhXwqBr3roMXFMbCt+hAef/UTju86Dul/JGC7/GkOeWsF+k43SHH8XHo6UMxn1dbyq+JAfuj6GosWDZHpdWVoKTYDh7BpfMXwIVyZ1Mgnbl6FsuetsDllAXzwyuRNXjm8bUgKRvfNIjGN/1j2agXetAQ0MWrl4LmeYHTOHPNfXWNFywh0UCdYVKzJzuG3QfLUG/wXK4f77a/QhNdzsXyxIb+Y9gJn+bwBN3UF8M4zJNe34ix2SBXV6h+DsbwFmKYs4LOh2bzSQ4CdDOL5mYsSiLukUanmcvLZYQJX1yuRg8lX6m6IgvLsU/S705vdAirA/u5oWDV/gArN3oFe61d6PdICvt3pgP2SglATm0ehnVrc3X2bLcuF4GSuCNYYJrPRiWvcO9ObJs0dRr3TjniRAZwWVrK7qhPsFtKE72PDIam2koc2i3C3/w3WU50M6z+OgIj+ECo1SIXWq9ZkM08JWi7mYtV0e27p8MdJUulYYhBNfsv6IT96Po90O8U8ZIO2jbIw7ypDUmkgrbS7yor/VvH0Ig/qm6lMrebqEGT4lwXt9EmiTBd6rwnQPpVEGD29GJKE7TDAyglyDbrBvkqDvZZ94H3S33GBvAj0C6qgjmQq2X+Q4bN2RrTQzxKNvofS++HPEJXbjs12c9jz/CQ4qVsNsf9+osHl6zA/yRJHNBVCUPY/GDs9BOeWvYKJS65SfbEeJOY50EaJl3Dt1y2Sk7FlPZfjOO7ICpyxppwrl8/G544Z2LBYHa7v7uBaTqH/Zv/CKWEHUEUgDBpMBqn24njsNe1GM+kANj/DUGVQBTeOb8QSvfewc/UxOPJnKf9WMgV48p6OWVxCGZlwGryiB8en3OHz50TJZdcoLqiugupf2ngysJ90N0XRgSpp9DrqRjWx46EtTh1tqio5wLOBdM5LgWenBWTrtNFfu5f8r/4ozX8gTn5D8pB6XJM8yy6gCKnTK63bmLviK2+lYUhx20rBt97g6gBlXHFbEn6WROLcb22Uc0STswoDuLBCnU4mx2CAHsGJsXJ44qINxd8whk0OM8FwVgNfPNoElntEaO/H63RBx492//yAi3sasTIoiL+9kICl9e9JND0BvoqM5acWa2lN3VLui4lGxwVWNN/hN7dumMwr2gkSLxtAVKUq+LVcg6TbUbRqYD7NOZUCo3+2cI1wH/VtFQfvGBnYGSWNNdcvwtILIhiTaoxha5tAdfM4ujMhH9KOpPL6wBb+2aoPKw1M8FV6Ew85jWM7RQN8d+Mrt4haQ8edZpQbfxtaq0/SzgFFGHyqCrxrNE69EIZ3N4RyT8xaPiAVCs8Wn6DYY7IcJPMYb+5XA7lX92GjcQDWLT+DB2yDod+3HJPsEzlj/i92blTnuOholpmrDN/eSJPb9WaIUBfm2xdbQNmZ2fXTath64DTvmCeM+zeIc7+VBXQtyMTcjkiYuk0Myur08EZBJJ3dIQtvPMwgvdGWs5ZYUbc9QKDkAYycu45WFV5BRcHV1FCYC+nrxmDAYsZUPoyCb5V5zkeEBrtwzAiJoUojFZBt3ADBxTW09HouPls9ExKTLpBD1AGMrraEGNEu7Nr+GeoCJ4LRQhtYafgNNov54LeKe/BweT6f//oNWnZbwdVXZiSa+o7izKZy6xJvHtvfRie+fie3uGv02lyMdllfQI8eEaBNNTzzQBCJG17lhed38RPhRvpobAv76iQ5xR3Abqsm3e/QAo95JezjxdzikEfncg6CndNmetTjAvM0PkGV0RRUrY4A7yxx2LlhLleURGPTvPMQLLOZOgvW48hkRZ6+NYn751ZiwVNHzBotBTZJAyAUsQa0TwgTqNdz88w1sPDIV5iUlYr5D4Q5c8cePntuHLwdJwBKK/VYYVgUPmq+p7H1C2nvGVG8dDaScvb/BfS8SprHpEFEwYnGKbXinSNW5Bg5j9s6d7Fu1BxoXXEXRrAUYpQ1CxnLwnj7eK7yIrr1+i5ITHTk3WUXyCDwFfUszgPhgenQnTYfNlsqwROBWtbSn89DK4apdpM4mtb38QOJL9BrtAgsZbOhO1kR/LOF4cqLvbgu7zwfWz4Wfl+9SIKVD8ksYTMo+vXxabvFdHFBL0+x0gM6IoaV9cmgaSqN/6205QSDdvIYeAvR/81AnZoHqL4kHV33K8F1mU2g+0+XnoYk8/rutZz6ooc+333EtssEQP7ydc57bgWin6RA9945tk2NgD/Jh8ngqT87/VBE0Ya7OC/LDI5vYbz3W5wO+4+Aj2TJOUvK2ahYjk/HRbBWnAv5hF0jy0RmTYMEVv/5G47njQZDQ2uqCL1JoWclOazYAO31tuC0yd0YO+EdVi9YzT8MHsGys+OgKH0pWe06SwKaquj3OYkzkt5z1L0ibv79i+sTxtGH0xU4KdsA3ilooLWNFyakSLPQChsUTCIca3+bv6s+Z+lZh/Bd30WWrlKF0Em59FVAFSw7NWhb7TTSnpGFzSWnyFx6AX802gZrrvYjbxcGSkhll/45pKTbjBd/qxOF/mU8rIeTdN0x1vAeqnxYi14XbOHg73OEPvfJ+FMebjiVTTpO6whcykDvwzt0+vcJx2yQoKHbE+Dd5GA4rRwAPfttKdw0jdZv1Qdf1UOYp7EU9ntlgXONOQX9GwNZ24cQ93bSuzdDrCRyDk9bFcN4exkyWLmePqX3w8OMCH4y2RLWlpWDi38BtH1PgTem7mCYHoYPLyaj5vwCiE9JJ+9pS+GUnTismAjcLH6DAt5/xo06I2i6WBebhtZgiGQ92Zc4Q1qPDb9aPRkcunfD5aI8XmaSRuKlVyj80FLofNaBun72vHedFp2feYMthzTgkU4sfrSJJcPMEexUFUkLjp/EwDwRDpEzpYLuuWhl/g8m/2cIYRo7KP22HS7ZdBavrznHF4/9hc4z/TT0CdHPpRb57QNeW6gAW0/Ogq0fD+PKPkU6VPcfJHaFU2nOO3wa1YN5Cbmkf9cEJ8qNgCEjwk3vzbnbRRktru/lub7usHBEJp9Y9Rv+3VkJ54a/QrcRQnaUBSdNecclopIQ9sueNRUJc4yzefq9Gtby9sU9x3zwVvpkqFwcA+/alei7QRIaty2ElKj5uKLLHBJ2SKAXHOWrjqq8KM4CPKZlg6nNRFq8zpQcF11gP6GZoKQ/CxWK7PG49WXqSXZlOKYONZ574VO2FVummaHmhAv0YNEq7r88hhIPZ5Jd2EYI1R3A40sUIDfZgZe96OIt6vlsVFoCwu73MdL5IPqoueKQajS8btyNgVv1YZfTTLzW4Ia/p/jxpyWWoPY0BIb3OrIleZNzeT78WN+HtvHaUKjRw9+ePMXno4fxukwoh5RPhPqUaj5xtY+GlrvBpa4+Hr/JAD5sPoRFKzfwdeUo2CUXywM7wyh1Zya3BJ+AG7tGwfHWYFAclIYsXXn4vjgFk3z/QsfGRg7rqYDLLZfg5qUEvKSfyE+MrkC5oyocdNbm05tDOOy1NV35dJR8z2hAZEchTV6XiGLNW0Bt7Hl+PSgM+e8y4MCS8bDpfjs6d7ihQLMHcvItMoxfQg0Ht2GEVjqrV4vBOqkH1Oj5EVHdhapvivPFk6awWHsI/lWMI7W8EhzeUwA7No0DqbOXIe+rAPqNr6a6/Vu5IyYRlFc5caZcKBeYv4eayVfA2VQUPA6NY78NWRyoFQg5J1bQ0XAzvrvBBN8P18OVfE20+pCK4YtkofauHA1FWJAJxHOdnwYnpGZBtdUs6j73Gx64imK1TCcNvh4JdhXC/DXkK+5EKXY6tZtNS4tomnUPTI9y5vbHfbji0m9WWDkRZj4s56b/1tOqa4BzjhVzv4cCPK8Rw8GPqlwvupquNW7AxOsCcLJpGLc82MilhRq4JeEUqoukgpS2IGw/+4NGRr/hVt2/tO6xLbTvSuH2i0FQZXgP912+SZci/OhwqRwuyZlKFk4z+MTOzfTDRRbWJIuAzrpUWPLWmPp/hYLDxi8Yt2wvV17SotzwQ7RFo4pelY6DLv1vILamhb/1f8XmCWHokXIUTm06TEL5Ayyyr52M19qyfxrC2LAtOGelOn9vS4FLc57T67W2YN8exVgbhgUKk+FVqzlfemYBJTInSfe8CP2XJUm71AfZyEkVvx/ORhHHfbTKrZmDEtrxkogSFLvW0nFSodJ0GZY1OgvJ9TYgXhuLy+pGwAm/EzTqhgxLy6mCYoof6qpco7WdshTDV+C1kAltKYnEfw/ucYbHca6XZtjjow8XbFXolU87uR9bzH/3+IBR6Q7OuvOK3N4W4NKVo6h09nhYOEkddmaE86xgAZgzZilciinHMzvVcb/bI1DVPUd/bRB3O7hRQJol7AlbDtusi3j1znA6H5yBrg3+PP6XH3PQCxTwDKStUx1YQ84conYtAYHZKRg+fZhTLFSxa0iZb/ruocvK+dSYIorm+sOU/WkU5IfLo//ajdRk4MsjbQu596UeK3TOwXdbppHLtVX4aMQwZ4fYwtnMWtoaroEaSjGoLFaJ8/VmoVL4K1B88w5hdCeea9dAj2gF8C7RJDvNVbxPMICd5tvgtvAEXJN5DI+eWUVzqRENnfv4pZMJgFcn9ahr45nfUvD+63LMnHEA5kfXQ/nIAqC5rvzqazXNK1aAQPkbrDE5gR5JV4MkPOCJ+iHk+S6W9W6tx9P3l1PnxdtwepE0rHwZgm2parR0ZQGO3FNGrRETcHnrKd5cXksjZWdTkcBu3PFXB+7t0Ie4yBKIUwynPYMDvNZXFR3F59NH31Ba+sQFYvZkwQphY2jo0kWfoIt8tyAOd+VL4Yrikfi0pYutThbwkUe5+LJQkf6unQCFBWYoflmJxf28yexmJPRvWgDr3w/wWbdoNO4qgv+2z8JStZEgpPCDszLtIPvMTFrvvwKmfzaHVtSl8698YM0yAXpXJcgu+6VA5O9yNJhnwPFzvsMpA1e8a+2PZTGzUbEuDEzbR5H2tHB2ax4Bbg+UYeCWPDadKMc3M3UoansnpQtr4YitopRiOw7itK/A8ywd+Bx1GNOsgqhNZR1u2pmGKavHYtWHjzBGXwGiHpVStkY0SbnZgluELx4z/cOqs6thx/1x7Fg3Hf4b+I92bNlHYROt4GPBFhYoMIHIkl5W2F7KgilJWJceS5eUlWCc4mOWmn2B5jt3oZ4SgW+bDrgec2CpSVcwJXoZRvsmYHlUAccN9XJO0SHE7uU0QV4eCgungt7n6TTG/Cp7BSbg7P0plPf8CHnEj8bDUZGQKmmB3aLuIGooArs3tLH7EWH8tdyfu4wzYb5eC43eoQ6VfZdwvK8M/Cf5gTyyJOCujhhPl15MZTtlSPPnWH5zVRHHu35hPxMtuPZ2HJ94PZJ3n1GDdIsP0DS2iyK+jmQRf28+JvQQvFd7w3nvTHrhMJbH5GbxlVoTaHzjTnYhh1BkTjCV354L7u3TIftrBcm9n0XKzp64Z+wr9MpXAgXTPi4XT2Lln57wO9uIxnyzYjvbaRDr1AWLlIbwuL8YFXlPgNoie7DrXctCX3tA7MYuGDa+wCntJrTFIIZiVwwwXLgGC8bqwh3aitszx+DJ40HYbvmEdC4EY0aOB+xe8JqeBReh7hXCVVtsgFIKcd+HiXRL+zL9enULtqz5DBtPP8Ykpd+Ya94NhVmJtC54Amj2XgUesweW2vjj9rd+0P3wMopbzqF3Val47l8jei/2ol9gBrprVEC/PwKsc2ph67xR4J5dzVkJt2DT1krKmT8Rcm8a0t5DWvCnWYW+uB5hg0WjIT1xMRlE1UN3nSOnTHgPWfuWg9T4SAg+PgoyDWfT1tokLLkI2K0xBWe6roRX55NpUSpz6BZbDv89gTN1tcDbZQnNTvCFP0H/eOfvfFYOf4ULHR/ivtiHoGFhQcJ+WuwfYAV5nal0L1MQ+wQ3Q1/mHChcqIOOTs50syYS6qOncMIEUdS+MwLUrHvR49VqnBfrz7BvJa/OuU3j9Pr5Q0wd//g6AdZby4Hl5/Hwt28ivx/+Da7PN2LkHANSCemgYxMe0sTO3az29zkbLhsL63cpgY/kcfimtxZmrXGkCLefbBzhj0k+OzDa8Qxn2QrT/nd/0dx+JNSXDFC04QHUaw5F/abNsNfKhzr7eumchjhkVq1DulTBcxNGwb1kS8xWkOdtJa448fMtfCsqhM3r1TnV6TNNcLxLg3Y10HTSBs7a76bXa6Wo6Fsq1l/4ziF/8nCE3Ae8lnSaBM7tpGc+b/m6+ggYTR/or1kq7I95Ao6FJ+nw2nCaqDBM1g4RLDM3gMrXNOC0c8JQcV4C7VL9AXJseG3dGva2eAcbBKzwzr9OcphmA2WHXwH2msKocHEymRaAyvQBe1Pi6Nfzeqps+Yrtt6bj90cvYFusLbe+lIPGwz/AxiuLPsqFk8HOBO6sWITnzFLgmflMclkZh5052TB4SwGu5xbh6r22nFr0EaudZ7Njlhcq+Puy2ysVMBnzDJt7LlJNwFQQ+D6Rb5kGQ395Di279pL2dWvw79avXD1Bl4JznLiedkG3rAZIF3xl36kedGb3MPcbBWPcmiaYKDcB5/d1UVOaJaFAF3y4JgzjhcQgsvYlXthkDydHP+CcE+F86UU4ZOuPgNB313GLnR3cLDKBNONp+HjAhZ7dfojGRXNpdYAi7C6K4UItdXi3PpT2i6Ti/SwZkLWbBAF1kfQ9WgSdBM5jc9cT2DvmH/prK7ClbwjcPMpw4LIBrP6uguIJs7lH4yz+py6JJ35/ofvCC/jlpmu0aeQrcrZPh1XHZaA8UxQ0AufjhvM1cPGpAS1TE8GD+YR/n37FAqHtvG5nKR+6aQXxveZQ3NBB/63MxZV1xdR24w29ntqC1QeY+VAwG2VNhTeHpkCosgZZlL6Do+0W2Dt6P541s4HlsjOoyt8b+hvU6I2iBAWdNYXzfcdx4e6ZOPX9K76wWwqOPaslpQfZ/L3vLYUXPeCLZm14Vk4O9ny4SJbZYTiq7gL22SrTSL0xmPCxBXfkMlxXuog//93HGwVK8ER7D8ULP4UDuhKwenwm5bvrQERdFGuWDuODpPk4Ks4FRZLV4EyOCKTZyYJfxWyaylpc5q8M83Apdj/7hiM0YnmD2EJqThSA0/kD0FVgjkfvDMOnufPpiu5p+D4gQhtjF9OjtQ5Y8E0cDxSNgCHfXnrxUogS6iJIdY4rj3wbSprboyl1zQ7atMCZRBa/h5WXR0CxxDpaHH0His6uYNsZb+BdzyX4dGaA5gpI8bKtFryHvfBPpw3ccpvFhgVXSPW9EHsrK4BUkxsscnbnCf/28uusFFpiegYNbkmDmPZLEB0cjU1DWaRnFwWr/PZD7rJ4ihlXBaumJYL0oWnkraINnoteUZuGEYunnKeQ1CL2KVhDoXsFSSToKQ8P/QdBS7voUqMStB3PBY9diWhxtoNO27mz6Nf5bBkfDCrVOUj5Glx6djaFXyb4vcwKO9cVwIyZs0FzdwYHPq7kS46aFC59CqV3/qPtvbEgWT0apgZH8HMnMTJ4mUDH54Sif+xqUsteRaX+djRP5AskGQvhZlNbeLqwHSSF03ixoyUllORDjuIN+JTXyKYN6tw9+ga4tH5kP3NBmHxXg9U3X6HfrQ/gYMUKHD11ClVlX6S2EbN4UeYjuOeyCJotxgOeugczkhby4aaX/M/dBxqsM/m7qBrMfE+o7XGChY0NqbFKC/YLTePBtWWoZ5sFn79X4lLrZij8NAwHzGxZ/IchncdTEBgjBIZzdtOmbkFuG3GFXzQlo+bTdFI/PwW87j+E3kuB+O1LN+xNRfh7/C12NGyn2+IZtMhdkn2gELLHHGQJLWuaKP4Y/m6NhNK7svDY5B4cwt+44e0wz1j/CLWeWWFhQDpO3uZBa7Z5wvkQA9SUF4KehUcg2quSR0Y6061AY3o6ORRH+GvgmBEtrOqtx+6qCfzo5FhYJ7sQouMMsG9MNwpm1vBSO1sUHqqG9Hgn1EwXQe3yc7zqmjHsOVPMMR+6ebBBHuR3PsYlIxXB4nADCMuboMVaJThvV8XVW2Rg+N5dDjvaAaardnN9wH54UtWJZleRh7V2IMjm4Wz9WNqQLwrqdVUUkOgFCV+ekc/AFMoZ2g+jZHdhqdVxmPD7Ax5d+pAu1StDyZFCVNcSwE2TYrj0iT1c/rASF4wShjfJZSy/bBT05k+mqUKTYN6W1xRvL8U/5S/xVPH32Jsoyc9/taK383mMTswjvZdzwGa6PqQrIYrWjeZv9cvhZNILeA7L6YPgYxgV1ozPG4PJ/cNXnr1SAvIP5YHyjimo6TaaSuZ4YqP1MDqPUYBTYUKc/z0VH5RU0P7tOvAlvpxMbujiUIQFsIoMjzr8k8TuPUCj/BrO2GLP9T4/UGW1LKS1mHL9x5V0tMiVjWe5Qov6SPyUzGz9SgjGlG9iX6cztKpXD7IsxkPbN22Ev6dZdG8k2P2x5cw4S5pzRx5lNLRZ108Z1Pong/K7DzAncgbXebpQVmgrRAbogNrPKGwe1IDtZa4g6SLI8XckIAX6MG5bEo/LPEfVc9yIOj7iNOGdKD2piy+2S3Os+FdU+2QEXe7H8cWSOyxctQHHB7pDkwmDd1UI3DYCfLzXjV7c6YRGVgM/x1lUsLkTv22y59EO2nDocD8VZ86k7mm3aHedClkKFdBgtRrsv3GZVyjWUNokT44X+QgLH5jR1WlSNEpciaPmxKPZ5H8sbSwDfe4doNTqCin0j409K9lhlAneK5vNM3/4kfiUKrYdXkOlX3WhuPUYpoh9oWkt5XDAZzu8LLkD1mP7MCdHgzbM9yazwLGUvE4E5BK7aKB7M/mm3CZR1U28TqYd7xlm84MD27lBQYuX5f0kB2kbGBefRDu056FnhhqULQ2gni2LKFM7EurcZ2HNnhdo+bmAkv+ThUMBqTjSMYvuvQ2krr5EnCL1jY6YWWGlfgXl5Q3gscMHsMFUBU6O7CB7qxqouOsN1lZ3UdTZEE80nEXl3En4V+Ib3De/SpoDtvBbfTTs7E1Elb4jcNN+HW2vs4T8a9b8tzIACr83Ysn4Kkq004e4v1/40BdpvlEbS1NFdMAhz4FTS0ejQE4NnBrajjPuPsJ9taPh9gFbLi/6i66+nrDMKopenlzIQfohvOySAD3IMUS3NjUafGUKe+VaYXbXT8jQKgGp9LHsU/wRNwSdZTd1C/IZ+M0HFCbCxWOqsHeBPJjY9uLuH1v59/Lt4Go6kxNXrwWhHYPUXZ7Flc2OHDDOFoKqjOF0mhfNWeUKs+pd6Hp7GZadSuQdvQhlyjq0rMMQUwYUwS5rHJT0fIB/P4ia/56hwLJR9C4qBJVe+2PkwizKWB4Mo47bQKjWeNYQKQFVayNs2noXJnjfo44jJ3Hr41M0448qTLbN5Qtqo+C6hgIduPYffX4jCGfX7qDxHf7kP74SY/goTM7dQUJrFsF0TxE4P+I/HnFsF05V/Qs5TUvgRMBqvtyTCdsf9vNgeBOpqThRn+Bo8NloQyt0jHnJsTiYIj6OXgbLkM/FMXhAx5m/3f1DPb6XITXRFB5e0aCrahNRJagb32d486zuuzjzsxUWT9nEZwf18JbhUYz6IQcZUWaQvFAChLcnUn6lDEYnnYGMR194xYNYFmuYiJXyylghrgx7zk3hlZuvYbFcBaq7XCS5B/qo824rjlM+Dr0/AfKGlPByiQTY932hcaEa6Csbyx8sNKD54Sac35NJDerdeKDoEGXbq9OTIQnQNDkLa0YL4s5QQKPkFKzatwctgn/A47JV4DVXmyzdmuBFDEKd9STeG7CXNBfKk/X7AE7Lm4i5sSlwcttnqBxOh+G2H6x0cRKYy33iCNsLHDTwhHp2hPPzqEcg7L+MOj2F0N21BD+NMWbhMksY9caaX65di5U9ItSb9hSfGqqianIVDo3fAOP2yYKUhS9+t7SAjV+P8pKfq2FJXgA9u16Oa3XdwOFCBL0K8ydWD2QFL2sqHD8JBN86UPPF1/yYPFDDZQ2XKM8ktcwruN8lEd+e2chT7LS4ZdNokD22gFb43od/98N5jddRUEqeA1orO7glbBxvow10PnQlxRlYw22hXPJ4EgfCHaPhnJgpzC8MpMbqBVi5fgL9m+WKxuYVPEVeGeIn9FEXbMSNYuJoAivJw70IAnP8YGXdITZe3Ei+YrXw6qIyRDvvw1HfhSFnZxolflsMp3oGSTR1FjmJ+PB5aU9GoTVQcEUCLCWnwf6NgeDUFoYi3mthm7crXpg2gXbkHKKLu99DcrAPJn0yhUjRXk499Blf9kph6tgHHNbbiDPaXcmp/yPuixnDhyPCMd3IBPTHxcHstxXo8usUmTw9DNOzinDKxGO4Jf4LtVpewd19+6B8pxa0+/wBA7kE7I4WoOwsB/IZ0Qpx0kao/ugyWKwRIrddqRAhpQtGv1Qw8tQEKDpRQlJb1CBQwRCVjnVgaNpl7ChcDa5ngzh5pwGEZ80mC9Mr2JzjTO8eOpGo0xU2uTYX0z+t4OcHy7H0QjBZ+GvC2MfnadeEOfBsbCnWV0pybccwBvuvpwIFT6h+doe8RN7jpCsS8LhCjAraZChRMYB27g5mwTe7OXtfPnxoOowtewvQYukR+BcjDFH9h1Hh0Deo2vCZUoVr2OFwPx87JUJZ7rEcfWwi27l+haesBdX/aeDg8qMU5OyPM3truHnjcrDfWgs3Fpag6wYR9OhagtkVyuDcVI8vNP6Bg2c3Wt07zo0ih/HWqkz6s/Y1NBWEQti6f7zdTRumaOjAYYnbpGQ8EjX3v0PRk20EXWtY3DgOqjfeg/FVshi92wwcRwrjhb8x8GJ1AJ80dcOgx88gPFsI/C6IwsOK19BpfAgcs+TgwOxySLwoAOZtNlw7MgM+KUrQHOcJoHR+DvlUnYRNhVag8kASzGuTyGfTIA/OTCCl7b50ecwhGnP2KU1pGqAu9VxctjCM5fbZgKBeEiYuCsZgk3gY/CaImgM13FXZw3XLH+CNeEGISguC2CZ5GLvpJENYMwkdUYGB5k0cE2lPh3e6c2ZNDaan7IeGZn2ubBSDrjH/oKDJjdRXA6q0bKMGyT/4VqwA+s9Wk554Kd7P9qeMzepw/9IAv11xj2ZrtnCPeRkUX3XGjA0BlJW4l4XsV2CTyhQwiDOE198D2OllAC4d3sEzSzvB4601mEzvRi0HxLOrlGF6+378WyYJZ+tUadFXc2gXbSV/C2k4nLOBjIYk2VpkHrZbzsLj3/s5dIsppF7ewGMW7qWj3wShL2Yrv70diSHThPHeGFVQc/tEBi+C6HGNDVTcb6RbG+zJaJwVzSp3wo/b9kHEFiseWRxLesV7efoSQ8b1OpDSvxGqjtSzl7wBtf57gLc68sFlXw0miI9HbR9/ElF4A4cNbeFAbhn5TjCie20mYHHLljZ1bsDzp33pl9Uh5H/GJJ2MrF9iCbsuncRZYzfg4p5NLPFuOv/rb4VFf55j8XZnPlcqC+ZmX7hn6WR4WrsY0LCJZov9oYrvLXTJ7hP6rooDj7WRuHfaNHA4xGyeMQJOnI5GXVpB3TeHYH+LCdk0OtKY62tgi4sz3QsvAIPeYhRrs4SiuYfwaNF9bL2Vi2xrSctfboaegAxqExGi3zvvUVrsaG6ztQGF5l5OPD6VI6XMuSymDDLW55OeVijKffrJ2p8zwH56HY1fbQLnflmxzigTGj3zDp1xLGRvB0+ceVgKXhaH8lqvVJwHL0HCWAZSe0Qx6HAKv1fTxV0OYpTuvhXH9DzjmHtWfELkOJQmvmF/H0ko6juCF0R14ESnPJb+scTJda95yelNdN3KmBW63wAky4LaRxnoO3MDUl2u4k2Pr7ROKpJO5RrimAc15CfyAvcWD9K8Nj0yXygPUWluJDUlB1akDQIVTUIXr72wtmiQLhRowEJjX7Tzu4vBrnqQfHgv+TR5YomPJEuODKda1WGwPLefNoTfw8qblSQlq0VvZKShdNQ81trmj346J9Hs/Uz8E1CHIgGH+PaLfbwzjyF89km8IyYLT1bs4/khzfDqezFRfwit/2KJ8TPkSalJgSMb3eHREz2QujUJRmTGYFjcVjSZ6sBN63po1Csz/lVTjatGfKWfbbc4s8yMApOlYZZlOM+M8gLFrzVYEdQE8+b7U6rqfvw59BInFpfSulP67DlJ7v/u/719+Jh0ZZ7TnYXG9LvsAy491E4HS4TojVIqO1SFoVV/LU54qwl7h9Vg8buJrNn8AOyX/ObxHXdxWXQWGoi/wR1jPoNggSFfjlWE4M29IBOuhj5fOzgm7Q65Jtfjqw39vP3+EPV6CZDTjn+0wUUGVHdc5YhkQ8j33o8vBnzBcGQAFI5bj6xhS6mv7Vni3HJ4MM8YfotMoa1WmXD4gyOum11JK/f/g6LZCWBrlkgTYsPIecJ9FJKUBJduNRafpQKvG7TY6+l4/rvHDIKu7YMlbtOwaMtqyB8pik/1LEBH/TZWvOyluK91uHXsXrbWj+Mr8q/5g6I3Nsvex5eRp1l2uQr0iVfRbZscUDDpw3cu6/jaXB+cE5tKWj9V2EGxmuaYT8dz24xA6nwRax8VwQ72Igc4TplR39HnUgLp52ng21MZYN6ixTFzRkHNO11adtYfHr8/xLvT5oKZvD9Lipeg78Vq8mnNosuFQfyrcgRcsPbmaYKncI9aHmzdNYvWnL/IsfrS/DogFs6GPMKLfqZ0NEUJHo/9y8+GHoNe6jzI/jUH5FOE0bQ4CxW7ovjy+Ev8b/Fy2q8jDZMM71GQ6nic8jwPx/xdgUrP5sP9QRW0sdKmZXaTQUvpEB1/NAXsAxZTi3oNHfXey42DohhROEz+ds0sdKMXxu4VwcQdn3hMBsOO9FxectMMzW7thZrdYajUvwMmB90m7NsEaa1p0PwmFC/MEIZJY3eC3fBj7H3yAMoe+MHnGHNsTjUltfZT3N59nG85L+aoYkXINptEcW1GsCi1CWuuevNg51Y+9HMI1rRlY2qPFetpScL+NkmILWyAhhXZvEhxEOd1HiK9zHQqf/Wc82wWYdiTbpI3lIPP923AadQRHKizpCvvIkFo7jmk9ke05P1GnqV4kpoFluDGh4mUU6AKk1SJhEeows+bI1C/5TOPKVyOi4OzccRwBdk8siMZcUW+1GUOtu4O/FR6Knl8+cqqI9JRqEKB793ZjiP/28jXL+iwfuAczCiaANt+pcPIYy0QMvQAUkva2c0tBuL6L8IA1oLV54W4r2QRrD9pCav2dOP0Ww9x5OydCEJZNO2HN+aqLiGN66s586keDoSUkpmbHPQYegAk/qNTKnLkEXOXBwQ6uaJ6OuPQK/BI+ELRulsh/JwqlMcFUlxVLme2WJP9QzM82PqB7SMe0Ikbh2kR9/HXljKaMUMVStp+w+xrZeCVLwwXJjRSllkTHb/qzYUb9+CCqQF4JMGAGq9aQtlZexIbEOT7+okYexew7dR4zpZQYfhcgL29ziTkEE2XhUbDslagzBHzafbxdTTmui+KO83ArswhvlKdByWTrKhx01WKPi0Pz594sNoiN9LRv45NpmdY5XUcpQS4YNVda9i8uBt/fbmO6s0WMEfrNZ0N88AuE3+4tLmRN8t6sbPAVda8WcwKB+bB4NcdUHJTEqRVNVl28QP0+fwJz0ocw3YHNdwr4UUJwym8e7kCZQUjD021gMKgTm6Qk+Sxyco4W9sK255shIrrESTpr0TLN0/FbzWWXJ8sBNn9z1DuSxejnAkuPFhA1l7W0Oe5kz/tiManQfZY1fAFXseag7egFD6+fhkcbh7EQ4ob8HHeOngeV0rJ4YH8LWofF7/oI/fpU8G5N4CrTd3Zqv8gHZhRAC/eb2JjgSdkYJnEgodmwWrtRl5jqgwzshJRXkUUAlJmwBHNZVhZsITWfZvM6tfmwrQj48lVKhw2GynB0qkP+fHehbAhx5UUQ05Q6rpxHLl/BL/+s5xCBw9SQt0wDqiaQNvKaSy67x/cD+4gMeMh9nrjiaZ7toO+5GO02bqaplYK88KM8TCz04/tGoXJf90FWLPRk9p+qnCRTAkmCDbCvH0d9G7xMPte1YGMM7M5RtQLMqKi6RWo0Iu4ZWz9YhLFaZ/i/8qTUNv7L9+rlIWF8/04oMaPJQO1YYJEIF6IG4lTLFdQ8eNV1FToBkbuYTTyiDooWs3iVRmOpHrjEStaTeKNGSkoK/UbGq5vQOm0Jgr7OIaWz2Bw723DocNLMbdgOz282o7p245wx0E/dp+3jaIqrVESa2lZyCiI1noMMQtfwvVf+WzTsIZeBH+GCfZ6+J/XPw5b2M4KL3/C0zkjoTpCENM0DHnKD00QWtIPiSMT0ezeZDx08Tcn152CV38mofgdS5C9cgAc/y4iD7vL2CKxnf5En8dpy55iuZkjBbqnU275DXbvNYHBae30pLMOp+vEY++IZFCWkqaJJ1bSXsc0sLX6RfsaI2hpqQYcf/GVFS+I0NiI33h+RhEWxTSBU/Qlym3qx5KCw7wx5Rk+iUB4cyAEds+oYJHSWP7VtAVf3TPjF5ppOMUxFmUT/7Lr+tX0Z5okWLUbQFTGIItnxNFpLU/QHxuHtc8d2DFRDmm5ELqcc8KoCwxxu/rJNGsqpdUU43KpVNBT/Ypax8pY8ZgQDFwZwHMpBig1pA9jrO5Bhu8FPtQlg8JCbdwVaIv3l7wnhy82UPH9Cxw5qkj72oThzcXPnKQeDjaTv8BQwEgsXr4Mo8L8qLpxBUsfHosZFjtYUt0ExCa6QsocfYyZUYtbj93Enq4R8KXzI/yR66L9v7V53HAEdhmJwbXr1mgxv4SM027S3LMhUNEVAQe3u8LYj4P0K8kYHRN90MFFDHIPrwL5R55gfVgc9wbYYk1lNwxpdGJNynQY613FFnfL4XCVEtSEL4Uem1iUO/qILPzioSlpP+6ZaMMdbpYY6V2LsTeSoPClELgOp7GE4QL4u1ACFvjVcMz0cnQLekMediNAfEYtu1jFcmyhLQgXqbBNnw+9HxfKUyoEKdBHDKP2LefhQXH0r3tAH73SQFfZEhT35FN2fAo6v3zBb4zEqSohjA5KbmRJFSs6F1/Dim4T8eQiSbDSOMz18j38fus4jphqy7O/hMAh/ThwdtkEh5/W4IULN/DteiG4+6wO8lcsA7URW7hhQTW9nLIYYoKvgaW4M1RFqUDqMQWw0jGDiVmVXBWdxw8WjePIABFSWhTNByv7SVR6LeyMqMb1Pnd48rNRcOeWDsYvrIaIpcug9ogQTW1WQ/3vPbi95CPe94/Fu+sI4yapwL/Ta9hmux92Kh0E2LIIjTWWQO7pQJQye8yO7w05bb4MTp4LkBT2mUlQEIdnBvC9G4lc5vGIkrfpgEeiNq+zSwa5prn4K88WdJNnkUHLAdw4UhDObUqmLUeSKPbINN7QOxW1p3rwtC1/ecZUA+j7sZnzLi4CUeELXN+XAq5CofRCrgP1fn7FgMhxqHBSEuXXjIHIJCW0658CqY/V8MYUF9RTM4LXe16i4ss8SDBppeNuExF2CkOm8DtYEGVOowzlYffPU9Q9eiudD3Mh+YEhnvRPG7O2C2DZTjGYEiwEPzmPPt98jOHuN6nj9gAsTwjillvnwD7Djlze3+GZ4zTgzqrpsEHpFg7iMxS6cQOltiiCp9hEnP9fAIx1GcWSt39yUZsqlCgbU7xELOwvkeb7/WlspRwMKrZqfKw9AkJoIqX9IarTVIIX4414UtRmMpz1hgt075ONhRJISByBNxlhcDdVEG95LcczmdqgmupOwsV9UDxDDmYp5kJAmyQ+kjAAYb94PPPZmCZWN9CadD1w1eugZoWroLqpGwUTRPFLzxZQiW2kH7L3QeLtP7DMX0Fvv8lDlkEPW1934pa9/TzBspBr7IVwvt04gGJZfvbqPOUrd5DuaxsYPcKLwy+vRmmRLJrzaxK/9/GBZaGB6Ft7kLpmy3H8B3v4GC4KPXNsMEklFvozV/HCiqswP34GZiWswsd/hFFBqBl/SmvBWZNx8D5vP8tcCgODP6v5461gdpbeBR8DZ2O93R+Om/KT/i4K4KvvBEHD5CFNPlEPYu8i2KH7BvtMWo4Htutj/cV+vPc3j7onfOS2hVNBcFYwRT91wzxlGapTnwReuQ9RcP43Pv/cmZ2EJ1D9RHcUSxGERnKkg0tyQELOHwvmDJLYXCcefBwGPZc74KV7Hr5dO5dTXY3gh/cL1HuQAeOELFhbfRc25NyGpY/9aMxrbfgi1wU6UA7JcyeDc4gSZ3UF4plL69AzvQtH9gMNWQ2yiOQKWFDrTortJfgnVRhGvd1JD9rySFBkEc+w/s4Js27Dq8Wj6JeKEl9e+wnfxE+h/zrHw/aTanxN4wYVuKyl2tHeFPewjJaa7+KMjgXcUNuAT+/MYAtfBdjq+YI1Q67BFjs/jNixG3SmTSXTFzfALqEZdY3CoXFMLOWctwJZl2/8+ZY8bFoXSaNLanm5/xw+GFxFk8We8/OPEuhsJA6jwnWgMmctJeefJhUFOUpObIYWoze0/uorCrO4B2ZKojj2sDtugymw6eIQf46tI6ey03Bq7EaeGPiQHZP7QEtyAMqaytCqezMtbpCE3s2DtDv9NeUeHALTiF/Q0reQRh++CdufemD8R3msLxbnuGP6oLbJDy9lHsfyFV78Um0pw0MROqKxgHz//gN3ngvbWnZjzHuArXULeU1GBZZOOoFJcW3wu8EIw8Ou49vvFzBl9Hh2GbJm5TtG8GpFD5+UCSOLdcfw6n5xCPiZDjuLn9PQwomsfsEWW+5PJ3HWgoOmEvDXKQNa3W+w1XcPXJT8CiXLi3Cm+hNsfV3MN9rbMVx8DDjmfIM/ZxTwg85MXtbQxh2ta0hV4yblfPiBCVkfQDthMs1vF4aHi33Q++UyOPPjEtc2PsTiqdMxbEkjK4Xu4azodrITDGf3uVrw46AZUx3jtJsV9EZGAqfWyJOn6DV6q76S3stMpq+jI+lDhyyU/c6EYf0T0BS5lk9Ni8NPJZk8/dgy6Hg+Cyes74Nn127DbfVxIHZGFldJGMB5hzQm6QFY/vMQ3DJX4NFKIRgXmoiXXD0oNEkR0hR76dqtSbD3rxq/OObFz2ERZ38XwzbfnVB5X4Lc/xPgSXdEYWOaKetvOAj+Vxex+7UKfhooBrFeSlB4+z5cfKMNjqo/cd0EbZj3vZxkEz/zg1uj4M3+p8Q7q1A+dR++Hl3NL0XdKbe9B5TFjOGvxRWeNZBC5kaMwgIqlJuiR/Fzd1NZ/2f489yJr30oZck7sjBrWQ3XbE5nEV0bnJUfTxviVdn2uw+eS7OG/qHpcH3yLL62QQF2bpeFaU7zYbLLerAKl6WC2jbIm7MGAuq+0XkXJgX3vWS2cjLULJ6Pm3UOgMHndNinGMRXnPRglOpnenFKl63MNPC+8Ad4JGUAC02XoenjtxjkuYAfvb7Ohba+2KOqzVdOjcZ+eXesTDxBFUdlIVCsDL5FjcHnVEE3B0azW9Ql7D6YzsXj82m7XxdrPn2FOmd1wbfpL9vtT6KnPi34uq0Xftds5MrPDixScwU7pDtR5kIbvm+1hroD9fCjpQGPVqpxd1InGswbpBhPH7p/9y22O77jhOAD+PzuVAjYtpcjl7TgUHAKTU9aRjtXuLC/pSs1FX9mB6d1WPjxP/QoUwZNhwmUGjWa3zrV41QXVzJ8/In1L3XSw8RzLDruGh9dcpNuzBSBZPs0fuwWiNd+qfPzm3FQem0fHbs0AJKz2kDWIRofmnTgjCRtiN97DXbf28xF6x/B0oHL8KDoBJJdFMWeDoOXpcn81TwJtx81AUdvwhD7h/iyXo4LmgYg8/Ic6m24C9eS9vOzgU8QcNQQtC0nQOfgb9q08x6E7H6Nxy4LYJTWCb4RIg5jCzaTqcUa7NgVgKZrVaHjbSzs+L4OZBvbYLNEJy5PLwbRJ/nstVKdF79R5MVhrfBgqy08d3hN304l0cLaHzzRtIuW75OFmYeaIHliFk7NdKIcRV2UWqYArS3JMNjqD3EflED7dDLbtyniO+Pt3CZ9DZ7+y6Igm35IlxGAsH0aID4ynN7n3iSxAWsWOCCH1aOP09CJPThpsSL3ufexWTzCmxRT/JVhhBMl9lHgh7l45XoBTrcQRSNZAzQJPQZK4Z/50BqAsE0pUK+pwjtO6FHI10VcruDIB68/4qX1ytz6JZ6Spq1Ay3+SsOeIJSz7ZkUrTjAvOTufCls9ML46kFKD/DB3ihmfdmjkPAltSG29jJL1E8Hy/UtKqaqg4LjD/M/iHAVEXKZZwwX41FmNZUcLwBmBIPIVvczDR8/xPrvpGCjdxQJHn+MN9RVoYv4QP4ReBYnuySAuFEbRRy7SrhX7eZnBVFxVNx07txuS8dE6cnX/QW9zRSE6ahTkS8SAQ1o2Jnq24cldCvB+WjuvNXmM5/AUjjG056WhniiyQBfOq7rAuyln0P7sNSpMN+fhGDVovXQb8r4MoVjfJZ47rxA2f1OCuTtNoC7CDe/EVHHJTSlyy89CmbcPcW7xAfSQsuQZikl8RG8iuDpkk6E5ELMRfsvaAxO+PUTZ15PQeZEhRFcUkv7fvyhlLg9lwQ0cP/0cNdXUYnJxOl28VkNTv8uiWGYpRE0cwjE/nckrXBTia//Hyn0ohKCoAQD+h1K0h0qStIdS0aBEKZQULZWysg4JITKaGlZDkllpqayGVUQkDTNltIhkhoSmui9xX+T7AINdZtDrL4+txXfhW/Zill+GKFl4nZ5sFoHDF5vhx00TCArZCjv7B3hrcASuyzpL1vMHOS3+NtxYmc+Pp/zj5sOeLL1oEuweq4I2H8bzJd8znPZKnho/qpCEgSzHLJ+BW27/xPqg0ZghKwxJendRWukmmWW1kY+LPR47J0eKYdtY8r0ACL46R0oP7sL81KkgssYJP+vbQvm611yX30+lez+B8djrkBffQe13x0OV1EfYoC8FbltOQWTBd47YY4b5jZ/Jxr2dDQ7146biWli2fA4lJ4Xi8tWqEBWlRY82XsaQ28UY8f0HZY/9yNtcI1lsih6myPnw7tvi1LxIH+aNqeJa4RScOtcYzvh2UM4JARb4NJO3n9TjlsTR/PngOR51wALi6Bru7VGEmxYncIZqJjUnTqK7wkuw620mxy/upfguCd6ZNxZuKqZQ7aK5YGZ0iW7pPefpH5bBv3N74Ni3WA5wHU3VEtMxOU4YeueH4oU/tbz7vDhaBO2Eo3M9UbRmJ0Voy3Kj0n2+/v07x/83EpJ679Nqr7sw7GvPaHWNJ14z4edVNznewoWSxI3whuAhPCXHYPL7O0V4PiTrjpcoabiLHvf2sJRMDomHLaBta1Jw8OFCiFQXhllCIvj1qSDMW+ECNHEFmP3o4M7Jn1F/72M8bH0fIi4OUdwSBWiquYa/b2ohCwvz9aBU9JJcgsKnvGDfDAtY1JuDg6tmwut1ciD5Yja2Np9EZT17bHioR80Jd+nIQBufOS5PPn8usElVHhjkCUP1t5u88Zghr9sQTGuibDhx8weIU9oBp85OoqLDx1F1ZAnKhE4GqXw5TKvsYbUiNbIy0+GKsGqYnadCgu7T+YdDBS2YbYytaxgemVTxoZKDXElpYJ6iANf3BmOI9VP2e/8U/ROfQJilD/S56cNB4X488EyE7pwNpiNKkbzqyXq8on6c5EqQA8a4wa6BTXhIVQxSPu6CTy8Zjn65Rf5y80BU6jj1SR1ir/HuuLDcCr6enYgRLqPh4AsB+hjWzi3bayA6ohXTzv4DmbZSPBG1gCWHE2hquwVbeQqD6oUAnmD9iVUfGXFB/1syefCI/p7uwjtxu/jcq8c4dVE5nlY3B+GR6riv+T3n5Azy0ZJNMKkRSLE2jzN/aNLB3reYdiWfNQTHgvunYHB6/pbEvPbB/HtLoMF6BuyVtMUVTkdh3xcnTjKJQIP5BuC8RII1jUdxjsciWPDtFre+Dcfugz9h5r2DtDjfmgTyV/DMjDHw+VEmiAlWUfVUC5x5Upv+CmRDy7AzqF3LJsfGJK6XLqDgMZMhP14F7af4cYxuPX/7I05/A75g7AoJiM+7xp7urTilVBXCRyuAOBTz4ObDKGEUD42HZ5Hdei18vP4jaMRupUO3ZeBbVA71NJvAyta3MKTnwKUS2ZQgpgv2Q668Nt4Bgj99ZV56j4yW7qGpJlMg8owibleqwu5fj9gsvJufRn5BF8toEDYSwza/N6hqeppvDspBv30iKLxMw4QQouULbsPwghD+kq9OWa0XsF7WFW9/CKOSCxqwoVSblL4i7Cn+RZ7ZG2jc0Rbu0zPn2h/afPvUMdo0N4fGThaDgMMqpOtwAoe2zgJVXEWlrWf4Z4ka/+2uxPujwlAoQQL61ppC7YVMdFqrgY5TIjDL35DX/FpO4n+eU/iGGrZ7YM4i+hPxhIYFfDxsjyUrBejZpGwM7XGHt55vccZxTTqslkKVmxt5zYeLiBp6oFIXgVEZ31CmSor+mqXRvnOtfDl8Ll/VN0PD2w5Qvfc/PJcvD7/d3uMl8wes3TedDA88h+jouSS1dT9CvidOvWiI31a14r0QCah2HIsnxhjA7sAApLosHCXrgsVhr+iP2AP+WRtC60vCUPKlKnzoGIkQMBl1z13hAJ+7fOVFAtl5iVD1wAHUPuTOG1d6U81icRjnZc6BB2dw+N+LGHY/kN7uDSb1qZO4L209l/h5w+1tZyChVRYCjWbi+mmTQWPdW7b9MQhfVgGGit2BUzO08DG2EdfEUqfldLB1nYNCnTshrf48x6xZAkcHUzhvuSX5+kTSYD3Q6uvamLBbC0b2PIanWetgXL4zNn2qB5PxV1i/0Ita1jXR9NoQFO35yVFvx4KP/jPa/K4TXmXP4QN7n9PmlQBZwaZsu0YLJoSPYKvjklQUKQOFbzeC7NG1WNMgjubRv9CzsQOesgzeLB9Lm0Lc4Kh0NR9rk4T3V7rwgZo1zLtxjZydJ2HWpIM4K00Pjz4phaPJ2nD4zFEUsR4Fqge2oKTsRo59kIzb1e5BkXEzuSww4Sszg0hGv5eTZy/ERTUGoLdDCoPPnwLpbyUs2JkHN13m8/sdNlBh28NPP5nz1MYPWGo9Ht6Pj4D1o/04SuMbemRf42+5S8mi4hCX+pjRCQFhPqSRBAFPRKHk7nVYGDEfBb/eQf+yXlyyWJhDA5zY8UUYZOFlvMflVHHNAkK/bcM5oq/Ies1PsrTdQH8F59HCFVK4W2MteWp50e3we9Dgqg2fVniS0b0U2hlWBaPsvKnuxWnc0GnK25MN+ezudbDathkDaBQcSzqC62tG05RBZ0q/HQKLgvx4oXMkTD7oyIdzl4HdVmtcGjkZ1r+9i47GOng5OBVv7poPQj8beLW5BriNPsK0UAJ1XUtR2nsyHMmeR8LPPnG2bSrWS5dR75HrzBqd7OSRzj/sROhRvgm4ghUoXD+Ng42v2SN5B6SKa7GO6x/6N2U9WcMjbNMLYzuFHXTOcgo4auvz51vfuMO7BabciaOvi7to88AevnhGi9a110HDklDoCxoFi07awfSUZpiV1EE57ZsguesZHpHTosUfp4B/VC0KPtWAq68N4GLwCeRl73Bb/gLaO7sAv9R4QuwPXRw4nkOn5j7isFRRlPCUh9U7vWjAdRyXjTqPqS4veTh8Hnsv2IjV677zrykhlD46FAQuqcGfCGXYvGEB++RU8dvUFbTMuQY1L16FwYXdHHrAG2+6uPCaL/ow9zTSR/8qgCvhoCzzASvtU2BubhUFthRgTp0IP5jUjXEhZjBp6Wi2VbGCvIBBxF2/MUF9I1peWAZFuX1Q07KEPx+aip5vp8PR+3vhdP8Edmt7yZv1AllFThxrfzdRzJt5NEsyhyxmakC1qCn4N0eCVvdzevxegHyTSmDQtYa+LDyAsRO+kv8dNSjbfw/iP5qAmKkdLH8SBCoLxPDOwaWocPo9nLPbjV9exPCPggfwSSwWBxMsofNcNE5MJLbW0OdgibHoflAOJBzuYVjHCN4c1ASZsTdANEMCBMu+04JLrSD15zcurOzDPhMzOJQlih33HEFLUQHHqS/G+N16MK/QCZedeYF6MjmgY23P46x+4hfvP5gfpMmXCu/iQcdIKAyxhFIHUXp/cx4++xXDQklR8LhYjyJkBfjXNklefmA2EZRgNEyHM8Gz8HhYL593s6d1A4+wUWEpef3oJ1O1DhTodAPhvnDed0ERtuzygP7h6Tg//h5Mz7zOnXyJbkmsobgxBlh4v4Y7S+ywq08a1FpmYotJPN6Xt6X8441YUBQCIu/OY0uoL5zbJAo/5ffjDmFT6N5Qh4e3NZGC5DcatXYr5H45DIoKzXRmURem/1nMSeUy0CVrCA792/mc/AO02eiHk22f4NGAWg46aEzHIYJ3FVihv10XhTtogPqnPrSfmombzS6i74MUhqfO+DpeHeKnjYfztV5kM34d/TWbAp1mQhB0wIO/7Z1M0x6p4IPqfjgif4Bv1xxHYZOTcG/dGJh7Rgpuj++gMYmEivlpaGP7m1rECrBS5yC0Bj/mA/tF+UWUNy9UEAZJpS1Y/laCJCaf4hfGYnB8xkJw9EoESaVuqHqP8OCCAzVctQLzYFl4vEsVk/oLgdyU6aJGCYXeX4ovjvlgrbEQfvKYR/szBOHeAksIfSKDDm/78d/uKVg66iVuNrqDcsUx/N+pt6z6R4iV9xvCuMOecEs6Dgc8J3J1gyw6yk7geY3zSEVtPpRP08ST6idZG/Thltp0xiki6OrrwXWxx8Fo7QyyTZTg5zGbYN6yrfTKcT+FDVrAudtnufXfOljy8Sc8iA7BcWZSfDBVB74X/EfOMc84BxTwUp4F2FmoY8DF6TT71k90wC78My0TDyavpdkKUTjuvxAIbPiMMQ6acBT3skSXCKz0HuRj71Kp3/01Lx23Ho+UjiMFXSmCCV7wcCRCqEk6xDWXg6XuW/rrtxIz//PGZemNKLN7AZmuPkRy1r4096IIkJk0Jdu8hADz/fD24UJYoebCWQ9mseXafWgPh3CfxggoUVCCr04vaIN+FM+pTKS59snUu8UUpn0uxKCsblLVfsVGUozPnUzAM2IdOLr/4MumjaBWagA2b4+gtKop3pcM5JjHp6DW1gfd5o2H/fYd9Pfjalox+ACPfHKi9Ru+Y5nfBU48FstW5V7saxZNE2eqwJuzI1A7/TpenGhCNrEzqOhKJCklT4ANqe74vUkWvPfr0sfqkWC+NJ57l01k54Aq6nXwZNP5JtT95wmJvN+PHs3JFPDwAVXlTwWxib1Yla/BuiueYcfTNfzi4g+g5BBUGKUJLnL3edTxZEroloH6YX3IuyWDs8+I8QiLGHSJGI3DGl28+3wnFBqcp7KvxjB+vTSM2mpBof9Z80NQhukbX9I9S2nsOfSUPBrtMTI9lyb/2oR2mlZQe6OPexKHaJeZKb2SMoUrhgY8P16Vi5dX4/eNY9BE2xdL/eWha6cEfjBw5X73qzjCZjx3vQiitQ6a0DpeHMpzjsOQ31h2XycPX8v88crMh2wo8ZLbBUdg62wHfhHkiBsnzuTVztsw2zYM3Fs0YFJaLOyYvYbH97dB6pp9uGxhOXZ+2sgjtc1Y400rrBPdjPEiU+CGmCIf3+UIyoPbaLOqHnsaZ9Ge2sWgnmlPVUGh5NTgwcabR8Cd5HbySwvjJKmX/L7dgtakhYPo3zp6LebC3XbH6LHgJDh9SRlaDtzkwtUDsLjJAYLktVn9Sgr6y72mgk8ddNw3lRLVb1DRH0GYn6RNGgXWdO1jOwa6HuX547xQtjmZJEqDeWKuAeVGRlNQsgbE1EbQmfF2LDw0k1P27iPLnNfw17iQNL1O0vBANxs1BsCIlzNgymo30D5wjBOnr+A5z3rhwQxzMv2+AX//qOTrukY8HPATH5McfHf3xoCGel67ZSVITvqLFtPWY0lbH+cIeVOSgDqYTL9Bev8Jw7eJS+nD2SNse34mVe4pJcMuW3AtKOCVewkDhtNxikcPGI8Rh7jMCLbTl8M/j1TgyBN12vDUl/0kwti7axOdzZuEt+u86ZiRGrRFlHHcwTm8pVISEo2tSMorA1/pGGD9wxugHTsC0rJmwhkYB0tTO9l2ZxXFiFrAUZM8Gud1m7yOzcXN27Mw5tsA3NM0hhopYdhj+Qd/GuymiTdFQUwyhS16TWlEfQ7oVD+m9Y7qdKj9PImGCsEUyIWWRVL4cnMN6U77C4OZ/diYIILrpBr54aJGdLJs4Ox+Y9g2yYDP8CNaUzefnwr6wI5+BWid6YODVQFQ7HuMs1O0wbtkDFx75kPzDyXisQUdeNkrCB7+TKD3WZ4445k1XJBtx+ua4vD1gyIYWdrwx+Ep0CJThVd3r8OQI3tB67EdVY57TLHjxnFlvwjf6JoAY0f4Q5V9K5U96gE5vkI91aNIZaMXPvk6Bd1HzyGYXwpextMhb8FrPDwtBUxPV2B+qyz/aq5kB4dE2n3THj+nL6Nh3c20u9IMlB8rkRtIcVJzCR2qWsQ3/5uEKRayeGGJBny5aob4VZy2FYyDd3HHOMXkKcUL3gbFeU0UVniMCxfI8UoVLX58eBX07VWg1RVmcEeqlWZdb8P6JDGUVxrDjaf8QbraDT8WvKRZgZdB4pQ/4nhLGFruQoXmTXhi+yS8qPGK95ZrgMvYsYC+wnBC8QPM6JagnXeVQd2sG6cWr+GRORshI38R6XbrwIa1EvjGMwqzFQShANPQwVsHUq0WElmn8R3BdZjpVYFfPN1Jp3kySdU/4T0v5mKjQAQujVCAC+qXsLjACvceW0nH7ubTJCFHtFqxAP78eYXXA/fSkQdbWaxWBaZVDqP7aHXcqTsDc9fPB1PdEbj8YRwu6QnGU45nULKvm+7EiEJ/xXt23+wCgQujwdDvDOQJvubTnq9QaIISrJ68C8McV/JJ49Hg7FBCP6oOgoXPRi7UfI6FFkWoJPub0471kf/sYPK81QKRrvLwqGc9KQ+X8xz/09DhsoWzhdVwt9QC6Bi0o9a+V3z533hwtZcHkSsa2D0tjWUTH8E0kzLofrkBaqvm0Ki5DdiXooonqRh8PSSh4qct5f7RILHVv0nrRRf3L7alb67vKWXSMli9ZgH7LIqEO/YacKjvHaxbfAQbt2TRrlXm8CDrD4WGOUPBzKVgmL0WXTXqIPvXBPgQO4KcL57G+hmyuMAhCM08omH3/Vq6cUSLVr6MoenPB1nEdSQY7OrHtoU7Ycf7AsqxfwquBZNg7OIvGFiyDD9UZ4OghCN88FUBj8CvnH2yhRe0x3Dws2CqvFyJbyb9YZvvy9kwJApjJ9ty2XMJ+JKQSPt/7qLxcAv1RSZycLIG9lMT1EW50aob7XQH/fHeRnGYolPC3lnKNK32OGWOWIFu85/Qq6LLfK5+EqQpiGJtnARsnq8DcwUiaLpCOe1/r44Z9TaYt+0Ep2Vk0rLpSIaKa1D3pj4t2SkO7uUD3Lt5M9+KvE6bpDXpT9NPKO8dAM/AdtKSfwhr9S6gbwyBsgXTrbLxkIiFcE3lINSdjaGt4f6c/6YDohoFICW/FxckTAeHycvJSXkrubdewIqyZ9ClcJCLjGz4dOZfaqk4QGPCS7nghhGMbbkDYoeK8LXWOBRsuIU3/IUwsfwn7dzhSsKlPnB/RwnevT8a2s4KcOn4dnhh1wWVx3Phl20m3YqeS1Csi7nj93Hb8/FAjmLwoOgKa2eeJycVQSqo7+Oh3Oe8OusBzzv9EcM/+YO5oTuVixrA+XZ1rHXqAPeVbVifspKm0hr+oriUTYd8WEghmQr9b/DEtaJwd0IkCr9RxbXPX8Ktyp+ceOAZnh0sY73zv+Hqyr1o8OUIuP0j+PHqKPeEqVJykSXaz4rhnu4u9hA2ZLupZoDt7XTWsw2EA0RB9qIqqekUs93ZN6SpsoBF9n6CGdWeeOdKGbWuX0nJozZByHVT+P4iFNTdvuLiMUW8JKqTEr83o8uE8zCp9AnEe4fj+axDKFypAH7KjVzz0opPZVvTp219vG93LLee6eMYpUpK8PFHPe8fUKgpCnuk5qJ+chI/OFCMN35FsUzeSjy+Ug5+iOmg7ONnpKy+hHdutYShTZtZMS8SJn0O4FaDpxzV8JHPymSDo7QwWK4o59mbbuLkFDOIvJnKzsZhMHENkm+YLa3YtJeTC/Zjpe4C3CCRDgHvK7GxfDR8U5wA0ddm0kCgD5oa5uLJnIe4KMaGdsIb/BzUQ4GOW9hCdBKMk/rKGLiWpRz/QH3oI9q1vI+fthTSC1E51LqZBp0Bz+l0+HQoyBpNzjdbuWn1Qh41aTlWuC8go8iPPOwrTeYWiyn7axP9NJ4Bp6LM2evqNFxlrA8/Jn/hJm1TsuZSjj90nwULE3HIsJFqDEfA69gtYH3mBjbIufLVlDpwcY2gwnu/4ViWOZ/+mQof/5ylG+UT4FVsNqyZ0o5JAWtwnfcr3invCLbPfSDENB884l9j4o4n3HZYE4KuFNHGkxm0euJcXvjMiyadCqYTuzeArsh0ri7cTxaNE/GZxQzwHl1KU3RNedv6El7ycjIqfT3Cx4LOgMS1JRihv4vFP1lgxogxIJGfTT0xlzApe5gKNMMxruEcTs0QxNV37qBvnQLqnysHQR8p+Ll2Lk+r2IAbtWQx1lKJhX9LQf27E/g91ht+wWiMfRqA1SfNoE/iFzUMneVSFQO06BqEu4um8rwNv2DFqoNQ/FkTvwS8hq7z+iB0oBnCLg3xZDt5in+LNPOaMy3Ys5u9+vaQSqIvWo0b4FdNU6DnajS9+1zOdu3zwQNsQNZ7NdWsvw+1O21BSvEXVQ564bCuONzNVkJYtgKFnqiAYZ4DVv3JwK4v5Txl+1WwXSlGz7Ps4GnBRGgu0qZx1VtxXlsMSRi50qXN9nQZGmBZwh+QXVEJG/8cYe2IKVDSos62SZ9p6SgDEFJz4MtiyTj3uRiH51jgJBiCceFfKXynPPy7JgJLZm2Htdt66GyAINRGi9N7l4fQMFsOdUVv8a/kNLj6Rxqe6h7Bo5mtWDntHE+oHSIt822UszWNo8a6oJORC9mtPApmd8aAe3IupPwZgJt+kxjqHoFujDUpuzOEdjXSPkMp3hwaTNUOquDvfxXvl4jDaAU5iMs8SyfzNfHZSyFe83cquQ/7kLfLXOr0kIT5Cd008Z4sLhKZAqvkFqJrgDxr/SjhgJN30MtwKSrdN+F4+zFQ8FOSNIca4M6Wc5Tz/D8aCHDFyOM1lONwEc9/34YiQhXgFyMA6lOtSU1kPiVHn0a5lSWgEFmKioE/wDDYH5IDdWi21AiMeWkCCtNzMFHpF5+RU0UntbN0/OlHqJlUj5HrD8ObXar0clsB6GiIAzxexj39jhybMgpKQhJoYYwOVDRVwxhDVwpZ9JAvRa+G0UKKUGBbgCpNx0njiQn9W7+Ft66Zw38F5EFsUS+rpIlTUbEKSOZZQlGGKUik1WFn6ChSHXKHLZuP0K7eDA5vPMtYfA/XeObiOGkZWH18HSd36nKCwGRs687he6oP8XyfPHn8SIS/5joUbqGHQamTQKLzLU02/gwFadc44e8+mv7UHz6Y51HrDnOouXsG5exluPkywYcXk9jvvxfoZSsNmh47KeFDBKq2a2KjaSw/WeHEV35aY/GdkbBqRhQevjqBiuKmwPWJe5CrBzjklz9/+HKXbFqu4fPDxrwl1xzOtmpA8e9a0or1gTUFMji/KhoXX1tH/u/SccmPH7S8YS7NCBoJEz9Ygt0TFQyYGUg4x5BeBKwGocuAL6Z84ZF/PkNirjLElxlCauwOHHkmBu1t0tjHoZ5PvltLR6XqwPTge9rfH00a99ajyR55uJ5XzFeKW2HagSLa2aKHW7ao0LHJy2AMHeMjSusRVpjxrTkKUBYXTwozDFBL1oH3flCD2gtVKO/WhbXuNfRg60XSXF3OZR+NwaBmHBmnjMaIokyWjinCtPOfSKI3Dq8EJQHHllG7cDdsQQsYM6YcD+ouhWqFU/hp/Xko27sbrtvac+/m/UAdO9FihSh4pOrDQq+lGKC8AdsPHoXC46ls+i0dVzV848mybtRW8A/2is5kzXgTKB1qZ1X7SA5XfAxFDwpIqcabk/sj6UnACl6i2g1JbgtpTaMMNL9whVoFf4pL1CGlI2t47vAr1qt0Q7ugJbhX+g+fIGtUzLUE4SZv8ttahgXTLaDrvxOU6DWEUeIB3HE4m250+VDtl3jUbp8I8j0+PGNZPaQlnuDsZS/xBzpSfe4zVF4QSLp+23DVD2t+GagNZ548o4VPvfBaZwbs6HZCm6qprHPpEXe6/MItI/dg2eUbcO6pKsx1P89Xrt/ne6rmND5+El9a60/Ld8Rj6JAZPShPw47TZSghKwzzh36zaX42V2/2pg0Nw5z0+icuuf6CLOy1YVqPMSaoaFL9oAoYlJaAwqgj0DjJjc/FDILW+l/4aPZ/NDB+N+VHy/Fol0u4dZwxHBm+Qr2yC6AmqY93+FbAnaB23t89i0N+/MQ1m5T4e3A6Zo6cBl82GaJDSznFGJvTiGAHWLtiN/3c5EoDjk9B+Kkaerg1scY1DfBJD+LCxFIuv7qYB5bvJueGCN5tMR+zPg3D4GpbnFligkdKdGHs+eeQMn4xNuyw4kazHow7mowZ53RIbRzz77YemPnxC8Y1mMC1m0pwad0GypdKoDWbSmjsLBfQ+O3Mf1R9qfR7G8xNYagO1AeV2DEof/ElZCkl8qh8JS4Ums9VffVwuF4HDN8BfxE+jQ90ESQ3P+T1ye8gY0UTPfd5DZktr8BlJdLP8QGwdNtFTjY/hP0sAkFiFXBYLxnnTfOlqnkn4V1HHd5uEcNy6Z3cbhxPLXFyoLVoCkw1mAofvi/l3WZ/8D/tIIypb+eN7T5wPGkM6A4KgdSJaAo6ZA52s1op7OMWvDy9CY4HjWf7/nRsydpGm9KRHj8ywulfzUl3QBGaUssx+6kcOOcFgkuTP5wa/5SPiJ9GZS9hFCtZCI8m+rLuHUO4Y+SAUXkL8YqWErqOdqDJ9qLoldtE6wcL6MypTfCzIAyhVxz2HeykWvFPGBFiCoGWf2BUnwQknDpDc651gJ1cCSvUqfJvA4Ae4ddQKKuMLnKz4eYpFXSYswMtbspzdXkvXvw6FgosDoL2Cj1YdtOZjetEeZanPV/88BLjJibhAhVJ6g6Wof/ejsAbcm1gLT4FlN4nw5cN40AsXRwWZjbh0z2/MWO7Mzbfvg3XZbppn+Y/XlMxBr4sziGVon50cTyFg/NWQIR8Ah72dsb0o2vBXUMEzriF8vFUK5h3NZi3rzoATuNFqUJCCeRCp/OceVK0rk0IVDu2cNjZNXhCRwyWP9eln8e2o7luBBurD0DKqS98TLCMrl4IQe+2cMiS64cKBUWYNS+ULJwO04DfBbhybAJkmlzGct+JYOGUjIK5I+mdiQbefm4CZVa2dGXjMbin+IAF0+9igV4BZox6AmLpnmxfcp+SrDbwnV4BaJxmAExvQGboFi1XEIBJayrp8Mo8DJlTjV4iPmAy4zi7f5GDUsXXvPbHE7Y7qURtLtl8O8OXVh+bCKLxtXTB8xP+Pm1OmzqnQsmnH+C51J2HRTYz5SRhWlUGRw+70MukKbAlWJgL7BfwHN/pkO0gio9mJfDbyquYPLMZ5+7+Bav/Poea7jxsM9LF2MVTeaSXPgSfEoXH3p95Vu9cMGxT5rshXfCowBbH5Wrw6AV/MXfoJvvOkAXBDX8hKSOH8tWOkuChg2Aw7EID5/L44aGveMBBgLbE5WO2pRoofR6kkMIJPKtDCOJumPNiWXfYO7cRvoX6w7bv9uASksOTf0+EqWF3QOKzFKcsX8LpB9dioEQZ7i9cyENH71HZjBWsqRjGf48IwfxYd5rn1gqj+u7DxBcRMPAmnSQnHOcX6TmU2oz4fPkt1NCThoerBjCj8gbdyJ/N6RfMeI+bKXrd2kcvvnxBteebONhyBuXbSINXawZH37yOelOzSF3Gj+ZHbySH3FG4cO0J/FI5jpxzBeGu1wS4uqeRrzaEU1LBPdq3LJzazt7AG12n4LFWCW3MnIbIyfipUANSj68F9ZU9fPG1BGWGp+NytQYMj5mKb15/gzk2KmwmuZmMXjKsaO2hDb8syYaUeKzZalI9sRbl7O6DS5gT710pRYbfWmhNkSTc1Famo2WSNCoMUHleGj5reMsTH4+g0nN+aFTXhv8aMvDnCzEwjW4iob+WYN9kRD1vUjGtO4/5oQCdOvkf6jUE8nYxEY5hSZCctZtXSLnQmAtDpGR6DaYfSueBQU0+vOI6THnTg2//uXKWnDqMDhymO2+n4eOvoyA5qpfnmq6CeAdZ3KW9HTc359FGKzEo1EFw3XkQFDvqoV1YgIIsssjw+UySPFdA3i3vmPOesUyoKJxzFoeiaV+551EMv9eu5vEn7HAtzsO6hDkgVnYCXt+L4gVFrzggcgyItf/DwV8J3FpczyOmnOOyP0+pvjcZLzbVMfaeZ7s7mykxxwJkZumA+7o0LN26EgxKX3HyjLfU6rcaJnu043y1TWR5bTnlBoyBPZmXUM8hjkdLL+Htf/6jlb9ewyzbs7xDXxBHllyG/d8/cfhaEfCJq+QbHt8h5OFSXCR2AX1Nc2FKihO7nzZAQYlWuOlvgWnZE+D6svO83jqRZ/QVUcRBSfyQIAhDx3NZML+OPdK66J1cKPxdMBJMl9VAu6cjvdtnDNFHEin27Rky/VzAVo9O4Pm5JVwYswoyhxG0yj+gY2Mmr9utwwWpcXjNUwP+xSnBCqOvuOf8APy+H49ynabQE2jKlyXv8AOX4/hijCM71TvjueYdBCKzsLf4ELT80aCH7qIQXh4NlcM/QSBeAmON3+Mb9fGgHzKXW75LsOYVMZizKRS0pxN4qBihup06n+5aQRNqlXEwqxt/177n8+1XoE39HWoaJbDNYxO4UBpPU3Wj0edQM6VdI75yUQcr/6aQ455/oL5bhMapeaP6awm49UWD/uZfhf8OVYCfSiYO1xlwx9WvfChPDbJ2zaJ6ESnes9ECDDzaQa63iK7Uz+PeHTbUJLAF3rnHsPR7hA63B1CiFMnwSBSqviZwM27DjWfusszIFDLySIH3liUk25FLfwtWw+CH1TTTVBR27WzBruhgWH61hQ7KXMCmrCAwqBvFdQXSkMK9HCj2ii5cmQwdEu68+oMRRmcogNWI02CZ/YXu2P4FlxffMelWKAx7RdNL/5FwXeUCOY4vINX8aFyl0MSS1qOhtnQZNFnXcJ7RJ0gzGYFSJwwhf4scrtkdxyZFjjCjRob3bvDFD6XXsW1gEJ1Mw9Fwry7/y50OpSNmouu9KXAp5iRdMlyMR1Xk+FluB8x5nU2qokeo9WEXFKaoQ77yEn5pqIglk+ZSdl4zjEncy3cVHOhkYTx8frWf0u0ng7G/CezbFQqTNTajQVY/nndaxn9XKnG4tALcr7kGbSfG8C3X05QuLQS/Eu7Bu099IFoeAn5N8Vi3/QjaL07nFql2dHo8DQq6guFuviHMXhgO9Tfq6PuZo7CvIB5Shj/g5zwrzp0Tg7q+CbjPUJ+2ZeuDeuIQRAr6wo7O2ZQn2MDenl6QXwVovWYraW7pAJu0JJYbqwEzF3+D2I7jFHg2CK7NKOKA1V0YpLiWReRK4XKJMp7ZL0EuZfrw4MdDCllthCZhC9HR5h+FdF+iF+KT2IEt+QL54OYNU/nZ9WnAc4bI7/BxTo3OxZBXV1F9XzLXWS6kSJ8umir3mg80bgPFBfrQPdKS3EXNKHh1JZ25M5+1+0fBg/+MaGRYAlW8KaHe99nQt8ME9nXFo+DWLfj1vCxfd4kHu5bL6C6nRTY++8C4aC/kmZ6iNFdliLOZyUP/jsCSMXbgN/Ig7786i2LVzbFD8wRLO1uSo7g6qB6VAgn/ABSsccDwCA+MGOUB1przMW7dfl4j0o63moxp2a19UJujC3eTsjBg6XlwWTrEweOqcfsaIZye4cT+rtVg1jWaylbJse5HfZh7bCtcsSnjw84KlPpxIqW7TIM8YUPwNM1js6X1UKAQDJ+qRsOl2T0w/fxNsrHKQo5aw/LGtmzwU49f2hzDcxljcFXLTjrqJw+O8rVcI60NGnJjMU56G7gNzuFonT6oWXGHcmodUeVlJI4eqwX5K+bz6WmNXKlVQ6qbJMDZ+wJfCBOCrMIc7rmSAFqS29C+XQfGfHoLTVHJMHNQhob9PjKa6vPho42w8LQz/5MNJZMnkuBRKwo6X0xRzfUOq791gkGHNgrWcKZXu4SxbtlZdmm6QFuPRtHL7WZwTkABXSeIo9XcIFLvNMAJGyMgKdIQlE7k4uVDrdyQqgK3phlB/9AwZMS6wccLlzCp3BJHyEtg29fJINv3F71TK8BsWw3e2qgGlwJC2PRRE+xpZv590ga6y36Tn1MPSqUm47FL3TTniCQHmiN0PZhLv1O2ksEeexCymkMmHWZgsTwEdKLy4ZxQGyQG1nChvAjUbkrGHmVktyeFFGL0gPeN3QIVElHc9j2WAu9lgZWYBzlUqIJv7j/aEu1E0zechdNdOjwv6jQd/lYFE0sDqcTyFT9ougTlcYbgcVMcJ4W8x9ndd9g3+xre9TWmVP2dcDq6B4fGivG8CSqwcPYMMO/JRGl0hk/tv+G1Tw075Zxm16F6Gh8VDKXdTXAs7yG3/1QANtqHi6SV8Zm1OSorurHaeWOY5+/OXqcBymJCcMyJp1jzWw2WNYmR+p4sdEgJ47cuYrRCZylIPxgLIZYLcMU+Cwh+okA3a1Rhe741xJzKo8qYQ3A7/RqMmHEfXQpzUTb4DeRfmwl3r6ziavNp4Hv7OPRL34WkuC2sP62C7nufR+XAZXh6eRbeUI6CJya/cNxpQ5C+/w5VpU6wQfZFSO98A1Yu08DohxEGqd1jZ5NK2LXjFNhsUQLdTjV4r2xAmb5a6Oi7HRWSkSICV8OTi7dQe0YKXdwrjzPHq0LyowmcdtKUI2XecezhYuhysQCHNj8Yb18MGQLKpLKJ2bLeGBYpdsKNFf0YjiN5ocJkniYjhQV5yTAz2JIj/UzpSMMP9pg5FdZb/oSlxy4j/N7JK1vDcW3yZwiS3A6rRHfzpvtNMDFtDMmKSMKoVMbEgxogeLyZPC//ZSPDTbCoR5Fjp1tjnZUQ2Z14SxqyIuBjF0iD4inge04NxqZbQK+qMd+27weJ2Bfw/v1V1KsuhguPJKHulx+mBdpTeeB0qA9UgwwLNVpdCuDXcBgmeSymc3mr2OCSLij8LIK+N7/R1+U7dri6Ycj3bEpX3UIlAkxCF67z5LE+tPunNJw8+I/VVhzmBYm/4fKXFkjOaMFfi27i7u3VfMTvHM0P2ImZ/vrwXvw7Ly75zQmaDTT7G+E2DXnmy7ch7d5mcP/6DOfuHeLRrVJgI1bE/VZ32FfiFTTX60NKXCluPVwDCuEvSOPWLtaUk6P7WwQg+JYYDNmnsvL01zRN7QL2Dk/C53qP8LjiEr4+LAOD0eGwUlcB3OO90e7TE9xSkUyui7Oo0e08iOyYgoo/k0n8qDw6/BcO5X/V4LXmMxQVesejtHuodegtnxXw58bOjaxvIwgeBevB76IrSX4XBtXyeSA9QQRuRa2jXvmDoD6ggGsjk8Bt/3XWeOrJk/edASGcClrpORAfY8i67nr8VKufon/YQerBF+SiKYjpa7bi9X9rcfiVKLQtSoZYQMwSnwAll6V4wYelUHalGzxC2nDKGVe+e/UGf6qcCic265COyCAFvJvFnq+GYdGpbpruVUHLpFuwOE2SG3X94LiqNCS3DPPqt5ls3ZlJ+58updmj66HgjAgbiBjTSvV0UBV5AkNfLMBH1BtTsyPgwThBsugu4M9vnmHMaV828huJ/T+rwfCVAEeryECC6w7IxD38XMmH8nR3YmvCIr6gUAa1Nqm4+IY+aIR0wY7zauDtVgZjXk2h6hsv4WzMGxzYZw7Fyc9BQmk37YvbSYcOEUjumgBfHKPhTdMw7vpQzIniiqjbt4TnfrTDbLc5MPQtgD/rH4EarfFwdHEVdTQuBbvpc0jQoYY23ivCN3ketPXVQyp5Fg1rkqdBa7IaWO4fS7+vSVDSHHf61mQPBh8jsL7sNbmq3ebjxfYYNXwZfELGQaxUEU0umM1zd+hRr+UGTvD9CRYrPqB2Sga/cqmFp41RtEzeDOwfOfO6cBFY9eYTug3Es+weRXz/+juOfT0e1muVoYyPOM71nACiGj7YvryNIjNW8tXoEzjr6D6uKPgAvtG2aBB4Cd4pTEObw1bQcvcySkYls2yAAb3x62T7hW14UzESUlVc8UtyO6fIjsMPgarQF6KAv0rH8rfE3by23IYv9lrRBcuFPPuqJxmfF+D9W0TxGU8FYashfLNUm41NDBgtQsAmsARWfxqAgBY5Nn3+Gww2fMKceUpwS2AunHKyZV/l0VQZtJu6V/4GmbO78JblRpAsSIXjz5ZS7mI9ENi9E0K7nengZT9+UOIPecfKKMp/Htd/68MJJ8xp1+TtkD1ZDm4L+IDtZV3wkRRB5eJQaD6wgtv+KfCrkk7eafmHl+ir0tuvo+Gy7WaKn22OrrFFJJDZSjkT7vO/2hk4oq0CN+5cREeK4qjokBzMXy4J483W0fOPmTzKaBPOHzkRMksWYadeOG6P9yIDbXk2l1CGcY4e1Fd/CfZonkXt7rd4c101rbR+jB93fsRO41E8vFmX51weDSEbmqFl5CM+rSGDb7bog43yLxKe+Aba7+vz9qomXrJdlEL3iYGd5kq630gs4F3H65rC8Pm8u9i3rJAqO7cjKg7T13/aOM7YCAoCNoO073O0O9yBLS63acBFgy6GLEA947HYtFwK9+a8B2MdKejuz4bs9jl4MzSVx/7JRfNju2n58n78++Q7p3arYlDucz6zeAQ8eJcDQ7G/+drHTHg97Q5dvxSH+6MjadahKhQ9sJ9ntz/CtS46YHXMjqYJML+oUyKxx5No575+1g2K4xM6jtRe3Affu0x4e68m1P3dCgeKTvPdj6r0sL+Q3Zpt+JW9EMSsek0eJIeblp0jf8eR8LlnOp0UF+Kw1S0sHnGTtIOKIdL+LTkbPqa1RYl8e5MQDhWaQP/KS1i3biZ/jvqOaZsM2MdEgz5kPKP8uLXw8U4P1/2KgZQdVnD20WEI+FeB1R52VDwvgOeavMMzs0W5hc7gdfM6tLXczzo60tAYOINcDmeTX9cSiPhmQtnXpVG9SQUsflXzqbkb+drJC6SQPBFSS5QxVC2IjVL+A6uj39Fmwm86OHUaKtZ8wFuf96Na0y7W32EE9/pyWTvtLZiJe1GXuD9WaXai54VBhNWf2MvJHUfpt0CYqgjcWTaBJ71owufSu3DE9mUg1N3FOTs2gPWWmxhYoEm57c44U5Xh2ddwcH19EM9s3Uwn9WohpyKYREL14E2uNa3X+gw59zNhwhg5sLtvjBlL1WDQ6BLuSn9ISz3CeVuQJcwwvU96qe/QqlYFJcZIQr3TaLizvBhHrQ6kwm/dMMpgH8RctaP3X9Sp+XM99nYHsZ+qCBjm/aIREVFcfmmI71ZIY6TJGZ6gMZKqr7Wx5vEevlG8C90Wi0Ofuzdd8xtP49Zo0bRKVzJRHU9vNp1Hsepl+EVPgh6tGGbPh2rgmOVPK09J82+fk9SeOwD5Mishx+k2L120nvLvXKdL1z+DhqoZmLZ50Yi7OaxaXI1zjA1BQN8JPETEaOXAGdiqYIKLNxC1eyqAzpkOmOd1k57ouUHspGvcmDfEcwY24fWmHeCvrsWz/6VyToMCPAz5yp4nN8BXAwmwuhnMCqufceK3axStNQvzCn+TuOpcrLkoDwd9H4HZ5xc481YGvOOz0Jq2BCr1sjHWZTMMqpnhpvJmXjneHL6JxKJRvj6tWfSIG6O+UcSbz9hW3U9T3kmBeKAOZtr9h5vlZeDuwBY+5dRC3Zsu4b3umbxt8kbIu6rAiZp7eNoIZ7jdOgN/V8hD9wwP3pofy6sMTvHt/jrsNdfiA4q94G67DceOmQdfnSdTpLwknFobwgunCtD6oTD8DFqcdvUrfb2RStWLnXi08Xrq8j1Pl3AkOLicxEmLNuBt75/44dw32PK1lV2uGsCKkniYXCQLWsudOf6jCqw1r0Pp2B5+56bAFR5VrL1PiGsKu7B432SyMS7BsoGPWPheEXY+MsGBJkNY2LwDRorowNE2VS4plWQflenQUDIE0xfJUHTnSPCef58W+3XQPtH1tLMwER1VZPDqq2jcvUIFG8pdYLlLBfjHCYDEohYKcFuL+mNm4yq/5VSdmMy7suto1pgDdPhrK1h9H89/YQJsCBmNpxYil81Ro9CIlXjxpwlP9hcjg29p+LcwirwszqNTiix82llDK/Me464nY/jfth4SEnbhd7qimGSoymLtK+leVD6njBOGpdYnSd5Ck040OMHlt5vAKnaIW7ujoPtdDNpcbcA2wxyWvioFg9dP0NDeUtwR9ZKznWRBLjmcKt6qU+XppyB0XYSeS2fwq35FOPj2Ii8XekLjRzTimvRyGvtZjrb1rMPdHzrY0a8KZYo/4r4gIxCGAyze9YPj/m3ixJcPyOfhTAj0c4OgKkkMsfHGtCdZ9P6+ITTvWk3p67zwtGYptr1fRuKrl2H+pRdk40BwM8mT6yIToKd+ClzrUMLTE9Px3qREoIp7HDbhLxaEhuLw+XmwwaCLzL9akcsxKxghsAH3DF/EA/srMMjhGsgL9pFvYh/9vZxJ8TbBuGeFPVm/QIjed49y93dDX1gqddbX4yvvh2CgkEsHovfiljAlmndlLO2InAqdDuNoxJk/kL5XHeTCX/OWGi+MTD8C6SMP4svjn+ng0lH02H4iZA/PhMOFP3DmqBJufvqGflldACM7byr0vE9dv8agTvMrkn2mB/+dbmNla19adi0Qfw1uR7eHyvTq4XbQ6nkDG7zDWKJInLbrqYPcXScc3qFIi1Jk8bbFFtKvsAWnD4lsn3+WRRavg+IGS5xYOeH/7v9tWtYGhj/GQ7NPAv3ZJQLh6b/Y+bQbLzycyQtEyvHRm13odUcL0vfK0cgwO74zOR0j6Q03TZXjDt6GZ1NDcUL9EV4zMA5nNI+Di1kOdPN+KMiE+XDdZIRV5sXQMhzOCmqH6IlmOe8cPoU7e4WhyHYanB0IQPsdVvR5/QlKn/sGy4PG85P3V/C6ZgyPqMqmamsRGJQM5RF35sEmDXeouXIG//OMwCMUA0LGBeQ2+zzLCmVwRZoi7MmX5bi9jXQ+uw9lctZjwiUNKL+8HSY0SZGgdBWrNR/Atwsnw8WXF0HzpS0l9xXzD+lgvmDuxUeWOpDZtxj0vK6LUX+z+EaFISStkKUEnUXguGMlGestxMOiZrhz+xxQvV5Pxx4dxpULR6KEpxTkrBeDKRvrcNqfHrKV8sdvJpbgv8ME9/N4vLRbhiKPCWOe6wwob9+GM2+UUlOKLu037MQxHm5k+SkV9P8zRfmhaZwv5E0LdExgb4A3jnmpiUeVifQWOKFuURkWKWnAhWkCJGZ0kB6NUELl9doQeaqAJj7spEORmSD4IgIT3h/nqF1/Ua36HjRtaOCZV0bRu7umcEQsj9PWKkC8xl/8ViqG5vpxtODsGlYYyzDr9AA/N/RFb1CHu40XWOVEMR/OGMm+ud/BNPI3/zlZyq7P3Rg8TdB2yXcSqVcAbsqGhJBeKE54iaeX3UKfqkIIOd1GGvV3UGHrISjKHIE4TGC9z4ES7FR5v9tP2PZsCW22NiW/Qm3se3CYh2Qe8ZQNwbTQTRB2Faym0AMqKK5bxPuFY2jtVKJNd3PILuYYb1SrodSGrVhcNR1mVDViq8R11AlUBNEHt1Dz4wyepXWIpz08xRkNhlgYXA1tsgZwRd6GS5wLIGSVLWy8NYKWdG6hAdkqPpQRw26WUyipbQD3qGjAErnjKHDUGYd+2UPm6St8IXw3vZ+WgUF2eujdsZK6zvylPy9HQFr4c8p0vwOG705g0YFuqj30i+ftraXQB+fhY7EafZ3/mAf2TAKjK8X4+eJdPut9kIuyi1F4YDNv7TGCjbuPws/6Kr630BsaJMbCzfIwMr6RSEemF2GnTjKvcqnj1+YZeMg7DNcfkoQldgIc8QigpWwDHVW3Z385Zxyx5QJryalyvcJ8UK9Yx1YCM9FDpA8nJSpD1rAeSijMo445S8D4hApYd8ZyvPwfinPcBvR6FnwsrONNpiNhwVEVnKp5FVv3L+LG88KYMq6CJp53ptsaBTic8o67CkWoMWEk9ByJBXy0h5wlH/Opt3GwSD2Z4r9OZMUyJz5oK0MZ7v+BoxLB3eYbtGTCaMYOeUipqOT639Wc/uklblxwnGxE9OjH2XNw8giCwa9ccBTr46kX3sGXfTKsIPQQNohOxBvXe7HqYyYv+eXJekWjQHPeEu7UC8Jr15zx85gBeukgi7un7+a9GdLkl+TA+xd/Bm27qVC/4DLHxRXQtf5hLp+tB8YPhWjH++Ow8Gkfy79upxexRbhcVw2cuzay0SIXTnidBKPce6n/ojlcjDkFSbea+XaUMGVMMKHxSQwjPzWgQIEyXio5iz/PNcKLwre0430Fzf/8PwLgAxAIBAoA6B8ysrKyQzKyhZDVEl2RjKStidKQkpYKSUPJalMqsyGVyEiLikSJlJGkQUUKZXRPCktzKln9wVwUey4Du0pDuHG+GoUN1nBbw1xaXOsH1R0unHZNlKfla1EGW1JI+yhY3XyEODKdyo4mY/rhZfjXbS31HPYmw255+rMjD7NnisLS/wAchW0o8sNr2Jm5HOOv6IFV3RMsPZ+PvZZVFGK0HdI3zETvHElIcvuO6xwukf/l41D/zpg+9R3Hp7Pf4cftfzmuqxsp/wAM7WJQ7ffBzsgBKB9tC0PFt2Dar0aWfrycErXm0+Fn33GO1Qd81aQP9lPrUb/Zmefv+ME7fc7Cqq/GsMC5Gjr9IvC3nweuGzuRkuys4e3eaxwjbgrZngd41ujd3NK5iFY7faZ7nZNo7hQ9jPp4ldfm2oPxJFU8fraGrgV6kONEPaqjmbDOajM4BknzjbQncHj3D7KrHwc//j5ni++/cIeRKXTtPUhwfR5pByXh0dRCaI3KhwWCyzjHRAfumgxR85ECPqt7Fc7Y6JLDuwV477kPHFergKdKeTAg+hDWCUnA9k+mvF3bhtZ/GQUhQbfhQe1pWLvdmrsGj1Nmsi1mTj6JuccMYNSJQ4j2Bnja1oP7469QRfEamDLgibqbH5OufDmryjyGeQ7SYL55B2xx1oGc6tUo9uAtX+wPwqbMQlxwVhuyUvr5UcgDPnrbEMZxIYy4Lkzpj6rI3CcVuqK8cOXD05iqtZo+iCXzZ82V9GWBEch9v0+B/67xzeBwWq94Cdyfh3O26mU4tfIh/d0tTwW5lSAqOQleLuwm9XFpdP/kFp6XthESRsSjdsA6PueSAxEfinm0zATU6xQHxa0FnHKiHR/LK0LN3DGs6H8Gzox+Ddo/QunZE134fPUiu+rrgMbiVXTlVQDeWTWb3zWdoBVJv3midTcF3DWDNcbdGPMOwLdIGHIWvMayTCU6LvYWb/59Dq7a7zl6ojFZrLuOZZVqlC6xFJ7MMoSGz0Nwflk0is1jvBs5CPmWmey/WJu6I6NBcbQCuNz6jY4Vo+FMnSjrN7qCbk4Wj1vxHt8G/abaS8OQ1BpDB0WDMUxRCkemawM236ObtVvonuNqtrFShM3mhSSpGwehAlvp39r/wP9LKZwR1oPV0Xehvi2SaprvYM3Gk9SfmQtaOpvg1afjvKLAixed3E75faIQq11IXakHMXx2GaWPVuDXWvGU7tbGW5u+wmfj02zXLIaWfmKgt9OPX9psgiCnBurom4bDTTfR4NBL+LD4CIblOYKGw2QIFGD4PkodG3UuQR15QcIMZzg6PBpWXurjD1RM1nHFkLZkMo7ot4XbrSew48ASnnS2G8q+dOBqOTmU95xB6VGfYdGcXrqqboADNaNg0tVM3C0Zg0JGB9l10i3IfWHM+0s72XX7Cpzf8gfG51+FvgVmEF02lu0OKUCK3SVsGTMFF8qHUOiP66Ay3EJShadog14cTMgwgLn4jv1tDGhvTQGXKp7khdK78WjSKPKszoHqZsQn/RJgcUgNysYEgbNrN6U+2Qd37hJ+P30AvYujIDfdl0Y+/8rv9ISxcfQ4KL3sA/E3cqk4tRiDffbhB3EZWLRclUvfPIYTeQY4+etGVrefALJJt/n65FzcXNNHhfL1OHL8I1jioEAhVQ/ZZECfUvKvIeloQBZ3sUZbOmptSOf+MTvghCmTt0o+3J35kq+EWXKIXzbVuYhDcH0+LpmwkrAqiQ+N30xe03TBXy8VOl0J1v5cgcd9stlF2gyCvKLAW+cSjlnyEupH7cLv7mLYEGsH/zYuwyjHQfAOvUsZRwzh9q/fLPlLAzdKp8G4I10kqTUMWzwrSaB3L1wfPxUOCb/C+LoJoLwuCNtO6EG5J+Pa9ddJ7eE6Ohb5iAsNw2jcsAiUb3eDtLESID2AEL/8DramzYFpFxy4KNobJdds46b0XljvdxmDVIap5IMwfFwciBuvAsw9EMiWtJg2GQtBo00b98wohtysPXhD8yR+aTKEsZJ7+dINK0xsHYb7pv+wXVkZO69O533rZPFctA1JaszBeRv0wcDEDTrPvwHh4VxMpBYwVvoNPglK8JAuU/NgIlYMdeOYdZKwKc0ZDO8GgMbkpeg8xpqUf/zGD/H3IPTfP65WciDH9JOwxdgKQhwy+e46T1C6VIMSznWQOv8kbrccRPPVi3mMVhTLdXnBB0UtWH35ChasCmXNO5P59IFTmFWxBti7GxU01DHOdyXeNNtDK48wyBXtgcLfemDpWsRrgnXo1x9V8JZ8w2FTltIj+Z1gnOOKoW/kYMW4A7zowgmu60vHfJsNVFPQC2mSjtScbANdLi1cfNiVJ95ShzzZEBaI/02WhTVoExSGttdW0r6sSGiX8cKHepNp5BIfWpyjDZI7L3DvXFUqXe6Cq5d5UeiFAzzORAFv9lzhT8vdQP/EEg5SdYDhowdxFm/njPOJYC+7HPHiQ2qs2EXezpYcd1mSf6m44UhbHQi948189iTOLilli8ddUFkgRDOOHyLFGGN8L64PH+onU8dHeXBfZsmqBmk8fGASFDzqopyuAhb32kLvIvt4jv9dKihg7B+Qgt/HBUgEt9G6/cWode8rXQ54zEGrrqH67llsNHQe7JoGab2KFWhPnEAG1tpg6qVFC6fsR2fnJJzzRAU8xSugXUiSBs/mgWapNdSZb4FDJT/5QF0Z6Ps3YJImYe+gAgi9aOc5Bg9o129prr4lBb3GfiCtexqnVXZwXdgTet3jgX8C/qNLr3Thr40a2Vi/o1mJohA7pZjEixx4uUgbfxX0BscjUnBs50866QpkbDuA2493wfF2VVh6VQ0iNXrISmwZ6dnvxvhzCfB6nQ7s2DOd036MA/dtP/CRjxS4XyRYU+wIEzAKp0lpoePsCP76dRbO+nEBIqELz43pIk4ZB9suZrFH4x9I+NnC6isPwTmRNtprlEuac56Qc388VXlrol6OHXjqO3PJG1fUbHpEhz2G2f30CZ68WgiXlyhj2u0kvLigieouWcK223nQWbEVdVbv5fqeGTDNtptU356Ci4X7cf/6w9BmvhmPKwtCqdobKC5Uhe1PF7OndAIECUlR8h9DWLRvkDOke0noRBsoWJhAYGscSe5dh80ZunxTT5nmjLOmnJ/VmN/oiaVedrTh5Tt681sOVCc406aF2uCv2snNpomoEuIDI0yLycjSBcykf0PamQF4EycIrmK9oOO3CgSFPnFffjJXlAuQ4rdsUnBaz18Ee3jTlyTqG6UOXzdMhkz3M3BDs4/GVVqTh6c8fy2cBq9M+9l47GS8ZLKSbqbaQ7NBKgsqaoP1qmNsM+YXNQisB+dBD445rUwajnK80H8yB0kKwUmJlbyirYJmP2rld1kNXGIuys0f34D2I2NaLHcAnDozWX2aIlyNnsJuRfGsG2BPybKeFHp9Alk0LaHXyxvpaLA37rragsVJshAlJsolAuFkvjEHV45uArMzF2FEZxYkVZhCxJ0+mrjPnfedkIOeSzVg9/EmbK97jIqOapCzJp7qZliwi8BHqFGX4nc3PtKGzbpQ8+cGhVpNpOBZdjRn23f0u18EQ/bRPLdwJSkOHMO8iae5/4glDG7MpJpX08nunxUajl8DbeEb8M3HHTBks4cuqZjxpNlq5P9CAs6YeCEM/AG/+Akg/TgYvRQSuUH5Dp0T9OLUE8Eg2DeW2/9YgYSGJ9b8k2XTL8dJTmMExx8T4529uhhqcQrOLR6Hd7QuY+ZUeWhf9pDXWq3hZRE7MSy7DXo/jeMQ8X8sFRDGQ2v/0fhbeSSyxgLAsphKXc6BfeoxDgipR91yP7Zz/kfrGoPha/Mh3FswFT5MNoO5IqIkFa6CfxfJsKppPn6ILkI9eyGUbFvF7TG+PHpSPaKbOtyNeEeCzulY7dUJEkaVrHM+m3ZETKIoWMc3W1Wo3XUkTz9tCaVHN/GlEVXsUjqHYzPmw9/t5bDhtDuPS+mly99vQudbIwyQUYSL7uPhSKI/323biNqCH9D3vRxYeKrDz/VxeLMD4aX4N37eoAhCr3rZ8bUejS924daenbx8fx5IOf5ApaR1fG5yHt2+Vw0JN9RBwziat54rppdOC7lgmzUNTm+kGTJb8FFYODnLTUTRc0P4LVUOtvemgvwuZZjnsho25g+xYNwirsrejbke29mtTAh3W4vCggiGkCmrOPZHMal9egPHZ0lCk+xJGDE/Fx7G1/Ji91VcPM2SDg5LwLTSRbBPW45zj/SjwO61OPfdOLxVdAJSfy9ixUXm8P7idAx7JAAP5qnjDYHLUP51IvjXTcGVX6LRyzoDtu2+QoMOBVAoGMsu7xguTpmLPf0P2P5MPWHbbGhLl6eHb1fgHfcYfjKzDe9PbeM92WPhdd1eShRTheAgLbCJXA1VxTcx8aAOHZ9RzLF3XOnAc2Nq8reD4N0DeOxQB0gdtaHxAx9x+tGdcCrwDp5/K4xJt3finXVOuPORDGxPOsfy0z6Dprwn6wjoYL3vejQWRw4fOgBbLAC1KBArGiZCzFMf+tR8nQ6s+sjBswYhNP4vJkU/48dbJsPbbRKQ8GsDzlymA0kfHVkgXwLeH6ti2fWfeO2KM5zxagcULUyCKKu1XJyggUVzdWFkyAIoavDBNUKz8H5UOV1a8xVePO4kw8YEWnv/L3tcH8mrA8ZD9W0bsM5dxEJ+LrCg5yK/fruBhwbXoglEcDKc4GSle+hoZgpuVqdg+suj6P7lMgk+rMaTY+bS4fu2bD53NtQp+nD9y4/wdOEkGFabB/c9W/C81GFWcrLjW2bz4WzLHtymcoYyu4exb9N0qK/Uhveq7qheKYAbyoa4795G0rQpxz6nL/j5iBcrTNkDa/st4egDgAkmDrDP9wecuyFPXUW/qQzlcefRydAWDqhrFk1H9qbyR3s7OBmlTZYdqtwo8hKyLwrhQq84yCl4hcZ3G6ml9xmPsh6gJU6GMKP7Cp29dxOrXgZw+qUOql/uSUvlLCBVTwpyRtwHvSIBloszgI+vOtllkTeXri0H+dxjvOpdIKwJmYcwK5DeOmih23kDkFM3B8GxaTw75z96l7yefq/+AfYHdXG56V5q3HybD88OwX2v3ODaRXN4q1nHVwaSeK1bLAznjqYHDyfjxdqrOCb9I+jVW1GAziVoHZSBthM16KW3khIfSMI3pQwMb1eEtk2m/LV9HOw5NJF2ftrCB60NoTXDDrecm0ofp0ynVzPFaZ36EZ4VOAQLZ37HaRk6WHXVg3N/6oErzUGRrV7wI9AHHxbf4y+mAdRfbgA/zcTw8bun5CYrj14OsjAUeRz3n4zmScF9NGalIKbrt+J/R7ewf04Vtx9NZT8jJ94XylAaq4ZZLYYw8K0Wpxudo3FT7iOPEQc92et8PkKYPywUQlsTYxiUE+NVL56Cme1oiJ5Xy7otXuh55Tcfjy/mC5dr2HnEOnrzTA2Gm2TgySJV3tLYi4+MtHnqzBzQ3VyFFTOt4Zn3MlSacQULZ0tDV/p2ctuRSArH/3B1kR1LvnhDqmZW1JY8D3+/0WWz/2r4XhXAysBI8Es9jybp37HBZDaHdgzw4mVHKLRtNeet6MbYpFyavssCHif0UeO245ApvgY+TNYlsReXuDnyO8683E/LfPeCyP4qClikCa2HrpPETR32yvsJX17Xk2OjHM23F4c/uWs55t45NO0LxGcr7GFbmTmMlvODd75IjY1FHFSZy5ZfL7DgN3ssm3uYJl7yJPhhDzv9muBW+32oS30Bau8vw4h9qfg65jqknRAkDU0nfNUkxYoLrMCk9RiJWH5n7/UjUdaxk06tiiXJWCWeaf+Lta3UOLunFN5tIojVz6buvnr4cSWIBxdO42dSknz9wRjQtE5i0Z2PYNbxYFi2VQBEeCvBMh0+IDMZNjpeIokLzXjLPA3kRjVhdp8Y7td6RKKBuqA7ohQXnnhLY40W4XfpHjgoYkrzFZshfFEPFER+oFyTLpaSMYA15d1smOwMG4p+sq/yeDz5dBS6xU3gGSFKEBw4AS1kX1PZK00AWExG11S5bXc9T/p7kZ77jcInhR3YkPIJ4pNTaPagJx6oHAVt7Z1gHhCNm9ZXomlXPg1t+kzuSzxY1CuQbdIqQV5kDAbv1Yc7alO5Mygfu8QWo3/RM9408wQJPPkGs3MFKfnQEAXOCUfNKIQ9lbYkc6qIE8Y3QskXA5RZswfqtu/lY1rW+LWphvjYG1IKU4aqmijOyrLkaoVZMMnoEcdaP+KRY5ph9HtTHm5xRKq7gdtCJ8Dy6Fmc52nM7ZoudKJLjHYtScOuJWNg6L0yz51oSO31Cij7zxA+JPzC/aALdn7iYHT1K5erV+KRl2FwadFt1A9bjZW6vrAiXwk+X7Ag++nvoVNYFPRSNeDpPEtS1TRDP/cyKD67nZbnXKPQ8VrgPEoeriX/pAaju1hddJ2Ej4eizmM/3D1xL6kO9eHKgu/oGqUIc2RDUbbmNUfKWYOrfCJo1pyCn7aJHOxQjw7aNaCz2ZzFo6TAtHE/7Pw0Gn7mSZHjnzqu6DKHz+lnISHGCiNS12BsmRSGVirD+VPjaKL0Izo4wY8tK4ShV+ENjXPaDb/kUqh3/iyw8nkExiPs4MOZi7hau4AEVa3xoL4EiB1YBkVrpvA+F2WUlQwEGWMRnJ5vBrdVSqHimh/ezDhM6joBuKdmHyiHXoIvk1To1iYjtNl4A3ut9OBMyDsS1FtFJUdnwKgzbizQvR+H983BI94jYOKZ37zr1kN0SxaAOPnbOLDvBzYvPE558i+pYuNtvqC+kiPqV2CzRjw/+7AHbJ46QObkRiipLSPprnr+2i4D5581gFcrkZVhIh0UcqdthwBW+InD79tpJEozUeLYGkqdq0DWScFg7PkFqzr+8IEEfXCXuA432wn+foxBjSnHKTfgDk/TeMAFLcvZ9O5JmJh3HQTSkvHgtXyUHtSC1WOmwLW1H2jBW3fc+NMTLb+toHGT3mJp/DH2FpnNG3a94s/ehlD1QYptHmrTgfurSf1zLrtkxNAVm3fQuv8+ysVl0tlhDVrfrAC7HrVS8lxpkP5yDxNlykH+wCmaajYfVKyvUWII09jDDpiQMgaE3gZjSmsbmkrcgjs9bZTYKU69T7PYae5NvnzJBT/gQYj5qAqjHTxAdPFaaNQ8AKVmbTyctgY3GAqjSUgAPnKqxfpfljA9Qxm+PlDCFblOdPjuAAafHcfPU5Lo84AxrKnLxR8T00iydR/vbXaAXceL0X3GelLw6OJTJ15jY9tW7FKYxp/OfoBAgVX86awwS1ZqgnHOdcg3fsF5kWd5keNvOJ3+hke9jgblbcOcg3nY3CuBmk4acK3Xj/VvzIC/31I4T9eCRc6vx1OxCSS33pyy25N44Zkh3LpNFBK+3uGX72JYcckHPJBwAOjTb0x7NAQzL9mhhkY7S1EoRRUYgPjKWbxl8hteaaGPF3/L441bQ3xt5VQS0RsBf/KDuaF0HBZJqUB+egSudRzkq8cUcI6uKLwTuMxrp0vQP+k5uD7EHoPjlvLplaLgHvoQvsV9YwGLAqzLCOPQ/Kdo1qaFFub/8UDvK1iwygTFhsyh6PYIOKuynmTOKXN4kDodfqhNGUarISf6HzWJXubxQsGsZkqQ9jcA//o1oNn+PJrjcQ8Eqp5C2fl75PlTjK9kq5P3yTCMSjGGo+/yWXr9WBa2M8O8ugH4kpGFv97PRA/ug+PHzuP998/RbbUD1O5Jwj/xWTytzgr/3u3jG0HbKHT0WPJuSaK86tM8uWgL7Dg2BpQpCA/JqMNrDy16EPEObvzTxX/NtyFihwl+Wj4S1zxvp4uOKgDRIWj/V53iT46h4h3n6U97DA0s+k5+d5fhbBFJ/tK7HGCWLKw5+xVFj6rg0fKD7LVrDV0VWYrvzSXZIPMefBou4r/mmrByiRAI+jyist3P4VWMFattukGS3f00Xz8GFp/ZDVxSypfNAuC4wmjIe74QM3df5CDDX9AwPY8K4yai2pYGuLMok2Mcl2LOi2m4CQTh2MVjuMhjOi2YFAIhjdYcrv8T9VUE0STBgsfLnKBnfvfx6Ws5UEk142B7Ld67wZCrHV/DN5UXqDd5GDOPzwWzfW44ZeZYPjooBTv+5tHqrTl0cXIovs9vwpkaGpw2rhjmCT0Ac0s1rmtawNkdgiD3XzVZJe6F8EZNWKpVSXoTPkFk5Hz69OsbjQz/RxpTD8KwhjqULd4Kn//cgEGXX6Dd/IfLZQdZaocc63Ufort92/DCRl1eYKQLBX+vwaq5RPPLxGBn/lL6sLAfR5TPxYydfRgQnAASkn84fMgCRN5LwNuSs7R2ZC/NOPuWzX3MeKvHSF6/NZ5FlilRh5wZPvxqA0oexXCsxge3vQ4H5+123KMRjbjTCQYfl3Hs4efYe0mAxKSMofJkA9xLnsjup8VA7VAP11k/4d+u7XQopYCO7AwE0Tn+dLtZDgRba9F1hTIOaS4G+dX30fPzWR5WyGLXdFPcUiVIoFMFP93GwFXhAX7iuhYdXj6DM13qJGWyl+0bF8LiYRVeWaSCx8/dodJrRjD2hidFHkM4JPYdI5rjacDdFRfrf4A3OT/4wpAyfxRsxy8XLCHCYhiKd5+ixuazFOsfA3FxyzH2UTkJN0qx/AI9+ixuCvFvFMDaJpetZm3neYFOfGRKCy7p/M4nSqt5bLQ00mNpzDwXjQmhdjBKJw6VDizmKpcJWPFLmrfuMoI5MflcGToIPe/E0avkGW2tMoLMNBXee6cH7q7LwO2H/Fj2ZCV+znqPWp2OcL7fEwqwg29pa8AezXd04k4L6MpvJhnbT1Ce/I4OxSBXhs6DiHuB1F9Vy2O0RsC5DeM4T1+IQ5cO0asHG3mCSiCN99Jnr6hdfChhHUf8iubPh3Rg/4pBWKffDoFOxyBeaSQahe2mOXX2+KpGlGv9GsinxwEcPc3hddV96G0zhpfZ+7A1PxJNtFu401eLrPRv826DfySUoog+HZaQIfWZKqwSoPfqdExd0ci6Gk14If0px8r5sojiWpwasZRFZMbB725vcDr6jGzVC7H+pBgH/urg3AQP/q5oC9VvfqHHwA1eb2QB9a1xWNU6jKP37INpP+LBTs4KnOdXwfs/dSB+t4ASbqTTPwtzcK5aDZvOIdzatYJHqHrTC/s8zu5Zg296EVRq/kHw4s1wdYQWnHk/m7zHnWa/825UkGIC4ff1wcQ3kNLv/aaANH9sXKjMZY2qcNFiLevvN0bpqJucnH2KLJMPoP6p5yA0bgW/c43nGPVJdCXDDi6P/YXqA2/pqsF+vFOXj1tqFVlZcD7O2fiSggxcwRDS4ecuSfD1VEMx8du07MFv7J7cgxbtq1BXKRYivXQxZ1wJzzDXwNFyY0Dtmjy9PfORhrau5TWjA2it4Tl6fKIbZvRrw/z2X6S4eS+377AH0SR3fj68gU7dFKbUFYNwvmoBm3/9zVLzEijgZAp8FolAlXNjoellGXuaaGCPphkWT9oCE9T7+EbGc3p5TgbVlZrpXq0EvtgmDstCJdBuoyeN+fmHLvh/hbJ/5lDWrIQiAkfYX/0JnPbaATL+o8F7aTaqWzdA2oHL+GjrQRotJ8kjfV+yUPkdWBAuxOdDKiCiyxxE4AU+X2qLL48MQlDHfl7xKpi22yzlCG0F/nPBjqdJVWBTvi30l7vAomsl8G+3MBos3oKudxLg54SnZPV9H1ROecRx3lqcdcQIgktGUeldIxZ8Y8IRUcEQE5XDMve/su+5PzB6bRG7umdhs4scCPZVQLVJPC97E4t9/7bjjV8dUFwShi2THXHzezFIvLKRbk+Xh96p23H6LFO26ynBr/k/yQeToflBG5Z9X813rrZiuEMrhTTKwr85bfDavgV/hbQwxjxm6ypVGGmWhbkP0+FflDRsczmKMv4y8KfqH8yJOgY3roTBVM2LuGSFGg3mV9C1fHvSdK3kuIX+6IBW0D/pPVvpXuZz94V4lok41bnFwlY9J/jrIYRu5fX0bW4MaI63hpfbjcl/QyCnLE3mf0v8OCZuFZcv9CTt6hmcLN4N+XNt0XmDBOi1n8JTJnnsf3k69v69xrkpafimaiPVPxDl/vs3WNRWFLyOIWSsjeJ924pwgqonL945giU+7AXDj2qw7c9YNtQJg0Kv72ixnuHov3MctdySbGd6clZAMWv0hoPHqQv4cPAqPL6wEQOdJbnJzgGmVslD8wtriLz6C7b5fKTpTXu4Ke0pO7ZbUGdCKIidrwGL3yag7dVDSX/cyfynH0XmN9GUxxW8Y/xx3OJlRN9OO3GP42GIc5sE0n8K+YKRHl4/MplHvt2BoX2BrJ6tjF8+OuHf8i10bHEhbQuwhz8+Fah2X4Z8SjPx4fpwVC5ZQ/n+a0HQsxa3rtUil6zvPKZSGbruC8Om+7qkvtQWPhvpUez1P2A9phTK5JHnbapHhW2naEyhGWhub8KfWxbg6wtpEC8ZgN57d9Gc05shxfMAFQUJw9aOMtjfYAseV77yhuTz3LY0n61mH6NA+fmwaK0X3Ei9RHLl7dB+WALTVCxgJnVypPBEUpK7RYPVryC/RRjjipZTd+Vk/i+wgm4kb6YVQxow2+Abats9pU/l6SQfu4x0LQb48jUXXnsuh6L36MLKW1GUNdYGHvd8xHnBtVQcWkoXzqTR11VWXOJ4nx7CAHl19kJWcyb/t1UTDgWPxN03WtDebA6kP9xEpVbKqDDFjjYt2MBXJ46EqjnV6BwqDg3l86jq0FRqflYESyPEITXgCpbdvYgFw1v4TNc5uvLDHK7qjoXpnm0g8+8VPVN3BbOBHTC16S04piRC1tkS7ml3JcWq86gaZw7e/zWyr9ITyJ/tTmVrajhuSwm1+lvD3uo8cHASYpfPhhjlMBpMC9zAL/MxBz+KpCrv3xCkaAWPFowFvGVKPlVfeOr8Plw5ZAGbHW+B0Pz93Ovwik2ibtNO2QqMDzxAWHWST0mPhcGRTlBb7QA5x2R4kdMhFi6cSndK66A0oR1snb/yQrsvcMxJC1pVnUhM1hCmeKaCTPor+vnrHcyfGYTm3kPs+zMAIq5n899pR1g24yhcnogQsXIjxb11pX/FomD46jqfE7HhDz22uDA3GeMDzmPbdTHoOyoDp56nkHF+GXzN+Y5uEy9jZF4GPD5zkw1Vt3Brkwu1CTnRotMGcFoyk7dfuEWJvT0QcqATvW13s1PvWpo+NJYv2RxDvwWdeOWcKVyKVeOwPQcpzL0CIlPcIF1hIo1Ztgq1Ft/B7qxS7C3MwiTX8XCr+TlITEvlL1ezMTpXlY1b35JFtxCu+8+DPjnO4RF+EdRyXxYEP4uixugV4FO3lzs9+yC5yQNLhKox+/ctrng9FS1OjYctC8ZDRKI1KPb5gkL8MnhftwWlyjZAibcrBLbuwtGJ5dxbO5Pemo2GEVE9ZILBdP6rMZpb5rHK622gkXyTEz+9xb/fp4NrpTQazDYBfVVb9DkhAJFhqkhzJkDVyR28xvIhCYmmwGqXGOofsQimKxKYfwyH7yOt0f65GNgFMEU9ucCyvxt51RtbpujjMO7tdHz4TxfOh27Biikm8CJQDozLbUkjpgnWFhXA/JosjJ++iEveLODJgjYwq68EJERGYs+xDFoa4gEtCQfI12iQKzri0GyWMk1dnYUzjG3ggv8MeOc+wDPDrPmBeyXu1E7AGLEkDCsahu+pn3iXjSb9GrKFkn2yeGPUfGqoc4WXl6ZDVWw/lsslYOPq1ZSfbEMLh+dDuek4CEv+TCcO6eOvqLG4tfgJNakCm3jrwasVLXTIr4/PJnwFa39zGDZrgKvrAunMiFFcP2oxhv+2og73+SguuJ1ORangoWdFJDtODRxOVsOnn+/5TJQIHL/+F+L3uVH6GVVa0FRGQ5sHeGd6Kw3+lYHq2rNU9Fmb/KYGcuL4oxA2+gBEjIzkGvvLHCjzD9Z1xMOy1eqQuc4AnG/8ZunZr6i0uYAOxpvRpoY5vP37HhQQF2Q/pVxu2KwAdfX72cmhCJUkCihGeBk73tck7667NCrJmJ3C5tKoFmZ3YVVYWlBPf2+qw6EtBwlma2Jf/xXeXZWBMhFzYfHZVhY/fRDmL7EDq/EbaOqsWNSTnYeH47/B58x1OP1oCph0XMauc6N40hlPar8hDPMqR9AUi+8s4l0CM20rMEfXlBdm1JK6lT/HSKuQZ9dfnKtkCoa1Spy1yhRNnOVQBF5wes9y3j4nBUPXJ+KNzlE8wqWVbUInQGnTY3gboUD7RIZwyT9DvB32Ea+Xzafs8F6sdFPGjk83UUPGCq7PTWeTIAHyWxZKqaYCGEtKMG1mLeqvF4esb9E4XsKD6rdIgNTsBBr/V5gSDyGGe3XBxfQwdmiagt3Xq+FAvTjvv68LJZ81wPGQHkc/O8zz8sZhS8YgxDlX0Oyz5tDgrMhLinM50/EQenaIQenB+Vw/Vgq1r1Zzl9wt+NG4H2fmykOj5kM2DdfHopXhMDBTAzxGOnCtkzW+uVnOu+ATzayJZaHge6h35jDfqdMBScNbXGsiA5dj28Gz+xfOT1yPVh++Yea8fJzgXsbOU7/jOMFBTH0VQvakAmd9v+Hq0kISLGyDnIE8km81Z9/GB/Sz0xMWCOyFhf8UQeacJagoMTqn+PMLqWoe+3kXtP2Rgbt9R3lPTgfv/9NJNSf38p/6SdAQ2UTbzs1C2SEAg7a9/DBoBKlIPYL/pF6i1icz3NTij88S5SDgVSGGic+gE5sd+fB/z0mv6CmX73tM/uG5JGlQjtM2OIFWpQ3UOn/CcatOQFjtUy57cxgyNk/CV7+DaN7bQr5ueYRHj0qCTyu1QNW9gcPGPKM2uXnssGcvDkf0wIJZEux1pZS+zp+HpTsfk83yMZD28Qm/CY7kXVXXQTzYGF5vyQK32F844et4LMiJpS/dWTghWx2ufyhD+zEevPHAedxUrA+Tz67k/8zqKbREiO5P7aRPtcZ8xsMERAu9yCz0CzdHOJOBjgh90/mKNnLu+HT/MXwT9hb3fE7Evfe04EquHBy98pOPfT3Gcd2LYCBLF19krWbrfU1kGTGOSkJWgtE4fVip/QJpjiVu9ldgr9liaBWvgt/unYfSyv3g272WG4/fpV/XzeHi9xmY2DkD3c4X8mkbf3zjIIp/U5dzrGMf5Sdnk9gRGc7aJAOJI/vJJ7obb72L5ZYTarBsaQJPKdiLG+3SKWX4FwW5vcEnI0eDT+kicijdjV/gNoYk92Bynyf/t8MWbrclYfKQPOvvOotPH2qBqUMkfU12hI5dN+n1R1d+Un4EdrlsogvOaoRujixgKERqfqKwtUGMxGLCsT78MTscHODZ5/aAePQ6znBMwcQ/prRs7V340aAPU6wkWfPsCWy61cK7zevIftRJriv7hhMKH+JNBV+YL2dCQeMmwo6s+7zu0S5s2LAYrld8wJRvhngh9g/U7u/hsl1lLGF+mSXM7GDX51J2OaQLuUrpILtAGPvfN7HXi20s+gVZofUBaF15gl0bleFazyO0MheAmSuG+PPy3ayutR0j5XQob5IR7Kw/Q6dO3YK7ViMgtXYk36r9RFW+5nQ2dRyndN5k92NTsMhAhEMqQiCjwpf9UifAwTVleP+JESd9vsTefWNgxEQLpFWClJ2SxPKbKvBiYx1trdOAvu4wmFKVgaP+HGIRlxe8d/xnfHvuPllrBUJbrhwJzMym6gfWUL2nCo/VN7OT8HPofb6OsnM88WZxJezLO0ps/olWvpsMT4qtYHfrJ2z/UIGPNhjw6dUx1JI4jxV1KlG48gUcPC/FE6tq4HuQA8RZHyFTsfH87ZkWDTycBI8b3fnldQJDbCV3gzQQfa+B29sF4AlXYJZ5AKwP3gCj/z5BIyFDODO9EDuCt7L2DFX40j2PZI2F4J3dRfb9uxY6rraR1+X9ZKA7Dmv7zvGSO2Mg4nYOzZi5n8ca6MGdyxc4T10INlqt4ynZsnhTKxXyUh/wkJoPVgilY2r5IXK4pwYp/REQozMT9EY34neRWHLS76Ebq7JwY9RlwvG5fCXVEbftU4bJt2ewzs927LpmCYEygiQbOpZLpG5SYUoTrtZ8xiMXy/DPfn3IVulkiY5v5NZ3hWzyt9Nrbx34kvuEFnpcwJrHhIpW3uwkDnBEcwGGJEjAum8f2Ux3Jn28KQrZqp/gxaS9aHBAAXVVl9PqPE2wk9SlG12jQfOPBJ6O1sexS3ywdNYUlMkMZJdhQ4p+tRsSfUeBw4v54NE6j+1Gn6DTzaJoGasMyk96aeV1MToiLEDJZSfg3Ehl2F9lC7rhv/Hw8fWsLa1N150WotqTs7x8aDsZrnEgL0ELXNolDDcM1FFaYYC6ygPpQMQkXnhqDO9Ztp+T3k2jISNH2GN2mU1NbMFLTokbliSA6+wiEl0YSCZBIhR31JxGh//gktI4OL8lEUxcVODt4QZeXnIPnpWt5zND06hjWTtfCJ9Brl6L+aaHP9yXVkUvWxUYYSkFq89ehKp1U7nusRt4X0rBI2ciaMn8arwVZQI/0/TweOZ4+HBbBxe9XAr5L8Wx5ckhmC83QB1RG2i9yy0aNNxDEcoHocVHCwRbwrhq/SzMCNEEpag6HmUqTms6vNHqwkVKXZqD6Q5R8NtIFwavrsFVTptRun8AfJ+G4bVjhvTzeyiOHq4iAVdLvrqwlCr3a4PCZW1ISl4Jd0+tQI3KDpKsWwrZKvZouPQSTJU+ReZ/RqPXZ2GYPRSM1UYLSPmMIjxzVQXznHZ6sLwX+x4ag/7b91CsEkndMbbwLTebYo/dwilXb9HTnAs03k4Np80e5KHFm7jmrjUqnNlCB2uNQON5Fy46/h3jRi8D9YbjHNhbgnWzrtG0ja2YEF2PL7Tb4JemOvSnrqZtM+eR89t3oGf9E5TuL4b0bCssnDSVj9jaw0RLVfqSowGbVIbBry+Oh/IaKNppA0t5fOShr5H0imo4+FwqxOdk4Ks1hqCt0A+6t6dgk/cAtEf00O7dyqS+PQ6zt1yHfgEpzkq1o0d1EjBx+iY6UbMKRy7fR9XfJ9EuCxl+lhfJms/M6aGvIad7PYGJL7Xg9VQ1vHTxFp+ujOftZS9pr3oQm6334QcSQjxVIgwWjUrnzHYb6I5/yR26mfRq62GU3G3Gj1PGcX+WIezRLcXKrE5YZDaF/FS1QWp7Ew1t8oeh6gCc7LUNhXy+Q9LleVgVspye9Ruh++sBavllD15in/nDVlPcbyPOg0t+keWhUbDJOYRav9XCqQZ3dFkejfkXDEGQbdh+OIGTLqjTvcEvZFA3mbbIq8G3Xy2wf+U0bBhOQ5ZWgXlTltO7v07YllJBCyXr4JXvJryxcSUaSPZxgG4xP6xopuXjDSGofBH/fDASJ+IHftMxEl7FJ+Elk2twyuk5fzFVJbkAL7IvNIbn7s+pX1ITth6axoruBDdefaWTdQ8pob0aeq6PQN0bMiRRIQS3AzbSnafV2NZwj+NnhYC5qC05yEjwsx/zUOqUIG1bL0DP5lrBiKb5mBapROs9dLBH1gvPzs+E3Qc0eJuiP0sqOdAjp0xamasOU7LcKPP0aeyosoSwE6cogF/zVYtOLg9MwM1H5sOCWa/Jq1Ya0uY+JKXUFXRY8Sd4n4zDvO5r+Kn/L+l5TyAy/MEf21Zy3JUJ0L+9GMS7Z1DaM2+OeFLM42U6OHJ6Nj5tF6GU2eEcv6KAR2/QhXWx5zG5SIS9xIAk12hy2B4ndElZjd0DHQAR9/DUNz2y2qECyyw+U/StEdDwqw9Pa1tQQH4alT1x4aj9cvDxZz0GJn2CE6OMwLf3JnzNHIaBm4WsLG+Bi4rvwoP2a3BcrRwvd3Sj1ogQerDCEiYPlkLytIk4TckP56mexNPtgVQb64dX5Pug7t8AfrycyiMXW0B68D/wDJLl7qdG/P3dB1x5bz1/mrQH9j7RhoKQ6SRcvx0+/HQAP6dJ+GnsVTZ4fIM+9n+l8u+LcPKBHXSmJIZWWq3BwEQRLDihDGnHfSEiowmFVD2hs/MGWVQZo8D5Fzz/1T9s3jEKfGa/xhpBJbCujaazzx/jOd8otHl0HC81OIJl6nTQ1hiL89z96F/MeXTbLgJjvuRRlPs0MFixlPLs/mC89zze4XYA5QL/8ffbg6C4Oo7qEyfADp87qL9LGpUjU/BMQgtfTGznGZWunKOQBcFf/TllVQXf8gfoS0yEicn9oH9BiyMmXMSnIlJw77kXzvTYjKK/NNi87Tz77tMAD5uHuCTZgzNlDuClgVtUu1aEZdPmo/vIqeS835kvpz2hYgkNOPW8Ht/3vIQs/29oNHYxrVc7z6fDXpPM9XGwzOQCiv9MonATSZj3VZ5lTpZAsP1RCnES506TINpYEgRzfSMJNPZRrrwev5nlAB46vzHc9CnHTBWF9UXTMHzaND71YQkIxahgqOs3ltx8nJLXK0LNFDvyPbaXVxnvR8stk5DuXICiply4EWXK1wan0BRpYYZUCRi7KQVitQF3qjig0axLrPvpA3v0jQIFlV0sf/4OOG+1Bp1Kayg5ux6dURMfbtMAoQQiK9f/6Mr+y3z6v23cld4CXUdaYJGsEbSc8gTT6SFgW3sKO245QVHiJr5losFdwzXgfuI7XDeroaxGbbj9fC0Glp/hwhHuuGDWfJjmUMdHDcLgqvZ2sF6cQ0V3w0FsnhlkbhGmhIslnD2QwvtlJLD6zWQQcVCm3bCCba2Yy+IUYFGkCJhbGFHlB3Xa5dXArT464J9xF7N+lOJcRTn4HCUN+94LU9AaWejsj6fYE+n092cO6szbRqJKATRN3pqFnkVC8KNBsLPxZRtvedCJmcRFRvvouWwb9PnORg20QcOyF6CTI47zdIJY8sFvmLBECKoqvHBDSD/Kj6qjHwd3wqyXn/GWzTR8N7wU99bWYXRGLq+aZAhxE4TpJDqS1tVVrDelg6PWrKYyFz1qD15CsUNHcNR2De4cHgHeKge4bnUhjPO9z2+e7aRZW/Rglf8H0Dg6Gx7ojKbW42E0bGoJjhMTWeKZG9nHqHHZH6QblYZcPPswX9jrxPl/TtCdnDmotdMUGlsPwb2XGlTyrY3HYDa4maTSH4sTMPmmLS3vfEvXNUbxTU8LWEmR+MkthsLKXpNPyAVW6zuCy23ukNnE3bB2/RqSMJJg0xdK4ONTAKJNj+mOrDkONsqgg1cyPvR9jFLpv3F9pjS8qzHE5YcMQeitA4auMaFRtlexPEiebl++h7BNBXpln0OBiRKeUljPrbdGQ57AeDq1qAnO7VoEyX/lqKd7CRRXH4YPT7LI5cd16CiNR5+940B8nQoOlC3hK51/WXjmIa777yXJzjlGlvJL+PXJgzCuaCTG3BUF62fapPnkBbY53OGCqlwI/JaBMs3aCDt/Eza8IplKE/RI1Yf+YS0WMm6E61WHUW/FInw8JEhuR5eDvJw9KQTto+VhbaBsPQlM313AjCXxPH7lVJKf0wNDrknw51otLrjhxTUOb8BJsQQGzgJ8djHGjFw9Ki2bw4Wrerm9sAN2bgqEPBUFdnkcB5VRUVDVNwJOszQF6+5gm7Gz4On3WbDg6CPaZuCE3+6VolLsGryySwaT+mxB4coQnHtazmHXfXlPFJLr15F8YYwmFOo+wR2xq2m9oTZJ2tpBYWA2Ton9i649A5iyJRW1dfdwhHcu5s60ZsFFOZS834IF1+lA2p/lUG23Dzc/TsH09FwCqSKytzwF/Y6usPXNHnDffhVP/1KBNQ7ZdC3gFqTWvsQVX2Ipb8oYirVYDZejH0C8RCH2Xl1AZ9eog+jNcbxspARrZPyAPVoxdGaCOry+Lgxb94+hKvUJ/HbOCfxVPxZUBo1whosaWk2exaMe+rH+tOs8dqCWNU2E+cryAng5diZzD0OR+imcvc8S7wv70EWlw2BQ/gtKBoNQbG0DbZulxn6ZL1D3hRa8ixVl/SPllDDxLe9bqIH77afx0jUWFC4xCiAvH5fUZnK+L0Oj4Qxeor6V+xca4Os/M3Cf43KMHppNo6//B3PWCYHC9GtcZikMkzTNuVvuCKcFMffoPyTlTV28ZlAIStZ20JEvDViwTRyG823gmusfCrhhh0mtqdy18xw6yb6koKFwVir8w8VyPhSlkQxPE8RAzOke6CtN5OX7hPhO2ROQ0o6God0z2GWPG+Yc16HB2AYuXyIMf1+Lo9YJS1ZJUwY1+Q46uuwE/Ds8mcVj3SEoT4prHrxmT1dJWFq5k01KrfBV8AO09raE1yYuHKA2H7bduciGdWXQoigIjnYMdv+kYJfbc6q61AcbEmdjV2ImOi6yA9m7cfjkezPqdvdCyXczuD44icXdQ9hPJ52/We+l/2S/YYaYM0uf1cYvqdlU9d8PNAki0Ptcz/tdzsK9Sbtp5MB5zpbdjJ6LM9Aw4wgZ9IVQyJg81tpN8N3+PfiKnqMxNVK44nMGqF69QMo99tQhdoQdVPfj5cRCskMBaErT4xWNPvijRgILLm7AhNQNGJflzD0umWCfk0ydwp6kUi4IFbcW4qqVUrBwFZOqSS5tSJkOr8X30Z3RqvBufC9M7gmnV7ds4PacdN7rlk8lYwgj7V+hn+ZD3m50nPH1Tdhed5f6BcqpTV8IRGJlWWTlMljru4Zy0y9hqUonHRjxkI/OuYzqX+J565MFYCRiDLcGO+jXlwWwwjmAfVqmMCz3IedBSV46voXTbD24MdGGGjQ1IKb1Pm08E0CuyubkXruUI85Fc7XsLB5U8WWb2tUUMH0nTJ43AZ6MkMW3f0aQe3g6K71roiu+TyjmiDFeE1XgrxZaXF0zCopnjwWxDyXYetudIv2FMLfFD3FuNJzcr0M98l94U1wTTJ89h7lrFFh8EeYzM4dZdqwrnsxDnnr3N7iXJpFCbiH/jCtAu4OnMHvGJDisJI1Flg2kUdXKof91426bNtpU9hUmPRwDQ6+62cL5NRZvAkg+nwTLDvSj+I99YH0BSNIqENSOT6CIq/5cuH4lXDrixyoF0rD42n90J/A2Vpa4Mbfcgq46Nbh4twxejPXmUQVtbOQ3m1zf6MEHqywu2juDT6rqYfbSAPCIfcXLNvvBvRovvCIkgqHXwjGzXA++HfjKB522sPnkXuy/q0ThdI+OqM/Afish9KqwpB6HCrZKmQSVfuVUY3sExeIEUEzMEbY+PYyzd/nT629RfNdIHgMcGuGUrAXUnT3Ld/5OIoPRf/GRaigKVbeS3uc9HP3BFWbZudKlWEnqmSADF2epQXt6IjU03KWWPc0wr6ICbS0v08gDG1lF9gscniyGW3W0ofCMPkp8asK+zllUuPcMW3nr4e3haBjbNIjV0zPgTbUrC6aIw06xJuh78YGWRkeCzz0BujV3D/+IzWZn5ZEc1roIZH+fxZkeBuAnYUK/D9rxeX95aswcxhWhZ9FxWinUdlmBYnkW9nqJwFJdazCp+slmH5eAzacimJk2ipt7tTHcOA2/GObjpezpPFXiJ7p9EgCNv2P49UJZerxFktq0BfjxUjPkxf6Es/Ngqds8MuudQ8cWmMLl0hiuqPCn4zLIAilLwSMomSysszFb4S7hseegXHQJChq14aDPfHizeB0s2nwSz45dCxA3gkuLRpGbwzP+trGc32+aw8KRhmAxeJfvhU7DOe/dcOjUJNytNo8ll37HmR75+Cl7Euc+dsP9ZA9XFZGuGX7Gqc0neEa1BWmcTaULhqe5uDQEj4yYDne9Z1JQvDhcFL4D1yZqcmTPFfAwvsZtq8v4v6Dj/Pm/Azhmiy5Y7kR8NsIGnvd0U6hVHm6+UIct5f4sKi3M3rPN+ElODHgpxYKk5Dsufy0MI95MwOf3pFB7ZCZFzuyE3V+2cv0qIZpBs+CujgYFb/mB3c9kob56Buxcr8f9FWZQb1lHgY4SsPBgDopcSCMNp8PgvyGVr66whd+HlpJ65n7IDP+flftQCEFRAwD8D5WWlgpp76W0N0XZdEKRNBQKRYqSikjKyGwoIlmZKRnJjELD1qI0REiJBqXuS9wX+ULgYE8W7/2qAUtvM3u0R9L7mg6217PhFe/1wXtTDVfY65Op1Czy1D6Iozd/57KZPzgkshUTDYp4xfUwfGdvBdZTRlPkM13c6bibhL8chJOXOmi95ydsaTmIgiPsqGS8J8WYIVxOk+dT6rNpm0g+x+6/SNuDM/hgRyfVntamm78f4c0KN0paPR6UrZ7g3+mzyWbDOOz6uIjfvR4FI+Inof+1u/TayoeCixdyQZUl2DRM48TTPXzFLwuSj//BFLzKUWarueHBEUh/1477/3sGG5+Pg6WBzWDun05yh/sgxv8+yC8NQQuBCMySOEQDznfw7S11VHDTgMvqOdCqU0/9hhehd28CoVwNfoxuwra34aD92R7Hln8lJXFRULPPp7MCUTS2y5mu/vKB31J/+UTCBZK404CVcsnQabcMMnzs4GbkXbDpXcz0oQ/P7d9Ok+bJYnPxEL562wp53+7RgbY3kPPTDijxOo4qWUDbwzZB5WkXlGz5BrWaRpSwOpnEp9bjxG+dfGe9MszfH8tShQKk75/MjrurSPtPMWpSPTiF65HaWBOckk54XN8WFgx8YcNvVbQhfheGTxygG9dPkcXRPvr6pRBs109DtThNsvtpDj/04yk8PxcXrggkIdMBfJNjB06vh3H1+VLScl1EZ2MOk+pzXRB8UIvfYldhy5y3fGtRP/eoPyNRNy0272vgF4GX6PaEX3Bx3kgI6JgPKnmbsenXOLSbYcsiP60gIi4b75ZZg8ppNZKLO4QJbUYw0/sTDbRm0b1TyRSv+YzmR3XSyYZuKA25zAvOnMcmlcN0/q49sIwWjHziSE4SM+H+U3c0jdbHoegSPKi0mR6+T4KFYsBuZUaQcFEd5tR/gtOd9+D2oSe0veIWC9m+JK0FGiRVX82/lG5wwV5VyJ+1gWMsBiiwvJ1dS2eQqeF6fiFqSskHhPl55AP4ffMHbT8jCOUJb8CiZwWebcsls6F9aGb4BEC+knyNdCmtOIl21Lez5IAsPJEegUFnt3Ln7rnUJVmDzi+jKSLuFoXqyaDC4C5qa6yk+b5mkLjsLLR8OM5eAgDHFIXowyoZ8BE6ifZnP7LCfXmYreZPgWkKsE7EhzR1LTFhyyzurfPDR+c74PVOZxyz+Dhd0e+hhAeddMdRG8YNdPKrW7ZY2NtMeXVfOavqNdxobmb3vdpAN5k6HGKxudcARHwaKD2jCX0kGO/mH+IXs+z45Etf9u2czaM2PoUvf2pwhvg4UPubwV7gzjdflhMs76QfBtK42Pca7L71E50ebyLDbef5gL4lLFXx5SsVj+DCHRFcXinOH0rlsTQrk3Z1msDbXf782yCcV0dYg5THVerJ2YqOMZWk9qIMO14dRpEd71B69F/Uf6lPoxpreYKQChz6lQWX67r5UvkFjNTJgtUpF1DumQwGfJ9JUlsCMLm2E1hKBCx3ZNKYxpWQ4G7Ff5pt6JbcBXwmMweFxhpjALrA+djtWL7NFqa2JMI8mgTBEqPg6/RgkPzwHG7+vcOKnmZ4q30vr71lSeU/RoJQnQWOVloHD6YChRqqoc6+Nsr1y2SlSln4utGY55aNhTAVUShQEiKxkEswmY3581dHgo5UKvTbD4vzxcCiwRciG4zIV8wMxrUlwou4HBae5c9V6XNJruMV5o9Ih0m7xlPV9Di6f2czKy3Rh4mPQsin9zasP09kNFcN9M/3suvvQNBeeJgfLlaGlJVNtK9SAaQWp5BbvyltrHfDzduTSC5Wkj997IHMoSxINTuMwleCcFhuPLTCKx4+9RNv16wn0dzpaLtFl2JHu6JyjT8dd2rjMFEZyHWzAhWXLaD8XyGXHr9OcpMa2cJ+OwZ9i6RDD5tAfdVqrAnVwbRdklDSUwDipxPo5ksBvHLUnnMTLDimawcf0ETWnxSAjl8mw9GR48HsqDerFnjh+D1ryX3tJejfGUhJqwrY0tIX99lM5byMKuhZLAfCFdFslfQFUwMDeee+Nky1buOY8YgnP6dR9fcgjh1WwjsjhEE38R+ON/iFYwT28uv7NjA06I87hLVhzcUWsHNIx3ZFaxTXnQgS2Zk4s0YPDebbwxo3wKdTf/CoRnd44VFNr/WmkUbRMs4+IADRXeKQ7WIEH2e/4zF1x+ihUR0mtx5h8fPzOSn9Nd6rzuMTPqIg+nwyUvk+nGYaDJt5O1udPA8yq7Phas9MdjTQh/V/nejRGnW4bSvGGTuekKuCMWmtcsKkgiJuuvGTTcXegT3Wcr/FJhhvawYBfoEU4/4aU4K2YfJgLIo1lXG6yU3Uv/8JouVtWSo3HRO9Ad6PuAClAaF8sncbtS5didfVgmDZyVie0J7AjjMK8Mqjd3BvtAp8jbqFmpEe4DHLmepbfakgYT67JE2HvdNsoSbVGeQMAsCqRBSGN9jzXNciVj59BYKdX+LeWVfAYks9rNhyAVN+T8cpP+x5w5AWHGtchAslLsECySfkJ1OA89+IoPQ8DTxoUINPEuow5N0cti9l+DW1hLry5+HKrEt0rG8ub3EZQcWHk/HorxA41fGBr5s/ItkQc9gqH0Kpu9tw284JsG/KJ/67qRcky4JQi67juN8R6GBbiEknx8NHlZ007vcdGPupHsYEWsKoJTvpo00RFv83BRy/v0AfpW908YgobDs3jM9+e4Cw4QW8K6zEn2Sv4KNN42mZxjg+/CcXlypmAhwYC2kS73HF+HI0+vedj0dUc7V1IW864wJ1h3JQu0oT5pZOpLsGmhB39AL1Pxim48ZErSu/0q25mnjBupY0I3eyo/ZzvH39O7S8VYX9WU6oZfmV1dJv88XZdhg7JR5K8gEfUTAJ/ZyHqYuX0NPuCTCZdfh65Ea+K+HFRk9DoW5LJFqdGQ8zu0/gUu0g/C0eSJf0LSCj6ycv/2873L5ZjTdjFKnr/GXGfiu+Yy8KVXuCIO5hOs8+Nx48P6xGefdB0vnxGUrbitH8ZQqN06qFy28QHaKXM482QdXHZvCjFWHNnvmw6Ls4dQ+o4crbUnysVIDNy77TaF89SL17BgR7TUHcYj35XhjP23Pc4MvdwxwuZErF/tUUcS0CLvpcoBWqL6nstQAYmwfwpQNuaCE9B7xfqeCJSl+of9PHPeefYLLHP/Y9XMARk+1Bf0CDTOZ8QveSg/xiuAaMKRv9VjmwdEkhu8MGnKOfi+nN9pBzfAoPevdATIwHZR6U4yzvDtSfKYXeXmdoTvp/cMQ6g08PScOZshBca/SMksP1cElOKW8KUYOIRcvw2Odx/Nd1KqabDKGQveD/3f/jkJV8KMUJD7zpgOx5dVA2XIU12WVoPqUXLvq/wRQ9htMWE+Bz7z96bW1N06UKedDDAhdVHAQD2oVpFUfA59BOEph+ii1RBFatv4ITBf6BY3AIr326Hh0yXNAh8RKlXzfgedbyvKdDAK/NUYCYwT8c7yINHl454PSiDo48fo8ik0Px6Yo9WL4pAyNazCBtgjWsNmuiUG0/yvYez6ubJsPmu56Qt8AMf/qVQYrRVN4mPAzjTiHIrFFj85RlePuzFoyZ3wZJvadI5IAq3MlfCqsyI/ne/o/cP2YCHKmfjLol5yBERxomzEEWlvnGVgbFeGZSIjma5tFrsSa8cmkU5ETWcWn/cwx0GAFn95aQ5UsrWPk3nlKjpLjLpwy/ZApRev4EyO7NBsstp3BUzk82feUKd/YIopVCFJQ/DoaZO5aSZvkhEPdXg+iAefR4+zqe+WwTXon2pudn8/mUwgVwdnKGjW4p5H4hAd/FKEJKmTmN79zF8RsUYeEVf0wSF+UNatPYckketxospU5zDZLah7CIpNidbsCv15mk1V5A5TOzKFi1DGp9e1FMSpJY5ha3HbeCdGsllJCIpDO7TCDOu5WeuHvT66RdsO6YLgbdN6IDr4aoP94AlG760J5QI37oLY+br6xFObO33DWqHfq/+aHErC4wlHhILWdHQt10Sf78tBMjztpixPNKfmNURFadjlwbdIJ7S5bgpZ8tsHexEuBzQdRJWkv7JiTA0kn+vFFzPg3OyCLzaZ9xieYEyH9+nW76y4BZ8xLSGdjJoutcOdryKLdsH0VxCosgqOgFhv9p5TK5GqqqkoZl20dR69ZG8p98E+PtZtG/z44gY+zPjane3BTaTXU7bAluy0MTusG6fC3Ir4vguhOrsTzgFbZVn+PKhXdodFEzrgnJo9AzxpCj0AOH51bAh4zLlDfqHb8Pv8Pmr5fyvO54aF6DJGVxEKty5cC7J4n6dfdi6uZ1pLi7hPM26tLaxc1ICpowcpED5n24Ds0N2tAwS4m21M5lOwV9crq4nS0+3eeyn/7ktHo09zdMgRFl8RxzVwwuFI2HJYPt+Pp5APaIteLNZ+OgesxRGrPmAqx4HIfmA+m0WswMtFZLYZOyI5U8+oeL107CmQPBHPZ6Pa+630rWNn64oP0aLV8gCfqKQyikro3L/0vm7BRt6Dn0CNrfD8G/SxV0bJ86hpe38/5l5qAm/BZa3LPg+fAA9azfAUW1C7hOWIRMDqwnJzsJWnRiNTUJTIL7qZtAyr2Ttc4E0Ze6p9gxIQRtwgcoIiWN2/a/hZRVNSRXJADTFWVhwlgjSpz6Fj1Dr5PTdVVyL2So+iRP3wc0UOPaZTAgRfDedBSS1i4AjSYBsFl5ngSndtChv8JcElRL5lPESCrUGo+Gj4SqZBVsy5sFoLCRY/V18XDoOzbu2AULb5rz0nMFtCHvGsZO1ISljffZqsEZxhltIk/nDu4cq8Jffarx8IVL0NteQcpTR9NftoHI70+pzkUEy49/pSfFRN6yhix1uhueBaZB1HuEZP8tFHHNFp6Zh6O3ziqal/qIlaaZsV7FIO64tBq15JbCnMYuOK8TitnxQuD/eDYUP+yGy3ELQclTFdK2/oVdORl8ZLck+p7exb7JK3HiZ1H4XlbMBXq19PzcRe503ot7tUvBNe8aLZpwgc5eP849iT+h4z+GXStbeYu/J9KpcgxXv8DXbzXRNMVonJvZBI6GW+DBsi2ktUYfFoq9JZu7Xqy70wUG3o6l03N8aKfQCawqC8KuTZWwROoUrJ1mAXmpJ+jJWRWItwnhoC/LeUCjErLsREBkhBLV2W6B1861kPzTBNzzzOHjhXmst/UeOtUX02fpcFzzYz7VuzbCtMJ1tOHgRfp5YASYZYdCg74CKFs50t38DbTN8yeryU7ETK16Ns0K4CRlQ1K6CeAquIGud35jQUFPcNMr4ZmWX8CgQpIHllXiRh0bynuzlnZWjYa1X9JR/WA1243Qx8VDGpTyooCFDj+C4SYXeP4xm+ZYZnHnN3nIHdKA47JZFO9yHOzTyvC/M5MwOH89pnmORH+LSxAm4oBeG1TAvssHTs1uJE/RH+BX6oVvuwr5urQR9zbK05o7VTzFZyQPBptC7fBCcMt4SLMz97E5jMB6ywb4dysb9qf6kKqSKVlsWwN12QjWOg54X28b/hcQAz8CErFp5358U+EOnvVdMKL0MN+K8ICyI5qw7tkw9e6YA/9e+pDpW1WIWH0EY6+dopeH3/Jw+BiaZtOJI4zNIWLaUfTZVc5lwrdpyeIHNM0onxyficB+1XDOTl8IZ7an80EDDfh+M576M5K59pIJBuq+JCurUKiXv0cLlzbB3MIsfne3hX8tMQHln0fhv6MjaY55N3SkHKAxx5/C9944yPSfil0zv6CyM6PT7Umw4/FkXhC9nWZPUcNPCocpddQLqr90EY/Vrac9mbn8efJviHE0AI8NDAbTbFko5BuolsjQ2f/mw6/pryD8x3+oPDsepzzbigJeYyAvVJMt2wTxabMevpn5jm5hN0uuVKUuysFulzqq6FmOz/+Zg/3KJyRx7iWurliAHpKRlBa7mT7HpWDVig/45ZsMTVk2GsPNbaDVz4znJc/GDR/H4SnTK/BrbTbkRyyjUweWUIevE/sFqaHZvrGQaCKCi2Z3wAPy5zkHo/DTz/XcHLyQasy3Qclzddgfn8dLFgNoygvSDuN/4DpdHi7LLMQVEz9DaEcpPN2Yh+r2ETxs1YMziiRgVpsL9iUdoo86eXB0zhQ4PLQM1Lueo9KtDDr2+T3edQhmV2cTmDNKkSvHyWL5rLsc/tWNrBTeoI5qLn5W6cDqaw/5ae1o8EuUhwADFww4K4kVFXJYv9mWl3m+pvMrKvlHoDF+S93L6/yNMcBTDZ5nbYLQ0bd5e6kvvHjpRH8G6/DlymvwoHQWX4q+BXFyWXRjpDJYD0/g2Ve9QCzuBD451w2bNxqjzVZPypJJ45G6biD9OwTneQnBosrtXNJsDfXLDvCsxiaoMJTmvVn3+OXci+ibOgNOJXehDkvBrEm7IGRcFwmJahGdFcY5Sifp/u75/HROCtzdFc/ela/AIF8XvuhvZNupH/j+l3v0qdCcPD9PQ11ZQQ7UVoVtEkxvl3uB7dAIiFCxpRSbGHjnlUDLTZdT/X8TWVTvN15xaSWR8F2gm/YTr+2Qhfd/f/DjOZ28MqqCDHyiIKHtH8cXEcvsi2SLw2HQrOCO68S1oGPNB1RerAtul3No4/sa1NNn2PXXhPjqLgxYnAF791yjy6NV4G9eJQbuzWOpnNGsbejHOqo9NMFDAwT+6EL6Q1noXKPBq9JEoeehAGcbj6DWr4Mk7Z6Li26+waCWmxAbXsD+DmvgeNclEDopAioXx7Fg4W2QsbtKRkGunPawn/BtN/RLKpLy6wuwIm8Yno8dBzWRu6Hj93lqG/ODwjOXouBcA/4usRCuRJ/m3l6gs2suEj/XhdZQD3JavQa/PDvFKhO+01Dwe5qVF4VOSTfIdY0MCe9dhFI/x4D/cBFtXDQMvitq6fmPo9Tos4/1xq/H75en4ATfAb6d4MJi2ybCL38XejW5k4fT3DgjUgE+dSng6u0r+MHXGNzfEY8Rerk4v0AcZj96gu+menK3SRAor5+MY6u0OAl7eWTyPBqxlbD2mDAn9Y+A8T7TYbzMOPrVPEgeVpOp7kkA51VawhLvI6xd68cbnWM5u1EBcuSVeJufK349Xo8WYaN4n4QE9xpspkczU3m9qiTKZiiy+gFpuND+HBoPnqLpPutB9exHrvVeBv/UJ5LgoVFYtTyX1iu3096VRnDk2ngU9BLifwqy9O+3FE16O5kvyw1CekUzukU9geDYVHgvqA9aR4JgX8oNcC//Q8uXFmLTxwiUWJ4Kc4St+OUEDc5YbIvPx0yEZ7Gj8ML8HbBA6zKFTDDl7lvxGPq1ghucxDD2RSu/16lGiZt20HTkAIbmfAR5u5N8xEYS59cvwTvDb0mnp4rH7DxFm+O14XW1EJwRzaa9h2LxovZhOkl20LDEko/17SUrcw2wmWVI05U/k6aKKMCtFfy2SpkKp/0h+Z/VnFKjSTbdLeSDoyFmfiUdCp0K24XHAMdWoco2b0rOtsRL87rpSNtmmjRQBobdLyg4/DcH29WDyyUV2KURA5/oIIa8vUCxfkHUpBvJMq9WUdwbFZT5sorDd0rB3hNjof+TIdXtMCe5rdU85c08mBl5ElYpN+C0InESHoiDwE37cMYfMeh1T6AVnqpgMTOd6yta0W2aNq+WRtpvOBlz627B6lNWYN2gDlmqO3Gvjyk9nOdOeqvO4ZCvBtT+TeRa13LordLigqZiui8sDWe655LC4ARS3nsSJe6UYLTGZDh65C8L3f7HcuY7Ifi0Fh22UYYn94Poy5xxHLvvLO5QiCDzElHWFFiEh+8Ls+NXMz6RIgjTu2TgTdo3OuJzB+YGLoTUhCqYGydJHvecsUxgCRh7BFOBsiM4jLWFijCi1I8rUb9qgKoeH0OXTVNIV3MNWCg8xraI9eRTfJrnStvDQsPFbL75Hdw/iLiXFfHWW0H8bvUcUnuHSC19NGQ/qqers+Th7Pb/+MKUNF7hJI/O1yx4s94oPG2egyclQtn/kjyGHO3HglMErae3cOWk3dj94QfHqiehxtZtuKTAlhMHCdY+CaCiFZNYLUoJZM8H8jcSY4dFRHEYAf/CnTBm232Y5XCMEo9v5au3NsFjPYC/W9PhRXca3/ALQ613ifB4Qy5tnv0Q5EzdaKJXMnpGSvCFVRJweNUK3ptwmlR3HIJqGiTLlUvg3s/lVLLOHS2aBkB/tANOvjYOlg81QrZJFSnpB5DCY32+r/4BlYp30ZNv7jh4uRwG986HO6rjYWqvHlxdehabVD5TRWU8p4pIctOoXXRPdQRaRjTiO9lqeBktDdNrD1Ck8XSeNaucZqvJkJ6BEAX1doDPmSAwEVvCc+5ZwKJto2HR/ijqsr+KTnnfWb4mCpt3ONAIv02891YGF3+bjiuzbtDMNGVAV2WULD8Ecntqob+qj1Ul77J23whc0ThIU/3e8p6xmbB0uSXkToyGPrMcvtSkRUlrtpNflzWoiHbAWINn5OGjA3Obyri11RgGL4wHiZ1ueEixgJ8H/2TlgEs8dOADPc4+Tu+arFluTwbnbjEFo9XO8Fo0gpPD79Gv413ksvgguCdI0RMXYfDIXMwi8wL413drGPVsJZzQS6LtY015ud8+0oi4BL8ENMm/7xgaT/yPsoNjWP+iOCTqt7PvxMWU0GuI5wzqSX3rDPT/7MDCdxifi4jRas8+SFGXAbFoNcxc9Zb0fshgRtEezouzQRZwpe49vgRFstQfdISXvx4H51JLuXXeB6r9rxSS9jmwyuy1KOD8g3w7jMhlYCXMMdmLxSON4KjdPXYadqXmildoFhCJr/9bTuPbRKBdI5E8n6iR29t7EDzTHG4Le9LXrU+gZ2oOXtbYx96bw0A66TC3qgAHGzbBecnn/Gv2JCg870ZVi03x7HEXeCL8G7oXnMDI2DHY55kMu8WmY6XFEgw5aQO75j6j9kITGoj7Bn9mD3CW319ONj2GUYfjYe1qb9p07RDtttCHTXPNuGnPVNgw+zH8WjAKHGYup9kzfkFLtQudSIyi+J9ZFLFKGN5G+/CTnmnkr5+KY7T+km+9Nxy1+Q3jx4Vi23wPkHTt5rN9siARKs87VgvTmbuWsEazlyRv6+NrrETfaAkaqKgFlX2HaVOBEUR2yFBcgBvF/yvk9AYPXNmdDdIqO0DVdQ+ov36M6W+deLOzHczzNiSbzFR8HrGAvusLQsy8PezcaAP/ni6E/IuPaNcBe3qupANOSTl07KMYsWUGjelKwf5lX0i5bidA/yCZFhfj1Gsz6NC90VCTkYh9/zaR1zEv2v3gJ8YtVoW+PDXYmuNJN57qo1tGOc9rVgMTY0OyPh2OLzOk4eTSbvJ2LcXtd4t4irkDfwhTgdgBZ3KfKwYWB4t5gbMNmvS1s+mZcRSsvIXWOqaSsVsq7Dxwg0X/mdD+CCPIsvOHwSUEgts3w39DFajdcBnagj3oTuBsGn3iBEf+iMY1cyeA5O4j9Cipl+KyjtETwV80qiwTPzp+hWPbtrB8WB6m6l9hk9P28J93F9x/rEYrt5yiLl8xDljzjUSuS/HF4ce8p+c+3/Uron26klDgKM6FW0vo2NHJVHr6Dj6N76TJIQEYJvWRW0WL2TnKHH3UR4OGXj8/dZhMr8Z18MSXW+ll7zL4aCwCaZYfaEL6bzzWHwMPVQDq7RRYdPogDnwQ5mKrY3A65BnX+3rQ65sLaPCSNtz/egW2bROD4AFXLttWBf6CVTjtwQLwqn/Pnh73+JWfCW0v3Ydtd5fScn0H+OSlAY2++1HvoyfPutTN2jcioLXnAwbM8kUvy2PcsfYZrf1iAttb1pLASTk4HN4L4ns38dG71vRjUjoJflzGdQOOZKSsSRsWioFM5Woe9hamhVbtaL1SjoNu3iC51m5Q1/pFe6LNodtFiUusxkDIRXXa2niFtcs2o8uviyDlJ0tuGQWo7hnIK9fX0b1Vy3FglS3E1J3Akyfj4FlvFGnvU+BrqbXwRdwFnKcY4ehqRQjVkeOgP9pwU+ccnTnykitdkmmS2TLKGKHPepwNj4TyeUXyDq5b9ASrvQ1g4S4hNvqxAvvaLSg3RIedo4BLVAbJ/YEBxdiuw8O/d8NUIVFo1tlG7/Ed37hwFJIWaKDMSX0ggb+0a2Ip7pdwxFTDVTxhpzIUyNrB9OlLSXykBT0qjOMZs4opuu8B3n8Qyy/FfPHd0krM1FaAl/Kn2UHxCO9qWkSNrlGoKFkDqQYNOG9oEJMs90B+4XtKkjCBAQUN/ppswH6YCCt8RVnUdw3Lj5yKG5L3kMPxKG689oo/jBSAtW7uNMUkAQespFg5PoIafl8lT8mpsHXaDL41NRpvxIjA5hgz8NqpS0qXpqGyYgZ+iJBGke5Y8j16nfVOvMQbxudYSNGFNZoV4JPbDDKRG0/xkrP4rFEutgw9orkBv7jJ+jFH+cXwJtU8irBkiH4RBLuHLDkiZhhu1tfCjaWn6OrHy9h37zw0bzaj8KG1IO0rA32FO7myIxSrz8ez85Ln5HZuC0rrbod5Cw6SaLo7sf41jl1tDqPVd0OI0CaqDXRDr9du/O/ybryRYs3XkzfTgJ4OihyUIp8UU9Ds0IGGIw/46UoProhrxyCHFk4gfR6x5TZuGAvY8DISrh0eCZvdXqAhhMHTbVaQ3RYIq9ouwJPESHSq38n99jn0PegbHR5pCy0vnmLnjTEotm4sHsk3BesygHEec7DZdjE8TNmBLQ2j2GOuNcRM/s16pz/xy8q5fO+cC85ZswsKel6QpIcDfO1YA5YL4tB1FUB4VD7P3ZNC428m8oI3d+HO3C+YsS+H9T/foo6IJnKZ7YxTvmsA982EkZdfYVI08OTZunBdugJ+bKvmRr9+KDvnh6Vb3sDFu1Jw0P4+LX19kJ4WIc32mEIaxa/obX4zdozQ4E1aMnAhSRXc2pXg+LkElvHdQJ1NgNMf9lLv33SED1Kgbn+BqxWWct2Yz+gUKQp2whcpZ850zPs9jzRX/cXRTcFQYXSAYwS2Q/OyGj5dKky5e8TB6/g+2vLqFR8YexpUVuzgn35hKPPCA5xanlG/6AdWuFqCZeL6YOfqSRWDEhT1sgnf3PJHsxQ1rLROgTAlSRpsPEDCOx/QDueJ0L92Ml7zmQETX1/Cr2Y2XLh+DPlI6pPAvwd0p2c73KrwAblYa5iAS1D31whw5QYMfPGGbor1wMWlShgoZoqtYj7kWd2IeMQInNNN2O30e9r1/RiJbk4GkzBFME1dyCc1f5PqEgXKX23B6YttIO2kKc3af4aza1RAJqYIRZ6NpQn+p/Ba3B6o3fkYe2dUUPJ7BVhfv4XN32mQ/hF5+voFsCg6H249vMD63la8fsw6EstLJjupURDXZAzrn4dx+79ujokX5MlLBvlZ3wGa/iEcvrdNJxOHlaSpCzBx3wPYkjzIC+gr3nHQROXhaLoUdh0v95ynhS7trKNdBa2HzGDu9F8waHmahTQz4N/TUJK1WIy7r5ejT3UhvUuqgvdVAdzqag8lyv9xcd8sXJE5SAX2ymhcvJWrbqvT/oYKkp0Xz2e9nNBlmREE5L/iqdYz6dDkdeDlb48mYjZUMLQA9M7lw4qCDnwpL0l/HshAVU0kza61xPzPJ/jeKRXQCpmMUQIbyS2pjb+JR+BFofuwIlQcrt1RRNlkba6ROMdfao3ItFkdjPTFeVxvBQxojGeRolEoqyAIVnq7yO/QUmr6tRQb2mdie4AvGWaMhqzhBP4Q9ga6v42jOe1jIX2OEjxxG4DbXqsh5qcVhK0pxKnfJ/OjFG1Of3YTVOWR4myNwGbSKjg90YqddBfgKEcXjqkLY7GIb/hy6Cf9mTmaB0WQXZYYgrPMLwxsF0KMuMhP0/TRpEEWd93+ASX7XOiPyga+PG4Ldxgqw6jeBayxIgosBy9y+DcBSu0zhwDTFhLeIMP7jmeBWWAlPn9oCSv7DtOasN904eoCdhc7RmH5PTgvNQ27wzbw1+2jeUHhGAwxGw9lTs1Q9foITCnsoPiRfVxbqgdvre+RwceXtP/lZWyReULrGsXhR04+tIlMQtmzxvBBJwuqBH9gdnsVbzPQIeenVmhQ+pYTxynDgACTUd1USLoTRSmum9nYuphnWx/izq3u8NWqgjtdVHhmkD2ktzTywX8Z7DfekbpumJJs4wMcecKKgReB/dAZDrwTzH/t7WGWfBL0R72hcq9z1NwwnmbnjEG7ia+43fg4Ch58CF/uxsKzAXOw+Eu8TO4ye5Q4cjErwJZj1dw3dg7/CZTl62eMQcpSCE2XWcFI+oArvfoh+20R6Raro0zwAB8/9wF0avqgOMMfdhoWkdUZSXiRdoZ0WibzNicpVkmNZ21lC/y0J5NqXZ3BKeEOhz9+SMYVOlBsaIl3XU4iOttwrOxYLDxnDUtTrsHFLAC3QBOyv7gFjt3SA/fCU3zP15xqjhnT6uvB8PSIHlwpvkwmMUrYN49Ja24bfI/RAolRN6mzIpR27vCAM2pPyW6uKr3bt4VPBf6BxHRtmL98BiRom0PiPCHu6f9LpYPT6FbCXjxZm8yHOmMx+T87eGMiCYG1FrRJXBFm9y9Ba4cJGB5FaOFVyKUBtXxIfx+4PXyNaeoFeKvqCIhkjQG9v7Jc/TUMet6FsHPEcRanDP54xIvU0haAkMYukhI+BfpHzSFY8QYLBhfToafGeHH3cW5SGYe6jY5U7nOcHlTmU5rJcxwuVoaXWjdJOvceVd6ugZvdQijZcBJO1izmI57L6fnZubxKax4Oh6hCxgd1mKhwiPioOT94MQArrhizjs0MtBc6jTv1zpNA7nJ48EseOl7uRh1fLZpmsgr0uzR4+8RCTCjcApJHdnDYwFaOEUjH/jZdWCwnwL1HkuFJ4F5IbTahfaVXYMO2Wyz4VwWcrinxyM2q/Gq7Egg1bMJ1M6bRrb4juKJQFcSspKBq9XjIt9fhYxnd0JW7nQaWGcNu6wDUdHTgFuN8cm5r4PvWt1DX7QpITj+J5zYL0Qif6wSderAi0A/0Sg3x5jFzHnSXgikbvvOpwR+4aXQu/tPZSyaDoaQeJAHjWl3Ydt0Jiu0SwJn3TcHQyokPnm3lj83/2FCvlUdcDiG59doAisvwZtUcnHn3Lc113AHh405TyKiF2Pk7CNRW6VOUzDYWm2wJblFqOGhXxDlFC3jfHyd2U1zDzlSByWZZODB5LuSczcDjumPBydOEbt4bppkB+2DTTRlUyfNGI98nsFYuhGblb8FClVhyUBsBsmnNcMkrBfdeqYDm86dp70prCntgw9Hxe4jxKPY92ATSZYLwrvsoa0zewoXLPvCe6C9sufk7xFfb0Q7Ze+jvdQTybgDNkNCCL/qG8HDyPnzXH8l42xYyA/uoo10ETu3yh9XPvEhv8AllyMuBffNiPGA7H59HNKJwrhArzhfjspa3WH3hII6suwNqrmIcuEwWlFf8wNTmdfju9wfyiqzFk+vdKNLBE5MXP6V9H4/j7zGe+DJ4FAR2vOOaAyogOdMfDE+OxNLle8Ch3htSSzazcPZD+HWyiJOUx8B/sjPI4PVRPrYJ2S65j81/v8HXdAY/S7yhOQZeEPhMEW/NUQG50au5UFwQXEMz8c7sQVS6sR0a5XOhdHkmLltRAErd0rR7nTLkKXqgxHJHiBnIQNtZSpA9tYJd1kVRaUAXT44VhMJJA3xeURE0q2rp0AxzGHrUCGdi3DFNOxCiGsJQ1SmW9qyV5sPNMhR5HcDt8SEu2dkHoacAVmX604a1mqC7fANmCo3i7c3+KE/OFPPLFmKeeVCH1Qh8ptVEi6dqcJKDHneOvU3z5//jyU6lNGF8PvW4aECY2QvKtdnNDvMTCLtc0LlEAf/bMwU2nK1izRRvEH71ieKlJ4GwbwK9rxyAG4cX82NnWVx5Yil0lfWwoqojXw035oZcY/QutoVXcSHksuo6Voh/Ylc4jyc1NuP5E4K8rl0df+cOQX7MEH1ykoTElcXEZQSKT0pIINoW1CszUDajnP4kmHJcRhPKq+dCWrQ4ZNi9psXz7qG9EaHJg2Bw/7yZ9fZuB/EZ8vRnozdOislGQVdpuFSTgHFBovhrWyh96nWlI8nnOOvhTkzflgCh4Rep8FUAOF8dAS5mLehivh5mNu7g4plSbJs0mbzPJcIL0T0wx0SSfo62ga2uapC00YqstzaDePwfOPa5FiL+rQarTff4xbt8sGhXhNMpKTx5ix4o7FSn/7bLUXnNRAytOUinndSg4HI0LPf8AKaBplRZeho3VUrCv1E+dCxuEHcnvoUFYQXUWfWaxjyLoYedJ0j6qxdE3T8FU16KwZtlfWBkuYeXTVnFC7Me4gizt7T7SDtMSzzBmxO/oqnzFB5OGwPnij5D4xJJBs9a3nKjnQ5kPKYDnqb8E6XxRMAGdDQ6gncWKEDpL1tu+Z7PvZWf8IfMIPWFC+H70AWo9vgTX8tUgHixUC4Zqwh6V0ph2x4rDqrbyImCijwnJZLM3s+h+6bJPHOWJlcr6aFbrSF8TgMe+uaK1oXfMTixj1KPRHP2ryQ0/nCObhW2s3HnVbh8bgJ8zYzntq16OMN6LYquVINLg2q4/Y8Fr3hTxqdG7+JT+4tQ7ZQl3Azp5pGYjXf2a7K0qwgKjppC3WPLufb7CqyZb0JTVjvC2l/24DTnIe6u7KBQy1Do+PQV7Pf4I/dtpjjdc/QlvodEx9tg9DVxkKteDfd3fMRdxgb4b0UfnfA2AdtdJ2iDWw5fzXjGHgtnwnAYw4H2u1D5xZuuBjWRhnkbBqxfSXejjuHK6xt41oYxzOpH6biWEuTzbupKH8IMFRca80iNVjUnUFrRdwgtDQHpK9ngvdafl76wg56eRmoQWgtOm36AjLUAVneUkePGQe4ca8bzHNRQQNqbAirt4L+Tu+jFxhb+LjUV6ZYqhj9cRqqST1D8ozV8O/qDRrinUdJadTh2ORx3z2rGdU3dvGdEPc/f/Q+X7M8EucvOdP17K8WYqINHrhJE+gTDg5xOlCkLhUilP3hwlSA5TE7kEoU+3P9dkaSrbfG3ohh8ig6lzZmiNP5NMf+a1I/e1WFsnXEOvy0woImLJsFIWSX8elkX7i/WBtc2a2woN4Sn1kI0fNeTRmRehY3HFsP0FHG8tMUCbv8SAGFBC6r6OMhbRaVBauJJ2hvhyxK7v2PbcAibegJ9U1Ti3p0KYNu8mAJvf0AjCSf+Ny2HpOWS8L6KGYn7TYLnx6fBvY57mHZ7JPhNiUO3ZbHUtjuMvWf8o5vLVvJSDzUaKJpO2349ILnTGbxgqy287A8ENbm7+LdoJl5Z0QmrA65Ql5ov5V9phtlNcWAj9gfOvZOAvJkZYHrIFx876MCCqwjjihIhvNiD6lcJ8Mh5D/lFOHO4uwTMN4tg6bgKdD3Wz2ennqSUp40YPvs5XIm4BzKGsRi5RIhORMrCa71TvH9gMTjXLMeHoU8hRLQT19zQ4ZRNt+jtiTzasbOfDNfYQ/TvcuhZnkQOay+Q+01N3Kkhy1Fbz3HNGh2W1DwNA/H/kekTGSgwiWIJjQ7e/LqE54qH4s5n/SQjasfq0w7xqcPJnHpsH6ixPeh9dIczIcxNZv2EAX58N24/LYCHkD23gsNWTwL/oL8ouNkG1iTZgvlmfTo35hzL3+rnoZRxbHKxDFpPBNKMNn30NO8nvKAN/+a/Rf/KeEqZ50iG5EG9F6bBgtRAmjIvmJ1Us9HdXI+y69Wg41MmPb/WC1vF7aHKNxDtLmrgl8822PhQFM1erIeXow7AtjQbqJR6ALlDiaxqOJZKzueT2S8bdth4HYTbtLHZrhdHnJADHW8rmBFxCCUeuuCzh5Gw54sIPjd7j68l1GGBbBibrX6DdeP+g01KcuBZboMWE8Ox7cQe0hm+hUmJSjDv6H7unfAC/hVXwfIsR3wVPxJchgKoKtaWDZ/7kKsag9+eTg5QWUM+xlEwLlORLP6ls1SOHZx3O0yq8x3J+KgStRSLwsOrtWBaGktvP8+n90/HMG3yRr2YSfAutwmWphrQmWU53HwiGW9UZ2Em3icTv89k8/w2t7iu4FVWqmDTUQ7nfO0560oBD/9pJOf6Wtr54xGlb19PNYdMqXBuMZm3ToJDNBJENl7GJTINEBNzkMaUikDXtxB+aDCSroZJYem9Gnyiaw7RpX9oXNwnWNI7Bw+KL4Ph/qk46UsBJI7pRv+zvyhzij+PbDEA//TN5OF4GNIjhEDzylru4f1kFJLDf+ROkHRDPKZJHkanVntYcv0EWx5eC+09r9BLrgLTxs+A8Z3ZcG9VCVx5WIB3zp4Fu1cWcM7bn1rmuVGS4nyYqfOe30Tuha3lpZSyzwC6JdZjmqYuL68XgB+O+2Fb5HY44beGNw6MwoSx5nT+9UgcOl7OyvMcaWDiEGcFS4KG6kz0UdPkkPsXYcv+enyx4xyufezP6+LvcpyrMO0XtaXBDeKwf9Fb2PPMgj0Fe3D7HV8QDp9GVx0uk+x9NRTpycAflvdxhIoGpH91hSmL8/DVvItY15ROyWscwU1diLQ3L8SDx6K5RauDQ4U0YLhImgdGLsWz+gt5d1ciH97hxX0jR9H9U5/4Zmovb/19mzPThSHx3BosXH0Qdwiugux3Mzm88jsdfTqK9z65BrtK5NDPW5vcw4WhLpdR6Mw9tK+5QL/kCkgBpfhjwllsuBINLsu34Ke8nxzjrwotx1eRjEkB7tnjjTT7JPYXumAVJbP/qS7a2bmDR2wQgWY9E4j41AP3tg7TJJ8nnFYuhlFXRsDofxNovNlvvi1ZDpdWFdDuLFVY/ECQ70pUoa7+aOipe81z+Q2p5MXzmXkiPHulI1VtOEnJ3YKAN/KxtDKGV7VPpyfi8fQ26iHbbe6mKJ09mPS+ByOVr0DhOBv4tHYHbYz0pdIHqbx+Wze2ChbDcN8GzjnlQdZvw+hwYh4G/TUFgcAw+mSgR/FB4vDU+huKnRzLarkHMDNsOo162cqBPia8XFQTUk/F4YTMDl7VWgD7M9/jr9vfwcHgMivuf0OjWqRojUw57VghDcfXW8KLMQo89mgWC+jPB7uUzWTQUspKZkLkf3ciJggW4tlWVeg2vIsrTiTiwRnmVCHQhhOMrDBHeSLm/C2BUS7HUKzoK9qvFoW56y+y5Wxp3i9ajuVOS6lE3gvPTr+ND96H8cN0PXh+tIFi3+qAjusQaX3+Sf0LjHFXayH6zRpH7nFFvGzpRLKNms4ns+eSnYkFaJXLYIhmDlRzMHaOWEeO346AlvwCHJ5aB7tPimCO8WoSfi8MJ89O58GKxzh0+y4KmKyFp5Pb4enFQXyhYYgLg9Zw3iZvWHvQHjRkZtLUyh0cPSOK10vV0l7fUVgl2QaaVVPA8Zg4jjyuRjumAHzKWQNl9uk4/dQ5DFs4lva8uMy5UreZzpymJjVXsj77lSYtE4f6gm4Oq9mF9+kSP8xpJ8uEi3BhqhfnC5xH8Ym+3H5IE5YutAN9EWeckFkN6/c9g0lCyzjj8Qa4dLqX7wmfxZPVsrB7fwc3ZhhC5bX52FavS40HLABd5vPL2MM0cexXFP2WyY9FdrFFiSeOkbGEUV5OrDn9Pbvu78DIbaEgrq/GMyYGoUBiInhKLATJqQaUu0AU9L7Yw8cPoyDa1ZHub6yGC1tmUmTxC+p9qkvB6p94kfYxtnJUg7+GgeSZbcWyufthSuIitO6azutyl7Nk2xQOXj+AS34T/ggThBkXluHMLdvgxKfTvHnGWZY7OY5+3MzlyeTIp/90oFxbLz07yiA/5yK0xG7F3qMXaKxUFA/hfHzv2QFTtAdxcPtWeOwUB1vf6kHdBhXYVtWAXraHaNmUjZArtQgXzP0LK7wf0Z6gmzC19D4qrkMI7tmIWwU+gveaveyV8hiWOLfxhl0juUT7MtmcQrizTghPjNGCoY032ci/AtY6ScCiZ/X8uCSYC4Ku8+n6BJ4vdgajDXV5yVoCOe9WmrFNg6aZaaBt5HN6MDwCz3nk8McXbjzteD7e/fCSLBPloL/nGyb2DcG/QE8us12MvrW/oXhHDfxL2I3/bSnF3LZ+zI2ZCH+ubObaRF8aanyKNyavJPeby9Dvej30qgFm2qynZRpV0DrVGubmtYPoGF3IzhpNfksPQdXc8+gj2UnaI/bTjqvpJNm8CvydLOBSwgQ4kdJK2UL20H3SGpYc0AT5gyJ8JDKFttTMhjU7n+DHRjWQt9uGma9LsO7LCMydfghis3LwzlMJNHALZYUJTrz2YAs1bZWAeIs0NKyUZ9E1//EVt0Dc+34rB2nnYo1FN66+UgIrTUfS9alG4Hf1IGYXbSQnszLUq9Gj6lp3WpIQhn8nGmNw1yLw/D0S8nWlwPzhH7x3ZjysO38aR8oK0p9IQsmGP+DS7cke6vpkc1EX7dZMgrMOvST1SZo3Z6vxh3vusE3uCF9Xl6BxetE401AEeh2ukquMETicUaQ57+Wxo2EifT7+Ft6774LqsGqa8+4av1v0HuQwDHd160OvykKec3UyOuhEUe0UAQqdawxPHpbBovOfMKdWH/bPNwInEoIwzfe0ZfpPun7FmgbNW9Gm2I0bP6XgZ8V+Vl93k1quiGDXvjEwsagHczTfQNUpdXrkcINl3TZg0ZsVrNX6Be6f6wa3x89gxAQz+Db+FZlW36fPp1/A2JH/qPJIJBblebOp41Js6YzkpP2P+J2CNYxN1cXZChWcLuBK/f27cceM9/x6kw7dhWHeN3IOzfi1G+2LRcAysYtzdpZyxPgK9nJ5RJqN3yjIfiV9CT4DHotf8gzt0cBJMnBnkRgXSAvjpObZJFVricff6JD97fMoIJmF5RrGGK8RAtHfzGDnoSc85/JBdqt6Cm0HYymh5TJNSP7HxUP53NcQh3qD13DlX1nomGAKtV7KeEJAlZ4kuqPtRgdM+VJFJ1qzeWDpO36435ymbRgLOu1RWC67nyJUo0j6mhh7z77Bn2YVwfTDxahatgDHeRyhh8U20F3vyNuUDWH3dXW6pNNC122HyVdKC1I+7cOx5kqYdjYKa1UYHP7YQPSWXLi38g4sFqpgRa6ETfkHOKMiHSAHqfLfWvrwnyos9FgKF5UuQUHLNzYMNqRfP17j0MR8Ku95y60Gy2Hc7amQdV4b5EwO8q5ec05wnsiBhVHsWHefp4x/AVa/szhIygSntMuDa5ouXDx7HGWrvrOosAQ/fh/P05TVeZnLRtjtF4Td1yZgsfUDKDikDC9kbJBefILV/UfgVsV58HiSBsUCDSR6IoV+nrejpAtj8LapBrQeTYIJV5NgxtdKCogqwOokOV6JrTDGTIH2KOhw+zkX6l2lCnFW7bhIswdSfafC4QWBMPpiB+qVxXNAWSenz7cB19kzuVldGabMngRq4eEw7bELPvII45ohd/oc4sz2X5hcrxLoOsyHP2sEYexNGxDZJsLnhKNxsL0fF1/wYZ6VRcMTq/Dkki/sFvmerp9RBZumAgiQW0cXPbVAfm08Hb6YCTFi0uT29A0I5C3EbVu+g9sSW1AoeUN/4ieQxtE+/HqrAa9mLiFjjd9k2N6Oj04L8Z9hfbLMEAOhDx+Zz/+ANc9O4w/UZP6Zwmty5LnX5zPmXZ8NAbP6ectTG3g8M5TktsuQfd1CeN9dSxOkd0CthSpn3rrMYXXPsOveY3AwGQWH8jp4oVYRVie60fYsbUor+sem47I5SvoWnm26Q/f/HMBYbx2QWF3H88+ooGPVQixyMEOdZ0Vcsn8e2dssg3ktymh4TBy//7aHI/074Z1mAG6a84quHnTHCNko9qv+AKLNcRTw6itvXHgT+w/qQX2WG52t3wfrZs0CN5N9ILbuJ3PtALZYlNKjAS9UO1RINScnwlStXLzv7ArB5rb42+saqn7IwTb/57Sz3wHlBx7j/nIhGiNjAac8xOnpq2/wJ9QA7Kcex3MlQmQyVYpEQ0aBbfFuEH3wP1buQxEIRQ0A8D/sEjKjyEooIjOrKCm0ZEQLZZQ0lAahUpRUCC1JiFJUlIyMFJWU0SkpijYqKlrKfYn7It8KGCsoA9VeD9lkXQP9KtWA6pAfmOO/inXTOil2iyKfDXqBltNDSSvSEG6uWgrvVF7RhMAyEFWYxxldOdQ6vQdqS+tIbsCR/ulI8EAmQcypa1jvM8zvhwfAXjKW3OSLSUNmFoy39uXhw3PBSW+AV54ShQCvdl4zLEbrPNJovP9+1tJz5ZRn++jz7CfoOPQEeiri8fJYE1Bp/gl5V1/TubfGdD0+GRcFjMe787zggvlCzO4iEu6KB3lNE9ibWM0DBtnsnNmPyZFvwezxF56cGEj7pQt5wgczdO7PZ0ebkdA6Qp0HzufB1Ms5lLlHGVrLW9ELMiFcN44uPWtGp/hy/G+PNOgW6uLL4hCck6VF4vdu4dsN86jxZyzeUXmDWniBXsqfRaUZ6jB793J0E8klsYImUPKUxReVqZClZ80YvJxe7y3i+j0tYLR9HKhNPoZu/sNw1nI/rr3wnK617YRr9z5h74Zf2DhjAszYkkFHvgnDt/GINQ7VNHB1Fc1Rzsani15QUl4Mre8QIvHsn6R1WARVDoyAHfbqtKPFFOeV+GDFhwPQdLSXai9U8K2WaTjoB3x8uBVjE5Ths+9/OMH3C/d3VYCxTQ29K5ehGUJaVHzrEwb1FNKSm3XQ+8EIRIN38Uq9cPohswdL9qWSi+VXwMgN/KWlB9J2BcC0ufpMJ0aB3OA3MPl9BB0kDKDAXZSOKx/CE4PBsPLaSnIzU4D1HZ9pRbMhZP6T5GVWouyRI05aujk09+JRKOxdzl3/OdJe30yO0hJlQVlLWHxmM0WULAHB07GUuL2DNU+og/gHBViwT5IEDnfgvviNWLdLC3yWVuGo1/+BpKgeXZbqZOG3FbDDu5RFBOfTr/R4DvI5xXMPqoGMzk+2EAhHs1vJcODaOi5RMgf1GyIoahwDAje6OfTfUbATGA/RJpn4Y/ZVfr3/CljllnJMgh5VrPxCWkkKMDvcBh5TInizJNzMHcNld8VYNSMNlR8to6IFmjhOQZybwn+hkqIZDk1IRa1z02ClUCNmfJoGW7oKIVUvBcRFXcBj1HwulW8Gu1/2HOrpDstyDCD8UhPD6evUaWjLBvdXwIZP4dA0R5W+7BHHPdPF0Cc6H79tFIVfb0xQXKMXDrk8g/2uRVASMIg5P4Zow8mtvHmEMwtN10d9czG4pxvETl3xJPYvlx+Ev8FDD5Xg4p7xHJOUjE/aN0D1Tge6J6EGKeYx9C5aBA+JpOGD39dQIMAOwz6X0fzhWzDiVRZf+mvAPfeMwHv9SjzdHQW6Ee7kLeSBHmufo2XfXhLXPcLFIgHs9xO4cI4OFG4DsNM4QJsbRtOnwtVoeMgZHjj3wspMK4boar5lYUOp6WZgnVMImQtyOGDOZwjYqoF9OwVh8EwV2usIUny/KOdcukwKB6Rg/sJMPrv3Fb95tgrrglaQCLlAd58rRl8bRS9f/GGVAwUU+lQP4t4sQDVVGTpaGgOBPo58xewRmrleomATCfYNfsNKDQ/h/prx4KMShT0rnNng5HvYfE4GkuM9ODAlESImS/Nz8R5qNv4P55SpwUjpdeif94dXJxbRkupB2B58ERocZsF/4nNJsusZx876gSW9NqBxdiqd0uujxiWT8d8lHRb/u4dyF2aQ8PNQmny+mcMct6HyXV0If/Aexpg44Gn5lWw10YI/9GXCh+VncHD4MF3b/ofOrDtDGcOTgYXkYfmYeXAkVx6cTvxlGwUjVE6YT6qtG6Dx9UVoCJnIY6MEIf5FLd9xL+DJqvb0Sr8ULvcrQc2ZyZR0ejYmXXvOfc5PWHG8LNh42EL+z0Nw5FQN2RbWQNulBxDu9IWaFb5iReUivhHhg6ssJKAoywGqX8vz7SxRcv7ehw2LheCWQh2ohJfzES0hPiPhzYGF00Bmfijaq33H1Svl8NX6FeT3qQHPZY9hm2OnYVTyZn6vmMiqBhPhlmwqW24ei8cztVH7XQyshkAsHj5ID7epYKPcIJzojyWt2hHQ/XIjSnrH4xqh+ZghHsdTp/bwTuuZvHy2CO+0WcF3vv3EQ/aGMFl4Fn8BTXRwc6G+2gNoLHYZD97WR/NsCWxWYHhW4UbeM+Vh7u8n+LBvHd84XkHXUlNZYn4t2UEfv234iv3CN6H6oAKEvxCA46ETocqyHV8rO7DRFw26o30bVp3/Af2acVSSrkg9icfgwROG7OO+vGjdAE3ZpcF1GVX0rWwH/Dd5DU/7IocBmwc4WWMmPS4zhpFHvsMjzShwtnjMxptfk8Y+RZR6XQr27+xo+aERLDRYik1TJeFP4WYeM0mVIxu6KKLDHA/sDsKLZzbCz9JR0N3vQeUvp/CWzJGwcd4YXH1pG/glhsD5uD4WW9gIhn3ulHF/Cez8Ws02jotw3DY9ODmwjsOqFHBZqTYcp3uYd34vRvzLIa1Dc3HMwF6OeTPEa0OUQepnP999OQscz4ymmKJsyNFtRet+TRJ5kACJnnLQJXeeGm2nwcCNcbAcRoHbmO+omH+Bkudp8QkPa7R5N5EuDjjSw6pY/OYtAWbL9rCK8gd8dWQTeDruRUGxBGx0HYKWqCDubr1D8zZfg41aBlBS1ER7vZUxeaE/TdlTyzIjRuHqq8foqpQUvvpXwZ/OZ9GWDCs457sDVdsC4VUacHJkKX2ZS9gdEwB+ayNxoGQ9qce8p+xAJfh4ppo+lsnxW/NT0DN1OkWN8+LeT2fp3p5PJCD7iN7YzSWJf8pw0sSBys8OQFd0PYYpH4G9T39DTMAdbJd4jVdmqWO3jByfdZIF1Qlj6X3bLHJ9dBr85kuhxpciiN2hivMiB3n02mrQ2fCNFq1VgvQ0L5xW9hoNn06CAuU5/G3UH06/ch6rpH/jnb4OLLwmRkkC1rA7yBdyBD7DhYJHMN81iNsFK6nAcBN8FAc84RuKX+8eBIXmqfBxozIU42Gs3KqEM1ef4nGnvqCO6kvOWncID4mcwhDLbHhWxJAtrgSP3JS43LUQrNf85OLFUlTc8RUvpkVRt38ExOh6kFLINOjKWwpZgpsx5sdWWNNlhDOWRNEE8Vxe8NkPni/25xFri1lhsyCcU0vjkfWroCRAGURiqnBRxH4cPbOH1zhY8eHhcDxywR9uyinAlQ3tkDWliUIr31NC8id0e15NnaZynB9Vgf2JU+j0mJcg3mACFbK54DPtOYyU3ANm8JJ7Bf34+TJp/PxyP0fPeY3RxzIB3+lAgHMuTafZfLZFG2P9ZcHL5jGftTxEqrE+7LT8HEYUjEOdHEswqJqHmonOsHdUCQcYx6Dtr0VsWh4LPhoLaJXhEmr0fcHlbjpwoeE27DrxBOJeK1PjWFX2X3gEvEdqQlnoIDZI3YYrokvILHok6Afqw6jVl7nOpIkG54TAxiN7oXBHA84rfE/vNjyhfp0zJDfPAsJOZ+Jkxw8QXnkUt/8oQm/fWv7iJ4aBVwSpZpIHRwS54J5+Bq+xxThSTQaFkvbQ8ZsatPR4CxT8doJjZyfxu8mW5KF9hlL+yYP61KkUKL2TZs+upObMjVBedgoyTLxJ8Ml4GKr6Qt5TzWhdkQRkKj3ByaOH4crRTfx6cjRNLD5POW/UKeVYOIamWaBXXBbWS5vA3fQjtBcvY57OW7ZovsznLVvAU2ELj6haA0s0v/N3sVIuyZaHPu18SL9bTDOee/GHVbKUbbKEH80rZ//v9+j61wiQ3u1Fj9eMBT2LUnp54TfNiXXlqapCdKb9FE66rYgVi52h2HsXda66wPUpWpDU8BfCmv/R1Kp+shlzmb8V7OOapSbok7WerWb3oetqcbKYPgXk8ttJX76dF+1Iwoi2bDw9Ig0/Z6+giMOZ8Hl7D7zZF8tx86xB/WIrZR7/QtVuzfRDfxaX/xlD1NHPOxXk+dqaPvArAPIaJw/pg49J+r+dLF38loRSMuhjQR3JzxPHOUnVMK1LHi/9OUi3n8iA/46ltLXVDXXzCnGn8hvUrfjFBs8S0TFxFu5YX4Z3PP9y/JdJ8Nm8ifOnBXCL1xqK1NKgwV/v4e3ZLTxhTh4GPpvC1VbV+BImw7W2b9i0/wPX/bAFKfsDvGvbWxCqvgenAjVof60Rl91bREVqBvAioQ44LZrNMyuwZuxnar+YTrOFL3LutG7+E6bDwjrZeOOxMWgFS8JdATsMkXoN8Yqa0G79m4fkZbnExQ9kvi3FNesegM8fCfj5rgYsjqVRo+EBGFUwkmosP1Bz+ARaYKJIO+654sGTbbBKHiFKuYkyRNzR4pIalvl+oQ2pl+HcMkW23HqXd95xw21BtdilrAhO93fig3JdUlFo4MHo17zj1DA0PriAjUk/QXbDGfJM/MHi0yUhMLKc4wpM6b2fHqr0f+IPK3ZDQekHrB77C/Yr9HJMthHouipDob41758egsbrj7NrxRpoErnFmyJyKcUoGBpdU3j8KW86P1kDVo4bhiL/NmxcYI57es9RuccDMvcSwxyjcnTVvgmqx6fD4nUyIPWugNtlZWjl+hn4e20OTj5RTvtDdVApUplHXmde/SmZj90dC5wrDiOdfNB0aig5VB2G89nv2enIaWxvuY3fxh2CSzd2wQXjUeBTtZ/V0v7BUHg/b3+vS142DMtj/uOTnxNh3GMdUJi1m03cxGDW7WzO2q0JOlW69OT8Lw7eN42a8kL4eFgOLX7jC+WVD2CdiCYIOb9D4cH/aF6RMpq1nQOp0hT+LpCOe35owOHTUfhqtA5mjReFcmtfFNIlXFY2gTWkzbGh3BDsPFJZ4cwTdiv/zH9Oa6Cvmzismb6Dm35vpm+Rf1BpTSR8FKzA+3M9YffRPbz5WirFayAkXJ4GVz6MQPNdhXw9KhXPrCvk+ctNYGFONY0/ZcGHimUw6aAZPygSh8YZz/FPcgpcSr8Mv+sn4N2K3XzKtJhFTrjScKYFW6SvZd8QK9D/coCzM5SxIUUeLln+ozA3B16MD/Hqf+bUfDMTPX795ZnpYpC3YA8t7XWgt1aDlH8pARoKdrH0ozJ+arMGE90KabS2IJVfNIAlt0NQRMqVK6b84L5fr2Cu3S84/SwJU8ur6c/ZZvTz247hCSNhqNCarIvjcEusOdmZLKSAz1vp5Uk1Eimyp5ft+agkVgabCo1g1ZYW+hGkQrabE2Hy7Tck/7WayuZYs4/LRyyWisY7b39R12IDqHmsirtik8hoURg9enQBQte7gsYPab53JJ1+fhzCtK7p1No9EqZl/WCN2hMYHpgLAbPG472z4+H0V2/C6x3QNM8dS+N1sfeZPnzzrKKmbY9wav9ZypnVQMk15yF6nBlfpf/wy4063igRSukR2pB4LBSc41+j2ty3dH6ZAvm9CYLyIi8qmzMSheRHgGzABypPFYT4zm2g1LEdVUO+Q4fGd9Q+/IZ9zm9FH/diWDopmNYbLgERAxFYL3gGAkfOJb/HV+Cx104aG3mNClOP03vxA1RxwYBvujzAmUYTYc7mjfwueCytV0mCk46mMOpKLqjFxeMl4wX0ad8ahrZJGJMwHroEA7nn3kmOyNnIM7qVYaN/JLS+FIDG4R2MspFw08Ud6q5Mhpl5w+Av343yW49TY/5Ozl7QQnrRttj50JyfqBwiqXuRMMrFEJYu24EyFSFwSbWTox4+5vsBF+lWdyJlGq2FC2NOkO/LAS4StwKl/Zok1PudpssdA8nOCSz9NB//mBfwUt0N3D43gop6jkJLiAl8s2yhnLrx5H7sNl8a+wfvPrEgZc1szJ1Qz7mlE+G8rx/79GnC3TRBHj7TgF+lD0NVbAhkRN/nPX8eQdSddkiw0gfh8ZdxS6IAOOYlUco8T1pjcwM31lvSq+Lp3HIjFJclruUPLb/gySpR7P01FRavjubSVf7k6BmKIkqzITddmjcnS+DJXDN8/7EcTCYxLd42HjbdG4Ui6ifZ56Qh/fvTRqqnW+g/sOb0Z7Z0eHsy6JdehJLrqrDabiIcTxWDLDEpLlw2kdqknDErYjRcDTwKPXr7sGbpDhLLFoanh7Zh5sAduLLoJcpIl3G2ajAlRQ2TurQgLurbihkj1sOPLDVwXVcGc6tv0+qoDFjvE8je76zY4NYbMh95mAxikvDFZg8aI0HQvfMO/t36AsVuVWPz1CIW93Kji79Vufp5Jjz90oBPZD/hCEFlKN61k+Q3EGomTEfJOZ9IuJmhP8WQc8Ra0UHsH1u6/KAjGfIgtu8815n+pSevgllo90xsSpoFM33X4Io4UfJ4/Q2mKw2D931NcM305OtLjHhmyCE6k+NIzt3BZBmwmQOvjwet0iew9FMDx6wwAhHRCChVSmX9r9/xF4jBmfCFNGLhZ849dYZOWgxA4l1Njp1EcOzyFhB5U4i+u+vh2xV7vLRNnpV/7sGEy1LQn4I8ufYidl4Rg5dJv8h+Sj2p1Z9ljaH38CXZHuRuN9P+fhO4+p82rdbMpfzR4+B4phCrTbanZXOmwaewRXSh/QjNcboEc3cl4XevVlyuUU/vrmtAZex5Mq/+gI7nb7Jw0yNe3JzBtm1KoD7Bleu+1fN91UyU0Wc4fPIMXlgghN9ijrDVznnYp7YSD5EwT1pjgom619jsxQQYNX8k1J/JQoc7jng6rZA836hR9ObvbGPrQhcn9tHZxHm4Ik4XX4iMhMooc540IAuaBSNgs10JbMgM4AWmzbDp6XroFBKiLWv6aLPNWNjrXgy5Uy+wnnc2LJMfRcaSYuyZEgZNklns6qlI/zVW0ddieeiZm8utKatp+ygj+LPAnMMue3NJQwut2nqKZz/voZgzN3jv71EwcMYQw1rqaZPeBvwbGkWH6n7S0fqbtPzdSuruvESZLUVwR3kaqFUsx7UnBflHjTMu9NlGKbLn4O/ebrpOdyCU7oEYuvDid5ZwbdY08B4u58j1m7Ey0AQnRH6Fut86YLtIF1qPFWJyAWKluyD0JsWQ728B2quqCuJvn1OjRDUWi+eQ7mNVruy3pOuSQNLKo8As34xMSxPwyMiROKItEIWCZKHf1xFH3D8DMb3+eGmTM91sU4QXl6fwV6cvJHlqE656NZfkqk+Sx8ovdFt+Oj5c6gBLEokvzpsIBn8e86Hn+1HvhSdsWrURlvjm4sLGYlh64Bz+Emtlkf2DYNEpCGqCl6jy31hYsWEuVYuG8W+d4yCRlwd5uVPJtN6S7eTm8p1iObhyywp2OmjzreNredKNWtJdtRyWKnXRrvFrWSH7GM1OfQonRplAZvML3H71KwmGCLL0WnUU/3qPzmVE0GetYA7y6QVfSwlSl5kKnmPdSWWSKqjfOc29dUifmydAmoUXT7lcDnOuN2DjbHsQey4JWcFfaFJRN+7jMyS95Sg83lNBpgsPkeK/l1R5SZDvDSrD6DBh2LnYin2THWGDcz/ZztoF0o4LoWDnPFzfNoJtIiNQCi1Z//UEOKn+BCRc1uLDp73Yvz6Jg1Y5kcVwKD/9UA8Zwu9Z5eR6FE+RA3GTo7x/mxD1WfjBwn+loFQth6kLc8ktUp+ujljIM/0rWe3qVLj6XAqvVM2iurPNGHTMCD1TXLmrBMFtpxNZ9CtBl9IDvF4jDQJTPSFUYTsstNyAu/9lsnp7EFyoFOOTd/Vw8O0O6lpsR4ecROGxdRV3l5yia9vr4VNxB3pt/gyK1zqxpf4JJnlJsf1cISq8ZQTmyktAfed7PDogTHKdlvydtXnd5wUw8+pNrC1KxsL6BRBwQgFCrwvy2JOO/Of5V5KfmUaSUomoO3M5NIIn+Cbf5ZbzO3n63VHQbzURvWS9sO3+dnoaXMsndC6wRWgrnJcI4XOGybRivAWcrZkM3Vpv8UrEQlKeuw2/t0+CwXJFPuSWDS9fvISqkk9gG9mEYw9Zw9HX5mByQwbWrbvJB6OZsKUMVZWO8vWObzjaURde78onaVN9+HB9M3tNrYUjf1OgLvk3SwTMoK1Bdni80paqgqVIpnsujNeXhXsxtuQ+6gc88kol17STvDazmXyinGByXhz+cs+Gyle1qPvQBOJiSjgjxIeXHd5Kpi7/cQ+NxkUm4ihceg7jd4XBfEsleKphCRtmtfHUQ6vwvdFlHlj5kDQWDmBDvz+6r1lCS5qGcWWuP1ysN4Zz92rwT/5OPB1SACOzUuBqYTxZLTWBoqvJ+LovjvT7kjgpcSw4jZxDum/jeFaNBtPofuhzPEdqu6XJOHomp8upU1xdGyVPGvl/9/8SbtSzmOhiyHtdASfDJbA2/DC9ey2BOaW76ExMAV3ltWjw0ABqok+gZ2gDRiT8A+66yfMMdvPnz/rc/VWB/zrPYcXkbfhpvhoo5fmQlPJFanM+Da8nnOfUjasgu7sEjp8z5CeN4hDesBxUl8uClPF6rLa0Z7nXzrTlfBPmuAyyzJG5vFBsHU2TiON1cak8I8Yc4v/z5s4HeeT4rQs81I/wSaf71GF6F43FNMhWYS/a7NZCBQM9yFooiTl6uWx2/Q7P2NaJAltscEb/EAYenkWLvsfzhoVBeP29OmgHxYFmsCLNF03BQ99cUL1fDada2HG1xW/WMUjCzFgzeDgkBb8iXGjPzBv8addcfKfuRnPKFHCsVyNt2fcGVr3IApaIp3OGo2E6jECsngTPb10C56r3tPP7NzwVf45tjo/E+I46pI3p5GVMkNFowymn97NHjy4sN7uLt58OYkbQcs5d0MSRsWtI7GY+ejtMhOnDfhi9bwfLtJnwsLA2Vn6+T3GUyK2au7j/khHtUpgKklWKMPvGRsypEcDi0x30KP057wkQhvIhWxKcdhQ8J/TwhQ/T2D5EEiIt3Pn2Dw90k9CiyU5hOPZELMen/KKtv8aTcLw56z82pCEBUzinqwLSB4xY5/YVwGVVuHjWBkqz1cFc8RncP6URTttGUbCtITyfO4zV6idp14FQ/vPVizcMyNDOLefxlNNaSrB5TTPyjVh4yhRYLWkMPS8q+faKGzirZhbblTfQ1OBxUHTGFL9u/IvGbyrQqpOg51Q+d9o+YXJsovKa86wapAZr7O/SMrcx3DN2CF/iOxyxQRS2dNVy80w72rBqE6Roh/OMWlPcMrOHX7yKBsO+VzD6bjP9zlGDsYqT+M0WIVj9+gkWiASA7rez/ObQZJjerU3fg/T5kH0512eNgunGRrjiRBbNDYijgGZXiJhRRbbCm/jx7GQQPrMcjSQWw8r5umBk6QllVhPgZ2c6rM4G3v0wH1IO9+D97yV0NiSRf05SQv9iG5DZaoVmfxehbqg2/PNTxGv5l6CqWZ1Hu3zgW7tfk4tCDex31AaVyifwSjEaZl2u56SVv4Fv2mN+00XU+qiK8V9f0dhZdvziwRRwULkMhyVTOFlfjo6biaBJ6TF0HVmPBQbDOD+gEHYpmePvshGQknmd1hglc1GgMDlH25MShfAktQweeNpFxVMSKbh8Hx3cIwERXVFoklgHPWcHQbFBGCUvr6H++U3U0anClks6wOL3JhyfYAgftfrIZHQLh3VtpYUl63nL/ac8y+sPujTUcd/Rn5BrbcUZx+SgKMAJvGeE0pjCFXx80y34fuAYH1l+hf+dmk5pg3lYmb0dFl63gl51SYhXeAIFYu5cWNnOrbPceG3+SgLSgwkZRVATNQXzR4tDTI8yzRabQPM3LMN3fXmYOm+I5V2OkvLkw/zovAJq6AqwWIwSOFYPgs+zHN5khzinOxz1njbxuPuabBrqRPuFg/G6w2ry0DQBleM78em1w5gkH0HV+Qcx3pZ5WuMU2rWyF+6X/Mbyr2bUXWADIiuLoTxgG11dPwP8vHrZ4+UeuOFzm9WMz5OvcQaAsC5Z/5KEj3sjwcnMEd3uiKNM+Ee07/JgDaEqeDB+Fus8TeSEZBnEaBlw/9hFM8/+ZesQRU4ZOxefHX2PH2PGcI1+Cke+3U57d2fTrcJRAE9f0uhRy1grIIoCPyWjjud8blwvQp2OVymhy57mxZpCkaghXFwYjTJFJ+mZxHi+dv8+vl98AqRSvsIGkwWwSyeQFmivpi0SmnD2rg0OGSZAxSUHso5ohq+TJsKCbTk4PH0dL1rSCWkVWyk4UBsil8nSTOdtuCZFiqLtUrBNdzlGrhDirK0PWHhgOS9WSwXBYAEQ97Dgv/OOUs3yFXTyuAgvU1lEQV5RTCIb8Kh+PTQt+Y6OfyUh5N1R9paZDfOXBdHw/DGw9YIBHJXWZuU7JfDybx6GubqgfsUE2BemTPeEltAvo7eULlAI4i421BjzB+oGVoCZww4e8+Q1JORYguWUIpB2F+bWkE9UF6DBQY2PQUVVEjLE/Dl/ax67SNtQU4c6HCzaTcGanug+bg8uWfwft560g4C7E7F2ehSLdBjTOlNJ8myUhy+fGmHbigp6MF0IdY68QZ2bwsCXbsCVYlv+LqhIWWq9rLdODjo4n5MGzDE2zx5sjLczvliJpXL1MObWLBr0ew432Ifa3KfBKa1ncOmrHTpuAfKzfYdLt00E+YxR1Evu3LbsCuhEzMNtDmNB70Yqx60Qg029TTBdowEm/p5NSjMaYN2YUnDQloc0AzGYstoSdn3PJVsTP17sk8pyyk5QFisAFhCJ6uOOwJPRmjQm8CImyOvCsYBQlL5+Bh8fXoUJ6R1os3Axe2UJ0tSoaG7QN0UB7yyw6hoDsZtOQPuVVl5RuBqdQ3LR3E+aQ7+1QdhrRRT1eMext4qhcqsGWNsokUh9OO47PRNniCnR9y/RZHO8F4NG16OgizwPT/rHRTulQHcyQY5XLua3T+GZh2/B3Wdp0PCoGWiiOj46/AFFVVzJ7JMhtERo8/34bbB3XzxPkNzEHe5lGCgmxmMLG3BenQpZqMejdiNBd9RpFugoxHs/z+OD7mqKiTGg5B9uMHHGbVj5rgBjdkvyJKdJoPEgnA6tKQUbnVgsWn0AeqaW0JREB7SVuA/PND7CiPf66NthAFkyn0ks9TCsMNTlzvBSFLH7y6dV9kHaYQe4/AoxYTHTmK8a0JBky1N6fkPQZ1NaG2XHg61baKJ5Hos2/QZHzypcJ+ZFB7ePgqz40/RXKgmMrYf4gJQlBJTH04ON7Rjbf5LuNnwmY4/bZNYzDgJ2jONss1sgbNCNYhVecO7kLNq7dyXcHLObN6x8w8cdbPGHtAhslPOits5bfFm3DKWdd4Gs2ltyfZsPhVWeYHL/CqypeEbZh4zgWc4vKpRVo7XjvGnqrRvgfeYMT9z9kq9ueQV3NxQyQSEo2hqBRrQwty96Qtl/akDS4gMW9DIf/wCgZpLFE6dJwcb9X+j5TBvob99I/WVh8OTgb8yb2MFXvobjx7CNqDRmHJ02cMTab0awxlcE3hWa0LGadDY2PkqNBuFQeCWIhUY9oKv66TTiahENrfiCB/7Jwe0VH/Fu/RIWt3ekrt0V3NsbCa++DcAdg2W8aswY3PxLGH89U4SGstVYvTGYr/4cC0+c5MHf4D73bkrBh+3jcP3MZaxdEUHlURZQc4+5IvIchO4cC1tHbUF1vQssuno7Jpxq4vHamWiX2oIn3RAGfVJZrEUHpugFQpl4IRW0T8S8mgSY05oOpr/Wc6ZNMDz3MoCTe3sp8nMVaFkl0l3bVtj/oZEdJ62Ab/fyeKzZLE608AC/gyJwzjkbV8x+x60zTOBfdhE81ZPmfbeSYXqfAjln1pNMWweYrRAE45naoFuiDOPkaln5QxfP0CbwsBxPFbYV0HIrEZYOb6Y/bANaf2fSKssmrlG4wDbVmZDdWg0T29XQX3kO7Noiw+PivtDCNG2IXHyU269Wg++YLdy3fTXP3/2Su9b9g9yT+uBTnYhlIl/JPdMcmh4uhKS91+l3wWnSuniHTyX5wC3PveS2Yzu0ebhx7G05ckqdBm+rnSj90nr6Vzga+64F4VeywnrDr/g5sgJ2CfyH6QJ70f2OMfgtCocvxW9pj/po/PBHk4vm7aV3zuGw2z2fkjZPosNCwpggKwpxQ5qEg9/Y7tJydOi8h5uTF8Cr1n7qUe3mI3vqwLwlANTfm8HctE4QGP6EnUbxKLbwOZteKYIT3Vf5R+cnuieqiPLSbVivPQVWO8iQ+AUbUjingMJ9xjAyeDWFp/jx6uIA/k9uDN+8Vg1RwWagOtiD6+u+0Bn1Cpb/V4D724bIeSiEZNWT+aJAAEu1feYJt0fBEqvtXK5jBqdjABXXbsLChmjMauwFFctUGncrkl/m9cCCqnFQV/yXji7ciMvvZKPcgUBW2hCLi6KNGW8l0cQbpqhhok0mqQRVc3xIjY+ym5wo76gFEi8PghAYhF/azaSzcxJ2fPuDD7rE4YJeLWz8sQY+LNWiwEh3Vt9eCNbbW9nVrhPSxN7S2gPNZOdG4PHAkcJst2H9YkfM61rNE+t9IeWcFc5U0CSvaVeg0EURfq3XgvKoCfxjQBg/VvvwyWFdPN8jzLPHjYdpEa94XtcqWhqRgnNFVKBwpBku8iiji8YW+EO+gDduDcD09g4w7M2FDhMtWKF7i91NheDx7zcctCmTLlwYgE/91ngpcjKOowdg6K/O558KYrTtI1gopQBv5zmDqB7Q1W3rOefPK36+Up5DPifi+ytdzCtD+GZbIy3x1oelM+aRx9hi3j7lEEb2HqexG2ZBQ+BaCO5aix+7dcB2fhoVz5QBP5U8sPZLxgCf8fTo6xGwKhkLBtMc6I9AJKpq3MBTs5rxxmdr2BH8BMzze1FTtRSMKpRY/Jc0zG+8gi7t1eh1IZ1VbOeioKUAjFxhRA3isdT6ZyYY16SAaJQPq98/xoGncin3xnz0cxXml2OtwK1YC1uHM2iEwwbcnZ/IcbZMgpMVIHuyCdYfv83rNuqDsq8SbNSU54LmneB67gF+uxbA56bN47UtRdiy+wQunPmG/qaIcPHaCdCqNsDyHc/B87INBcjOIXGri7x26hW4bBiOu+JH8dafgfzR3hDe3BQChdvCaFW5EAbTK/D9l5VcTQtI3EqOD95aC2M2uvOR5QYgWD4dyzvEMHf7e1QynIX7vxfxyIC9NEtSD27TPG7IkyKBw4qw4cxcPN+cw6XeKhSxejqrXDKDRLt9tH2tHPjcQDAWZHJ2ngKJccDuap/B1tCd4qrsaMi9nMW9VCH2hTQectSgK+WqHLBFFcRLpnLGsC2/FxrHNnJbMeqcFB6PdMLxqVKgtsyQYAvAYJw4NFvosrWJEq2bX0TH9n8DOyVHLreKhBtPZHCh+2N8oBAIho/U4FTTcfxqd4lMLgeQf4sbHFkshxeqB/mJJnLc40L8uVwRf93XAWH7TdAwIh/J6QadW+lEZu2uPH6NIj+9G0K7YxzAWcwceyRGwueztXBQ3Bo9583m9gxNaH6vBSfeJ+PFgYNkOzsXFSyGMX/bGPAfOgR+c5gy6RlnX71AmyYLo1DLRHA8vxz3TIvh58Je6GytAG1iM/iFRwyfyIpFB19RXrX9AN05EcTzN8Sg36kwrhU0gunxk8Czdyr7X3NE/68TeIHdcxDJ9ibLaUmYfpzR+bk+JofIoPQZUZj14wQePTgGBGEtBzRV8RWZH/A64SYKmRpTRFUalE8f4lMdSrCr4g7ifR9YnueLKot/4PDFUN51RpvjVieijnQrb86yxD5LGTDYdRn7QAs3HqzFQs1qnthsicLnGG/la5GzfSxs2P2adnzQhLddz6Bhdjr3tM3CVrcFHFZ7nGoiQ3h2wRyePVxNp7cswt03EP49dCWXJWo417Ee8kRnosKfXkhe2wIPK9t4wop0riyNZDt/LeitbaHbPS9YapswV5k4gulAA4l7K/GMvKXwbNCWBWIt+fwCWTA3Q+zQfQvOT/eBl8YlevhlKp21Lie1mjjK/J4GC84mgfUHI5iTHkRDe3Nh964YPvfEFaUEkmhcVwX03MjAEXn+mHfrJQYtnAY9Qwswb1Yq6MZ3kl34MPauukae8/wodcU9aLQQxDrlZDgRJAab1cL45uTfuGyZJZU16bKYyRYSMJmAvW4BkCPykXLvvYFDr7VBdr0DanT1s3P4bKr2kYZGh3YGuUiMaylnsZJ69tn7gFfkmsIV7a/wQCwHhVrnoG7mB95QuY1q6g/zwuNi9MikiD3yt8JbOXl4cLGM9WLGwcfUjZjUd5TX3lHg3ltTia51Uk3WI5gv/JP7dmhD8bpA3Fs/GtVUKmH5p1hM7gvDyYfbWUFvI/uop+FF2e38eBuA+w0bullVAlOwHiSGHvFru8lsWuDOCYmxoGpdBdXH7mLIYmP4kRAIH0eMxZevP+GkoSFK3xgKUx1m0Mfidfjh+2cUsq8hdykt2FwmhDNGe7NOVT36qvrCCv/zdM9PEesdZHnznF1c/vcm/udgAJb1V1Ddwpv7szVgaMEe4g1K1On/GE2yH+C0BUbk+yyNMv1NIMd0H7dtO0CxDatZdfg1/9vnQyfzv5FqoRdknz5EVWMvoVCxOHypncbujlGQ9sobfCwT6Zj+d1h1+C/4XR/PW/ZPp6U3OnHZQS1QLT2Iay4v5md7h3Dd41jut62kWq0CbH42FjQDO/G8/WW0UwYY9qvFwLfX+LmLCk1+OI/ChEs48W09L21V5gR5b+wNFcLHPSbw59B6NC0BuhwoBw0f38O8kScw9XQCv9beDIFvzDG49jdW2omA9+6t1CW1m+Ifx9PFSTfwTIsij77+CMh5Oem6XEeBgpEYkTQSsn6cg93nmnjzktPQcD4Sw68Z0uUHN8BuTzT8qHDjAr1lVPliFBw7kkXnMzRohyjQSLUFcPLifgjqO8d313rR0rJSFFEdS67NSlDN0SwR9heyJfQhfOI4LF+ozxvHJLPQ/vdoKCeGB+w3weW/EnD0VAUVO+9h6W3LSXKKCXuI7eA2w+MgMSWctUWXUEpHOOpdUQXhTQdpsYAUd0Tch6zPVpwlkA95YQPwwu4sL+p6hMM5IzhooiBMnCdBC26Zw5niHA5UeovtV6dT8NEQ+GxgBne9v/HEagVaLskw68oUjNO/yiPDj7GclCHoH6+DMstB7NiliU7zN0K6UzxVjLKCCqsittw5Gb5Y9tF2IU0Wjaukd/2iVNqbCG+iM0DWooFq1jJM6T/AJ++uwPwJriDk8Yqq2jX5k/NdVs9dzvLC+thMn8jFeyp4zNWg1Jl9bFwixjfm65DWyVi4p24JI0tnsvxMG/RyDgcbJ2MYr+vKY/J84V9LO7ouaoc8o0no/OUebFv2jvJufIewc1vxzmEDEBeYQ95+l3B1nAkmzTWDmKXpxBF18EjWkuQvz4R3u/LRqsQKngQ3gff8QJrjNJVWf7lKW3MXUxalUfPhZvidsRn9pZ9jfawaTAn2gTbzV9Biq06fB+bzKsej9OFEFGddmQuhzj7812w1zfCfCLfn/MBN+AsOZ10j3/RO6m4fjYv2PsDzLu6Y/q0S1nia4o8sM3iwuoSv3vEHwfwM2KPsTV/7HVjB8wTIaSqBXEslP5/gAoXS4rB0XBbucfnIZm57YFWRP3X6bIbpk5XYfLUd/DHYwF0vT+HL61Ygf9EFD3dqk+JJL6jt6Ib4UD3ou+tA1wse88kj3ui+8yw9C54Is/+K4JsJeZBWmUiCL27CiFWmlOShDIbq5dQx5hh5PQ2ivJ8ikCSxjNIUOrlm12NYlO8CM1RS0HLTbXycMB5+S6XyFEdZNhIwB9ppTm6T/yPPtFXYP2UTRH8Tp40VLryVFcjXvhRH0g/wmmsEV94vBTvjMVi4fxXbaTjT8ieWqGjviE3d8mzq74dP4+RIL0QavIWryVJ1iMxq/+Cvnv1ocbCBRet0OFe8jd8cv4tLrolykeJUWDX3GBuJmfEexRnkZnAC+p6uZN0ES6y7DHRLuZAX+BZAQOVEUKgsQJf5p7jY/DTGvZ1PDicUMdv9I+Z9UgJ7oxK8XehEcpOUYEf/QWw/tY87NIxpfIoeL/vZD/80G6k/fwkY6fRgZXI7FXydBg0jL8BTeVO2v51MhbaO0Pxbkk/U9+H1DIARk96T2mEJ+vZdCurslpKkjBN83XWff7bNgSlPFen8/CA2mPuL6bsyb65OQsNSY1g5NhnfF96kuC07+YNhKaXcegaT7sSxW1E6dhybDPvvXodyfyPYl+eNeoaf+NXuu7jLSw+M1Uo4/dsJ/irsR98Pl8G7Q9NoWbQQqD88gNbve9FD6i5PeXEMJbZJcIl2DwoPi4Jm0RUy+jid152RBLaXg93TSmm4Hyj8vh8G9pzgWpMx4P7cGWNcp/PHXi02DpKEBd/X0PLLhrTa/xdFDpTCiGRp8jbLhBCT/ehiE4LFelJ8XVcA7u0u5p27Ckh/dxyN92S2aUIIKZ8N0bJL+HZuFiS8j6XR9yaDmdFLeqK7hTtVVdnbZAg2d/xgJe2P9NNVEhVrP/E9fUucMlEJ5vRE44dTlXx7yI/E/3qCw4uZbCoaT6d/P8LWYzf4yInF2PdiKuyAAg4NOACaDStowYxmancJp9chg7hx9Fws3Ai8ZutclmwbA07zQiDuUgd3GvvSczkXUFzaAc+CItD0gA7/aT8AKkOulOc+GiSC6vDbjjB6nVPCqx0M8ZlyFQ141UBzrS2tTqmCpnF1VKNtDi7plXD2qgLXxnrwvwwTiFLdzWJScvQveRALJqbBiLR1GDc4FTIdR5PdppH01mQ8yP7egho1F3CcB2LU6CaWXT8RllnF8eL7lvBG1pgy9+ix2/UMmqY2n3WHrmBU2R2Q0pagGafsQHOBCO1bBBD4LYrcTrlhvGIoK4hH04nUXgpRn4BRiQzPjkzmljn36FCQNnjGBaPLj924wCATTe3O0mGVf7hP5iY2bT4Cn53X8rXrjTBYrwGOSTvRUvYtjqjaSy+PPSa9wJcQX7qS1lbrk/bX2zA3LI/KVolC+5b5fP37HxjhOAvXLHdisS2b2eLFNt7Z9J5GXF1J6y4oU3f/WPhQ9ZLWKA6jvMF0bhijTtucXnD1Axvo3+8C16470R3zpTB+SBGm//OiCPe5XHptJHTuy+anGe/QQv4sKK8KwjujYmDwsRZZfBCH/sV5fOOzF3Sst4Ok2GDY7FpAE4vbKVrmLnmsSwBRl68YckkONIzU2PLZG4xbcg8T937j7KIf8HOGPNftQc67649Dy0ppZbcFRBkBPG6vgqIR0+D+qLlY/CUWCpfd4rCbL8Dz2GLUyL4FxksnwppLJ+hjWAAmrDsKGUoJNDn8Hd1vyoSvZt7conodWtWnk/R6Peh1ncFWNes41FqRrknnovS5f3Aq6zlaHfaG5ZK+7Fl8irfd1oA5uRbY7n+KTJ86cnXmWrBdEgynjk2kRLN6/Ohgguk9M7l+swnUBPvzi8/LIKzvD+h8KIRJby9QsMMFqolCCiv9Rh8Mt2FotyyEZTTR7xofXup5mVp3mILnpc3oVGsNlktlqG6OEHpfa+G9teYgKO9EPcfM4HblaohLisDfb7NJqU4fKsLyuTFUHORqlVh7tChY3s7ExVcmodMhTbKw0GH8IQ53judR0ddqUF9nzPf9j1LoVVn4dO8pOLz0YQ2FC1Bc/4YlHs8gmbZN7JxSxw9GhFGdbT0pGo+Co+NeY5Twe3r4VBpMx2vRwiozSNIV5+AxxZDnIQ2TK6Vx4MAosO7MRvkeRXC9lUIBkYSNV09ywtYXJLz8ECfLGYOJpyhVWSJ8Hl6GTSMSacHV36RdHQExV4p5q84H6jY/jRuFN6L2PCVeEa8ColZr8aubH7/uO8GjNtXz94p5ZHY+GwQEwyCgqASOJ+uyfaoGfAxcAnuzB8jQRo/cm+rpvygTvPBckl5bpZHciTOsfyyIozpGwNkmZbD2nIlv4s/CKPXzHPhzFds/OkPaGSvou2E1dlxfwWuPSkPsU22w6Qf4fbsKxO0vwegb5hyqM5bslR/gcz89urHkNL5QN4CS8RpY/y+a/jwpRuHj53DkZ3Oe1LMXIgb9waXDDRWPVUPDCUUwe3oCI469wVrdJLY6OwCDWcL0KeER71h1m5zTH2DZWREUOywLLa/OUU7ZWVSe5sFv/6mxwex2cn15DgWWCPHD8n4wyUnDWZN1oUmjA8+eG2D7ojn0ak8g+K/T5GNu+XggyZkbIuUpSPQopifowOdlYuicu5ikhvdRwfYGWpS1n40XBpCVURIsCRxJW54epQODOvButDO2yMmQqkAOlKT8xEVrrHncgjP0q2IYXS+L0bgNEdjgIgB55mehYOgFaIz4h0EjLdBKy45sftWz3WJP8LswhObH9XHIXgXc9TbTX917pBRcA2F7NpHP9N048XEk6Bi9QY+KJjaYH4Tx69ThVUAV+zwYprEhMlz+vZEb9gvQoJcGH1v0DC/4f8Y1gTPh2+yxkKj8AwNtHpPKYzMe1JDlT4KjqY6dcNTSW5C9ZiYHj1Cm/QkM0haPQVJ7FC6o0+CQMGv20+lC0xMPaUNqKrY/NqG6lVGYsd0cVGY4omzvTNbzaYVu2e20XNudJ78cxWP8OjncqZr36a/h3aHSsLn+BFu3voS+hJXY9zwPfu+JRAGPcbTP7gfOmtxAVpVbINRvLFQN2pEmv4VHez7AlWPhPKE7leuufUCh31mw/7QvxLT+ArktyjDhazs4VgTwnZOe6H/jLUr4A/ZJ3QJth0J8cnyQ+xdbU/mQFVjLtXP0mW40Ucin4vM69HBFKb0yXov1RsPUuz2FrXx+wkELAViSZ8F28/ZxR0oL3N/kzq/CdOlYxB805alYLqmMywd+gss8bai1kATLxVvpZsoTHpmRx6bFF3iWQiNvqS2jrLv25Nn/nY6VqYCYlSbWZf1mtJbF1vhWmHf1AR9Y8oEV3aPwZ3cA4vMBGHPHCq7d3E9JSxEWHEwA2zFNEHJzPxVE/+QZKv0UXduOfoaL+NFqHRhzfw4+bhoghV12RHq3YEXnHPrzbwrkab0idccsGNVYB+KGIjAzdSuJKyehuc8/ljN4xxG6zmRY7gyafd5cqeRCMUNXUUJYAwpQnRcG38Nj16V5dsJVXiuTj/nDfajULYfj4+s5XMgK0gNGgNfSvbB2Vgk/LCuAr4IB4LNXCsSG93JgpgHLJJjxY0c9bDGdBgvc7GlE/XZM++8pbN8Wjtd8U/DKgzAaKHIGqeNBFHl7Aw7LKoF4hh132hxHn6Qf0NbRQg2x41DupSO2ZZjAwxlncHlgOKZskoWKJ39h2WmGgMtuHCEiw+9inMBx5z4++nAIv+96Rk5tB6lEXQKS5beDXbAAG1gngRA95HlHnPlH1C3YcSSev26t5cTDT/nIIEJr0g9YNEOcm1+JcVrfWSw1WkeXfCXZKLSErv2wwrSdb3mekjU43MvA8tpXuKFjDkqV7eKAFhkyE/Aj0DsLrZVbySRpNqxOmwQ5MkY8ylOD9D4o4kDjdtb4MwT6BaZ47lYqtSQs4Q0GMdi5QAuSxD9y+PZ/QNbOIOuli1Lua1FlXBa1vJCmklUKIBB/DNK/jYcbEqp8pO4L9gxf5YLnyTCm+wK/en8VEsNHollDPZ8b4QT7pNXBVnUmrXz6l4duT+OiXUQHVaRhIPUCVFuGou2eNLT91o0Dp/Rgo7U8XXsoBTzKGlqV/Pjo/fUQ1vuQZxqm0rgpHaB+r4EUx+qAsK8WzLU6RgEyejz3QT02HG7jWvFt6JaH2Dq2mO5m+PN/6wzhrFIRX6sSoqHdK/hUuh0lyd6jWTPiwMF+EIR7n8KOsnIIMyOQUOlg++gPvMNXFEW/fGAtfysq8NDlnxa+LKlYyX0z7kGNoyG42YWzw9lWrtXaAarj3wCcswbZ/Wdxqd9qvN6cyVpzDlMRMXTsCuXVq6zpyqfZlKE6Aq72hFN70iGUfL2W9X/H4+maNKioEQcf080cdNke93WX8BoNOz63NgBdxbawf/wpapLX4pSAWTg8VwhyI3PwlG0iDf8p4Nl71sEcv0qS81xCMsFz8IDWClZp2wMlrAn7Aw/iCr1GClqowAKPLoK4y/9Yuc+9EBx/AcDf0d57CS3SptIeKhGaUkZ7SAkNJCX8Uka2VEbZlUSRCtk7I1ERZSaSouy0nM+5h/9NPC+f//jdvSdsKdxJSUtn41JDT/h3Vxc+d53BYIdb/FntCeWKvOAfyYO8atoBMCkOoY+2h2Bv5HmKPaANDQc9+PVaVVqu/o6+t6/nxQna5L94LN6hMVD78BWn7Z1HQs3y8OiwIT5KGUOVXu147csgudmUUZVfCrlOOEXfcnyhgA/S+LdGcKfMBOI7WjhVajSnjpTG5RlG9Numla7mhMMv65M0dVETHXvtCBJhzDONDNlshCrumnkIPsJItCp5CW/791Os4HW8lh3Iz9oQYvXSCRdUk/hCM9j/OJKE3HOpf0cR3Pf5w8cHbwI7rQT9N+PBU8aXIlsO8mm3n3DdZTq1ui3mKXK7cUXSFFK7VIa7FOrhnPM42NkSiZuLG/HztALOFqjgPQVO/K5DDXe+sGQnsTz8L+8YDJy2hk0vIvm+/xIqkX5G5Vl9sKQ5GTMPXedCSS3+dWE27rHwhPuSynD5+z0+XinEEYeNwdt9Fb8IM+JPes0Eq2bzbcVbWHDbn+b8NYSh1NPopiNJS065c0VTLV55F0L+oRJYol/L6nNv4AcfB+x2soEz3g5s5+4NUvPN4b8bR2lNhxCFfg9g3zUKqDptHyyVF4aoZ7qQ6GMFXkcvY1NcBLFsMkzkBozUWYSehc95fbAEqe4Lw1X/AHbnPQDHQVXed86U8l1SaNf+AHwVqMmNd+Phr/QMCFxyjSZpy8C0dczifQa0+QyigOJWPtSdCZmqKSy0YwgdW0+ir/9vjNwoC/rR1Sze2sxXltWQ+7wMuvAsk4cLhECu34Zcb50lf90+sioYD9UzBHBq2zaSWrSVrDuyYXBiGih9eki6Q3Zg9siPer17IdTKBuL6Lei/jLMk/fs7VSg+h6L7jbhpjzputt8DTw1fYa60HI7V0oRFMAq6WkbC1FwZ1JRdDjcqZdhrWJ1j3K/xzwcWbBdShE175eDlpPt0MWcRGwyGcuteb1ohc5RvvJzIs4/8B7KRQeTdfYC3e4pD9F8LCNqWRM0z98F6hxPQY3QDs/Q28af3jbigpglS3hiTkoQBzKmRwMtnX2LOTEWY3mzNHkNDoL51GY/uzaCf28VAT6CXF962gNpyddreaUtVN2yxzvY4l1hF062tb0F36mMuyHBn673bIThGE1bvnUh+bo9wiYoln05BcNdzRMMLn+FT1R/+1D8K4w9fBk+/saBT002PlFKxeFIURRt8RPszZhwDxhxiWEe7Ii0w7JETTz9mA3HXLMHh9z8oX9jC7S46NNqth6O29PGaYgE6UpsLqgv24J4iBXAfLORixyH6XR9GWrlt+L5tHLq/2wXLr7rCrQgp6pZ7gXhuBHz/t5Fn6xyHW3K9cPl5OCZu3Y//3M9jlYAl6dec527tN/RKywKKr8yBvwp38NC8p1y+1w0rTYXp1ktRnqGhguXMeC1MgU6X2sFLy6V8v3AJH7jkCEZntLmhYBg3uyRywpKR2PnGk1H2A+yabQA5Yy/gfxukcOOrVbSwIRnPibwmz6xPfPxSD1/r+clZL9aj+ltpKE6q5/SIhdz6XQmuH55CG1eO5C7x5dxW38GX8S/V/O3krrqRYFC9h1o3n+Afdxfj5mpncnolRf0TnmL/03YYIxRGNwN90btEGlTaZ9E8uzqKnH+Nwzw+Q1rVenpnmc+3Bb7y/f8KYErpAwqabAk587xptK8Zpyxagy80f1L/tMd8e+gk1AX3w/5vL+GfgCXf2msNC2Ey7dD4Rt/2ReG9gvU4VloeAmWukXvdClqi9ACfNyjzhRvyUDt/Eev+rCORZ4Y04HqZQ4+M4RATexxZ0c+Td//GkMk+5JY2Ac7LiuHb4iOs23GTUqdr4tXBZoZeR1Kc8hVHCYjS/g/XeaGqAtTtMmLN1re8qrORU3KLoHb3coaUX1hnvQtTu1bSh+9r6d3lETAYqwUbW5twqYUx/ikdTXUHZOjt+/W0dawd/56ZiSGWq0H8oAKU7pkAewdOo3PnayzqMyb5c9PA8HAjfflxEmoVDEnMfSlFjzWBAJOd0BSoT7nPiuF5+2KYdqeF329Jwbstbhwi5IQJw6vgTZkG1ORuRqXYXHz+Xx8IHE7BFZtX8anJKlQiNh12LUsH+dYzoKLhCHfe1/B9zxoMW+VKVRfaoLh4BM55XktyOt6o9OcHmKi0wH+7bWFWewft/v2MRSQVydruEveYDtMewSLSDnWjyfcPUbdKM5urycAo1R5IWnmWVuqasaRXJWtu3YPmngs4z/U6dZwYhdPHnGMFC234Ne0dCfaUkfLTdaz1LJu2Zk7gUEdd3GzlCTkhJbz/nDNvmWIA9SX2IGe7i/c9uovXDl4lrUYRdFy1nWO0VmJJUgRc3+2Ht/wsIEKmHaN+1uO8y8Pk8egiFWc6002rGdSxpwzO+6RiRqYmzhgYCRc8LOG4RT7pXjoDRWfccchFkQJ2LGT5cYn0pDme62KP8rMZRnBMYjdLu17E8NztUFWQAvH7NFFyuxFGhvVB2eErpHBrDikICMEemQF4NLkEZIYc8YvSdHyoNRntOJYMxZZgerQE9SQcxhXmY2Fz7R78sk+QA6sug0iyIHlsfI5bJk/E+NYIdpWu59i91Xixyhzaj0QQ2xdgq+RknhN0huYXSZOl1Qu8tKaaLDo2garvDzpTaAInf4TjoQzA/qUb4bq0ETs1/0Nb2RG4tMARKmRzYbbCN/b4LQxdKyeB09nt8P35FDibuQ9z8/6D9lYpmuBTCRG65qhU482Z+uKQLDoWBW99gKML4uk9tuOxM2W8vVUBc2bcRQkbRS79rUp5agJQ3PEevR6LsNxFDXL0cAYXIT0+rnkTR0lFUoiVMlxO9YeRztLgETyZys9J4Ku4rZTu54zqVtfhxnsJMi1F2rBMgJd+LWPR+NFQ6nMJcp7EslikKXmeOsgLlbz44dPbbFiUhNdkZ4I0CUHpZCuYEJWBcCKb/hjF8aRoQ3iZZM5LEjsgaG4X5ZQ8QbV7yjAnSRUujHbHhTKvyCPWkZLlrSBPpQL37B/CcXLFsO6NLUblzgTvJSKgXbCJyl9XkyCWYkh9DzgF74Bykd/06+403GjZh/WvK7nOyxy8M3/zkQxXmtRTSppWhfBBx4milaXwyoIR3KfWjd/ercBbF/XgwFwr+Kl7CqbcDqJv1mlceHA8P2jYglsOmNK1EWHwdv8e2HFEDhzdh0HBfQ9JnX+CtccCyMBuPsrIlMAyl4X8Zs5ynDLmAswyGws2hdep+n0mJBX0osGHObAQVHjHTUEWbxUA1z9VnFyjzpOOyoDThDrarzsa3qtsoiNTvmGS+GHYYvUENm85zT8az6CemDu/ttaHieuNeYzdGbTKt0bJBAfOvV9IGQYPwXljJP9740H/Qu7RhpOa4PDBmXf9tKHC/4R4q9d6NH3Twj1DZrDl0HgaMCukwufTMXro/72Pwa79RRBtXY9ZFRvw5vsn/NLCkMf9vEQBiZP5tPhn9hQGmL9oBzVZAL+xeIEaabXke2sMeCnfok17O2HmPl0ubNqGt8cIQ8ZUaUw0mwJFJzuxR8IG65WG2crSh0JqYqmppQuvDnaDsbMVuD60xNKL0RRhug0rhgIwJj+ay9TN4WhCOI1u/4mdW7K41FwC4uNWQLlrNY4Nno5Zgf9RvaAqugqXc/L0ElbWfszW3d2Y/XkijIjZAgei6+Du9UcQaGMGNw+9pEM7LvB3nUaa4H0aAy9PxARbdVit8xw9hoQZKkfhvMmivHZqHXwy+sT7RstQgPVsvHnkIlb0S8DVEns2ODkPEn8IQ8mb11Dfl4EPUl25/HsY+Ah/w3ftS/HhfElo9mqkmYF5+FWynDS/AtnbXiaB6Day620gx3A1qLiUwpkPzeB7wRdUqZBH71OaWPhfFH5PT+V/drdx1iMf1Om2xzgjO5z0QgzmVHmyiu5ekDTXwrHZ67hhw256rB5Gm3J+sWmaHe+O1IX7p9ThW9csThN1h5FyryjG4j69cboKku5vcNPvtTi34ifvyNJFN0szyH/aC8NzYml2wjaI6JzDKgUj+PUJGda0iWe5z+54ZcFZNNHXgLpN21l/XhkoLv4K6dZiPH3nUjZMNyfLkio0SzXi77eaoFtUAG4GmaLSLiGKr/5HUQ13qMIvjfO2dtHfvQ2gc2A2XHXvxMyjCjCU1sbFyR9Yw3YDzd6yhV8Kt9OZyKcUflSYjn4d5iUr5tOeYE0QYnXau6qWm1Q38s7df9HOQoNX1eiyz9exZGedQnmy1+C/Nl0oi/zIEaIH6IaqGz679BRbRZtY5lsZH6wzhRTTDZxr1wuSuaJw6uBNOHpbkQ+MCif7AVkaEXyT/J9P5Zo7amhVPZszfnfjnAw7iO74iVkuzJrTbpLpun/8YcNk7H56nlRcBOix126euf8XGS7RgTUjJpPs/kDaezCTG5xS6PBECdL9dgz2KU/l01kZ+PdRPD5QtYBdlrrYazuAg15qnH3IGLWFXtAq069gu7SUfswfgqG37pB+2BQqk3PR8vouWPl3O24utYYa7xMcUK/LqXFtvKraCzcO34RZ3gIwoL+N3EEWgq58ItOZHtQyFIM+v1dT6fBW9C1+z3ZVj7H+rD4E9gaRhUECfT3wGE/Ib+YFSV7cPbyZ1rxdBa/uZKNL/To0yVCFG/2FMBiUiJY3F/B60VCwfXgHC/ftpN+3mvl20EJoCE7HXU2mMOSaypke+dgpY47GDx7yr+OzSGWDMn8tUqSCH6Pg3Bo1TG0Rgfc7o3BlwyT62BiDTadj6fa8To7ZmcwhwQKUtUGYFLrOQ4CvFdzjhzRK5xPvSS7G25bhZB96Bv3mZFJEhzjM8X6En22cIfHBOBAISeMG+0IablNj9XvXaZHwHS6xeQuzlj8g95zXXHW8D+ev0gUxnTIKuv6a3cathufJk+FE4kwMHXuS88fY0OYLdVipI4yNmeMg2qKewifbUvnVKjJJTeKhy1e5d+k8HHKL4pXXI7i6Oxe+PBOFyLbb8MNGg74tz0LLfgN0OqyDiyYjjpg2Aa1f9dA7r7N0MlIPjr1IYFmXcLwc9RfdPX9Q5bpwTpSehRjjSmk35uL6Y4t5Z7IWLLWYgcfk7VlLPQ4NtWyp+q0sub+240DXg3AofBgfHJiGPqcFQe3uY1x6Vo8zG5/DtLhWmti4iayVYygnahMK+SZwP3eSf6oK7PLL5uv3jFDnTjq9iDGmJ9vL4JP7CUzprMA3bkN4868w1R4ZB7N+PgHP/tm4QW46fb56k6I+R4CT3DB1jUrC9Lkh9Ku+mQ7vdgDrF7dJdnUXZr6152NfR9KR5cfo4FpT+Gh6FZ+m58HzM3XkkiMA92Z3oP+3RtRXdcGIs2tg2eZ1lL/rJV532QY+BcGc2GfOb9+Pgo64MXjq/Bv+lRKJzW/K2FAuC0/M/Is/lO0g1n8kugsLkstyWZii/5WGXg3zsqEEXnlrP0euXoVlT1y56VA+dD5uJI33mfDPXRdGNp9nmZF3WbtwGSQbnqD8wiJee/QtazlMwinCpSSi5ErP+0eDvV4J5/m6YWNBPm7/bgal/IkDBWeDwr1rkOrYDRrb3KnL3hBUui5SXKAj7/iK1J7qjePXPIHgnRfJqfEdflfcBmumnEcxOxPwHtsIM2XWcO+wJ/1c6sSFpZ08+6gAuh8wpnvHatj7pivrgSR8Uy0j6cD5JNPqC+ekpbhksBWKlArwWloK9YSJYknRT6yStwQ94fs8fnkNRbvkQ/+OMDQ130b2cveoouYLCPZPYPvxNaxdOxpuT/UnMUtlMlQ0oDObDnHSzntc86+GAhoaYXrJIbYOcAHdbHGoadwHz6RDWEt0Oa8RfEcXk3Lh9ZKHtFRaBfeNL6LfY2PBRWYMGFrPgJcmW6F7bREtyTpKC+LSYc1/QXyubyEFrpiLgwF1lBFrBKtalCll5gJyuviSX96bQe2pC6Am4T8s/V6Bwa/+4mC7IDRcNQB7DgcfIyNKc/sBypFeJCdcSt6d5RCl8gOOvzpLVs17+OwWYbh75SGOHDmNDRd8J9HKABhhb8TTN0rCpGtXQSdIkrqvJ3Dran0YP6cExROPwaenqvD7ViWEHyun1rBgenEpms97V2OsWh6OLLCB/BMX+KgnUKzkbB5MnIIbe7+T0D5plnZaSFEqT3jh6A38LMsEbOQJc8MU0O/lPMi/Ecprx1+Gc6GjwaBWgbZenAd09j0s8FSCi7Z30F8iG6fKF+C6DlkKs7mBR6buBtk967BTOZO1pFV4y2VFsPe9Tb7L71FDWBRkhK9Hm8fanOERQrdCuim8bSN4PtnI8o3KYDgxH/K82zhjayZdSpCDRaLP0HG8DAbm9nDcDk94H2NAw99GQF1YF/vmiNC2+kBYe/M7GAim8ZjyBVA6zYLtDmqieWkhHcwbD+I/r0BHRj+01H6iGcu2QWZmM9v3HURV27dgZ9YFw6PP4qUwObBW2EAuA6UsrhfHWR/XwuDRg/ChtY1cRzpDf8M++jZURl/EhOGw6xSQcNOggSUHOSp7FY6boQiRu1sg2V8O1gVlwJfLJjxBGSC7tYllzeXp/IAfvM6vh8tyo7mCLNCv0oOWD4nhjtrPIFytAvdKT/CyY94Y7zCaZ77JwuiJ6+j7w0RMl21Bq47nrBI7iw59FoQlvX20QGkDzrH4ABt/6tOEqDXYqD8bBR6Nh7bF+2iTljoeClOA80NDLGP/HJZfvQo7D65CDZFnvL4uh275vIWCcS/I8LQNi1QLQuyJFLJO+ocpzjNA4bgGxKvsQ49CWTreHMS3tDzpxZkiMvg6BpSPj0HJY9eQO6ezUo44V9YL4RLzQRZJzYW02Cx6duoGeikqQm3CHxRftgsOpNbCmPNTYeY8M2h6Jwx2Boa8TEyHjXYthpy7RuCz5Se37/8EruHj6Kv/KZh5eSzYH7Hih8fksA3b+d6j42z7wxq+7Dclw6JA2DY1CFq2uVLC2+cU29ZIZRM+8Y83p7EwoA0jQxxg96FyqDr6Ggyip3LN+JUoJ9ZFKyZswR3fFvJ8PxlUXGKDPRO04YdkE10XEOHXzs/4m89C0P7TRvJLxclRU44UZI3xz/10tPXQgR0PumG8VA7kvL5NV2SZJ97fw0ez/Dlt5Aw2VEiG2JEnIW0xwFbBSuBH/jBa/h7nSc8G7xfd/O9BMJzuWwmC8zVw06upIH5KHeTPGqPXoQ7W1SiFc6kjeGTyKqwQ3MppEmux8vYyTI0wxBWWGjDyy0XyWuYHO3N20++YE+gwZRP/c4tn4+XZ5Bs2nx6P2sDjwscAfHXG9H3W9M/lHkT4hcLCNZ4YEPaKy1WfQON/pyj07wm+d98A1tQ7QlutEFwtHsLgf4GcVnyAbmnmQ/ukiTT12HG8uSwQbjgBSOvNo+LEZ3Bd8gf2Vt6Eratj4cejHGgbSOD9PfPhmdxUKkrTgKmRDRCVfh6UHY1wQ4AK2x0YxNbjm1korpZyJVaRTcgmcPcXgc6qdyghUEfffqRimeNDSm0t4wVXBEipVQ3fHqniaxsescouRZCNsoZEs0Vo1vYQdXZXkOBuL9a8e4lXTX2EdvMO8Fp1ffr4fTzkTBdAU09XktZRxeK0Y3BeVwDm/TbFP0m1YCOvhS2TP+CODWPh5pIEPiX2HsJlj9KYho2odrwC4lSacYFfKM9zLcGi+Tcw6qgYvPb7jwwfyNMcyUoWn2bK5Y3jyNAzASY5VnNeVDqPkvkLf4LHwVPrh1AucoYq3ktB+uG7oBlUj4Fuq6gwyoCW+m3h6T/P4vxLBJLKE9nW/QLXHB4Dr0SC8ELKOax44Eib/NaTX3YDbFRaS3GepvAnIAEuOP2Fy8cF6Nyxa3zH6QffUz8M9w9/5sfLs3mymgTPm4rwR+kc+h1fgKJuxjhcM51We8jDx7vl1Hq4gv3iz4FO3zq+rDMC3k5SgA9KShyyzJyb5H7xyAB/mJAuyMIn1elGTCybrF4KdnmWYJitRapxc2DmpRGgaXubtfTKsU/fFxQKXtEpp5/YO5RBg4MIMeZTSKU7gzq3yGHmket0ed1HGomauLzEnPvtnGCpqwfXzTKG2T7pXJx9i1rUbmDeni2ccLMNNGc70juFS9zjOJ1EZunybnkJmFDJILxlBZiEtpPjn3ssGXQOd/i+o+1TL8EMn5kkLB+Oh6+Zgcm/Wpa2TKZrmxvo3HE9aqhYyo13roG7618otDnLluPrwELLAX4ZzOeL5SKkG3UXFxQm8r8/78iy4gJUJfwkLceZvO9FFRw1kgP5UzHgY2uDY04ro9bhb3BgzVTq+7sGhFo+cJrJeKz+64bdqkLwStcaJB3t8coNQVRIXIHH7jdTpp4HO3fmwkrtERB68zh/uWAAkip5lHXqDB83uI2Huj7S2a9N3LbxIlvpLqPa+8ng1vmGgvINIa6wlnLO6MNWeWeua/RGO9FM1q68Qr6pF1HNV5mqbqrxXPkxsKktlZJULfFglzKqLmvE600LcP2ZRxCW7YLjh9aAd2oeqt7Sg9dbTtM2gcWkddcHnxl9xA3b58DP9wtpul4gXl6XBDvTfSg0cSI4B/hCckAlXy0OBjr9ASfGm5CApCNEt9/H0IZhNLK3pMjvIiAU3AhKLUfxS7sj5WQ/oSa1CjLd0YCROI1njZhC+rd+0dk91mAuVY6N88zwd3EUt8/6zfUfxnCk3WMuiG6DF7tegbBoM5YdnwA+SWVkHzeFfip6oGDbf6wfdh32eZjTqKZYKJw3her2L+a7RWbg/lwNK0/asVZOGnUNOFOigAjGf6hHyZcu2PbjErRcteSI1IkAsokw0/kVafSP5KG8KfBu5nEWmfCKXN0UWPF1P5avdYHjtYowSl+EpURH4QN5Ue76KobJNyai+Kr1eL1zgH2nh1DXeU889MMRbo31hOtKlTRNdDS4yrZi/YN0OsHnIE3Ekea/14Dd/u8xvloBvj9ej00Vn2H2eQeYn/Cenc8d5flXBmnmsztkJXoNWSWVTQSN4K+uDcwbeZ0/28zE6ohgqMl05lt3LuOkawPo4uhFx0pfgvgBc/DxMmP/+mEwEBnGgQ+JtO1hF9eRCEue9kK7ACv6MdcFpweMhHmLZoB3jx5taruIAS8XUkTwX9qzazFE6fdww/vz9MfrOo5OVIdxA9r0/bwXPfD/BFU/ymlLpQTknm3C82HClP6H2BU+sdUYIdB9FYM/w5NgcoALu9V+QQcLeXARjMOQq3NxsdBzdM38zb9c7aB3ryWf05wNa0Ru8aeuleD1TBV7PX3wypcf1OJ0E79rXcfmG4rgk0tQ+Z8eFHltphUZB+ixgy1++RyDFinidMB3ItXcOwxLt9nCUfsTEL4jAywe3uaW3XKg/N8bLhsRgzEPPvLNA8J8f8wTjk+xhImlZ3D+r1z03TeWFWs9+cSYKPpzQhvidFfQ5NZsTHz3A39PFoPZIgfgZbQ+zq06RN1an/jp7bW8p283Tn/YgwLjS0H8WDEfnK8A7yaVU1JJA35dVciqwp2os307+gQp0cTSlXh5yAx7pjpilqomLMXDvLT9HsRn1MOWontg4lWDYzcPQX7QT9SVz+a26bYQv8cKNpkGkkbuCuqL+oXqKzt56u/lJCXdxfu1W1jvTQ29+/uR9NbZwJSgDkoHA2pIEkYfzy8YLJKE8VHLkQqL8WvIc4w7NoijJ1mC8HVCOZnfaDTjPIe1uZLS2HXc/McIPh1YyUkFQhg++hmu/mIP25ZYY2q4FuZrruKpGfcpYNULHD6/hnTnriPjIi0eeFuNq04YQFx5IZYeyYeWbHd+MyoHT5kdovzBcaQz6zkLJu+D9OY4fBmnB3OvDdLU3FW0OnUBPVZx5WWKZlC/opPqlnrgrPj38EPWHu8bS8Ou4oMw2Smb3FQVMSNagkuPqcCm/5R589tv9LGigp44bKX9Z01guUYTL4kM54YQFxww16OP+7fR87oKety6iY+91qLb/ttw/mVjmDxZlSt1HuL2sZ/54OeZ9Fk6kxZ8CuOoXG3KeLcPFGtysfmsAyQ9qwFZrSGaWQU4+oMSViReoTNJMyhi+Tn0aJHHU+dTod1mNBRa3mWFmU5cLFlM+isyUOf3CvjttpbV8gXg9sM7GJ64H72/jQSrGR9w65RhEu+NIqlXy6FQ8Db+XdxAg8rTOezYLn5oOhfKE4QhWfIm9TYc4GV7NkNKYSo3zDOg0l1HUManjb3crlFWhhrsN7KHuEWruc1/C+X6m4LEFCP4omGO4/XCSXu0GKvGWONHY3lItjSEJaO7uVL1FC3xPYeaO6fgbz1REnwsQ4rfDmPRf5/xbfF6MMg0gcEfVqC4eR73XlsMyxfPA81btrgivQZn/kgD/d3/2HXiUVbcMRHsnw8zb5pBNveMeXL3XnSV7aPgP//Awzme5tkvoBkq1qxwQwlkNofB7VIv6L1xAJu2ytNYtTdcHOeErgdUeHrzc8geLY0wUh1OiN2GDamLeUSlKT92EwWuPEs5DVNxwzkhNk5RhU0DqXz2pSSsOTkIY4adOXP7I2p6qYBuxYMkVKdPDmF7yfD+LlDNyaMuAQXQX/gMZVVW81TpHNZIKKAgQ024aryfQnwCWeHfcwqsO4s1ewRgpUoB9nd4QKjyDRo9aR6HQBf0iYvD0Ld99NP5N6gVt0LXRFvI3+5EoyOW81PhfJQ64gkvtQ7CULYmPdB1RJfiNCxf3oFfUsaAULY5j/r4HobP5EOAaTzul7DFzTle1Gb4H6+t78OmhZfp6mMTOHxzMojnKXA61LKHnz8V317IH0vW47T5ktwZ3IADjwfJV8sEntQYcuMkfT5cuwGudabxQ+NkWqtggw/vJNMuCR3slVmM5dVisM6ine9ZneXwFFd6luVAG7rf8mjn4yx3cxUvr7Oiq1OyoNJdDbQ1ovljKGF23gP83hSLYuojwcnyNQa9KsIulXwe27oOLDV04IXzAzbJq4TM4wIkapyDaW+M4InWNs59/QXMulpo+9MahMdSMGXiCZpU2c+H37bh/jd3Wfz1M9R22Q9bj4VT69F+GBnpDOEWZnD5/EFsdD0J60884lmyJ/mc2k1amPkfpXXMoX1Ck3D02TcYeV4ZWi7kUnXuLZibWo/vn8fhz/jZ/PRaIhje7sa1z2JRC95B+alxkON/ATp27ObioGDWPV9HrYEHeM/RNeyo3YzT1ARpS7wfnnw+HpatjUBjxxTEOgv6GmBC+ZsF+aTvVEhw9cQj95dR7OcasjkrBy3rDtGOXz9J/bcgaog7UZWzOAz+i8dFn93xhMZDyP+yDNf+NYc986ohZq0M7NwfDXcWIApNteWS06vh2Od/KCylQI6LAthjlBYkRUyiQ/8O82kFH5C13g0VQt7sFVCF92+chk7hPi7K3s+v7qiDllod7io8QHxblrwio8DL0Ibzikdg19OPKLaoDiKKpbDexhRazp5nrc4CKj+zEuMMJtFPFWueFbUERmUvBOfZHfgH/HFrtDEsV02jBYsWgHTNPC7cMpXtjYNhVME51l2zmDsuFIJ7xBM+vVsV5n0TIYP1bfS1BnC6xjn8EDOE13sryc/iNP01iybRup3kW6IJIuussHelOc5snEVNi6ZBgdwKVp0XxEJb9blzrSwVW7rhngEz2PGskQZfqtGO0EPc0eqPq5Mf0eN6Wz7V0A7zT+4HmZkb+esUYxg+/Z38JB1hfGwppLfGUEyCF5jd/w7Oc6PY1VuBzxR3cHmHJdx4V81PN0tTTXg06LyS5Zi1yZxh0k1VrS+xZ0Uj+Q/649Nmdcj4coFmTtiFM/rzKd90C0d93Igff9bgmiYJkPA35kO+lXD/lw1U5zyAxTN/4JUAc/714SvHipfQszhzdny6nx+Pa6FZjX2o46kPu4fmkNn2XTwcdgM9HBaCe5kRePTPZcOsqygRVcBe/xKoI3McBNgfxn9jCfMvz6HQA2HQcScYV8w3pN5jtuQ9OBVmnicOj2fYPncTafQ5Q6rcebzV/5d+H5REi9O74YXqJfAZvMs95w35howiDI8nFLz4i3oungZD3fUskDQL45sfw+O8dbhpVB43OYjRtLdK8PXpTKhfpowHi1xBv3wlJ/wQQXrRSHV9mrj0wVL2+yPHzzfLQtuADs8130pHJ47jPcfK8GP2E5A7+Qq2az6H5bHOrGGZwhNiLCCkQxrLL1VT/2hH7u4upGn/xKFQcAP0mM6HJI1ctE86y9nP1aDS+TXmNxfik+myVO/bRVtGmkF1mTB9Wq8BT/zSSfNDH/1zUwbH27txt/8EHhXeD2KLAvHIuCYWVrTDz9qNvPD0a4pfGcF/nCZCsWgz/Jgxl5+E29NUN2JB1VN8c2UJLP4jzSUrsqCC3CgyUxW8uwmffVpNhzp3Yt9wEkcs8oEv7+dg/MkMDPVswtjjKZBzwx7Wbw3FnhepMOt+Acd6O5LiDAG+w0fA83Eh+b3zRfWXHZybIwA6Mf787coksG0q5jNedXRiRBfnjJ5JB8MdUffscTxeOgiXRgHcVauG22gC36L8yffsH6gY7OWdklkQ0neHoU4TJwvrYddVUQjfFwD6amYQufIXP1roiGuXAEz6e5J91NX49bhC+HIbQCseYNR0QzQWuglzl6yFs7qy8HLNY16PbrS2/ja2nQsH+/UenJNAsEJfAVw+6kLV7x7O3XQGPNODKHJvI2YqHaLrmrvopPFZ+FhgBdd3JpJTogm1gBd05xXy6L5dqFxmTEseTODE2Zt45Nv95P1mFFgd98d74vbcuCaBty71RMcNUqD+yR53LG/GuSaxcFX5HioOGUKaVDP3hmWSusITgJOBeClhJ6+oMAFzu06UtLsHJxZ9perzDqClqo0PhENorN8A5vx8iK+Wv4fYABU0itzEFxWtQTbnC3k2W4PUmWH6m7ENCngKnhDUYqMpi+hAyl6yGSUCg+ONUHJ7IHauZLi1xR50TVbj0xe9mK1J4CN2j8GlmFe9e8Cxchtx9UMDrFczBOGFB2iZ/njcEytLVcK6bKBxBGPvqpL1pX9o+TQD700/yxcUEQx9/HBQeg9s/taHrtG9uHtqCC7VB0rKc4AdOV/oxc3t7OfxP+//oFp3AGSyDoJOxGyQ+Huf7JfcxRK1efAsS5tdFhnSiiv21FjiCHEX7GhwsRfjinM8FFiGc2PluL3UiLs9FvCPQncQ398K8/4bAe3+ebxhTAgNbRTgl8l5LDX7IrmY2UCm/VsIHWRyHl+LMvNtoeyqDXutTufeq3vI8m8jWn4Xpantt2hcmDJdifrEm4cPUHGcNPjnbaS4GiF6NeYiYPd8ikz9zqvG3sGKvDradKifZU1v8pHNI2HZuSIYnZwLwW2FLK91G1oTVfnJ+VBS8HrI33oL+YfYWBgjNh5Uv6njL4lKCsBGOOUQxpdlArBJ0wjDHb+w7r9eTPm4DecliYF1hCAG4UiqjdCDg542sDv/PAck2uGkMYe5QOEU1Kb5gPjP0fC5YTneKGzGuCPbyHfSJz45cxTq29+Aitb9aNUwi0LfTMU31y0hJy4btywQ56MpuvjH4R3dHpUFB3ePo3tjMiBbZgh7YCMFqzhAqGsCxeiF4vJxiyDgryhortEB5YUx4PV7NSwv8+B9s5eTmLEUHNBbxnp16tQyfRzdvtwD33enoZLkXJgS8YuPPE6FsXF5pJfkAM273KFntQ6edx2BUjkX0aN1IordboB1n9PwvEQ0N25ejgfrdeGV0DTs/tFDD9bLku88adDWd6VJtz+TekU4hJ9SxbTiUXDY3BZ26jjzGwVZXvCzHlRU9NHBdQi30DNoTB3gS1UeJO/9mJ/uE4CMnqO44M5d6E8xx0cmElzj9g6668uhxmE6bBffjEpC8vAnZjysu3WcTj6cCGUTT4KMgjZJzFDGQ7OusJb9Fo5PdeDA1CAcZTYOSmIfUqRiAYr6hfKxtDjYbh4Lr1dsgbzBZbxxQJ3O9mnhtV594J/9tG3bHPQJnc1VwV+57JAVxxmNo5P/+uHm3DT4dGElCmwSAqV9zWC9o5V2PA1ly+DHvOI/Q2hd7ETZy76znDjjguPXYNwGbfhq8wq/tdzheE0TDHDQJxtFeaoIOoEnS7Rondlo9lUsBIWpI+BP3i90tH4KX9/YYNVRfZgwKhNG/joMpKHLQYlruFRoG9z+ZwBjxRN57PUaCBeuY7OI1bju+1jY6OQJTVdiIe38Uby3rwwnZEhDldEL7JpQxFPM2jE9LptW/muDrNm1OC4gCha6apHzcD0l1E2Ai4+L4O9ifU6+M0Trn22GCQXzOWKHHmUtVsOH9R2ctzkM7+Ypw9/PZjB51DuIPuxLl50uQIhfIiXVWuPjS7/h2cv9XCxkALO6J0Kl3Syce1CK4IAeVIq0kp6rHYw7wSToEc36+opknlfGo4bV4dWiTDijnsQNR5tp8GkTOwcW4BHIJNnBAa65+o432PTC/m+S4BgMLL9yMbUYXUapgTuw7fc8nBm9lk9esMN//0RRyS6W2gQc4NzqiSwu0odG5ppk4veLnLp/YlNiCc0ORuxYUM6VPbYcUWAK1q8vs+BOMTDMMYX/Xn3Ed5MV2XxeFD2NH0POVna84rc87rgwEvAk4pQZQTDDgKny6XQ20w9m81WHMH6xEAfZzybPr1t5hYspTP/YAKP3ppOY3VaYdjSFrPzjYUmyHU78Kk5T/yqRZO9F/LJAGYxviFCP8FNydLKkB/qR1LR3K3aNSKTq6CQc4REKrwPXsY4SgPaYKjg+6iuafH6FZ/47y4tviQCEj6KoDE/QLs3Gg2de0d1gGbAokqGnH2bAgiJjvCRdiXeDJTnO9h9uj1tAnh2/4YK5F6ZqKYN02GpIO/kCV4fu4reRh2n2xi/k9escGGy7wX3x96Be+TvJJmnCRa11ICf8jes3x2CVmB85numEeTMfQcq3WZg16yrXXcunR2niEB9WhC1LjOhT/yQYtciPrIUuYcWE9TRJTYjlynMpRVIWlxkrgvOk0VwW2A7hncLo5jCAcef9qfPRCFSy+MXnf05Hw/cxOM5eHubeeg7dh76SudZk7vVl8n94myfJHMSEPeVsPWYZvgy9zctWmYDn5zauOToOSPgzFA8ko+SJLti16SNLvBQis3+V9G6ZGEVZKENv1xHueR/A7VdWUHGjLBp3FcDMR8kg72yIKcumk3HlCQxJtwWR9U44PkeQc0/nYmZ4M7nYpuAE35ccOn0amLyJ4et7j7DsXG1YPUIWHg9vwiGBRjTfv4Kufb0PYyXEqT6vmt7UL6bhccF4XcwB3n/Uo9tFwXR9exqv+XYG3KPKQWH3dxBI3AsyfBLMbzqD6ncJ2F2vCEtFxfCl6zhIFziBQ3wZVs8LQpWEOHzdP59Px3VgTIIwHOmTgg97fbF/9xpMijHCS0bzweWBE6lNWIpCcw7imuVt1OavCbavh1gj7BNtunYDm0+dwKq7IWAlU8yxvRHo/q2aP966Tz8G7eH7Z3da0WyO27/nYN4+Sf78ZhOk9HdytPs9+nhYB/pWRVGpzAg4PSiHxu/TSWykE9GmBrCfu56v6H3nokXPcNkbD0ifexgWmejDGoVo/DprEyas/YYn5+/gkPqFlKP7jIJcbOHWhLUwMkeV7z3XAYGXZ9AnrQ/NZL+S+N03sOeEP1taV1HnR6Syl+OggI/AGA1zuHr4ONA0Zosf7Wy5oYtcrh7iJ3sGWOPsRCgWvIq2enfQZYYq7DrzC31DgiGlv4lFFl6j1Mtl3P5TCBMPi/P3i0Oc5XoDTtwXgE1r/+BW92h+6yePByqdQep6Nc8RWovvP22FWjMxDl+9E5aYC4BNXB3huURMPbOFB8YrwAPNZMIKG/77nzld8KkAEc/fbDhLBnQatsKDpCH2jCzD+ZcXwXudaFKQPMgLi97BCAs3NuxJh+3BElAylAbNH8exbNM4nrzsOy6Q1Kb1C1xBYHMMPVbyoM7fFVhSLwouOmp06U8HbMvzh3ClBoge68jlPxfy0jm20Pc+kc70ReN0NTm4YhzPEy8Uk9jsbj4RMZlzX0XAPOs20nh1hm7HC1Oihzhct7MB9X5BnLByPUUu3kUYqAstPzRRJOAx9aVcpiO7GAdS1rDATQMo3CBLUgujqH7nRyo6vRFnBwEIJM6BjQWroKZHnWcekOLdWupw7YI9P4myw6zCT9xU+Q2K6xxAzLOVHiyej59DjtDfd7Ig1zYWVGMK+MM6FVSRlOFFK5/h6Sdt/FI0jL+2veLuSwEUOOQMvq2jwchhCoYETIK/fpYkO/8QFL38gns2nabXnku4ZLMxP72RjctGjAEFVXsQH3MJplpcJfP2Rnydb4uHRtvj/YRuioJiWn8XcP4aA9Dx7Id6yTOso6yNs3T7cM8BF3hfpUQdHQtxVSvRnh8h+LvDAipnK6KobBvlx22guI268P7Ub2gbEcRoYoWDCqL87UoKjV1mAk0XFKhqpQWURi3AiW6n2cXgDf1w3w19zjp4StATa8tteOd9PfiluRrFsyPposUSaE58jaqu6rC+LZRYyI87ZjbRWsVUOBwvDW/Gn4W/m6bxml5mhfIpKFp6l/s2XgCfRxsgJ/8O6WvuoPhFI2GW1nGM/+ZAjk3TSP++EBc8uQb70o7wwOUIsH6cBHG518H05miI3GZNCz8aQpSrJtyw/IIDglVgvryV2q2/81HTNxw60EobU8RgdPR/MPmzAGkcv0q0eBYV3PdEPfhGL0I+oJYicufdW+SgKAIqgqexpGUJlnnb4+smU5qDO/mSvQtcsvTjgadSODbUF20TlCFSdzo6x62AtYrraOXniVxcWoqZ/YfgZJIaP18mQ+MPPoObuWqgNbkdd47yYf8LWvxLeh7fW+KNO/cbwwjtj9z66zAOQRZmhUnBgH8KPVrRAkpXCZpWS9IT63QY3vkJ/2wyhUTVXzxn1AIKD7KEE2G9aJlwnT+dmskCGX9xQrkBeK18hHfMo/DNOxfekZRPw/0jAEQEUHX5VxLdKMrVMbIsVmLO6Yt6MalkH31cIA5vTaJxykEHEJu3k24dmggiPzKpQ74Yh/XXwKaMWgqpvESnvnrRToNbPL5METTm/4KIL/sp71kUXmxohodn86AwbwMOl08mD3ttLr6kg3pvJUAkX5jyfyhR0tXzyIsXQ8S+L2RzBeFrewHUxC+AQIsU7KkQA4+wsXyi6hV9kL9Eb79JkqRyNjccGaYbg3b4YttSeii/DxZKG8De9p0wXukDvbT6youUftLo2rUY/T6cJUGZp994BTe7qzBr6UQ4MLADB16OIXWRsWxpmsQ2UjKYoNgJnRcl4YyAH6b1vsOMKVagUjMbPALrSFQogZoSPmLC5i8sujEIgzyFYYPhA9bd1QzzMwRATSAJvxVNAfGTx3FOehqsEBsJRnqfWWq5GQ5eOYZxzZ9p3QdjyJgSBwPtfjjhoBFu3xiKZvv8COLXcMmvDnKU+4P4aiTNmgAw7nQw6DdlwdAlVxryNYdYgUZ0ablKd55e4v2fC1jXspfiW+UgRsAYDjzZBdevn6BLC0Rplss3Cqlw5LXfw3Dy9RKSbMqDk/4y4P3eDf5qXiCTj6P4nuppGvZ+DJmr5tMBTR16d+Qfxu2YzPpiJtA9MxkuFC0En6cNuCJpGJ/wdej1lgZtxZXQreQHQeub6ZmcFmz9mgzjpzpjr/NuPOZkzRpXPWmosYhsxv7hvL4iKsg8xTna5rDeoQjFLYdw7+sXtNnbgf84yEHa/hDsMFamqkBtqpy+hwtnaMJWAQFOeP2M06p2wtwLvrjyYA9f0YqHuZMLIMK7lbaPLYTcSxLwaFYCRZ57z78udNCLdk90FltMBYPpsK4+h7Nf1FOEWQjmGojDhrItONEjA4RGr+cNAX4wsbSLtItTobvSnc16TsLd34Eo6CcDijfT2bZ/HxyX2o97S2Wx/XoVffBrQ77kRRLXasHRrAbW/TCCbec9+EXSMTRa+gWtehvwV5Mmfwl+iq0Kj3DO61Fwcnwj7W8hOL04g39pm7DQSUWQn3YNRVxiuSt6HQn83MdmLa8pIPQz/dYbBUPvc7kt8w4oL1Hn1qCTEFD0j1J2u6H9jjmktnEjVwx0QYGWDFz2/4MS7lOoPPceHHk4wNWr09khdT9d9h4PZ6rnY1NhGWe52YPZhxicNM4Gty6xBuH18/m/caagWT2IOz5IYdgGHzrsH8FDM+3g52xRVv1yB6cXCsDoATuQHqyBRWlukHSrjIrOr2f73pvQ+c4CPOOl+HGQE1aNcOIHY9ShW+wUDM6SxrGEuEnjBPScSOcrMwVhX/IKUqo9xS+sVnKCfieZut6gZVnB6P1qAEoS9tLpHbE89bEJLK57C4FWA2AV1sNC2Xtg/hFHDD2azMJCn9B5sSCv+3MH53y0AYMN4+Gh/mNIPPYdBW9c5xWfQ+GkxSgc9WYJFF14Qw+zFSllti0sdo3CiC0moGYoBFllk1m4+gyVrGnndVHPGG8c4Vcb71DLZWlQP9XNk9VrOXnNITRPkoSK01c49MkeMubV1OMdwrt/KmOJvQjsLR9Pk85W4ZZJi/iopgwvT/PH0CsXYe8Fb1p3OQX92gdY/p42lC40Zbnd/7jXpIIv1D+H2O5f5HfvMV6cmcBqvZP5RgESXdGAdff7aOseY+rWOYbaWY1wpLaHuxVmw7s9z+Ho6WFMvvGWkhMl4FBoM/ZE1nBytxRPPVVIoifn0pNdDFNL7WFcswUML5ZkwTwbsMm6QOIjy8lWzRbq79bwHCcHzJb3JQtDL1i07jy2bHiERV2a4PBQAE9HnuO7F6fBtKOFsLdUh57MKuD2E4HsaZ6CSTHfoK5OAcZdnMB28ndZactSnNAgh4Fn5SCqroLeB88guQ2zePGMA5yfIQJZLmF0PP00dta20SXNiXjj+0Fw3bqL3rhl89O54ainHcZfAk1Bel873t7zH/uu8IXelyt59twiWmwQiYX+3rDuZxVHv16G7uO1YcWk1fxk0WdedFCDNU5+4rZPeTTRbDuZSsyiMRWBcHxdDMoE6cOtchceGn7ISllPuee/GfTm6j8SlnnFOUpj+eIoT4p4uQqnvTYDp/B9NLzSmVZePAdPP+XAkzFdWJ2+kXY9V8Dioc3c9fc97N5gAwdD1oK8Wy351Jnx4i/etG31ER7+Uw2S1ZPxhdNIPrYuB3pv6cO8aYepoVKKl5ve4M12ZRw2z5YivyfzmlkH6H7pTpS6009+x0bAlV/tePbMbXrXNpfvq1XjDMuDfFZlJVq7PeOojT2w+ZYXX1sqBN/VTLn1/iwouXYN7QZ1+MnOHvYRukNZH2ew1P4nNO+wEN+3EoPPW1PwUkIW2gx85UVLW9DWzYMuSvmSosVeEokQAKWNadC80h4MBAK4+IgBmj4wxPPG03hD0DcOlXgHKY+PkFPDQno0rxqH1grCV9FXsOFUD2i/VqGiM2kgaTkDFuxwwzVetsB3Wqh20xt8elEPRpi/Y629suR32JQE1oyHra0/4OfhGLo4aoCa1TpZv6aM01JFofLtCKp4egp2tTpBcEAy5hee50ORruwZVYqvDsSgxJMAPpYiDxZZ2ZC2ZCdcUNHEVDE92Je1CXepB6P2XA0yyPnLS7xPUeAlHVCLnE+pmT/YIewgd1AAantvwg6vFJbWymIHQVN2L82H+a/HQEuILpUX1EL+nwX0eaI2STzLpvrHF1Ajohn8xqjw8j5tEujWgu3h29jTVIZiU1dAkh/z8DlxyN6WjBvGDMCGo8FoET0DD59VAwmZQZZaMUj57RLYWtPJxidrqDR5F9ds7YUd73Lx07ky8FwmC/UFW3nOief8YlEk6Vaso/ToWpx1+gZu87mPE3fNoV8HLqPlXSlozAuiz4n59Ms4DRU1pHiyw3rKKvoFPmOVaaNiP2ZF+vLrT6JQeFSZ19kLwIxL1+CyXzx/uLkRS2Rv0pXsQBBeHwjPJlbjwLTRMF6uhcb9Hyv3oRCCogYA+B+JpkpToaiUkpamkIqMIqWUQkZIiBKNE5GMotJAQlSiKKGSkQpJSiEqSihpEhVJuC9xX+SbVUtDmlvw7/MFZFW/hmPa32NX2HXINFVD/3oDfLUb4cmc2fwmxgFPLbaC4cuP+eW8B1AkO4qOrpgEyYpHeeqhg1hdLgMa99OgZsZ/pC3SDo1/i7FexAjN7r+DrsndVDcqmh6OScfUTnkQzhjkK7oxHF7UwiN087Ai+wnICoaRd5MP/HQaC2vzZMCtSwXq1P7AzEnBMEbdBj69mMQPTY9Bb7Agqe8/CCe3D2Pi3o/UuXMMbFP1ZpkTPZCiGkBGR4W52ec0ZuWcBIvQIGrtnU++70UgeQnDrO+GkDP1LSUeV4Cyec2cEiGBv5ub6cvgCFynXMSfL3xFSWuGi+0JJLfuPIDdMxI6rEVRUaNoY7A5jAwbgRdG9RPM/oOLitUhQria/Aq72cnrLLUU3QT3I9Y8zrYDEhc68trTA7RhqijNMlGB3OH/SPGQOSfGZeGBAznsPXMptNeXod3UILwULsoQ/4iLu5Qhx3sIKWkano5yg+ADj1he+yDY6X0Dt1JDjpMrJ/Nrl1nssTE8c3Mmh61HaU2SHs+aHcXa/97jMf/zsNs8jPtbZ/KZ1Jn0cZseyF1RZN13krTQUI5U/d6xeqQ9tc7LY5wVTwppoWStUc8ZolIga9LOgue82emMIq/w04CCww5gXGzFP5IF+bGGIRbs38fec/XBMncWqv3N5LYULR51PZR7v1rQt5T9FHHcgSZoCKHCZgPUa5oEPpEWfMd5HTaFdGC55UvYPjiEkSLXeWRfFJB5Cgwad+GdSaNA0nAmn1LqwFyrW6jo34jFmwLg5b9duNa9DYpv7oMdZzqoWh6gWzOWJJIdwDXMiZQDZ7BZtijMeWzI4u2R+N8ZQ6xtPQDXNk0A8X8NkHVLC/KyI1DTUYGKbQX462Eb8leuQWsPT+gv3Awj1C2gudSdF+1r49FGhjzu6CamjDi2OuqF4Y9DcNTdG2h/TpPL3aWg/p4C1if14bw5T6Cq/C+emG+Fw7mFoB5/Hy3d0qBK+Tt+ERsHFjZnqSRMiGXENmH+Dk0Qd6+HFa8XUPxkNzwSnAq20qF8Q51Ae2cn7Mh2Y6WRL+l2sS2+Pm0BNVpNcHTDL/y9biWvzpkMiTMlYdfKi/xZR58uj1/OgsvVeMudPajVqQyPd7rAfpUS+LrzHsdUMqjqWkKahSJdu9CFIYvCYSI54lzbEfRrrSblz3yMD5R30UftsTAqfhanBvfT4j9FUHwfYOGplQTCKzlpbw70bBOF8r5qKszRg7zwDJoJMzFSpIBnbi6AEfZ20LbxJdUvfsS5VrZQ9bWYMtungmhOGjVr3wYlkWcY3XIaFC7q0/GYRbgr7RHNH7IAs78duPaQITho5XClyz0u6j7IpdP0+KOKKL1+OR4MX5eDoa8Z62xfBdOap0KfYg7k/ZkB1668hpq8TEgYLMWQkEO08Z8mqja9IuvqwyB0eATsWvCM5w38w4WzB3FB8WJIvpbFXdsqQEH/OJy5PxGn/nSgYWVRUL5mTnlpZ6nh2BHwvPAXdFyfsuDcuxTXb8VPa/Ix8v007IlRh3fXLoLGRg1W1b8B7T8PQcizLrz6xBQu+krgo38rYeiNOD79OB3eSfSSVXsQWozcwXlLFsBRx2iKHvalf7G2IDXVAMadLIWIJTqgXqHKiwpdQOvHN9x+ZwdHr9sCwU3d/E5uGBVKhtlD/zsV7TADR0V7Lna0oYjx9ejzZBIfoXbojhDmwwsPg8yYD3i96iTJahuDy9MN/PldJj8V/4CHLipA9ypras0SQJUVoij28xCeD9oGgrniMKImDhc896A9T9z55++tuG9ZPa8xd8YH4YfhdVUoFSl1woWDDL9vvGHNKc64t6USV4k9poon+7krvZfMzggzLctlpXPjYUSmMXSaf+Pp2ARCiS5QYe9NKo+b6EbabNL+5sN4Wxy9/eaT5ttZsKzqBla2JPPg/Nugp5RC7rKbQMxbgcY/+ksFjutxyUMdbDw2HSZc7MWDsa345dpvbI/2g6SNO2DaJmPSO/WVM15bo+viz5QcMAmGgsPZ4bkvBn77Rm/VzKjPf5iyYy+CZf4gLqhaBh3O82nogREsPdkO812uQqKOPK6NqeCLs0R44VAavXizEwtqRdgm6hn9QAVo6xDHhENxXOf8lBcvWkl6wS5wWDWe3199wi4bP2PntiCG1lEw7dZxjvc6S5ujplOf1FuKdWW4EGyB2y2baMGPJ3z03Bs0V1CGvN/qdKvOkzLTFrJPnipPDowHg9GHcOiUEcgPXwCxcePAeZYGKJoeZy3VIrz99x4tM1rHFc7f4PulfVyUXceily0p8XAeOK7Sg0WLzCjiQDQFXBPh2ph2FhfaRq0qS2hpRyD3l4lj/n05PrVYB+5OTKYHSwrJ6s8c6JvrxhveIP0av43srG9gw9ErfLYjnfyqpGH10zd8PVmIS28o8MHrR0H0QTmNzTaA0aP2UNhxW0wOUAbDv+IQ8LEEF27r5kNLFrCkVxkd3naENsyMpKfrHCm0tgJq/d/xgaXK8J+3Cig6P+IXIkYY+GQ7rgmwJ7NFEfjrlTQXOJyiJdXDeHOUMSz88IZFxzRwHGRhj85nWHO/gUMf/+H8V2PIs08P/oXPB69UXWhpTKCpU2rZyGQnf4uxA7uFYVBpHUMPZI3pouspDj0mQM5LJ8CrvXf5v2368K7VhSZLheLgGW2atHQWP1OQoU0+RXCj2Jq0PMbAukX+kLnNlXqSMnGZ8yx2+NiKvxwWwpIAK3Tf4MzvBd1YFLXAcmkvfTz0mTdu/gUTataDoOM4+v66FqZ90OGcVaLQ3CPNzg2TwFOlATZUBIC8uSasujebDJT8WPJHMxm+KeD44CpMW4l4/bMmGMg9xV8z3nDZzlqcq3edKw1TqWbPCbwbVwWJ7la0VOI9c6UcyC63h/8mdBO83gEHNr2B+X2b8Gvcdvwj8ISNVvXylsVtmK8uCV6f1lLDols8tGAQSy6r4uR0hKyqpbTW9inouZaQ5Vw/Ni4WAyPfDjTPDQEZpX72PBYPb3xrIH+sB3T5EP/UsmJviXMgnjodPI+dgfQfL+BT0Hz8+p8T5U6Rh1k6ddjmtRIHtMNJyrwPlzlJQFFrLDscvwSh3zbz2rVyuGOXCLuvj+KZxW/pZ8thOL1sFs+O04DHKp9R+EkeRQwrYuBKfS69mY8xGQ749nYzTpGUpIDV5SBhLgt1ye+Btxyh1bP6YI2tDj9LTYEtwyJk03SQe/OHWbJ7M7S80IODooJ4vMgSU1V3YvKCZXBnmTe4eibyUclLpLF0F0QUZsITCSOQ6Dem9WEbeHzgUtifaw+/zQ6i6fF0mDRkBXUeXVAnJEUSWzRhk6EVjzARB9lNjyi24Sm8VrWHfzv3suuvPLhfn44n5lRhhtYsuKl+EzJfyNHYH/tp4oxo4CO/eIroEHj/SOb5kt6oN3EsNndMgB1v/8B/MQE0e4QsN+83wKib+Qh64/m2x2EacPbHzc17yd9UBM5lzKSzEi7QaHWe1SN+0N7Rn+HftJPYmPgCpz8LpKyrS6FOhWBpTzmYGDrSxFvvIC5gMgqpy6BT4HrQDlXn/J+6uMpwGQZ8UAbzxO34YmgCLc4Tp0m1v+lG1lk888YOP0z4xhER7mTr7M+pxQTq5zPISecgp2VrQfMZaYAHCXjtbCWeSVqJVZ+e0X2lz6gXMBrOz87i0JvldGqpO651tKTK3wqg19QNvXpvqKR0Ik0ot8W6LnXY8c+ATrwS5poZcfTRKAtUrA6xe+cATOpSZCNxd56ck0CH/RCGSuzAb14gbJ38i0wzg1jn7gMsHuNFB0sCKENsDNxNbcD4V4agtHkcNz4LYM/TplSqHgSn577ijMe3eWCBLv7wU+OhxpnY8tQcXibaw5cLk6nliyy/W3mZXmX84ZJP5hA//T0v97PnjDQn9h/WgYmL16OT2gAMxn8h76gl1PfzOjsGJLEidHDErV9UMlANqoaq8MFqLNTL7OaB2Qc5+kc8Tn+9hUUbc/C9Si87edfzFa1xdHGZATTc0OeyNwfZSWULzV+5kiJOCPHb+EjAi8J8IKqDmkQ6aV+INBRXDuCk5gIqT94CcvM30OLjHug57MryK+VBVHcXhY75hH0XREDeWQZMwpN4f9wFUDqQjuXrBnG8TCSu854EjZuewAP/jWzhMw6kOQFNt2eQwfh/SGbAv8++hYer/Uh8/SDlZiWBcKApPakTgLtqgmRe+B9H5hhzi70irC7/y9Y7G/BzfgZ61DXAWOkWnnpWAHbPvUSLN8Sg7s5W2uX+gBUDrenix+U8uzGRSH8dyiZfots546DOu5WLNO0htjCbBodrcLfrasyqNaC5G3fhC/3FfOjgWp5QIwpvnVRADG3AS/oyz8ydxeNXdLPk2hRKDKvhCZ8mwzk/SQ7tnwUamrtB62sSim/JR92WR7j5L+KDt1f5RI4yfPnYC87VpqCdrg/uy1eglOobOLXKm3TXT4e5Ju8Y0vphRex9ut9zgGPKP7KE0XQo/HAP9g6vIdWAGThT1Jx8VNZDR34cp9qa4Uz5V2Swcg0HlRpD+fkRWF1BzFILSEjMk3fIfOUSlzwQetrGbtsf0hSxMmr3ngjHNExgQOAq/9tvzd7BvqxQH4fzvUSgfUATZJXL8H54BY6KNwCVMyNhQGEiql/4hVes9FBmyUIeNLUDzdvmqBtqRbNzhLDyoQQYuVbh1gojrt+3CsQGv6LZxkcwfkIwX7rRSU5XH8Map1hKJAmYGPaZlCp+0ubUIggUDqSkdA2stpgNc/PtSCiqhZxHXgXLFF04+PYCpInmkaOuP4voPeYyh/G0YdV8Gn2lEUtOj6fZFySxZedIWHFCCX47roblO2sxdHkoCTyyIoe123F0+Rh2ex5FF7LPwdgUEXDRS+RAhUEQ3J9CU7qLuUcxD/tGTKKpDpfZ4ksivzPx4dkaihBXtItVjbwQP0xitXEJJPp3Ebf4vsfH/d4sa/gQ119OZuvfRvBGcBxcKH5Ov387c0HkMZjXtgwXnF3DA8sUKH1nDp/1f8OTp0uByql+DtFT5tCDRZg7tw4Gwlfhy415LBCawZ13VoO2ziSSFZkCS3aNQrGrIpzbc45ejrrLqnW1FCJVzo2B87HwXDGcLiymP75T4dfeNhq/1RJtnYv4VVco/u3cSVpuVTB7fQ4ckU7BfWEfMfSJNBR+OM2z6+O46WA47z0bCh7H7DHlbBkoqZyFkcVTaUvJCKqcogmZx/zgq10/V/g7YfNVBfIc7wShT3I4prABQ5vc6fZHSxhwNwDXyElY5vsYi9xb2aAsA1a7p3CMxzvumP2V38gXgcWtAL7HctDqKwtZb1povUIpp2jpUcLmYxS87wj8bI0kj0kfSbtcBz5IGcEIyTUUtqsa/qw/zVWNtzjibg+dfiLLTu0hEPHjH929UgFeZwVgwexe+OT7HENlOkFizAYcM3YyxU50xh11luC4qo//i/1AevUq0N4Xgv77esnsrApdmiYG9+K+kMefTzBYqsDfpofg090pIPlWCzpvO/AIeX8+ssIK93+/zFOMurkgVpsd9T5jUak2erRvQ/qAsGP0dJSqOEM/fgXSiOxVAE320DvWnEVWREKk7RdcNaKeZdwU4bq5NN8Z00RaRt9xbPUwl0v9h0mWFugxIEyB/ca4+fZ+LJusAE7BBSze4gJ3BHfAu+NI45+Ks1zTfyhzazXtfOoAYc5L+Ow6XQhtKwBpx6n4UagbHVeq8/FoLw5vdMDkOWE0+6oJxrb3s80yEdgU1A8GIpcxZ5sKxA9eAKNuL3LJWQszdvji3An+MKQvz9JjVSG6KogU5M/he0Nj9MYEfrheDLUrb+Oqa+tgg2M8Fhc4oO0NE2h7mM0Lje/i4y1muHVBHxn5LEIXg248fMYClnatBp+nThxZIA57H9bzgYx8uB5bRqVW86hm8CcaJObAllX+dHrkF548uRVqhGbChq2+lD9uAR5yFEC5WfZg/UyJ1hX9Zv+O9+w6vJC7piVzu7YQWBTf4O4r9ZAXKoC31UaDVs4VHLS9BbOWJKGGkAoaeHjSnr6pMO1zDPR45oN5wWuqO29Dk9dIQMaNRSywcB+vlfUgITdjTLeZDPt31NAn6YkcnLKYxtnW8CSlTXA+3I8+252EhG1yWDA4DJajR4DjcD4O4G48sl8QhZU9eabLD77W+xFeXF9DKk2f6UQMUN7tybBhdSifUqyCR/KC5LV2HShv+0D77w1z/R55+DrrBlEW0u3zOhCfNo0vRSvzLIcQyljbi0U50iAXcJMCH0pxfLAmBn6M4oOJKjCDTkD1nQ3YsaEN57iUwrlPk3Gs8Qj2uN+PtomqaFXzE5xdR8CSPdtxwt5K+KFviQpjLEnt6wTSPL8U5Ba8Y5fKBHJdvxTCD0nA8nlv0LZigGdc2guLJ7TSQveHvKfPGYUsneDI9Vh6eekQjFxlBjGvz8Jl1RTo2HYQTufEgfyfPBYSW8abo3bx9Lt38OvPPLCynwT9JiNp7VpjmHBDjW7bGbD0QD2UB72j6VsVoPr9HHi98yCdyCZIjPuHdfmXoDBAGg0WdNHcsMM4ue8DJu9fjuEtnmjYOB+iQ5ThUlkSp2zyZLuN2pj3+AocTknjxL57+CV4HJ0xTIIARUNue68OqgN7MSLNFG6c9cZbCa/o8nRfCq/URQfXvXzfUpMDHv9Hdz9pgWrcapBRr4ITkv9woKiK7CrGUiU1YIqVGjlPmUnxLr30c3gq0NrFNN7KnY7MuAPuX7xJ8u4PFFdejBsXTyTptMPcXGENI8JMALpuQFLLPHhYm8/hxsI09MydQ2EvKveX4HW/5eTmNZmUX5mAXPtSkBrqhqCUXdDw/Q9dOB/Jr9ibjh/4SOciz6FT8xl8qqYMcp9PYoZtA9eLfYKFASL84Ycjddgq0WL9GrJRGsRIETs2kBgL2Q0xXN0VDPt39qC8rCsqjSjg34tXwtemkVg8qgHVzW05LXAU+FlUMB1NwYz7Y2nP5AX8IFoDjm3tZvGT0uhxLxKtdJq5tFMPhhQ28/b4e5y//Qwqj72J71830MIFo0jiwURWujGPv4Ush7ZYI/jpto0qb5+GTMFSXrxsCJ4HX6SMhAO8K8aIbUbepcrTu3lntxlYeRZxoRBTXMt7XCpijwcrXoDNzps4KlCHPxx7wx4f/CmvTBhWBDeS1suXqHV0FZZ3mvP00/KkbrQcNdMVya2YSfTbOMi/bw5dH0LYVb2TM7T02UzOCFPLBbig7QZuORDLXdMM6JXNATohZAxhSyZTbd8VqDWUpghTM9YakQ2JBmb475gkmre+Z73eg7xk2VRo8SrFuK0tcO9cLkTN94DfY73o6/HnsHC/PZ7VsCAnXwDZjxIglpZOcaaFYF13krUd3/J+5RCQ210O10InsYL8NVrh/5QzzAnmJyTSnUc/yFBZhvaUjsWwXyH4PXmArh/bxouLD5LSu1fkEawN5aMiYL1PD8xVsOAlKUtpYGMAHQl34oRfJTRuxSnUlFhBBgcBzP9bDXd+puCFLlGYNdBEFUphnK8Vwb1tkhwi/RaK2lXR2EEWPob6wvFTN7H9WjQuWbeCJwgsQW9/bRSU3Q5Hk6tg2tb96N9rADOtruIdm1Xg55bBIGWEB8zEQWPlBrp5qJcz0vdx6ppYEtskB2qeWzDf4wUfeTSafUR+U0h/C0aHbQJJ5ffs6b+RK8c9plMoDe+U/nDJj7+UZPmA3j6qhdNp1pi/swmnDW2hUHtVPvHkIjis1AQ/Mx98eU4AykrtaMsZO9z8QgxVjUaiw600NvA/hjnfv8NVYWEQUm2k+bejMW/DMR6MkeBdo1vh0oOR8M6gCSxs7lGAlTsebZgFEza/wTn79OiGbho8m9wJX++OheQpfTB9ZhZqRn5FBe9B3K8gCzkVe3HZmApwH7ebojPiaM7Px5wvu4une6bCg6DV1HJjL6ttlwQXLyUOe+lEo2W+ocXyZBx69hTZsJkebQsmttSk4ZtP6d1HTYi1K6G+4i1gxrIss2keWg7MI28FY9z1oxbaLOaRZm48Cl3Thk1v7QFau1H5lALxjgmsOG4ZjNDzgJ/Vxtypt5pEZNRRv04NMqZuxFN157FT9CHU3tKDNeE+FGv/jGJEn3Pk+QX4e1EICM1VghuTIvDcA0mc+tuHJCVaePHCabD/ejXt2xbKKevyucz5JnRFSoGVjBJ7ePbxkLojNj4RwT2iBKZjBqhd9QDVyl3gQ8b3wFlMEbr3ytKDeSZcID+fS1q2kv37JoivKyK5wxo4szecWzJaIWvJVJA7M57VNPfDzYr/uFW0DhY/rsGIe8/g5bfnEGCYCieWvOHCRfpw6nACB7jq85LvP0hz0xAWCVbSc/e7IOx9hFb2hUCOVxmscJCGQJFPnNBUSoNae8AmYSRpnBpBJsdyqdmghCc+agNXD0VepWwOTz3GYeyxP6SnlQteie/h7ZsKWoSNJL6gECtGp/E0/5807uJ4EFy2FvYVhNPRR9ksnWKIm2p6MOl5AOWZPqaAbhFMviYGgtdVwbfnMvq23SRzuovL/6XSyQJgm55Q1JkzA+3HrCXdyzupvGoyWMc4087gVn6R+JUM2m+gabEBVK7djh05WrDT/jD+t02Mth+aAl67+shXIg4UFhnAAnsBvu32hV4WCGKT9wu8eTkL7YcjIClLG1acS+aUxwrsZRnJckNXeJqVBPdwESeffoJTa7vpp/hW6iQtGA5RgDGNr+HNOy/SWb4Pto77g+uu1PJfAW8+43MYbyj9wBgeBWbeHnRl5W22s1vGOpszwWJ5P2UndFONYAX9CJHBhCXjuVVFHuw1lWi6TiIK+QrC2rzvVOX0Hyn2+8Fr//10y88et179zTlyI6D5YAdm7JSD8DVXSN5ei63VDmD6upO46KsuZpbl8aEPB1A2QBEe3A3CyUMn8PTJeg7ODKCAeWbwovcTWLdmcG9bMbvnF1L8blOYIfoeHAuQXkkaY+ii2eRU8xoHH7zCYLvTnNPmiNEt1igtqwrrQmw4O90SzvxQwOzSBXSnsA87VtwiZZ0P1LdoJbV6XCPJQFOIF7gB+hU+dP5VJ5ceFEVfm/0oH3aKrDfcgXGxp0HZ+TJbiuuD3cT1nKkB7HDIhxJrWqFpgTrOO6rOqXrReCJVGcZMnYZJr3WhU9QJOsvacOqIL7BlSjXMX7OE1U1qweHYTHD2vQ8ehyvQp1kZbtpeppsHGqhAew2fPW0Dtc8SsFblAkdbnMPBF9I81LiNbFdqg2r2LX7/QJSLngbjmK33yHvDJZjfEsd7egJZOnEjKnn00ZU1EyAuqJs0zA/TDn4F96s9qDA1hBe/OErByjX4KGst1ZT4khCKwgQPdXKVeU/rVUJokudidFZIxAprJWo/NgOn6VeD4vGJ/PeeLCz7vBiUAuog1jSBLhvtRJnC+RxmN5lTOvPhz3hvHGPzkxZET4fxNSpkVzoGXWTkwThrKjxM7IS7rhUQ8+Yh2aSt5DfhvtgjOg56hv7B2m93wM7Hh27ph5PWh0PQ/deEggpWQG3FfZK8vxac7fXAJjOEtEttIcLbjrN3r8E5fYf46bQDXLK1jWv2pWHi7kjueDIa2rbswU4TKcAQGzrXG4C7X4zm5QZMiq3XoD4mDn89WMLkJQwl6v4w/rgdF34E/vilgvSnaeJiyScgYq2JYYcredPcehadaA5DQTlYetgOXi//QANpbjAiJ5VupH8Fj51RfPHnRmqsaIGn743hce4d7pj+Eheu24JrpTz4WUk89eoLotFGE5TXtMMMvS7Y0KgFw8s+07xtCzlggipct+4Cl7pU2n7ChX5YluLf+92kdu0f75c0h2Ppq1nv0kMuMC/lxX6msOFnDR/eepR7Y5/z942ZtMpmM+qeF4DQiB4e314CRfORm56V4IpZl2jlfTlOTZyKTr7TsHCTMRmenQUnbonhS3sLOrbkM7x7JkITldfQ4ll7OF/oAlytWUUPzBAr5SaCQP1PvrB8DbiLGNB1gzVATskQXzcDztvZot76Etz+JZVHLZCEk4sukU/XZRx4LY4HfsnjYw0nvr79MHQ5bORqAzuM+TsMFTs0IEmkHftTHnKSz1P2enGWnN+bwesOP/C2vAVX1NNI//N8jjViuOcxBrc2FEFDtx55fr5LB4t7YdWa27A8JwhXZxVy0yUBHPfLBDwEbDm2OgtjEt+gWvAfpgvp9G90NiSERaGOhCI/FRrkxFJV2Lf+PF3ZI0P3+g+jVbom7GjvQJ2xkqjleJyT6sXRN6iGC+RHwwbLUfCXkzjRNA3sNZP5dao4x55ZwT+9x8PgkQVYqnACJkSMhKkHvbhopyEeMqmG0kARCmzKg31tiFUUxVnj1UnNYja5N86Ew65jKdoqhb7LxbD21QxwXb+PvzicQ1ePLGj7XMcDLo/5ud4EEF+TQ/GjGMJGD/AzybHw42YGnMp4SyWpY0B87SUYLyPAJzON4ZnIZo4JkoTuD+upeOYDKhtbi0JBqzDkuCuFnFqAw0ERIDZdBpqr1lCvSQzq2trT5J5SPiq1nc73OKGbYRwNFjvA3/X/KOv8NAiLKeDhBb5srz0DDseH03S7ezR70gwIz7fBcxP8WN3dhneZCkFMzy1wfpXL/xVO4sicJXzJrxukeh9T7jQJmH1djSX1t3J6uxiIrBnC9ZY98ElLAiO+p6DjBklauMkWDmbsJmeDWr6iYwZil0Vg/LeVfOJbA2Vfj+aKacR/Ximhx0A9l3qH0ZH/iqDyuAf0bpoAzruOwlGp+zzHLYEtIv+DK8KN3N+5Bqo/qOJcsUze3fMPi3aZgI7FAMn7bsf5NSdop7M1bjtdyIpzPsKTb5exKHkpX9tzl+5HaYDjq7kY6nSZRO8Osc2l5+g6PhZjZrqAnMxrHhAexRHq8qBaqwKOPm95dl46iF+pQBOVKDx+vIRHB7dg6utWKIqeyhU7SkjdSQNuzbvA2g+f4ISvF3CvqSPm/fKA8LsCmJlfA3rum1Ap2QXvr1MEI8lrsHr0AtQ5ewfVX78k3whX/Fo3nRJfrYYWl2zIf7ueD5dNhNjA65SZIEJ67h+4qmc+1mzPxE6rWMy0HKCB1BwY+3U69+1gqB56y8awiB/PCIJ9qYfJs+kJ2DxoJ+35m6nt7StOmSsCaqQMca/G8AsZe8wxGaCaY7/hZnkz/Z6oChuyfUg8X5iWh+TjdyuCH+eM6a2EM/dOeYWpnEIqOZPhtuQB/B0bzukbXqJlwUoaVzoKvi3qR80H36no2Qgo0PxBpsv9edwtHfC4fw73+IRD3kRhVpPQhxv9bXDD4jgnzriKlxr0cOGj8STXPwUPuxtBbdxZLKjq5rXmBqCBZWh4ZRFlpV/Ga/5luFfIE9IHLEkn+AjsiBqPdw98Y5dx08HGdjbUlVwl+X+dvHjUKJi4YgBNp2oSfI3n/6IboPmoGo7wngK9O4VplcAMGNh9ixzds6Fpfi87helSwrJQPLqzEdcIfOJmfznQ+NXCw2tUQDmxCx/llXH8kQ/89+8KVHsQgXEJrynpswmlN6pCuJseZR6vhqySDzhHbRx+GtVHwyPLYH9PMEZI1qPIFS8UsR8Nl9zW48F5/5jfbOWBM+fRVOopip7P5aaGfoisUGN5qQru3k0gvM6V5oW78pu+YUq6epTCC+3QX247O65u4BcCrzCqN50bwmTB6V0/Ox4KhLuftGBxxjy6V5EOskeWQrXebBaPFIbvHtOh4JEMpI+WAKeBOJr5nyVNsDTgv31dqPdkHY31yqR5z0bTCuHZ8FZOHRpi94FvWiJErDsNCu0J/NjgD+buHgKzxtEcs8ICNq4fC+1bCHqtheg23ibpHg1u8Sik+Cxp1txxkdacPwOj5NayqfAdFBolAimXmyDX+jtRQQlUiLais+wgfpr9GLXmRuHfjB6yMXWh7wuE4NOVxxxwzoZTrnhyU/cLOrlsEr/5s4va34YhdO3l4n1X4Yr4VJDVlsAP5wRAROA6XZLqw/ci9/hkuDRO1b4GkXmZoO0RTTrL5GHm0uVQuDiD37TNpUUVp2iwYCyLZApDnMssvrLRniwD/MhMWQ9G8UsK2BuBP+TCoEMghpq2dIDT9BZ+P2U998dV8I4yXYavmrD8RBntSPJDFNcg26cfYd7xR+gDKrw5LxBrhIPxhpkk9F0QhbkBp0Hs3Q6iL1YMx8Ngx8Uovu97G+sXKSDKbAWDLVYU/UkKJvZH4TWHSTwn7jSfIYZH8f20/6E1+t7qhpUJBuyWu5uOhhGsrFtIMmNtQV/qGlSPbuWQVQooJXqRqtr62FH2LeQIGdF3M3GwnrYfnt9uhJ9SdbSvLZxe1E+hx/XHyNCtC2aPvos1n2eR6p0ZACNmoKCCNh+fKgevH+2HhsCvrN++m4M5mwJd3MjpfgodFTWH9Y+6SOx7K8TkbcGQ+Wu5ImYODj2cA4ayq/jWmxM4resGqTyQhukq0vR8+QcoTnpEO2K8OE75NGQtWgvPZmjQYv18XpVZT4u3CkBHcjsovU+k9LlJ1GIxkmfdbYKAhED6uTKPLjq0geKrtxhxcCp82/qYtsq54e/cs5gV9I3MavxAovUVq/0tJkerKZj7cRNtt5aAF8nZrB48DxwWnEctvYVQeLIaGmYch4fnXWjbQBdoLh+JmgZmcNbpOS/M6aE997bi8Y4gOFFeBuUHfrOK8li4cEYYXRIyOaxEHrxD6iFv5G48OTgWv/5dTzH/GvDPz0iY6r0eHnTZo2iuC2etV4Lz5ofxz/n5EHjaElp2etD6vet5TfkjWBBuxRN2/CX9rBzGIGEo13nIiatredbz5Zi2bD4klh5iu8IGsrxgApLPSzjprSLKnpKGzS2bIUEjAMfrfkCx0GoIfKPBC1fIkV2AFpsZXYB3K9eS29vpcHlwFHscdWWprVf4iOs2eh/xG33saylQThT6ZEbAfwKMJDgdJl2+Q7vlfGEMfsePW9VY9oUfZz+ow4il6TzSToK2mZjDIocxsHmhJ7Q/NIfdrvGg5nGBFhxsh0iz3zBV/DVY6o2D4DFbYJ6PIpRI2HFY/ig8o9qJmx+LsI/VfSi5/YTh7zZ+uXkOz8Al6C4wGp6G/gVp6VmMAdv5UFUib/s1lvK0wjhQdSEviZ/PIpoWsHOhCXQFveP7L+/D7qVP2LZ2kO+GfsLyQ0Oo9FIPeN9E/lC4g5YeNYTJ3Q8o4lMU+5xvgBu13iSToc1+yU/h8rELcDlyBq8RssWCHhNYZfMF/QJ14L77SDBNPc3/NvyjFz+Iog1sOLb0Ivm2b0OF1AlwO1mRR3gFsd/2NfRc8Qw+v7CA7TuA+lf/5EszalC3Qp+275oGPdl5fMo4H8ZorSeD8mnkHuKEFdnauKVjNVlNXs7VYiN4cSFDUpgzKHl10dRD3hy7Q47C03WxUtaUY3V1edvEKJjl1can1TTgW7YC1u1uQN9r7bDysisohOmzlIEmHPD+hkV72+jSewaP5xOh9noUJAeNhktjW3ihrBy9K5YG6ye2FKg0DT+EytPywDrMXK4If1/vgy23B+hU5Vryn/kcioO96FrzZvZ3NsXG+X38RGQ6wjoGXXNZ8F9bhI4CX+h150Y2fXoKrh6MpRtbVPBa5yz8nSwMCXWm4KG1nddaPyAPtevQjOfQ5ept1nltDocd82Ft1gFasfsmfE8fBXuyaqFsM8EfAQ26FbOPf/WbsHS8AHvr/sMDf2spQdURT+9mGH7QBRcivsGykFUwxmEqZPwkMB36S1fj/HB+eRL3ffnM836IwNhPXSx2OYg6VO7RkSwBDrbYCv++ldOD1d7woskTJe68wxNZU6FypAlPvnqElD/PpvLNMzFusBTVC+6TdnA/Nb6dw5o/70DA6inQFK4N3rSRKtoCWFeiFZofLYNdFc4s1T7IQsk74EVcCX4XZ1g/ph0C7fPBWmENpF8UQ5OJ4zmlOou7jOO40O8hvFNZA2LOKmB6PhsE/74FhdG9pIl70NPiJcVIpfK+r1ZcZDaeZu/8CGFTZ4Hq0dngWnkA9x9/D9JzMqAzJJMi7w9C9a8uSs7VogOdQfjEwARaBWaQ8pgNmNr3DZvC77P93Sk8tucvbypU4pgjd8lQsYMMVhqCv8FL/H1uBA0OJULgbx3Q+qTOpuk9fGuTG6wQSKE/95bCNIfRcDlzmHOipvB//rV4ydETM13ncXbDfhiUaUFPr3yOU5yFjxs1IG1ONsmrneNtgzfRpy6c1ymn8/YBEWz8Yw9xERdIw2MXO+uIgtzIR9Q1XR4DbhEljgmlx0ZH4UTJUbB/Usq3hrSx4HIgibuawrbxZ+BJuC7eCzvHS77mcLXTCsavYwBGaeL1/YjhPc/p/SNpOHIsh/s/5XD8w28UEF8Ma9NHo160HwcljuUVlbOg3HAFOd2fBDZ7jEm2ooHUvI3o4MvP5LDmA33MWIFRS16yomMYF1rUU6CGMjya74cJhTb8vUeLdfcVU+egPtWVqkC0thcUWsphtOEXPHJZE4SXWFL7yw/8vPcyPxnfjkIXfCBJQJGv33bmZ56v6dLVfnT5pAINOTVUYfYR9oZqk2fyRhx6dANyoqtIRxq5oDQZu2UyUdbWDKx/X4S+wUQc3jge1qXOQG9XLfRW/QSvLr6A1AWC4PVAno2mmcM/3S78kbEQu49bomXtAa5PcEHFJzkQXCOOxhf3ACTs5mvd8vA05w69d7hGE5eq41YvL1SIVsHzFy+i2cdJ+Cl7IVSbvMDMXgkocfoNc/wOEvqEs9W/B1wi00XOT/fy5saZeHnCO4yaVA45ccIQkreJ17MTtOU+5sjPvWSw5A2OGR4kNYVosLuaAlNdn2J8CUCLkT6HWHbAP5e9/N8zT7CbosDXUmRo5pyPkLuGOOiOAUy0FYJSSsZXAUvpiFo06gQG8UmbT3TVThfs/2Sh5mRPujLqAvvdU4cn8QD/Etx46JQUPpeuhLnzjfHPhnkwv0Mc7xYLUF0O0wobWXDLqWHPQ1JoEesOmXY6ZFQ2hezs0lheNQz3vnNlm2UZ4BojA9ZzPTBItgIaHwXACaNm0vdL5FI5ZUp7egBL/7rj2LPd3LmIwaVMjv9tUaEg7UaYWTJAMyeqgvqfSI7/upHuLasHj/d/ODJcFzqvplGqgDqZuZ0jrK6FeWax6KZzEvclTQFNbuYjb6ZivpsaVM4y4T9R5ZTwS5SdXIT5l58enVx5F4SCXsKhnS9hh6ombIjThLIqW7j24xRsib7FyiCAvbPFcau+A2wsMMTcB+PI63MuBV3UhwMPH/D60h+0yksXpo84DsUZudQq9wRbZCeQZIQOvL34B6zPzgSe1glnPhSwnFoIfkhM55nawvy92YnBfiHe95qFzftrIW2iEvAuXbD+qQOV11+SVOQDOhooS8MDHaCVaYCOahrQuc+Gy6wlYHzUJgo0O4Pd0QFEmZZwpfIIvhpeBNeFtHCW1BJIOCUI56zVoUGmEcVmqKDvdn10rVYgxzuRtG9CB6BgBFvuHGYd08Ug7WMChyYfR8cvgWB1NZsSq9tg0rF81nsUQefS69hHswOEj+/C8CcSsFBEB+V91+M09YP4JUoIP9Vvol3WWbRUfAdd/XwbeosCsEFMFCKf55ACafCCsioSFLWlX5O34pDvGVprcovsPkfwErkeHHfEFELr7Gm17nlQcI+mVL0RGPk5ly8Ux2Psh0owlzCERDcReHN9IhybOoe+HYrkvv9MWP78MvzqIsRhEs8pMG0fhcTvYLdhI1QX1AZDvzuoKlHFH2196Gm8OYJVL3X3NsK3k2/I/4o5Dou5sX2oNoy4zfz9QTelVPZBYvh2SODVYNLvititDTsVwylmXDQ4LjWHHtNtuLxbkKpXtnGRhAM874glg+2/2eXcTZaQmgJ/TeejxqaZ0LA8AxSrR3LOBB/ce9SBFZPFaUpVLlU/2oD6Fqq0/vMjKDQ2gZ5bOtz+5ywMB3jwQG4CqPx3Em5uQXbxn87brbw4OvoQluYqwUD0dzoVMR2uK9iA/7UycBu6BF7eppwEsnS6Mg1/HigHz8RpsK/eAgs2RIGJvRtviCbaIegMLy9oobbtRCxNngdLzVZQ6msR0OxspZZtzOvOqYNdZxGu27yM7oe5YkOuK9ZddMaJAbowUk0CEp0NUHjjbDzhuYy/F9fCg93X6bvBICTJLoSntz052GUmKCRPg3CRImgY84gEUp1RKXc7G756DjscfLhxVwU5R2WxSK8GyT5SgiOaPSw36zCYzZjD0w3eYpZkGdV+qaCA3dX0anQBnqqrx+8vENKjkzg2wAVTjo+H04NMbX7FXHjXnYYtNsHHlvM8u+0hDmYJw9m8k9TQ5ka7rILguWoiuBoI05Nvg5A1/RptexSEl2MHUSJ0NAzcPs5uZ02pOvIcqB3oxojhYPowYx5EZ2vBxpFWdO1kM/1q0Yam0aNo/LdTtOOtP1VNK8R3wfo8Tn83/5z5kNXH+uLgn0M4pU8FFNyf0eMlrXzwzjBnhOWS138l+Cn6HNlVyUL7q2N4vmGARRdpwcjBkRjxMZJOnX5Ax2OCSf1eJ3WdrCWLzeV49Vg+nlTKRslbY0D6egzMcQ7ijo2/cI/BK24oy0dLpUp+oeqCnjJFOObuK/4VqguSNdvpwdPlkFE2Cj6eUYYirybK99lMHXoHqOxyJEzx+kpC8/Vg8WUTirqzFJrtC+C5rQd9nuGEsq5HafUuZMEmQcgajIDo6zqwZJ0oDq9jvNz/Hw6YHMa3M+5heIgb7UswY9dv2TT3yzBtk5aEEmsgz3QnPrXImo4escFN/+7gAdlrpFO5DkTv6WCY/DbqfjoFAuf8g9+KIvSjwBxNE8Vxh+0CaEnay7JbW+nYWQI5y0KS2ScORR67SXMTYWqmILBRMR9evwDu9zTh+oFdwGY+9OmiDX7jqXDOUAjS70yhn8Ei5NBcR9UrVGjsB3/mhCzIDxtHJ0VtqSlzHGx91E4v+w1BxugH3V0QyJKvrkBtTxuKLnzNfp0m7BByG0OmC8Grl8+oSuoX/22rYhUXUy5kN8h/PgM/1cvBYvH5tMFpIp3IUoPNGxR4hE4uZr1zg2/5yvz6hy37Zc3G65tGUnWMII2YuhNZVwOixMRhtYk7DmSFc/77ftR5com+2F/HK7MN2Gb7DnS9J0Ca1pqw8ctZsj79l87bnCatHTWYcLECdnnsRAHPA+jq9JTTjh6GwUNKELVFGYZ1m7klLhRaV0lyrq88Sl1+wiJ6IpDsMgXqf5/mJDs9oElbeGuVINr/OY6i5d/IoF0J988XoaGvAizyeJB77QJgpYk5lFSdIiPrVvixdph/T5TixnBHnG27CXev9ye/rGgumPsGnidPA3QOg0lOP8HlhjhPLJpCd0xPQO3cx1g5OArCt01D/QeZ9GauIjiu306jY67Qpxd34KntWpicWkn/xJygoHU1VdnGkq2VGyhpKsFmaw22j45Hq9hUfj92G0tbTSK9DqTHbfX4rfItZ7tshGNTCfyVq8Fxch41HdsO33d9QcvXafgir5AHuqso9KAQbb6XQK6pAjC8Tg48+5XRZ4EfZ+s6kHtGGUytHWK77EgOqTOCb1eCcKmzCqRd/8u5DwJAbfslGBMlzu9PCVKcywY6pX+XehaGsrDIPjg/dzz0mZbDx0MnedNuXV5s9Aa1e0I5ecIengFbME1Pgo/k7IekjInwbl8D1MX1opqwOpnu2Qei82ZxU4YfPdW2RI1/HVRfUs0v4sZA+qfZuGuNGocHO8KrxarQuTUBnpcZYeByDwqdug1H2vbyviEjMPbMJI3jxfSl7Dw3iHdimK0ZtRhnstMlPRhcOQK9KvRBNU0VPo1fQL/uNJOk0VFIPKCA061fo9DvKyz21pdyukZDf/9JTLs09f/u/zmdWAaGc9xY2Gk5Rx/ZxSK5AjTKhPnMfRFca+fAr9y30/jFo+D78ptgd+Ya/Gv6wper6niJ7R1Y1y6La2rMsNjyMLa6ieDmt1JwZU857Xf5CKdGVXPhoedYOFaM+EU51P/toKQ/m+imfhgkyI2Er7Wl7FK9kpc9UuXB01f4yrtUvinsyOfPJXD2jLG4Z/9osvg3BiobR9AGgdWs/ymOvHTzOHVWNrn3O9Fmoa2wrHQvWez8QPcMdGCJyxboM9BANAijq5fFeM/OZvTKMUT7jFq4/GcrVV5cTR+FReHuOEfY2f6dlcVPgMvvDaAUM4H6vumASvxWDjZOwkckiG8PS8LHWxG0nipxMOkJR/z7ylcj56NX8APcqXGcND68xkW1qty8n2HsDXO2u7WHV9gG49Y9VzF4gi++qMvmj/dSaK/cM7wZ+Jkr/wKcdVfBVUnT2NBeDBok32KIWxlXvPpCmZ4lsDtlkI85LcX8NzNAbGALuM2+ww9rtLBo+yUIXFkF8qOI5/jX8wqREHCP06VHCeJweoMrmFWsQZVx5/F9TxAMZr5HYw131PnXRzb3KvlUnh/Y71aBmwuS8GeQDa4QDuGtMoJsFLKdjr6z4ps/ZfmgzSB0Cz2H5kdS8DPfjeV/7eLM5QNY88gFPxpvhRdJ9aC5IZp+nOjgj+kd5Hp9NIyDaVT70BwlEw9jy/Yb9H7JRl6+TpQlr68kUwshvpjRDUlD5iBjfZcbN0iQlNIukHoWSgljWvmAVyME6S7BjY69sPxMBEtmT4G0SUrgU1GE/c7VeHy8J1pOKUUPv610eh+TsGI7XhBcysXn5eBXRAM8dGtDlfN/wEBzHI2Tu4CRipE81mMnJh+0peTf9nDqkyxsbYyla+XBcLP+N1YYp9OlCV4041g0TfIZw9tjffBb6jz+WWoAiWFBbOTQC49PTeG67H72Gb5JFnNXor35UoibW8ueW5Xglq44eIkGw17/Ku7L3QbXE2L5b4YhNJlpwQ/riSypmYJicci+DqbgW/sdk/tf8cEmU9q4xYT2fTrB07Y5U+qfMvwVuIzWRInD0bEmIBQaDX8bjtCUd9r4o6MNjVNu0DRfOXTT+QA/dPag8mILOp8kBycqmuGFwhG8Z/4XXh5rhCXHLsJRSMcJRxeA5B5zMjkyksoSdOF25Dp+P0eQ0q39YXRGCfWm7IM2n2JW+ziTw+k1OwXJkMRlbVi67jfsfdHJc68Ho+8OJ1hWX4xRq77y7ie/MSjiFMbll3Jd3CyIzRLgK7vPcGDAMpQWWg+iaWrsK/CO1uqakKaODXyK7uQ97QhOn05ww7Hn7PayAWndJfYI1cD1ms/hobEApjl8wz/XVACtTKBmchbfjvTnH8OM0rntbCnyk9HdiGLxBG2N/wA2FqNpUqsgSDx/CTF1CjTeRRF/edpRxZ08apNaBfJPXPhu4FWc272Slr9VhxmvfkPpMXEWba4i+YJSjNr/kc97LcEp0wvZyKyK+oOmsNC5MdCW2cgjBD+ByMyX2PxvKSSKOLLgm2D+IfSHDqzVhjM+ATC5aQTs/DxE4hMCICrRmT4rXsP4hw9B/elVWuMrAmonjTjq3SmsCxMDQWM/dFbqpfnDt/D0ukE4NqsDfKXKWWVeCJVtOoDCG/JIV0IZGv414rZHAbBSsBCXj7JHpS+/6MupZtp76CtKR0fh+dajFLXEAGb8akRz3WD+qzwb67Mu0MuIzTxqYwuVy15AdQsdDAyzxyJrMdj3/jQEDs6lz85vOPfOZjw6uZkmSu+hyZEvcFGNLEgnzMVNVyaD90QbPG7wmO5XtMKXLU10pXo0pxycDJcFRkOEYh5dLWuH7ixRWH7mNZ3z9cTGhy5UfTobhSU309lV7+lmdRnO3i3HRZOu8BVNEZh/eBtI3ami5nQjWjtZG8/sU8CwxdUcLRzF1oN3Ke+mJWa9lYG+Cylw2Wkj70k25ot983is8WwW6ZqFKtINEP4/AuADIAQECgDoH6Uh7dIu7UVRWiIUymwpo6g0RGkJRYoULSRlZORkhYw0ECpFUnYSWmREFAopufcsHTRsjSBOVR+W2ITA2jO/oeziDT79cohHzNeFObtd8FhtJfQIXObUl3/5RYwliBXexS2uPSSatZw9FC7gycRqXN+yCWYujsLGyxXwXuIER/nKwn9kCvqR6WQ7+x/r/adKkf5ncYpAM55rvszT32xni3Nb+KuYOsx9UYMvbjmQetQgl3v58CPvPSDOZ0kl6jSVvz8KIRW19MRBAV732kLbrCZYZOLP943fwYMt7VAfVcUe2Y+4rXIEDaY48KlbYpAY8BNLDf6jbpER4JHynsUUmVQLfvFmE3EMH9HHVVrF6JUnC7pijny0SAhGycrCBvVfME0jG74cP4XPPpZD4IEjILbRG8Xvq4G3oCQfna7Ha2pWUKZkCQzKa4KPYQoJtfaDVIc8i9VXw6JTFvDatx0jS6Kg9PR/dP5REmj6TaIP0Y9wYkUqD5oFk4zYAorXVoVRE39T64k7eFbWgBf+/IxvOQzn3byG13fro/AdPzz0URBHD4jCwv6z4LHjOCyy6MDm+x20bGIlLx8zFwZwHepmbkBhi0H4KCMBImH60JXnzFaLf0C0QCjtj3nPhUk7qXJYhfcunYb6j9+x4B8pmHtoCwunTMJix2P8cJo3bFLajKeTuvhCSg/nVRyjUVZfuf+eNnxxdyTFGa2kozWGn7ZOoeT/MkF/kS61DT7FU7reYGDWwCJjNCF1aRrLZ96mv36qYB8lzdtCW6H43wOa1hdN3puf4UorFTh60Q7WDKVSs8sVHtJpxyX9lnBnfijXmd/kyefmc4xNHSpEq+DFDRawLPc23pCpAs/OJOhZWwf7wy/hZtXnPG/5M3a9IczpLVXUs1wVRELTsMXDB7//OsonGqNApeAffBeMxdi5XaRt84As41pgzRoxOGN4DbLDy2iEyyqY0tkJUgVJ8Cb3GaeOVmAlq22U7NLPOvds4WN6PXgo3OIxRlLw5KYcvKoW5297UknAmOjp0E1+FQg4dEUJijRbMGfyRqgekID6Z2vwVcIxkiq9SSOVb7DI41R21VfjuqGxME95DRzN3Q764jFwM2wlfpfKhaDRO7kv+D84aKtJOboXWdBfE4zOykLJz2skojGG6zqZld910rBfBprt94QvVU+hqPglpH2WhBCPeJI8JIZxWcvgNQdB/KZQMPs7Ag+2b+eECjcIKtKDPwaicKVwBWg7X+UbRWrUsVQa9CrFWO3YXEo0XEvSd8VQP7QEpFbKwX2/SRRV9IZGZ84B3Hkfslc6Yvzt1bgoMQ5rvp/kHeUpfFFgDHzuNeZdWk2w9kISlHUuhcMOt8DqxHoKk08EFU89mAKD7CFoA806r+nsVmfqW6+GDm4X2N9mHU9xOwEt8f4gMVqaT8fMxPRV4nDARBaK06shXvwiN07bxrntNzjgXzqryfdAY/kqjo/shrD6iVDrpIVyfaps+fcI6WZNgobAKTT1+GeSCH9OQqI34eMzR1Z4ORrMkmbA0cxkis1IA9OnmnzOWBNMNDazq917/G/PFJhvH0U+PwCOHY5jp6xc3DJwHwvejaSryqb0ZM0JWhYyhd4qzaHKLWtYI2cCaF78RzV7q8BopyeGX5XkAenpcGT/JjJUqkK1UAWQ0C6ixw1ykPMplm5bHWYduxLyfZuNF//Modic93y7yQCLiqeh17ck8LVBuNlqyk4/77HQi3Da0bQUZMx+48LqMviUn8H7nrrx7snzwVR2IuysMAc/5Zc8viAQr5/J5Vi/67Sq6A8mJdfChZg/kK/9m+w3MAwGz0DLJTep9udZ/GuST3uMLfDCiDPo934qvL/5i5eHmWPtcymY1dHIH8274WJACMzdrkC/aSe5P/gKSy77QustDfJuWgfLhEVAos2EO0onQeyoaPy814WWVRzhzS52/CCmF/1GrsX5EoOQ7q8HMREGsG7KEvorcxuWx5aAxJxBilkjBxGD5jCwSJHtNo+kQZ/xkL9yCqnNCob+XUE4q3k1jZqYx2byP3hnoRgEf9XkTIolswua0Hd9I+eAF3epzkYxGy+a93cVGNcAWJkW4HyHMvAvCQQFNT0IOH6MdcoMobHxOWo3LkQVgwDU1RmiYZ9RXHgvgz6oStPaiHFguV4HNLwM6WxGGh58M50f/bvO3tXL+FO0OIXpGoN2vxSalDHIG2nity0eXL62HwLbRShsXQymfE1g5/QfYHEkBjNq1flCizXcvn6O8tqioeTZNXRaeI7nvxGicy++g3K5Cnu/HkOHCnQpU2QKnF7lR3ZqGWQWI48mfAznRzqTx8I4DjowC59HafFRwxSOuT4G3oenAnp04G6Bi2x8xh9Wy0pwtPA8njSzi1YqOdLGxaUkhXJQfqGNfDfd5o8fA2AGi2Po6cmkfOAsLa3aA1sbjvCKtC6Yu20SODaE4ivlKJ5qakPFLt/p8LRGEvsQgNGBgvDTQ5nChH3wpxmCfLAURG2Xg08TrpFt1UO6NbsA7MQ3oEnfcxZedANi/WaD6w+GzKZLVDfmH5VkHOa/f/vJZoEsT9M5z2nvrHGr8lQ0u1fDszVUYbScCcR/2EYLVp3BKZVSbD/cx9qr1/HwmUPko57Gyx/ZwY9aO/hXNAatFX3pzQNnPnNyOQjZaqFBymq6+cSBmiLk8J6kKcnsAdj8MpimjrtKleVp8NkxlkeEn+dr9vepqqiK1M3TWasgD9Ym68CzNWVcdC+BL4as4jPXVlOavwBcOprPv1XicZG8DvvtCMXviZogRC5o2jaDK20HkLuHKbMgCDb3jqKvTy/hLVni+Ze06LrDaBh78iqfvHKRFVwuMM/zADurBxR8uA8OnZ9PY+09qfF8I7xaJQpvy8Q4RdmXEro68MPOObj76Fb2iNkI8j1f6PSLn/BCqxu/dhlCyNofrCaaTGK+YiDdCSTwqpVMWZIN+o9jg5UpnS6Nw4XaVlDXfYN6Vb6hWFoe2o005vrAePKpGovnDJmmDPpjWp87b0lUgogfXXx6cwOZfV4A5Xs/o9Hvm7j83T+u3OXNs8bs5sc75/GAqTJIlWhxccwc/mz3iK1/JdF59wpyTLsFEVXx/Ob8VVwTq4/vZbQgbrYlTSkMx8mTXlJYSzQ/vycMjwVm4/acmdSeNQyJ7/+DTp1J8HVzOcUmN/KcUeex1+ccjXZwopBBD0pW7eIrp6ZDoyDzQKsMDFi3ktJDeTy9URfuR9znxiVSkC8sjikdGrwr0hKFr8qgS7QI/KxYgu/Ec3DO2HbYdXoaR2S14CdBL+yYdBj8XaaBTcIval1qC1b+uvCcpqHxNxt6/PIGpK6bjalJNaR3pIoleg355Bob6NujD1r/fsLvZXkomz6V3m54C1d7AZp3LObhvVIgpWeLbkElVH3dGuR7P7Hd2jbc1rAGHToNUEDlKo17nwWh+6zRtNcFH76zoz3XxECgJgWmZmzmyAst7GBoSH9WT8XsOD2W3DOIqzyn0grDd2jxXhIePL+MXTVveNf8x6B+xpvHH6mAa+Kx8H7cKEjSfkWRcjJ095sxfHluTFbDOdA3sgh1V6ym7LT90Bmaxc33G0Fk+XucPvII9Rjqgb3XbapUrQWT0EloH9VJ7y5+502vvtHXPyuxIzwfHuV7k2igCTxbno6aSQ2gEvIAHlRcgBy9u1j0W42O9XTDjYXT+bPhPg76NBbkX5WCQPopNLpTRGnjJgCELqLUwAcsU54MriuM4CVuh9feVmBrOwarx7yFyPJX/NlrEgS1hROHXYKCyzHsb9yMNasz+fWAPjxuEiJQlSIf+TssY21Di84dwMatk6C/SJZdzg6TB93kr5aWcN1tgFtj7HipaiPXb5hNMXqB3CQ6G0+OUoATi7VYqVUdNDRVYJSVGa4v18cys7U40jYF9UOsSOnOYa6vCIeBZ4FYP02Uqw0mwZgnxLr25ajfP5neFkfB79I2Wj0/lz3tv7OOii50PxMniTwGfOJEu/pUMNY4jef4/4KbJbt4/lhbCPwnhw1Gkjx1+C6svKgMfXSffRuHoSpTE2vVZsFku3RSG6OD82YrwqbIC9jx/gfblctA6ixn/Hx2K3a0RNHoIwaw890wTe+fxY1NE3Hd06e8tjYcavIEYVPZJd5XJw2u8ufJQnID+n4whbN6R2C8ghP8shaimisevOzpaDCJWE7LV2bg91QbeD5zmPrH69Pto7XwXn8WH3eNx91rfkHmX0V45xMBh5ou08oMRZrXpkWy4sugtcgXN34+j5Uya9EhcBf1i42DOqP5nLtdExrrgkGPOkk8fxwFfI+lU3MFMH1HGypPXoMdmQhhc67CkGchp7+xoyPZXXhxijmet7wKbb9t8cbKe1xaUkG96sagcMeDurorWbVqOgm0LwC3lgvkeVeWrcMekLuvJ66KM2XHy4awWngW68AG2D/+K13+W4SfFiuiv0kD3Zl8my4sHeCfJ7Nwt4gyLDyqyR0tLXTznj3OHTjCa27egP/2XuBzJ23wwpgzyE9DyCgeoFjaHbyKg/nU9i70Sp6AQofLISV6iJv08+ha4hUwCl0PjnoG4HDAAnesbIPhhB768Go1vApWJl3DInruXwBFIuq4pzWRe3z0INnwBq82akA9i3A46zial+Ua4ZpH4ljUbsJ2YgvwXN1irChVAS/fBygdHcrn+8RpQ+lusjDW5a9VGhwgu5N69wViskM1hzogCCtNxJCEBtg614weWaeB0F5DsqwZBSMWDJBeZjIeDvbm6CUM3m7C9Kl5GLreXIUvv6Pga2YVVhTk4RMFJTq9/xx0HJkDT3YIw/Wq8Wj95hUst9rLv0fEwCp7fQT3MRCbko0WImvp+9QPHHjfGC6FBnLeET/otZsM6qGrWXKrHQm1i4PD4704ZlYrj5qRQIVhk8FDpBmyunO57cE2Xv2jjA7e2EZWTf9wy4FJcCJbAupbajH7/RR47PUPT09s5MdS6zi65A1XP/lJfV0xJCF0G3zFY/mF+h2Y7m4AgnstOcEwjcpdDfGrwR2colEOB2fKoLZ/BhUn29DGGbXcM0zQ0v6ZGiv/4iOHX2QuvBTOPQ2iWcXhGDG1FdPLTcjKfRqWupjCzx178MOKDXxM8wcISOWRwJSxMO1QNq5P6IGT12/RmoI83owM22v8QVSqi65nVYJN7U3S8bEB6eoCnHapndWXdUJFwEywXqwO00zm4e0NvrgERqCjVgHHzTLgAxfrqHifEjXoqsLvg5tp35A5DO4/ihK2U2BXeBnoqkZwyJ8KDNcBmjP6Iu2PX4GKRu5QvkcX+mTDyLV4Aj//vRYfPXKGc9d+4I34QNy0bi22eDrh/TAJ9lWUAIv78zFs9V3ee2UI44K2g/Y9fZ6X1Ii5b/bx15U5PObuJhZPFIDD2cJs7eyIZufN4UxDPa9dqY5qV7+gxJpGEOj6hfZOkZRzUwCueh2CHzOF6MfJIIx9LMXbl2zk4xEp/NdhPQT/yaYrmt3wYKs8HF95Gs0bdFlqeBxciN+LfGAaWhkrwGaDM5g+sp+EIz/yo58S8LvvAC05dYL9tvzAWOeFMDXaBENtL9GOMknq/O8F9zcyq8+UhgtTrmNguQCmLF+IK2onglfdDrqX6wGzTOzxj/RjjjR2ZncdCyBTLZ6TcQcjbxrhjCmPyHxNHzS1pcDQ2BFUOWIIx/puYIl5FpB9PY4rXUagi0o00s/P7ODuRILCbThjkx1eFe6F2bsP8Mx+Y7h6ag7kbW6lHPVofFRZgfnPNchN5z4+D8/lG8utueShLkZcFIRpTUthVtdviq4+RLq/RoBXdDdZntDkxWv9SKHTGdh8Ey+vsQDfgAMk+vsvN9uqgX9oFYh6TidqyoVl8fns91WUvgT7Q7K0Fbj8Gw8zdQdgRYAgxO2rwskW6TRRIwV00nJpY9N6nKMeRRWB8nDH5QoGDTWS524RFlvQDW1HJLA6TYtz/lXxjg4RVNSdBwumS0P77YdklL4QH67JITEnMz7sLQKXMvOhcqQ87shw4FkXzgCc1YfUOz6winT4iWw7J+k942k7xFj6cg1qv39MM18/x9ptzWCSpg4dJoF8zuECO3vqc9fRXDhyMRevTJtDG/9MhPzONJpvkELa/cZwboEmx54XA2f1jTBV0Z+ud4exzQJhDFhajb0aviw9px3mzlSByVducmmBPTvZbEfXq1481qaJo/QK2FL5Gi8//4W9F4/kvzGi4OjzAvy/X+d+Qxn2SZtAMa/fQJrOQWx9kAtPTW0pdLYWiu1CKPzxFoP2GeCC1++5R0wf9h80x9wcD/IpkYb44CS8YafB+irCMDNpCe9M9+Y9AfvIMe0revWfgJmjtsOmia244IU0t5Uk0csTOpB9/gYY8CBb9tiAWGwg1e3UJOmQW3hmmwI46UxGsYhefO+oBBovo/noRSGedzWelqYmgmzWccgv3oZRMYCBN2Q4rygawtbZgvlWVbZ4Ywm6j0Xg2skfuP/fTfq7TQuk26tJqGUtze6PgxnaCkDRc6gxPRPFnvpB8JUD0Jb4hvclVMLJK9txXnoUekcW0pORo6Hmxw0eN9KaLDN3UbPceBLxLoGyX1fwaaAwDj9/xj9az4CdswwkPhLBYemrEBM8yP5uxiDz8TqNT9/Hr4vWseUKD26xKKQZ06xh+vgteMllDilOioKAtnxwXnIKE0KUWKl0ErfpFeAKdReWrDSB+EvqZBm4jW7qB5Hg3qvkXmVKF0YthrPi0nTq9lpO1WyH932qUL9nA9iPU8Q3Yofh7AQhHFzZxo3PldltdyZUlv6g3a6WvL5ZE/zFg2GGeC4V3ZHAceZLaamsDz/BZNDvOsyfU3fDw05R8P4rAvTUD3903+O+pD7asCgPJmY3kFueH0aTO93qukfxh9P4R8A4KB5ezF8+pYOBXAHmlu1iqfIQSNfaRo0PBiCrEviU9mLq7JGDMiNFSi1+yfciZSjG1ZT1alV4jNhUMOrXRtcKM/K7eZHjt8uDZkwi2o/byXn/jSKpiT/JfEor64/zwhdZMVwcEIUL796hFb+VQezwONIO+oF/k99zT0IQmX54TuNrsli4bxv/fdWEueODaGDXOEhesoL27t7Ez88bktC94zS/NoDfLD7DyXFTadyOiZAfewLjOrXAbmEXbO35TWnCE3DNkpG4zPAF1CxcxrvzLwIIHWBbg21kWiQIMaufo9apZjBZ7wTrdnjxignFvEjrOji4WSA2vYHwvUU8V0gNBPfLw4m7X9ghugDBewRYFD7hLbpbePy5U7z3pR62TNpKixaPh8cmweC8aCteftMG/iZFaNv3muzv3KW+1gKwgmHGA1fg+14ZaNdJpnrruWRuHY3flwezc+xpXBlUiwfDG8h3QwJNm7eAdi21hAeKH6n+RixIPTWEYPEaWPJXFItGjQSVrFe4dbYjPhsdRUcGBGHsuE5Q083Gcv/ptO3zWVi86SBK2M2ACUuDqEd0KQ6WP6GVJZqQ1VyJZ1aqUZubODZyND/Tu0D/TC6SgdlhSpgXwUe8C+jBAhs4//0tHUyyRnf/G1C7qYI3jJ0NJns9afMpcXggFA+qo/SxZ48FTD66Hs9Nuwq7/haDlccQzfSeSse/WKP5gaPwJHovX3RbiopJ1qBmnM4TJGvhxIhfWDvyMCZ8XoppWUKo0d0G7V7rwF9cFAoqpOHYxa0UrSJM15Q84cvnaxgp2AvbSp+BV5UP6XSMIcXiR3BFQAFqy+pg9qdplGkpxOauj2hKUgD09kRA5eFD5PsX4FKUEDrzeKgPU8bi9Kcwp+Uha5WoUv5fBoUr9/HZfAv4D4xIuaSBK7UEYaFlIj0658SKa305vD2AnE3P0FKllfAwZibFPSvlvNpjvC9OABxsdEBP6ys1aH1mgy1ZFDZtNPfpTYTTV1L40sJ39FxPjRsjRoPC5TG4qvwR5GYlsPmKq5S5RwAexBeChfsZXuUtSg13HuMGC2k4vNAN+kPv8wuzYfgw8zD+eHEc8murQcn7BddM1uNr7T2wXlsPFh7rphK5XyD64i9nCcfTK89UFv/Qia/HHSA6Gw2jXDbS49/y8K3OnrwKYkG+/inXnmxn6beqoKV1hU7uq6f+dwfxy3QbmpyuDNfdP1Fo/SSarbIdThy7B4k7Ren0XQRPp/eku6IMQo1yaXOABigE/wOvB4HkajKPRoVtwlVlSlij0AJ7b0WBzKwCHHnuPM9K0YEpXjV4XGAiLZat4GeZuqx2UZbjDT2ow0yS50/RZuMYS1g9pAlqJiWYuyIfL+xWxPXf1vGH7XPxnWwibRcUoIJ8RzL5NYez8gCu3xODsa5HwP61NU4RSwHt1jng9hRp7G5nKp2vzkLV6Wyz0AbUvLLohFoTPDeOZ2q0Ibn528Dh7gAtPp+HokqT4FumKgZNFILaiXfgkqEo3V5gy+0LeslsuJiSwwRIp2UL/BQwxsVmf0HRTwbWC5bSrHvtvLt+P/wbeZC/WYTx5Kzt2DVhKWqbO0LDvv8wM9AaTtudg66GnTSTFsG9vEKwf3saupvl2WWqJh1MlaLncUq40FQF9g5I8qThbPasvonPUnVZOVMVxtTYcET/WBRVHIZnpi85Y5Eg1CSk0rkRNhi1bSHVbetjRZNo9PL7D+QvPqa3lSkQmPMVtzTqwHzZ7zBaS4R2Tb9GXj3XsH2LAq5peY7rHbQgcJkFhPxbRBX/zGDW9+00rScXw+9uhLFPUmHHZHU0ljzAN1aGY5VJJRYfz6HIZD1oHLsDFD41c7mEI3fXd6Nn30ne4pEC7gmLYVzNCcicewK8lgmA28GnSJUiOLH+Hn1VmY/NnYv4cbwA/FixhNTXzAAroxhaqqEFfxID+bTaHkxcthUu8nxU3ppNzUdkcf2DFFK7eQcG3Jrg4TuAeM/Z3Ha+m/u/qMJJu2TetqEJcleehxVGHbw7YyeJ3Tam52bi4JqvTYalQ/jY9TLGn74AC4yy8GW4OVWZp8INp5XkU5AAqxcrg+Bnf9gD8/m1TDcFmyfxH43PFEt5tCApjsZ/n8+HAidgRZY1jPSLhoK+LrbPbob/DpbzwfzjbDhNh8ViE1F1UxvuqurCNUlCoFWzAEsWS4Di+788UmM+BjWpwLLjZ6jday2rr/4HAtkhPBg3EcY+ecACpe64MW41c74oj+koh4zfk7D3wQLcPFEe/dwa+NOwAvidzyH74TzaE/CH950UJ7cabf658T446g1D2qVbYLrUB+79kIHaJYOY9H0MHlOS4bL2b3jr7gI4mH0UL6+aw4YZOWydaARbesdDW4Qy/uiLY9GxPhCzqYu6i7bw+MszyeCwC75WKKG1eZ9B55gmSNxX55pJw/iyvgJEHobyvoPj8GCNKEcEacHe8gw6mXOeRz9XArnux3Tg6wNeEGgCsgefQFy9IICBAhokhJBzlSqVvBvP7yONobVqAfurZbGG+kpyDSOMMvNF10QhVGFZfPnuFd+2/84oJgXztjvzwb+XoQ/C4GRSFGyQ2gdG8fux+YEl3vHcSuMtZEhWVxjezT2P5Q1fQdKmHC65KGGHSCaeDHkH4td0eeVKMxL9E4uZb3UgMtyBbExX8Op9SSC46DnUy98D57q3NMf5M8bJH6CBKwXguEYRkm+ZsHuSMoibzKZldoIQLtYJ2/otyHF8HM8WsGGD5kaUeDYSNiXsZZMbpVjWdBmaXZpRSvIXnpXcwyrn7sPmKS9p2HMhbnxkCI3PltDlmjC2HPMVV4pq4AfBvaz+YgTfkEhGrSJHTH+5h7tmmIK2YBOKL36NbWVj6Eb0LqK2Mk721sdzo1thd60SxHt8pNJ9YtD4bCyZFE6CoXnBaJIxg+GCPR3zq4b7M+vZLdWfl1cTWj+TAJFZwVihNAsyR7XxAukodmwXJ/91ZaB4ZCd7J4qjzyh1zH2sAXfdD/Cxzt0wam8FuSy+DU2xf9DQxYm112whpZBTLJT2A00yFWHO2TzYtrUQs4KnUvaUByS5/BuXdxWSldIuXjLfhU6PGUGLCtVhfmIwPz2axlZbmZr5DbhuH6ZcgeuYufsEb0E3/nBLBH63joG29h5Q4XK++ikVjOcG8FgvMVKx2gtDC9ZS8L802uB2ADzvWIB170maetAGDvz5SQs1s3jLfCHqlENsKDhLv38+wZ7CHL74YwKku22AfN9GOLlwO98U+4pSzzdBs/dtNO4aRYWZHbRJZiebvTEEF2Fpnl2XCXEt0dz7+ymPKv1CPUtf4OK77zHy2FWosV8Ij6QmgdaZ/exx4h+IJz+BfZPCOeN+GASWrCHLR1GwzTCSBh4uol0LLCEKsvidqw4cDbDEVY/F8c4+a8iJMYPsXyugwmYY6PNZePjGACTjk3Dz7CAeqNajPuvrGG7uS3Xjd9GtQ0vQzaoUJDGcNiwdA36nUnj+4H6QfF1GV+dUwL1RWVT9+D90EhSFT57ZEJAVwh1HxQDNNHCNx0++19XG/X9uo7NbNH4NSOaFe3Kw6iCga9EnwGJjSGi4RnYv2sHZeQi2q71Ci215JGB9CI8Jm4OTsSq/BD8e0T8Sol3L2Vf1F/n/mA8Bl8aR29qRlDXyC8z2tWeNL2I8RXIxKUsqgNG7/6ijKxMWrdTEvNkbwW1PGJxRMcfzr4xhm8gPthyYzuggDvvzxPGCiTu2L3xBC9evpV13F6KkhRC++OCNdx1tqb12P3/LtoEQYUkwXmXIbiu1cWSxGt/pCWVDYOySV+OeQFX6ef8b5mSpwtXhWSw/rpj3BhhS5L9O2DL9MzgWdLM4pUDCticwOj4Cwo1FoWtlFVWZ78VPC2Zi6rQNUD9dC4ZnnEcXXVUOve3Hmu1SnH9ADcaYROGtx+N5HvnwiR1bQTfoCCv3LaC4mjpal7kPvZqHsVx4HOQ8v8vRPZF82U+Ib6Zcplf3zqJt8ijcMxRNk/8N8O0l3XTxpS48lD2KhjJB5BA2Db0fO6L1/jg4b2HMd9c2QN2HVshXGodFw+aQoDlE3xrOk5fqLjrV5MPtL2v59Cc3br02DvcW7qCLV46ARYk07P/yisuL58CVdDX2mWvGl1ubUTc/CsyKfFim5T0v2h7KOzoRVM33QMO7Au777sLryxzx7gKmeLlO8DquyLo9rrx6uSoeumgBAhm+6KAwj02OJ3BY5X0MSB6iVA0tnDrmA3kMt9F/qZkwyVsAqmO8sMk2g9VzAjEs34w8hA7hQGQRV+YGooBrMW9ZlEuep01gVfZJ+jbai7bfDoHTx9xw0ZH51D72JA193g+dacvpu8haFPmpAyWdHSh3LADPu6ZRitAmEBkbhmefxlJiQhXbxvUQhW7BG4vFIdGtGvPk0qH2tSmuSqlA6fwcipczwBI1BW54k4TeZuosPWosZHU94tboFHKv76QO6W+07ddd2teigsvDPWnX53pKmrCbP3waAZMnrYLBejVe23sB4kf/4pNfd2BnD7JFYiM+LPTk3x+sMG+1JIz284KvdbkwPegaHOxI4A3Zp+B6yzoyGUD80uHDVW9fsUWVNrQsrcdv66fCptwAenXcFLqN53JYkTu87vIjmWmp6I8PWfWyGSz4txa2R2ui8Nd4Gnwth8JHHPnekBzXDbyFB2vuwQfPFWRuZgR+MxVZ9WQBjr0ZRSZtVpRna8LZwq+hw02KJD88Jym/Ab7TawYRwfso4Zg92B3JArm5bvSnUJ/h3An+0TGBPv08gX4+Meg1TgJsfZPZ89onEM0sBR8lE4qvjsS6mUoQcl6PvjZ5sdSbLBg0twUN2zoonSpHi67kYLGgMBdKzgI/obkk888DHDPH8Pbz6lD4RBh8HljyAZvRIBjXAAbaY8GxZTHd7GnCCVv+YtnkS/hmfygFhinDlyc34P6MLlg2Jwomd7nRRQGGTm6G+iZtbLHyYKGJBzHotBbMcv0HIzf9x71PS/HvBA38GCDLnabL6KzvIOPal7zvgQKMe6EJI8JuQXjgA0qIKGbJvbUgYxuBzXLCMGdBBYU71HB35DU+eXAcuBSrgtrrQZowXMAnLrWyrPcRWmHigeNuaUBtxUyYXWRFd1sEIEzrFz6uEWJf+718tKkHfyaKcJGWP83WOA43Sq/iGPkYPhSrDBXqITj7rhNfvWfC4nNleFpLN51VG0Hpu/ZQdEYY7R8qgH+rZeBLUxcGyVZx/u0sbP/0C6fsO8MRiypR4csjCnQoZu1fMbzXyRoS38yj6T6C9FKkiHaqZFCchz2ZGCugRtQa8A8YCSqXtKh2qRZMCVXCwG8SbNiDGGO5nj+kqKPFniSQyjrO0afiMS5UlKWrhOFz2DsYazyKezasoKlDafRtagwkKNbCrEW55BMRDa6Hnajzhyk8UxiPgxqi7DNwCn45MwltP40Tmk/g0nv/4Z4KxvfrM+D8AWlI+yfNzQfm4blrWzDWcBQcfH8LU44V8ye1s6gTfhlk0ZX7V6pAyMQMWiw8ifTP+rJQTyDKOKTw1aLJvE+skEP7zsFD/o16WeYgFbQIf7tvQWH513Cu9h7XV1ngg3v2JPb5DmVfuoUr58VgV/tEcLD/CmG3VCCgOJ/CSw2o16kBCjcbULOtEK9JCKKeqVX88Mx4OOX7GkOdjHn9s9uwY2gqTC1IpWVdpuhls5fj72XAgqiZ1GU8ATbpGvNm229k0ueDCafMqf5fM8yYa0YftHJ5Uf9p+rYBwbqToL1Yj1vjVpN65VLc5FFHK8bdBr0BaR4dv5DrvqogBa2HgbOS0KlXSoGb5tB3/xxQvLSDgsVj6ZeWIRzNy2GJ1FOYb/KO71WPgavCp4G/BlH001y6sn4zFord5+tKdZA3Jxmy7ttyR0YrS9nLwZ/l3nDPlrk/pA/1ZMdyhOAM2uL5GgXP+NNr7TeUIrAb00xEYXeCFMQ8u8vxwnKU2b0LJmd84xcFU2hgaDL7FoUjurXTIzE10K74zCpb7XDCPx26mPeFQWQRfRg4A6u6NrPfP31OXXKIOtYJwFHJZCqLXwf3pu2DsQUfiTL2gdKsBBr1/SGKxPbz47KZ5PhbE6Y3PuJsp3Jea5qJbhs+8n3hIlyj0QCGsZ1wIXccFA6JU/4dgmOG6ex+M5rNdjjD97y3sMl2Go+a+oAMF5qSx6EMKDM9yBYFOlCyQo4su3uwc0wfKEcrgtmJN+So5M6mZZOxLysLTeVKyfOiJBgYdoBDlz8oR34kh9vvKXuJPD5M6aJxN8bg3D9C8PJxBBk4aYPpJSm49S0Q09JcWNe/jJePkOE8t1pqDOmjHGsn9t/9GkL0RWH/9MdcNfMUz10wTFO1vvHnkNMg9CyCoCCAZ2ifxG96YbQ1XAD8DzjSnVRT/rtuBcocMiCBq67w+fo+GAzMoMPSyaT4Rg/1xRQg87s73XBQotSCe7xxx3y0m2iFAZpWeHlXD28++QtrflhxSpgFOETeANnExfQvYx28e5uNjfMEMU10Frgtvk2iZIKiznL44Jc2jDRqwMKHlXzfyBZWvTaCU9POslnZDTI1BUoOk8eIsAP08gOD9cYVuDCwmg/o/UHVjb501TWEllQAJ+9ZihJRl+jA6pf4zZZhqmESfez/iNoNt1Fklyw8PWeJBiI+8FopCObtDqUfzSb4pQhgqXs4vf27gndc30UK+Qk4oWE+uT6djusSI+H8oSHQffSZh+LHQw04Q+aPA3BX6S6ZpR2Hj9uj8JHkevafeQ5jCt7Qy9PmVLVEAtTc7/L3l3V4rMEX163qgavBOzhUqxWqz2jAZocgzJubgLt+qECCcQAb7rgAa4bq2KXXBISGbpCZ5EvuWxLFr6clUoimEzl/NgJ7TWlYMuosGI88CaKn77KTtyEIN6/mK9VneWTffzxB4w/LRwLc2WHJ+lc6OUpOD1pWjWTLzb9g6cYsGNYbB2mt6+lOlhmK9qvCzKHNIFmtQVnmKTShcjyeOu3NKSPrUHlaC13QmcKJb3/B1AFJ+Le3Bd8X/oGHIhqwLiaEmlsKWaT6EDhIGEO6TCvpHVOHqHO68GtoE//NfUa+jQf4Wv8bSu+KhAfrW3CP3Bi0Pt3Myaq5cCxfErbE1mPH3Jfs3dkML9Y4wORzC0jMMRpux9jhN8U7uPywCG+dMxmeJJRAi1E4moqe5KMnr8G7J7/BV6gQjh+zx6j/ZkN0qQ2/6dCGPdpzYHZgL2bgWFI484+TrL5Ql7Y5aXcKcN79n5RtdAA2v0EwUlqIVaWGaKWqRJYNziy3fyyMjJjOg+eOoYffEsyYcZR0O+Xh0dg+vFXQgCMrftKW5tVYbbgbl3noUPeXE2SS3cJv4TXdaJeELR9eQsBnd1z/8yrOblHCTUV3aCj7LeTTLvK7dRLv/x7Ly/Jk4GHHTrK6M5+GJJZiz1oh8G7PA8WQbMgOKeElsAhuqcvTY+XJoKs5CnoK3mPysd0wecYYeJ38iAzmXeKz+Tcx+EwwXLesgyX9ZuDi94XWeU7CpTvukdctO5COugSCdochOHIOhRw6xwImt7jL3QoWTKqk5Yq93F1ymVd8sMVVpdtZcF09xl9KxlWD6tCufZs73gDsbMuHzz7FMHnIglNezmB9ZTEO2T2Pa2qI9HXCQdw/g66/Athn9hkW336MQz+D4VuhJPSlW6GaThJ8O+NL48tTcUa1F738qASeUutIbqUc3Gn0gx8/72GZ4TESHCeC2SLv2T1RBpKUi3jEKUMY7feNMhTbIcHwALt1PuTuRDP6eViS438+ptaIDB7omEe9tYqgGDsaT+tE4dpv08Hp9x+WPbkPtn2pobmZ/2D9lWdwPm0PL3wqBbJvVkKd4V+YWxzAds8G8aPRAdZLToBbPZLYNHUXDj+YwTZm0jA9Nxy3XJqBO9dMwHMe3tQiOYPE0BOn5OrDhR4Zqu3Vg2A1OehPfgOHNo6jgsQOEmlnmFdnzW0XmmCvohbqXV2Dc54H0J18FTjl+oOdZmXzDHzPM0+vopvrAunblE5IZ0E4dHwT5mw/wqZFcrAr+gRkG9djb6Qeyess5vM9h2Ge6ge8besDF54HoovTWChMUoW7wiuwe5IMu5+og0eNj3HUgbUUwqIk/7KdVCaMJfe0feCsMRrslbRQZdNNfnx0EhTnLGbZRgcemWmJI7K/kN8cS6zXq4ewiFHws1aDZmTex1cfRPmHginn/5qLejk3ceTWd9BgrYz7JkXi4QwGK89BfDmCeGhEHnyvGoSgq3X8RSOWBmr3QLncWeysf8pH56rCycsDJJ71hzOOjGTb2GBc/E+L3RKPYd7tv3gaBSB9yi784DQWDFs/oedCffK7eoOaOgRgxksD/h60j6wl00F2vAy8Ty5EgSQjEKRtKFzehME6NSyxvYKaj92gvxX34d6MGj5sacNWkwbwmKEsHF9UxmYVP+GYnyJXeu2k40cv8hW+B4/NxWGRXB94P/mOGhP1Ie+TMixWSYR3QXtp6bVrlNjtSJ5W8TT1VTN8jMjDcO3jsPubFIzeGEQlXjOx0jGSx7UfAxdHfVSU2MkT5fbgguoXYHy4De2XM4gLb4T+u5n08N0PSMwbBdE7zqBRcCv/8UlBj8JmdO63ZuG5pjBPYz+6mi3m28+daH/eBh5y7aNlsyX4b+5MODbeGdVvOtFo2cmwVdqNfqv2sdZ6UTSq34COJi9AZs5pnu63n4wjb3Jr3UgYHC8Dr8cugC1Xj/HdVit+/sgHBY5F47pPzVCTF83Xj5fCHqd2bp45ATxHBbPo4EIeiBSi7oWHsBq+0aC4NtQrrMWMs4G0c/pyfrp5Aqx1XsX9fZkgJddIXd+OcbTzfDQXkKbIkDLeeOcsVRxJwW9nJUFCyo5TjxjyeAsd+mflwkmffeihbCnNGVxBmbbIDoV6fG22MvguUaCIvHzcv2ocL3uqAMpxs3Ce7RV+VbyDLr8eA50uCeT7Wh0mczZVlZqycVQ3Du8Op5qI6VDhug2e2HfRhpM14L2qjFPMxaHOWwEHMn+ybv8KOpwng9/ON9CPvF88/8pDODpnObxxKiTtZnFwN9zDCfEmOFQ5E08UWuP8teNh70c9snQrY6u1AjDoKghn74rDuEBdLrC/jPfv36WUJ0upNm4m79yYht5LU/nJvCucoPIH95fogu/eYU4dEwET8S7/WbQEHg3v4SOaH/iD8gAfvW1GmtLF/PWLNtR+G4LyyiRuF1xHOZtOYJmKNAV2j6H9ikkwhtUpZ28G01hRGJIIhCAjL4gW2AYvPmmi28eDfMyBwT7mGZaeyKX+1024zNEQFt7Vp6N3UkliSQzrQi6Fxz1Hz/pW3Pb8E0098oy2fEoEj7NGYGh6gKg+H9MCTajteAI+bQ7GS0/jMEmjFPFeBNp1i5HqVWn4XvEAdSIu0pqyDhTzdget0wc4R5/ovtFpOLWkiW3T39DDXnFoSnzIOFYStJ2nYu+UfeCy7ibZXnbHPTO1SXNXA/19shU+TDOAlPcX4UR3CI8bLUNPinWg7/sZ+hHmRoJ1e+DKCBFaLj4PfCWk4WyOBX5608k9i7xwsbQq6uJY2B20CV/cTcDUZ9V8vNKOPqpoQdKsFRi87BOnSt+GcjBgPK8OBTNj8b+3CiwjY0p8TRICw4QB/S5Dg48DfFoaz73GbjBzXClo9I0Bh7qprFYSxl3HV1PuRA3YuNUJQ5dncLrsc07e9pB/VQ9htVUah7ZLU96DJnza3g99mWaw71EhD+7TZdu+w+RdeQsWvzdg+9VrcNg6Ezz0JsKKA4NwMkIQYlbmQspiY1ob9xmHpXro050YunR3JAxaOdMlXsRH3x+BRFc5kPE8QEK2IdS1bYhe2k5DwT+raWL3NbZ9+JvDdi6l0cWxUNEnBTprM2nENRvW95KhKVEI91vn4sGiUDrsXIK1Hoc4/kEprTnH4B0ahhe22JDChGsUzApU4hpA/UNijE/m0Jp/h/HZpDmUMNsEzsU+h4PvK/C570IoOuNKjsUelFUthUqFxTyQ04GLnk3hhRv0waIoGGFwL1+xfYJfZpzhBosUbp0agOtGGpFtRhmW378N3b0aMKfeAqVWBGHWp1dk41ID9vEnYdKSBrxzcxNkKE7FBUEB8GiCGOjliFKyxVic+3od/d6USqM9zmPewGfaMeUr5t0zxQatTTTnhhzsXv+ZnpS2waiUDK78uB0/SqjB0z9KIOpYBicr1eDX9k9sb08gNeSEPevtqObaYtCOCQDtP9WQesiNpn2qIZVVFmwSuZ2bKrTh15ZwLnMPJY24Uvz4dg+kpvyGfTM8eOnPWhxdo89PR39itVptqOjZz1PLjqMTLqYD11RhQX4w95lfBmhZRQm/+jDA/jpHzJgEyrM8YXFLOX/2CePtcJtnr14HZhcHYVSLJX4Vl8LyGxHU7KcLXgIeEPmfN7WZ3aVlvVNgyLga6u+epd31/3gb1eHUwBkgrjwSlKdJ4ZXWO6j6cD35yn9mK512WLzvD5xpOIrDB/6yXcEZ4CI52HkpC1eLVtHOD0HkYXoahHfF4pQTTiAq7kgiLuYgkd7Lfu42cKVOlaPWuONd03swOiAHAg408/xaOxL/swSPaJZAzVoJclORB7eoddDveoa/rakHyycj4YF5J/4tXoVKlX6kNaEK5DV288ZWY3C/70zJe9aDSfwLknM5Tc9jw+iq5xs+MmM/R80oRnnBMt6/cQq8Ntah1Rcug+zH3bBVi1h5ySbWS+zlUaWvcZJ0Ht38oIX7ehShZb08JSz5ziOabnKl+3X8nHqDJX2T8P6TSHQ9UsGuJ8aRXa8wTP+6gyMjFrFuDuO7axs5eUcj5Gb8pPO7dpMW7GbHx/P48EtVuJG2G+LdEtFI8CMGB17DxykCnNqpBYY6V8nPp5QCsjqw4yiDfbs89CXV8uO7V0h3ySDP0PtCd4LGwZK5miDybDqdf7uELmmqwbkSBUwrVMc9l+TxmvkO6NpizEGVsfhD/hq+Gn0O5yT8oGxpSZB2vYzb/rryppZFGOcSBus6cuhJkxmX/Kzh7G8feTD7DE0TNgLpNRtJffxeFkzZx8FPJ4OxuRrIWkvi7gQf3maijQdNhdi2XByux20EuREfWELpCf6ckMMl8gI01cWHXq04BBsfzcN5Pg4QmS4IIguu0uEJbujkKsszhV/S6JoStHs4TM59+aw4ZgMsXuZFI15ZwjP/azgjqhoj7C5CtkYf3+M5qKxxhC+dkaIbil6gsv0W/TxjACIjnuEtORPoW90EQhY+tHvaXVoyyg+HpE1o23clWuilDR9c7MCtzp8OziuHVutZFLnfiwtlMjFeUpftY8/D/Vu3aK9uMUcpiUH6Cx22arVmeSzF1RHhPGvdETy7JBG6Dh4mg6PCdMrSnbtXq0KbjDH8nroDfk94AVutC3GRwVrc49eNzmZLWcXdDhb5mbK0mA6sSbTBErtIkE7opdFvpKh9uwCOOhsCLVWbsWB4B110MOP9S1Tg+2tLyPDUo9bf77nX8S8se3WRd97Lo4T5v/mY/ixW/G0O98+oQMWmLLqwJQKVRKZC9xtvvGdyHULXrUJ/8SZ46z2Ngze3UMRXO8i5exhh6TI8fMECh8/W0ogdQD3iyGrdOziu4T0M3zoES+aZw/qD+1gw+iImaNbigjITnnktE72fWVF0xxk2dSkjazbBojp5GCtthzM2fULDZAe8Xi+IC788heD/NHC9yxzWFp5Mi/VuUrjESOiPnYt7q4SxsHc+8V8j9KzfipoW8iwOHeytFwtSPgo0eaIuRCiH4bTsHBrv1QwWf/7CPN9hqDY+R3GK2+FMlyhFLvLkY+ck4dN/9YAvD/JvoSK+Ne87PDlag48+pOLUsbPQSmQ6PdjsgmHrBOCr4k5+NCOa7PYasSAynLn+ncdujuCRu1NxxiobPHEgCsSTdWHYpAdsDnZwSMM7HpytBAevVdOn1Rdof0wTl2V/4S031/JYO2uY2FLI3QYGkKp7gtdkh4GTRxOPXydMy0gPGkoGMXj7CrYvMYDMHRcwdPEz0N2+DLWc8/B8lijK+NvBk9EyeKPXnZrTO2nKdAnQGx/Now0S8EvrO9IxcEaF31tB074DIg99R4Unohy0RQhioo0gcL4C3De+QuOvt9HWzZdhQ/YKLJsVgSkDHaz4bB91Zp2A1zLmkNH7loOa1tHT/GaUSL8ChU4JqPlgAcy78YTuDBtj7aNZHO47BQ6PnsAvFi7HkOZm0vL1JFPBEj7qspQ1s89C4a/p9LJdkhID5GHC92rYOns9f1IbwFtfXnDwm2V8X0OJnVeHQ0XnOBo9tRYu7peGHQ0KtMdwEifuKKXQVXEsN2I7GYfcwokXQ0BoowFbm4qjo7AZxLTJcdyvAvwIf3nm9VKwMU8FF8cAnvDNg5umJdPahQF0t00WNOLGwYOiOPxj+h0fnb9AD8+fp2TH+zChMxu2vOqlcef1WbPIBH4ePUV38plOFnvjzCwJLJE7RIOiVbC5dwQaHVPHsxe8MOstg9NLZZAV+g1lWZWsv/QyVyqa8k41O066cYENlv/kY7/q+NIbE8D2TPCdksOL4gepKKYUzCT+cbaTLT9SHSQlMTuctNYI7/y0g+GSq/Chzo+uKmSisM9nTqyVwR1Gv3D++D+oz2l8/MkZ2miuBMpFIhwslYRzR7mzjuNocONQjIjchPtDlfDAzMk86VMz192WAwvl1/BhjTscH/WDu+1a6db6XaSUlQHppeUs/byNjv3YyRNbjSA/Rw7epuph+p15eMdLELS2zcSH0q18xXMjjvhZjSuvrEKlSwYANx1xec0AW03q4BVLTvPWET/5m/M7FtIUZ5uGkbhz9g0YvqMNrn0OfNehABe5tOHD+gL8ar+KBm2cwXenFc+U2AqHHHt5/gxbmPBQgapqFqLtryo+tCySHoZOpNsvF+Azp2aMCZKhmd920Z7TEyF4+2m4veoa/j5eBy+bWzHk52XevlyWl8lsgsyOABQedubOTSPBNLwQJUidl31aR1r/s3IfikAoagCA/5EkeyvZIpUIZc+GUohSShKiMqKpqZ0SUUZRKaMhopCiRMNKQhkVSpKKoqOpwX2J+yJf6gPe/+gbd4QdpzDHjWy1TpGWtWhByuSpsFVVjf1miYHtXVGa5/iBrRVF6N1GB94wQYWtrkyiQmMFvj5aAJLaQ+nApzmwe8xYXG32hmZNSaBP3RZs+SAQTp7aDqV2ivRFWBUed36BPwJHYcOENbDhXQfIyV3nkZOn0NHaMvi2ch6HeCdy9h0TiF4ch7/l6mjM08nY8XUumh7ewt6X81D9xxt+eSoEd+67Se6TFOD3mt24IcAALg3eYP31enB2xDYYKlXgcslmELBxADmfRhzMEgfZO5f5W7IUV5Up0Jx73US/Slmz6gyHzP6H179G8QzbW7AxSQOe2Kjiuavy9EfzPFU99+GJXg18Neg2JMwugA7RH2BqtROndRAEO6px5Lo5/HdHEV9+0Is5naY4SuQUjGhvZxm5NnY0a2TZ85qw1H4Ju11dhgGaCiwYuYbKrqykhbHi8D01nH/IrOYp80dx2xDC0IZT6Jity3Me+kLuwwfghhL4obsQI+282f74MI0RzcDbZRawzjyeLlREQUfeBrq+NBhkLwaSnvxrepwyH255t3Lglib67/F0mOC+DPISy/jpnRSud9kHThknWDwwiAxWuULuKlVWlW6AppTpkPl0GI2lCxmWHYbmXyvRq3AczOh/CNN9p9PlfVL0tKoRTmuNBKWz66BMpov+xK3lDvfx8LJ3ISzz0oPQNS6UfaYVTm6bjFOWmoPNrr9QoP4NMwLzeZpfD5d45bGAfTU216TybvtFlCFoSeJ1siC2ZiaMunkc1XJl8JTNJoz1rKC5QxMgoXk6fNi3lBK1VPHEM0nohCvo4WPJj9Jv0MDqMpz77Rn1pDXgFf862LsnnkzHGlP0cnn4Z78HU8eH8dEeV2w8Nh3qE/xAW6oa1N948vT11yCtgznHzhI+pK7CY4+06c8ke/D72kBB20xRML0HkuRM+XPXCdSn75DeKQ/SxRL4Pt0e1039jxRMb+HRqD805uIRCp6+lb9KfcZkSVuOO28Adk93o/3OMNyks4ZeCs+guq+A5ROvsIvSIbbVN8J7QwtIfqYJZMooUHdcDExO60LnGQ9oZWYrbPwgjUNl0TjzfA7uDzwPICQDF4NcYLp2M1mqZMN9QW3MG6oGXRvAsivrYLh+Ba/e48sinubw2+QnTko1I/V6PxT+6ca5v2Nx0t5yeF1eiOJrvVF4wIB/ukwFn9tLIKfChSWCYmh2Sgocn+9EW2vHU8BGcSqTu4dHW7M4zEoBvqn0kFzieAzbFcfz3A9Cn6oj/+fVA6NWO+DismSOnKmBaYIEhq4BuC7NEFUl9mJl6CXer/uGLx44xAGbpqOnYTyvUukHzVJ52J28jR1KyrBV8wC9dZrGhQrO4KZSw8m9z+nnCW9+bDYRQEIRDJSr2EjYgG+ssQapUQZYsr0M9cIi+Pz0W5Ax2AyF+rJwM3Q83BRtg4v1hRj5cxTd3fGP3oYfYjO/JriktJ2FZM3ZfUQL3CizgKaGWbCxN53HN1rC6+vzafnsJqh2FwE/qZtYWxcB0ZPWQbGjLqzjI6gd5YmnhjQ5/8timB73HZep/4GnarbYeHY23VkiB+ddDeCQkAJtP+fCsw7t5pt9KlgyNx1rdUvoXVMzmr3ZTQoFsnwszBqOBX3Az+1PMfDlZvo59IwDj9WD+rqdJGt4Aaz/FMJeTOUn2ZYgf3QXze2fT988xNHYKQM1Z36G/RnGJHInGS6IT0Dp5yf4pKM1CA8lsazCId7g1khFDz05JuQ5vB88ht9GJsGRtI3kt0sB5DplYfaNKE462IzO7RNgxx9TurCpGqWX5sOu2m4M2TQD8w4U0ubN4+CR/FUIcbHFW1OFYJUmgaj/IYxarU7japNRKC+FdXtP4OQOJej+sJqmCOwFv4tfkFXW0ye7m/BOeTKcETsMuol5tENHHv75a4N6sD8fq7eF7+HG9HubIeeeVOXnCQ4YNqMVL5knUJtRHQhqW8NK9dFcbbmBPYQvg0JrKn6WO4trh57A0CRXOpSWzDPiQ+CohQGcCPPklsUTWd5mCsg21PC6j7twQsgKnirzH37f8BHWTD9F79+PgNO7drDhwmewKBdptpgl17ieg67x14gPl2Py40sQax1Cw9VCsOJiJM5SSAC478Z+2wVYaeAy9zkbQeY/Vbi6y5891Xxo5hZx0PdbyrPl1LC+YjLO04zhLJdV+LEkke7u/c1nx0lguU4eRGeKwLbHKnw305hEsjJxmcdtchsUwcfzEzD98UfQ+yWMfRsiOVtCG6SdA+hh4GOQvbuJvqgFk/hNG/BvzUb3MYlge94H0268A/duNQgfUofrSg8xRDyQFxYpwDKTWKotHsvVCq+xXTYZQltsQX7WSGiKnsC7VpSjnmgp7c17AZrpqrz21HbeGbyaZN/fRstOhCCxMXDktCGsis/mey1udKC5nRpu6nDHbz/YN0Oa7v1t5lbNDox2loPFV5VwgmUsiQleh599w+w9V5x3WgxTVIEIeZ0Toju3RcHMSQj+5g2QhtIRHNt6lurutnHq8e8436cG9da7s8FFE9oRlMZVriJwQ+cpVs/zw2nF1ygrdBMeD96Hc3NO8pHMNjBrz2bXxW3w8I41CPVZcmSMGqakaWLsurWgp7wHFHgzT8kTglmNS/CsTAO3V04F79wIerLWEs2G34DjRXUSWnMCF63spOlnHanq5Gt68p8JHzKeAF13xpPP0y5+t2ARVe3QoZ8fg+CZQh7t/mAI7d4PsfVVIgWMsITncxNIlnNogUAWF3xcwh9n7sewg7vx0VAhnJEOpEilt/ylbSq8MTyCH2cr8gzvIuie/5KT/Vuo7cVH2Bslxwf07vPOF1HgU2AF6icVYdOKO3w8Ko2VTzTA76FUNjh1gqZr1HHJXgVyFb1PtrJW/3f/T/e3MczR+AoJBg9xuLmJq6xGsE19P8kcMIIfC3z5Xm4HvrYxhZcem1FQLQzFxP5D1evi4OFVgj/tuulc/Sl+3+LE8Vfm8aLlktBvZEnvpw5Axa12utz1H6plPaC6QzdgV10h1C90xX+rM5C36sD81u18dON6PFgzGjS7BrltpQd9qw+hjyEbcJSbLK189x0HfQk2h4XzwdNpdNjXCws1nMjtzQ0KzGjkbPNFkGheB4nDZrTMRxuO+wtQjlMr/727kFZF/sHapA94TjMeWpwSaeGUvzTXugsDVhmDq1QRT3Nvg9U5G7Bdsgj+OQTDf0NafH3eOWyEq2DW/x0F/CbCqvufWaq3Hcxa2sFy1Q2SSz5CV0sscUBCj95PecN7c+aTaYEqxBlMhBjjvfyvfAuIZtzGW4cXo2HJedh44RrNmPcK5Nb3QV+1KpQMipKviSzdkcug6lvP6GVuIqgtTwH/nnz2MblIHeu0yEsL4ZlTLKRXeuFS263obeuDmya+hjdVc2FG9y9+t9sXbunqwltDgHthIfjqmB/Bjn1UMv89KiWp44gfs7HkXhOuHuHCey+JgU3WRLAr80HJ00Fgl3adjadEg4auEN1I7+bn3v7olVZOwROv0OgiOTijtY3fGm/E2NJo/Gq7iFo74slVWwwq2u/h1e0yMCywk5y2aIG8+CJKDh6DUSUGqL/zHopung/hjlYk9Ooz/PjPnp1TztEzD13QlQDaM6kUAmYeJAO9GNRpVEN7YTl4PfYeOnuk0mMdIzQtFgHv3IMk76BKRoFbaNLmo9ByzIkfHLqGw2t6yf+qBqdqddGxa5ogNCmAQ5Oj4X3jEKU+H01XNXRxxbQnuHyXGmvXrwM3jAGrhRKQ3/AOE1UzaU9nOuV916ab1XPg8XRrCJkfTvb9qvjjkQvG54hBBHylBW9f0MGAPto2bzX6HniDBjXfcUSVE9na2eNAqQadEdSAy703+HrQHeoMSiffLhX+nKVL9cZ3aYutOGrY7eTcLVHgXmQNy08LY7rjEvgeZ4+2Q6NxeM9bWvglFZL0bPDhXR8cMjqOzSgG/+p+gYZPM+V55+DxV4shcMoM9PnZjTG3ctElRJ/eq+xmLVUAva830HeNCx+3HMScVb1sky6FG0rjOXh/FIyOSiXbUnX4JWAF3x75Qt2JPlCe0MSN6dn0NSYNSpMjcb65JO07dQ67T/SCS5EEVOmcIT+6TRGSXlCa+xnFLmyElCX1eE91ANsqx/C4wQ6QHdKGwZTPXCK/CiqafeGB+R66MOkqOYwcxvgDP1HwrCu7PmunbTdFYP0tFYaxbyhLbR77bngFip+Wwi79xRzvHMCHv6agqlEbr9gkAalC4iTvnwujTSYwvKtgodQvVMrjcOLnRBQ7lg8L/Qp55W1l2LjrIKYa+/Ismwvwz6IM9I4+J98aG8iqz8Wf/5Xw1GQvkF1nCePf/4WifcnovsEDTo+159YP7yG4rZw/CGRSy01lSPt2jdoUTKB9ah8ttBIFbeEIsB33Ch3mtIDGicU88bY2OfwypDd3NqF6hjIYV+eSua40djWlsYfCXQzI/MP5h5/BnfGjyW+RKjbmBsN+SSFYamGGYvsDIOSMA25UnU1ufy6xZkgtnD0dBBMbMljcfRbdfTgJJHZ6gvjSD/StKYhOn5nJV0LWgrBbB27wC4by8dowtbMaT0dJw+32Ykgy2YGuLxKpad4ZqnZrphqbfbx8xUL2vJHHPes8eEDABFKWxdBb/3GwR38q7joShe0vwtBZoAGyX3VCuYMmp6Qc454YRViQF8w1t/7S34XH0dJzOyXYS5POohlk4VXH7fsb4MzscnR/pgO3WBq2zlsFSW2nyelcJJX4jkS5Cg9Y4ltKtdcXsUWYPOvPsYaLP0+QdcovbBU4QrZVcpTtrkBP5zyAvhxvnlo+hTPFymBW6nSoDTtGL3/Noa3xa6Eyaj+OjSpkGfsr2DRyAZ495EllM+Rot7Q1xJmZ02OHX+yknUWThdLI92cIJsm2wALjm3RJsB535j2FWX8NoC46gkaXFMCUlOt4weMR3L2uB7F7t9KJZ+ZY9+cH5K58ilCgAB5zbXC/3XZSfhBEj0cUgNnLat57uw5MgtQot0iCbfamYH2HFFiLfgLts1Iw1vQY9MsrEF4o5iHBFXAlKwT2GE7iqWdG4L0PE+CYgh0Mj8rB/DhFis1hWvrAANrvpKGd/g/WCYnEqzfEYJ6KBmhdrMRA5U1sT4/x66er1CZgxPfGHgeN/x6BaS7Sr4dp4NEgDAYJ2qgD2Zyd0kPFAj8pej5xo7YE+v+RJCMXW1yVcQnbDK1AJxxR0ngmC/7o40CDjSR69ApOmqQB7w4CjZ8tB3USpSi3bzS8W3EAVSYkwd1bblAy/RIIrjrGbdm9/Kw1mt+0W2PUmxruejcOGhfkcaPiE0wvVuH5z89ydv1HqBa7hu8e1bOXogSfPr6eCsYZwByhKjwy5yi+u7WL5e2u4/PIVhi9TBiG/tWB/uM3IC6hRX0fJcDwXCnNkyjing/1LH14BXz2mEnK4l/p+7yPnFpZCx9m5oO1rwDwvj54VSLA1TL3+FtPHN/SSQWr+9LYN00JfwfmsHL7Kdr4ajJs2B5EdWedMHNBA93oiKRLRmUcnm0BRuafSP2cNF6zG+Qnrlrg9kuOnT8F4I873znzTAXMTCri963etDEyHs/erqJRV9QBjbQgKaOae0kTrUuLUEG1DgNMW8jQM41iyqrYeeV56KqUoBV3ZMHtlwS/uaRDcUdWYV7EDeqMaqfFN7L48eJIlsIGXvTmFZ7QkIKAOfLUHGZOr/UNMH3UBXyc6Qyf5GxpxocG1MAYFnPKwJGnxGGH4j/e6CMHl0JuUfPhAV5iFkL9sgJk4GxOyrFHaGFsDVq0m0LRnAZ4nT2W/u32gMETs7lNcx3fvRjBXk9CODHyKjgkjObGwwie0v94h4sqhwXPh6K3+hw+Kge+yFZCR8R22vJJl8dmPEC7sePBavgpiRcFUkfdM1I0D+bSFSOgzrmXRzxrhQ1WOTgibT6PyGI4LKSGKof3gvw6Y6x6vYx+jMnG7lnZUMr/sZxQME3bdhcfuEuB7pIK6p4dwa/WruZfyqvJ4OllThBZxjr1s+hN0w002nSYbfcZQ8TXLRSg3Qw7lA6w7btRPN19Aa2u04fgjdH88flTUCkWwHeXCWqTL/FSKQN86LeJLnp84VPWpyBtWSDM7i3kyppsvKe5HEQuTgVzod30XPsl9j3wZP2qMTx2nxxM/X4W406eQgPj73xVczVN0FCFcYIHQWRuNDUHTGVrpy3c2j9I0jPdYElBMoWfGofJc9JwYdZ02H5iPJvlt7Ce3B5oT/nExftnY1vOPhZ0+8tuVwbg88Vm3mljCeJ31tP21TV0pdMBqq8HsK2TGcTPmYQjtB9ht0wmRpyOo39njWFHVR777dIFGnCm5dsVICgqCkQuxGF9twFuXWfPf7uugtjzqbC7Q4/QsJKkHq/j11Ny2eGnDIb+EYATWWbkHB7Dm29pgfcYMyg54Ek3pMR4Qp4dGH8Zh3ddWyD3+gVue/YctU7a8ovFNaSvbQ7eKV48sHUpmZ3SxdCb4ew06A4i5Rro2vMfnxFtBQsHKVzkrgqikm8x1FSAr0qlQfHSTL5t/4M9G7fT9P4hTk65DC9l9/H+wgmQ1+hEu1PMIaS9l11Sx1H30xm0UeEizAs0gHuul8hE7hsWlo+FqpN6fCXBk5Y80KfeWC1ypNfoFnMHzOb/5vujvECvcg3njJGGOIEZ9P6CIh33AtBa7oL71oZx5z4v3pg5CAsO1LB4hR6M15sId0L+wPLe0bRp+wJ4Ofs4G05kniidzo8PT4NPK3/wzZdfINxrGgTPq+WR4ppEc0wpKFwFlVoHOCRKlvXah1lMJQuNZ5ritr+iMK3WHoPqA9kmbT7/USyF3uBDKFh8CzS2LIbQ57Yc7CpBk5/LwdI/UxDVHOCWZy3su55Ip68KslJcDnZeNmHlyFHw2mkh7GsbCcZzjMByiQL8sIoE3Z3SfKJhBvdOGKDdVbG47PNP1n95lZN6FMC55gTM/R4I029+gsfNFfTtpjedOxvPI2/+YqtL6hz4SI4Lzo0H/wf7QGV5MI+0+kAyFor8YXcxbzE5R622khiR1YnHehEO+BN0br4EVkNTUKXDBl7fMoKISUKcH1AOo4604+noNlAPyOe+UeJgqqyDin+6uWqRH94u9QOJ6+cw/MV/OGC7Bn9e8cCdcy6T+z0deAbDvEvPD0VjQ2kzL8Gypniencr8QjaT9q8iLDmQyQe3KUPOh3V8+E8qxP9wY71lBSD0wIwU4+/y+5CjKLmtBfR+RqKOvA54DMfR5uvx5Nb4GDd/iuUOqWGKCBSlk3uLcU3LZBBOnskVn8eBkmULGAaXwrnsKZD0KR83F/WDt8BJFEx7zFoXncFuiTWezQC4UvGTLj7PwMrofRQ87yicHARkNUeqlVvGfYmN/GC6MCT+JwRpssc48w2gntMx2vRCAdNvLeeHuRGwsnUdWCTGclKAGCULSkNAtAFN9zlPxSUKcHNxD4Q55vFHjSBUSFoD0WSCGhc94MupqVB2q5pyX04B8/tnOHdmJrscbOfyh0040JaLTm9DYYNXNG5/LAKl9JTHj3uENuvvsUyUJFzVEkeBtat5aWgqKfRm4PQnwbTmsjSMaJjMf/R/k0CUKhnjSlYfXALra+LZNzec/u49hncylrN3phxs4FAeqW/Hf1OE4bLSdd7wVwT8m0op00oWxbEJvZKE+IKaPJiMd8CA4bvgzdPhpIcSVFRn8Z7LaXilqYGHT+vDp3NJZD2fIdAyg6PKPdl2PoPvmgnQG29OwocmwQqDjdT8WZ0+xFyicdHjwbw+DcL9LKjl2yEIUDqFtu9eseqlIShcHEoK50Zz1fcIShQzgPvhptizTpsDj99D5+tdvK0znTpux+ENSVXclreHVc0rcVDSEO75Pqd1h3rRY1MBad8zgFsf+0kldjFWVn/l5boyVLHnPUWyCGTsdoNPR7UoZtdHlHicBxC1Fb6Z66KXvhF9VkumvHfRaKutAftf3OHUQ3poMEYLSiPEuC7uMJkJLeJP86MgZ/RdPrjsPvQfnAbvH1yF+5/fo4WiHp5oToJhxSyYI+AF64sus0lyG9qEe6LfeDMI3bCGdhbegN8T7GjJ1nrec7saZ7Yt4NA5jZzm6AjPuu7AuqXqYFxlRvvLN1H/6JOQluoFFpYj6OxSCwoe/Mj3ws+Bn/dfkNxFoKqfDBHPj2Pn/FnU9/oQLZUMp2DDpTh8aB8MvHKnbH1/Kh5WBZHOnVjYsJoc/GZRxe5YXp7XzzIqtyHxbBZHWruQ4rex4LRYB3w8vqHEmH20sTgDm2/9pLvDw5Bc68enfZ9Q3RZDco2MRTsxAZg++S6/aM6jF61dYDojnYumitHt4vmo39ODp11m0cc5VRgiZQJ7I9+R0vzbdCZZF1tPDlFl43fS2TYSkl0q0G2FMZk4aqCrmgn4XxenQZlDPG+EM/r+PQ6ajWZQviwSBNvCqSjnPbfM3U90RwEU3CMhQnIlVgelUlrJWIw5LAWDw/L4ZHwm6U6PxREqNmjjpgLP1iSRziFT6DWtwonP72Hz9hA+l3eIW4Uz0XN7A1SYC9LQHxkYG5hFCvvd8PtEKdgo+4LaJglCUAPi/fY91GpSj0vnjwSXIi3I6mRU+yJO2RJ32avvBIwunEZH/y0G0dwJeKj/KMgcMqCILlGYUnmSjaZkAIiU8C7H7zBuIILNdRq5dfUByrA1w10jFpHVsZGw01UCt13bSlRmiCnTj0LBFi8o9tEE3XXOaCXeg/7942iKmCzMiAriMq120Hk7ntbeGgexp4Px3X4XMpwjCzdeBgK3zmTtaiOIe32WN19T4tnrS7BAXYqiJgiSxfdRMC/8Gptb7uabG9oh/YgGWPQtx/Hx3zCqaxsfk9uIR8ZLQ8G2lTQpfzmsj1SjiPxeesBasHTfSAiZNAFrq7dgrcZ+aNp6F3vOn6L7Pc8YNq+hrb23uG+TOkR663Or3W3MOHgZDHLauI/OYGj8NIhZdZRuKNrze21DxgWG0JZRysZF93DLpuuoJt2BkfHfWfBzIbWMUUMx/8ussjEW1VKmwchF5ti/7CtdeixIWmHS/N9IH+oZEQHBy/thgVQMLjhbBVfMRoPmx3j4WvAQRhnNwJ7AZbQqMA5WmfzFZ7F5lDY9CFcI7+JZT5Xg4i0b2lkpQ3GzVagkdRsePSoDddjHp5tW0gJjUQ6dHwRxfxhafPTw/OF+kPibT5Ni4qkxrYQ39CwBpao2Tm3MxvkPvlHRhPGQ1akIfksV6VCAAr51P0y60U3Q/MOLa7Ok0eP3SnaXOYaCkgaQO6ACgU9M8OOva1xxzQZuW9ynlV9i8JHVShzX+pAlPC3AboQRFK+WB0v7Hkh8nEoHMu/ztf47sPfWdV6XnQC92tIIF66w6xJzUCsO4OIN89jQdph7qpZzpLgZXd5Qhp4vG/Fp+nh8IKANk/ZYQuTFR6C79A3f9veCOWs/gK2eF8xS2gKZUVrwRS0caV8DrxsiEFr2kSVex4DXzl1k6LiLPr2V5GcyI3HCkAuPr3jP6bOOU4m4MYzzXMkOtTX0vNOOx9/YDIoTpVh4UylKC27n8n1/eEf5Z06tB8jPF+Y9Szo46MAUWBE0neRHf+E3a9whoa8KHGbWQvJSH7Q8bwkWMoZkFxhAKXVGIHhvOTUclCTpF/cxSLySLOXXgavpdHqzWR6M0oAlC26xY5gtnu47zR7lCVCafJZNkxOg0KIX7pm4gcgtK7jk34uWPmdQc6EfhB39Rif3rIOFm+rw8AsBDt3Rhbctj/JJc31IvrATOnXPUHXUL95w9CZ8+nONEpvf82W/T6RqtxuuVUeSX444kFgrLltsSmImm/Fkwhj+meCDbQcdMO+lL/l2ikDRjTqKCDKFebaR2BK8jfp2fOfr//5grHArvTPZCFGC5aQ85SzJ+DyG3U8M4bFmLMw6L4ZmsptYqPkub30zCl+UvoFL7xfQ0+g/+Dx1LT/UFoH0Ikd8/XAeJHb9BemWQhKI8acz7Y1oOGE8VM2tgM51MvTRXAd+LnfjdwdyuMjGmC1fnuLEoARSz8xDh4UScHq8Ee2y+kSlsmqwxS+Xft74yD/+/uaUyRfBdEsnai16Bg4OTaTcsYi2z3pPefUScHpBHFt6FPBexT+wy3aY8rv76UlqPf4Qk0fnxyfIKruWje6Ywjzzfh7vFwT+MAt9cqyxZmg2Rszby+b3yrA5axyMVp7E4X9UoUxsA8f0zCHjOWF84tJhetOQi2IxI9lFqQp73lqR4JhbXFgtCLsa7rKpvgkqvm9Aj/56elx3iI5OWg/Tdazg/K/x3N0kD5efaEO+ykQ48OcDNj4Jh0zLcNqtJ0RTKgdJ7+9JTO9Mgi/KM+HstlGQozIRs86exCFffV5w/hr8PlUGugVfOWLjSIqNyyObsNeo+YfA+NA2shbP5Fh1Wxhz+hQ9aO2CNmM1upA7jZyutfK3PZ/w02MVmLO1Dje2vaSenJP4/ZgFKO+KYKXAaazQF0ueJI7nopq53mkcFBoNYunBLbA9IRK6kywosOUtPr+0iE3Ev5B13C0+trUEA+qsQO9VIopJbYDqeZJYve82vH4ShmaD+6lPNJ82ymXirdf7SGjYCKJCXGFz7Bx6uOY/7tnlSwVLnWhLhyU6bi6Al74TwCsjiY0tpsJc33Ow4cRX3u2jDzd9XlPMiL/87o8doIQ7xR+fB5UG4qSnYQHRCTf4yt5xeEs9k3HOGT4X0oImAgXg5XKB2uqXgbZsKsm8E4W/VrO5WrUUaM9tagh9hY9M5kPRpMvwwrIczg3cxssyyng+Xw6mp+jTm9eppPB8L8zesQmXzk7GFVMvQvDzG3hrxRv0/FjMj4JFYYKeKB57uIw9tquzp4EKONQ+p/zOBFR0Ps7eN83xfsVjWGupD2vGrOZJDh9obqM+eXodQSMFYdz+4BP45M3EeT57eNy9BtyE4tB/qweHt7qBXqIxXFxly6RTx8LVaSiZmEffDE+j1JE8dLCRhrOuy2jrvUior/4KV8o0cV/cNlw73xbfiZiQr+8VXrsjGHemaMCeR+nYIdePKY3yID+mnyuatsJ+O0mapr0bf3gZ4xVHeVI5pw0hu+KpfI8xVq4nbHVL5aMqS/Duo2JUsdrBh7uWcvn+Nr45UhF66q+SiNUKvCV2Bk6JjiHbLTbgWn8Za5TdaXxPOIen7KOdEqNh84q51HxpKptqauFt25mglpjPfrp/+cGMQKjacZAc3yWQ5xoz6Mh5ApkfxpFOaCo/MtYgr5m2OHqVN9d+UIUXamY0/7sX5lmZQJCXGnct1qZWm6m4OkmYXiyPBZMWAE3hWHrbIM1uUREoYqEMBsuXkknrH3z9eiGl3P5CdZ7i1DF6E74a85a6DDJB9txmdnokDl5mV1juVwGss5kJ2xVm0b6xz3nkcQd8aVkCo0OTuXPAHmS9paCm4D1NDcnBRLs1UH59Hod/K8MQjwc8v+sCNO0bwuKpItw4bAX+F/zYwtkZ5q7fQk1yX7BjlSOu3jcEmbsrQWg/g/v9Av7togzKz03g3rZJVPtlEjv73+ZTtVfh4cUBHDNBktZNvAPTagp4ovwEeLBsH7T/3c2rLtTRqbi/0Kh9G+iOBux4kIk/bfvYu2U1LdIjOH7AkF4WDHBfwiY8XqsJLo8P8HynCFi5bTuPUlTjbCxAl8IR4K65kcx/r8KzMhYkP68E4tNP4UyZMr6S8oTMzJkuadpya7oydIwvYvu2Y0DdE/BQaix+HuUC/gWTYGXjPDiwp59X3HDFqXq6UPTmAdfNGgbX7Aookv2LOdLF4LbhP1oi6AGem5C/x1hi8/0RIFNdhAnN0Rz0QRdE1g/z/c+22LNrB3cfOMJ/jOdSW9ZlsJG3AvfGk6D+K4I6f2/mzPdXyLU/DS8m90F+2Riu/5nDUQnv6N4cM4iQDeUG59M8Sn4zvenzh8oxalQRVcbf2haQ3w8HDJthAqVkDi90yuHI1pc0NdodLlwrZ4nUjaBkYs8yM+RQwKOXfbb/w9zIcWDqqoOZTe14Wk2YKtK6uXnuNer9ocKLPSL52r17fMPAA2ymKcH8YRWMK9Dnyh8N5JAzBJue2NOPFk1WWe9D3lpaUDwjCKNUleGatQy5JzVDW7MnjNIToRN/MtnPTxlNv+ayYZco5RqOg5sOo2FcfQCbxARz5vNG3F57A/ytnpOl+VQ+v2YM16m8oI4nipQ0bgI8cpWH1YftoCj9Mf0bKYWfamXBIOYH3mrK4W+v63iJqQatuyIOQTZjqSROB3aHbePLAf4slecPiaNNIOGHBf6KHkEHS8WoqXMimFpEgb1RDfvMU+EThbvga8RpruiPgui0UNj/yB+9vLq4frkqWM8I5YUiHRT/9jen9e6lzd/yqPzORzqowrT042gwPhhPx9REIKMulnRCezhzRijG5V+kWYXFPHdeF48dL0JRm6ehb/JqdkjQAfmBMNDtFuTEY46cHxSIWnUbcQQVgIPvJaz4nEvVq3Qx1cYI/o23poCvu/HtHBNyPvqE0V6CRtXW0mGbZ5A3oR1WRwejPClD/+xBLluykccXZmBm6yNQebGYn22ZwtGHl2CRvhfcFH5LxhkycPLndDROreExvgfgi3k1Vt+Kwo5edxKqQxbIu8yivldofp8GCF4EvvbwLX6szAeZp3GwV8cHrZ7dxcSGlZgbqQ0+snvwRaEQuDrW8vj159nk2mV0pW+0rKCfl8+1wOjkD7ApSBRcztzlxEAlENAdxnUbR/JZaRV82HGMXSY64f59VmSxfBKNMxLGgUoHFA6Thh9FU+n84Fg4858F64V+RLf1IfTp/BQWaWqAR6PvYlRUIiQ2qYP27HP4+UAkVz+5BvnGcfwh4iYsvXcCMoqW4WeTQL6g8xnu35WETwGC6LNlkLfuXsv4MAwURylR+w5R7N19Da0qJ+Hn9D5++2okPOW72B3+FNzfFnCW7D7wNHvND3rSMdx/PeSfMqEZEptpZ5MUbHjyHwudi6CrrTV4dYcel34ZAe9ztHBLTibEnzPgLT8E2c1FBJ47OKDIETfwMb4C+hGNXPCrH4JKqnGT0k5K/TYNdt6XBP3ucaC+Jgg7j0/GSZb2rGJdjvs9f6CztjRudHiA1+kzH1Q4iqYqsnBCyY49o4qhRdOP3Q4dZe/tr0HLNYHg8nioHfuFR0mKYUjgWHikMBZvmS6lvzsLoP9oHuns/klJO8dgrs0KIvCEUxanyV1MFUIuTIXK1a/Ra5UNFVqOhb1ub6hbyBIuvG/B/L++hBFSJBFuDA/ePKGbFd/wQGsfL7S6BgaCxWD/cCnavVxJxe/mUETsEY4NmwRrXnnClfuP+KX5aujasAs9zztwuO9DVFzyFFPjptFTBxs67y0G9/A2OPndxATR+3whbBgDHs9l+UtN3CH0kZZwDrxP2AwnfijCD91nYN6ZhBudD2P0Jk1sVDGg5cI+WLJzNzofaSMDtVGsdmcMyAcMckNwHroLC5Jw035+5ZGFdzP8KfPXbRy6vZgq3U7DyEpzEBuo4fDiKvyhdw4HVhqzaJg9zvZoxDOqR/CEiiOu0llHP3foA8UE4wZXB4yOK+CP9z9wt/Y/3n7+L+ada8K8vFn4jBiTi3Vh1f5J4OyTiZnTNuDo2HQMdnzDx3OdcFyuOpUuXY4iU+qxr0cRek52s42RFFcctIJw7z7e2n0Gv/XEUPVQKvyMBs4bmsEnVuhDRFAbhan0Qd+1ibBzqIlS3yRSr6A7rY+Rp0kL/TDLTReWOIrBt1YHCskuYcUno/FJzWK2GnkFJhn8ggkSm6hnkT1o7htB8SkWILJEi4RK/vDWaGW8pybIJ/vnU3tmO0y0n8NmYzdwn9pLPvRjOigZHuPo7iQ+MtYXr91l6n9qRv1f9VFzkShcPjYSSmp2s6azOtRb6bF/ewMsjJaglTnPWXe2JIX3rYBN1kwl2Xdw6kkTTlUaA2+LppFYghPmpSjC3al9sEtDBdRjtvBNrYvwIG0y+PX18KFJQuA8YT7MFurEg+ZGJNVnzJd6V+HsIT0y739K9GMGlnqvob93RADXO8EU5bk44GVNv0e2YGWtMEwpnEAvovdz9ewU+uU8Ai0zDOHMtVgouhPF2obxbCrVxstXP6bF+2rp7cyfMGr+KLgo6AmG8hPB+2cXZJd/hkfuBVwxXZJ2eS2BFJXjmP78KZe3XCMDGwX+vnAKWDeHkK90ORbJbKAz4Vm8qvsZG/qbc5lYF/5clkIuvit5f4MITLhzDsquPoHMV7p83+sX+Zum4pOly+mAEoLN7BOQLNxG2pFSoG1XCKJKLngz+ShiRwtwwx3Q8vjH5GePQn/dKeDSAJycbQK/C915z3JVkJLawBV3r8Hg061Qc2EiPtm6mvUy1kLSqQ5QvDwKTv+4zqcCxEhRTZiVao8DgBS5SDmQ9cYyylxey+9qorj3v7Gw94s1GPQeh81H1uKsI52YePoj5si74dDvflpUmI1Hw0voWeZoCBUZgOVGHvSLnmLu1/1oPUMRFOaswb7TZWQgsggPn7TlAmcTOFy9j2eQNowLu4hXduSxwZrtWFVazRPriTKfvuf0/g+418AQ/pyaQK47nGjnKW1+orgBPoTXklODKtf+EsUbTz1RoiuIxtgrQadUEjUnz6DdKUYsPGIsr3BbAWOGrsMX22QI2mUDD9+cwc89JiBvpkF/x7wDp2JbXjr4l3pIA2eWHuIDQz6w5lkNX395Bb8YiMFxy4moI6bPx4afUkjRczTyP4Uxx2Xwx4skvsyHeO6NFxy/cTqku7VDTNcRNowKh6aJYzhleSwNDGjitdnSrL/4Mp9ULYLmXyNBL6IE1goNUp4Dod7+aXRrzVE6Y5uN+4x0sWaZPwrkTQa3DHmwq3OlF9/iuTrkFfkmLKfntA1iN54j+b/F3LAmAP9cXIFnZ42DpWMeglpeIf2nvhI9cpfSvNyZHD36Nx6M+I5zNI+yX0cdKqlrgeBQBtsdPkxxhwN4qm8oK4YeoP0LBNDORJv4ZjDtCKzh5/7T4O3aJvS6+Yitz22niUXreLVzDBsLDdDkq2EUPHsrlh9Rgc0BI6HM0RTtFQmbngmw5KSVsPHIQu4NvIiLBVPgLUXjDK1RMOIIwMm/ejB8pgtizzdj1dXJKPDCh0ZNrkbhsk62E5rGdHwql5YKgb1YCoI2cLHVCrjh5cySVTd449SF6Pz7MMi8HcsouAWf7jOB/MEYMK0PR+1LyP6L98LF65XsWnkV/pMY4ImehOdf1ID1/LHgFPCR3rYE8L9sF8g/4QynxYVgRWsL3qoV5zVZgmBfFE9ZZSpQPjUbko4ac3nuKXzh3YOxKYvYqGkyrNcLRSfpH9D9R5a8NWSgdGEvLF/gzHcbj1NE6yUsNcnlbZsOwNYndtxHyiiqX4n1CoqAjxIx0Pk/fsmjcUdWDLkcvsefj7+hdaVT6VP3D1r04RxY5cvA6NfFOMlFiIvGHCGh39q8ce0v+GDczrue2/H1IjHWyFWGbZkjgCN+wfYBpi23D4HDxGR6MHcUP0n7RKMV7WjshF/0KWM9ljTpwtQWPfI61UrhO0tx3ixfinhmTbO+HyMScsWnVXFQeFuf+jss4NnZMDqx6AbNXSzCe5SH8GtbCEYNvOYdveNwy+3z7Oj9jKwszaDBN5E32UpTc+cDAI1SMOpOAfttm2nSloXkKGuBx69sgu8eRuB5Jx77z/dS16d58Pf0bPpl3w09ryNxXFk7pca24WGPOMY/DEkTa+DY4DI85HuTXzkYs1PjAGHqTaz2nEqTHoRBtvoF+uCjA5VP1Sk44gF3b7kL+lnXcHjaO3qyphWbPPbS6odPWO3TADycbgY9Y3r561tZlJnszJKP53LDzVqkwCnsaT+PDS7ugopnxD/nCIHUS3fslz0HQZXNMHdkPF+oP4wa57/iy4YXeFA3lM0yS8HFWhHy+8Rg2O4fRjg28ZFHVuAdSvif2SDKXD/I+3/I4BzJo+DVpAPR1/wIYh5CY70ILqxqhPSEs6Dd8g/uXJnLz1Mn44/aD5T43gxuzfiIIeauMHa2FTx9jLgqzYuTDq6nwR+LWXLsND4oJEk7UpQhOPg+lB8pZT3/Mvr9uRn89yO6SdUyHvoMUVlnydLWijq8xoDBjM2kNKkCRcNTqGH5I7LKHc3vTl7mqJjN2NwvRXLuGty8dgIU5E8l2VPVuLXpF1ztTsUG+2FQG3KB0XIhcO1kPr+Y0Ai3kqzB8FA2umTtoaZKHc5dewYtymVpdsVtOlJuBdLiuij7qoB6pSzAb18UD2ydzANjKkhnxRa4/VkVomNFYXXAZOrKHg3t535x1MLJELr5IuY5lJPP8+8oFYP4qOYEuyUt4nN9x3HKxqXQneLJ9YmqkK10nd9NmspDSb+48JQj2d1TgJ91R3E45C97FoRymNp47jDUg7kFVXR5hwxky/6m0cue0m3hQbhvJA1KF8P4ScFYCO4Uomw1YehLT+eMm3vQzFEAdF6J8MRZHnS6S5psFh6H1pogaEjNQA2nEaD+4Do96hehXR9jwborHNe3K8PguA2QJKdKYm+f8uOha2igpQmjtlTwimABuPTaHzcZ7OamczOwYaQGlP2ahDVbQmiwp4M//jSAnt25uD4jBW5GvWHLWZUo9+4E3/mjRhIf1oLaWE04GFwD2+3VwHGPMzS9EaXwf2qsozcL7oIT7LUT4Fk/M/HvYkfYPvcR5h+YBpOXyvLe+nL8e+8IjC8Wxw/DgTDNqJnr7b9zwkN50Eu05wD5UaD40hejyq6BrsJUcrI6xa/Ekumn/RdumRsH6Q12tDptJ/s814B1LSVsc+Ah7N65jrWqL2PFglUUK9eLjpdKuKX4Kh/9Mp7rRinDx/Oe5FpWjPO/f8HwA/NhdchhqDd1oB/5HrymMxSueUdSS4AMpF7ZS1YzlMjxwjXe2pePDXOM6dXv8Rior80ir5W5bpUYe50yBxslPU5MMIR5P/dTgIsRvi+ohk32o7jq2VF6WTUd3Xffw74DRvCUckHJ8jqoWYiCyeRvkFG0hkN9Wzj/4Q3oAn1OUYrg3igVwKwqSOiay2tt+sHGO5TMKs9j4LohSvj2mh2/uMJX59HculIFRq/5hXeOa0F0mT4KK1eTUpseq/u4gJJ8DFxYexp0S5tpIMYSAjc2gKBhNeC3aWQzbiXGO/pikXct9Cc0AI05T8/9vlNpjxXEfPZFq+ImvtoVSv2jqqnknwvM61XkMw++4bEUCfCeoIetGWNgS8VL9Po1FrbV5eF5299003MCZcW9x/4zQ3zqWgK69waDTJUCCOQeoNoMRR77zwZ2jauAEWfCyMNTj3e+2k57vl6HG/OJY3v0YeZJRdZdvgUSeiS5Z1YFflcwxezwEqgXy6RC8a0kqfgfZtgJwcv6U7BINZ2+HnLG/okfwNVdhq2b0qmhUA6tUxLpvsIbHOelCs2rzMBm+Qo4euUqVH71wW+Ndji8X4eUVt4nj6fH4a+dA5HJFJizfCaXynrhLt1G/GT5lSP1NkGotAB5mChwrlk38JtH8HCGLLi9juTWZbacUhjNUfN76KSwFS28d4McXwxh4Dlf6EzyQr9iFfArzsDSmCdgFKENLTd2Y8LE7yQgEcnvldPge8RdvnF1NVWumwQP86LhbMMT1ugbT0F2SlSLH/iOcB8d2rIGPgZv468qN3FajQWsNj5LDnXXqOOJJwmtyabITn0UG5yJK65FkqveBHqhvJqnhmqC1IYwnpH4AB70FuK1H5NpbvADiO1bBQ8un8FkGwLpuU28LcEaJom+YiW1yWiYv5dk1otQYs8GkLD9iKtnt8JpSOKsIUVykJSEH4dHYei8Qn5seBRLFWU5xCuAzSqsMPl6Eg3eUWJX0Uw2khSB5fHe9G9RDVRoPePEvBN8QkyBHxX006+kItIPHonHiytp9xQdMK2z5b/TdtOsFeHg2dOIN3e/hUur69l1WxJs8/RlQYNFcGSMNrSGJoJTjhQZTHvCnzwPU8tyb1JyOcH+VS2Y7beFM4ascEWOEbxymAfK3p9A3zyKp89fx/vlNsNv+WZ65dNFHs882ELgMEwzkgap3c/pkv56nm1pw7P2O/BUdwmu5Cx++HAHxqbvx6Wt1ThOWg9gozH9nvqa9vsE0CuLLg7Zv5kMxYew7Kwp30sJg5JPe9BtpSmsmSBEeycOoPWKlRC08zxejVWg8INnUPD+Gvx8uBBsVK3A6fcUSLieQHXn27G4bBc+XPUP/drNuCDTj8UyJ3Paje3U/p8BDeWMhnlhVrR4VTPGjTjPh0cvoNM/FTintZxTbbzhuqIrpiacJ/UHciDxSQQXBt8n51GBuCNrgL+ML6YzXwtAsfsaFV/cBgbpZ8jBTxoM1tZz38OX0HfZES3VdnOaQzE92/AZt36aCLLbUqDd3wFGrpgMsuWRsKWoEm6H9fH5Vgt4TOe4Mi+c7l6eTVUqC8Br0WzuHlAEF4MsuL2rAq6PHMkLwytZs28EjBK9gneeRGDW0C8oUZkLHnFK4OXznZc+vgt+sUX0sekZah4+CBr2r7D0pyQbdJTCStF4ND6nBFumPSLLvL0smZnHMuUaOGbYBXKqs9E7xJbqLOTIvvYXtL6UBfX4CqqdqEvx06RwpI02ZZS3UWWZGnkN19CF1lxYd3wxrsxVhR/HvlJIQCNqDPjQVRddOH/gHfwbE4pfQnfi/NVLQDIgAY4dEAYFfxXevMGSjI2TINljPq4p0welc7vot2ExSq4NJwupKlqUJQ67qoYpeHARbUnxQ01TUdKKCEaTBZqwXKST3gQ1wXEJAd40cQqEy2pBe0oeHPo5hGZW8dx80xmFw17Q2JVnaG/wbVIPMAPz8olgFrGQfkVFIl3aC49r7tH6AXnYmy8KmU914WjRQ8xy7MF9MVJw/MBDXvS5HZW8JeBFczD42SxDQZ9EvvS3FA49s8IGm/VQYmoIlQVxpLZdhubVeuGyc7F0atEKkM3RI+1hY9R4GM6H5OZyySdlmCGfC6vzByBsSTTELxuDcf2AmzpT8IfbMczP7EZjuAKS+6QgznERyr3YDG9HJlLdlN1wo6CQu1sVoevRJVRRbqb0u+6gFSoJvR1ZsLPwGAktXEx1JsnUekyc80rNSNBEBUx0fPl19FVUfWsC8nKa/F73G8a79PMej6mYOvoZDpY/xpunw3j7xyY+L67MjfstIeGuOLz7q48qRh85LUqdZfQW4MURyyhNxIi6rGJBfHkATPQHKNjRSjnN6dz+RpCPnbyBg1GEluZXOHnbS04Q2wkHO9zYrMwKtrRXk/gSGXgyeghHrpTF86HjsSUphE9WpENH/SPorJ9J6xeMgel/Ulj9Wia2do4E/4xYiJ69mh7+uwxGxxJITt2dukWccewpXbir6Ewvy4rIaUU4hh4/wfNKP+AI/E7CrbNR5J0BbWpuwiP+CmB6aT1O977CNye34IDeFPioI0opcZJQX3qEB5OTACrTsWtQFsYZJIDF4C+6Va1OjeFB8PlFPs49EEyOKfm0ZeQcHvxbDwc3T4H3Y/biL5O1dChaAqdbu0LKj6d480sNv6ldRhtuqHKO83u2jx4Bc6W2U3PoVdqWegM+Jbxh6Z5ELljfSV35mfAkYyw/MR2GA78V4fu6DYxPtXjFq7MUY70Q3JPV+eBQJXonW/CFZcoYpzkCvI5Kg96FZXBOPZeO760C3a+6HJdiQPYiI3jzpmDsLehHkZDLJHhpLLQ6JYHnaRcyuvcKNFr+kLdONkuInCZ+dQHMNFbhrJFGIOowDbzs3nCdxD8e5b+f3W204FPNbfz6u4KF1Tz4Zg3AT73JENemBt61E+F5mgZqy9ZRze1UmHx8Cs5QSQHHt6a8TbOb16taofT/WLkPRSAUNQDA/ygysyJ7U1aEzJSGklJoSBJKJEVGEUJLqJSoZFVIg5acikrTaihJQmmJlCRRSnVf4r7I91QR9p2toW1TVmHXl+XQe9yJ1l6sh/XDatxy5Rm9KY+Czcv6wPiDNjydMQ6vlp+nU7p7oWpqMB58/5Z6lTo5Pf0zhc+vgIKI02S5zwjyVtRCYKM7q9X/xR+Dv3DKrykYtPcKy5utxOGTYzhstyhYnRKCzCn6RB0/+Ybocqqe/IrL9f35c64ECuT60uTaWhgKLOf/PutDuMwTqPjFfGVZDcnJ5nNbkRqU2lrDvnESvPdnF9m1H0P7R+JgePU7Rr+voAeXT2PcjHj+b7wC1S7QQuvDNrRyRw6yxlgyydSDRXaT+Y2CAu29t4oexx/BXwFJLKbWBnMvB9P1fQFkN+0i+N4zh4DsGKr3raZ+r4vEyQ85Pvk8XXx9gPaMyeNm0yZ4ubQG4n9qwjY5IaiKPMWJ/fkU37ebPzltRavHKdC/8yRrnn4Aj3NT6eQ1HbhalA2Gtxej1sjpmP+5hvf6ZfHw6uXoveM2WkvGYa1fByyUYAhzO0CJWU6kM1CDwQLeFJreyfrpn1g2yI8/PtuJh1pu4/XXdrBFTYsq9yxlkwBBnLMlFYvmKqLHk8UwcqU8ZIS6UMa1eaigJQBffPPx9OTR3PtQgF6buPO9qUUcfu4BhrkOopnmcXYY85PSfO0grEoQPC7cJGfxcOqdeJIyGy4S6PbTunvhaKcchZrSsVghYgKBj89DidhRGu4zIt2aRHS7nY6yW79S49N2/jB5JBvG/KTr/cqwwrqcRVNdsOmrLbi+cWLB1Q3wzGIcn/A7xyZvylh6jy9+f2EIOvYvwXuGFn9o3EWNVv48cCwUDv92xqe7lLDtyAdqCHHAHh8tCB4vyG+ma3KDzGHMEt0ECfVWFBayCxvBFEqClsAXwyaaWKUK85dF44SJH1gDXXGEkjnEXjCjOWP/g8CvobhoeD3dFpdg/QhLEP2rTs9LwnFBbjsfitkNgUUrePTQdVxzv5yiiorZMesH7ohi0Jl/jZ+fy4TAChu80bsA9v9Xym9EhFH5znMU+r6drv8tReVXhnBAMABHuFziZQHf0KzbDB4uFMPSgXJu/LEEb85Yyn9eT4G6SwBb60xgW7YHj/UsZUOX7eSR6M0yXtp8v7Yc/U9WUlD8cf61XQ2s4gRxpJoovTs3Dg5uc2GZzlz40ZiP29pEaP5DGxhwbiet1jEw+B7B4LYwPV+qTw9iNGnboghUFL/NXa/Ho/uOaCgX7uFpvYbgL5aE7fVx6PRSmdfUvCZhGQv0PnaI1zlNQzGNDag0YhIPPLACXwlVTPHbTjuOHqY+G1f0rkuGRQ5T6d7BdzhytQk9FawkbedJkDBjPZb+uEhq2+5w6NHT0Bb9lTaTOBtnbsOm1M1Az5bAoZGq4HtRjZ30cnlq4Cou+XIKGmc0opHQIs55UEqve/LApGAJ/DK2gCStZja/k8nCxbaQtKcC8/1mo3v7TZYRWMl9RQ8w6YQqNijJQbrSK9j4Zx/MUjyGXhP9SUTxG5mvcICK+0chL3MtUfUKvqJsBku236Aj8dpctVgQz9d/gfHRg+B4aT3lfrNisUn6/N/uOqr/ogAi4ldBNEuQc90LQPtzJyj/a+KgnA1UOKIGf8/Pw4UlQ2wvNh7U2lTJ+QPB1/wyXD3vBajptYHxL8L7MY9pQYAnT5lbi/c1VWG77S7kham0QsAdX8E8XFm5FV5c1aa7LgFQViFPnb/msM4hDTgx9zxkb60nLPiBlyIeka67GvnQbrht/o9/NLnzpmnTwPmlBZiLasNYi0Ey1vjGltbrefnYGkqvuotKUnl4fXc9468JlGk2CUqtDkLfJx96PvY0yEYOkeniBEyJKKWveU3QZqUGd2Eqz+mXAge1u3z17VY6JdHFLjoZlCgWBKEfsvia/lZ6Nm6Ijv1ZQVMzBWCDYy+3LrSAlFfuJOmryJdHRINszFzkgJ3QkvobxbwCoNXZGNYv8+HzKap46pgpDHbUQMB1X+p93cYTjt/Bnes6oSh9Ewjts4Kn5gvp37K34BOVi9O3Lodbz8TQYc9PLvSI4zsDhXDOfSnf3WEKu9fcBomXhVC+tojLvnvR9ycZEC+qwzhvDSs+EObHmv1QXC8PSQLtcCPUmS2bLUA9YCNNu7ETf7XM5iZtd3hQcRvfBWSwgLMIOIzKwAfCuVhb/BuvTUpGgb+aFHw1gZ94j+eQygioDNpJI2aowe7XwnSm3QXX9s9jG8G7WLc6A4q/inHgQ2dulpOjndMiUbfIFoxdfXniew9ym34OFpUlQugcFVr9biNDdxwWj/Hlr4Gz+Gy7Lsh0xHHB+Fyo2VzMR/2jeU7SCeg82wRSK2poo40fHnd4homTTcBtlRTt0w1FSleH3zdluaPoK7xetYLMK97BHtWNZHvKA7aY60CmhyTA8C7INE8HkVO3YKODE0aO2kXqf+Mh0lmGkzNjcEBACLqGXOnCm9m49u1CdvdZTNuEntOeVafgy9rLvOLLAB7rfY09agYg+nsYsmunYt+yr9wZ/BtjNq3hkIXrqSz3Ml3+uJGXq7WTzFYTaModwQXDY+DyrlK0F5bHQFhNjqK2UCdiADZVazCm5TuEhkjDyXmlvPWsKE744cpNNIq9zjyjtbZeOMXpATcuOM3d06ZRZ40lvA1fC927DPGwaAIrnrOjsg8vcLB5Gcw6/pJa749Brc5CeLLPFK68SKMT0SpY2j4CNibksM7pUMy7rMgTx4hCmeY5UHlcBHIShnCrxgjHjlSBFMkh9rUz49BKEcidKgL9M6vp4mwdvv2vCHJvCsINUWWcGuYIqcGt1Lj4Ee9c2o6iV/9ALepyZ9EqjsjIwh5vRVjsb0Ahk3NYy0kT5aKycVx6Al4syGNFiTmQdM2dzO2N4Zy0NIBINnnseEr/KbWCRF0nDyv8gLlvToOS8wJouRNILT/l4OZsAfj7+BK6HXDC3N6XQE+iwDcvE6sLnem3RBUbRIpTbO0/0j+jBmvOHENfmwSYm2EERVblGDP9JT0xu4VN583BSEuHfxkag/jrSfD7jC3g5EC0iVfGGUN+7FeXQEvC78G8ex3cWNEO5Ipwxhcgu3IbOkh4gGm9EzrLi/DOPA3cJb+BFy65zz4diri29R8UPlGCuLVNePedH3hI1KCqgz2mndiMyse0SORqH6jmlIHH73eUtWUKpMh1QC7a0emcV+A1P5yHHJrBZOcgHFEShfnrV5Kjhgrb+ktDzLhW3njYHXdorMT+P6k8x288hxw1JdnVYRw9bxEuH9LkobgJsEPcnB7Nvg5GYeWwqCCbzimWA1ozCn6eCxOM7tPZxF0YMl0WMsJesI/eX9T1lYXZkV8gIv0dv9QsR5/XrTg7TxeOBZVA6FcdcN6lR8Iz1LlQJJdVaxJQWSoGBnf/xY4Vu+ntdVF49mg29f80ADVbNWhZ9oz3JZRgcuRMDPu2GTvme+ETnzysFjRgSTiCU0wYckXyqGRkNPt6CuNI7sRR871A96c/rsttgaDqHAytK8dbNbLwZ3M+LyrKoZmrpvF+ysOuS5KwVWg52in+g9CtTrDihh2NfWEHvU022GXfA8vtJ8LnImeQN2jB7YqT6ZjTdNxQLoOeEIzvbdTgYtF9PmT2GC+EKKFdyTjcOraIr+w+i2Ivv6OylACbWo+kJ60CcGXvEdZZLwt93U3YVN5LjqP/kuaRFt4+/jzmtw7SCvsivmGqDThHj6ybVKl2kzjq+w6B4MRbrCMhhvlG7/iMQxLNy9xJLma6oB8tiCndPuDa+ZUkx0fzrPw1BO3SJPDiHSSW1dGMUS8xf58WjBn7C47m/AX/vbPwZagpFllcotN/x8PVoRBQtBQEgzHKtOPxaNi4/hj682E+425Ls6crQcfSMLh1dwL723iho4cBw9uVbGEoD9ESM2DZi2N08c0UGpN+jO73d+Iu+2/U+s0Da0I7ceGan5zjKAsagotwxrmZbCHzGkM+B/CzISkqjSyhQx93Q97ial41V4V3TpgImRa54KAogL/1rvJhPWkSiPyMPfnXIMA1i09lvKfCcCduNbCBKtGt2DP3PR2GOqpYMoyuE1Lgrq8xzgqZRIEBAyzushhu5hjD9L/KVN99GU9sN6XqT/O4udqCp0juhpE9e2lumjckNWXyKU1dWL2olQ58yuCVDRvoi9lDllkUAX5HGDSKk0hR6BMFOmiBxlgtiE2fCbr+NtCnUohXu2Opb0U+niz5zENTEuDaCFsUXXCeQ6IUYfjmSTz/Yx+P/rYWfloRDB97ScG10bBr8wY++Oc6Ge0JgH/JQnCzLxq36c3mle0HcWl+IQaVnaUpgy/g8DwzqJAOxtBZT1C5eArI/3tD58yMcatBAzvvySNbASd2HUym0N9TSWLqRzDOiIcddrqwas91MnV2og8d29FC7SbihVMkN0qc/ihvZg3PdPSbvZ082yYDHHzHqi0TKXjaNRT7cIxezXwLFjt3YGjrWng65R363FXjtnRbGCV1nastEtkkwgEWWC3lK4tV4OypK9hycTv7xR7hgMf69PCQEexw9YV/tR5cLKsDPttPoxBdIZXGVHALDuGVG85j6+YZNCLHAPS6dPn9yGUwPbMRpz704RkmKgCPcsB3sgd3yPjh+TPpuMvDEnZ43iLNhN2w98h28MoOx//2mbF7/yRu9nvHstbnqPy/IBorYwslz2/iQZ8S3HbmAJR0reNVrcqYHdWACnWSVPnpC0c7PSTpYiU49FCT5f9kce/F+ay46Sgu1zmIU5+u4ibXRrRZuYdWiXdzkLwCbGx/iMvtumm8pTTvUGrmyfbp+Mq4ju9ZH8dYyfc8LPkJjBJlIHGuGX0IuMjq0Td45v0T3J+3mWSLJ1Owqxj4HfGlHhE/dAuXh42SPdx+ppXdPD/S5P+kwCJAhn2PzKDDO/aATMpK2jckCk2t4tBSGYH1h235e1U4lmXehL9fZfl+yXVYa34EH9UtpXLtOr4pKgit6/zYw3YepnyUR7HgSJhgtYZ3zf8Afb2/4LbPAvYsimelrokQmRqKbbcDQGBIk1/1itGyKXNgznHibY26ML/bCd9e/0V7lcfB5VnD7DazlKJz/8M1DTlYNM4d1o/SI9PxOtRnf4FdsnxZe7QyjA43oP3lPRB/XBPnVAfC/V0O1PLqDUWOk2WnaC8O8X0Ibx4ApJ84Tu8LfXHi9/1UnucLYd2nUcJYmY06NnJtQDrrLHpN77+ow9L5ivz6hhuGr41lb/8MGHgnggJfF9Nx82rcULgM/CMvczBIQ/kNMfyncIYXZKSSkcJn/GG+iEJfX4CD9zPxaXEyTa9+jKXbRsFp0R7ymDONunfexhO/o6na8hEpdQ3izKNMkj9sQemoIyi1WMPJ/FX0Jr+LpyxPIQnh23BJw4cuhfxmt4EeDrASx/Bl0exqJQ0tm/RBZ9JzytJ2haO2ubDmUC2pRH2HPkMlHBzpTW+2VWGchTJYxl6BJRUx7LL0HURiLgucHMYdWglcUv0QbLyjEOsvYPJygLEvl8KRb9dpcWUFTgmJ5kv9RhyjdA6vj9HkMqkZKFThjyeEZcBZsA1kpAbxputPvJMVzxfyZfnYriy6+04GJn24SCaLXEDHh6HQOYZ6pSdC0wgxqPPRpivNG+hpVi/8bHlK9R9HkWGWB62LkoaoCHeYcr+HEizNYVqNHy7zqoXBd820uteL0/+9Z40CM2xx1oLNYkEkZpkOPifeQ3JxF0WPmQ7RhhngNvMSCaWfAYVJDyj7jCLY939j8cnJNF/Pla/5FVLK7BP4/eFa2PaRaYVwBns1zqGQVDVojRrFWlavcd3nIXaWu8QB12r5P4UcGtydTg+PdoPw83qYaawD/r9HU+/0BHwQq8gul19RWPVpCJMy5V0Rh3Cz21sqLnoBSfbjoPt6MbctfYZKGz5RS4gdxWg6kHLaDTR1GIm1+IkDau9SVrw5bN2bAT4b3rH+2pUYkNSE437d5Zz7c/muvw/m22agxLAV311mBweio8C7LJSkt4qh5KM7kGQUgj0rkyC67zolBJyAurrFEGU3EZ7PF+atvufQ03UODItUc47PYvTOjcCRKtdwb/Z7KDfbxNuHp4DSLz1+PGc/5m4ntni1gz4lACpb+cGDP130etkoCEx8hYoqxvD0bAZtaBBlpUQXyNSbwfF/KvDnHSeeNmsJ+ype4hLdp5j0TBI8zutgUGIIym1SgaoCJQ4LHg3ePpVUuk0Cu6Ymkmi1DMx6YQtfr/mR1ptnGC/ylDeMeIP6j9bQtpowcDjSjZfFo0jjlSWZLp4Cab6ZbF2Uy6btT6A6/ycr6iSyXZQ6HjmzlRcG74CVFh04/ucUaC9+T6fnbqDARbVkdzOSRk2chyvXmNAVx2AM/aAChlVlpPLdEDQcyylCcwfZvFyP2TbOtOdsMnofsYLNd85xxyNL6H1nRSlmBO025RTj1cmB5QbUmneLcYoeK4qv5rTgMFS09YCWd6ak4WwBt8Zs5AKhWThn8CStMxsFz2Mnwsq1dlzoZQApJR/4olgvJOwyARFfMbLMPo8uAocoqLsYPbv3suS6o5RSas1njNpgkf0pllORB5XoIFY//gE9GsJwS2MbOE2N49F6p2g6KuAS5yHoLfiG/4npg+r+rximsIdDn2ZTu2MOXV19mOeMOQi7n2znO/MCUXRxHpZ9swK16REQuu4wboivxs1KJbB3wlzoTFCkjbW/cPWBFXBEv4+PZFqCgGgAJj07zxfjT3BcviutmhmMujVKdCoygt1KjVAr0od/ChI88niNZ+V2k2wywZQZAbC2oY5lri9Gs48P6ZTofU6uiGfT1ZNBZ38PnNEQRjjyEe13W/PGq8ZwqGoLrDNXRO+lwawzUoUtVBVhdsJO2jtUwFE35bhVugOkfvyEx9ZxFEmPQb7Tk/UzT9K4NIaT74eo/aUI6Z14ym/gBfcPpHDq1Dxad1qOQ9zdOd56CNI+24HZinb+4C5AiZJv6MokpF2xXvC+opAuhoqjys4mOjntHp4/NgoennVgk/Id2H/fnDTk/PD3CC3UrlgJ55vzaJ3NE54tfoVXGqlBsr0pmhZuZ3a2xFf67jzr/Qm4KXCSVD4Uw8KzTpzT7s6/e4XBqCyEHSt+8VudH1h1dhPmqt/kOb8aYJFiLNrLxPL+kHLo2moO9wwAUy7XYOS4Kjy7X53udobjo+w/4L3oKP2Is8XnAUlkmSQCZquDYN/9C/wpO5X6N17mLi0pbN/VTjJKIvzE5gEnC+dwaN0EaBO0xR8K1piae4kPnZzOMkHT4OG+kyhnnED5CoP47JAJGIQow5EV51hYL4AqLxiDxDzGzoeFjONmY719JxypaGV/6zoMM7CBS1ln6PhIVx46NJ3ft0yEnrIsEnUJg3ezH0Ktw2bekpNNpqHaoPNpP3k/O4pJroSxqj304N8XMGoYAf2ZPVhy8ji/Hf0cO9eMgboFjLo/JUD8iCxN2b+Oy33/wCvNyzj3w0Rq//0b+3QyQP6lNVzyMcDCH120Ux7IRfAED7t9BTs7JdiqcQmsF19mw4T5lLFgIuzb6wRSuypwRrsEuAor4tM9sTA1ewkn549DPcPV/O+jPETmCMH+Gb/BAOLYzncDTZb+BkqXlvDLA73wzKUTY1+74T3BW/ShWQUi3o/H/2bf5rmJP9D6SyrOkK3mSu961FPIIUEJTZ5rN0yBCXrgqVbLptFDaL6jBdwsCsA/fwMuiHZBrxkD3BQygTdELefphyaC6IidcD5ADfiyHUX6/yHflX9IraMUHvt4Qtp0K7rRGc19BZL/d/9PWK8Gmtcupj8TtsGRyWNZJ200fh7hB/J5QVC8X4Pks+J5gitBUkcNTHrbTnN79LFfWxP+zVsHKx+HwPK5l2mDYibeX7eD3D/KgDCk0ArJYj4o3YFCmx/ALdleMowpgNVzH6F58yo0sogDp0Ih8AjpxVuCC/jO2DAaSJ9MVjde0Sh1D244UMPJ6kcI3OfSrxmTIa64Br4cqoRxuoWUfOgqT5NahVI3xkDDQVN4/u0sbH33m4JcdOB8/ln06FpA6061w9qKVNg8YRz+samjfzNaOaHsKIx22oq/K0bDwfnStFzjIEjkibPH/QyUVx/gfcPVcKFLn38PyrLm8Ac4mGICW4bmollZO2p03cEHe57Bjt/XsE/wHkRsbGLj3B10YWYsve6QAGvzXOqI9OIn61Wpd446zDgqQXED9qCr8RP3HL6D7mprwW23MPh7h2PUFUfSHk7BzKAztDBZGrp2dtPG9ythzflc8OgXAf01I2FV/TBprU6j8ndjecTBSI5ssOHgJd+wOjSRbg3uwUvinjhDleH130io+3wJpzwLoLWLxWl55Gx0ufYWtztNo27JW6QtHw3Kp6VgteMVLNe9DrmH//FwhCLYz1dErdYj1P/rP9Ap+8p8GXDNYlkItJ7FPjWHUXjVNPppStwG+yFbOJTVxplAx4rj5KkaTlZtABW7xzKp3cCAsI+oqhYPrHQFincthaLxpuDxeAN+FneFscojQEtdlxP39KCydwtbWjSgmJEWbnedzFev6nCj8WpUP3ITIob0IOxCFSe/1+HzpX/50u8+8G2Oxc7nsrDyrjduz68EDQsrfFCuC8pFmuy3zZ3crt6F7Om/SaFInK/s/EKtladp4aTFLC75GmNmW4J2fQPN+XaCl8w4xY7fJmFWQTSL1OdCebwKrjQoopb+LFq9TQZUx+6gLrVWktgoyn8c0lHkjD7dKjRCxU5h1ry6GXQlsuC6oxX0j6yh9tH7YdOYpbhatxFHv4+Ft4WKsEuzgpY1roQf1e9ZOkwcns62JWfjAJCfZ4Ra/9pgydUKzLv8mG3XfMCFD96xg4cBuxjYgMbiPTDmUzmVdTWww8frLNj6hgUeDVNCoDvubVpIAT4qeL5PDrbJFuNU8OHH0M8qWZpQMlKcL+aKQevxLAxZ78/Hjiwkth4B4u4aFNaTgpOjdvEyp2U0TrqazAYm4Yc/E/B44Qb+vDoc1NzsYGurLmb/mY0qXY3YViODnxMPU+zRJgr854QOgUmww7+NVYvkoLA5H74mlJDm/iGqH3MMY5/r4NppvyE/XIofFyzj0OYOFj0lC0X6tth6vZ3L5vdSxH+N7DlLFt3H1+HnOVa0OiCX9QKG8WSYBah+uwszPhHeOFGEo8388JTWAgpfXUV7BAj6U2bys8AgMDLVhKN/cyi73BHiUt9ymtBFaktzwvFN6uw4cANPiG2ACF930v47BrqaUzlGYBI/Knblwj4LfH++D7qVhGH0I3+wFROEsQ5xZHp4LMidvURBhdKksFseZuFeSGv4zNcTW/DQCCHOq3pGhcH6ECgyATyrknBN2m2oitGCjGZfiGr6Ttuet/H4ey8gboYnRv/LgAvDltB4xZ52+kXD9uFmKhnoIJH7hTx2mS1Xim7gg6vVOOTgJYjaNhHKUkuxt9obynvlKVfRmkzMLuL1r2EUs+I36l5eylu97kDcPRs49+wUTLrYDjPFDtM4z12s+e4KVKdK87nvqTQwOpK3SKjwHWsBeKcN0Hc7G8X3VkNkyQPsNz8N8VEW+OlTOew2CYD4u7vIQlIWPgi+wY1/ZNn/kBocvJsGoWb3ODHzAhpPmcmipZE0VyuAfCV0YfZ9e/YdeZaTdP/h7Z57lKM7SD3npXHL/lgYnW6K3xrn4vpcDXhfdp9bTkfjnsZ2HL3mPF1MKIB3vTWwJi4TlYOeQZVDNgp4Ikxf8ppWpkphbksg7HyxD9/PnYNb/Dtgq8V8jJc4Cv3zxGDBTiXYPOUo3hoXy2naT7h/0AWvz6zE9pwU7Em6gNYOGqRde5hkZM3gQZM4G534CP3BYhi+Pg705mrBuRd/Wd59AXR7LqafK/9QaZ8q7NV6hA8chmjNQVWeU/GMDMO+4u9dJmSzTB19dz/AAy2/6dHHKVCk+IhW2dzhlSlNPG6qLvfnroXiyAR0WSgItVppfPDbR1B7rA2dtdp8w9UIis7dhDn/PuEVVyWOeIy4T6ib/5xXhsggcQw4aQj1XjX8OWg/rnlejEvirWCrYiyoDedz0QCB5NafoHHqGfv+GAUlI2byR70QCglOxYumSCY5w2xofhf/NqjA3euO7EbXeLUTwrKUfF5QuQpXt6rCiOnM2/pr0ce6GPPtrpGt4FuYtKGQ+hsng9BcUZRyn0hzbVdSaUMHrNTdAJnh4fT4oBf12f4BSfO/LNlrBncwmrZ0S2JJ7wuecfUSKP3ZzcvX3Yeed70o83EGDilHo2nLaNjXp8+2645xufIeri80h9hMOX70aSxPDJjEbgczcM+B9/jQhmBDxHG2uh6BkYG3IGuXF024n0Gg/wvSjLzgp+cyKgu+wdd3yUNi9FiI+3IMvm0+QHemrYac6v3cnqLL+7Yn4or533hK60WoW2kAOQVnQW24DP3PhfDAUU14fCEHyt8rcpn9FXifvQWlVu0F91Ip8LxviA9lF1JmkTJ+IlVOa0nmuDFymDEhHNe5baWLYtrQMgNgWuofkGpeyF0Yhn9jF5OJ3SvoeCuAcSKpMCDqj2pbbODRUw0IHFNGppX74c7YZPq9/Q2L7S6ghCVOpJN9mi94tpJQlzqb+cmAdcN+/LO8DpSnlfGOQFGMXtOKOyvK6eLmStBY/A3mvXUnlXmiYG1vDf4npmHZe018XvSI5mjXkU7Yfr5Ufh++aQzQ3e+NfN5PBeLMXvDx2QfYPtoWkzdl4DIaxx1pw/j3znp+W36Gli6bBnM1lKClbC9eMxnAkypufPDXdm6TzEL/BSmUWz6WO5VauUD8JL3qlAXDmFlYr5iDG1/r4hkPB/T8IMvbq6TphtB2iK5fAyWzZ9GkjeoQ8vIJ9y3zJkFfD5Suj4ej59Ohty8a3CaVkY/9EfRc7cYa2rLwfIU/+TrrsfMmKYj+HM/79iazvMsyuioUixGdQrSn3Qn0pIVAUa4NFu/QBdvVyUyzw6g64x4INZVT+5MtJGz0A5t1DCjAQRSK69/hq/M3eKv8QX6Uuw6nb6rEm9NyuGyGI/zn8I9/2pmjwD9D+DEQQKdm53CVtxrJzVpCX3dpskqHPM908YTTE3fjp5LDKPtWHxKmqNF/vecg5d1lrmoapOKvX8k7owbLNRbDZ/v5+HTXNRyz3QhaTkaR2qoxWD5DhGTETtLf0NEA+xYzfevCresN0TroN7x1N4ds5U4cnfsPzwg2cJ51FfUelqXBnzHwZXcXDCj44ezUTTwhTBLSAoW40OUOLRJ8iV7DB6ArI47cBBN51odkWuflBiVef9mm2xIkm1vBcI46nJ6lzK5W9ymTLXH5Ihn46OjAvx6cIftTcaCfYgoHs/bRv9dTOafgKt+4UQcyt+w44tZrrjT9QD+ypSBKYyynHRkBHc4VWN4SDNKNyynb8zAIPvHhaYZuYDzrFaiZRODK+VMxOXoCHF/cAR2v90HUnQJ8tkkTV7lcpibZAWrse4+pw9c46PM3eHtBBD4uzYQfygvQr/AFx5W8IM91MiSneY5rjvuSn/h9ljoQS2rhJiBUsh4n/u0h/6PydPJOJK01rOF9S2PxX1g5qdsDbngxCNOemEHRuclsWH6U37z/AIIqNvz0czBVOWbgf74xbPRiJbRpy9L+2BHg2LeaVnoU0ZaeOxC1vonuB8/gl+vu4j3xAzwnKoPDfQbgvZUA6O96haazV8Ptd7v5aGMGTnb3Imm/CxxpXEfCpZvwzJpJtEBXGPwLzrJSWAbtVn2PwRuFQdhkPJ79+ZZ+7hnCTQe64efdUXjouAX4No/Htuhb1HN4KXg+68PbQgOsf/QSzNs7Hhbd/AYtqkGwoUkaoCCLl6/ciz3ylvg6+CnI1G2nl8rCIJI1BG4Hamjt1KfkcloBXsorw4KqDO4PPgtL7I9go9YPKreR5ISZeWT+MAD9b+Zy5nEVWCj/gp3ORYNW9g+MfFLKq1wG+d2H5dj1diGpKUZRVcMjvKqjD2kmaRx5VItmHrLg3PsP4OuPtRBqH4rZOddo5LgRqNZeSgZLNeH4PCsMrPtCvdof2Ge7N1VOTGTBlmjoFm3BhWfu4He97yh92QrK5gNnfIuEX5FptHbtG9A3F4HdI/topKUCK7xaiTPvVaPUPH34dBepZL0pxR2upelWSWxs3I0tDkYwVm8CyQk+hv5F0rBXUg3e1yB8GRNDMXMuUdKL0xQ5PQFuaTXgCKPjGN9kwDGn1mC4qxlcHLgLwlGAOKKIqTGHbytORNXB5XznMfOiOQFkdH0Cyy9Rhf6JDmS/PA/kLjSg+7Za7pxUwUKW8sQu3jh4+hr+PjbMplZioG5SjJUxh6hgijoPLjwEtbdu8KszceQwfJnuNBXQgeIuDMgQBlotjQvkP9L5ikKOnKSGwXctsf7Rbog74A7fReN464hx7PhdHYoDz8FGidE0ePcHO1c+we0nE1nm5Quu33icHDePBg/hREgKU4ITjkYcXZAItwaEuCRTl31adsPD+emQY1WBK5XicNPzcNR/owhbzMXZZEIkDOdKY56rJnelHaePrn042vw4qlgqUon/IFt4ycI79YX8eCgRnKyOsfZsD250uEGpE/25PWMySvwcA5ufriG5SypwetN2nLNrDcVVbwbdMX8wssEJXnfY4bLF9bjteQOp6BziUwqicPvXCN7Vc5Cke+4Q/vqAmw55cbeeJQrn6PGq9xH8TeIQWO6VgiEfLT4p5wIzaRufXfqdtTOq8UpyB7zS0MFbHh1YZRQI75SEQNVqJ7y9cwCdciQwsnsd/SsMo4ObR9PvSGVInRFFs6cforKDJtA8axN1a9Xy0Tsz2OznPFqn8hNd1erJSHQQj/p0c4bXPB65QBQi540h8TkC6GrVB8vn2bDa1YPQHl1DI/f9pU0fFkKVRhk/6R0Byf9e0hmHjcRLTeC81yh88ms/T45/CrGTivnv1rWUEnCFLzVrgUOCKD06r0vFB0dBZtMVqJsQzjkpC1lg7Hxckj+WvHZqk9sNDUhXWEKvLt8mtxIHeJ2WAE7JuXRBoQmz+n/i+sAzcOvwNco/YQHP5GbyXvFrsHXtYzxiP5X/zBCmRT1N3Dp4HY7BY3g4+jXMEBwDj3KiebPbZ0ido0SOv0rgepkLxpy7SxPsT1L/jaUYHqrBf07bwlKlSaygKsCW3Z9BpUOOX+gkY/rQJ7xTL0BLUkthl/9y8EgRh8qb6zHz1yR0TJrMH9VtYPa/rWTp9obvR5Wx7KZw9Es5jnN+jgM5+SxWaTDFm16/2XFhLsTqKHDj5kbwLk6Fl9fLWVtWEqUaJ8Foq8s0afgNlD88DXXjjtCcaSYc2QKw5vB43J99ERYYV8J/10bCqDkymL0pHzZfncgGtUJ8+c8T3hyoRiozczm7QJCFjLpQpmgiSImPoXRfS95nNxPbhHpQ8Pg2fPFqHbb2FGLtry38uESTNDvloW3fblDvXYaD4Vswc9to3NJwkX/rjCSZMjMsCT4Pp3bqwL6NMuC/wYdGHh+PsoZZ8Mr4H4zyGaT5e2twmtlKDmop54uPbnDO78kwMqwGJ8pWcsrtAqpvnUQHU1tYpT+B4vqDQVB4MqeGeKFNlg4IjzzAUpqfcOlRFeZb2/jow2YUS11BmoZi0HgtEmfe3UlaocbgdKyHagVTqe3FEtohN53H1h7n+5ePUaSTJN6JSIA/L96SdZkojH8sDje0jrP5tyU0/no2t+/W5bolZ/FC71xQiB1CozkG2DLPGNom3yfHZWp8MvY2FjhUgU9vA2hdzYbQf9/wiPdhNHkwFVXHGUP482WQcjUKlnga0tS8B+Rofw03xQ2A/Ne58FboF3yO+4mfx6rC64GZYFx8BAbLDtDHHwZ85XIfP/0SwYV2XXhUxJfzRJ7Dp2ATWPeogGJi+rCkPwV+/KyBiOGZIFW8Fk9rtxE713Cw1jR43ikNL+JFYJmTKOwYEQcbpkyFLSrz6PeV0ZxtlATGHkb4uXM1ZidrwoK8i1RWl4jZBY481lOT/jvkCq5FHnB5/EsqXTVEBmdP8e3/rGHR4iEsEvHHJwdPkFXcE1QVycFSpREwLAD4veU550dF89jH4yHz7VronOpKf0eugbQIffqx+QkVnVxDUwrtwLOthGOs7MjAzgQm9WwFlxX+1Dw8Ccao+YBJzVeKr6ijr2HtSAfGY/2lG5z0UQw8ni6DLw+0YG78K67s92TlvEbOfbaV/rm84LFyEyFadwrK9xI8/D0O4rqJv008xGuvnoPwJwNQpd2Npdo1VB0vgneEBnhR8hi40LeCd2pPgtoHjhBj704uX2JBAKRhzG2CuDcpdKbUl89uN4CNVf/4Y1cSdkZt5dVf87mkRRP1XrZzZ5w5VMor8cL37tSsZQr44ga2Gd6ny7LW8ODaaortKcDShg1wpMqA1pW68rxbfngjQw2ML6xAQfMuejPqDclkzELX4GzOursabz/ZQ+GKLVj9yhp9t2vC58vmfHl3IqWt7ETHslIo5hJK+H2EvZ/YonixE479kou54WZQnF0M9Xde8sj+JPy0aym98fyFoupvQeiULB9/sgWHb57CbBM96M7S5rpHm1DOpoGmjRzBz0/p08QXbrR2z0MadPyDn0cJ8sLtI0H9oBmnBprTNvUkls14TefMQvGTxRrwlI7BuisvyPchsbIsgrhUHw94J0NR0UJcZWyBQqWHIdFFHCfvn4n9R5dCkY037pymANYeL/Hj+1RSOZvFZ8wCuWayAz/7FIp/ej5jQegApomn8nWxSXAhQoohdS7u5hLOfuaNBeM08ejzcuowX4JOr73haKEz762RgI7SNWBnVsovq66yurArnhiKg7BmLVwRvpXcrY5hx0ljPCQ/HgbnXQWeMArb+BatCPLlxK3zKWhmK1/78BQvbC3Aq6bFcPaEIrhuaiQl2xO0MbGAHuYDrhM05kB1I6COg1DQGQtu1EzOxZMgwJEgJb6dLp4ohpUXjdG28iG2B0XCwypHrFh1AroUGiBqnh5stiSedjoBZ6/VZ8kqMZJcaIxJgmMp61c6BV39iBn3EmlqszW4TnIB5/WToUp0EY/STOcsFxfErzvZ/YsirKvyp9QTSdSdrQvB2T4goHKWsvYn8Qn5TJQOkQCvTfd4/89xmF5Yiu7qizhjsSRYLiDsPaMEEyJO0MwtjfzphyvvbOrHg3FJ0Jqvwq1jtOnjSYIW8bv8E5IwUzcZf77q4QbZXi6Mi+cS58s05d1bCEmto9vlY2C/Qw2NbLvCm41S6bm3HA8rZJHLxXZ+nNOJ1TO289XSBFz/TwfCNp7hmNoJcLUtBjQrNbFMeS1G2T+H8wO7YbTfOLr8rRNy7c0grTuSm7vaKeCZJVWkOWGC/kdakp5JR8K+sOuIepj2Vw9PLzGA3+bHUF5IClYZncARbkYQ/F0WZFwH+aWfKKb/PQIjF/hCnp4uxDp5gd3va9S7r5p+zQ+k7uW2YF41A4Y9lpHyl1uweY0LuuSNAdlT96DBUw4uao9G93nmMMNzCp50LaHJVcVQ/KSQfd5OwRVLpkBLSiupfH5IMmd+0eQfrmD5vIOdejaQf910nqMahGVfHtPojQzONaPo3LMGbHv5ENMLL5BpgCXV7BtBRsqJYGYeAr1pali5cTQc+HeAbPx3QfpXTdTvPcsFW9ypyCQAoowU8UPKc6roOAfzZovDi5eRJCEgjnd8xtPAXQs8PTSNNMLb6eH5JtAXKqXml37oXDgW4hUYBzpPskT4WPQMqGS3skZSdeviKR2aeEg8AS2O+qJytQzsXzcW3L9W8JcTAqhb7IB6a/+D2BuCLDt9OuXVCMH6F9XUFGYID6ZWk+UIAd6XTzS3NYpqq+/h7Nn1fOJ+GgpJuuNWtSg8sFkAps5t46Ui3mDkrEX1PSe5OHEjyp04SlJLM/hCRwFuPCpD511l4GRuG0pWauLLhr/8QuwAOI41YwtNGz4lfZeDHj+Fj88/gs7zUQAphmRfx3Rw2j+SbWOqi7kA+3uPo2XlCwwJceVfT/fTjf2KYP1+AizyUuCKEfNooUg9ypaKgPboQppsvxsXLyG6eaoadLZPgthNNzhIbR4Uy+rS1nRl2KtpwocMFuHhgWX4u/8f7PJ8gnrOSvDM8AuOan/JF7QWkNgsHT5SVYd7tt3AF4GrYETbZ5rUkgSnAiTAPn0RdGzOoNXxtfhzczJf2XaZlLwWoAI/pcU8RG/2X0PrGiWQu+rAMj+taH9LNsX7tPCQdwzckbsAZxyjSafbFVdsnQ5unyTgy+AZGv8qiw7rVdGhc6kYtqmSxReFwMeZ7+FLezEU5C/BNfrKsG69KijNauDdm8/QWBdtWjaqD9fHa7FggTusCXwAP9XioeePDXQJjUO3LEncoxfHuqEzcaLYLFRtqyH1r7740nIefPas5rTxitChUAo11qPBK/MjFJ12gbDTpsw5fShbWEXUWgYfV2WB3mcD2L1tJm0WmEpms0+BzfnNMOuJPt+CbnyYdpif0A/Ou/oUZP8oQHHXD3bV+Uhfft3gkfpDdCy2j4vS5djHo5t7j94Bxba9GOkvDfcCbNA07QnmGYXhUHotvw6twlUWNym5NgVOTntBFpuf08EFCrA8MJg7tZXw6wIxWC7+Cm8Or0ZboU0UIZvGGskjIN0gk7J7NeEQXeKFFxrpo24K+t9TgMLJV9knfR4+wSnkVhILM1IjMChZGZJyTWBhSh6rLThEg87/8axPX+nrLDv4r9yS3vikQudsPw76qgibbGV5/LM2kJaL4R8SneBofJEy7nzgcYnzKeDsOXr7ZzuW7xsNP91P0ofwXjjtcRQkQutR5ZYfK9hGsEHQagrMmcXh8SK0bKks/EyZxgGLPlL3q2OQsO0ddb1axhO/u+By9Y10zG4kbZCdBZ+khGGsYQG/jLpIh3+/ZCGZg2yUOAiT9V/h6mOesP96M97lUPabqQLt/YfBbv0smHv3OwhGNnL4vDjEjn2Q1TcOt7u+4Sn7nNmz1hQ2H3kFVlN3MtZ7w6msBDxe3Y/rDp9FLAL+sqoO1N41oHGuKiyd0QkGoXsovGkdb1Tdixbf/mKBxnxI9PsOq9ADbzorwysLYQj282IbY1V4dfIrXRVIp2VR+dCRZAtJcq1gsMIWpANPkL+rLcjGjGdDpQ6qXH6QuH0/+VzzpoEYMU70VMZwMXVu0vzB9xyMYcPpGPAefxCDDvpz/P1yki3dRI+kOvDUI2mIXbMExb6cQMViERi92xCumclxcHYHemciCP8r4pk/l1PWSg9a/m4MSF2xxnbTsTD/qRO3j/oB0+42sbvzGRZPuU37TwihwgR3eLJrDAZXmFLLKQPY+cAK/15I5pUXt7JqnBQUqp/DAm9ZHrdygNyGRuCWIAM6s8MIkr9F8+eiOPZJc2WFlkaCP8kspDeJfGI2sLHPVvrPUxJl5bShcdkWnvZyFH14sAs/iEzFE/OcuD1Dh0fqepGIdwDfszeh34ICkPniKh75fBLWT35GbinvIF/uBFvnhuL9bd4wMBjN0xUv0TPLUbA8qwyq82th1vKZHFjwmJr/pJFF5y0cUS3Bha+bMXL7XlivZwcRmzQwdJYQ1VQq4sZX4tyTtwQ+H3CBg7ny9Kj4E9h3nIJfsqrwYcl6MI1dxT4OFiRtf4zyYi1x+gpD2FYXwkK192BgQI7GPpwEmeb/oEItHaT3IP3O6GTX8amcYFUOTo+foNc+Ybzg9p5rZqtDTY4CJQkG8ZbzfRAe8ZZO5zG4b8/kkX0GVG+yihTMPdDYUAReTb5Owv9JwB4HW3hUZkU3Nwpwp6Emp0eVUcu3HuoyN4DzqAoZ3+U5NlQXn6/ay+YborHhlTMY1Pfz8dy9dFeyEnqlU3HcRXPovqxDd9rN4EjzMVC0VoUbd0axZ8EinnNUHNrmLuSzEaOxq90cbnkv4bv/3UP1gGYYNXsdTfTwJv1wd8g8pQBvDX+h4nkdantoC531XtA13wMkg5eRjrAGKJ9zY+Vpo+iRshSFtyyAslGemC8hDqNeTuLXsZq4ft0onrZiAsTHmbDLhRjMn3gPrUZOwLL+62jeYwBOEjIku+Ac5Qe8gkT9+/h2wgwc99eVKyb+o+W+1rDx2HqOuyEBRkclcO6EAMyKiKOdlfV4eJ0vlh0TRRnj0xj0WQDGZ93j1eOMIGfCLD5m8xZ8rDxwbqUF+H1qx9rpfRh+UxTGmeRA0cXttKJSHdITr0F48TpaO9UKXygbI89bxHFF5TjwMI3y1JmOS53CyEElmJpcgW+Pf0Bhqf3otUoYJo+SR6WqPeT3whb06Bb/MzzGGbslwWIKY6NJFd23byaJtDwWsp0PYgLfoOJeJJ2Y3sjts0vp6xYFmFdnyDPid4DpASPUt3Vj9aK13N25G18a6vI6hxSScjOn9AEFeD7vKD63bqTrSXkwYst7mvY5CbdpbiBttX4w+XyV5LaN5YYoPRjcIsAWOwQhMeUP2rrdx217WmGuSwondE8Fx9lzcab5Cj79SBM+jjrG39+nwfi83ahzRZVkb6+gBRofMfPQVVoStxI/dIigVbIQiC+aCbeFotkxS5x1K3U5RMyOvAvuUfi0/XA42RUDHRbA6acA2a4/cI/2KlreqIwDTb60bKMlvpaYxxNtZ9LZ2YdB6bAERGyzgL+7HsJV2Aa2AuG8TkOBtZLkwHOPF2sclqCgLS5wXCKHsm6bQ6bqFo7gZJyuVIDKI5bA5g/puMLTnuqNUmDBGhEWMSsAOasJ0LRuDT7eqMoLDG5iQs8onKejAJ1B/WiaJsDPdg1hjHY89HdPhsCiILANFsTwvj+8v90bHk9RoeYqBXz6FiBVfhyfMFwIx20l4WLkKNgnEEg5r5Xx7/k8jhoyIbv8R/D83R/QeiVCda1zoOObJYyQkabt/Vfpapoj3dtszYLzPpL+mn46GxdC/cvnYWjxIFvPVwFyaOYFynO47PtbFGoZQvXW6ege84qePr9NC1SV8a3PdbrvPBKqV2iguqAdLd1zACsGZuGIoR/4yOMkZkrEs6B+LaboPaS+JnnIn9wFwhdP05MrI3j2oUUodP08jHz7la4M57BUiDdZLqinie260HZqFMGfMEh7K8qSBR/4dMYWtJk5SIrP2nnbvX4ePd4Ua09PhoaMu+Q47Qw/STfFxLxqWuO2lBKTzpNgfBfI962BA80zuaRmJNTW2eLxe0GYtlsCppdswAUPXNn5ZiK5aR+h18vHkUn2AqjrNoDm7nUsFtnAEksW83/xHnTF0o+7u4XA404czHn8Gr/ZvoBvG/XhqtFt8k3qRvOAPHh2BOiClBR9a4yH2VCLhyKO0fwsbVrpJA/hD1opfwzSKakQuKn1lKIyN6O41F1Y/W86ZSk28a+SIjrkZgbqpafo3+spWKCwA7fahmLQ42fcI72Fs2Yqs+PGOzz/cQgddzGBQxJD3DZqPg9+nA87tpeielc85uz3wJYFYWT5bTyti1xJP0URYt57UkVzApw2dISSJjF8KzKDR+uVcfpQOwycSKSYqCNsW6MFwWKvSWzsKlpgitCl04sNlcJsat/Mn9z1Ieu/OMoWTYLu0aNh/58pkKmlRNMHj8Ha0r3Y6G4KoeLboVIyGXPmNkOlhxHqKotCe9YunnBuCXfpLqF9pyxgl8xGOHSmHn2/N8L33MeQvHcWv5k9Bp4+3ctV66ehZ6seCXruw4q2S/T8jSa1B+fTettMnHvyEZ7fJwUeEX4csXyYRrq/oBbnNpTOmUkNi25SQepV+nLoNXv6z4Zf5/XgdlUJeERuRM/5h+BhiCePHnrID/wk+ZdNIK4YnQ4vlrlxXKMx5L5xoWJVL3jiMg5/TNHHDzaddNr1D9tBLb1d3kyjQr6g1WIDuK22Hrrvy+GIFwNoVRSKRY0GIKn9hPw3BfIGoUfQvKsILx3VBAJP7DvaA84i3TCwrYKOOdjCx/+xch8KIShqAID/0VKJhoZoo2iTdimUqIiGrCgqChlxSGakaChFIZWUEClRaUkIRUIpSqSijDKL0n2J+yKfdThuPX4bnx6wQ5/bKlByRAqM78pQcnw5F2TshKqKn3iS78Khanf40WFOD/UBBtznomivAJxRFoGLr25RkfZ/HK4swIcGZ9KDll9wzNeULy+/B02tlVg8QgNc1m7Fif9O4NhWd6hovw/9cy6Sp+kWzklYwj7/3aaLybbkec8EMv0tsFMnjKNbR3KJiCx5OWeh85H5IK2yETQ1knjtsjy+JGYIZatmw7yY3RA3EIt+TqmcN/cLuL5rx9oN02GzeQOX2y7mvszx4OXfBJ+G94Nnixm//dyE29Ns2KXxCX51fIzqPRLUpTedBf9JwfgmacrcuYyOadXglTuWcDF7CApcTVjjUTGaatfT7OGFtDRdHVZ3fIDdR37Q8K5DHNA4ncILcvl3eynczWmB6lPGfKVuCwTIKkJC7U0aEnmFYnQOrFLEqEe/hAQ3nuV3pQI81+A3ZyRkYk7iNPht1gBP9FJ47kPk3neOkPJRmc13x/JB92bW3fUOrBLGk7WcJOxZXYRLbqvioSu1fGlnKcjdcOA/YnLU3vUZ9ve+wpOVuqTxVhpmS33DqnMX4auBNxuW5UP4rHPwK0sYTguH4LbmDJTLCcR1y+RgsOU9Th0bCysWvIXuDbF8Megf3XGVglMSSRDzoZPvnn4LN+1UwSLFjgvjT0LJ0wtwMO00y7pX8YiX3qz92gu2Nopz1+AreJ9uABtz4lFpxS8WSzSD7yVycDT7ILf7R8LfF//wxE9BXugrDPt+iMGjh+Wwumgk9siOwSnBw+iwzBYunvOB0kJNnKEczRb/7cPfv1Vh/6waiDd4TCuX/CANKUHq3XWJn45Kgld5R9lDfoi2T6ujxwFaUFveCe3O66Bq7HKuWjZITg/MsGJNKhX39ZJC0TUqjWrA4hkTQeScIg23LqDVactR8d1Y2nVaAYaV+vDzyHtoNFeGAj7dg8kGevBkJuDc/u30d9RL2vN7K12c+Id7eodpUuM0/HXtLe49dp8ci8zgo1MrVN99Rr6S3XBY5zjmPUPOVGikPBVtur/gB68Z3EWz/hmA/t8STrDvgWNl42j80B2abb+bbwWMhLKYNXzyviXdEBwk4ZdW0DtjH1T//olrDt3B6bpWKLReDn54BVKdehMvCL4EEz4/hxv1EpCq8YdeFKrAjm5jCGv7CWl1//G4DfZUVFwARi4yMOJDIl7p1gLvgcN0aSThoa/HsXm7JcHhXXjXRJDVQv9D98br8F2gkCL2igImjmQxNVla9iMJi4S2gXtALoyOjebvURlwVHeIfiqn044+K3hVcgfm6TdgivhD/vD4Oa6Mj2T6PcgB0TMgdPlaTntjBLMkx0NlTDR73EpEvc/zoWLCD7j/7Th/cGiF/UutIZQPgdfdalpibwlVQREwIaSVks2t4JhQATSdUgJrGXt4/us+bvTSw5FPy8jZxwSsSp/z7A4mEb+1rPipEMNikePPrudFq0/RSOM5tEB0Fvi/0gGXhKWcQTe4Wm4QX1gZEJ9wgwTbcrD68ZNv7Wli/55q1vDRB33LdrCyceV3NkfIQeowXDy0Am0uNuCTa8WQ7TmXX3qocs2f0TB3XCQ4DB/Aw64vqfFQJoxozgQ3y5m8bEEa1zYkY7HKD1zXaw5vc5PYtOE9yd7byzPNA3h1zQrabJlJD0uAQzqWc9nNMJJ7OwHevk+nT4Wn2Vihl8+qy8PW+ZG4pG0DSXfN4l3j14Fx3AIuN0IIrhTAH0/e4PfaM2j77SlfHwiHeR6KdGOzMKgolPC7pAh0bCaQXP8bnNVLoXqLG8r8swKQHEMXMoLoztelkGX6lB2bI0HklDYEGN3k/7SBb5dq0IhtiagPgizuORWawp3hzndHdhixH6zuC8NGn5kYfq4eFSebYexaDxK/qkga4ddxh8cGSs1fTpISsbzQB+GkvRo1+wVRZHYPa8Bd7lioBf2pBzHs9CtWHhQjzQ1OPG6uEKyyuQFX7y2iu6WPSOZtBW5/F0VLAjfyxu0L+eOFBraXTodZP4UgerUt7jr3FR0LjeFU8zeqq8rmJ11OrJe1Hi2NPSlBYxuIvh8NRluacOujSxzUZwNT6+SBbS7z5lxTkLlkRnIvB1BGxQD610qAm8ZbOjutHZ3OH+Pfofl4dKwPfa1sojXHzCh4xwda4DMNLVgNtipOxE2+DXDWbgd/nb8PYg/6gNgtAWhb+wHbq3q4PrcZ7glOgQ1tNqy9IwlTnx+mWD1RyFtzEiMXr8YFbtvZxUsLr4yqofoj0yH0uiHdmP6QXwgthrjUlVQzHMINzdr8zMMJovrOcWR7Kal/EYBZLw2xXaSSvoZUU6j/Ue69sBJc1fbzWEElttNSYM3NTrw/QQnUrW7T8uIEvLQmCx93DMOTyH04KuA1+20fR8siZ1GGqxS+6JIHdZEQ1gxJomvuh2lRjy13Kr/mLfpzaUliHz09F0fdjZHs9cIEbhwRp8FGSwa1SZz9PBErHo3E8g+PYIlJJx5o2ISx3iXgutcKst/1UsuQK9bvdqTH4YkostyKIqZY0fhjzijwpIxVTZ8hhE6DMYZSnCdxHbZo7cbkxfWYZT2E/Z5L0XXMWDaZcwDO35fj34oq8GhqLz2/YE4Oe7z4yDsh3vg4A++pHsVehQ0oGHcfP8x9TE/9GODwXPK7k8nffm0m5WeNOG9aNwe63sCVtu94ksVL3v9XCTzuikHwGytQ8S/hPNexfM4qCqLOH+XO/J/wKGwrSnr+o6ETq2HBiUnw37Ed/P6RDWhXjOAwh0Aaf+MUCbi6Qpf6D/YpnAV9jxOwTBSgR1oS1ny7D6fcquCGoDR+0h2Pn8OU2ctPDIct99Mjz3Def28a/AuPpnG+Qugs5w7aiqPIwPgnh4puY4Vzofw2MYN0lXTpwjNzOLUvjMfezMM9KcLsO3okHrXcQE8krlKC3iV6l/KIy/+NAPfe0WDTV0b2hS+4dJEQ3rAU5MlbtCESaqk19yu/EkwG+4nidOmtCpgKarP0xi9UKxXEIzeEw66ESNb5spBUC1fR65gE8FocyGlaAIN7NFB2pB92dC/EA6PE+atcLuTqNuELcVGSqE/Bq+l2NKpeBIq0p5GLjCzXr90BJ8+N44KSqxS2TB4O3t6FV/6088SnTRw3Rgba3V9DtvYr8mi+Se0Z72nBYnfoL2yCyWPl4KVdG3vOmssz6gGurHhJ0/cYkozyc1olXIT1l6ZTzthkNl5cxctfdJPka2toeqgFiWJ7yDdzNfjMdGaj3GXklTSEmg2iED+1noaH1pGxTgGui5sMqwz9YeGno+RqvITFEr7j6aCbOLbCC8NsJ8LHkFpa9HsM7R8wgxSpaJjg3wVSfA3T4RG9eTqFb/YeZ83WfihpnYp5N7/CcKECdN/qIrGXvTRFroCP24VQU6MXG7YZ87TyAvBtYg66OZ/f6YmAlsBz0nCP4CMBndzla8BjszVZbclpjKxzg0lXY6hP0BWsAhTh+otE3HdXEgJ2leMr/sGtU9Jpr0II535tQokFw7wlfj9fblKAlwtN2P/VAdK7V8l7ch5Qd4ANTjAsxv6PbXxidQoHRC0kZU+AFD9tVpxXCBNn2MCZUYeoPKSGNod1oHGbKD2e5oW524wBZmrDtGQN2lX3Apc9fkD6U7eRS6wrPG6Swa5fa+hyXDYkfHdne9UJ4BzbCZtWKsNp01S++O0EN+68Q34D+jRcZQpGuftx3Tt92uozAZ623uJvF3/yhQxN/HQ6GTMWTqVZjqfINgR4jMpNGthZj+M8LUB7Uy34TjsNppFz0Aa2QNTCHZBWIkzDkU7QxC8h5JIs77aVgwe1gWym68SG8xGTRoyEkMcRfPfhNMi6qcMGVyv5E6Ty4+yxcPT1dIAPa7GzLAPLf00BsVHutH/7U6LmMNgcO5qMnf/gsZnm4FrXBz1vb9GqvkcsqVODsrcWgMxjIvvKG7hB4B8GHXkPu6cYgsS5Jngwayy/vx9NtTlbMFlrH6rv24g9WcYUXnmapG2EYPcVQ/D+Yk25axPJe8d9tql5jvpzgim9Mx5+1ybiSZ80Mjefz4PfRSBOYBV0JvfwxaVaGLE4gAaXX6MNYw5hjqssVFzXRTvpv5R3axIcTc+lrcXMT95Vc4qPDTlfDODNayVBImwHGBc+h7TwmbzUXQpGNBfw6k3PqZSb4POUIY49VwgOsAMm7nIGt5Nd7C1xC70uicEkp/mk4LcHH8kL0DGsxTqpNeA5W4xfnZkPil5CrGcWx01/teDO+OfguWImld0bCb+3nWQUf0EiS0ejWZgRmEU28r7YHm6rngAGcb24PvsGG3ffZumfi0B14At71hWi7n/+0KdRyYuPnoa1sVPg0NnzbP3dmZJjbrJ7tRLsdN2DQwe9+OuaDg6qPgdnZhzkZFNpuLahDwIVejhnuw4WeM+GLaeVYdMBZXiwyIKffHEj37lTeDjdAAKeD+KHxEJaffgF7qy0h4WHJtKt29J403EtWrgpgmS6N/i7i0PayIvoPWE0X370icoNtsGZT9ehZLUR+TumY83TSXxtYhv07lOAX9KaoCd3CwUzKujIbDvcY3ocLh6ZwdDbSMbj6yEzW5aWd2hCybb1PKBfibpuy8gw5RgNpb6j7xnTWeb7GhTzOIPPA71IeZc4/Bp4DFLZ+7FAGHDd84UY2X8WNy1Lg0XS3ni0ch5qZbjzClt1aHYSxCKDJEzs+ws/1YwpZvch/j6liD7YSsOiSEXOEFtFilXKkBLiQ1s8ZmBkpiCKjDSHr3vvkoHtZ5S2zKNf6R5c4WgKa8sMQXH3Vw6Kn8qG7qsowFuctz5Joj3bBzlAbhYU3jSlHL1kXGMjB87D4fD2mwWecjhDdgv3Q9w5hMgSQcy8c5NX3XkOo69fgp0pQvBKLYWSbkfzcet42Ly7ga2TLtMiUR+IrTens9HPec9gIdw1s4a0lWpwIvAR/nz0ns0+vkcJtxxwqDwBwUsi8bt9OzXMMOPkyQpw3saNnOw2c/q4CDJSesZlwa9h9OS1fH6VKCRqjwUVQQmwF1WEhcf/smuROCevM0LXWH8c0jxCHjIVXGbawc6/7vDPR/rkIykPa3b8pKV6VyDP+Qp2OBVRj/A8bN0TB+ss8qntyzPIffOeCj+pwurUMOj/XQmCVT1o2biWb2wvpqDtW2GG7U7sabnF54MmwzMVSbgaHw2vt1XQj9+R5JCjS1Edt6n0jC43nmlAI5NtEJI1FuJO6IJARDYPdivy3mOfMX3kMy6IWwV3Potj/dgS8DF6xqb9kjgjRBj06/z48nXiPUVL6I94AYcYJ4Fmaxw66gpwwL5uNNNIhekPEWyUjlHRT2W6LZ/Gt3840r/qcbB7mgiqtW4Ev3tSMO6/QWg8KwA5ymdhTmEOLWv5RNULrhFX3oQk5WLSirDmmNeb8cQGF/q5axRErT7LYgXynK9mTafdVrFBgjoUiGihpp0si93fQovv/KPECePBR+07Je6xgPINfhhRvoiqM3PpRH4Pa5RtwvNZq8EgM4WuWQhC80ASFoe+g6+Z7+lphhrOyxiP0qVH8LHgM3w8RZSkky/CYXkdaNGVo0ORD7DRZw16vGxnY6l1kJQ2BetVPuD6Xwm4+ORGljzF0HGtEQyuFkEEL2eVD4lgsHkIvaQPkk/JTt6aMYJNF08B9ytG8M9Njpz7N1LMCQSnvsU4OKxPk7os+IiJBrwaeEL/JbShqdcYGJ+ZTipqIhgHLkSJ/Rzu68IfJx7BeUMfILlYlf9+iODrK40ga58GN/4+wC7FaWB97yBdcYyD32J/eENPOcvI2NPvtmRwUZCDtTHb2cqpAzVjFXjWK38yp+v8554xFjp70M6Zedx33ZzCIgwgWz0XNRfeIU3zv7wyTp0UB7ToinozLh3lD7/VV6GySSKa7VOFOWPH0LhYoijbL+B8azPYn6jmtRu38cdF03lu7hjUc7BHkdvicF9jA3Xd/0neMedRSyeGSw1a6EZPB+6SvUgBN3bw9W8hdOi6EDiubaENiQ0s8zOejaWBlfeNhr43MtSzKZysj10ilpage1KioPdwI6qEnyAd/1D8NjKe9HztKXXQFt+euUfikZlgm63MmbfkQfbtA05BIzw7XQ3fK4XCk5zXcFitma5aetK+5ov8z3oh7P0hAWs/zoEHignotaUHbf67TsH/DUG4mR8c+2pD5j0zCee9o11VInDmcRm4amyBALEibDlbin6SQnDO7yWnXcjDNbI9kHprM4mGjITA2iJ6ObqEO3ABxqxSBc28MMBZPrRiOJFGrMiD3271OM9dEgR8j2Nrx13YY6dGm4585o9CbmQ/IRLOJ2/jXaHK8CV0F2m0jIWx3Ybc9SeJPp+Pp6cWzfzUqQpu2wvAnR/IG73lsSlbDWvtFCBNzItUY0PwUoY7am44xj6j47D4yVG6us6KtGQNsMPBHMd5acNMyfs4d5Mf253bjbelr1HObl2M+icCsU920bcZF/iWWiLL5TBMvxbE+/2nUqRjOV6+kM1rPRt4TKQweCqv5GWWP8hk8WIWuyYDmhPmY/C/XCiMHESzk+5kcd4JOgIGMbbLhfvij8IwFtBT1gYYfkAh7ntgxrgvnBivBtpr6sno8wiU9lrDXT8Dac61G5B8QgfWGGtC+n0F7o9aALvKU0hz3UyKeW9C+NyF9twJwiODRdBSS2BsZYqjak4iZTzFm+MfkHvKCJpzYTXwe1Xcu+AP/tEXgFXF4jDt1wTiGEtSdVBGzwQFPHhuC9TL2SDt2UAn/4iycbAgi9JkqDGNJLmQJQie0dRdKIIumtr4MHIBDOmeQaF/OhR3ZRN8cJwM4pX6lO4gw2MVj+J/yj9wQdRE9rk+TPfscmG/RTPsTqhj9+6JcPJhIt+wvgVvHYLY44szDy/9Cdkx39BzsgwK+H2gtLYQEkE9+CraTWEx2rRSr5JLfLxgSfFvqgwZjb/39oOdtyXGtpdjzQWEO1kjeXSsFcoavAHHqCxOnDQNgj1ekYRkLFp2mkGCxnfKPmgBcbKi/FK6nH905ZBKWQXlbH1HF/39qO7qRJqp8ZeXnNJlu13a4HPpHpeEdeCO91OxS6ISNZtDeYWgMdomVlPZXqCuk36UZzEBggXHwat5+rT1YQRvHF1Am5em4H9nDoOw30cM73nB3xOVOCBSGBoC7/OlpZV4QWYMPcbboFP1G15Xl5CyzgWKkx/PFp7GrPxaBwpfbYP++j9kfGULz/xWAzcnTuVnJ36TgYY52rm8QKV/xXxJXRXSK07CTffHPOjyms/M+w2Gf5aTf7opHv8ijC8EDaj9xDcunWkO6zPVKD3mGwV9dMY/D8LB5NYBdp8sTseDDoOUXiNc0HFhu70TwN40DNr3NfOIbadxff5vtlhdRCPOvMM2gXzeNzSH2mJtQdGNoGeFBPwonQKzZQLxY9Jv8ulEWD17NngPT+KOAKDz9y0gzWYUHJk9m6TDC8Fgmi4Nidvi+Dmf+KSuDduPOgPjOJsmOntTePU40B2hwFkDT8Do6Sy8LZ6IcdvHs0e1D6/peUPR7wRg1NaVPO+nPNxdlAER1vEkrnkYKeA66rVNpfzSR+x7ci48y55Ij1cUQN4xC8h5JkouuVcxzWsRLZH9wg0XSihgVSiWeNlzxHAZTl3TibrdVjBOKZGqQnIhwUGJywcIHxqOpSS1uxhX38pTxOfiyhOLwSh3DAif3IFZ1zdxjt5LvKxRzZpN8ljn0Yu5B+bw6kkbaZdSPHy8iZBpHUuqTt4knm4H7xSCacqKDO6tS0KPZAsY5WKPOwzm8PSFivDv2k/eMtIZB60XctyE9+xe7sDRh9bjPbvz/LjwEEBOI3oamEHbMltelyMDi7kKlvcuY/OtU1H/RQRezZoHAte0sFRkEU5BDejbGQ4Wzdlk2F2L9yeGks/RGeS8djGemuIL1Wf7OapvHz7rt4K7C/bSLPN8WBh8CDqrVnCGui0qRQSR7xgLWmLshZ/C5bn7hwa4TYpk/xWjqVfIDSYl3MWxmxdRt/Jz2uohBx7XNmOthTdNzJCG1nM1fDg0jn4/BMics4gW1d7gbe7j4cV6DTa/1QCPj4bTjYQpUC49h/ovzKOVZXWwac5ePnTqJVfTLA7eu5YW72OsWT4aAhIV4c+FYUqcOpKmrx+NqZXtrOjigNMvm6Ct+DC9z/oC822USLZEFII/elNCqy6E5teycI4zXY+djPtrrJiDi9E2Jx+VdhvzkkMIb1IS4Fn1C2ocruNjO42p1vQwr9QR5MQsK6zWvA06Fds53nEqnGt2hY2j/9L5Ff/xnFqGgcMNHL1zIiZnZpFsrwP0XTlF4fGacKUuAO/s6YGKow9BdHQPB4wUBt09Gvzs8wss3TnMl8zi+LwyQ+DOiTDc8QZ8lrwj30xDbr3yAzbLbKEHcV2g8983HPPtJC26NQVOqVZQ76EoWPVsCGP/XOEeAMrZngCps99Sm/8jDlINIPyuDrZfvpFF71Feo+/DRrSZd36zgoaU+bTtlxaL9FpC2mXg9Zvk4OJMD55n5sA7T7VQVmYLrSuxwcuCK1klv5qkqiQgtfUI+s2eCpOPFuCIw7e5bX8fhIgth+22+7Eqw5Mbd6fS3sGP5Oz0EwXcxsJO6SiMf6YN61KZs4cfw3wjE47+ZUQimv5cfvM0LZp/kbtaRkKLuwrWa7wCCf86+vFjHYmcLoMA0WZKeH6Mnxnm0P0poSTwTBKO+QrBj5e18LFJGhxPhOOY3N1Qnbsakrs9efNXM9S8Wwch5Zqg2pbILsdPsJa0EQvVRaNuhiM7BkZx6f4K8N6rSRnFyuzXqQHGs9tYMtWNhypXwurjPjwy+wCfXORLu00e8bfzQ9TvlMCrFhuCiZoSvTQd5hEb33K+2grQu55GObbX8UXrV/CxzOITMvmweM1kiPnPlYdFTmFXzDlu2d5OJprBID/yPlZaKJBO5nRsDh/EO2lG0PLwDI5V34o9Us1o8jIfHwhr097s02RhP52eRs2G5onrObGaYeYLQ/qwdCHGbKhgOvAFuypX45SlxfTuziDJPWhh7YORIKE+BU7P10HXs29ZfGwAb7r8CQMePeVt5pOx9Z8c7PC04aXyVuwZagBDDeJ04N5H3CR7lF1qvnPJehXY42SGBxY9ZimhbZAXnoFz9hvCiPWVkDl7EP+WK5Fk1SryfT6J9ok/Zvu4l/T9YQnsbfsMSsMCUB39Fxes2w63a8PhvL0Ga5Uf4u4tY9kuchWW7i+FaqsSOP9WDhKF92G3czWNqxtDnaoDPM8nHS1EbCj+oh1GZQzwmeMKJFU4BkoP3uEfy8SxyNAV5SJXE0124oIiTQxr/caOvstZ8ifwoiEjSLyhiM+rMnHCCkW2jE1n8rgBn4KiYFNLKh0rfM1V1T0UrK0PE7NPQMczQViSs438E/tpYU0rmFq5o3yCDpQ1rMTJB5ik4wFeZ03EoRv/cHWrH5757w2ablegrG9d8HGGK3XZi4HbeV30H0R4l9hGAo/cWEC6EJsjYznz4TFYsUwZJ9nVsKDNF1ZRT0ftZSJQ3SgM89Vns3ivIWW1NWJiXxtOXPiEFW2CIO3na9LPi4Q5VqNA5Isj3diWQVUVntDurs5hdmeg2jMIMwMfk32wAl0d40h9e41BxEebv66YwHLWmfzprDyFSsnCI7EqnhgbzOtHnKXFWSdpfogYwNdpZPp5O5UZ1KHQ8vf0/fI0HlxeSIH3Xbl4eQfdHfcBav8KgPedP5jy2pMGVD8Suk+ng+qv4L9BS8w/fgL+PImH7xeCaOdaNYgTuQYKDuMwJeAnBd0t4rTGIDCV3gwTTbbRL6Mj3FC+CEquW0L8MSGcfaUcR3nJ0pJ/tyDBshklZ93H7812LP8inm69qYULNiPAfGcg96S+wQ1RjXR/pz5WOXlR0RZ5jDhYCYqpF1Fwjjo9kTQBoyxH1siz5Iz/tsFNsS44G6bH68UWEpT+oq6Lw7TsqzQtzRwBr36bIMEtzn3Zxk6mW3Fa8nQcGStFw0F24O22i5462KFF9TTodX3OB2c5wSmSpAutSjh/5yT8FlmM0fNWcH+OPWf8EUKlfALs/AQfJkaRw2QnOia5Cx+EX2SrtCTWiDblp8ufw+uhDr4coAPKI/NwR8EtEl4hjtb97bA4XBZTiyvowDMxTNn8hfv9tMFcWQ2idXbBQ8dP/F4/Cn2C4tj2sxG3fSgCc98XWNa0kAy726EgjeCQhwO3u0yiwYPW0HO8m9zvrae5ZQKYq/qZ1+62wwtj+uDvGDkYda4Dvi+bThs67PnoeWf8WHIOFUq/0BNbAb72PJSvNNtxf5Eg5FamUM0rCVbd8AtUKgbw3HppKua5uEnalpTX/KM0k0BO2aMNffmn4FPmYwhxzsCDf16DbsV33Lm8ipTeudHdC/HQub6dWg6awGmwZq0dgmy5VJ11Hf1x8+eTNC25EhNrdPjwb1vscu3hl7s1YNC9iy3lXKik8jfeDNkFqSed+LJ9H0nFCpD4ptF46EAopB+VAmv7alqnPB3erwijsy/0cP6/Tvr225gC1PfBprqnGHogjK7mmgLWJqJm03+49MBq+GJ7glMWjebsL0NYJToJJjdt5AMrivGeGkKB2WKOdNBiny+f+VCpH61JucdznDpBedU9XOkyCuqt/7JtwmRwG/2Os2IPUErcTHY+8BS8VGdBi4kwzVEowMnz5yCJBPDM41ZwxT6Se0JvQbPdI4p8cgHmuCqAueYhEH7XQM/W7IRB8THoqawH2WI5ICj+FSaeVWBT4UhaU3uXo6obaYLwA8gREcSoXBm2LdeGg+crYJtdH0dkfcH+2GB2FA7GT/ZheEgumwbvPsF1Ee3smm4I39WyoGlvB7d/1sX0RFU6E2rAn8qugtvDMlTLkuamTW9p6eExcFM8kTae/AQF975x0L0saP9vCIJfjcS843Pp9uEqirX3x70dY+GG4GfcP+ovx+e6wsrBZXyq24T32r2ELz1zMXppL5vsn8iPZlvB1MFVeMJRiWMX+IJi6DheVSJEq5qrINpBHuWnjITa2kHevM8cDvoewiW390GI8nRQeT6W5vnLQ9zjVCqLm806Q6kwv6UYZ8crg1OmOfi6e+N+syUoq96KozpLySS2nVbIiPI/CX1sU1uGT5v0YWifKi2xMmQZuz5oPZhH67xt2cBzOn7obAOVmr34aG0d7T8uAWdVLVAyPxryd4dCwP2bYEobUaPWGhp1X9CtD1IQWJQPqc/UYOLrUM6/fBW8XQW5dnUtW8xKIuvp59HzUyR/qyygedK/KXiEPtwao89P/66iwPIhsC4cTx9XaUF3hTRYJtjBjTvh8GpXFQV0jocbPgG0//s4fFRrzMGiNlTQ/IDjl2/G5X/laeG206A+TQynJVtDXZ0vtMpPYk3Xz+R67jM5UAFHvo3hGud00D0mzp5Od3mXmARMfP0MK7RjOXp2Kl+/ZgDub03Abn0riMYL4MqFozj+7Wgc+G8cbDk5EVoS/Knm8luYb+kMv++bUKpIGlRYmLDF89U0PyEHgz/oAoYFUJJ0EKlZ+KHQsQNskOVEfTybFRaPw1et1hz43g5fS46HvNNGlOy4gtes2UJd05eTq9BCLOwqpxWtAhyW/5YXaHRB44Xx8HDDGxzsbsHg3HyaVjAR+a817+mdBv9md6KedhpOSR7CzaNk4PACDXAS8Ieb7+fC0hPfofLTJ7pyLw1hpzwtKDhGmjX5nN8oDp77BrhS8ijhSldOj3HB2MehLLtzGkdExfKxrreg26EN71gP5oppw/yw9yC7dgI9ld/Ez0fJwOitYVhgFQ130R/nph0A41Bh+DszBh4sqYWqIypQ82sH5f1XjZkWMrD6UQmqPBaHpr+CnD5gCSoh+jjgtIa2TyoDJYtjqFZkx/Ie6dC3rQG3XDcmp+BSlJukCjaf3+G2ZMSgMDP4dmkte/Z28K9QGTwuEg8mF+zwdEUODL7WguYPvvhXXAYz83/g48onKHtdEau0WsFRP5dw22wozJ7OvhdN4GJMBeXtSEHvaxPAsnITiUXnwf49kmhkd5D8zmTw3nXCWDzPGkoXrON1Yabwb4o39qYjqYQ7slDBD1h37SRffSHC6dY3IW7DWLj60QwWa9bSoeqdYJ1wDUuXTYZlzU/wzphRPN7Cjwtu/SCLHC1wL3bBulcx1NTRxDVeavR3ZC3KBUnjiZoq0HTvxu6+w1y0fTqkhseRes52PDlNh7WahfH30g7Ujs6jvAkX4Wr7YSS5Eq7doA2H9Qw499VqXrBhCX4KGIamORHs2SPBz18eoa3HbnHSKxX61agM7RPvcsr0dn7sGExvPYMo4Wc+Ne58TAGfm+jOzGDWzADqOzgeFmR44/Sj48hJ9iZN3aYCYWZadKNpG3U1+5P4lHJM8unkDSv14OueQfCJMADhYzWgZXif8hMkYb/xN/p+cwrUHe/C15NU+awvgKpZJH32U8aUqepU0N4AjYFj6YjCJcizRhx3+TnqfzgOYt5WUCR0Cha7OlGAVCqfr0C2HPMKxZ2MafSGGLx11Rubpv2lytfCEL3qNZ2x/YaiWcfB6eMAKAU0k3bzaTTmbprztAW8FqRhsMhYkG1rZhHhy/in9RZqXj8N1eYzwWaaJ9kcdMZhi0jYE6BEt2+J/N/9v9LOOqoz7Udzgw60DIzBp1t/c95Sabhtr0qiiSZooYFQUC0OqXmasLT4A8z3vsrjIv/AL0FNXl+2jatOIf9rMEffjyf4dtEY8H6fA7mOS+ne2W+w8ZI6tziORCM2xFyDrzCn8Bc9XkBw2EEdxO0n8kzdyRCdkw8pD0zx79zxdCXqL7z+9gsd39Tx0k3X2fmvGSRdT8Z9g1upVHQqPCnaRFrSYrCx4ixaBCjQ1o+ysAy/8yVdJRg60UbW9+bwvkQFdJhWzLo+x0hs/0qWcL4A5WXEQq9ewe+FU2BqpyweHKWAskXVeGPcNIh/Hs0S09agcqQQmGb9oSsbtoF+tAAI/hfCBg/X87K9alBncBMm2I1gwd9BoJNyApb6OcGkWzoQmKUGnZeF0HppPzhkiNOHtldwKkid7q2bS2EOhSCyKIbnpkmSxWtFaH1BpOP0l+a0rYCAgWRMMAyG535fcFrMciyr/Yx0XJ/S7ZVgx6Ja1Ko5ivqvH3Llqrdw/KYOH56WTYX7NCBF1BlaAl7QuF5BmFArgoEyhbTrTR1tSHqJlz0j+NmM+7xT4zafid9Hlpo/cOOM6TBD8Quc/FvI1aEadP7+epzz+SgYfZ8BCmePQ5tHLK07k4d+7iaQGR/DBScicHxrEj7srUez6Zn8ve8IXTzeT2UHFvK+yer00lEJfHdGQ4qrIJxapQrml1Oh8XUtbghLpsVZupziEUSPgoTZ/f4ImHTCAkwSl/GFLg2YbBvFa1Lf8RvVADo+IhSP2ddz17TFkO0sB1biFSgVuZv36UXDHI1RECPRi7J2LjxVx51Gep7HGQIn4HalLhgtScBZYpmUlBUL223MUMDvH8kEXia5P/WYEBVKVxcthgGF0XBTPRsm/0rjtJH5uGnlLV7w6woltYnTjcggWHB7LSWpnuI80SmQqVLLBXECrPMngx3mDVJd7kq+7Dcf3qRexc3THuBtyYM0Om08dBq2IHY1oMTuLzjw3A4LfO7x1xMN2PbKgdbvfIcJNm4YK2sMRUlz8UzrL5ToL8G4Vzb05ZseuDRsBJUV3XDzTAqetc6E7hIpuBKlQ4ZCvbAjoRsd9rzn84aXaWmENg+syKOPnfNI0pvg/gg1aNquRE/4FFw/OwK9xt3EcLgDAUPr8Ep+NUJ2M25asAi33zOCR12zULJHFj97Mp1/ngi2QmmYuWgGeMw14v5tXyDcNAgPLRUEY9EJOCX3PbxoOM11O43oReJx+FPfBpmbEzjjlw0ZxJxF9d6xMEojAvw299DPxYVc9KGHqvq30nKTflQY8QUOtdegzpqRKLFBEOb2TmSTsi5+t3Aq+wflkB/nY6ffR6zZ1cLdKtPoX7Q4WSgqwcNFJ9Egq5fKnX6y764r6P1xDofdNSW1dVlwdYQE+j96DBuTR4Pfs0J0KvXBbMtISuw6QTNMh5DWiuPph2EQ83oJVOwfC/fnmsOBS9MwddpyVt1uyrEtAWStuBXGJnrSyyA5vOr/htp0QuGRpypkSjO2LqqEaMcfkCnzneX2dGFR7kkqd5jBUTmPaObSUywkpQyvpoeQSWcCNs45So5ZiXy75wHi2nj6ldkFT4J+4fYyU+p+oQ7VUzT5Mj2C8IhzmLFyMxhZCrOa2gNoyhbGX3I/eODrSBwVJw3Bo5VpvHEnRrlUU1VlCoj8esNj/yqyVsddvBO5jHNObufwxeawuOA7BGq6sGlTNJovD8D/oo/DiHpLSO9Jpi3iJmDkfgj1m8fAyrz/qH5dCxiHlVFXxCbYdPUY6ffdY7kzDqg4JAAubi745SqC0AwPDIk6y/U7w2CyRztZR+fRdPNvfLdhOvifqMWnywX52TwzSLU/DldOradvCVXwVXUqbpmwju68L6Gby7Jo9YGlMEZUj6wKzGCfoSwqXR0JmWtS8dZqObxQ/xN1H72ivNwQMgkfZAOTNlguowNOSs/Ae2k75K014ODkIira5UESTSvQeriCHrz9jhR6EUb8VYGh0NUoZjmDhybr8D6VO5g3XMg5A99wROs88nC8ysGdNTj8RgVWH16J4Rfuc7yAKDtq9pNr/QlcKF8OBc0O2JyDPPqGCs/skIMFa/KxZcVZck5cTrtmOkPx8S7sLr0LP/b/4EJ54KrQ3ZxSOgJOLP6HZi/VYZlVHVTP1sO6OF9SHr7FCcOT6IZhIZc+TkJ/y1EgV1wJO6JuUtzK77j1VCHuUsuA1APNKJupjlJS6hwe9hqjYsQhkzvIvtwKEoqVKb4qHg4qzeR11xRJweACZWdqopXuPjqbMxWeVp2kRdMX8LCBHmUVedD6iHk8dvok2Pfbktqc5cH08mxMS5aDADiI2l9CqWxQg05NSaAPc7+QwHACbS08y51qqrzrSAJK2xEkqxrC7O4vMC5nHd8tzeLkLc5k8K6BDqnL4Pmpn3FErBL6fVeCneMV0fbZVN6Rfp4at02nVtl5uGRWD71eLwkbVq1n2QUBWLpuMuidKyDTy+okeqGJBqQ6sM/cl6fM/sPVHk7wSeIFrblfRgKnjeFgWQPMmDEBen5toXnOQvhl0AymDFQySTnQnhpTnFJ9G6516MEVbUUOe/qC9xZ9pnR3f7qpUQx3y2tYWDGJ/J/7gdOHzaAiLgE7/QNxxcA9yjl9mFz/idC4nDDOwEe8qOsdXzJPQZkP68GnBSG9JQKuy82AM5YzQOrCPYg/exwu732NdTkzMFtNil6f7kaJl2PBWzISVg7EwYXzK/hI5xJs2D0Z+u+uZpHFO+j9OT9uU6jneQ+VYd6dRPpxtoI2LFPm14bWuNmjDupGSECrVB6N/6oKx+rU4e2AFYiXyXBcTzU8ph1w50cAjc5Txn/i3ZyTuRtGeQWDzdpkPvZ0EgRuDSFvfSsM/7wGPXtzuFjyGtr+EsLdzQfwUPZTCAhRhrkPNSB/yURcWHcF+qPqaNzCG6x+4RY2268g6eFHoNN4hPTVcjAtegyobvmCaahNiya084Prp+mmtCOkb3HlLrc68L+wHT67CVDSbTWYMCjHwnrv6eTaJirapYjdEeYcrrUZVVfJwysIoVFbA3jqMxnYtuED579S5k0tUbR1uBXr20XxxYICeGZ5heTX34Qjp3PBY5kRJIVOAvf71+idyym2lLaCOt06LBdAOLcuhnf/fQEtQhfAv2gqDCzciQ8zbOlUmgsXJG6E7z9csO/JTMw3es2y2qNZdoMbiAibgmSLDo+dsQauKRRDich61NRbQF6Wr2DUhj/4ymg0NY06ymqHx0Gh7DzqnBiLy7M8OL08ER1X97Ct4l00SivjFrd7sO3nMSoKRehRWIRTGjfwsn41Pho6C2Z2zsY2/40Q5OFGP8Ru0ccT19Bn1gRoFFmOnmYDeDCsCm5FjIf8yuekFavPgzFxNFijRFcTl0IJTAIPiY/UJKiLuZgE0jGqrCH/CT8uiYH7aqdZ78Alnh9/nM2i5KEysY8Tnl1lkXfPsPqBI62eooKesx/CkqFlsPrGVYqOS4dGPW1o7H9E9c9fQLPzGcpwLqNxn3Qw5essUg+ayOvsgDJ1D0GB7GiQV3gAR0y72fvjI1Z0keI+HW9qfNBAs6eKwl6cgOV9qXjqzmS47P8blS3vk+SBHeDyeDMfzUJwGqNI/9xE4FnZZmjxSuORt8SgZtV33rPnIJtpfgTL6npa++0arzE0x/On35LFkgp0/3cOagZMIEWumRKy32Md69L65WmwZG4VWvuOxBul37HdwZtzVuzk/HGjYELRJnyaHEuTx77l7e1nySOuBK9lNoPomZc8bHWOD4lL4jI0hU6fM5i2zZ53jxhLYPCNjdZFwV6vIILbzvDV/SXMHTeTR7WYg9qiOyx28yhJjlxNofVHMfDLY/x23Zr1B8bT3KlBeOSfLr09aQn/UsfTpHOf8Ul9Nh9e44hPLrzi21I3ONDVmbVUvHB5rRY5yGpD4JKJODRPjM4slKVEvwYqceyi83f+YVj9XcqoHkeDlZV88KYgrPMw5SNh0XQu/CQezZKEq61EH2TPovKhCaBgFcD/1Bu5qUQZNuzLgIGTFzg2qw1RQpvGXhzG4sdN0DxzC0WMQhzuK4FDyjpQ/seLlh+7Ru03unDM3iXU8ykTEpTH84FOIYjYD3Ax7hx4r9OHrc8XQ//8ZjqxroNF7U7yIkUF/PP2KK539WQBOWAz3yHeaCMC+6UCYUaiDbzt30iHbIzIcU4EBlxyJJf9e0C+04SDPxzApTHT4GyMDQWNaiSqccYFT2RQ1OMmiHSncPC/t1z34Dnr/JoCAf9pw/j5X9gs9y+75+nCucAV5PvqDkyR9YHI6HugVGLLIesmQsB8dbBXaMVFrb445rwwpluqw9DpT5h5Lh5a89eQYbA4L58/niaMFgNRlIdHmp9QffVB8rM5Cqd70uC0bwNGCSPbfguFI/02LLZVDYqbrrNQxTaeceEYLXL/CcnKsTRtyVfsEHuFT+LT4fT8H+S1TAXGzaoAYe8gvuK8kZ1118Kq/o185ogfml/V5ZpXwtg7SZ5nj5aGrSLnIUDNiArX/+Jfjkc51dCW5g6OR0cLF+oy3Et/o/JAq84KILaYU6PHwZuNR+hE6ibSC6/CUYKjKXhlOKQJ+nDf8ACMl5gCok9G89JffdCccZZODRmB0QoRfu8lgBGtOvQ2EzlNRB13Jk2Gz6W+pOLyEZdPv0TjY1fisxUr+UrPA5L4PQtbhR5wxdE69lVn8JmhDifypHAdC6Jp4TswkDeDA4cncdeiBSgoPcBty5eSwJmxYLXMjgUKPmDPS1PcusIYfUo+gODGydysaQdvvHPwp9hszHmtCZYRpyEvrwCM5pnzuq5PWKf1GH76luIo2wLatyyapwiqwHYRGQh+uYJD9NrwpXciFFcUU3pIPPd8s8CO9HByDhDh2l02YB4iCv99jOAzxvKw51gCPTkUhAp2T8B7oQzek7rKRzvlSfDObrJRNILRO9bDHkELKBstCq8Lf+OcgS08O6IIc5sieF/tce4wekGRvuNBpMETgjNFqH3vH5xvMQQtyzVAfdlXKH6xipTLg3nM/CpW1WXYeK8Upjzdi73B3+iZQxAMbU5Hvwkd/KQgmKqXKkNgeyKPPCUHmo9S+ev7QfBVFKStoSVAUrL44cB/nFutzAEj1qL0gj3QX6sGA827GBeb0fxLGewl0kkJx3PoW0wbdcxV4mYpdXxdncS26TIgeUee7i09B+PHLoT3d8358+EtrLb+Otim3oOYn7PpbNRRdGnUgNU2YXBTy4xujGjjJ26LOdqgHYxqyrGjypKzz4zC0+UTceseZVCW+curTiGPq5qF04WaaHFgB13z9ObKOVqkdceWuhaq8W5jA7A+tR345RLS+RxB50fWcdPSX2RQeoDsNfTpTMl+3F2Yg2PvIYyraCDh26tJJE+VBu8lwaWep2zsLIzt7RVUkyFGX/a+J/M+I7ixSg5b1M9RzW0pvmQ6ESQfLIOBZZNZa5MSKm7o4+KyR5AXIwnWjqb0MSyH8/5Ywso5PhQ5opUO5OynxlplrPl8FEWlM6jFchqoT5tOmpvHQPpWGTpR5AaiKoWY6W+EeW+fo9LmwyQVP4QzMs2h8lU87PohAuWH39P4JHfYfdID9nbZkJLBbXJZPg6+br0DS6VNYXPeG273n0qbk/bDNrUWkAssZc/OPFrua47DXV859Fozi52xhLDy2xDuMwkVx8SCfMFVqH/URv8cjdi4ZQL+mXIGfLWvcmn7aLgXY8b7HtRA6jdrvHD7DfcWNvKNnd84K+YDdB7cz9ZVQTzrhwC0Jbym7OJo2PUhiUJf/MPwGmt22HcQa+zDQK0pF58mm1BI22goC5+DITMe8vp5gXBlVR5p/3uKSp0j4G1ZE+VVrOVf4SZQU2kAdpurWTrqA+8b/oPqmkUMBXvx5eQJsHNvOcYKCBMuyYbQMdqwIiQa3hx6R6krPeCS1QYSMtnNW2L+0L9PMvRw7ChWbhDC2EpjeO5qw/wgn031kilRvoEqNvfB92eGfENyC6XFB9K3kOMslywCngEu2HllNSgm+KB/dBvJe7pytutpUhU6DPlHdbhM6zzN+DIZNO9mglfqeoy8pkeBo6IoQlKMWgPfgrPQOzrrMBtjRm7Bhq0icONDGfyZU4mbtKPga74yjqQdeGuyFaHtW1SpeUPhX5axvf1kuD1LCGMvzmZeoMaGkaHkDv306fo2jjotz2sPmtObd850VG08OBQLwf0JdiR+SYuk3IAdJm7n9E45uHI/Bj47poPl4XqK01QF7da1NHuPKS5VvM5pIR2kunUzHQl0Zw+3MLi89Aw6vW5h23oDaGmUho9Pk2HbGh1SFVSg+tNKeGXXeErb1wMXcy0oYIMFbfugDydWJxJGCVKaSyUoz36LW/RFcdR5c9hcbwAjZl+FXZnrubRXAczaE7hZWwxA4BIZvhXi7ueP4FK/PLueCEDZ08Jce3MHL1M3hrBLOlQaepWzvozjCTVzMSHiBrLIdb742IsTDm/EZBkTqskQgQtux3l16ziaoO4AJfffs4TKUki57c2mArP4oFIJy28JJu1lY8B0+yX4XtzMozdJwpNJafxHppKCHLfTfuUCnvlzD1//EQnyNqMhzMOXPro58l/5FVCFC9htlR2o1bix0do0OLVgF8orWKOIBsOivTX4CRn3/92FahoH2dB4KgsPVmHtcWFSqmxnk83niKYrQlTGSFjpOx+GtOfzk9ExuCDxFkyYOR/Ffu6EIw0O/KQ3k/MrLMFZWQR3OaZQsL4Tihq+4MD3B9hqSRIWS09gm3nOnDpTiRsS9aE16RILHbEFHwmk9Ie74UajEGr3VEDwzQGQVHThiT5iMCHKFE7fecd1vRJwpy+Jeg9vpatTt1GE+Dp8XXqB8vq/0EhlSXipMQL2D07lr6YZLCGfQIHSP/jablWc4O0GblsX4T/Rr3BYfB23linDpoY4VPCModID7tBhtpEa/rxjCFGlxdvLSW7fFZi+WINWXTCCM0GZELGohaQurgJXpTc0vsICRD7I0TljX+jcIAoc+Ja3XbaCTL0RbJe1gIMmHAWRNVEweaUySxcG0Y/sENhzsBtj19Vwv6YU/Kh/j1obhHlM8VSwPZgP3XenQnCoOTyT8MIZP6VBDvSgR14J3tUdYZd76pC6XBaWrkL+fauOmgJPQsFzP3iZm0mukt14u0MNVPeogPLVOfRbIp1PHhqkhsn7McTwDd5S94FpmUN0YFwMV7iNgje2oyD5f6zch1oIDr8A4N+otBUpSUlbibZkJ0ILCfVHJIqS0RBRUbQkRSQNKUWk0NbOipRVpEIZRYSorHKe51zDdyHvWyGCn1M8MdM4BF2u5UFN3mfO/dmOq7LXk7/qdpZcJgstdUXgf6iItnedweLKqwDuwXxLwZBHfZ1PzWsfwr20CNr+VBn+6ezmdAlT8D4viE/Fm7FtcQ5IOewEr3PzQDRRh3TDVWgmAiwR7EedRDXQ3esO926r4IZffdjoFUatsbmcEHeSx00cSSNQCn4lTscfFq28dGYXd+rYgr2WI/5wU8T0+CV07kQiP6k/jMPj5aCxbAeOUNxKCZYRmJX1FJLqx8Gsby3QUmdErWH6NJh7n64LM9iKZkFO3iA6P5VG1QdbcVvBHHpYNQ/0Riqi5sI+1jhrB8rP9OHgDk88G2OFaWUr6W/cEL78mwNJh/Zg2Ya7/PTJf3SyLIuH142EMc82gmziN779xIqDm5NQgl9AT2oyVLtuAu1EZXKYOop7S3XgaasQ3mhRgMwDDyG8cwzNkfyE936507oRMuhhW4Xu2V2wqnYMxD9Vwtzr2zGzqQLGyhdhekgh9wr5wM73m1n2uRhImi/mE5cmQe3ZHZiV3svvtTUp9/5IEF60nRaM2cgCiab0JWsLCy3QB5sDo8F77QuS9Z/PDT2evDvVGr+JHUWZTXJ85IYcSi2biDMEQjHIWQKyzzaBy+9I/G/NZLDJ9eF/2y5RzZ1dKJFcgclNq3in7Be2GaEO5iU+sOrOHXoV54Bx2evpwvh6disaBTbT0vHRnQUotEqa7vXpwtC1djJREoWroU5QsraIFpQuYLE5m/CnQhHae7/C7tPdcE6DIFBwBX4N3wHKLfpc0jGIEU4Z0JLqjd9bP/PUtJPket8ZngvLges0R7hXN58G6l9whOoAPNJxp+bzf7kjqwlvinnj7KOfscbEAHSbYtmtzxpshapQXX4rpOYC2dttgrPychBtkEm60XuhZeEsQI04UO1Qh8/3cvn6zxvw4XYzkXYD7zbZhG/tN7Dq7Qs4sWoCYPUWiP47ln70jCOp/GEMU3+IW/96obp+IqcYGbPlZnE4k6kPz9ef59KMLtapmQaf+p5RQt1diqs2hNisRK4y38of7e6j8xoJiJS1wCB5Qxxy7AO505vBDptoE1aRDWnhBCMd8NE4CgpzR8EXMT+cmiDM+++2ksGOC3Bb6xR+eOMBJ3/ZkdfybFjxUhNFl2nBRy9xzvwXCN2rR0Ot2gfu8NNH6cJ+/lTtB3ubr4FibQBOE1KBB3NsUT89DRtfnwG8+5XP3/wG1wpK6EXsFzo4O5sse97g36YREO8xCw7LTYZ0mUc0r30EdmlE4ii5+3iDFvGA1zCYb85l63IjGL39IkqbbQWB0Z/4w7Ev1DikC0X261BQeT22jLYg4/B9eMlVHdxin4G1/Qv4mZrPdy8Rde9LA30PK7ZreMGbXE/SsfKPsDJnNHxW28BhfxfgS3M9/h06FdysjThIbwNEDBDYCzLr/76C8+y04cakaqKffVwX+x+OSxfgjstqtNJMjBT/VoB/oCxcKTGjHJVZYDPXDP/E7qPxz1eQ7+jlWO8pDgYuVvQ+tgSC93rD+J1RvI6loPNmBD9XS4SAVWO4v+wc/nR1o7LG1bC5SZg1dRfBlN0zMfy8LpzqPEOXkz/wjsnPaOsqJ9iwp446wr7xk8J30P3ZG/3WlPC8NZpgP6kAze8kU+e4VDpLV0kryxMOB0tB+c9kuCz1FzcYfQKnrdJgKbgJr7dkQV+dAKi2XobUO0/gw45+lil6CiVp/zg/wRud1ceClup0bry+BM3ODPPfhwkcskSNBQ2qeOzib7jTYRhtBH+SheAIOLqkGdt3FNKr41E8TsuXY6a+YZVrARiqUsxnRJ7zhi5FEK0RBnOfeVBrTTwyt5a9XoRCymIPbtk4QOubC+DCAkeUUDjKU/UUwH/sAF1PduTnoyPQT0eHY2Mvw8H/HtCykItoKC5JjjmHoURME14dW8en7LtY7P0yfPTbCOoOhFD8zdH4Z+lUlH0zDYTM7sOnhNEwZW4p36pZze8SE0gqfweOK67lr6aj6ObDj+xyMZhiHq3hhedU4XXLb9iZ8pw6ugNp3aFjIL4pl6ovzMS5ktE8+aw8p2yVpFqf6bBitB1K6NylM4utecmXGkgbaYPV6U9woAgg/s8LaD60FTtUTcEr5Q6NOLyLM/8mQuy7OSyvt5h3/nOnZPmRbFHojhPdarDd3Aykm7vw073l4P90FPSkzGKRtfewPOImi1gT2YW38JFdz1CjSwZK9lVAxk01rBregWf2KfPXU7/wac5cPD/iLeWQFGR9u0piAkog/9KZLt06CFMrjenzP1vafn0CBqxVhWLjRv5Pyp8qXr6gMVoGoDRwCH6VGfNBAzU80azIw+jGpSKFfGpmHe0ZEYkurEhHK2RgZWoc5YMNOw0Ic5dnF2QMuqFE/3SO6A8GvdotkCLfTH8WG4BxfDBLB6jBtK8RcKPRGbP6J4LAeBX4fKiRq6YQ/NjTgtNs9UBEIp8bModZQWsyp4+SRp/BfVTQORUeH/TArl4VuPFwFyxYPwumpr9hzdevcHlsPo5RuQ97z+TgUSN7ks5Vp2bf9XzYbj9q1EuD2lonjnuTg2FOX8DUYS+ecplG10b1kKH+QgyMM+bR/oV04O0sWFWSg7vMbrCdzl/qu5TEK06fAdMFL9lRtZvmO2RjrKc0i37XhJAOP/6onUOLLOt4xkpnmHf+Nlj8VcbaMR9wl18Em6wRhXNmqmAUNIEdDLV558u53FhrixKjM1Cw4R6YD0rgmztybHrIFZzGTYC35tsgQf8NpL4vg7z6AEqKtkSjxo8gsVSfj6hF0q1JovBshwB0XH4DySMyeZECwpMGdTozZI5XrzdzyKTxvHbkTnpfPgmkV4lBbX4AN5bV0ObVAux7PIzcsqxw7z9zqOhCbjhZR+4CK2hxxkTIW6GDdwuzweXaO9i8041rzR5Q4UdLWvngDdT9dSdV+5tUJWEIgseGKLryDlasyYDVPvdpusMRqJecy+kiTWBYYkTWztEwrtoMbso04SyXo7h5dzVk+OuScIoHFKusx9U+jOP2C2Pyq+04LGIAIYke+H2rDUq6HMLJYfWYN+YG4mErGJurTlHfr8N4h10gLWUCF7o6OWnict7w7TsEio4gr/OTYFnxPg73n8h+35/w1MszefmY8fCfohv5OR7Dyw8kOaR0M8wUesqHBi3ojEM4fAs9Se6Xo+lrhhQorXcmO9UOCBh1BSvfD9C/o6mUkjabBbyOw8iagzSp7weuCEOwWPWLitNteNkVd76fJAXB+5/jua0+sPKiDlu+/4alfw/x+JNysPe2Mqcef0iFt2txhudt+HT0Dp2/dZtXX6zDa7LWFJDpjk51k8DIOx4j7B2wTvYkRPdvgPfhNVR2cgalfmIqvR7LjZ8P4GtzedietZA+LhQkCJaFrmEPNHpnTMt3LOaI5HGwtcOeH31Xpb97xUHXNBn21RSSpJQnXpuXhd9PeXEj5MLSq+lUUKDBoc2LOD91CnwR9mb4cBOnjm3FYr108NQbwqLiHTi0JR/POwCv99qOUrZ6IKmqiwffjmCj0Di2XhJCBr0vsPyMBPROquGO1imkobUDArcpQvGOMdgfOJWn5cWwpUwVZbgRpQdOQwcff4yJlqGsNxPJMFUGzPQq+MqMAXAfe4wOGEaQmcsAGeUUU47mUvjsvQL7G07yzpPaIKbbwLVfjalJtQbe6gtiUe8urH6zCsV3mUHX2RM86a0/ai9VhPLMcAj66csxi8fxXr+FuP7zZ6oztaCaSR8o5ooUtC26iykwCeZNW04/L9aR844tPFFzI8wZeI5jrWLJU4LBxuY+b5VYiVk2DLriFRy7azmbpqlS+7Zc7txyDZrsXdBu7U9sLVIgVYVlNOQwB3qsgkn82Fi88TIe/rb9IemgPNp60RW/eOxBkXB7WP1rHsaaK8KU6ijw2V7FM0S/8j2B4/wvdRQkTz/AS0y6ye2UAQbyV+i0HgELt9VTuO10mlL1jK+kOv2/6e1esBfDisr59yIHznjojoU+cpCf5EOjJ29muWur4WrSYziXqgOC3g00a9pOeuyWAUZTpqBVkzT4rz7Le0Z+gIzS7dy0aS/XTg1Hj4vC2DN8Fi+uvERHYntBbJQiLB8fyJuaf0BS9jB3FotiybYwyv0cAW4ffsNHucl86f4OKnRTB/tPd2H2NG/U1DxJK85sgnvnhGjphkia80uX50j38B3PLWC4SwnC/1piROYU2v0zk2c0xvHBOTEQINjJa8O1wdwkkB8EOpHLpxFw45s9v3PZA5N2y4AqVsHLmV0c16rHUB5CWTLO+EWklu1fTwRTkec0Kk2MhH+X8I1DtnjArQnyhu5ht0A/mAmW4d299+Gs4gwYWuEDQz491Lv7Kkv6K6DMHHeOM/Pl9uJUvrhTDDlKgDvX68AfYSc812DGYydWstj3v/R19TyY9bOOXpxZStdfBdDQTGvqdZkGLzIOgEDlGvbMVKKn6U0ceqOfOgqjuEJah7du2gwZ7y9QaKsInOi8yLZZbWC0Jw2ylFzgccoMsNvlRp9iAqjjA5LnoyqQ2CwDkyOFWOPTddi+7jm4KL6ki6EiNHdOPjU07qGXb87CYzxAou+l4djwT5629izumyAM0e4XcM18W87qE+PwNiEy/FQDG241Y9RehGSDZWC15TyOHjWOg+rdIOh9HSgeOcRiW9Nx3/tbHHArjvTOikOekCmczvXkgyVGfFjUDA6LvoO9I7dxv5EV5YgF8+t2F7bYOR7W6CRyhH8Y//kyF/+bugzmdj9nka/XQD7OA6Ocv+IksVQsnqAOZr+uwvVHSyFlVgAklydgculLcJ5xCF7bp7HCTBuKffUZAmdJwIHUsXwisw5Up/iiYfU9OqvbjLvuWXP0+lHgbzHM9RvTSGpYHMac24npFc8o1OEESg5eZuN1oTjmvjMfUFzIE6IPUrWWF81aIAstCgfp07tFJCAtAsHgTY8PWFHKszyQHhzPL+sO86mqvWxTIA6z203R9MxnrHTr5N6RA9AVKsSW+VO5LjmXz1q/x8lpoegrqgUFNr6scusvFK5dCr4vtvKTqFp8N9TO4/+F8qguBey7FIe11+XBpzEUV4qEUZroN3z+RxavGI+AkZIF8NJmIgk9MyXxFlVQXaUHkFePkiaquGSyE1aZF8DuSkvq7T8F637cRtVn4bBc6zk4fBSFqMNlGOU3BcPHRNH7nzfhk9U9Pi8pwxA+go+7daCtXDOXt4lAWmQLSbxbCArKk9H8jyWWvVtPm7bchBd0AwfAhhbVKrP+UgXAxaf5UNcJOpy7Am++nosjE1awUcZRds/4iRp7XEGhM5qz1gjCCcubkH78G3Ve3sWLVZC2WTziHtNv1Km3BT6kFPHFi3NRrFQFCgTb4PgGdxp3OgZvRMSB1nZRTh+Ig92/I9hEUwUOXKtCyR0GcHm9Cz7rtQK1QRF+RKYUa9RMPmOesO+GctTLEkf3qiXseFMFZkYG8UVPO3o/QYLe5Aqy83sndItxxdWG66Fi3Ewa6H5MXomKcCx8DbSGLMFYZ22ef34XiryrA5kN92Gt9DWs7DaCectl2c1+BhQqevG1P0RvNy/gj5ebcfkdBfgwXIxZaWn8w3UWvHKfjnHJwkCxtyhrnzDMCY/hxnItChvbxId/nOK99lfB7u8SOnL3H4emioBeWRtdSZ7Khj/K2cnOAJdudoDkSC3w0Z8ITVWBaLu7EMMrlYGrfGjXk/mYxdM4avFP3HC/Fzr8XVjQRxGeHbOCnIRfpPGfKaRbV5Kb8Bgu3xCJ8mYfeeWXB5wSWUMNHz9jjbUstjkqobWgCLikAqlb+bDPiUc0fp4yeLxYDWV6M8myKR23uM8ktwuXmY8bwDOnt7hm/U0uSrXE/KphUHWwAPf1njCWXmNwtxfOmvuQqzTk4faVh3z7fSDu+XWVdnx8zLlRZnB21SM4/O8C/jsqBTclR2K3lyx4mZbSlKFsntRlie2/v4LeqxXwN/cXDZp2cL5jG87IE+f2P6owZ3k1qYeb4urtoXxWoIXFn1Tzw9c3uWvGb2wr2YUvf1+kgSczYNmyo7BJ34kFXkjxgjPGaO1zBeu3nWNthx+8aPpIfHYoGb/mjIe4YwtpRNE+jB+rCFWPWmH2NU2ueRNOZ1dtxM3HL+ILuX14fb4arLw1CqbUSVJ8myk9fdTOT589YyNBG/5nvhYy9Uupe202UaEeTMvbhSu0BOnkkxAqqP2FN9abg/ve/2BPmxIdUTiOpc8t4HmpCKhstkbVwR5oa0iF2gBVTpHw4uXai+CMsxv4VSqz33QH1HHXgdhJuuxu+Zbr4g7wreuNqL5bhcftfkiKUjuprnU/ZOdNJyElDSgOnU2TTELpyaQqnHHbjY5l76FGkz30ymY9tleWU6a8J+/u04BngcW45E8wXokuhoCKAGgwcsSFNyW5I28KF6hJ4N/ijfhNSAr0jH3htMsc9lK1hYPft5G+pyJ8tx2HFbf1cf0OUbxe8IW9+sdA+SIpWqWsB+9V7OG5qTwsGuuLjbf2wJSsszBJ9hyY7fRFdQ8tqHumgFqvK/HK4amgvi2RHgl/wPLgBySxMB1Lh7vI8L4LRM9UBP/3uhBzfD9vuVJNW/rToTfEkYPeSkCdAAD6fqQF2drUc1YXJOvtOO9FLgbcDIWjucdIKigOdp38gZ3B/1GNaAB/7vhNqnOkQdQ8CZPuVHFjSwTM+x5HJyR3cf8PcfIP1MC4VBs4U3qCBq8awYyBy3Q07Dv6imuDqc8qVNCxhIzgkej7KoQDT5jT7OPEJyIQAnO2g+HeWXxzdw5tUZnCIVIvccFDwCdGbuCh5EnqbVV4xWUsuNedpiq783ivtIAvWBmwqn48f1+Rxp3XXvA0DWvIuvqXh5QQvOqTYeGyAxQwOQfsnOUpxP08WdXE87nvHmibVsQHtP6wZ7k6XFsthy71s7haRAwLJ1+juzpdvLvTkTVee0N62B/oOpoKny8rQusMQ9Y9dhqTnk+EaUuWEahKUPHRDFotPkwtfma4JrmOMlNGgci8IVjstRUTopVROD0I2poOk9+VTzy/bxf0wCh48b6FJ58Qg7dSc/jUu0fsc+QI7XeZTW+cotBj706ceaIE5KU2Ys+Ih1ympgFNtxxx5nh3lOn9h5ceiKK4lyRv27AL0gd2U1peFZ7a245nH+qCn1MAvL91it6FrMcQO1ve29DNOQkCuE9HmwMUhrhklzilRCnCncWjWVFVCjf4ZfG6TS+5tEuD/IRleKR7C41Z3ccXFijTXY/psKi/l/DfKNRZIgYxpzzo+s3L5NjMpLXQDH7c9OCCm97gEDEe3nRbspNJNBsHtLNOfjBEG43nKOvt0H52kH6ue4wSqhMo2UAYTDwd6VSuD+kN3oVWy91YOxSAouGz6dxzQ5Sy/EQpboboHDYF6nR24p4/UmD9wZmuRMiS1kVviP52BgKe6+PnBWshTeYlNbmoguKP6VQqYgoRSTPh4wMtiJn/jSef+IZ27jMptGMTiuWPgIOFInDtVTcrKTrzoTRnivhuRzUtH7lcQICfBE/lT+Z3MXY4jeQmSoFqmSfPX1xB7xqQ2tyMUESsCbaJnMTEkffIYDiYfZLO0fhULRB9lMfjggshT32I3ip4QGqyA5b1X8WbPYlgp3OWagfzSOa7ENjVBLFGoB5dqckn3xGXUHnURri/VIS1Ysp4ctRCOrjlDH4vF4PPXlXwZWQBxKXsY8FWGwr6ZgNKRuc4qtCeE2KnQMOYeIpYIwAb4mW567EsrhtVRyN5DYepZ7Dv16X0IOI95L8GeF56AU83SID37XZ6c3Mqmr0TotyMx3w+/gt+Pr6Tz17TRetJERCXLIerlk+EFdrRELHREx3Gb8T4RYux7Gg0bRGtgv1hrWCU+J2F/4zjlg5t+LX+JDbKMtfPtqeKG4957tcLnFCzHL78McQZr6bTbIdu2qEF0PhLjw4sv8SeGd/g88eJeHnqHEiQrsOffy1wvPYFVAu0htxBE3i96QSaTlaiD1LJIDFSnAO3teO9lG7OVp6LtxySSeeNHyVLmcIcl5FsoikK4d2aONkvA+4L63NekjBt0DhC18+q88MKC8y/owUDNudQOew5DlYvojuxM+nCWk3ovRKNLm+X8rIiU6iUV6RiZ2nYKXWK/3iHgHeEMA92fYTQtFuYftINixU98Wr7BhCXmUSfnZTh4ktzPFdrB6GCo/lVpwFdNL5E/9IOYunzrfCuxQ+1jEZTmqMgvHoTQBJlyzCuso1iJp9DrUUvadGcu/TPNoJGW1TzQcls3vRgNKg7OFFi62LWLHpENYuC4NkCX9Kr12a9GVrc9aAR7ls1cs03M9D59h/sbt2K0pJJfHOcMCQve8X5zXPpT08NZVsshHdegSTTqwI3zc1BvzYPH7nI87SjM6ldVZunfo+ECKMq3nPiG9V9usVTU8eB3KeL0L3hB6yXSSLLl1fZ1WojeDlUQP64YtDzF4ENr36Q4VwBOD3ekwSK7Fj+miSnNgXwlWhRmNlbzksgGOf1icOnnbFkoyAH/ucraePKWzhxayTP+aKCcpO98JhkHP13NQoGm0rZTWgxas6Whobhnbx1VijP6lCGvcu6OeHJNXh13R8qVx2ljYHlXN13mGzGT4eM1ergzM087/sFeBzxh2+dPgq/4+JI7GkYhC8XgfFCprggYhxAvw2LWDylE4MpmKH2DyP8Rdgzq5CGcCE9j6hCq0eJPPs3g2jXJPj93ZpzRC1oOM6FJ7xpQenuAVDbEwFlH335T5kdHzJgWPlxNjZNmE7hOkX8UygNfbJyMDZGjCr+ARmyGHu/3oJRowiuj5XHryWdIHn5DPY8nEevRh8k52uHaI1pJhwZe4qONRvwmGMzIGHjPoqUukolomshZMtrMry/Eb78Y0yaoMkLZ5Vxk9Vpmr/RFCJPEfgXjkW/BF38b4QxHn+UDw92ZOLrWU7QcTAI/PMy2VNIEvQl5kFVVQ3tWOfIg/lu6DZlLCw9pgPHzl+g0fPjsVxtLbeKmEKRYgXkbVPgEkUFGFkiAS4N1Syzk9DjQQpWrzVgW4u9dLttFlzaEg5vHC6gw0ZlauMdGLI8kpYtluK1kr+g4sExfPiphs30R0LpjEEazpHjhW1VuHhlDnj99Ob9Vlf4jp4xVfgn89vrwE7WKiCVkU09SvchPqYbOlaUsGVfFGu9Os2pl2fz7pY2MBm+QVlXlMD9Xge/3hGPVnMV6cyXToLP2/lW3xja+O45bD7UDp5X5DG+iOCjyi46HOlDExYMgIRTGqUUzqTAkPs4S6YdJbqA/TfHwIcZhuBtXkXHZpRhjI0odySvpu00HRdYrcVo32PQWtQHw6czoDjFDEQcRfix2CrYEBwIj0xLWelYFx3Mm0BPsgO5e0kOTrx8le9nTIQB/9Po+7oUXL66k5+PHMb1Z0Fe/V+ML5iLdsO3QGz2YRweIQXur/KoRGE87lq/CCYvraGy/Xm09t5hSPdcgGvaFqL7g+m8XFgOtCIqODOug37NvAhyJ+1w3aY5tDxHmnWX/GGBhnNkmqgIkqsVwMi4je0qqsBVZw2z3098OSsK9YeWsnrETnjztAUszXXI4IspvB07D6J8B+i/CxfhRmkuvW7XICmhJ1z61A4nfI/mzuQlfG6+EYiomcAV1kPtCZpYereSatd8webRe+jnP2HIUG7D9Qsdwb5GEEK/HqIO27Gg2iVCaVIh2DlTit8eS2Rd618gtPMI2/xZDw+OGEPs6UJWCVJGp7VyXC0eRXP+/EOb8mBW3pxG8uO+YEOpJV25MA1edW7HfdkPUejOGQwIf0APklV4T+8svDt8H6/GpYN4SzNPjdSB8Nh1uGWXANoqjeeOpkHwVrZkqfXeEBmeQa22uRh6sBx/5crAqnmF6CouQwvyd5DHgQt8INoae/OGaMYJY2iV/MLt5uX8448JNIuuRBe7cmx+4MryFp/YR7kV5u4lNk72Qe3+DdBkK8tpvQjzy+Iosl4e7q4dxGkXxLhYMBISduiQf98zvhQZy4LN02h3shwYjn3Fn7+/o/F1zZC7OIY1477iONGnGJRmRjMdYkFabSYY3hAE5445rGQczYNy51BNJIyN9hfSwOpfVDbfmvS9g2FfjxEK9RhDm4gmLXxpDNvfnSPZT8Fk0OUP4etcQKlEDTT3K8OOuy9RYoE0HB1dCqqzn4KoTRRfT62mMx2HKPVqIe/6zxDDtG7hTZfvXLpRCjaqTWXZf62sK57InWsW0sPdFhQjfwX7+nRxjd5rSpL4y6J7p8KFMmOoVxtBbFcNAUObOEmumSSuiXFq5lyCoQB0ieyBApgOT1vHY0meE+ZtuUdnhgJZ9cZ0Hr6ghytVf/AJg2eQ3SrEGokm4NP5Do5HtvPXiou8f/MfKLrhxjp3d5H9z3zarPSaDb7vB5NlmjB+gzCZjLqPA2ONcdPZTqwvfIdTH79FP8sb+N82WZz4yIAHpA3A3/QkiIle4fmTHNHDN4mWeJVx3c0U8gs4jDqwiAsS59O749pg2bWCvzi3cWJwIu1Q2ErjxEvZe0ISCWA/6UufJk85RNFgVRhRWI1/9r/ihj1a2Cb7lMomryLJ5JEsMdqW01vP8+icVLxmYQR/JQzpaBuiQKUkmkVfZ/cPQ/S9/yDoPvPDXYbRHBZbADujx0OI21O4DTE8Yd02DvHaTPtuicPt3h5OLyuiV26H2Gd0BAr2i8Da7r1k+mkNObzeAlvzd0Ov6mYY1qrE0af8oflnMaQc+cT59WJQI2yH6yx30hQVV6rJf40vUYFQOZJVrBWI9Y9xUG8LfNUH+HzsNbg4bMP6Ygn2Kghj4X9JoPn2NmRYjed5B3uoYZorPs4gWLHYl3NSdPFXyRaMnj4dD4ibUfc5ouHbseid84C1D5vi7VNCcEJxKhdcScfXjUqQ+CSFfJbdpbqnwrhqRRl1XNuDG32XslWJFAQqudLQni0sPnQMV0TswZ6eP6hquZvvvA/mXaGVtMnXCI1KNMC68QFYmIRw5sBsOBbaTrV5rjBvzh64Z68CoLSTQ7/84+xtqtC4SYWeOAeh8q51MOmOJfrM/gvtE8byn8s3cb5cMYSbXKGSc5Kwfq0lJBy7TNNfhMG0FeW8Yk44bfNsJEePSNz3ailc7J7KwgaTwbP8Og8JbgWN7c/4w4AS7qqdC67G/TRfXpGGPs8Bvw2ZMO6aOpy2zADr6UK4Kd0Sjga+5lqJ5bhruTfOUhnPRQd8oZPm0t9nhrC+TBF9HqZQ8fypvMHMCg+SCNlkZdCfLat5Gjii21N92CpkBN2NHnwirIA3zL7B25wCSE5ckjbXjwPVmHs0fttmuj2+DCrqBYBCu8jEahooLJgI6SuPQ/7xUjyLu9H+phvbrbkB6yf18s4uPdAs3M/zFGSxvW4jD9loUH2uDr0P0cOjSSNo6/EEnKm+jp5WGMKMyhT47H8cjka2Yn+cMG25I4evLcZipckbCqpvB8fD08hupiBMa93MSbuP0LrBcGJXRzz2nzprjSzEx/f0KOpRMi3e78TKJwxgf74FnbV2pUV3w+HaoQfouzkEagzm0pMGLcj78BkGc+Vo5dAIMHl5i777PabsdCPwj7aiNqlF3Cy8HIoqr7LBmhXgTQug/rY0eNc04bIGOXjaN8izT1uSqHc5xtZkwcx6M9g+4z5IXfOGRzpKcOlcKrz7Zs1aL0PZcu9Zig4w52sPpqHg907Q2B5KWQ+V8KTIdBjpGAcKYj686/MjDOjtgBmRiRAk8YF/j5CGqV3+YKrynt81ycLxmDpQ/ZTNEcbWPO3vA2jc1Mi7Q8rApWYkJCxJZwOhsXBrlBF0j5iJORoWVOnhhSGFpqyXYYpfRmlyzu0MmPvUGfz/nkbpChMYKLaEw38r8GF8NteHBWC03Ss0kbMmhYBt8FdEBabf2Qj7JKShW8wQtuqvw28yS1ClvYqVF4xGEckYEk2UomlGrfB95RyoEjQDrWsf8W2HDKqVM90WnUH3+mPR4vh53hV9AiZNGYLYNQ281lwVtN73ULP7Z45aHo1HOsSo0/4XNHzNwckv35CV6W1SuyID2vMnQs6FRZy5dQo/u6nBYyfEo3z5fJ6xcgAlG4bZ/tQVGv3XCudPlwb3s5ncr38FZRo7MGr9HJCYuI1ed45Ht20FcC2qhJ5Vz8RiNS34UjoSsqNv8JbsKVDpHMuGiWkstnwvF5dXgnqgL94oeQ2yWrNg08FCvpS/CrMbVvD58f1k1pSJ4t1TSczzMgsMjqba0n4eXUAQ+XIb7ss2gfF+evhNzIxP/dEG7XP3wML2FRl7PwD1WYmw0NEQSq5Ewoe+0Yiur2iSywoanNOLzaMX8o+D6mS94ytIRj/j6FOyMP7HENXhV9Q30yTrS+NI2PILORt5kphqISkV7qejZtZgvEQCdpzQpmA1U3r78S5+tPPE7FUm7LhwGaulnaBQi1coB+9xyw1Z8DS/h67TvsD3fgP+8uQEJnA7atZtB525PyHJ9Df7xPWBZ6YW/LAy5OH0MWg7vgdtPf9h9KkEPHL1IlXufkqS6wNZ1/0eJYUrgMGz+7Rwpz7rxV/mbx/m4SydHsTLH8hxRSEXwkcIODoPIteKwF2yJMnGP/RnwX+wUrmd3nr6Ud1wF7XGvQUzixjyz1bgk6QMz7sSKe2SCL4w2Uqh6gMU+UIWz6hOwJqBcFwzZMcPpxijcpMkSHS+pncmfbDoryBo+Tph9kXGXdWb0HDyHM5oLubd8I50+tTh9+e74OUthJEvT6BmUTHv+eIGi+v+g8BnaZge9R8XVdzgN7GK4AppZKygzHXKWdTQNERKWT74RyEJRH7b8LPYi7TmggwetDOA+jo7PDGXsWa1LMVmfiXRhxokoT0F6wfGQ+V/6diRmQBznCShfVoOr1J5B/JzDVl1uBU3yYzDa9aX6NHBPbzorCtatT7kKZpKcKcmBiZvmwnJWjIUFfSBe+uPkZxiB8o8P8VDgm2kbXKVDlebgPyEKzyuP4zqe8rw1SFlKuiSYA0cyYUParlZYwXp+66mNzMEQdxkNkqvfUqS7Ub0YUQe2dS54uPfzpj29wLC9Ht84doCVDw4B+6lHgX7klTc5NtMp59n0OhLbji8Lx1kpoZheqsPmVbdojuVSjDrJYJq1Up+sKaHykw7KcypBFxdXpLmwHXKuh/Dn6x0QMzNBC7N/0vuuzUAK2y5e3k6HWkXocCcQDaM2I4v7Gzg9gkr1nqhBEtXv8eUpStJ22QNxTrc5bHKyaig1ooajr64+KchFD+0RhxpCh6S66E2bBj3G3dgQsRdDGpcj78nX+LXGhog5HGDIvVNweqeGIhNaOGSkTI4r3ACVH4vg7CTR/Dtv9s8//5pmt+uRHMvLYIPejOgp7OVCow0qe2IGQ29amHTKc74Ryqa/pXG8X+vrWl44RC12BrAgYc/uC61Hf5rvkoX53zjf8rTSMnTF5osNsJQwxJwWveZDC+pQvO1bhxO9wCLbU9gebALbMj4Qd3y2bRjaQUvnDwFi5Z6ckyHEgTxEMunjqDJybEQ+dyBiua6UFPoO5De8gw1bWdj/ZzH/CB4Mny6M8w295rp09pJ0J+XRjGlI3jJpEP48pkt+foao4XZZ1whLwWPFRRQtq6QvnurQX/iHJRPJNI6lQIG48y4VnUWBvzxoOhYIxhzTw2mXhgL+1uXg3tWIy/fKIZml9XA11uat/R7kozXUcx/PQp6jt1HYa+5GPRPmzPtftOvTnUqjwkjr6QXtEfYkmtgEG4ZToYgPTP00LsOImnPIG/QCLVeBYHe/nEQ+U8aOkPWQsLJTzxzwhSweSyHl/oOwohlX3kFt/BcWV24OKIBU9ca8zGHK5h4V46rmsRA1TGU443lUfWTCnToHoXAGfIYON8P0jvfQ7GgOUj3m/DUYlUQ7rvE55430PLgB3x8/hXcsCOOLi8NABezE+D+RpbP6Y/FH5kzoU90P6Q736H4/GHcJBDCtQqfWSMkh5USJOjSmBr4mmOL0xXGQ4v7Py6//YS/5ibxyNHunHnBkVrXJUDJt1+YemcR7bX/B7FyBvDIehIOxRfQ/tsLudq8kE6eTcZvgmXcOMkCvCI1wDLoIv/N04Ank49Dm8J20LmynJa1LYYM/0qodOxGbf3zuGXScbaOWgXnQ00gwicGX/sF0+rZhB358ynh8luoLV4D94x/cpFoIe9bnE/3zbQg5v5hFp0xAEL3x9H5lb+wz+IthKrrkFjjEeyakUKPCk5i/EhTsM4Grna1xsuPkzj/0EVsrf5Clv85oF7TenjkkMqbC6spc+w0mPs1mYM2h/G+pD3YmTcLUrkbUgJX8t0CMYyqHcC1Xafh0RpjCN7dD6sl50OAtCe9tF3Fhy6P54W1q+m/GWM4LCuUJ3WmUNOSOVAZWg+HGnuA9vVhd2kRKlYG84o4UXbc+QbEnZRhha0JOu3WBXFfHzZ1XoT+4hfxsm8AS+kb47KlG3Gm91jMzdHlO/ar4caDUdDg8A/uflgCiXrb6Z6iHkr+aiQ/nRN0zP4ROp06AerKarT9rwEI+TtwiX0zJqoF0g2LTP694imsjr+F7l8monOWMk7zeIMRD8ZC6wwnSjiymQ+9cYZp1TsY1qRSceYBXLjjPWnePMJV12JAdPYIiFolg/IvB6jcPBheZVWgclQvF+TpYt63MbA/by8uj02FLX+UwedWLt/84kCHO2aRhLoCbfshiuHeTTBljgsNBzmjnt4KPugtDbYjMvje/HF4UWA+9OWoc6GxBBT59fOIQX/winfBQ7WTcN0sbVj4I4sGFqWydsJedJVMp0zz8XzxzmHcWriGWX4v/LD/ASVxOmCjNwxmAx4o0XeflAdnU49KBwTs+YmX3oRC0iwFsq/UZBOpkXAmtpSbFETgta08hQzrQvZKWYxaHg/fXdXolmIuOK4px4EpGlCb+4QTkxZzTn0gvEwUpBtNP1nVs4TGnIjA3k5FXne5AE0stEDX7AmtMZtAW1tW4ME1W8D4cgi5GtxCH++5JG7WgNbHlsDC4zJwHidy4co1MGrucghrk8FFkbWcp7WC1jpXgkyOK/PwAJ7tHwEPTc5hSaMPfwxy4oxoISg8V8nf5F6gTXwuzB82weyknfzLejJ8u7sbzuYL8597hvz9/Cy6/F0XXi/YBhV9J6B4awTG9rWQugzBxZ22sK0lDebNtOSFzsJwW+gdnnEJZM/OtbjTMxV/Lq7A4x80QTF7Anvl2WLtQC9mjj2GxwOLuPCbIS5UE6Ws1w10fpoc7U8wgzLHnyCXUcb22zdB1LttNE5rG0rceQR/UpbxutcV3PLWCupjtECoqZG0ByTA6fFI2N8wgmduiKPQK4dhT2Mzuh43pMmRwLeXKcKRXdIQ7JIPIxyFuPtGMd/U/8VvjMo52MYBVl87gx0it/hKxQyQ/fyMR3fao63SPjCpiaTzl0bD/YO2MOJYHLfNmcAzNHVQ/IMcFJ0nnNBZy7EBRdhQOR9KTO7AspVf4UDgcn5/VZT7nuShUfoU0A0TweMh8+FF2VHKNg7C+duTqf3JYzBti6VUp6OQ0ohgtswEIq3asPtIOE33fkFiwetp2XbkPdF3OHZDLyts18drT/1xUGgSWCq18KQNGphCm6i76A7YeKwHD6VEmvl2AF/0GJDLrqn8c5c6SOl/oEe9x+GNTQoLtzfAHKvbEK0ZhvszhFDSdRY4tb9li1PaMFloN3z+4ghy2b540n8TpH1tQfXsJXhcwRKLpj/HKBkTTl0hD6OOKMHu3caYMf0Sz3jwCiUeJeBEXsdLFRrxkcsHNP65DM3+zAC1R5pkeTAIu2AnyvYtADWNburbeQYedMjDlemP+JLyc7wRZASSt2+zls8wD6/YjUn/JCFohiIlV6WC2cVxkP5hPAifjYHXCiogmXaL2wdboNDBklMOlOH1/mL8pBJPTwe1acr6i3D//WQ+lG4K3w6Jk4erMF9Zeo67g21wyvlM9F22DkVeqXNixgV8nSCEGerjYOLLarx/RBnvqEyHFSF+VD13At73lSbFNXr83+J1dOR6PttV6oDaPyu+GBSArwOE4VyvKi04GoYS2aOwU/MUpZwz5W9JDRw9UQnMw6V47yZHVhfWQffBYbBVUcAJT0Nh1P1zGDnpJvrLjIbdB1XgRfFIUD5+HV/VVcKfWcb48OxCFhoRT9Nv98CqC4zHDq0jPwcxMHh/Hss0O8FdagzK2Nhz5oJrXBPXCgqGCLa5Eji3KBFDkgUhxk4XR4aeprMju3iGwSloqkfKjvuHZ2VbsFDFAzNE49n9qCas27EYl5Z0knlFLCWtX46hWSoUIrAdyvNMcPi9IEWvHYU6+xVB7W0y1+eNwBdus+DCzU9Q5hQPAg2HaPPBv1CT78n9s+fCDz0NGFeuhVHTs6nFIpiiFL1Z/LgHrZ3nSP5RXSCc0saffzL73JkF22wOst+odFizMggKCxrAtCCYfhzaQZ3Nb6n+nBms0jXBtApB6Pq8HatzR2PO5wM87VIlqd49TZrOV3Dl4Qs4f74jq41O4mk6WuC3ZS8WNL4jpw9Z6GNUSIIea/jXKj1yzDbG7V3WePpgAThlyUCTaTCPivNA6QxXEimJg5M/DmO5ly5vHnoN3PiY8zbJwv4hA7AzGkKHBfl0c3gOmW9x5tOHzbH/+0ZwOOXD5pfO0/RDp8nrrwYUi4hQx9W32NNfyre0ZGiKQxwK/g6n52uH+I8jc3rZWzgUJAHGmV8h5L+lUPttN/i75mLsTG28u06O312UQQHFNnCxn88NfyaAoYEYVH/cjqmvNtFThS+UMj+RE5TvANw0g5AJs+nIkD4W9yD4jH/GbRcE8MLrlxA6TYN1N1iQdkUJ9Cg1Yv3YXtz4uxHuxWpA+cNHuCC2Fstf/ccLenN4Z04nux+1p+q5e/hWzxzIGeEOPuVz4JHyGtBJuEW2mkGceUUEsv1Ws9rjdpw8twEGBEqofPpOnj3KGI7cnAsnYCNN3/SGEzyysbPfDwRFR/NGXS9+n+COjusz4LONCHztFWYF3yX84MtD3nx+LG8cfYCONP3E2YVLWei6D3ePHMfharNgx/FjyL+66dasV/hTuZ7CZPx48wlpbJsuhO7CxrzpjjovS9cBL2ctLigqo6lVG0ms+gLEnT6NdRKSIL/GHQ7odOPPj314x0ALLOMdWXhtCsxUTaL844FYEvWGF36+iLZ+k8Cm+ASFHI3CJfUKcE0hkWZEBkKUxkg+39qKzxOcyTxclqfN/0ym9ir8TF4cW7Wng6tMJzhJHAdh23Y4HzKEUkvm8zUmarpQzHkSHaxTIE1VpQIQFFzB7wb+o6c21jBo7gxWoQUcrnMSf15thfhXV6A5vhUkmgThzJyLZJ4uguLpe/j6RB/+N9WYjxxbzD0r46nDs4ssLqpAvO5I0NKOwFXDzdDWZMQLS6tx1f41eE1wH1xyAqKoMXBhlyvIwTjodf8Boo2unADNGL5oL24RV6fsxwMssM2H1IPe4MqoJP7cJvg///9cTG/i5kMj8MKxzeQseZt/ZO2kQSEvch8rjGfC/vKDaiO8IScJ9iumgMOvjShQfxcVDuaxrZ4HjxnaSykdipDUFAMfu2v5t6Qo7DvYB0pJ3XBXtwG//hFFjbuW+KNlFRt1eKA0LMfcWcIUXj4LKC0bFunepTHbKvGu8iO8t+o9l3xvgf923qKy2d3Qtf8A2X8XgustnZQzzpqtlm3EN57iFNc6j8Z0eNPozCnonywHd059h1vuQmCYm827Im6Aw7Z3POqYDyjSeZ68ZAjDnU9CtE863HnRDyY6ClDY5oRrDlrT8y3fSX9gOtfGPsD4r5Zce12c+yMHIT5mLJbUzYbv7qXQfLSPki0K6GXnbbj/WBZfCPrQzq2htNE4mkZJHYAlP2dCsMBXuvl7Az7vakAOHQXhxsp4OGkWmhyuw1XRW/lCvBXOkJKFlEYVyvUvAMeJYVy8ZBmq+JaSid8qyH7pjkoCt1hMxYNMauXBVeU8rx54gFN8rwM4iMPfnIc8x7KEErW94GzmPxzbLQGDQRPhoPILOpv5A48sfojrLqvxwQNuoDDeAZfGrKSpRsupc+9YOPJnJJhb97Nw6TRcdLSN3RO/wri2BVh34jr/qF4Nuz9thC1G57GqSRMmbu1hq1FhvN5/Obnd1Ub/3ggc3H4PCwrjeXjdHlIMLuY3KYagdMQfVreb4NNARZxqNhamHXnEOWYxeMdjDafnW0OJtCMtclWBb5IxlB4uxcayHVgxOJqSTppQhY0nOWwM4xTPa1S3LwGfnDOBcQtV8Hy9AH7QDMHx20+D6PUycK9IRakdxSz01ZCcVLdg6JAI6I7T450VBpi98ASP3RoCCglvoTT9IY5aeQQuWl1C0WMXscxiOlx+0k571Ddzq+wmqIpqgIGfAexeYMrNx3Rxg3oxaHu/5xM31OHl9jOU9OAkVG6vwjNX19IIiS8UcieXpU9Zw8b7WVD49iPt8pKEEhM7zPe8Bg3i07nr6Ge6l6CO67X34/yplZgg8I57PQ/hS5QH0YJ82FN6h05o9ZC3RjUKvzgCrSmyNOQrgRU9N/CdRQy5JphA0pELpLtliKu3fEXNWwnoHpBOkdr3sS5RkSa/tyDLdwfAVV4JzjzKwrWPXPG1QxrlSHpSbOMoXC20F1WyYigrxwjS43bDEXdZ2F7UDJsCY/BL2VpUftLLF98F0aUgTSgTHiSZ/Yl4aPwbeBqtBS8u1KOqoRUpykRDx4Al7NvRxRYWS/lt+lTOK9zDXZky/L5+FuzRq4YfN03YLtodfewFwWn2dhKs92CvrGGkXjOY4CWGOSfkYPukDkhS/QZS9R0Q02/Bk0yXwKWRWmjvn0DbDCajsVkXFbkJge/bXpgjn8VTrh7kAk6Du1sv4cPKPphAMzHA+CX0pY8Aj79TwG3pME8MjoSF7oqgK6lOyT1q/HPVZQypDwHzhBB8+vEl9E7Vhaza35y34QauTyrjCZsm4c/2kXA40A4szO5w9ILb/ImL0a8CYf3EUJIcq0aHdQHP7iiH9oxAMN4Zy3raRznzw2bUW3+U9JUnQI5GDPoYR1BcUzxnvjvERgPPIVVOjL68uQH7XK7jbpEwfjZ6JCxYYcyZVw7T/h2f8OFoAfq1yxx/hG3C370CnF1oCv5p5vhFTxXORl4H0dZ8ePzwLt36GcIvVfvgzcMmXjDSFS0cNeG73yFYrmUApxxaqbQoiKb7P2bDiN3Ufmsu7K5vgtqj2Sh/w4nb82dwb/IkCGoxoGdPF5NP5iFY2bqF0y8ng8NLO3itmkNm+Qf47mAqfAQxaOy3BoHUPfB7yV8cjPvKrbXLcUycE828RLhC1Zs9rIp4q7MWTBWM5+wH2vzz/jxU2myAm4qaKKHHHsdE2FHbgYdo9PAQt27WhxVt4mjgVQf0oIhX5izAtz0pULmpCutdHuLZJy2cKdHHdx8KwShzWRRdWYeHfs+kKMU5tPDeFbj3ZyN3G46DyCFf7Mz/wmf/yEDTmU/Y3juKLS4vhgXSu6i/uZy33FXiHNEXwNf6cPT+W5DbMBWe1eRCdXInmLcncvF2cQxbJYCXuIaETkzAtksb0DrFDO/H68FcGRHKnmRGVsl32Va3hdv0LoLYQV8aJ1PB/X91uffkHXr+RA4ur7wDlYu+8BK4gQ618+jZnhPwVDYcfi2IxqREaVp9Zib3LEI49yqNXvoW8fabo7B4wQ6sPFTAVV6HSWdXJ25OL8Wlrjl8pNwYBP1iaJpSEbT/94Tyg/bToO1TVhlSpSmx1+lWgBt+sEaI9RYG5zEO6GIRy8bVRPJpjmT05gcpbLnDG5q3o197D082Iz59VBwaulfi6ehDfH1nLt+uWwhHjk+Dq6kL4EzZQWhNFKX3/8dxfXADwagBAH6HPTKzJSojksgmlQaplFSKtBRCCZUmiYhC0pKQkkJCGl9DiZbKLFlRKBJp0JDqnnN/xrPkF63YaQLvNCfya8uZkP09i2QvfkHBpSVsIpoCizwbWSwvizoV3uPqxepw4r88zttxnX4sHoS3netAqkYQbgppcFPpTZblpXggIAoPjlWFeXQALmwZZpMqY+rXkAM/hZ+UL1oFO2cztxjGgox6EgW+NofEOSGQYRiLKnFqEC/5BE3O76PmuN34ocoJeiST6NufCMx8Lwn7+o7wnTtPOTAqhupK1KFStACvGNpQyLgVGGnzHeLdstjhqQ5ofQ9g/5HR0Ls2HkSW6dLiw5KweWkMejswi7+dz3e/TaS03eog++kh1H09jG6F46HjmiBV+atSTNVYOm4+nT4bqMKEXRLcM08Tipdqsb2MP+QWalGSqiyPNlnOgS5hNN5tMSw8CnDz+i2883wcbEuYBze2W1OGdDys/XONRlR6sPHDYgyYf5Q+rj9CQ5tEUOMQwtkgLeYrbyDxrh1l1jlC9icjfqN5Dgdn6aPAz9OU8voEW98eDz3WmnDx3Q3ylN3KzSLH+WNEOMy8uJisW2bw3udf0GvBXzIYaQFSo89D/cmpZBJwhobcuvGb4TncvNWblJK7cM6svSDz6xGH6WnAyHwJkFIMwKsC0/jM+gzQMfxGV9+94Rf33XFUqRNU7tOBlHPjYMKrMJY97cBPtpzBI+nHeKZiE84Xk0Vd/zIMDhRA/XE9dOuMPty2+ERHWo3RJCKIny50RZmkQ2g1rEPv8goo9p04BAc+Ya8dQjDu+xZwCdiATuqJKHpmNiSdGU8TErNR3+AZ3N5Xi12KQzSUPRkiizZg3swK6DacgiLjmK13K/CG2BVobyCPB1XOQ9qBDfw4bARcFW6jZeFytOX2T9DfHc3ND3y4598rNsoLQe8r8/H2LwmW9reB9pxMfFd6FwJumYBOczJFvvXi/gRDbuwoouDGvzi//A8XOklDwLe7NP7AKzw9YISmIWnkbPIQR0akUPi0y/zA/yRlZE3mK44WoC9+lK57zaDQcbc5tFEWW+fN5Zcym2DBumTWyu+md82FaJczCu6uPUbVT2tpUOMiTy/vou4TfSCzr4hWpuTSiLxcLns1mqak2YDnwtekFqyGs89n0YUpGvR67zBIh0mh1ApbjhWTJ/P9pzD0nSp8GxCFE9c+81lXV3TaO5+EK/dQbdV4PvR4DMkvz6bQCWZ8dVATsgSqEcGbn+mnsYbYFtp7wxOWxEnTqPQUTtZXhB0nq9Hrx0ToHGUOKsf3o/x5ddwyUIVB+hk4xzqIGoJ/0OcXDVwoJ4+P16nD2Vuv8W9IGQuEF0PLqmD49asU/jbY0I5Ffjhv5zI0H7GSS3ebwP5HsrDqRxy2S5yGr+Wrcduci/Sz6Cf+GuMO813rQXzjYf4qqgENoyQpM203C2TPwmKIgavDWTDm2kc6ruoOT/e0skytBfQMa0Pc/elou0yG8qcv5s0TL7JIhRDF5waDeKgdf+xcQArSRmBcoQfD7YEc4WBOmVJxHOObTjuXryO/c+kUP90YFk0+Aj7BCnRvnCZ8TkPe+OEEuxbq8I2UIL5pP4xHnB9Thc90KrM8iEO7Q/CslCGsql1A5cfMYfN8Ih1PF9z/Nxk3qlnhhg5X0oB+PLGmhw3jlSDAaRt5TDwND8u20fYCE6SfTgzqpSgx1R1iegOo9NAQJitoQOSTbGwt+AoWe96yZegUsLF6AhkCp7lF/CIUCI/hRz/SsDdXCkqfbOH2yEVUJnCddjTO4XqBWFJTfQt5l6Whr+csrjzVQ9ZndWG/vQRN+gosYyrFS/JTseFNOq/4t4p1JQ14yaRLkJi3lZauNIJuw9Xc9UsSGkb/479hP7gwYhImxR3lNo1gnJq6lGJvxVFhhQ1Yef6F0CsW6P++lc5fm8XKoddg9WTm7cEPIe+FEWzJmEhPvBWgb9wwpy/3pDBDD0r+NUCPvmnwaedcjgoK4t+3ZnDZQik8IcnwqNCPRysqkoSTKUwfYM6a2UZb406D59ZF7ODQScZKEfR4vSK0xPTCcNBd+C7nApotwqS/ZSXpWuRgZWUtvrzrhzW3HnBHtwXserwZx0aJ0SrRNhg7bzKrZ/Zi/6dMEG38CON9LGhUrydJXBcHr8DxdP5XENfd20pzrwAGC3xjq3kDtEZ5F2vozOT2s+7w+a42VK15DeYRh7hHNB9ctbaTY0Imz5iwkac7puCuOfH8PHIdrQwVAYF2NZq8YwXPd7Gl06KWNC67iJ/e0eNlDSH8ZooyX1lTg4lfpcEvYQ6fk5uGLvGzKGnoGT26lsKPus1I89cC2tydAIEdEXTMyhxU63fDcjwMIf/2QVTCK8yNzcWLEp6ofC6O75wL5BsPcqm4bwpI2hNOSNLBcYW74OXTAbLVcuBO7d+UvmwW+FIy5Kgp4p+ECZBiPxN0lk6hK93m9OGAAfTuS+fYP2k4am0V/fibAp/FkjF7yAhU9+nCiwUFeEXoCdY0rWYrgYM4z202bZ8ShU+n7SDlrGso+tQcYi418et7kbzNyJu1FjnAn3J3cN37HwXq7oSdtmNo+t+PBBIq0D1PhzV9rDB8Ujw+FfzJzrYeNPR9IliI+NKeh0WgcCaRZieqwik6iqM7ijj2dhvOOC+PnkXZsGBbOx/4dJjLvgnxRtVokos1Avn5ehBkFUdBshvY5GgbhaE60fgSGKvlhc7906Gl2QfvrR4Hy5VfgVjmRgiTK6SGwt1QK3iCggSW0CPNF7hoXi57tc7G8fNlYZVVINSVSpBi1wnoeV0PvdCP6abn0UtyNUQkvcJRJaJ0JN4Oyr/p4/qRn+Go0lz4KrYHDBwswWVoJ2ieEsSvmS3YojEVXgQT6G22x+athay9QpyrXzpS4hElPgEO3DIxgwd6LGkwLoeUA8ZCScpX7i05yt5/e3lCiws3Lcri3ZtTSHaEFmwMlsJcEzGQ/agFtd5PIONxLwX3hOL6P9spzq0ZwwQ6IU7rMnkcrucytVMgOkIQ7j33wDkJY/j+yXc4uqiCy+ZW8KGPByG4W4G2eLnxtZJ4aqhTAfl3GZimUEdiA5N4YNt1WjbTDlVkRaDxrzz5ys5H8fRtVHPZGooyNtD95gAKf6WCf5IN2PDKg/8bfUyQAdD7XagR0EPzirVgflYcWcf6QNtZa9x73Ip/zsiGO14aXD13KymahkCclCa1wmiovzCD1bRqWMu8A5OOOaDrvir8GxYLz+qq4XbgfQ4Kl8YTCcpQFNHOj6feR6+53eTuuwOKHsXAdcG9NG3FVkoXlifzCSrUM2wMwvejUV5xP+hW6kPlEkMudpXgXRXrSPiAHWapWpC2VAL8l2AHjjlK3PHuA24/1MO/ZDfQuQ2isOhOKZz3d4P7187itjGh/BI0wehuGbSZ1LLFw3e06cxBkjScRZN3neDZpWehauNS6psei15HJeDA9UBeMbaP66w+8WZNX/A54EZBF4pwvnY7KHbZ8ZbOMpj6VRD8heagzs7x2C90hTsgBs5vEaYNIRHY+kUbLuXrk6CVPdwPloGkOEUQkljGJe5O4G6UQzuTDLghaT0dKyrEPbnBfCBoPtcMC8EYh+vso34HP7ru5l3vdtBT/1V4Z7cqN8dsQqHpv7h/0n0udp8EM2PSoa2mC6Tk5SBcyJJl3TaCwL4cPL5QgSMd4zhh+RK+x+aw4l8zPjjtRJlqJjw2rArcetw4zFYGH21vwp4xIznoVB0pOsrB9MUvySZADi5U+2HVHg1ItJhN9jdmo1zJd3p9ZQ0pBX/BCgkdSExSgHRRdTzTZcjNNq+wRCkaZMWv44OftXhi6R++K/4LjZNEYGnmFMiMXMO+Y0rI55UIbFn7FvZvlET3q36Q7HmLNSf4wrq9U+C0sxXe9/FFu02TwHPoL1nMXYv2By7yo3lP4VnTCJy6I4X365nAl/MllClXiYO7dlGrsCn1JHty265e9nkTQfJfXnGk5xG6dlsYfmak4u9FlvhOKQva3Nehpv9TPrP4KTXu9SD7Cf3wQGchi9Vpg82LKWAW1Msj5Afp3o1D8PalO7w8FkjrqyRpU/9LPNi1CGYvmwAfy0oJRm6gaJF06lioiY+97WDE0FFKaLxP38Oc6M+OZFY3F4d3NRe555orrhD4zF+CPLjJZSvsnjMKxspGsEDxd5qpYMWZR6QgJbWbTUyN4N8/cxjtrwz9XiYw8UIkTLWZTBL7qjh36CV9U7ACDb1BGrHGl9PHXkLzh3G0fvRIyFpajJanbLk4cAeGZHRgV5Y+OB8JhppbgZzjlgaOmYH8R32YOWQZPF2eimMeFLHs72O0znMsBN3I4/dXjqCOTyOp7fiNEd+bQUZHG80d50O2lBqnfDXhkCWCMOaKGTbfLGLj53487oY1PtkahhvhH5xYeRQN9L5BSNBMtG+cAhdv5uHvrjyuOXCYV5zfjx1CFeA88Tl1CQRCYEQuiQX10OVkaVAe9Q/DhMqw9UMAVceJcviyS2BRaoULTB7xhL2RaFhxjhJ/acLftVkUZ7QOzZzrycRuBu8MUOERjXaY+COftq7Xp4z+IPYLFYNOuULMS7QDWxhi4yMPiDx28Xp5LVrQlwHf9rQz1ZwCcx0DqF+tShVz/6FXnz0JWBlQefEPWhXRgs5f9qN+zBh2OpqBaX8IbqWeodOxB9A8xIww2ZTmXNFjD6WlNGOxMoxo1qPUpQM4a4UifLj4Hf0Kz5Fi4yo8fmULeDztRcHJ5aC0I5dblX7SLfV18HDMFHAP0eQ1b9NpuVgnLuI+uh23EAWDFkCz3gd+MLmdfqZKkNznyWDUlkWBH+vopfhvbKo4iC5qySy3JpyHOz7TdfXdsNbMgRpC5WB4ehSNThGCia2XeW2fGc27ZUWN9QvAKS6K0iOXkSfIUq2bBhT43YHlAU203G4HfjZ7ho07rNHObTt0dR+C6BoTVt62nuYKGUBLYxNa1Aiw3xoxjnm3hjKmNOFriZs85dUelFNfibOyJvP0+3bQGWEEN8cS6A+twpCu+3Rt+UGcbTievc80sLixB3fVvmetm5Iwc8kkVDhuQer50dT2QBD833mxTt1ldNsXhSt64+BqB8GdRnV4Lv8OVhS04uMd73iaXB2+cZ2Pe3sP0N6VpqBuUI1rbc/RTg9d+LpyOwzUBJHjpGT44viQOgWEMU5YGlI378femzrYEf8C6wskYcthQ0r4F4kH/ddyv7E6Z7UQO7V1QqFSB90Mn00JPzzpuYkxDKm9hkf5d8kmKBcSo8vwUvpCVFhzFWqMDlPAohN0Gm6Qq7UKfJbv5QuXi/iIowRf4fW8tCcGsgIzsCSqkBPGnCe73YY8WGgDTf3v2crJip2PCULF2yp2npCEqskKZB60iRrrL8MBrX7aK6UDu4fz+eIzxi+727i59ww+tn6Bg6cseMYEcdb/7kBrut7h/T49cM7NoQMdupgZtp4UxGdR4OvV/Lb1IwbHOJKywz8IWfMKM94ThFxYy4ujRsPsxiw+HHeBVkzZzKoPayH4iRtlfN6LX++2cjKMgx8dfRR94SgN+DWStfwN2jqqFFfH9qGSSzpu/KiAA5+/YvBqYUj+sQdd150DK21b9lRVA6sAV9jt3ckrrR7D8+xOeDn4A453moC7jhUWeEzALOVeNlSvxNixcfxv2zG8Of8llVtbgUqaIte2aIGh+hhK+i2PzTrzcEv7CHIMNoDS5xZYH6yDXxqMYNHeA5Q7WQp+bpvNkU3JXNIuTutVTKDVJJGuxp+m3eqGJJMsCd379MgzzQASHL+y9Zi/uCDQiKwOq2DZL0dkr1sQapcO2i+e0Yu1QyRTSXDfawfOOX+FGqu34t+4RKw1aSVBWs8tpzXwfWMUrvLLJvc9GuDZ6sf/5lTSrm/tXOEzke6L7IBPqIyv7zzGrPo6+uN7gvw9RkKu10mKC1kGLYtGwSdnfRIuSueiWRVcvKkZ4stz0eFyOZtojQPvNIYI9VAor4/nu+fy2GXqNj7zPZJaJD7D01nrefqFIkycoApZCyaz574+WqL0lovPfEGvPx/gYbMyvpcKwNm6q/jfTDm8d1IO7OgYf2jQg0vvDOFpkTboWl7mA+094CU1QMNzdlB9ah53H5aBxnNyUCfSwes/vObdSsNs9MyLnzWvw4hvLdCQHsX+85/TEQEd6DhaAHTJGZTXP6U7vxbByfT97H/4E2X2atPrgUBYoDEWJs3RhF2fA3Bn+RVIrd2F/p5tZJpXRSkzEIcW7IC3hatRblsZu3ohrN9gB6e8tblkpQqZDmXB20mbebzuU/wdNhLv/biOCvvfM6UZwe5LeZwzTQkkf/awfPd00MsZhslDgWTRk04/PfMhvecazFqpDOHDxfDoegsXDJnB+PByGuEjjqe/W5HdiyVgnrQZCi94w96RYnAKlGDB9M3Yvu0T7wjo5BfCZ6gQzVhTs55Ldr+mYrE8fHHFEm5dYV7rE8Zjz5+mSsH7bL79Lb+0P0DP1eL5QsEndhZ+zM0jhQCCT6JoAYBr5hC6fdlE21YaQvdBA7DadI30Mv6S09HTIP9qBCxus4BxBw+hqN9+jjyhz2YRHeRa8QttL4aRxrL7bD3vOqnukwZN+xB2N4+AlJ9fcERfMK7HcRBp20/5N26jsIshGlYfI9FAEVBcJc/h8tMp0/0QPpaLJ3XJajhn+odPxxTR85RrmBP5lJ+lWEKVuAyrfP9OhtcNITX9MxQUCJFPmwxcrjmJS86OpPvnPrDZMiNYcFkQ5zwPp7StzzC5/hnJqz7mlAo/SLK8zu9/VUBmwCVe8dkOLucX8ykXDZrRboRSiTs5u0ePJ+1+gytbPMg2tgBmynagv+VEMPICLG68AifKDlCyykeaGViPv++OxpjiGNqopw6lLttZJd8C9kUdB8HHiXRlUI6iSm/Rh/rnEOUwBU4qR/K41+XwNfUU/B0vAduWPsLZkqtgVvkcqP8UQyNk18KbDRYwwXknm6+txbDZI/HFPVlYLp7CidPvUYRxGJ4Sm437Vv6HM3o3k97EeLaeYgsfmzZyXI8pvDs0j084zeK0WznQ1x2OiZaDtEn4E6a6JbCo5wuwm6LMmmEMezR9uGi8P9qsKOD6xU2QLnoHP1rk0q70dfjGMpeDI97Qf45SUH5yF8lNvQguMd2U5bWTCn0kWEf7DSVEC6O9cx4surOJRy9QhnUtCRwsO4rOrz8A8qdU0d2rlIQmnQLxyC3cmrsQfihE43C/Mnw8oUPH2YzUPonDYL0wiv/9TsvS8lj7aQ7YtpeBsrUhGH7Vhz1bpkK1bixWtpTQinWHuGmwEHIz56Ju6AkKrpbB08n19C9KBw5vf8mTel3poKYuVxTNh23bPbCPj8GuVZ9xnsVZPKI+EzwVjeGszGIcPvgYlp4x5t86stgsZ8yRcZFol90Ms4PlOXC6Hp31JHhZuBGW33PB48uPwIZZVnigqIYFlAzQd8FtGs6JIenAEKw9NBp0FR9xrsxy7u6/zHvLfvPhOSVck1bHoQWvyV1bjwu2HiSbrJHw2EodQzOk6M3FfSB10xCXta/AvwVd0N3QjO8EN3Powe+kFjAJ0pY/oHWKjbBHOgOaHfLwXp8eZAxIUp3wLfJ/MILyC1VxxRw9mGvkhdU7J1JXbDu6WFdyUF0YF4rXQM6p/8hE/QHuX3gaq9oU4MuRCE7uuEHFRgp0QnosHOcXoPXoC8p5ltOy0LvU9WIfRjppw8Szinjl9xZsrdLDjMl74fD3h1ylYAvmn9RwbosiqeYIcNFyKejlNfjF9xoYjonEOA95GpishMs3PKTGsLkQEeoPA7IamP9YGhaVTSbWn0XCKzvhaagQ56A+Xh3ezO15wRT3uAcSu4o4aLEufHn3ngzWKAI9bcTYj7dwze86Fqm1xfmN89jwggrtcOmiBUEyYNn5ESMCbkHoxAVA56pJ+/0z3Hl0HH/5rx2nm1WgydPJ0P5GHh4J74fUkeMxfn46Z2XtAtMV/9Hs5GRe22mAxe7V3HThDTrcHgcPe+1xiUAma2RVoZXBB5rUPpYfTk2kj2+2Y0//Vbw9egguL5kEF2UHwMVxG+2fW8k6HX2YH6bNxQOTiJo88MWIWkrUHgPdm6zgW4IoqX+0JVp/lUsvWUKVtBTvD7XBk68F8IdMJ08f+gA6paPh67NW2nW1kg4+d8On9Q2s4JxH2QV2+DBQhDNxLURNFuAD7grQvTeF014U06uRH2Du60us06EG73LvQ5FMPFf86OCsoSKeeEIIynyX46JN42jRLAccOTiaR+/+yKvDnqBV4iuQcnPFaz8L4VSmHEyQOkvUq4WWT8/jOpufuOReP2/u1qYivMzHF5ynpUKJfH6TNGQdf467yocpc/ttDrgxBJcu+LLLnSq+eXgOGHqOw8C5avjcVwkMLf5Cg+1htL3ZS6suxFPEIoIriS+gLCQRtDI30YiuTF7pMBra4x7T5ktpcFjHk25N2wehBj1cry5Bp7cE8ScJG2iXO0vt7oqw4tUOLHM+ykm6Bvg3xYo25faByMT7ZPUtB9XOLuIlhw6hwWZ9GEjM4cuP7OmCWzv3uqaRk0E4isUtAxlvXZ6cdZ9r/JR47DJZcCBrctzggskFrVA6aQN7hG8k+6J+OLn9CR45pg4jTRs4+40hPJhdh5Kfj/CbxkX8pKyMOpf34Fq1aWT3Np7nd8jC9g0rUGW5GchOCeK+kEEEuW/carQbCu8KcuXh85iVZgy5U6MhwDGVYh7KgEtjAGpMHEkV0/SwruYCH3v7hIqLX9A/lsV5Ljb4n9YT0o8RhT2b+rhGXwj8/jykBZvn0chni/FaiwKOvz6em0ZdY/e3G9j5gzI89MvFoUnjQF8jjlyPE878JQ8zD9uSmulrtqlu42WvA8GxQAzuFTtRiVM5nxK+TmOsb/HgmhCWrF7N7pECWCnMLPAkESO/KsGK28fg9YVGln5mxuXRRlAmaAYzH4fylbJ+6PPwRsVFn2D7RkWQXTKFw7eOhimX8rC2gmD+8414vbWLLXOe46qWxdgdsxcbjuhAeOAvvuf7BkS9K6mnawV6PzrP6Z3f+IaKI7tlGYOJlCs611mB0jdxTPrYgYPprzln6UO8utuD938IJfn5Jhw6PpL3fPuChw9JQoeHBitLjcGo3qd8O24FdeoSLrvuwyYp+ZiTLYgWNqkweYM1xBSFwoxntyCpex4l51XhaJFAVNEMw5tvPlD2Kj/86n+Jf6dOgSvT82HgjBz1LplFxpGuXHYNyF50Jay/8BOvLijHMiVpXGQ3GS6sfwhlJxwgVyWIw7N/49Hacu5UzKOXSo9A3r2Pf9ffZtpsAEK1h3D/6bfwcKcKqz1wx6j2W2D7Qg2T4gPorsgVMDM9iaE58tCRdYus0jZjyFElyFpjCc8qRuK9mR2g+G0Ba89uxxv1f9h4wyR4vjqYNpkHkOr2ZIz9k0Tn30Zz5KMK9hkOpAZlJ+rMLuNdZybDhUXuMLBcAmbG/oYVjcYs66iFBQNziSZbw8DVLh4ZMwaDDQ1g3jopjmo8zQ01UdiSM49tc3dCc+pWMJvgBOOPSFG50XmafWoSiJu709p2TXSRySP/G+fgpNhxsHc9QZWXe2DVBCmWVtfBLbvFILDZg5QiJtKp+ON0KyCFt/jbQcfTqeRxtIpG2OXTYyHiDxcYnM1OwbwNP8nN5AFrKgpQ/88uzki8RPGdmhj09i8ZZHwE40lW8GXoIR8qDkMFuf3s8fYB2eVL4MWCEvSt2MGPb6til48DRj0SgSlTgO4F1oOJQQnsqPvIhy+J4MnfHig3eIhtpujylpIiDiwXgd82sRxzYS1t27+S+sfdwH17oqF+bTPJ722l/b5V9OiHPcjKa0JGRTu+T1hOhYcLyPLkZXz9dhCUdfV5uclk1k3KxoKqSeDaIg52YmKUOJBGS8Xuod738fjqYjztH0yGZ44/6NmTKFB0+oKGLcJwdmMtu08GGDx9k1akn+SHjp0stMaBdl67C/kvl9LH3CrM6JWBDi9R7JP14+pNP2hzSBuKpF+EEM0FdKhYBvTVpdHjjQKdmmUBj+9GUGl7P3v/eAgP30Tyw0uK8ET/Ni5rf0n7yxZwZrQ77R3UhGVvF5OEWzhGHdtJ81XD4MFJdxR9Hc0/70zET+CDW49k4d/XRnDugAYafb0B2jq32Hq1BMWbzOccHWeq6UGMl3SkD2s9IC/JBDTPDHLRnxgKEi0C19kZuEk/BLV+rcCsp7M49MMa0nG8TH9rjYGsUmGp5UUaTEymD0JpcK4rlNZsHKInBoroPdOCDqp7wjORsXDrcg3tVlwPivfDcIHGFqxMdGfJ6V7YucYfT5Mt+SwuJOs3ApDl9gAqzhSBplADJUZaQfn5ueCVM0Syqr60XLIH9gRa8TgtOeia4kzhNysxd54jqE86weOvZKKrtCYtc7oKQ2GecCLgKaq2mYGj6EVM1leB97O7efOdb+RR7kWTNjtApeAofrWynaMUN4HJOSk42BxFTV+u4FSzg2Tiytgb6U1zyhQpXjWKj8WcIL/7g+QTKwXTDG3go4Ucy8wYRrcnATD97yxKT/BBh1RXKvpowlpXfnPLIwOY6rMBQ3sGwXtvHm+tfoNq7UOwcOQgrB7jzAZRpThL0BLiTmnCSk1pko/KhXV2KZTZPZJFkyrhua0XqJ2uwouZP2H95XI0OGMLzTfv4678hXzfag3lRSlSjNkTLF+3DOOWReC/6SvIZ9R5qhcaC9aqmhCvto4tazfQj4tlRNXWfK5EH2uLRHHCmG/wcrQKDLbqgI97DEmdC6Dzyrdpjc5Y5G9X+KaIDYXNc6Dz3UkgLmDMEXvGgcukB6CW7UVCs5jCvlyghbYPwDt2E59eFAIHA1VR9+JmXigkAslBhbQvxI3g5GGwW3UQs/sf8djucHjwQ4rMF/yjI0K3wOeVEpQt+4YzdBajxLJejGr/RtUHnWjusD7cc5eAjTFd+F/UZGxdLQisd43G1pTDXFdViPxrCk2f7cF8RhCBigXsH/5M/9Js+VqbMhQv7eClstch0r+THzj+gbAPrznX4RK6f3jCRSNHkk/2NVjrYgPWn9Wp71IteWp10NPXmlxgtpZ+Ln9DctO3kvk9cZIOG+BtqaNg5f0DoOH1Bx/tsWOBF3shstyUfPz2A8uWUnXvGPxk/xKnpStDQFQjTOyX4wtSyTgxZRp6bUhl/9ez2XZtIKd+bEPn2UfocJ4cJOSe4/zbvRxRUEKf5wiB+UgdjvacwIfXhrDfFkfoF1YEhVoteHl0K/3zFCMlv514z+oPr5M6wX8y22jdqVG8uD6c7Ibr8XiwCYi4zuXmhctoYkEEaHfP47q54ph7fhXVNqvxtBG76BG3UH6/IZzXsCT3tRfB5mg1vHSayJI7rUlqYSnIfBVHBe9k3jnqDUR4GELLfGeYVnoI6t1nwt+Tpexy6ijLbcxm07yjkPf1KUXYF8C70vFg0HAYL820o6FXDzBXL54M+ofJxMKBxSW90XaXLPS8HYciscLgO28FjDLpR6u4naC5s5TUK2NwVH8+HQyP5sWhI9nBagwGKo+CGTdqqHPWPNJ1dqAqQXHi1If4RWs+2HgUkmaYKZwXKMN5K23B3Ecb3fp7yOvcQ5x5PxyOCwVCndJ2Wm43DzrX1XH8xTSs0lCDTcHyKGn1Af3PleKtmInkINOHo7SEUc5aE0WmleEpmS+w6qUEFJpb0kJTfxIc9wTD8QAoN0zFlnXK8E9MB+OmbcW9WW7Y9GUCrLk4j168FuVeyxC88/Y9Vb//jBpr5rBAdAmJTyrFva8HecI/LQioSsVjfXm4aGITj3zTCft1jHn+eVM6tyOaJWsjadaWEugRYOj2J/7vx0JY3nGUYs1MaIv0RFIamUCvNfvpY91F1hzjSzuG7GC/XgXMWTUW/E784uOyf/CFdjYtVN0NDfI70dpUANWW5PF8S0toDq+A5TiMFzqjMWzFEN51G+bNS7aShoo0PsqdxCr92+H4JHNY6b6A132oIH2TVswO9II4/UpYaD8HBBfn0eiMPBCLV8OEWHW481SEvD84QdJSCW7cd5ZyD0VBfIo6uXw6BbqWS3j70svQXSMIE4xEcL7PCPRRWEg35l/EoE0X0WLAnC22b+dXMjNJXs4Gr+VIQ8GZYRRpfQKL7a7Ch09hnPJ3GlUWfuE8j2is3ZDGWUXt+G62NJy60wRXRs3F3huN3Pq2C5NCLWiq/10IHnURTwbYoeSm39C8XhPSr9mS1PRLcPxJIKUP15LrqpfULP4PcqtlYYJJFD3ZfooiygUhYcM9aLDU4PvDVRS3VRBc3r/hYpXnGFY1wFbBo7jr0VUacVQayuZ580unIFptpsdJN8+w7tIuPnRtDbi+mcVlOUBncurw1qAsjL23mMwPraINC3Jg45aZFHqmCkLPAvo/X8cwwhXiNQ0wO0oSJicc4bL2Gfzi7Aa2GhgA1k+HpH2KeMyilAx+fyIwGocNi+VAVnsODoxdSUPYzAsfXMXLDZqc6pFM735Esbz9X975qIB+TDCBB63vID9pELJz5+IdtV6Q/XWW/1m8JUFIJa2AU+iUvx7XHpaGebtsMdDsLErdieLLGonUX7Wa1xXaQfXwGIitOADHjpzElD2qsMf+ILZ/nAB7+qbh2mkn0YIL0eKrM9o9u8lL1vzGZZ7PsLRPCGr2NGHDvvNQoxtGLjMzwWkx8tVDQbA9LZIN1Z7Bi5BhuADC0KZ7HA9vDqBfk6bjidZY1tz5iyrXuoDVDH8KiJxLlZdUMO63FMz3q+cbWzLYumAyDdYk0ew+aXz37gwMvlqCIq93gOrcESgsKgfeO0Xwc5AAXVKazl0zhSHiaxQdX3oP/hoK4E+X25jkdZxWBFiDdvh8km2JZreWIdCefJeeG7xjzQUvcB3fZ8tXx3DO0fOccNcYDGpNaY38HWj2+4jnUoVIL0YEH6xdS1vgMniM3MIRj56SjqgsaMTJQdzq92gneAlPSgaBmKMrOBxo5qiwB3gn3AOcVbxAJF8b1jZtRWer09g2UobVS6tBX9OTd1vF0vRGVRS+lEAR2huhUVcXhnZms2jTeZR+/4R1lAfAJmkUSocfhqK8zXyrMAV+an7j8BeWULdQg3oPP0DL6DbuKlBCyZ8y0DPdh/9TfgFWS7NI21uT/6aqgKKTFvpuPQJKU7dxxAQVjCieQHMjPSi5Npv+iVZx35lhsq6Sgz/HK/D777N4d789LJykCs0+L6jhbCLm34jE3pbTYKHfSuvBDlStnNnxaD3dj9HhwGfToaB+P2yzvosnnlyDTd9F0Nn2Dv0oHAv3+n5SdFghN5tqotXr++ipcxLfXw0iaR0t9LwXxyvHLoKDtpPgtv4dPmA6GourJ5L0jnjWaJ/Bx6SSadWIML73QBE2L8iGWzKicOTHCCp7cxH3bVwD+8pFcLZyDM1OuAl5ub8gWBvQ+msd7T3HoNczEaZtlWOLGY58YYMy2HkEQoV/MQSPe40cHcreP/Khc/Y4eKDpCn63g0h5SI4n9eiBuo8pb9aRpD6RfJIQ9qOxPo5cqy0KJyp9IGegh/n7VHy/NI/EhzdB7ftUCpw7C5d6tePl0dE8O18bCjtlqUB9JCkXPsMRIwTY+OQiVkydwkf8MtD7ujUt+3QH3mtZQKPKQoyc9QM6DZfzD5RBkzN3aYaTF6b6/oI+sxd8XyUbxX/ZwTa3aP7+XgWyNDXp6StphGY9qJn5HB9+qeJy7/nsciQIl0spg5msAQxY7uDS56lk0XgW/jtdit9CgygzrA7nOlzD/VOPYOabkfBq8AhosSc/ljtGb8ylcbm3Bmw304AlJ+xxtJwljLeeBFe+aICj92YMmHGMdJPOQ/AuBRrZXkP+1UUg4hoLH3ZI0pZblWR8ZBSEfsmgp7YnYGVYEhSH1HJE1UnstPKCl27qaFelAV9tt5J/9yhIWtdAhQdOEg+m0IIH76F5wXo+k3CHKvILwFp/BikUL+LwGhtI2ZSKrQ1+fDVqE6dWJ8Hb4SAutW5gy09DPLxtLYzz7YeKKisQTvlBkk8245Ojm3nc6AG+WPKMwi9spXkHpEml+iscXjkapMwACjyKeFFaNtjc+IDilVLcMPwcVn5cyJ0lhXxCuAdnv7rB+ZVCsNG4n6Hal18+fMbF80ZDuJ4vY4QjuK1ay1sya+H9qBRYt1ULlj4Kw1de8iisFAr/JR+GTXiXelOtIFlBm7SV1uC2XG1onCELAT5feVSIOV6dtoe3z0+CV6/C8IKgOdhMW0n12t64/uFULJ4OsK+tGrE9kQSCfTnOvYSWjJ1JPwsnUckSbYpaUUtBf03x9i9TaDPTh78XhPixfhQmCshgrheikkY0Wcbr0Q72pwvu+fA6fjLw0DDPWW6DkRIFmORYD/aNg7yQwyjl1DQarfmC9/sEI64ShfV/f+C01sWk453EBUrOIKbYRT2ycbxT1hRm7FaEduEHWMAy4Co2ArLr0+FhlC+7L/RHC7nZ/Kf3MA6uHo/r8y7QD69R4FBhDXF+xvjrzCZ+cN6cUwcE4Mie8/Dh+zncpDgXMt3zeGH9TJT6Lghuv21JYMIXGq+jj09LxkOa7jGqzsjmh3qJaP28mieLl+KNViHYWq4PcrVy/MFcnFa2TsJLJjI0fv5oLiiOgB/Cybj6cjgtf2gIok8fQZXGVJ7sYs+zojPx4yNrWqj2HT5pbMT64y60zmoHNPwSgFWHhSEisx5LZLz4ZUoftfesQ2+x5xT1eiUdfNROv7sPQZCcGKzZexVL5q2DkQX5sC1kHdi+QHgnE4alrR6w5yeym3syzWI7UHTdDQoxbrik15vGX9qI3avvYIbTVpJwsKebaafolc5yzBgnCaPTM6DwYjH8d2AtPXupyJb3trBjmBG+kCintH0HeZqQOeauZ9gz8zmujG1jWelHXGdbitnJl/HNcR2uSpjA82VVMNWslKuHdGB7iBtn672FlvQYmJF7GwQvLIDNylN4reEprD9XDrHrWkA8kUBPJwX6XZXgdGIHZwWfJJvCX9wtG4E320JB3mUxbVwwCMtaDKF/Tw7NaK7ikKGxsNt0iFZDN73t3YXHdrtycFAcFE934tNNtlBy9TZPdFSh9/fc8PLPBn727C0rGOnC4c4xUC1lxKV5cRyWMxk6Ho5D44+WVLDen9aNsaXvZ0+B3rVjEJEYwEMzejnQJxbY2gLOvZxB548upN5L5tznbwhG+mew/aoCiouYkNxGSU42DeFrR0eDvYw86Fg8pqWNusBRaTz7Vj72/9wDXZFrWUHQEv4IfMI7LnpwsC+Sklo3Yv/UEK5ZIwdlHbKYmBoJ8zT1aUTmXtJUVGHJc8JQGnSc79Wd4CjJUXzKaTt7BywGSxNhrA/NxILvAyy9Xw/C7EbB7Rl7WG1CL+11eQ1LAp/R9YsqdKlpJEiLu4Ks2A/uG9KDcA2GWdWdmDXrO32Z4M+OY3tY+sNUvGeSwDnZp+nJ0nrsXn2OowUF4ORQD86MyYAtaVq0acoq/HhYFE7r/mCVERsx7fdxrp8tTi5j5UBr3XH8krkU1cb24vwt0Rhxsp6bMtxgypFbeLjFC46ILMP2W2bg8981mq3YS5p/82n9rAWwKew7SYuuRcfqJJ5V6swNR3/BnEMmIDgiEhy3LsDxEgYweCOd2yzCaOShG7h6sgoe+TeAHZvr8F+JBFzZNxVurgyALT62dPiEMuRslccsEWN21m7DJ/rnYUW4KZz0VQbhAwO4WvM7OY9N5DDDPILkMZg9eI4rZ2TS8+p/dFL4G865MRHiDMfz8OY2eC7Rj2ndcdjy5Snu3zgL3i9KgNYQFej1uw4xJqPgcMsLWOfB6PtcnubsMeVypSvs5OjEdw8W0+JIRcK5MlA0TgTOyothvLECBGtMBXuZiThB35QEvqfj1bt2dMBvCm/dWInWV2TABhezklkR7G/MRgF54KbHXhBUYkYvF4bT8bYEWBlyGzOeiMMX++e4R+g6BNe04uX4HsrpSuTGPbnos2aYnRRd+ODin3DqoQ3c27eca58vAr93x+GI3DooYyS78e50c95MkA5tgeq7I1F+ozT8kxumT+KP8XTCFihdswgc8qK5ofE8d91rou8mrfwvQYJet2tBWPtXPmgRhztGZdLjcbcQ+8p52uQL+OdmPN6sY5Qs/gyzyyTggpgXjVEOpMWHN8Mb2TFg2jadC9pzyKBUBbd5PYC3LdUk9EAERobrwu8TbZBSlopBt5zxZ/AsutikACoPhzDjznY2a8yhReHjYROU0uGTi+Dn6UtgLaUOp5z6uaGsle33jGcpvyEym3WPZ+yQgiVjTeFg5j++duQAnF6/AyYpauA8/oZlqxwoNcYHCp/GQI2QAFSWmWFUWyh0epnhiJOTSP79VzLOFWMX6wS4Wq+JHe6pJN0lAkuHY9GjUBMGVpfxt4eJeLNSD42PruAWsRqUzLemLS5T6fIeO3hUEoni2lJw+80KrL/3AvwVb+Ef1bes86iTnxXeBdsVjtSbMxamdN2n/9QEKHSfEOU2nuKKLzW8bfcp9q96j6MkCzkHbmL4MEBjwhuaNM8Bvjd74oNQVZy/0ppLHBvw/s9R0PVRCstSDfDZQYLbz29R5UIHlpKogshzdeh8/TulpxbyJHYEr/9UIDBrOzbnMgz918udZ8bT40MvcFsK8I9jplBlHwG6M7bAmpMzSVTMkWzXjIXiK2I4KuQsWn1Upe43N/G3nyd1BQE7Xn8D1zP/QK5/BRxaLAB7ZwlzzeSn9ChKhhp8X/D30VoY3zkeVgvZktvFFAowuMH13wDej5KBS487WWvEGpSv+U3/zHqoQDwfNvs28x8Bhs73P1gwfAIUWirxpEvj+fYVRoiaxrIf54DteWWsCmqCPaOB7XPtOU5OEZTWvqCB6BJ+WdVOqTKu+EPjGVnPWsHy/6XRs79nuOLCfdbbbQVjy6KoIdQWbl3TwPdHhoEKlXDZDC0Izn3JbfeXYElWN7vNsoNr2v9Ap6OKzr5v5BVn/9FS2x5olBjNY99ugDPFreQcrEcuzooQluVDizIr2ePXbG5qnMxRz3Txv4MneJdUBAVtvoL/vXPjk0LiIOWRj6tv/+OmnaG0u1WTr3sWsox0LHQqOAHsrMMz+AR8ymVg7QdPTJgrg8qJ9bD3+E28sbme8s4CbC52x8qCQhIwyuUOT0v4qhoNGtM84ZVTCn5auodiFgdz8lxJ+PypHFfW69KRs9Mhxl8NhBoEMXpCDB6Q0uKdtRaYYrmJvV2jyMVhFUjdyYTYzVHoPXsUSNvl0oKXEVC6XhFk1jnQ1GsLOeacPPsNmPGywKXYEhyHod+UYJz3fvi6OojmyRtinLA4nhhXxM3Fr0jGTwolZrRgrqkPm0xUA6M8RV6ywZ7P+g1wRu0inPt7Jkc/WQn7x46BvaW5rBH0AxQS7YCExqP93qWYMGkNusULwsLHXTAQ8hNPpO9G4dgqqlJVghoJVQg6Tqh3vIk6m/ah7gZr2vZAB4sfpqLk7yBWXG5Do/MSSNltPAy/dSfB90sga3oTjFJ1wvPBM1nx6TKWHt0B5yckoegqXY5ssQXHoSqI9g+AtKxYfvEpDc5FrkOjtnpWGOuJEVlzqO2lFyqaEmTc84ZvPs/YOHktyP1WpdiKXdC8Woyu/HeNL2o+hllP/qF1miS4jXWmm+/WgpPnUtA/lEw3/frAI9MSxGOa8LXqLepZco/PPBgNUcN23Pc3m3VrD+LG/P/gXdc8zjiiRU2iHiQyZz8O1kjzk4kmIPjpORyLNAGhRGu45fGYNLZeQOFzpVS4gCDxhDjtXaLFFzaJweOF2uRbH06dlvGoMqaZJg3/4kJFNfp9RRTOWfnQCN9MNJPWgP4Hs+GPXjQpLK8A+/w1aL5+BfblXKXVt6K55lohfjc2pi3qotA5MRMUc69D/o6b8F7Ziq/WfWL9D8GokvySlq6P5/z8aoy/KQvbf53hfT8D6eE+dZSryKOyjF6u+e8+mxZ2w+CHalhm/ByqnM3B3qqGjbbOAKOGffTYsRJOTcvBUZPOgkD9LfzWeJwURP3I8LkpTJe6gH/neLJPoi1dmdWKD4LP8uKnX2GBvg/P3n6H/5Qp4qcqW7C3sOTtEz/D/GJfOnBzP0uL9UKGxgh0+PKTbbWksefMFgqKHAEtBjtoyRpjeKZ9Cb+aLYbgoBF080U7aKu64hobAbpvup7WS2iB/NEPvCH6KLqfvEQXczfQ08QdrP2slpJ2/sDhF750X28IpxyxA+GhCXRd3wt3ujSAsYY3CDQ1s1a4MNh4VEBdpA117gpAnVqCo40KeHW/HUpoPSO3Xzq0+FEM9WWfpDFO8ykyeh+PF12FuakTYV7gLjAqfATjTxrTkm+S6JAXh+GarlRu78DH+wNhdbcsibw3hdizu/DUBm08IFXNfw+dRyfTuRg9rY4yHcJI7HE5vrTZBPqx8iBahjh0oJU6hZvpkJMNZPv0oKzRWbRvP4grPqpByHqgWhch+FVbSPt/fYDFumNo0c5iuDgD6IPzfPSotIGZNu287p0/K1UKwvu55+FgZB2OXHkJzO47w+6flVQ+9hr8Sm6CVVGB/OzUL1zuaw19r8vwpZQj9n9Mgvw5jaQS/Qv9pnRSjHQEKQUa0ISvi+h4qAEIyzzBr9NDeFOkNh/eEoXbY7ZSlepIWNCbSmMuP4ch389koyUBl64txi/xebTi1AG46n8EDj5pxW2nCrkx2QLfZHvjwJM3tKhJC9I2fUFJ2w7eNGcellQfZOFrRfD2fRpMTrVFjUIfbtBaCbUfDMG3SQt0HzegtNY0WqI0mc/ccAbntDv0xNeAoh/fJ+miF7D880houHgOTzb2YIeRBY65tgLd409gSfZCWiVfjh2fEkmmJRck2gmSjeT49qpPdFrREAKuBvJ/no1wO1EZjqeqo7n8ffhiakdtulogVVOCHwY3QYO/PWhkfwccJwr2Uy/TgbpoWpmxnk0EnnPLdQGQC5Tkru16JHFjM290S4LIyb7cm97JB6bngnfcD/4b4o1qs0bA0fSFaOwUhKPOPcHAWe10QEcf7z5Lhfkv3qP0yZfw8JQU7Dw3BmYYr8fYZWm05o47lp+KpYmXI+hbpAl9DxWkrYIutOZ9Aiz0l4eS4QOUOfMy6X1X4Kx/ndyxZS1NOH6XLscmwKIdyuD3tQMf12hC+7c2WLVVHMpnjeOU2JU0/+hyaH34G3pMr+J9wVeQbK1KVUZWsPpXEsreNsaULTEkbFqI1gtKCJPNeFBRgd12K1Nx7RC+sx8LZ71fcW2mJivpbeEHTUF4528dVJpF4b7LafimW55Q0I++tYjBr5nqaOM5kqpmrKZ3hdtZbe5Ncm/9jo++GpLVpRlovqiOb+RKwoubf6GtqofqfFexWuF0NnUCeLn2Kwa6/gddmyPQ97kpbc01Bv918+H33jmw09yIL+oN4gqp79B+bzZcyx6LQVGV7H9/HJ4cNIYak9H4WlKTxki58KMmNY6Ycg22fvPl6f7OdG9DF8+tXwSDl8VA3PMIzbTTxktZZdiWsx/uj7qCM29qgHeyPKqUHYUlFp4cMkcCcs5/Q5PbHzk0fRh2RzTD54+foTx5J63zHeRDDt9g4Mgq6LG2g23Od7DKopl6N/pRzmJ/qFiaBmtt/yPfnK34WvcOar0poew9+iC1eCpOvCnC8fEEy9t66c/SdRBU947iq9Q59IQXPk2agGL5MtB1Vgw/TAyDOrsDfDLDlj9qJ4CYfwLUbjCi5mvrcfCXFcl8VAd7kSDqHvyJ5yoecmLsUhy6kUOy/XOp3NcSU6YwvX7cAX1XLeHQQksoUllFvgbHsKH7FVrunEE7K0ZxcvsZTDiwHcd8eYPbbBRBuq0ZPhRv4Q01HfD2qSRYF5TguHBduFplCGoR7XCxxAhMGkwBFFKwXNsA72qNgxjpappuVIlO/2PlPhRCUNQAAP9DS0NpINFSaSiV9pIRRaJEA22kpKGskBLZJS2EBg0aVqcoShQVZZdRpCgjKTtyX+K+yDd4C/PuVdA9/Q6MHKmAnwxMYeq9fzQyzAif+c1m+noE/o1eSte6C2GZaDtkKJ+l6S7v6Fm8Ogh09vKtWi18K9cAWno+dCEtjAc1hlBXcog7iyYh2JnhPD8pmFx1GFJmB3M+76W8wE68/nApPJy/D5M+3sLlidmYGPkMxxVoQ8myflh/6BkMLb8LB49Pw4H2Hnj87ApuTVemnFNz6El0JNtHMDRpqdGh+gMoG/4HTlvup3cXfoJwrCn5dXSwc+QSSpgxFgxa9OBVbzyaauZQ6WlDalfeRaeLm/HJJQ9QdnPFL5HGYFUVR24kDl65Jdif/BTDypoYZhWhV9c9CF/2iUY2u8Nk609UnZqMBYPGcE3AFpc+jsANjyrQF1J5nnIPvlq1E3YOHMbnLntI0P0WrTAYDfOTK+hzuzYUP/DDU+3BbKa/mLqN6ujvvlwMlBHD2zccaYG/DYhvHI3z3p7F+1oZbB03RHvS1Ck1ugNigyMhWmYy3dkUxp9UFKFtjhUmfZ8DUfXOcKXRFtbJPIW06+KQPfUdKTtG4J+p+yjvngn0/zXFvmOC3DtbDeJl3MmwRBQVT6RhUpcJTFvdSibOLnzs1AiYUdLLp5YF0N/+BdibcxZuzRPjW3I3qHnSeLSI3QvtN37ysmZt0Muehq1zvemn+zZY0J5InybJkXVpPdZM3AT4aBvtfH6XNj63gJUFR8ElqA8ey52C9LeNlPfpGq0/JQ8Smve4d+YQGuw5B8JjJ8Du7BCenJmOT6+tAqsoGXp/+ilfTXGgwLImODhlJir1zybtn+awoamJE97tgBOeb1F2/Dce2BBFkbsLePGPdNytqwAzMR/6ZCbB8U/WqOfsiqx+D22fnAXHus1g6prJVx5sY/28AjxyqJKSZUzg9tePsNp7M9d+n4sHbzdx/aQy9Mx/g9bpTWS48win9Hag6DxdeLb3C+18fB7H11Tius8LqMr7EaY6N8O/38aw6qQqxaquhRVzrUDOKIXnXs/GlztEeN35A/R1RSFFrp/G2pLqcNFrLZt6X+fx8qZw+FAV+380w5uCm7HNpYCiPq/DVQbV4OkmjXN2VKOodSV2GI6ATsNZ4Fz6g1/cmMtJxl/ZVdAAps+qwpwtRqAlvxmOSR5FjVHq8MeujD5qBKLaxakQZSfEZcKAJhmhoLN7gPV+BrNo3DZ47GUAyi2foVQxD8zDl9H3piHYuGo5pJXLk/GOY7TcJg4XWRzivERxaN3nB0/63Shx9HQKsPjI5o8CaMbLSFKxmMex7l/o00Rn1Ed1yAqogJtjXWjmp724/7gdrn85EZfr5/AOjUg8r3WLNc6aUO1McTgUewsks8aQ32MpKJrZytc3K0Be4Hp87uYJG0zbcMqUzeg0TRf++v+krroOPDeUCqVvRqJAuiwc3l3L3QK5lLU/mD777MOP1xBmJ+WC7BtplpzbwHXuD0jrnzzdsb6BV4P0eER5Bebs/oqnR4wCN/ezEKZSAwXxSyHpy2VKnOBHVQ3BaBX3mV5IxkL/KzWq+6cP7cJN7LyqF6TAA41fTKCMmwLg8zGa9u5YDftu/sZPR5+juIcV1I1zwbEff8CBYCf8+X4eWZVdgLS1E3nTihSc4lQKYYVBWNZjDT+6P+JzwyZas+ENpWxoh8pnDdR9pBk+DUty2PvFcGtgAb/OMobCk2+g7q87nvbdjmOzIvDNnkU85p0zfUx5hrMM57Os1hxaMVYWTBfb01jppeAXEcPWSiLoYdzPYTd1OG6yGkXW5LPu9hTefGw8xMeVQdDpbjohpM3lAaEsrQ54KWgzrqtBdjFSoE3+x0k4Wgr63bbC0O9o1IN9ZGUSweZvStHm60PW6d4Ih7o+c4nyVUisYRi9LINWiADuCfpEevYrKTlBB/7sUsJ0m3Z6nr4YFI4KU9gYDVA9+47P26xGft5EIvoK2P+gCBZm+kCvchRaDv0HMxZcg2ldNjBV/jg3Ck+jgYhCqKrqodwjgnBXpQOT3aZA4OHv8Nc7nj9GTwKXu36gqLCH7i2s55awbtI+owUWWAjLixZwy4pRrHXSC0QPK8LT8cWY/6QBBduCOWjUOhhjsYXD19ygpMu7ofKCDD95eJuXupiD7i5jlg1K5s+z2shCWwzW7fBH+Qd7eIHZTjS9/ZHXpupyvoomjPEORuHZKhyUvZu8JXto4NdXGqdbwPXr19Cp+wvxmbkA3Wu0gCkzqmGstAScKQmE3WctWIXPY61lPGgWx3OAP3P/KkHaay0Jc9oPkf/Tm7jzpCWteF+E2bIWEBW6F4qfh4GJSBxXul4jYT8bcJZZTvVtWhA1v4DnHG7BmIzfFPInFkdnRaPSjB2kqNOPh9UUYfDoeV6wcAuu3ZTKSstMQGH6VG6OccP5zt/h75sz3Dn9Cd0NkgN5+V4ydeyHdcMn+GCdEO1/IQ/fao/jyTtevGHDD5oe5U/JS+Rg6dN2uBatQD1PE+hwYwHVDEvw5+dGVPgxhcfOmQFq4i9hzQn+v/t/1f+ZkKDhGIz8FgizPrZzi/BHXJxQyUYiQMeiDNFQtJClu2TgdpgGVXvcoBcZdiwZL0QZGdIg5BQH55pOgGqZLcRUtrByvxwUROfCvfqZHP3YA6wvFdK7EC1ceuYWpEpl8OCjcWibWYLLAwH+u/uBMxs3YPTK92y0NQotK6rgzOsQ0L3lhfqjTODC3ka0lBADCYFsOHxdkuU3nIFt8cvxm+567HybxHXHo9jDtwkrJ/2FO3fHQajVBLI9rM6J2k34QOwbnwu6hs/ls0lEZy7HxEzGNXuW0itDM/BcIssbH0fS1L46EHYaRfJnHlKkayuOX6bImu8WsnLUTDCNtoLYJl38oS2GG89MJ6+hP+Rz/TQJ3tzK3kljqbVEBjyu+dLDd/Jw3a+dXilV4PXgOkxXaIBv5q+g0L2V9c+k46YbU7EjPJevtknC3Umb0JQKUKf0CRWssUcxi0EyP1oNr03U6KqpF3deE8Gok6KwaUcevhdq5flvSsgoXQZ6Fwbxqi2xYByRi7bhb2hH6CBrLlWHOYofWfthH+trdkPbGg+Mb7pKB7MmYUzrNHr6fhm6uPai3GpjSPT5RTX/7FHysxqqKebylP77/LTgBKYu6eYV285R0iZffvRtInyHZ6y1YxlYeQSS+cZQbBp1j76JSKD9nCe0VGM/Xnl+kSrvKoHhFGPcGvUKr+n4856x8XCncQ6batZim/F2WhF4BUWDRXn8I1WwmfSblWcq0ojB99AnEYmHm+fCM7F6nrRYjBfXxeNvreXYnScFn2yLyPXWYrCY6czVD5/COWGmSSZ21DNuGl0TXMqFL7dQboc0LJ3iTydfP4avVZFcZX4LZSJ0qcDqPXwTT6fFtjqUv2QRvPxlAmNXrqBDuyRw7PxGtol6wgFr5XisfSLbhiEpDn/HCtMI2NlvDd63p5Lwahf8pNQMehv+gJPldpwTfI/P1HjjA+eFtGysO9x4qwGJu9Zzxqwd+FuhFPb7mGDi0q0wvXk9T9Sezc4GEaC5dReHPxYGbbc94DJ/AkbLmGH4ND9cPdkN5E6uwZoV5fj4zW4O89iLlaHC8NAoCXzGGJNVjSInzpvOlkrryUNnPhyZIQ1pgVkU+7meKQDhgasKBcgsZ5pgRtPVc8Bv8heaeLSINot5ctXOInL6EI/tMpNAbns7xcbn87O6yfBzIJevHC8G+6ciXKblziNKU8jqmCedaiMY43sLRh+VxCNVD+BkswlYTvqPvd4/pvygPK78F0yvxpZDz7bJ4GjyANyra8Cv8gLZSHvQ3sEXUPC3mcJOelCUvQZ3X26lnKsCkO6+C2ymrEOJ9JfocswCpF2FqPX6WrTeGUSTZ9zkdYv72Wy6FXiKC+IZ4XOYeCOPe0JvkrRdIocv3kZ/L4hg6wVhqOq3hB0xViB96CfVzajCdT9ycH2HAy8pNKHf7dLs8D0flVZacn+NIBeJW8Ic71aS2LqE/hVXQsh7STC/vInH5RpgVF4T1mVKkPtDURw8oQpaJt6QpYiQZb2PvilWwMGeTbhosRYrjdCHhfcOk5WWKL+cMgKeL3CGgwKv8E/dF9TN1WCdVEHQa/PFmaZ6MFt1Ov44vpDHLNOBhCPr4W3gNeoLfIOmsyewhy1yWHMn1Ln08pUN0fQtYgu/CJsK2pUf6ETiDYoMOs4pYVrstn0Hy+6Opj9PM2D8MaSddsOcOJsgyM2JmndPwPeFuyCq6jAVn6mGkrCxXHpmKl45/54nzi/GlNnTQGCcFn52aub9BZ6cHnKR75iU067qf1Dw/R0627qgXacZ901VgNpD9zhI5DLJZCnxo1FeYON0mO2yT8IExfV8uNsTa10C+Z+WPLxX0aCE0RsgLPwNTxiKoFeLNoJCQQeM7ajBaqthaspz5otfxsKEgG5aI3mKUluRWyRUOXjvSA7aoITN6s2o80yfpkWpYV2uEpQ0PmG48IZijlWzpuo5+Dg3h3Si3vEm/z303t6dShsP0rvEyfAsrBb2/dRE/bFN1FltxifTpUG4rgZHXTHnBRtjWMgiGpMrxoLaqPWkyH84N3I7ZnQsIYPlCfi2rx7HD4mzQ44zhBl50PMhK1jqvwHs5znCxtPbUaD0PRs8+8Gr/ibSzvcH6Ok3W7hrNJvjx0iC4s8KqI39yeZ0gdpWD+CJqlMg8uMFz510CBLiTehzhxwFrJSC0aH6lLlkG3aOewvbK6vZPPwHKulMBU3ZLbxI9yHqjfiCPT0Miw69xb495vSj5TUVdWuxYsg3qPXJgaW+1fhwynW8knkOFz3Wh5qrzbCiUwkVDnzH/yZrUJKCGv/NjqcLn9y4IFSWKnPsYJSSIrwscIZCtwVsfsAY1tdnYEfVR9p7bDQOrbTlyG+joHTrFx6hKwAp7pkooZyB090Ps4r3IbgfsJPuKBeRUMEDlPhXzPbXzShcUhwaCmLwY5gOtztv55ubJuH625dhhuNiWunXyH7N7nxgnQg9+K0BPZotGCj4F/OVS/HbufXs8DiP8wYy8WXoDDb5so2/Legjo4TxsPe3ND4P68NH5EShXzQ56rcSBxR30rsN21nZeAkXmNhizi1xCB+1A9c1P6JFetNpTfUpkKisAkvdfhBRHkUST5pxY5UL7W3Ug2gPLxw57yBM0ngKq/flctcqKb70fBHaldVSZtAYUvzUgOfzpGBZXQif95hMf9Y4oKqTImz4aw6rrX5ixI0vtNlQHSx77pOaIkO0aAv2BRigad47eHE8jfLmTwbRP/3YmZwAyoXj+WBOOWUHSsP375VglLKH/C+o0p6h89gQ+wWexUSCZNNnuqx6B3JFJrDI5amQJ7uOlyttwjtTrXHjvk+gM34bW8+sgPsFCuz45i2FjFsC3lKGcPu7PJbd28k2b56TueE13qTVS1uCbUhVaQv2F22nX8n2VBooCNUCb1B38QTQu9wGBy8YUEDzdTi+MYve6k7h0xcvgOUHf6ibrgGXghjkm5Rw1vBoyJ6xnHZrPEMdp234X6M+770nDjIzV9IpfQFYxDb4R+UUbN1wAiS+TiPPGgs2WexBGfqjUHxDA64YV8hPPorB2PUH2GBwOlbSf6gycI29AwqhZLEq+rI/dCsO00j/eIzx1YSVoqP5c3wEtDoMctv0OZDo2YVjJgfjFNcM9HkkgkbQSLs3GcP1znGIO9TRpeYsCRz6D4/+t52yS8dyZNVrvBKtRc7bLqJxlTa0eT+E3nRzsnx4B4sE3sHVdbHo+EIOAjKfgMClXfTmhDiPHhgFm+29YLapHXPoSdDbsw6uiTpDueJLrvX1gsuHLaA2oAaKpEbCe6M/KBN8mFY9eopHy/VxxZIqanD6gCMdyqHxfDi97a+juiPSEFvwlosFU/nC+QoeY7sOfhts5OKR0hjp9h03z6jnxaczUH+XNVjfvwT5Kwkd912k2cNHoUHuIx0/HU4dlW8o+8Q0HB+fDmdd9OHyoAmmSd9BuYn9JPtSA2OXrONLEyeRwMJaetG6Fa+c82WH3wQPqYQOpGtTz4NsLr6VwJ6hc+nC6DecJJ6Hvet+4/5tLuj6URSmyFmDovZ7PqVfAp/X/kedgkac8XMde+16CVc6jnJF0hhKfCAEzvKXIVFYDia3mKCaYQU9dF4NeRds8HOKFkmsPI2hetPoRpYaPLg+jqJmaoFVYRmWbQ3jxrhxfKIoHjTS3lHX2FW0Ot6O4711IMp0M4cuk2G6d4FiJt/lYatUnnp1PN5Te4Qlty/ghRlaYLZRH376aeBNu68kfySFvn6Phi2/nGjmNiNa0HACLv8TxokHDfH17kkw79xPOlJZR7r2NfzPbybdGR7NmwQC0bp1Cz99fZmN4qXpnqUp5E/Pxo6JO1HkzkJqWONCvxZa0qblX8j1ihnEbrlKSRpTKXOjABgptuDS5IUsFrAOwlIqcdtsBbytcRom3cnkstT5kFu/mdpOKEPm2BsYOLuHmvuMabp7GJ0rOsvZsueguiUUnV5W4ZCiMa+OtwbHmvVwYMtpfOvtABqx27nw2mNmpTUwTeEcBV+fQSdeW9L+qwZw/okfqL82QXMLLX685QSoHruKP2/sgPm7tfm+nSvX/NLkh/ut4WeVDGTnZ/PpJ4OQ16AET6eI8q+9DTgvVprGtNzFTt/HXOukCpmWr6hmxB1IqoiB+OpvMGtBIayT1cMVl0W4obeeSyZVUcwehtU5y2Boahcl3r3Ngu7v8YewLs6XrcclnwXZsfIYutmr4PAeM1hQSFD6YRO+ru0BH9s98D7yMsclVYJx/zoOTRXirOw4SisUhyb5e1w12YYVVmnizc9q+P1UNF41NKaQp9sxZMRb3Fh+j88UGUDI6RRQ0xAHwcf5aNNgAbv6F8GTyiMoeLaQ1LLUQD36CUpoW8HAo3p0Sw7EpHttkC2oDy/7bEm92YMle0tZ5Vg9NSlfwYrpunCo4RGw4jKeN3cWnxUdTeucElFpywL419+JTm3D3Oh5jV/skQUXMSfO/O8eXTJ7ynMWj8L5JdvomawqzlQaCWZpBMGzO6DKRQDUtOfCQKoRpXff5Z6WaMjv9eV1c2+SSew+iq4egF6rACjysoZ5RRNhx1tlGla0hODcT/wp0pxKMq/T52lzUGHoLhzaLwYzB/Tg07NhUq48D7PfvaHYxj980G6IHEVt8eXYPDa238LHX51HpdMTQfJvBr9qM6e1YhqUfb+OQ5/txvd96bSjrZe/3SlEwaImEJykAsesvOnoin/Y0B2CWm8eoHSwLjVfqcPa68lY03Wa9iyQZxcXCZibXoghv39xrcU8PjfvG257dQguqCmDjJQQxg1a8OMPseiSZQlvBrdgR9o17NGZSJ+Kj2LntsccOn0W9cq4gHN6NKQV2pJOpQD0+HuxsN4p6t3dyDru87A1rowfqmjQZt8xOM5jJnpl24FZvBioKZZiYa4j1UwtohjL/dz1Ppn/Kd2gMxe/8/K4nfhVqZPHqFuC7JL50O5/Bm8XBtDV+hmUH5iBi30mcUX2TWgPDmP3EndYO2k8HGxq473W07C8pwCXzInHa0l/6ff2Evi2uJSfLLvAGlLTcfyh0UDZ88Bk7yz4e3EPX58nTav2jOHMc+tAS0YNb61SgLL+BBoQM4Zh3QPQuKuOAopHk8TdY7TCrwdT7mty8ptZ/E0pCXxMvGBhiTREjVOn6u4qvJI0nt4feYG1aRfx1/mn0Np8kKuufIIo9Uj8oGEFOc83YkTofRoc+ELofAqcXJAN1eO4Q7Ycr/zToYT+PFC1mQbWWXNo67FfoBsayBylzC6j7EnjdRGlHErgBSJb+csMU7KPNATpV4txmscueDlYizWXs2B6+AdQDp4NXqUmrGLqBi3XRuJoH4Rpa0xA5JIXbnGfw02vhunU1y9QY1KKVUG76M7BPLYSFWNzlXEgpH4E9l3XhhKdByhUUsJqzePB1V4VIt7PgpIKUawK3ESZp63hy5oXuF0vksxjR7Lgk6V4bE4aP8y7Be1CL9BYqoSPyflAlYommKWnQmGnPNe+OgB5rpvgd1s6X5D8TsNOB0n2VCQ49Dfiqpva8Pt5Ix4VGo8Sa1K4+dNBnNkRAV/29HKp9HHa0ufOfpmqWC0lB0sKnoCp3XbwyXSElFUhVLzuD2gHZNOgzRueanaST9aU4qqJYmARLoaz92ZRWqs0rN1by8mJd/nMsWHev2SQ7r9fjI9eJvMrX0VQCRHmERKZPDXqO6sse8Tb9kSzZ3gml9vlgontBD4a6IuX5SfCcvXxLDIxl8+G5fHxteGwoLgNPU5upCR5Eby0TwFPiUdBs7oYVGSdh6EKZfi6c4hTXguzh2sdLEy7gdkLfeFdygAZO4jzY5EpUGV9nTtlAknp51/6OWMjWg5dQIOVl8hj+01cmOcKdVVnKOGPNUS9ViX7GyF03s6Ix5vagt9LQXaT86D2HZJ4a/s44m1faI+5GAjv3gbu6Msrq2exXdMa0l1oxs+em/G58iz8ZvqWw+0zcVb4RCi4tgguox4uK38AMSMMISLUgnWsdFFsJGBOTzltKNAnr+kKoDhrO/d6PaBxDULYG1lBHuIp0FyzkWNKG6nnhR4tVg3gS+cIyMwcc1wMYDCvhkK2usAfiU+wWDSA5BTM4fiskXit9Aj7VquA8VUZSPoYxmFrG3iFtga8/r6EEjrqUakojsNdh+GOSjFteSgODhEl6Fe4DnePMYAU3o9PJptiQxXSumoDcPO3xrtOZeh+UwC2/ZuFjfXX4bHrCtASvIKNouLQ8GkSu29TJMHPvSA12wCv3xCH37KrYdrMX7jP15EUUkPpwCxxtp5IoGI7DcPzamis1xJUdreAhVnzabNnOT7K28GhTyPwZOAJtvOxoOVHR/LtGTmks2gB3nfXgJSEYBq2FIVSpRT+pjEOnA7v45djbvCY2468KtqE3NLLqc+N4aXXDch6m0UG/up8bYkR956cTrVuy/F9WSMaVRSCac4D9vYZDV5/brFRQgz98GnH2R2GbAUlJPTjJXLpaKx6qc53ypbzjvCJcMNxDApN+kOlu+6z2nAaOTj28bFQLx59tR/fLzxG4UmOyFWj4br6Obgx4M91IVV02ciVc0KW4PS0p9wj1w4qocH8pryC/c+OhWU9SbBlZwR0XBdH/ZeVdPvbGHx8zJovCpfzCkFPHtu8mpbPUocWC3/asESCt3us4hH+Z0HAyYB0Pm7AqXMEOeK3CHv93A0OTgwBgZ/g6DwlUjd+h+9alei7chOaFjlgZE8HXagcj4OeuigUogOC4Uko7P+N59vPIpnZo6no33WyOzNARvORH7oheGh942/fdEAV7HizmBgsX/2B5h+M5dZLi0Au8gZdr/SGcyKVsLz4E6z9Igs7F1pQqm4cZk8fQ8bFAiDhE8JPMptYTKwDy1EX180pwEtjhEHLsYY9VM3golQtxgYeZRw5nVzNBMmLx2O8VCX+HIrH8t3mcNpRjs/Vq6JXhC85TX1LO4J2ouquHNgtMIVe26dik2ImbNw5Dqaq7KKnN+t5xthkGmPPeOCADdbPGUMF4X1UUGKNnuG78UW+BpQfDOIgV10QubKE+zqKQTO9jz+vGgllBff5RXEpJgwP0GC5ADgXmNKj/TGY6v6GLj36y/ceaMGyXVZguNuflky+Ti/VVtLJUcIQtPAuOr00pwunHahwYxU3zU6hcY9MIaAiGtobplFV8lFoz9OHsY+swWEgFq/KX8BTtXq0N92eAspn4+mtHbjo3ChMcTyB8EIHpojZcsmG56C/4Dpv9dlFtiAEiTZhnDY1A1P7nDnz3i/+sw/hxPZdJGpSwCPDcslIUQQT/C5SWZMzXRTyBN/iSJg6sRC/iwhA8GEv7pIdYq2jm0moIQOOTd3MKrvWwjaHXTS2KYnl/ZdAwwYjaGmVhid9S4ikV+NQnCsHPluDNcJP4PAuDZ57fRokda+kbwvHQ9uJRPpRuo97PHq4doMJJ6IG9J5+DdsVzNjwwjLO+zeers+QgTOP3TjXbh+GRm8H/5Dj+GOvLp7r20DDIfcxbMsSNrsYhjv7bKB5gyOZib/jkivZ/Fx3NY0ouUsDh6XB+Vom3qn1Ytv5W/iOqRF81jfDsUVLWPjDSdRTf0iJzY5QjupofWYfxF6RBduTgfyfsCFkjbKmcz0XcM73fhzzbgKrR3zFeb8Qn0rXsrKRE3SKLicVEVGwtriKL20/Y8gFS956zQuMIxfyEydR7kl2p/DkQrK5poDRjQqQvNKYL+/uwFvBM0Eu+TIWZb6l2QtEYKdrJ0/pCKBD7dbg36IILwLf0fuJjvBmThzt6hamUg6lWTc2kFLKXVhrX0tKMpOwq0wfxIdzMSe6gv5J7Kc8m7FYNzuVtIKn4fNffvD9kCmGRabC0QFryKtrwZ6LN8mssQsVnZeQ6pQFfP4NgsjXjdSy7CaoJc/lKBc5kCg6zprWGuxp6cjN2r/xfqouzLzvjpNP5fP8Xfa84EEaGTWIgtfYMLY+Ik7tnxdBcJkwOmnEwdcD1WDyaCKdyhjFxwQyecQXAVgp78olBV8wwruRTy335qGIhewgdpQvufXhweNv4YxHHv+2GgkfZLegxdYzVKqdBQt8I9mgayHbL3hAM/2HOdZemquKvcFfayoIOqqCD3dh0dpzcOdzCEUaOEP2y82cYDaezrTL0uDEXK7utQTnM060WrmcVu0zxxI4BKtOF3JGyS9c7m3P02OU6dKeCI7bh9BQtoTldQ7AE9dNdOPNMSrstYeWH89AsKme1KoM2HyRGz8ttAE/ekuvL7jhal0fLJb9y6MHzqGs6AOoruzjaXVfITPZjTyYwNmzA8fsO8ImU1/B81H9cFfFhuYrmtKzQQWQ9Nak7T466LCfYE6MI811koeDotNJaUEtDF5qwj+F00lx1zZwenSXHy+SpPwaBchdsB0LTD6AkUcO727rQ6XecviP37A8VYBD5Hssfu5Os/6Jw541J3FntRLuvOKGN6Yq8KwEN8ipruCpWpn8KuADqItOp9vTRCF54W/UnhMMHwM04dWPYk77VUpN1rehMX4lbXn2C2r7k2mHhjQY7l5LGY5XMdtIAHaNqARJzxaa0dMAuZYEEfarOU93Cn14LQ5VRf589dB+vPpiHN/t0SSeMANcN5jjmYo0nN8fRbmTAPLOSMJSl0Xwb1wfrhAyhGSJcZyR/xANhrfhLJG/7HylnMuHG3j+OXWQKq/Dq+8L8ZuuMh45LIYjHLtx7vUjYGcSSyMU3HDloluwfYI47Pe5CwmawLa7Onnht8sUfi+e6/T0SWB4N10qK4JXdqv4VqUc6KYGwZmq32giUMjROIabzKw5eEEhLYqxgJXqz8DmRhEOv1OF14OO7DCiijYsmskFu9bgaYPPHDSUBLawHR3qjrOrWD5s9haAcR2KPKlQELTOxUJ+sAjYZiaAVfNWWobxZK6yCndIIqu9NQTb0TJ8t9yRVJUG8NRROzY4+Jd+PE6gkp5FIDrlOpWsXE/rlaaAcuYnmq+9hsdEnufJgh/4dm4KmqYFgdjss3i0uB6yJjVRr6ASCGY/hIzedxSk+R0miD+ByY9roPTdCtZ+VIplm9Xw+EgDvLJeDfbtOgE5gitxqcplHl+XRf9JjEKrY0fZqbiUhR2ywOpdKZmKysCjoadgNmUvGZnEoepTX3w9azkGlbhBnJAVbnEMxcOzbPGkpxVEzX9P246s5aiZCvx4WzrMVTiN+yPUUCdciJYPbKUXc9poT+5EEC/6Dys8lfmI8QScmTeAUX1RIOV5Ce33iqOoSQxfPiuOHikSIHSzh3S6fCj4gDKKaWtTYwNy9NshvHNFkT5+TsFTkeMo5+dUCNzcwhJp4VS4dSXuezaffLds4/ynInBBbQ+JXrLAnANNFDlaFuxPSHKbvBjvmqXABo5xdGd9IgVJbMaNvwsgWvE8HXj4F8VNjODuQDG3hM/nHqkyDhyXBn1Sa/iLpA+sizzGJ+xV+U5LINovU4Np0adw21NlSHf+ix/3DGFC1CwSkYqimTwSDDepwhezt5ybYQKHi6owlieD0+JTWH1jK5wedwRHrkrBqKk2fGCbEc2tjKGs7RYQ2RdKN58Uk/SjVtjy6zh2WiixZ04qH3ukgtN9pkOsSBAdn6YLnRe+YEP8IB3qLsWkAV94tfI2BpTpcXKwIh5pCIHEznII3SYJTSYHcfeBK9SUb4wyta1sMzcG+v0OY79xApUYKMLH4jRoSZeEE6mXsOdvNUkPrYVrfr5ULWBGduYLyC9vAbrLP0aTO48xw2QcJO5/hA+tC2n1jWfQkq4N4rVW+NHWkHxrpFgiVgu9VjiwlLgmeN5opOdX7UB7ThYOpD/HYJ8WHukdTw9rlLDV/jCJd9vSiHQdGDtXjldticD78f207OAw5h6WYbkNtbQ7cS4fu1EP/dXdNLhrIkwuXoeqenWY8PEzB6quBtO2t+j5IxSzS2/hfwktBPfv0jcZgu2J7RAtdZwm1vmD+iltbtzhjkoHqnl/pBNXOL0g58khMOxiANNfdIDlnXm8UHMLh/93m/PjNlPRBQH+u24ezgj9j8vVdmBSlCQ8G/kHJSedoYe/V3NcnDS/8AW8PFGOxwsVU9+BvZyxilh9vRHUfhii5dvMcIlGHTyQCUCpwAlw6JwdWz+Yws9Oj8B26y7KqZEBqyNxXDK2EQSnPKfcsdkQeNYX7NKXcZBEJM1Nj2YJwWisvDgGRt1aw/21VTCuYxX3b/6GNfqG7Dy7iDffvUITr17jmiMloDxBAsSEJmKyciq+MEnDpLTrMKHmP3TO/cy1AwwOAvnctfAh1s6yhjKRZXz/axElC67hM5CFihvbYZzXTfbxm8obhjdA6iIPDpirCbO3NINGQRSNuLEXTOuk8ePaUpJ0auEfUxtpQ+9bOH//LCSmaEND0WUY3/uSYhWBMwZjcEGrHkZJLMXcH5bk+7OHlL4G4MFVMmCezTxgGUbWy0J42Zj9lOmLuH36Rd783YOKVNxZ9Ok8tg+zhPAbxcwlrdxhLIWNf99Qwct4GlzUghZZ+ynP6iyZPZqDIvGjwVxzP3SdLaSYsR0wYYQ1Tl39h190XsMdE8TY6O9kmmbxCk9IWYNWZzL8AWlYZChAT1zOQanLKf7TNIN7ys7ikMMSmLdtDvyYqAiqFUKYYrEQjqn60ug0Z9x3fzvZKJXhzKMlNKfvHESPOgE336jA1+54Lu6Jo9z9u/GXuRGUXv2FXXvS4ErLYlAxGIZXdtnss0cZUo838eDLY9h0rwTL8m+wyZiPkDdpPj10fwlHFd/B5Gc/SWs3QUXtAfDtD0av43fg5elkCDwzDlqH1FhsZz7mtExEM+8KUDOVBuf2aqz4ZIU1FAD5GnHgqSRHk89mkljrJXYdCib561d45gKEA/nr2dR5Kx2YsBTcv6Twj+BsTN9HLGukzVF/buDcQOTkP8qw7Y8DfQgvgd5wPVy7YQ3adpdh6CwH3m7wite7y9BwhRBuzANQ9jXiLm8BKDDfx04RM7gzcA4ZeB3AA0bddCZXj/2OfYH+c3LgqVyIDytc2Uh+BNy7FElWFpfYcPgEfJvVj9626uwS/ZNuXhkFRydn4tbDwaxq089NRxsg9eVo1ogRwXXv59LdtR84s2I/5lePhANoDVnN4uj08R7UhRrT1u+W/G+pHNwSVqWAvAq63DETRvtawPe9MTj38xk8RltJ8FowFnutZbduB7I50Ae3ypI5XUWUQ1ATlHZXQVlyNZY5KnH+0UByrziAmoI14HgqBcWMs2hBsyQ+ey0LNXKHKFu7h0SG7enLkCiMdc3CZx/P40+XBbw28wc9mdmK9lpWYGDyjfs7ndD3bCk+2NDGy0pTYfw7f3zYHALDr/Rhv8grVtwjDw0HjOj9xGrcWWWK1uOmwc3nMWCXfZrc916iWunt9O7LMVh4VxhWtPXjjl0v6Nefn/RA5TEEPJlHxqr1gGfKYXJUBAt8mE1SKtpA8VfIe2sazFzxA/RXuMJI2c2gUyhIB20qeGbFUagV0uTMy1Pgt/1yfD/5Pju6+oNy9zBHiFeBY0c/drUn8eWn6tyj64cOsaMh0PQVCJQN0N/n68hXXRRnf9sNN06voMTv6nzcswpKpmqB5gdJ+GD3glZrlfP4OWZ4b5klGEa5UYP/DF7QXcyZHt5sdWEdJLeJQDl50cPznynVZQOeyC6jENdNMLXoH3Uc7aHG+bXU6vaS5/jJQv3rUoi+OYqPXFyBI3wXws0Fo6FdZAe8i75Kc/s04ERLO3Se0oPkr24sLLCDj1gkUMvfIKgqFqMIuQYyGzOd3gv3UHL0KpJYaAIhBQ/47ERx/hc/A6FXlT8GX4VyG21U+phMj784Yoi+A52vsYGi8RPh10AIHp6ZiKErNrGV3H08bj4TYpv8YIrrMlzUvx6We0iCUX0LqX/ThIsrf/CzxUKYJR8CUTau4KQcQcdemcCV1s0suVcUKvxrSFX7NPl01GDnykFcM8mSnzuN5dico3Bx8V6a+0qBT+hKguEWZQiSjYK9iwbZ4dFF5OYw3vPhB00+4kRn6yRA/ssTfFA6ApQyJEBZtZOlTHygNVsCur9nUUdlAM3YlgtzzH9jzpGHoCpgA+E9iVyfmUQ+igLotXICtPpPwDQXa9TcGQK37CNINVgM0kbagIjNbTJYPY5jBktI+kcWjewyQ605T/FEwUcUPBtKhT3nwfOELCy+GMWzq5sx3/M46qEPLtH7yJIdK/DhWzeiLlVak6ZCr69Pg43NVTw1VJ+t89IwaNCSz+pk0U2bgyg/pQmurzhPWpKd5FUvBzddU9lxzGE0l33OA8eBX7/7TQbr69kg/ytvuacNTWGJKLdJA+SevCMP7QzqudWPha0NfMXxCJicC0IzoRD4knKWzbcfh6mvhEG+cjwJHF5HIt6RJGXtDIdLkkk9eAb+LU7HW2ddyX/aOMp6Mx6ceBpHRI/B+Dtd3PTalb5vlOZjwdvY8lI2XRbVAqt3+fDlHsHR2cvge4MkqH0dpKkrp6HxpssYmZ9GA86byTdyiPRFY1h2vRl8STGD248NcUaCH0fVX2KBiA9U0rmPtWoL0aKzha1Pb6Tm2lGQaBEGvU860GGSH432s6dnN89weIsTpOZthZj1TZCosI84XhhqNh2gyDMnQPWdN36VzMVdLT958N9x2Ow4nay3esPC64awN0MLYkp1AUYFwdk1ntTw9iAc/qsHFn+7KNt2PP/pegxhS+YwntaE1SPt8dNAJ8cu2kwDed2o9gjYoKcHb5yu53N+/7Dbwwk/1ymDQ5cbPizpxptD3yDnbjE/GL2Qm/MW82ILAUwaDqTwNSNwpD6Cqu9UDDuzBDs+iNHB7ul4bdd9NusVxFOXN1LjqEpc/fsWHz05Dlb+XEy+ewCOeM+GswmPILz4C2TLt+PjqlW0ynwBHIv4SeFnbCDoOMDFqWLgX9wOtxa9xZO5JTzbsBcVLTqxU+wJ5vIAKjyWhpuexEfpHqs+aQLX35fwRJomu6ntwBtZy+nukhYwrdeis13KcCJXF0MjFLhKz4DfQTmXuStjtdI3yF/1Gq30lvKy8psQd9IQDi624XP310Gf33hObOqhlzKt/MXhKyqcjicRO1HOSnJGQWNh+Db6MOv7eoHmX2c64TMSj3xRRFmLu5Bj4YphPdFQJH0E+ioU4KCFAwqrKYFx5yxY2SfLUpVDoDhlKr91rsd+a3FUP1VCTdNloNT3A+RvXUMi80fDe+mZqCmcA2Y3LvKef1dp6MBKTq8cgxXPtSBxuw79836Os97J4t+Jnfzlrw2mSZqDkWk1DXaPwfquNaQcpAAvj6eihnc6+yzMoFhrGTAyuMOzLXzAUMqftATG4K68Ona1EgST74jCxu4gZSEE+zut2GfhEmq7NQUXvtKl9JJOjDnbD1EPxWDpqyZa8vQQHYrcBl/Cj5KWbTyNvn+Q28kHfvdMYvdDmuRSrAIzSYfj/JtB7fkRKtNT4hTJHTA4/gRn7dTlmQF7eZ3QF1puKQ/DSXfB01kOFjl1wlfLGFg94z/quzcXZN+VA0jpYEPxV0idoQE5kRdI8oU6u4ao4/y9P0j87Cm8tuY/Xtr9gQQbgZpv1GOzzRjQSNDB6KJwKqqsowUWI6FnuAa8tLto7sPzWHt4NGz7eA7WowR0t0tD3MtmSAuIxt9CW1m8XJ4OtfyCW8sU+embBxCr5MYzD5vAj9dNtLV5FP3z1OO2YQdMXaPF2zdfZ2PlBjKf/Z3f+S6FyoUScKG4n3pfD3KI+3m6n7wBdpz9QCrO3nz00AU81RaBXXZ3QXeBPpxU+4G6ks08WfgbSbgCbv4+Ffd36YOwuwcaaumCQ8koeK5oCfmN9/m34w9QGpVLEbWH6FHKV+xM2E5njg+y2qeb9EjWkra8VgaP4UK6EfsUax99IvUj9yh0cSd8PVRNKWv2oufmk1i37j/KOa0O1ZFtlLzwH70Va4LjaZqQcPkdzdztw7y2jl1O99DDM0J87a8WaK1MQKn6/eR6YSIbibzAw2GW+Owrc9acxRTzThC99q6Cst+TIO9qJz/c2A46X/MxJOkJ8oqf2L69lcImlVP/kV/gt7OP9TMFwKTDi18queDaTCl2nCqLmQF2nOP7iYSvT8M1aeupSaaBpf6Igb5CFz44cR1C0nNJrmckULo0aBzcjvfF8/jAm6Wgm1uFFVqj4Lx6KaG+FLgENdOFjzOokvaBGnlS8TwVaiYf6Cu343cjZeGz73/o+fYK1naEwm6ogAGpTXh2QI7FX8eQff4KnpjdBW6dE0DAfxeaJZbz3kimg9gGh37eIPfyetw0ci7IGZ7k7YIzqX0uQGjNNfKPusvn7e8B5TviwZL5bHZvHJ1I2AkBaZ/A6KsMF6hLwlDuX3x71ZjWf09DFwEjynX+TkMnjSikNZBr9Ax50eADCGsVAcVyc3b2fUWB4a9pipwlr85KhR0rltOBn/cpbdsMOPTUE3WDhMH2RBkcXtuNl8eVk8zeAdh88RWxz2zylHQAqQI3artzHfUS9GDtniTSUQvlD+UFGFmdwFvEfLn79DkaZ1uAA0LSqN33nJYYM/hHjQS9eCGUVbfCplg3GjzyFFdH20FzsQyd81pC+0PucWsQQ92oiZySlIF5K/ZxbosFbNX3BJv8iVA7eSsNHv/Fk5vTyNVdGfYurKU1Ke9wstZebtQ6T2N2F7N0kCyn/V1Mp55YU877+XRmtRIkqXeB4ZJ9ZDP8gda+b6GlGnVUfjsVvvvdJpdr/+Hq3408FC8O5h+for38Foo6kgZ2lx/BtEeZNBEkQOt3Jpn/+4dh/1SosEYVekoecYCxMeT89KbpbU3wT+kZP5ktRZ4PE6n69jOO2lBGLjgKxmfpwJvrt6B0bD4KSmrzD783LPfvPp+zyIGitzmUcOA/fJdpBOfy3mLe5W7c2GlIQg1rYcaWaygtYMHL57ex5agM/N0SDBs/6sOKLcLQzKvY/Ot9ShKoAjnlK9BquBn6rzvAiJursc23m7u2KoNj2QuMrD/IOzVK8bPmBkgqdQNt7wEuvbOYG0GZLuV30qxYFbBWXUa2Ak9ILUKQ5thvwo0Hg8BVIInWrV2PJksTQerFdvh+Uwhib0rylasdVLNYA/pM5tF3rzpUO2GBuuoN7KbpRQeca/CXhjgMO8ylbY8/8x2jtZT1zB7S9FbAlt4zoHLmFO+QKCZNJXnysTIDO3l3PvchgVd+laRzi07jwDRN8uuVoomqZrTfeJiuaAfQP3VzqMlcyg5OdfBV6AvDxqNUMykUQk1TSStDh/xdD8IbCoRWe1lwutaNS54IcNpfN5x/MZYXKqvAyjBxEILJOGnCW16i28b7ghHW2NRQk4MSjm3fz5dkfDimbjc2NESQmosC6KccoZWbBinJxRSirEP55sVE8GtNRrBqATV1b5KKCce1F7Qg/MA3uts+ES/PVwaalMMWs/dh21wXOvplJx4PWEEPQQKuXtzKcSWFPP/pPUomQVgwbw+EcTsoXRyLEf8c6RadwawSGxy4cZ3L9nrxlTlLMdl3NLxKQqxUOMhRWnos3upEHyY7YcBBfzz23ZGWZt2FqtwY8PQYB4KrK3lfXDRojGwmp/CvXONxmg7OcIWdV//g0/BfIDimDeaWW8Gc//xoRqopysxKAOnOCg57Yck32pJw86ZKFPesZ+Wdl3k4RwrsfJ7TZc9mMH8RyM+zNblQzo6z3Y5CWk0Rpma2kHbuP66SkodvfntIMmsavtF4Qyaex0l2hRlVhayDpv3TaMvOfF61aC22RUjCrgA/1izW4ZVuy+Hj+Ms4eNmVvL6fpKqzz2nYczxaxUTCpEI9eLjJAkKcM6C9YTn6xNmDVu83DPuRyiLuOWDnIomXAzbQ3OUyYLu1B4SfOFPZ23/YJyJAkbXrCe8qgXdIO7pLVLLRpEyyCNABzWdZdKngIahvLULRmBy23qzMBqoH8L+XzXhmuSXoFMzmWd4jIMP6Dmule8OMip+cc7KH6tXqoebzM7gy9x9a3vGAbBNFPOQtDhUPbvEDnzwOqBaArs50CocDPGOEFj+a1AQucU+pJcYYrTXkwVRUnubP08SEmW6UuucViRwaj79XPKD3R1+x2Lrp8NPInNr2WIP8/goQzjvC46Qr2V1hPAfL/oQZs4/zSr3ZsG6tKRtvtsP6gyNh++Y8ND0yASvv5OLZHQJ816uTho7ogPExTSoSWcRK/n8xUFIWvgxXg/SeNIo3fgplQq6UZJhBu5Ry+VFvLWddCYSEVQawaKkOZMbdIyvn6SzT8olmPN8JIZHlYJj9Eu/5DvOQrAwl2tVw9E8BOHSxmuIn3sK5By7D4ixz2pNeQYtn6fDFyk20q+0Q+E2MY5Wxo2HKxUfsYjyHW956okytMnQZ/WPbKxfIMLMIb7VcYJ/kYpx1agQ8mHuTvuX8wa+VueiUEAf7GyTRZ85WtB9aj+WRGfDo5gb4HawHHokbsd/ZA5O7q/Ho2ckstO0mrHl7G9Rlz8KVUy8wdGcJB2vrw+5P8Ry+1g+Op+hC3W43fvN0Dn8Mn0RTHh+BqxnjoMvJA7/eEoFX4uHY/f4UTr9wmNs871LhTWlWe50Fq38h1VUhSO78yhZh6mDbq4/Cz1+B/9UuqsONPO9QJzmpxLHYnHPsUniFjKP68ZWKFvi5/AMxBXEQF4iADxZm2LXnEihsSafSDG28b34RO9LHoWnaOMhtG4G96y+AZKwl9Oe5Mu6O4PtP4tj/iBIOhq7j7qFyNnZWgePyU8hwMIarLgDdenUXvvhKUIagPwokG2PX4heQ19KFGk5W0Lj8J+ZKnEXZ4zNJ2U8Wht8rQsuIAVyRpczHTTdT171KcH2sAKsmrMGhJnvakVSOhetXYNAZbcxdVIHZP2Zzj+sulpFqgch9wjDlYzlqfDLlY+tbYTFd55tLp9Ho+eGgdlIUhJWb+OXP8zD8QQSiQ0bg1eBa3hdawpsehJPD8BNyLFnAva2tsOOPIam8kOA6VYY0v/kcPRwOkckt8BAfkdVLIUw454j0sxgsXXdhGH7ia1+mwXGbRvCwVWVF0Vew0VYFNojtpaSiK9B2JA4X1Z2FFStu0fq40TBY7MAvf01G9QEL3PksDpr2dcPu7G6ObA7i+O+q6PdxPU+KUgDz9ije0xzPns5H0Gv1AC/x9MeS/EYUrzkF0+vjON7yPGf4msDPHemUeluY9OenUsXOOgwNcMDpFe9w9MUwmC3/gmwOFlPGcyHQUfxAW4/1UVjrfPINfcv+uf/g8G0rWnFnFLUaTuHBNVUQUzkFtlzMQNVHX6lbIgze7DvFqalCYOMdhKPersLBWSboolROPw+pgHGoKa7JjebtJ/xx0XgrOru6BRUet3P6+nre9j4GqgyaWeHWRNjdKYOr/sfKfSgCoagBAP6HFTIiKyNRdiRkK5WKNpUiIkoIRYlo0JAWoURaItplpWE0qBSKFClFqKQIDTq6L3Ff5JMppY7LhL8/SuGTKR/BZbslzORq2PZlFSm0/uS1zWIQoZFK1S0NMNL2OS+lcjabasLVtuloOuiI3ruH+Orne1zeKAiRsjp8wr2A+8Yo4381a3hv+Vi0MxLGOj8bGvg2AkTvPMeb0gbAaY44qWM7r97sQZo3qvie6RgKv3eRTNNewurngwQZcmCzZiKoV9XCij0rcfIyRZYMl2XBNFXccLuJhPTuU7+/IUzVdoSAVaJw0yuXpBtz0cS2BVY8SsPhH1Z4Z8FomP3pOxYfmcShojtprutYSDw3m/uuHmLToAI2/TkdH/bEwbKLd8B/8yl0uK7C2YMr6PdhOzB4PZYC1XVxoMmANpuehIgbN+DXsU5I9v1Csna/6a2dOOnVWYP4ll8sca+Zlqn+BGftUZTZXYiol4jPju0kfHaHtCoPkFulBNSuuUkbF5nxTb/rtDXhFc9XMkftjYns+KkHRn8PpzPltaC0ywzSZ2ZwR2Iozj9Wgt8m5bNHWhef97Ul82vP2Sa4nf6sykbhlyrwpd4eTWU3g0HJerpQYQO/t2RjQtY6dLB14jUDHbS1Zhwmr7YBnbqtMENbFbb+/kcVuX4YFKbOvkvGQvdzHbKu0WWbxTv5wWlF8Iwywd0ut/i6SQJPly0nk4+m+DpDjFySDsD81Ey4lm+G1hMZTP64wQOp4xT1voNP7pmKM8eNJVftlfCqNBxfpQmjw/BtOvRBDbokKik9RIQlfTZj+TZJmpf/HJfonePODxkcKCxBs+93YuxMU3Bb6cKJzxvZYcUowkliaCF0DZInLMN3JVvp4eYlNFJZBbNOq8Ft6Rj6PPUQX04Jp7DrsVzaB3jDqoSfbR4Lv2cbc/n9Vj4lqgHH2jWhO2g7tixw4qc2d8Fr9SX+MVOdD8/XhndeKli9X5oKZk6BHYFSXHHnFXTvqqFxD5Rwyf0JULZkAp4o3IilqtN5xIx4dM4dBR1bFkLnUA6ONhWh5Ta+IGjwmRc3zsYP4a04ZSLROPluTlhqCVpy0Si55TtnKbwnq8eMMku/gWh6ERS+X8rzOxbw3akWvERWGsSKRtEKKSPw/bwflh15i/cf5+DVmUW4U3Qr6HQ9p9MLBfhZrio80DHkjNwLdEUpneed1ocPWz6D06bbkGM1yC0M6N13gXNKbSCm5QZO+JpIWopDME15OUR6fAWsMuevCgZonPeRSr3d4bicFJRGG2HMi9PQVOANG6yqKGPQkB78OQiq2ZfgVawbzeuXBQNJQ/jjMg8X9yfSxew4mF+Rxw37nUBAchJI96vg1JtKGNGvwxfzRCFg7XI+Z/yIttvmsZLQRTC1C4ZVH1T58Oc8GDXGgUQ8n8JXeW1QFr1ATU8EcEyuOnlZamKe9gKsLBmB92TWYcjFEja9qQ5F8kawr2MGjl30mV2im8jZL5vdXQc4adxuvr7iBckGnqLTaSJ0LVEVrLRNoOXncdwveR7rlP1Z8rodhFpn0rqY92Ct+Rmjjnbie+fRkGJcBk6GWViitJA0t80E3+aR9CFQkxb/FIVJjbFoOqoRI6rFIHY80OMiPar4NQc/DG7gkBeTaUZeFT730sIPtTdY+UgHZqcYQmdMCk6b1wGJ/hE0qzYNm04lUL2zOxYmnUf/EF1g3ARHRojDHY9+ftsQzy5b+vj7yrvQCuvx4E1XcMdjKCIUzIfLkrhBxxSmbk6jw9aL+FKRL4yfN4vqHkmxeY4v68vkUamIDPRcqGHn6QYwqFqF/9nNhguDQzyzQI4cbmdjYvItuq5mBcMlheS/VowHmsbA/N3J/PLCCvoZb0fnRyE0B9pzlfdLtn0kQbfu32SQmQ8jimzB8UIf7bLLQEG1i3Qym8F322TyjvSho02pMNdOCEzyymHTvDHQbyQAG8do07zsMOzOyoSZwy8xc/JekOzNxtHXEsh+41cIdTeHQ4vWYlFCMv1SaMV/zTtA9eddGJ2znr4O6UKstwv8CXbkhZGj4HJcPF19ZUAHs09g2/JOcqZLEPtfPvbOkIUi3W5SEMxj4x5dcPcL4Yb1uqzndgC9D8+FnuvGcK58DMRaBaJTbBzO2CdPMTf0ISemiVMqw9lxzRTar51Aa1+mYk+IBk43LILXQz101qgDs8xMISd6HvMtD1AdMKHKA35w7YkzTnltT2M8c3H2bQF2POxJb7yl4e0rPdL0S+SfNgIcSjU4lPsYn1UaQ2LWS9h1cTKkmYsTJQlArchNkLCuJPVpw+SQ8xf2TfnJXfsfc/qtoxQx+A0PPUzhr0p6IJsijHbimjDhmxI0rtOEhFltuCjRgA5UBaO300nK22SGO/4IwjXVQrT8p81ueXX4bK0gzjvqz26qAtx58zSfNpLE0DcLKHOyINhJvIMZPYJk9nQ+N1fWsHm0D5wZYcejRD2x3KwNZv8uxFnKQiCceQiv+K2E5p1G/HJSOp6VVadO2/v8W2EVWn58BMc2FuFkLzO473CUDNcfpI9SUrwkDUB+0iecmPweOvb1U8H8regjMR7F/XXge7cRy2tM4Ld2HrjE5C4EnK/i7Wuf4/oV6vwr3p4bvqrg/DaErJTNdEF9Hh5QmICPbpyCxS/GoP5PSz7v/5o2bB+GBVK7YFryJEhz0SUFy0Ps7mJNqqqX0cuynEtO3UeTS2kwVvAoic04QSVOSnDG+w2WlTVRjZcG3NrqS4t+5+Db+xNRUkaKFoVV8sPv3+iVmRBsk7lP93xGULrXDLp7NB7djgyzS/UF2uzfQzvaJPDIqFTeYigDHYZlZLXMmkC8gSy9i+l80nNoNmonkzNHYKrvbpQ5vAqWWIwBecVybmmq5YtyC6HN5RfZZz3A9HtTKf3VIJ/+dAtFOpIwSF0NNCsieOmFVtr+dCeNmJjN7xwisX1DELnbR0HE4QA4UHAeE82kwcTkH7wMsWDr+97QLzUJBi4foPHT7GnXyG4+VLERbg4nwnHZMaDXOBcWnc2Ff3f9UHjJSpQcI8WJTcl8cOdjKqj9DK/+neLA1XpQULOW521JoPY6XdKflw+uS9xo1vLF9HCuE5iN7uAg00yWfaUFDXsJ3bTmQtleEd6wOIMK0zI58F4D7Ci+gGFnL6HV5TB+6icMdXNlQMW0gy8V3oOlcpM5y8KSVxhfAbcnByHeK5I2VJlD6mt5SBW353pDH97+bwxOOmqPe19ogHN7DUyoMyBLmfd4oeU9vP2iDst75Sh/khmtiLNFgZwWKBNIxvmnxxPlO8F4tUrovd8L6hETIevvDKr/uw4yvHexhJEjxXoI0ZOFq/jYunb8eVgCTqs9w+T14+D7gQm4faEUhz6exK37vrJi5086vPU+vFx+BFf69KCdfTDd/ioGFcWe8GupLowK/sKvvq+FulYTiJg+BFlrpVmmSQS2roil1jVCsPi4GAj1n4J1446QYmoJXXzUwiK3kvnHQ2LPJH0GlwTIl1MH465WFN1WTiPzV8Lkb8n8qb+Gbg/60+xz0bBKtwCXZ7zGhtEyMGKSGDf6XgWvoLGsflMGR466gd/lBsFk2iCPfDbEEnENpKOoDZ3O+fCwOZpE8gKo+bgvBk9KAdvYlay18T7V73gIvsUR8G6eCVRnX2bBuZp8X7Ac3M3mQqzxOi6Zmwwmfq78WX0x7Qt6hbIFVhBoIAfzn3yh8+OP8fZMf1ooGAoeQydBRDKZ5hYRW0XtBodDWrDX8iSa1hBKShWz4ENvqD84g8dFS9LWu+9geYI9ThTywH0/tMGy9wI3Bs2DCQYh+PevNa+W8OAXT9pJp1CWpM7MwaWzTtPW86ZwUvEL/SsQQCq4zNXCY0hhZxxP7boFYTbHWGvcPxZ4IUXn5sjBvr54/Dkth81DpoClURHqev2DkflGgJWn8IT6EIheS8DSZHVYU/+SRjwXwq5NGbjMLxE35ifR7I0O6P8jDQ+d8Ca5S1kQJ6UPETbv8NiEd3jCaDR5Kq6FJdWDWPwmm67fXsQdrq/x9vEtuMDbHD68egFJm0JI8FM3vWy9i+sdpGHajzReo34fOj1/Y/0lK3KejHA0KhtnXwsj3Z3yqD2hgb81z4SAD9n4Il4WfNLs8b/FTfTgiiaUTw1G1/443FJWT/9SECSPCdO56ge8+VgnWax4wS/eZvOHHkGwPjCXlc4F4ueKbhiZdBT3PpbgPw3xRKlSBKZX6Wb/LX59ciTcPnWXolY8w6rdoVBS7sLZyxdSvfwYvj5fDopGeZCa/EiO0B8B0y7+wV/1vVzfrI8LbNrx99xWemLcCNF1EfzpUh90tA5zxG0NCGoXxz9xa2GDtSN+XHmfLXUekeBJQ34iuRzSagLAuboONqTrgsWrblQ7WM0Z+0WxuS2AdymWc2rEcX7Y/RNvZiXztLOHsaPXEnQ+/wdeTQvg2vYZILVLiw09D0Hk0+0YmVnJFecM2HH1X7yTLAS2r0bB0qfnSeb1MLvp7+b1CybAeZMPOGW/P5U9GsVdkja83mckrK5PRfvJK3F73zjQUx3GobAoHra6h0dky7mtOROWZCRhz0ExKFjbxpkhtjxqsIVv2JdjxasXEJS5E4+OUeGcRz9ZxeApL2swhr7uWo54k0HdUSmA1yazz+ozPOf2PY50cMTueYYYN1GeAkIE4EvkYVa6kgVuiXEU99SJQsgJR4zo5q8Wr/BAYQeIlc/l0MfqMFbfBnt9n4Dxlvc83Xo1exa9QNWEHfj5/XPmgNno+z4GHsmrwNmrc8D6uCtoN7jQ0HU12nBGhXLPvuIV2+RRo+khrvxShHOtjEBK6BNrbbjGf1Q6yHrJEqwdv4j+dKqAZOFTEKo4RU7udrhtIcIPSSd8V7kOF52Tod1RY7gzxYlC09J574tauu6WzeKRI2GGnjb8Gg7jf/or4ILNYiroiKGiHe/gYPpumDpgCqlWs2jw9gYoXY8QF2kOb6IGeJtzMu8KCeBLd+MxtNKYr959weLyB+C0tTa9+6sPs9dX8JWJp3COqCj6H13E7a1vSbiwlHzGb6djUEsmHqEgMccCHmEC/Vmoy4uOW3C4ui8mpmWS69+ZOHj7O459EA4T/q2AaZuN4IK/Pn28NJWk18qiI5rS9KoQXhxuxIuT9qFX3R4q7FFjQV8rOO+2gY12VnLrJsQ9kqo8blI6vwgyQ4kuIVx18w2te3kIpKPHwR4FAfS8rMOXYsRYWNaatVJHskCTL/oJGaDf+ts447wXzdBSBBOfk+icsBUPzUrl0sN/8PuYCp5qOIY2ho1ESe33qNAYQi75KtD67xuu9RGGEa4W/EpngPsCjPjDehWSsR6mkq+RbJgxwHJGI8HuxiRK+TASgmsFWV7aCNI0b+JyEx2eGq/JL5ep8sHvmdSgrQqK98dQeUsWKxmeAbc2T3rjWQYCwYaQZRwEB503Y8eI9eBySwHihydCzofxLC5Zz/OvmuLzL75k/KKfs77rUZpeFNWuKCV+pgbvIQtcFTaC/X1duu+YRwnfgkjhUj0MbdpISwTm4scP30m4QhHExhfx7cU+WH7jG+UuiIRWI0d2uzSE1fun0cGwPN6QZ0PXe/RBYBtBQWcsGuU6g3VwBryu6YfErtXodXA1X6+Zwb0F6/GWui1UXq6nkX9X4J7xE7k+3oiUumspOsiemlfpQ9fWJbTgciDZrUXo3aTMCReHaVtGESbMu4YVOd1YL7aXwytjaftWAVrmVU6Jl+Vht9oGGnnNk4S8bsGJF9FcGZQHlw3PoYy+IG/MnsgGqyNoV4ccfDguxCm7bvCTaS48q7YPit33wTW1PD6ochmCHKR5w5Vg9jxnAI8ttrHGu7lwXFWA6Y00Brw7zpfvL6bS5EmQJWuBy7qruGORKjj9HgLzMQcg8txN+NszkQ8/YL4yWZCNKhu5VXUfXo+x5rmdo2C2dSBrGxSzhbcHN+yXxJdr1vLg+pMY0yjDLnMEeW7rEPd62kGjeAPp5sjB+4treOLrFLS88wTfuB9hBW8jFk6rIGHtEOq/ZQPfkteCXyRiU8RC0go4T3rvh0D90Hm2K9WHjsPBdO2fKxw+MhKKHAQwUlOSSxN24/hDj0Gm6zLmbrGFi0cWk3KBECc124PEcn14HdoBCv3+cPSGJB6uPQnFMpXQ+UuH9wRc5OnJMylrQwIpHpsCQxbePJi5nbZsQFw9bQt5TETWSY2nqiB/8MiNxFTRHKLXpqAo507F8m001c2aHhnYYc7pJTQT1Mj2kRoPTJHD24c6qcJLDQ69McNbfQtR+d0Y9uzKI4vVWzkl5CyGKyqBUOFUfnrQDc49MYbzGVHwz30cbF5CYJBxiBZU/qScMgey+W5Kv8a/oZkHKrlGwQCs/yzG9SJ3uGGSLJgbCtLEQSWa0HwXfVqUuMm6G9obWvGpsziQZhmrt8ZR6+FbOPrgfCBFO9ox4EJHR7nzxzd6mJrqCLOXWkNLpjne99ekkKZ8jl/wDso/KYLE6ePYP60cxmdEkYvmAC2VsoWnituhUG0fnjquiNWLinlS+xgyTJqJJZkPIeZGIWZNMgGfUhvI8ztF1V0r8UrCMTyqWs3mMloQc/AnSk69yPd1Y3mTrhfMmTUJ/hnL0+Hts2B/2CRI02vhxFNn8EhWGZplGrJYjxwOOMyk+jYVWHUrkR+IeANf7cfAjEJ6mx+HpZ7RmPvgF6lpvMDOD2OpYacedEVdxM16aRQ69xTsdJbhP1O7MEHKk68ZjIL/Ll4nZQsRDA0RgAW5hyF8kgJ6y7mj+p3lvLl1GkvnDfJ3yzUkOt4bsm1+wcS1ZvD2qBAcWWTOly2j+NKLMfj+bCndmplPK8K18MuyShwRewrLY6SgOuYs1wgKw+rV5eT9UBD/hj6GmOc/uPh+Jw3EGuMTxxIWrbCAG4u+U/Cu1eRs7MFnNM/hlrZdpAnv2TcsDQfeXuACtYu85YEG3PmgCg/+lWPR1PuktKoH7y7JoFl+b2CU+x1eoepFscdCODRdElbIbeIZxxbwleXP2DNlPIm+QPSpCqHssTt4v4QOXJr0mVo3SUNK1nIa6DeEvWn1EOsXSjuvCuOdHTnwxMSSZlzZCbtcDehRrSG0T5dii60nYLACYI5OKUclSZPmV1tMkivklGN3ofV3FjlIMJyML8bpUirUemEMXi0LxryMtWDf8x319uznR7Pm0qjL4lQ80RjmLFqMb9b5cUnOR/oYPJ6/jgjFb2NWo942DfSZPhJ1Bhvw4e4JcDL5Omc++UmCM0/j0vPzKLVIgw3138BuWwvYtyaUVj5UZPlrcrDh8QuaceI4i9nNh/DxVSC5ez/reRxi7yUJqGzcT1KeAaxCchC14wK9eiwDxa5XYGjOPnJyDCSF5TYocmEQtr3Iw6imV3DGdxy4P35Ita8U8cLIPuod0cOTXKVQumYR+Z5sRQNpU5Qr+0Zzmv///t/6dcngo5HGLxdfpU0JaXjjtzsMDUhgr4U26M1djy8drkD6LTuIgxFQcTUcR9fZg+AkT9ynnArL8mpY78NHKv+yh5uPBbKSpwWI6G2i24R4IUSBKp7G8BNVWfS4Gch/lCaw7F41eqPkzTRVBr7oG8GLWWegMzOJlNc+4IHoKshzLwTX8a/JYNkcfq9wmJfGKsHely3wIug1RKzypbIJbXDrgQc6+dnw2Qtr4YW+PfZfGgMG6rKwT2IWfvSMpE6hpTzr7E4cKFzJz+c44u7AC7jnoQmkqiixq+5I+O7qzotKXWnf9iKM+g14elkDOLoro7T3WVoRvpNsxj4B92hlkLBfyfknJuCelk5+Lc6wcsYPbFv6g2aGLsE5U8ZSc4obJtRaQsXcPPJIPQAiBmfgaV8j6og/Akf31fBfbx4vyF3G9kK2YPRQBtT8tkGH0wj2GFeLwpaWbP2uGBbu+wz9IZao6HyWzz3Jgf56Vci1SwE3N1+szbeBtnvnYcJFbcLV/VS/ux8/H5hLFy9IYL6WDmycO0SJs6/C1sKdaL7iBWz6tIK3/ZoCooGzeMfq+Si5JhmuKE+GkY3TaMbUZrSPXQCJgcLYq/yJX4cVccqq6bhw1laqnLMNgup0oL4pkiUnOqCx3SSKGTWPFn7LhY3uYylL5C2fenqbNa4+w3MfbGB57D+WUtAnATlfjlAMh5h8BxD02wvuetrYMn8Obz3lzV8va8O94T1kN+RJGiti+Y50PYg8l8KN8ZVoF5lEHgWzIUUuGSTmKoHalXI8EGfMHrpiYKqnxK5BM+Hoy080v74ZAmz3060Zy2jbVCW4Zq5NYYpP4bdRLqscO0ZWp14ha54HcfMCVJgjwqHj4uBY+EhY09eLHQKasKAtgLH/EwpGOIKP8wQMUPfEI9/+w3Mr3aluhjzoSx6HDYMmoHcyD87GuEID1XCz6Be4cq6VC6VkUcR2Hm/9CvDGKZICxz6Aaw+ewPiXUrDeXwBffQoCOx8n2HdSgKarGIDZAg3Qj08jC7U6sAnUQb3mftzRVk9v4lSg9s8Q3H8ujN92eOGIgQkg13iG/yxwo7LMPowKawdRt0mg/HUzZrt6QZdxGL0svIQl0xVhq7kfnNDRQtecALqWMQ4cbrvi9fcdeETsBN33ekDe0j9whjyBgcpXuNxrwlNd+uFn8QY8NaKRZzWdRJ21GVTaoYxCDat5VYklLN4VCzKuGVxjVwBnPBehwUAu+a+5hBLx4/DtPhPq3G4JQg4W8OFQI487rcH23Xo4wf4L9mUsY99PtuR4JIoGJfdAl3g13VspDE/+meMsj/d0qmYbDpgnkPLPKXTGMQX382psjXjFQf2C0No2AtZ2roDy/xqgqmoDj4+cyLmh92BzMfLi91M5/flr6raUw+B2W5CWKOWSmEHYPU2G1+pUYL/cTW7YdxrrGgVgdu9mzpF+DYJJinA98Cv2tGaRXZsNyNFP9O0ehsM/SrHk41Z6tjGUBBJV8MtxM1Ap8aOT5hf4s7wovNWQ5cuV79Di/XjeZufAwr2iKDfblHS7JoDtj3Z4rbIQs2MUcVrEcq7+20rlekl4OqAGwxzi2K/WGDcMjYdl3+bC9UP5/Gj8BXwmp4Hvbl4HgzdKICR6GqS2X4SuUb+xmCdC7/Wv5PdsI9bMymMPv2Q4qFgMm8afg6iEh3DgYjW3phvRf4kiYGvxCvxbI+mdTxT8LTMBmeU7wNVWkfKH3OhQmwxptaTTZ181qPvPA3buVOJ7KfMg/tx92vTAhXvmb6fhfC8o2j4TEt0/c5a+AWwu8Kcx6gdx8YE/qP/sEy9wOIzBvdm05PRtfHRzNl7yqsX7PibwJNmHKk06+YD1PX5J6nz3fBK1fWoHuWU7qSA/lPV3n6KMHQowwkMIqk6Y43HPRCxYJENr7n2GrhnzMPhJAafUpGJtcA9ITFGFIP1qXKWZil37JEDK0wMeS5fCmYxY9JM6hbuOnID43z680EMUvjo2w/aO+TRXfzb0Fx4F+8DN0PJpPLVtE2FlQWvu3TMO2uWl4UWyIflERnCAZToGxWvz98tvQSPtC27REaOr3MFjFSp4AGyh2rMHzV17WcT3Cz2us4VdpdupO1WArs8eS52RIqRRdZVf7JSD5qX53DX5GdRmnsTM5GMwbTmx4ZdgPDjuLV64FQyLQtRopJYwTDp6Cu8m2sKQoBXu2WqILy01KCZ9MopOywTngmXc6fWDJKIVYKrOEKksFOYWQwGY9zgby9Q24Pe2C7BLJoxvlI5lbPoOn8bKwoxv1ZTRXQbvrFpwytabOMpfhNdEJcGeliH4cuU9fvz3m/QUrUG/WZknet6mH03jsMQinlpXSdCHpC28Pqaf1RLz+OzB11TyVxDEN8zFa1/8+ItwAH54rQe1Gf6kP8YFt2TF0qRSO5q5bCSOSzeCDZ3foOW/OTD7lRd5Bx6hywpiuPfWSBp3JZjWPH+M1VMHQaNRFd6vyuIlXwpopaQ/+ST3wMzwCNL9F4bey9+QnZ4Vhd/NZetlDNEp/jBrzh2ssTOhV8YDtOdZNt2PG4lPC01RcZkdZp9YyW0llrDikhaPM/ZDP7vDoDOvhN9F1pOJrzD7TXTFl2b3YGBaE0koS4L9QzcK+HgXj+zuhmLNnXjGtQZnp+jylh5dXmKxAd1sd8NNaWtIEUzF3dULIcMxjyKiNPFtwwzIPz6N7H+Nhf6ajVypmAnjrOXhz5GR9FM8AG1k56K6chzN9J8HDW9tObUolZekDPHe00ewdZ0xPMoRx/bUY7DCdSl8mdKLJwWecMHujyTnswnTAgrBc3kYShiJw4xjzOoauvjiThoqCzHJBL3hofFFeFi+DDIn+tJr1RQuVJCAR58zocz+ORZEaNGaVaqseMmNIt3cafTHjzj1Rg7O/88MV5rLwo6cozz/qD8uSYqlqIdEd2emk8nLFi6c3oiOZ8WhT9GSBevVYO/3cnq0MgDnpUwjlUgn+BW0A50WmMHytJtsdH4L9YZXQUOJHDye1sl7x/bBN9MczJ38Ck7d3Y/KZmV8oaYMerzu8hlPM8wLkgGNwkMsbruLxX6aIm6PoV33xXGtqASdfFmD/4o1aVG8BLy8Jggu6Qr8LtqJL393hpOWCfzoUQI8n7yeDrto4d0D5zhH25PV546Hw/7L8LRhFEQd+EViVtLUdqib5z24x9GHL7DuExOYVnceLhojxERdpgl2EphkL40Sfxs55uUAzH6+j6R33eBD+wZ4VuMgZ/WKQkydAOS/1OVxyo8gwz4W3+1O4tCuHVwSeYNfiAvQz2gHutunC/+F/8D0WznoHGYIApcU+WSqIP2pPQ/Gz9pA2dEbghPHkPtWIXD+3UrlH56wZuhvkFaJwPVPrpHeanVSk1sKK0s2ES5biD/DxSD13hG+9fYhK/YthRY2hq1DKhD3bTXeW2NC2YtW4+Zb93BXoBWE3XDB4k+FUNKbiZG1vvBZ+BZjRDSM0nmHInY9XGq1iSLiBKBx7FxY+AWg+cBbBJd1xEl2XK8YSuXqtvA79xI13xgN87vlYVz+G5Z5fYV/39nP3xrj6f31sZDstgyHRKdDWGQ5N2q1k2DbePBdfI00ndrxzkZ1avMNoVFCAXjGLAuc4zfRp0lneXijP2aoAvy9pYXXY0djxeQiGK4Np8DAM+iWJYY9Z28ieonBwWk/8Hq9BKSPXol5WXnQ9+0B1L/Wo1LTYZqn8JCy1Z+S1wXAM8+/wv7oyZAMpphbsQvdx8nTLfMM/jj+Ia/aIwUTi/vYaqEbr3RehrITDeBB4RrWeD0T9h/9gfHT1DG5sA8tjOooU+khShvkg0mDJm86IgqRIybg/pOPWbruAr/2KmNuE4fx2pYg7d1N7ZNDoTF4J4Yl28Hlgy2oqtUDd+PtaO0GRZh44DH0alwl20XbWTrhI/665AOLLinB740xEPfkJ041i4aoOWpYK3udo9sUOccsFI9e1sNfgapsPUIPAib3ofvBfFyn/Q5Knu9E2YOPwcNhN7SXitNsry+oOfyJ4+otQP5gGb+l03z7oh0Ma4bT75daIF0jQ3VrD3Lhz1wscolnNekRUPKthqhBkne2ydKD3hTS2FRGnx21SGLEcY6VsoEdY41xZrMo1O7LphjLcv5g9YRiRNPRWMaQdNQT+OArZzo8+xqdCipmLRUNCBd8ikrf8yEs/SM5PDoIAq+PoULwRagwHsVbK3NRADdB3UE1cGp+jvQuh9Y9yCePffKY6mwAcXt8acmd75S/pRn1NR/B9BYxOF9dwjekV6LvvvN4Yudtqnsyi51NjnLDo0cYt5KAxdeQ2Rwh8LoaSqnZDuitegMjQsXgnWYrKb6RRd32e/hmzlYoiNkDOQcUILLnDAh/McMpz7V5Uak4N053IEtTCWifpA8zRy6ha3LnsSdYBHx6L/K44UjWiNgOJm3nYFHkHRxhGI8fFDZj5YZXMNwYxPHpoyFaeg30nfTApZJRkG//DrL0P4CRvyCHDajzQPZxeil0CC28reBxvxCMsvGhvJ+zMa3pCEyjJNxcsIiCFowCFfcHZDYykwRUjWBG/B2cqRjG3xWVcLdhC+I0P+49dpScViyF+YcL+a+1K6yaKgMny96Qg3E793pnopicEo5NPsoChwYQctLp1LxXnH+gnHoPSIBI9FSKHVKCvohYfKUtw9sqhljCwQkrjIshYNNZ2HlLBaXcJGFSQSZQC1Fv70GI/iuDjcMSaKZ5EFxXG3PTDDu4tHsYT6WJwBeHZaT5+yZfaBDnhpNNcGCCBL57k8XaapFw+2gUhdW8BdUcKZD2NISFd5U459pUGK17nfwq12DMiUXw13Q5Rr0/Tv8lFLNFlASEHHCBjficZX/JsdKqUKqdfwXtA8/Ro/H6sHi1D+/8u53m26qDe/dHPCs8gqPlbtFjrTOwomwNXVlih3nef3DazFw0klxILjNUwPXQcYpcKs7iUoepw8Acfs3MpbdTwvk3O3PkyXq8HfsBhS+owoRlA/w0JIDa+03gRbYtf3sgyeoPenCC9jZImltIsgcCMVHeDObssgCD+f60POg2X5u0j14cuIavr0bArORD/HJJA3xdXcHaalawdjCCMkdMISl3Ny6fsRR+2S8B7DiGg/bO8Ku4lHOf2KHIAXFon7yff92O58ILG7k+6j+e7ZIKj7c2cNNGUWjalQq/Toih/zlBkJ9gA02vFPBHwgfa8PwEDTZn8ZfSQo6qskWP21vINaketoupQdnBT7jjxRhM/7QRH/8uwepb89BGOJhUj4/Gt6ud4M+hGLzcaQkm++birluX8aXdS549rQymL9WgA9834ZhmUbDL7YODj+7BmcRxcNb1Ff2MkKIhyWeg1rICfnatw68mIVCk9gEWhu2D0K/e3N8jC+O0c+hbYiZdfBAEE6/sY/HXXvzvqAiOFVuPZdt0+UyrDSyIloe5qIYHfgVwyN9LePeZGoonZvEmjkeNTyc4tyyAdRTPcZTqCNjd/w+NK26h/cMQ4qNeHLv+MM4y/MxlF8VwX8YaLO+2ofGt4iDtI4K7rvaQfN0lXOJ6jRUDumDomgouKnAAQffNMLNjPk19rQTexW9pXVYsnWr05hf+AILTFHHcyu0o/XclNSSHkeOjRPZ7ZAPORYM0Zsxm3Bl5G1eHmHPUrlLOurEE9W+O58q9KhCYOkiPviAM835ov93Llv8GOOzwHhwyD4W7TZPxa8Fdej62gNQFbKAzaxT8fvQNfn9zQh2tW/z4txgISjqzicE53uv9me68yoHWPxtpcYYozNlmjdUXzdF9y3w6dbeV86+4kIT7QvpQEAanVJeDXOwJdv7PFraMkAWjJ7a8YNUnUFg+Ha5ItVHUswDasSACY8b9pIHNg2gdagq69e84rsQFjwTEYfEXa2oRnYMjI59iQMwUXPUxHkrb1eiXrQ00S7tQdud58vjghMvUl6HmutlQKOjG7QsNOcMqBa4tWAz/kq3B1c2MKn41U1J1Ev3aOR/2B2mj72AF6nmUYUPjWpCpEyax47ZwLvI1ZWQtxqC2Qbz1DjBQ5QZs8VeGCXdKOUq2GvfKzeXidEGIfZ4C6xLr4JnBC3aYdACuLbsNRe7V7NDWSjt9qnFvUB+JBxhAk0IrXJ7oz9tEBOnMnIe8e64kHg2p5cPRvZB2O5gW7nzA2/sFQFFZkTevraWR20ZhcMFOwMvn0LBhPWydXAxW4a6UmKuGEqQA5WbnOdY8lr0Dr9Hlw8Kgn7wFnBzcIHfEXbD3rOLrdxrIr08ZPs6fiTfP3IET47Zw0QFTuvQ3FBWnuuGB7iCYXqpO3wJ/g9mAKMiG3uTEfB2aM/owlt5SJp1z9bxi6R8asHkInwoaSKv8HJdKEihYquDh1SZo9kONmxZuBxejChQsqScdlXs84UodPzbLhrTRAtC8Ogiuq56hlEMfQE4vGza8lcIpx0thgqAWe65dBB/O5ECnozFILpqN3yU8+JJyM0Tun0bXlpvAro0XyaoqHWVje+i6nDUuTBUCc6n9qCHKaLfEBSf7n2aRG4upb9RJ6rP7zOczFvPqTkTtPnnge79YPUucZNWCaNk6ddxr108HF9TD2j+F0BRXw01mgWylaQLv6SSW96TjRP8WuHjfk6JOanCqfx/celwMezx3goNaHTcek4b3qeUY9s8QHRMK4KSeDO+9NB2WVjfgxZ7j/Kq/iKJ75mF7uTAEaLjBVJdy2qCxEj9N/YAvCkxxrORcXGbgDjJvGujTypm80XUi2HyzgsDxP8njWRa6nRXCdJ02KrhYgh5V5tQnv5yWZkbwSScj6BG/BWetHuKFWHms/TwM3qvesGZ7Gf/3C1DSdwdUyiRAn6cFfAmV5y1XlSl0Wx2fHz5LV2fogsqpP+zypA0i/5zEuu4uirs0ChQGfeHN97H8dIci1D74Aufv5VF1aw3cW1wFI8UacXjsR0jePxlCD13EvSsGqEOuDW/6vacrUfYwXH4ax29K5fOjguGM6C70dLGG68LfWcAmnh/FbuMRYvZs9lQP+gdqsWqJLpp57aOnWb9ow6SJoKyaCiesTLHENY+P9Ybj12kOoNpzjbHaAAIXhULo2SK4/2oUvPkUxVb7lHnKY33KXxEKfeuaud3iCJ8emoJjNI+DQ/geFDhmBWq5N0hM7SWMkxqPz+L6WcfmKz35mQN/SzbStptfaPLIWFYkK/hRFUqHE5bC3kZZxoB6CqvzZuHwPRT2th/dzLNhp6otC/bJw9mSBXz+TyZh1Fpaw7ehfvxdjpcS4nfT7FFEXpenPGmC7gBVONVcDyvCZkBYsTWca5lAb60uskXXeN7opM/NUse50fUezqkYC9sWz8LFux04RfEe7t7SQQ+d7DDE7AaYFL+FPb1WeGZdIC3cR2C2eA/Nmf0D5D88hL7cJtTHEpCRPwIN8Xm8UL2PD69zBm0xG6g69JvEPzJ/tjmEv4Y8OfvgJ+5aGod72jfD8WEDznrwGHbIykCRwjM+0RICR++U4/TdTnQbe/lyrCa131pM31JyWT4/EfybxsEY/y7ImpeMf76VY6FpPha3e/KWGYPQq61GCi2NuFxMEwPVdIB3R+Ht58qwUaGLc4QfYvIaP7Zz28fn08Spul8afI//xS9DqvBFvYCMFo1Co/VK3OKoiVO1VvBTrzoO6Gyl3OIO/PZyI2m66AN0NaGi42UqD/iFiRZJ0KWxHMNudYOWfxWNdW9n9xZh3N0oBmVHLHhVayOOKxfhMN8T8O1ZEITp7YCcKSl8+7+ntDhYhgSW2UHIqBPwUOYxTXwaDl87VoCH3ztwTYrBKMNI/pnZxam6m1BxgRaMWClJNmUz8MC9HG7d5MPzFhRSnJM0n7Z9RPlVefzHfzS6lsjCVqc2CqpoxHmS4nio6jUElujgTfElGJRth13Vt3GpxzL0m2UBH1Znw7c/03i0qA5sO7gftWX2wxO3BfChP5q999xErt0DNum68F9pAP1uO8mLBnV56b0smnDhEf7JOkpJ4U78fJUaGDsG0+U9tvBO+S8Iyd9lQ+fbdFPgM9VMcUOd9Sa4NnM3FD9Xhj1zYsFMZyJs1AHaVH0Olz9YC+vutlHKwijekjCV3CoKocCvgUxPHuDdkeqwevtiCgl3gV0L96OqVwz+9a+BnhdlGF5oDL6PkOIdv0Gm3ljw1ZiDA1t+8OjJc6nmzRt+52hAc6efQLuvS2jj6e+83v4gbNouDfHSypQ+x4fGNNZQ9ZJ42tR0iYe27GQRvT4QmXoJ3eU+sZOdIgguDyXNL4ZwJdick1rvoVf6Wtg4I4Uqja7hM8dYJKtuTvXXhVOX95B+/3TS2TABilbfgm7xDIjZZomTi3TguEUSzrzRglcmmMApkQC8ajpMv8Tl8L71R0yosmLZdx3oM1aGB2S2QZrZHFYVN4a0yxmsGPyXjPtMmb33wH9+zZAv+I8kQhfSt1uN5NEUTc9qzGDLx5ege7UAlOfI8755KbRJbzO3bjjGvS1ZcG7LHKhbrUMpj3VAsLyWff8GMVtPQcWzumS7diocP19P+nkStM3CGwoHfnL7oBkUllvCnrxIDriiTrMmBnKMkhEmOPpR1r9B+nbIB96Wz8M1YgrgGCjGdr3Ecrf+oxPqF+Duuoec8ngm1DuLUvCELKrRnYZCGgZwY7EWhMeZ4ByHZHy7Zh5VqyXhzrK3bFSaSh2qa9ihVgsCrLWhdOFpmhTtCqFKLqAXfQyTreU4aFMGjEw6B2fOHCePmxYEFlLw4HERBv1eAQ8csvmv5DK8UDoK9yTqU0/gGJT8mM7tfwh2nTCDuBF5qOAqysGiQSS3WwKK1E6Sod1PaF2LKNX9j0WS5fhL3BRI08sER5evpD3RgVV0b8LVCwt4wx4T6O/0hWj739QgWkdyRaNhhdQbdgvWIHsvF3hx+Rx8c0rCo9F/OPqqHeh+mUcztTPhxQQtOBIYyYGz1qPGlt14f14cRD2fybKBViB8R5QjArrwxgZzPiqtAZ7ne8ncOJdHHv9BMSk+NPZBKDZZGsPk62G8vOM5b1VRgL44hJNOI+BIuCsXxrvyxT+Er1vM0HtjHeXFpJJd01Vo1WH875IErDszSO7x8TB9OWPfjI+4pUaSFu3RxYs/0/FWUhHcWPWEq4MNoHFVLpQnRYLL1FPolD2KmmMVaNOfSazpvIrVnLNxQ+cIviWiCiHdU2m/x3L8N5CHCf5e2DVelr7UvOQXQfdhQswzjtjYQtNDFeDmfDfW/LMLFtdkosGVCl42IEyhVXps7TjA9932QYvlR1jhYARvlRLZzW0CChTNwROOCyn/tz29T8/A4Z0ZPNJWDveEJ1HEf4bw7HIYFL3S5A9KORzRG4jr7RzJx84Yik7q4Wn7QRhV5YpuUyTA/NcRrpp1FlOOh/P2M/t4Ey0A8xYlvvv7E0xZFc1xnu+gv8IcMMcDj/uYcE5jE9QfWE8VjfIUHVQG2KPJzpWG8GqlOwQ0SEFQ9llOPjHEPgMlON18PQb8foI/bc9CfNp67lyqyDJaAXBp70h4WXyRTq6+x0H7d0HB80+YUitHTutMWNbPnQMudYK3czL/mmIOG4sXsII9w5iI9TivPYBrCrpAyCoCtOqcuevyS1B4MxJdbFThx8ASXj8Uz6e3LIRyOSuacvIjfXA7watVlPnA/Z+UGfqP/k6cCPwqna+Id7Hy5k6oXduHybuHwVhYnVtOV7LdkZl8SGgmWmUSTIn4wUuxFq1K4kAvTQivux7CzsQkUhGpx4/Lz1DQlONsvlQGytwr+NVFRUha00LHHbX4/r4ICN0M7BdyD7ds6aUAUXUa8FOFpu1JNCyuQ6IWpegvVIr7RZopw+gDn82aBfOhDeaPFuF4NTPQqC3lLcuScEFpMc24pg2/Etp5xeEGTl9dgPZB/RQcu4OvpFvD2YrxXFAuCDs+d/CiyAK+vicA3v54yEKNP8lHTghOe7fw22Q5GI6pxdQ5+dj1xxdCwJJXen2lFU+MKPH8SurZ+YDcfXT4vaEafNxcR1XTx3LBbg+yDLal6Jv/oF9xFsUKisHl/R1w8ulLcC8UhM0rSpkeb2elqjLWsFqMqWp7Sey7Dl/ZJ4g6Vm/A5dpz/vzHApyMlCGvYhOM3HmfnL7vprcqUnz0twY9OqGGV4Tv4d39cXTWTQFm7BgiE29xSsw0pQt3t9D8O0k8092btpdf4sOLlHHxdzkUS1WFtb9jqchDlny3W/K07iOUpNmE16sKoPXRPV57htDcbznP7iXIfXKEskeqsUnqbZRdYApWU+oo+OkhCpD8zlEzDaH20BW8sWwcJPfOAI3nqjDXWQGvDjyhv60ryUP2Gbu29qJifSQszTLjSc2ioCJVx8LPm7mjB1HD6CQEOH/m/0KyIeEroKRgMML8FDKsNoT81BAc6b+T1HVv4sxVXdSql0LFLUo4vUwZE4UnwlV5B1qYIA4PTlVhlNtPlGx/xV5/Z8PBxGy0MGIWW6QKQ88HINR+GEdHa8Lh42ewtrsO7+SeQllDXVy4ZymsmZICmyrCqXOzIF9XzoKAaVrQKdFH7Sc2gOgzBdzf/RxXPpwOWYMP+d2NayizOwQiNdsB8xUh3mUflh3U4H9f1sHoGc38IEudP5zewwp8HTry5ejI3jQ8WmQOC4/NI9dPWrhnThUbx1hy4g1t2p/+HscdyiLL8wfI7l4Gjk0TgUPFt9l1fzioXjnK84s3YuzneXjtpz4sXrWYe2rTqDv8IFQETAHJzDC4Vy9Ho5TrSFgiDX4GhpH30HnKbHtE0lo/cHnVZ3hQIA+N2f6oqX2OYnqbqUylkR55m8GhhlXQFNYLKbPVcFgwGgV8baBm4US+6qYE0YE38fKfsRR+JJItDcfDxbsrycYpEI4FZeHrXGOQqpPm7SlfsGApYMIFJVgcrsmxse9pS7YxjD+XBKNmb8IRW0zhzYVs2plYQkLql+is21LeaW7EeHY1Zoku4oGUo/xD1Atfm2nB+NRuenXvNJ/R3Ea5lrFUJLIUg57+pTGXjWie33Xa9uwU/r1kA46lhTBjzQy6/8UYLvzMgV+Lr6JxRwj7jw3m0UL3eGbHXg5eKg/mXzeQcoUfaZ+YQ113loPnL0bvlCnc5i7Gkz9N4as2g/zHXgWyVuqSYNxEOl25ibNKAmCCyC0OabDBPgEfEpBPgKCrn3nJsBRohDxnU8FwDvwqTVEaf6CicgRcnSUPr7uiUP7tfY5+4cyfbwiChZcDbJLcCiNlf9HW14JUbdQHqnl/8F2lOWcGT4FPaVocXqYNL6avQeHMN7jGt5Jlbn6kX32eVFXTR2Ois1nBbiLPfjEF/d8ZQnvSFbToyoJWqVewNQFAZD5gm/xXFiuaDsljppGXtwnl7deApAFDeFO+n4b0zrPHgQj0HMzH0j0ZePVMKb5PMuJ45f1wJFYSztmdgxk6qmR725P7zmwGFdLgBZ7IM5XNYESzEj6q9YEFX01g/eE0OvFIHworZ+NP/a1QWOzD67XFSMLPgJp+VaDz+Wba2mgO807mopJuPxnrTcH3B/eTQPB2mDbmLu4s+A4nhh3BkQso+q08sHIMOuyPx3SNhbB92SYOEw/l7Sur8VCjK5x162FzsyHKUJWF6jOb2Lx8mHLOS4C3sCuGqopA7yknWH97C1zoUEPaoYQPwpVBZecZaOpWoD2eH7E6cAL8p1MKgy1uONhoyfUd8TzC5Qst+SYMEy7l08w5ovwrZBTfcTvFFiXbac7z+6R0eBXHx+ZQeY4lNF4mMNxznoPaN7N/TgeOmPsQzm26xGeaUihguxQc05pOXTJVpJyvAdsdyuBklDVvqL5GxbZtHHttM6xKvkx3bbeixUJd3jgyC1fOFQCDSUto83sXvJCeg2NkFvIiqW+c/nsRXJQ+Asbtv2FM5HnyoLEgcScbZFb+xUqDMdzR2oDjYlT4Z9s5kFH1pb7Zw3Df/jZ0TxSAyRMraU3FP2yEarhYPArPxa3H428QXzQJcVFcHC9L+w3CNwQgx1yBy4/+hmOyYnDZLw9qK9VoZWEkjDao5dTpvXgwOg27Iq1h4Mscvunzj4SCZ7P7+kisejKBThSd4m33Tcjj1HoccWU2P602hRQpD9L6FY2LrGehluI1/Du2nqtsEvjE4ktUfNwG49xPU3GXMpRVHaY9R3bgufm58KtzHLbXKcCpSjHy2u2J2skZmGJnz7lustA9YS/If3fhoGmNaK15A0cJLUHPoQXcESwLK7938tVpIbRPRBy2/RVjxSwXPOQVxWf+G03Rz3Pp3mU92DaxgPd93UaO89N4uMwS1uAwG/93h1vm5UGQ83yMgl20MPsBeLR/5FNR5XjspQx32kjBzfWfKce4lib3luJ5czdofGzN1bKB+CDiBDbiDgz8foLr1ohAZYAVtq0r4+jFm3HaoCzHL7Cg9CcjQVxhBjVcLOXljYK0wWwEVF0UxP5kMfZu8oJAR124KT0fZ+m5kMq5P5A+YEkTukxx7hVJqJy+FT0OXIJZSsvp75FTWHvkMx9yPIYj9t6Fu+f+x8p9KAKhqAEA/kfDyg4ZEUJGEhllRZQWLSMNJaFlRiSah6SyUqFBKiOVEKWikopSSkkJGUVD0UR0X+K+yNfJT9teksqbybC44iyeyH1HuzdFsWP2OJ49+jS8PtKFfV9a6OdmGboQsoj25xqAQY8b3tmTjOrnT3Huk3G8eeARdo9/ho0JcjTZbCnOfVHEMf7C8Kx7Opk6WXLPPnl2q1OgZxMK+N7H2RS12pvq7X/j+oIpuGI8w6eS/Whsdwn1RPI5YiCf12tns3BkPxePSICaxhq6szEIbYyl4GeENJTvE4av8YKwqm4jPNyrjXPuh0KFtiLu6Q7kwos3+WyLCPj4D+CJUkfaKejKHWnxcOvFZpi1IRAOG/9jg8cicDpuA9ZenArl+XtZWUOej15glH2xB1cZGbPKgTSKXv8N0u5EU+CnTfDjjBmYJJ9imQZRthcJAPnxfsARd9E1ehzOmZ8A7V90YffMXJBpJTD/volPLJ/MvZIDtDvsLs9b8QuCHD7RSilNPti1lFatF+Oc75Zw1HMj3vi8EkuN/fj7kkC+cH8byml+4IdZB1l4/jbc1CnMj5dMgWcPJChpsxTf2V3JH1QZ1rzzg4i+v6hYWgRO/duoZ7wD+mpbwrcqBU7d2Iqm30aC86EZpPNZgdNkPtH4Bit6eD4N1yQ8wTtbpkGUljmPmpOGFZaFuOVZJs3rsWezWzfoaEohe2XuJ2eTavKfLwqDWQ7Q/e00h9tUYsPDCrijH8mBu/rwjd8WToy9C+snzaSLb1QgViwaveeshrrEH2iwQBYfBzhz8qd5+E3FncN2lpC97yg+f3wEvP2kiv2mo2Htwo8c9SAEnnTLQci5i2yxpZ3E166FIzvkcMuwGIxZOwUOKWynznwtFChsgjqf2XBdyp+DFKto0td7vCnyDK1xHgFifmb49oAvCol0okDCPVDfkIR9e23JqlSOlsMstBbPglRdSfjQfRV2DywCB+Mc6jy2nw+bqtCZN4t4TflVLJhxAfKbfqBlgDa0JtjixfPhVNdmTIPZu1ni4yv89+op6X+uJJc4OajcEQc9mxRh0zkR2tYSz6llt8Hs5VG++ekeOL814sH6N1BQNg8zle/BrJsIH+PmUvOwP/pllFKEUAuM3FXIDy6mgdZ+KazoHckzI1JAV1gTXjx+hhkNghzr9BVO7QvCgyVauHZpJjmHLaafo14jfK/C+L1C8G5NH15W3QVHC+9A7VMzjJTbT5brRXHJ5Hr8JqGKKza8oVl1xnDT6S60lm2glBHXyVLiF2K8D+1ZIoLvrn2nncse8Y/rL9DLWR6ij1vj19549HySxFPDz3H3wipaenQkjan/TY6R8fjmlyRWWGiAukYp55mOx67McXR4+XZYgVc4SmQuDe0Uo8uX+qHl2jOauH8apDdWkem5fzC4U4/Ffwjg5MRbWJ1/HRfuTIMR8d04Z402/LFUhYofVbSqcyfnPqpEfYMzfHDha5ydfhZvmSqS1PYgWqAchUtqGFzTDGnFpx6M3OJF8dYnSXzDYbof1gotUVd4tVEYJ0XuY80rYtCtF8sdvbdZpOAZGl5QBunLk7l/Qh9EddrRCfRCJ/Cjbd+nwUoVQVi/6wBsbdGA8HvL4PrtEOq3egPTuoOwxH4BjXeT4MUZ8pD6VoafGYrQbYN6GtDfCtV6glg6ooe/yOXBf9V/+fm+dzRnljZotgxi1S8Hjmspg1iz21zvpoxXdCvx8KZYCrHTpsoNhyHv6kQI0LuO67+HcFNaLPsaJtAskVbO1ovg9enHyNt/mPMctUFshwpcaJ7Dp92HKbpqK515rsqJm47RojJLmNFzFONnbIc7erOxo20MpNySIKGQVbxkoBCERO7jK81rMDBxL7QPa0Be9mG8/vkVFpEZWP8rYu2XL2HmzYMUVjSbMxtyWNFfA7cY3eaIT5do+ZsCOn9bF5YvUKOe1nKKK7Xm3/5X8KrcENV/9cRje4+g5att3CLbgRtSAeo+R4DTPzOc5b+M6v9uRjed03TDqASv9g2gmOsgRxrV4LVmfQietYPOCxdSna4OeL7R5UBfCzh9YCX3nO7FeweXQVvkDfbcrwIdFrMxTusn9ykvoQz+gntSsrH6jQZ75iWTg5UqXy61hObTKrByVzr659TDurhlULLFkuG1JOodf4WXzeLQ5GEYyBoa87idM6CwcicYNyJoP5egVQf04MOvm5Bdfwk7msbDH8lZ8CiqhItihaBQPo4FhuIpu1OMzz26DmcyPsBHAaK/9o50z6uYDyQi1dgKwvwTC0krNBKuinRBnJI35d0YhXI2qvwqQAL7+xspxdyNZy0E+GdEtAMCOaorDGRH6tCF7Qdw2cc53CXahX/UrdHScBwd2jMSXq3MQPynxGsTltPs0cl8vSsMLc7lUtdIX/BV3oTe9nGUVWYBj9cuAOXOZG5+eJW+rFqLPy99wo3LWsipNQtbW9TZFOtwrIUa7LZfSP67W0G0vRF39m9mAYtu2qVax1Yvg1hJ34UnV3lS/MFpkOZpCAU/DfCI1zd23xjMlUr+1Lb9L0xdeYarCrfRFuMv8KJKGYodrtPSvjx2Gr8fF+WuI/vAqRg0pAW1EqKww8IOTJbf5h3SGjD1rSy8aNNh9bJ9rPTZDa2t/DBwGPm1pB0FPbTFnOgDpCgyGb5Kb6IwB6SJkcNo1NHD2+I+krWFOvmvEqWoFRU4VfwqqE21hMvPAjhz8hxKu+bK44e3Udm2GEwRPc8/s86SlmA47/q6FZfKmMO648tw2LCLlHJqefzpBhJfYwpmWQVc8eUgpbQVsLfxDI64rQpe6rIksr2bIo5LUNdWouJRo7B61XewFx5DjumLcLudDXW/FgDD2zkkuLoO7J5V4G0BTcyxTqek2AhMyjnGW3XfsVadKhVfUYSLqADPXs2i+sEB8DlWgJ7B+8hq5WQMn2YMMixDdvmrSCdwNCy+0Mf+X5fBiy9FePjMVi4qcICKXf84yTabZgiEYGjPWZ5rqAmatlpw8/1sdn40QN2tFaRifYFHHpSHVzctYWtQHa17fBPEXzME5rVhwksHhuBPeLHyBOUdvMo6dq/oR3kXTnzrC2LiUWx02xxs+vUhOf8yrogxx7hBbZCRvM2TraehciaAYqMCeVj9omNWhtBRtoaP63ihTEo3Tl/qg3FjNMg/UxtDVXThW1cvSfs4kicTHAtIw+g+R5h335UfdyixS85Lkt94GWbPV8W4z828ceJ92NAnCOJbRwDr9+MDh0y2aTFFzYdfUEFsB90/Ph98blzE1i3r6M1/hvDNtIAPzNYG06zf+DtoJGnlrIbE5d/YyuErj2l5hnGRbej/1Qi6AtbTZ8coll83iC75p6nulg6+UszClyNycUrvEvTa6MiZLAOyo7dDd603P5K1xBC4jcPDbli7wJWkPRfTB69Uuu71ByfPkgD1JR7wVL8KBe89heH2Zo7oFeWPaZNpTKM8ub65Tn64DDqMJkPVnnTaxxfYdsZ5HLlkNWjKzaQ/khfwqH0MnbGNwq8NDKrdunBiqx2dmaQLq2TzwWxmNuqvOs7Nn6ZDTd0Q3+oM5OI1mdToAaCJqdi28Tu36jnirQVWPO90JQnZvgZO2kpdsrdQdaELZ40aBbPO+PKSDcKU7BpIVt4fUXjUFig4ZsuVlkZ07okNKesE48Q/4pB11AS+Zufxven3+GGsGFDyO/SI1YF4I0d+HzGZl/66DtLaBuAud5k7FErR27aHBpXc8fPs7yBv+hxKzmdj341VdCXnLIz0k4dF7ZoUPH8anQ1eBjKqk+jbm6kctXUe5uhsI/EPsvhuXT/8ni0DxULb8NP4Us43dWTnsEGOML3JN94pQ1veQipM/A3yVR+R0gBq5Fr4ZuEGFD93Cn5eXQhV7zToTGAer4115ujOJggzecXXPo2C+9eW07vHmymjuBR+LLpLsk4NbO5RRT5zB0DqtDslBY0n4QQpOBzoCz3dl9B540QqPrsYTt9toJtJl3HZ6FNw+cVOlHvijUYeFnBssg3fjLnA5sKv6MWIzfRiznbotBXHC/on0TjUHESnBLJOwAhYOKKSFqe0UpGMLR3/HEGr7CRYXasU79mEcF2dLwzevAfa/WJQ9y8b9kzR4UfKwQwum3DCmHqswiFQPSGA/yyusoPvGi74KwvO4y7CqPCHoDY/hNU/DvOM5dk4wWwipAWl47glgySftQPUqsdCy9nrnOn3gwuDTWBc4wys9VJl3ZcTAAb+gsbLMaj0UAL0BkRgnaYgVzeooXrzTKASD7Y5PUw6FhfBZinTWJPPJOH7ip+MVIGPG61gUb8vpIyTway2fsyPbmLjaHtq+DiMfKoHtWpKICpVEsRvlWFA3ExYaTCJBfPMMUP4Lbbv7WarOUfI+H4kxcNqxnAhkI8bTxrZjnBqVzl63q/ix227yKVOkcYbiPGX34fJoGUXRLiZwWSypsD4Puwqmc7SWYXwbKkpP74uBs177cF3/nN82P2UPRzMoLM2Hw49KKfE2APcqTUPl/wbj646m1mwei0OfcyB19xDah+N4EqcDf92nIn7VhZTTOpPVjVVQ3MjZxorF87hPyZjRtsdCnIZDWly7qhqXcSdi+bCLqVbkGB5E9ruKJD6tm1gJK3GNgV7QPyoAmzZnoWTf/Wjef4CKljWTCId0ZAkEUVF1rfZbukPFk8O4xcbFOFnmDGtkJSi2eFt2Ff7A17+FoWD7+JR8HcArxz1H/vLl/NmBSOI3X+OMp9VgFLmbLSoteBI/a0c3SDCgaIG+MTgNoeiJlmgJny5Y4nJ70tZqHURZOfboPT75Wji+QX1H1iyrf15XrQnnZI1pMGuLpFNxpxFC0ULFM/bQtVjm8jpUCONa9yLDoY2NOi5Gd4tNwLL55nc31gMzR6DNDk3kU9lEI4xXkCDau/BUukzLdBSpvbppqBr9Rc1UowxGqVQ27gd7mVKopjjW1Avn8m1T/5BUZM7Tl6sATeqdNhheClsrdKB5rjzaPqzhJ4HvcOdJiHkaX0KNALG4B5FOShbsB/8P2XwOFF7MBcpQ58T3pgfd4XWhV1Gu18Ad3tTSTHbCs6tqIL+V8/IxMWQj8jGwZtRAlD7ooqvK/SyxO8rHP/EjQdKR4HFgjukcfwyhPlOgLhDw5Q28ijP1+6DXeePUpriY177QJNrKhUgUfoLOaW6gPec53BCP4JXjZ2PY45swKu5t7FCoZjF5S+yeaIK6Avc4abv81FIYQHPnf6bIlujoHn4ES6dvRftZsyBYoH/4JTaVIhqVuHW3mVgvrEbHDS3gp9fAKqMXYYt1g5U2hsDDaEvcRqNB/2fJaj0eSev/ahBmT0e/C1vMn16EYgC85MoRakCks685bsPxkJstRcUXNuJOV1ydLNMCW4L/SaXjzLs2PqO9x25DY1Nu2jXK1kQEC9j4UOb2fWlM6n7DqBwlwEtXTbM6fkfYShqDo8LrkM7cRlQ3FvIN5S9qCkuCbeWFVDOLEF09J/Jn+8to7tGs3n6kl28rlwbhn7XsNfXGSxt5MxVH2+gyOs2GnfLGVa/Coeo1l46av8ad06aBv4e6znrSSWr9B7CrJGvQEO0DOP+7IGaBYos92kxiOhHgtpxDTi5/DMvU5Lkjp/F1LnwGkhNvcKBc2vo9aFvXFwiRAFzjqHtn7Gwem0HFc7UQ5NL/1GZoS3FnFHGhDtbINdiGAy6veCJwi9U8TUH8yVKFBoZhPmWdSwUsRD1gz/jk4fa9OlbB7lPPM8H90+GaiuCN7uPsG77a1TeWIAmaaF88GMafYlSYtUtevBE+SQkHVzBP3ZMhUPH54P+WSH+16UBi72Xck6fFUiovQTlx99QNeIbfN4O6DB+NAzOHouvhCLp4pApb7gwyMnX++lK5kJy/ruCsjUJJkaEc64lwrOCAEpvGkTlwniusfyOes5ClOQsQBH/RlJlxDC44AVQ/qYJmXs7yLFtGATn+GPN6GxctDiBYo7MpWT1JP7nEk9OYYepzNQI7MOuwY+hRr7htpQrA+5i+JIY3jnJDXYt3cf98UHY52OJZQv0YLfmcUoRLueK5VKU8VkQb2rFwt2QB6ygfZ+lTrbB3KmGeHG3NKT8bUFnmy46ErgPC26l0GOtRKwYGEkrzNL4Td5vmPPuFihEj4QOPQe2f/WdkhTXwq3r6myUkoa3PXQ5IWki+q0Z5mvnEunKflW4/PQJrvvgCWt+KXGwWylGC4XjvrXBNNAXA6vP/ob0G7dRYmAErP/qzL8d3KlYowiqjUfCB48jNFx4B0P1veEZeeAL60FYICQA47P2o95KUXz05DrdHfMBch7so6GNmvxa5xBGWhfh5hJT/vlJFWLnSaH8VEnMcHuD2Wn/OFptJZjItrOc4k46vLcazdT+4l4HEdgXth0ym5zw746p8C2pigMOutBPAyM0F93N0i13+ehGSf5uOAM+nLqJ5vXP2b9sBCfO+wErk7roacRP6B1vBS/G3qZ230JWERQAh/vq3H9Pk8z6ZNleW45PBT8nc+tVrLRmJ6/Ljqb8vzt5c4UauNwRxPBYdzqx6SvkGa1GhWuWaPR4Pc0KqOUNrw/iqjV1sPS3CuTtiIXh+tFcusWSrAMMUSbvPD45qoWG3h8xaNcHkr3Yi6vmzYA9b1q54Z0Gp+T8peSU91R9RALO+gpSh0In+8XU8DUbdywbsIQprS9hargX6J0RI613JeQh40Svr2zAq2mH8FzGRc7TTKBNouMBNkzhzIyLHC93AWZs0KNyudPY+LoWhn6kwQvTLHwp70EfxwKUVroj+HTivrwUul48Fz0kbWH1ezU4eF6Btj1I5ePiA2R5ywC+KOnBh62mGG75FXJPOMGNCXN5ofpdKr/iRAJ7XpONUzHm9anAcW1nUlXuYwOrkySxMQ3bCjMoZP9B+BoXQVt+FnC470mo+iAGy66ow0S1IwxfrsIPZU/UXzAd9z7ezi9P/uJv8BdNK0LhsJUgqI46SlcULLHx7QBWCD9DN79QmvJuBLVqXcI5Jfept9qVe15LwIoMd9qoUwxHxrRD7rArzM6fAxXDe8FuzCSUzlgNWs8ewi93hKB8CxrwTcEKrSl0dew1KDhrQalQRXtKh1Dj0naKO3wW6+/LgbSfIJr5prCikRuHR8+HEO0hlPoYAsnm78mwCElXxwe3HNSHu1qT4LBhI03yRvjq9Q7mLtWikPgP6CnbjN9rAvDXzKto3ikFn978pQVqvfhwyhlarHEar7wzA8fMRDhyyZaPfSYW8D3IsQKCUO5vR0kXLKj2UiRJKhWhekUdHg3ZSlEmm/Bc7TQwkM/B9WNE4ZdlKopuPIN/ZneBgm4WGdd9R91xA/B56x52CbxODVFlbCajAf2VclwpZEYq6z5Dbmsg5W3z5ILVUqjc/ZaO8FO0vuKHr6p1oVM4AcwKvsH+bVlst/4qJNZ4kbHDVAx2eE/dMa08fWgxVXdNgV/aT/H9p2l8N7sGtZadBe0/42j1su2QFjae3hvksvbTnRC8YAxcal/CDseCof2CHCwxnY/x2Zd4l+4L/PLsJd5zd4TuocP8qEcXzCZKULrZP06WScEbMWOgT9AM3SYZ8WmPATgln80VvYIsP3EsbDu5l/8zt+Ho9Ea6ftgPsj/08/mpphjelI77i97j1A+6XD9rOgRJmsJHtVy+vPoiOsq7UojtKyp0EGfdtI8YJXoCBacMkU+IKliECnLR4AXmuVPZoYjo5ZrDePNVIY7uy+W31jfx5aIi3N9nAoUe1fBT5ArUGnzm5WwN9mdG81LHMnjKZuAdnglabr9od7kBjFyUhvcyxtLLnDpa/W4Al5lfZfNHZylZfyX7GC0Fu/MMEt5SoBbWxb9P7GWe10cP8tOp0c8Tm5ra2HvZLYya00mkL8yjb0uAj7g5enlMx5orO3Hn4mJYYdMMlSW+JHrkA1q7HID3JWK4aLkg2CXWwIg9idBREYi+DstotulXuvrmJr4xv4LZXmJQlTyRjAYmQdpBFRzUCYUlxsWo8GUsjk52xccBKzBu0mX2cWnHtL/DuCBKCtRL0/j+0blwosyOn1SF8DGVkdybPZ5bx13FI2/yWOO1PoUbmIOU9U6+ETePprv/xXXTJkB5vh+usLhGi+dc5Z1XtvHbD+cg0sEI+JENPtO9R4Gmd0lg4UaKV3iBq/xs6eYDEw4d8ibLykwY1DMGw9/OkFK7lNceP8wbi5+BOrWi7bipNE5EC3+cEoE2z3pYbTQNZJ1f0hFXU5i5LZAPvHHGEd+3cHCeG3TsCaKjx7/yyZWH+OSbCRCQKUM/HhdSvv5ZXHdLggz2OPGNsbuxRCyF86POwoUD2pQx0xgS1hbjxWsF+FXCBXP76kAwJp6F13+CiSN+kPHfDWz+fQN92SEJZ9ofwbDZabALUMbGEdq4474UxZl9xkfjFEHU+gcut22ATNVJMEufSMnEBnduX8EPNW7SRRk1lPgah7OUbVm1U481JC1JVdgSTjWOZ5d9Q1Ss+p3XfSIM7dImw2EpdM4owRNJ90D8oAsFvdaBVJ8fIDFuJQ5dmMF/YizghdEnFpj9iiXiI2lYrZm/2OwESRtJuNHyEBZX7yYrWz+W3q4Pukc2cHBmISa1nqPojoX8+NUI9pyrBM88dMBGVATN70vALJXFiI42/N/3uWR+xAzky0Zy9FA0+LwVhYl3a9l+fCQYC7+iHacDacruXTQpTxMil2ZA7WYX2D7iLLpvHQdLusfh2Rtb2LsoiIx7qul8rCKt9jkADxWaqDk1g2M+JqL4xxnwXl4UXVwGqfe7JbYa/aBZjT30osoJbbIUYVLdD2j+1A6Ft4zA0aqEJFpO4e4Vc1DjZzAvvHSDv1YG8C3OghunR2BLbynl3SCoahTmKVPv0OeN33DB8p9wtusK7YneiEcNWnmMcCZ72V2n6JXS4DL2DBk+TeRaU3n6YjgTDRd3gcqUTJR95IraElnwqCMVBt5MgJb6JkK5cE6WPYol4zzplP9hHD3GCTcrrIUdCw5RWeAwntgmD5/yX9BITwDZcOQ42TGQ6D+KryvpY8PF5SjXjNT+dB8NbpgG42pLKd5Ri25dv4eV/tP4JdrwZd9R/GNbIF/JUSHJ8//YMEsDUmWfQAa84lvPdOnqhVbKU3oHi2/XUtKyWD7WRrTSLQpHjRUBpU05JKPgBP/KFzDeasah19Ppvagv9X8s581O0VwvugznWI4GKx8hbHXZh086FPj6UBXcnLMYzmxYC6u17lP/nsW8zuoR2YqNh/nzf0KpaRoOnejBzgcTKLG5mGYX/8VAuxIaGfeMg+IJ00gAutojODbeE6/KaZDc/jbqcbmIMD6RC0/vw4W5xdA0MZL7E03gQlk5qAgEwYfdNVxg8IhOy3ZDQrkDhW1sQOW+fDRXsedf5RJw3qiSRpo7UH97E3kvLSOB+L/k96KfrpY54NeDQRT21oHcLxnDWgFdeq8bwooyb+DYz7m8UvkW1W+PZaUUe+wPLKU2yfssIyYP52d0YFSTEloE9KCRyzCb/PpHekkGuL/5N6bPnkGHVyiBzwtR6DXJZ1OncIib6wwLFT+gnedI+mlZRVfPLOW7Rb442vscewQjxH1Jx+2KO5l89oCEmwsY146BucrzqMF7NGweL0rCXxNQN0YBfIofkZLFXvYbTKXC83Uc32EJB5SqKcbqMwra1fBj+A9fbZoOFv/5odXxa/AxKRsbXDfQq2hdkK26BMcemTEIeaOyCvDNbXqwYY0lHgsw4bilOTw5toJdu3xx19pSHi4JBZm/83Da0k3stmM8SFgzuytUotKpIhyY+ZTf3lGFGGVVsp7hgv4+m+jTQmUS89AF25oaNNDr4g3lHSwWJMoTV64DxfEumFIki1FOO+nL94m8YaUMpF0rg2Nz1KnG1paTBd9g3ZgH/Hx+LPs+ukR7vfow4NoHXlhkAvntLlS8pg4Wu8rx8ZIoVs07j7vuS+EzjTM8S2QWz5hpzvd+GoPy6U+ocHAzht6YREaJR0Hn0W/MT3qNy59bwKXrVvAgVAdKxgjC9xXVdKhQgs/cqQR5HSVOOX2Pjr9LwTfuIpj6pIXnKryBlQlG0FvnBJPqDoHVkDcXvElnfSPA9ePbKbfpF+2do0PBBQvIR0QR3tuJwCytH6hbcJdnO31G6ffboHLsY7Jb9Bc6fE6z/IAVm0prw6N0W4raEEzH3Ofj79KfYJGZhGkrP7DQyOPw73YwFI0RhoCTI0DIgeGiqzBVr9PHWZ8E4KlmFE9Osad5E9xY4cBKmJI7A/KXSIHf6Mc48fUkdFCt54UCiRhdeYC+auiQsd4YlHLegpVPP/OEURagHh6Lvg+fwlSqwZCbSjD90Ag+dNmI1r5oYb/qPhL7lExvzwvCrseadKzkJ2snueK9E9rgFmUFPk3/+JTrIrZ5uAXkSqI4vlsKdl68y4E371P76HxYc0qBFi5Uh/T6DOw8upJUJiaRxuBrtNkzGp6pO0Ob5y70MU0ie20daErIRpn+mdS7rQGXimlx32QtkrglAf3q3xGPHuNyJX8IP7QNiw30Ofb8J1KX9USd/DMsFW/LQtmmcMeqmuyd5OHZvt8wQ80LyyOrqa1lMY4pPcJr93bjlOobmCoxA3KuxoD0ZQEcWrYETj/J5p9pmai76izoOKyEPO9N9NniKB07LgX2qx+SaIc6Xt/4mYJvh/L2PiNSPiWLO2ycULKgmAruSaH6WkWY8tWWF248zC4n7dly3lw41PmNFkU948KrtjRBKJe/dgmw/lgJSFC6j3o11fBowhBMzC2FVclqVFjuDAa3M0g6WgfO7olm+yoVWBMrTaa0nYQ/rAKJejtUzpClTJ3VYPFuM2y7sxl2Bo1lZR1TELx8mzesLcOGmkweNM+AeZGrYcs8XTx1sxX9pCIoUsoVr4RoQG94LtzVOo6xz10RzJfhffFDnGbwAHb8jGd/0/f4JK8Nr7Ag5Fw+CXf828kr/CQOSLmSf5oQHvWWJW4z5+SKSLwssB68FLRhQn4RSo36iq0oSOtfi4KJZzqsV8ghmUsW6NjvTnvVClB8vTTU9MrSwMNymH9rCb4xzIA7nqa8X/IdJh4PwlPJE1l22Us46y4N12fpgZK9EcV9Gwn2usMk4vSEUvev5dEh32H7sVyqjHwBAlUEhqYz4PaH39j06yCNaWiCXlMlUHcAjtdYzd0PL4HANxPKlp8Crh898EmZOJg4fWOZbIZ5Tco4fiCe334Q4JaQl3A8xpVHNzAU+31g1yRflHSJorgVDzDxxjs8WqqISTan0Er8MO9QiMH8MXogn9/D53dso8C1orijzR3Lir7gU7Akh+wf5LPWj5Rct0OXkyTMDF5LZx/2kUKuGD76sg3E1/jCw38AsSoO9KbqLX48MAI0Yyxg5c2T8F/kPh654SqOlYrDFffugn79Pkw8Moaff7gE05xu8UULUXjRPpFr8Aw/ibhAfz18uVlTBTHZh1uif2KqnhLOLw9m3Z4xsHDrRchzbGPnHnl+XloOTWE/WNieUEYuk/Kyj0LceT0YHS8O/9nvJz3hStgsNJkkaqtAfeMh2CSiyTe9PNBk+mdcufEq/hVThQgdP7q86QUOly4H/zvrSVDen/96nkLb4FJ2E9xPOlmmZKluAD5fZ9Grae0wRj2dvq92hYho4glandA+ewecTWvi3z2n8UCnGiTOtqSA9SY4/Z0DXw5/Td9npDN2XKO7s5AhpIEU2rbB+CJxWKy9CtdUXGdxuUHcfWkhFl1uILUZyTix24eO7P4DHf+0sTfDCipHLcVjq9djwjdJWNHwhb2en8VVi4zh2kdBnHbEEmU+d9OUpLEwt3yQ01O38mbRRj6x+yTsaJtKi4678RePV2Ce6U4B1cWUIyYJS8wl+J22Ke0tL8eIRaNZKriIxiypRvGfGZQveJTzbW+wRy7ASFMbLDrpjVK7fLB33HZ8/6WWWNwF1a6HsUmYBb5cUUdO2VIw9UktFky4Aq7i6fwy+yzeu/MNmpQnQmXOL9iy+zpmkQlNcDWF1z0r+LXyKESXh+gfd56n561jJQMXLDlWDf2eYlz92Zf92qQgxHI3atvp0qxecyqMLsbtS4+wimMVXNd9De37W8Fquh95aJuAjsVUyAn7zY5ixmxmegIjmu+Co5EziyTcJZPY26R1yYqyN02BnYaCpD2tl0KC1EhurxO4FYnA7G3L6fm/ElhT/49w0R/MrpCFUXUBsGqzJp1dpkCjLP5RivEGVulrodP/mrj15Xxq7HyLPkrjwWOqCPp+bMSL28bAreFI+C0G3JRuCrMHR8HE1e28d+ZMbvKT+L/7f5cPZmHty1YcGp4B3zbF0ljJU5jwu5kEhZTwZPo93OL7Gup4BAgur+LYaS48WLEc7Yc8Ye6/Ejo+kxgMD0NZkx6cTjTAbSGGMOr3ArovNRcv790JPw528IPGV7he/Dn1tYyFjColLq7tw7WkBscGArHBp4CMz8tj8rJ63tjsAWkTQ6kmcAL+e74TbB1HoN9zSygaewMnLvChGt8e8hlnRrQ1Ec/0FXN6jytc1SyhnkWTyXb6CDg4MRecd/fTwj3Z9EUoDvefnY9vZ+fhmrhwnCa4i1/sZD6YaQBD5bPht8hhHF92m5373sO+xekoePkY2MrOIUmpdNRYZY732i3hyGUHDAlNoPgpa8ipQIOkmpV4qaE+pillsLtHDLbeO0EntRTAd/EHFhP5B293G/AP6Sl8JvQMBrUshpJ4dx77zhWWvrbhA08t4EVaB9/LYNqPh/DQsxbILIxir4M7qGZHLdj/UwcpQ3kWVhCHnUKKNL4vF35Z38cN4zxx0doF7D8sDP63HvK9lKksfc6HnC/oAQvVovgsa970aQuWqjwiydR0KF7QyD1qbXAk/BU9filNB65ZwmrZ83jzbCMtOWfDQfPv44fSL3wxtBhcz4ZB9dB3qJcdgTqewqDtdoK3dPTgd5FV1BD4izfuDecFmvPgnL4a90w6S3EGe7j2iQGkrr3Cz9r+o8MHtlNz0xrUPe0FExSrUejUI/B5YYcrG6z4UZ0ZvPxlj6n/efGfHF/cUJpDIXseoIegFJh62IKh3RQYbYf0L88c7MSLofObBhtZupP/I3d6UFXGTYbh8Kk+iHRSrmPsNSX8d2U0aMB9srZOx+kvVKHxqTyOii+A2nMaKFf2lCWOi/LxA1Oo1GI0mHVIwTj3zXgm+Be5hJazr34/JW4exE/lBXBreSyHFpXyqJUa4P54KqR6rMb3tluo7uxEHhtRQCcPe+Las8s5/agGN26/jAMJJmC4bxpeb5zG4S3X4MuSD2yYIw5nqoNh0vIjJJZZjy7D92Dibg0QuO7B/rLRXNjyGrnnF3We88IH35Zg/wtZjBSxIgWVSlZ5Pwnq116mLJscipCXptdbUvjDinA6GTMAWgEFrKCVx85Ts+iw1xigJVd4i1EOicunYVhSJ+22fkpnVf3Jb1wt/NM4yosc7PBPigX8+n0I/9uKmPyrH8Z3veXvam6Uo9MDmvvS0e/gPHZ84wAhSeMg+cJ4bPjrTsE9n8lsyyOabvGXDWVm8sraObCvugP7ZGVhzlId+GaUhJU3GumphwLqdH3mQ4HBGH/eH+fsFiX5aBF+Qtu5+aIhJCzqwOQfNuhdsIl3fgihTK/Z0FQazMFin7GrWgtneNpSxGErKDR6yN/yJ4HIQl3S2YT000CHKnxHkG+KEgscekdPQ5No4V4VENugCwWxYRhpspMkfFMhQjkXYg18UOfJephwrBEuPnwNW3zUQG/ICK+FFdKDxaZcmySBB6PO88gpuyhLMxFCNxXx/bVtXGVtCmNOO8NZ8yqeldpAQdtG4dvEPnpZ74UhMzfwxTBE6/2JKLdCE0bnKFFFx0YS79KjKcL30SNShXc+KATVG/t5bqQCu8Uk0JWPZiBcHUQ7fgvRLTc1rgt+Dc2S31lV9BqFnJIlyTBlSpfWA799mqD3w5kWqwtBZ44QmWlIQOD093h8yTyYvyoITWYsR03XpezRNhV2LZelyoiDsK5yCn6Wnsu73efCquVNFCDlS8tfaGHTtYmUmzIC5kgZ4BipZtY4dQFvuF/kfx/WUtyHX6gmKIq+Qm5QoCXHJ7omwtPc6+gftA2EPyE3lXlibPonHrSNZnGB91SyaiPtXrYRF2Qpw/E70TT16VhsOCwHuXKtPE1JBHxLH2Pmjv1scWckLtGxwJqfCGuPilFPgD/6TJSGtaJfuLrMAJaK9sNcrVdY7tfEySMS4F6uBIxQ/QDNa84g+KWC6X9+8Ef1BEitOYqXbtZSues8/rTdGpZUa4L/eXt2HyGE/oekSLoyDaq0v8AyZRt8H1sHrTM2IMedhkcGRnAjQh+OVHjx39odoHdNDxM+tlOzqDRMsP/B6o5VrLjyNVeMlYXvZ3Kx+kkHJq6ZhsujTDn46nt2fGsNycOVrF4yjI/lnGjsLTEYcrDlCM1z/GllDCb/3gExOpf4xt6neDUsn54NGZCxXxK79KnCU6H3+HJ6NLm5+dPzq6H0e1Qa5xQ/gHMFD+nwSVuQF7YDh4nqoDlkiLMDhui0fhUoNP4Cl9Wz+L+Dp+lLjBpZG2awp6ogPynWBNdKGd5fcgGO2iVBQk0Kq2Unw5H0BDBydOdreWVc8Mkb18bpgeCNNlBtLudsl3U0pH0Bhy/uJbWlvlxoVszPtorgCg0b7LOzglvfluIxDw+csqyEbs5uAS5OoNtDRvxm0QII+hFGkx3Xo83W8VAoMo5Kc8tQJ8EMTHPG42mDEHD4uw8cUp7gv8Tn4JxcAQO/FCHuSDm3GoRg6YXXlJZcS+Iz6rH47Sy40lAPHLEfhje0gPcSAXgU/QeV8SDOTX8LOedd4JetOw1rxfAyyT2krbWObr5qYtkfmtCpOIGfWfniS/d23OWXSu/dF6Nq1G6o+bcdF245ABcNDkBvoCg8yveCW7sn0ItHcXRd4zk3VqXCi5huClb1w3b1UBo+8Z3WdJrCQPd9Tj2gA057hRCyekH4ijmcEwrCjQbGKGQQxEcKw3HGT0noPWXIHtkbUV5aAA9Me0IC00/Dt+515D1wj5x6TXA4w52vlpvAA94CsyOc4YdmAKhNr6TPR9ZxZ8RraK7ZDJoHZ/IK94PYbK8NSZ0f4MuqeaDU+5Uq3/nBUH4wj1JyoWvvVuHLOUO8zGccHJ0hBos+LKXBI3qcdM6b2bsTpVaexSPKZaR3JBoOyrZx8KgCfLPXHCZP8+EEu8ego3qKz20RxiOrtlGESA0dDl9IyhllkNdtAv89mwg7rpbRZT+E7S1/eeOtmXhy22NO3x5AfT6+IGHTCvJ/JLAhWhmc96zA3IOnYOG2fbgkXJY3xBJe2VTNT5uO8IdcTdo5X5UdJ1vAc2Ugvy1y9CJPkJap10Fv5F3IKmMM37Ca7kYewEmjPlPWyUlQ3rUeliswJHnNYqX0XtSOaIdxNrb8XckbfnxJpxnjh8lAcBw4yHqjrNkzzFCL5dAAF/hvQI+arhlwlMsF3CV+Al+2RZHfcTFoSO6gNWpx3J0/D2SO2dLsNfV01fsU6F2z5oBRNVzyfT/cbVGHfBNrqNvgBtdrYjldxYPvX3fkO1cectif1Wj6fDqvkLaEY0uVIDTwNTxc24FyDbtwV8wfnmV4kZcVLGS7iyNR5ZE/L/8mR3P+MwGB7QqgdMqEh4equU7fmMXkwrHHrIKwNBgbr07nT3rXeWvTVJCtvMbLwpZxtFU/LLeUod57SyjF3glO1f8H918+g3PtiXCpRQTqfBdgvIIyxDQ8JGGr0ViZKgKerwexncfi3fbHIHZaBNMnIFz6MBVPWLTw3tOLKWTqHqTDuegeuAcwuwe8rc7hQ9/N5JQnCP9Kv+KaR6Ike7CVbw1+hecn5nB20BPUnNIFd1bpQcLOA7T7hhUcmKUD7R89KcRzF/vMK4JtQi/h25Nkjok04pGHZnGM4H060WIFLxqegsBXe2waTGTPPwoof9Wdd7w7g9Nvd8KJfG2s9rzA8g+nQJTGT0wfNGeb3hwYNHWEyUVf4MDc7zDHRZTDBCzhRYULHr48EXaUX+BZ98P5jagaFA4ZsIVmOi2fm4P3zBNQf5wXpZQHsFCnCpgl7eGFSjKsHyABKzP+ctOsE6RfNx2ebRUmWRdblO7tgcMPJoP6ih5oefUGaydpw5+HZhygfoi8jnVh/kkjfnzYhqS3hZOblBLgRxlscDHFBQfdsG22F+rkK/HEFwKQGCPBoUXrcHfrCNQ7qQ1CIlrUUf2DHE+X8eStd1jNfTlNnKYKg8cSsONzOb0bfkOyWSNhV+0riNn0i9fVuGCdhyQ62RijyGAP1TwcgmkLVWl38k/eu1gFMh+LwwQvc0o8roh6yz6z2fG//PxgFtdHRmOJdz8st2nl+GWqsEFbFPW/acAJpxW45VIgjck/hD6ho6BYYCVbLETYsqYF0EcOYgxu8I/120kiOgsjS87SJcHnMFSsDjXnduJse00MjZhBQ5nmUC8+BvJdO/HA4kOgtyoVV6XNxcriCh6s98Cbe2LIeb4TCy0Qgd6Nl2BTTQslhwrjEiU7OjQozjOVR6DH3rXQvXAZnFEww3dxk6C4dQXozN/Ku7zGMnXv5rR9fzkvZi6eejkCDC/Ekc/ieJifKgHd1z7Dy8lHYbOOJ3KILUrGz+Gs9RZkZGtDw6Zv8ameOv9YpAIhF6Jw1rV2CihZBO+ONVDVtsUgpPqE7t/sAMW/tuCVZkWhUhLw03AJ/YisB89Adxj9+SXMy3ODr6qPOChxIf+oN4WU3Wf47ix9mHN1FTT/zsPVm3bRlLEypGq9mFMjxsD0QC8KasnluyIT8PIdFTD/9YV+1Xfgnv8mYO72HTxPNAl3lFwH64QaHErpBplFVrw/WxL2HCQu+xSDYWNT+Gn3VUw8soZDUkMxozMPcwpk6X57JQ8NTIK6W0/x/VxRWHc8gaV1T8D+M7NZUkUCQoPS0crlALaX66PdLjm4s9GQ2713s+T9K5Q69zbn/lGhDud7ZKchDINVu9E/JJVq680gYnMwZLkW8A43E2ypncBTnI6zWYUhZ43dCWez3vG82WbckDQD9Nw3w/hGXTx5Kgn+up0A73Nr4d3Fb8hfbaFp4QIa/eQC/DUxA42pGnxU7xm1dZ3DlKYjWLHtOAt2NfC4jEwMjv9DUk0/IZ8nQUTub9LRWE7/nV1Ej65l0JIpPTDioCzvDprAo+d+wutBVdg9dRLY6V2HV6suk/2Obzz3QR3A1BzoNNuMKbqpJF+3knZJNeH9t8agmxtJZzRd6W96Fwxl5UJL20+YchlBU2spt3on4naXK/DUeBr4X+3hY/axlBp0DEu3FkG/yG+o+HKQjQTzed29Hu6smoKHKhBEo7RA/84/uBd2GC8fmEJ1pw6DuYQtzCk7xUNX1tD+iNn4TV8N5q22humf/HnQ6Dv3XvzDnzNsod6hkC79FQXP99Z0TraCr+tog2ijOM+tO8rDilvJ4YEXaab2w9sH2lgu2MpVSb086WMMbH47Dc4uF4euV6nQeOMB2qV/wP60VZTlbcE+M76D00cNljtfSf1jTMF19Xpo6pbBwnQtNm114qqSYJTyf8Edj8wx7F4D/ni6FbNEJsLoWiHM2v8L6HYeDn0PxZVPDeDimn6oU+lHoz9X8KJfKhx+pAh+x+/ir5fh+HeoisxGX+UANyncO9OQ2ucX0agzWZz3uAkODGnA9x5RlhF2A58KJcr4uRPXqkpBvpAcHA4SgCeXu1BOORJMupWgbWUy8qIgqv17l0UUQsnxTR4vqA/AaRkh7LVMjF0r40DkrwS0h86juYYxuKXrHeg9FMRLo8JoNt5jr+1urDqnniTC++FepzKMcrZFG3lB0hGOI0XVU/xLroscKp9CU8wF0porQl9MD9OTt1agOPo+7fjXw5Ym5/ldgDH7VcbhqPZFmDagR6PrUnCuxxHOSNKH0NrFHJpaTQeGwsja2oV09zWDkY4l/FivCSaSmhj9dzZvWmYBYmcqSGZCJDcnhtH3tlNYc9wfpLKm4qbLEZz17BRHhQtwkpQQSD/YAqJq0jR2hDaluX5gs+mHsDQnnhcXfGIzpXO4cVQ7pWYqQZykApzrFsEr8wLxxPd8jmNdGB2vhC833GRHHcDWxlck+kERvOvVYX5LM94cWEijz5zAfMUvYFqkiuFlAehwLxGKd50C462aMGdMIB4Wv8CaLespp9qd7tZthD0vfbGzM5githZg/Zo/cMNIDmzTenmg7zM8PWfCwTWreVtII/4Z9xHvlWSx1ZqnoOVkT1Ob9aFH7gA3tc4BrzIxGlExm8S+3cFklWb2E26ASf23aJldHczbOx5+yH/gTmcDqFFcR6vuz2H1ZmOctNQWWz+uJSpYAaIGb/ichzn4r7HmtTOOsWVhAU0xOA9hs07BlX1nwOSuHZn3yTAEHoBN840gVlSGV/05gGPupFB/5zzYN/4F6N5JgdOT12LV6znY+TcDNgYTzJp/GlYbSMPCJat47pzr3NrtR6emGENt4nrsl7vLuOgwVC0dAWJZa3iyZT8Pdz7GfeMfkosK0GTzFl41qIalTdG05N1y/uI6FpwjbKGyYjUu8T3Mu3cb0O6GsVDn8Iv63jA0bvtGrsGjqDBBDmaYeKGDz0Lub9xDuqN6cY/NVWi0bmSjSa144/xKuJLvyZWtYvAobBVPdS4Hh75cbluRwDsvlcCeiRKgP/Y/SmvzgDWJ8mCfoAKPw6t4/xM/8LZaiI3Obji3+yEVydXzLs1FvO5kBHiVK1HfthGQbf2W4+coo1aPFe+Qd4TTj/QgYlU/B0/s5xzJNM53FMank1QhRFGb1ycn4vShDrzsWwSKxt/w0dVC2NBQDHMUZPmow0k+uNsQNr4zx6023yBi0ji2V1kP76VSeKRkBrblboHLNIVGrhakpQeMoP+8Daj49IOk3jMOHb2dOzSdaHL0O/zxXyx/PyCHCwS3gvRrQeiyS+POG1P4t/4oXuzoTVlaWWSaPQHT3R3o6IQmet9nC5dKGM6NN+By6TssFPqHb61TBPVFeyG0U58zfw1R8u85NOZDPGsYaYCM33jeKujJt9cXgWzfPvz+dAKtXPcOjA68pO3j1MAuklFhizSckLxEL1JLIPNsFzwfvRp64TgELB4FVVebYV1NBTff9McLD6RggWcIiHSvA7WIBIqdmkD1MaWwPW4ZR8WbgOY4MxRSmUSb9stD94st0DNzHGxMXkdbIq1JT6UPZ4nu4bp7ZTh9pA7INVzgzK060Ob9HtqmnKC/S3wwHT+hab0gvCsThP9c/bhm5Bqa6XybxCoALvYmUOTWOnp215P6ZkRQ62gNzH34gGbZ3YG2t0EYExgMYucng5lSO+wySqJT345gxKrjfPSaBGg9LcVp2qd5ocEnCB25lf5YEXhFyfKLxmAusbcCmUE1ut88yLkKwXTSs5lH3M3mfIfReE5KBk7cXYN3b7ZgVdEJemp3Gz9WzSP9h+tBRS8DVM+qY/NMP/jeIgYDMbvw35kGLHqoiSPsQ2FSdRa73Wxhx+0n+KzXCljg/wxzlkyEY/HTcMcGcVx0ppFd5Ufz5S5H5MmOGHAkCyfr5dG0HBG4eV0ADr6No5Jb0Zz6L4nCBj3p/J4UzpIO5G7b0bQ4oYie7D/OM5olYZpENg67fYT3F3TgfJQmeKtK8L69Mrz9kiuNc52JJjbp8G6IYLL+X16Rp0ojH6+kMX//48HJeXwhuwObbwfiqRki/MngPPzKHwGPTu9jL6sBuuFWiycGuuBBYj4/cCokJxgNKddOwk+RQeiIEATdrwX4LyMZTSzCUCLalDflfaDtTcmoLnyJhC6txLFea3lB92hICVrNvannILvmNIYciAXhm5JYpxgFq/O66KjhLDiupcgdW+XhPalzCA3wuBXPQb5uP++/QOheso9eiA6SXsFj/vq5lIIt1eB5Xw/7tUmz+PFdFOr2P1buQyEERQ0A8D9Ke1FKSUqp0ER7oZKyC5WRihIlEjIyilCkJYoo7aEoIkqkIiplRUQ4RrRJkXFf4r7I54bPGx3R9PElOvdNnvoimD6v6qOacFX4taKNj4ApFC53Qs3f86DmyHo+2nwKpmXW4hZ9S6QHx0CrZTQc7XAg35va6GOVQnXlhuzbVAkaGar0RVwFs06uxjTRQdIpkYKvKQ7Q33cW8g7ewZSgIdZ39uSWN8fxiF8Z7CpfCbFtIpQdPgKO64nDD0kT0rtwl472aULwLDcsan0PfTsu4enyaDxw2oE8L0yDp5+MaVT6BDZzFWCJ2e7QKbUTN38hsK6Vw44/l3EwUoFFK+UhQjyAzXMm4+RcN976SREO2SaRsLMb2pY84XnxhtBx0x5Fhw3gSpM+7FHwYzGbp7xMuRiWdXuC7NJiWJHoBaeix8G1jk7c2ScGt2N3UojaFdg36hdPSC7kwAtXedcLJ7aKSOHqkwtpms9aVjgrAVdWWPLmVGNaiU9AW8+M/AtXoXpFHiQZZeG++/+w7oA7pQlpgrvbIQoSbuD1dwQpKnI6R5mGY4XTLbKINYZZviW8+sxKVv0wFdKaK1A9RoYz1/bQvQhdGFVjCzIbpqC/sC7ptomR1axI6h89BRIqN3GpnAUfUVGjqOnWZGP6HIcn7qHRPy/QYrPbtMUP8OwkK/jxYD335ZjgyZetkJQ4ipT6LmKDnDnHTJEi+4e/2awlGAYP68HStVt4nFwDyx/rY/85Cayl2owhwTPRdNNdUmwyp7grBuB2eAIcNPlBxockMbhyG8gLXKWwoPdsPjIVzmdu4IOnnpC0kiWuWWoJsuf9WWOpP8SaiDLqiUOruxco2nvAPwl1Ouq/Df773YlfdVRB0usxSNqWcd3TJbRu3SPaERCChh6bUORPIq+1yqeShnMoqakLzuf8UPFtHBwNrITOmQIs2LCEThr7cdVwBZYqXIMRk+uoa5MAfNvrB+lR3ljaPsynEuezz5ZwirRypp/lrfxWRw7+PnRFWSUNUFwyG9RlGmlmaw1t+LmejYy+wwKhJgL7UVTatA5hkRyeBj1wTv2F8cUuoKv7libZjMD5MdEw894CPCR+jnYPJMP7vZPxY6sZTB9+iD+y74DH06fo5Iv0Nvswqj4PgDEO9ng1Mp+7DibRzWYdaJkfBq+aZdk8zgvmWBTwIc2/4Nj8nht1ZXnc0ecwc1Etue1gWN59l6c1xcMtfUXMeGGLuUJzeG9wIHtKiuBzVzX6MX8RxO2aCnPXrKVPNr307/M36v82zGr/mujVRCV8O6KIhiwfU139L/6urQMCx1p5oZUz++x5ha++bcLIxc+41DueL61bCUIeDVym+4inG00A61erWUS7kxRGWPC20D88O1yfB7bbcNGbySBS5YeC61tpgokE4CJzfpeaDFlHLbDmwXJyPBwEZlOzyG7PWs4MdoDvr19D63MVsPHYy4P/KmG/vjm/KNuBbfISMG7LfFgyRpCXXD7OJvs+4+5qJVjgtRpTrbWgU1sCHlx0hD5bO9ZcrcWb8mr5x7sNOLSkhlBTDKqxlbWXOFL/lDx+vj2bnLQJv6Y+o8R/u0BjSTjdfRxJTUFCMOrMVfy0YhOd5W7KPrEe7wgawKuflVCufggndXzGvzPsaLKaCnwYV8qvBWRIy/o27O6MYoEFrXR68kp6ftSbTr2NgEP1+lSvPh1yEp6h6TQ/9qptA0k/A5rSrEgtN4u5uaMGrh4PJsWBfKRDAItHFFJzXAaP7jnMydPDoKHOn+7r3IJVR4bR6fJG/hVfww/mGsHqr9fpav4BSt3yhf47VodGTl85tyuU4ncUIzlMgwrXf6D+QApqI6xwdIYEnM8lynUbwYbdP2BT6SjM9wxhx4kzwbgpAuTWj4LVGo4wZUwNC1lup4u1aVA/NZfmNUnRAUcV0vAcD/kXpblFQhlGD+Zy39BDmrfZA5WPbaPf89dDae0DHvF2Ia64ZEYa0RLQli4ArfdWg+G5jZApsZT1bHXxou0g5e4ai/X75WmFlxIVCWdQ0lgRsPo9Eny+jqQbU4/zdkclOGlrSJMi8/nxEyfulHTjvGenoEID4X6GDQwnVbHEWH32gTCaofSBvQVfkP6TABqY48vWQxpgGWMGv2ktjvlzmezMvoBcWxNVqcbQb0MXMFJ+w8P+++ljyn2UFxgP/wps6WbeZgzwno+mahE4sy2QHn1Th/h+Aaqe/x3CVrbyNW9JeOL5lL8JPiP1PA0aq9XJpy6k4pHTNjD16VyYtn891DbNx1/CJrDvVDGt2/iJX/wBfmEYir4L7MAk6z0k3bhAlxR+MH8k9qtEmOJlDgpnxlGa734cLzyZE8ysoXtLEzdK3KHePed5gcMtUkwfCXE1ozl23SDEzz4ISn/iec+NXzRzWz+X+R+GIIlfGL2unpujJSFncDxeHTkePOpkQexBF4SW+tKcul54rmhFdVuPI/8rgXspE0FqZROfjF4LSx5qY3jqE1gzfhxVZz8id889+KflB24Y9kavXBVIV2njD7m5bH3UBxuERsEB/WT6/DMMN77/zuGBkrRmkQsVKqqCTUcSqc4SRkvB9+ziAHTkTwpkX9+CfU96KUBgKzy60otirpNh6Koeb8rwgzOCatRRVsAihvn0UFOMbkeZg1x6ASbVe6F6uDT02ASwxjVtbNyUilLJ0/nZvWWwSrUSlEprKWr2OB7ltIotLkvAg33jKMFCARwl7sPOYhPeHnmDUieWws7BCtQomgG30hZwQrk6mIrJ8oiPLrhg6WJW6DrEf7bN5V3is6mlzYXRu4G3evjgSP1JoHywECOmnqLlkVE0Xc8KF/od49qoV2CteBcifXrh7np98H04FW7NaAF7u3LojrjNYpLulH16Fz7WXchligqsmj6O1qXG8GtLTZB/1AMTPP+wPcfBiNt/qf3Wcm5oaeDs8Ud4x/oayqhRgNdzhWBntT3lly/jHbHr0OtUC0V+3kMq/AzaZjVj98w0WKRvDKZ/9GDGkA3/mBgG86+MwidH/2CZ3Vj8IyiDyUmzUMdGARr9L3HAgB7oujRyeKMnnjs7G/MLdqOLhCwqbg3m4zscoC15DktGutOvf4oQuG4vXpVbgXMObYB4x4skODucxRP7Kce7AP7+kYTXC+r59VRT+BYawfVH7ZDl1GCsxjCfyvnGoUOdlLFdDswWd9PpsGw2naMHYSrOfM/EEcv660i/uhANF/1D0ahN5PDpG01t0UWZ2wVUp4Qg1NrIVWp7ceGvu/h0/RZM0GjCVXW9XCVqTCb5YrTc24BHtiuCv1kkmIvk0/0Du+hLairMEHoID0VzYbtvE0e9uwiqprWk+UYH7hzO5TuRJbCragN+dK/iaIE4HuXyGp5OSQfLT5fRf/9cWpM9AswH+3DxkhD4uuIA5e44zjeE55Dbo+/kV9+Iw6JZ+GPGSA6zkgaJ58E0WjEV1y6/TBOVOzkrTpkmPy2DFUK1cLfrA5raPuC00ElwZvoHXPJwLBhmBXKRmANU3OmFM93pMHmkMYqxOxuLhGHMWUUI2PaCjhkf5vZVohw+1QmCkx3hcOo1XJnmzGazT8P9LadIbZYY7DvVjdJX/Yh3feTRg1t5waYA0vA/BqEdniA4ajqXTwlgaR9NWHYyHpsvLgNlC1k2emXIFvLLYOOHFXjQ7y3IzHLk4bFJaHRcCwbcDqLN5ki2dl1LruGx4Lp6GKfLL2YHHWfEnco8RrWB0zKNYGlyG36sugMRtS9hdpY9lrbX4t+f/9A5RRZKJAqxwtIKVnaYQPicjxj1ThikJq7DWzt6oOloBUoqnsTfV2Kwa8xedBt/ik5oyIPfQDudyXXmuvh3NP6DMPZaRuPESUnsnjyZ5v00Abf7JvSrxhROnj8Ku/emYrOjN7qnIutvSSFNkywm+AgxJ8QhAD+A17AoNARe5EeSUXyg6yBXWxZB/e6LtPHHVNqT7IzdfuthqYs5fbXWgzlSZ0HXOBvN77rSVKEMaH/TRa47foGenTIvFH9M+vwJnd1HwounS6D3ThyGpx1F8Y5OWhi8mBPEhGGh/2XcPrYeaM4KzHlvBTNOjIHR9B+4V9qBxq99VP9yMrsGKjMH/ICgmjY8vGoO5wGA/ePpdJb96OZEWdx2PwNK0rWwR8GX6XQgbRFagSee9uDXGjmQSSnGfPNf5D92Ing8SKCtdodxq8RK/nXwBHlLnsfOPRMhJcAYLCxOsVpoOYdLToWGB1NQ2sYRVNyKcaL8E6hrSURX7QYsbZeBy51nIe1oEDV6d/P2rFIIVz4ID6bvYMt+P0wxs8PauU0wYG4EYa/uQ9XfX1ig1Qvm+wBAOBta82eCg0scjj+zml4E+MGcG5rQu/4F/+sbYuObaVS0aDadD0rkkKvHefMkf6x3mIcn945CEQFzsHdW5F1jdfAtL4Ld6vdJc30YN3gPQczbjTTv3ETU3PEfGCTpwPboneSi44CtrY9g29EFLLN9F6599wp+v22Douce7Cq8C/tniUJGczQ1JZ9EvxRJVNTzRrn6W/x+9A0OfxCIHSOOgfz4Ebjy6Xi4bRuMeZtr2bF+JdqXLYekCFcSvXMJDE7sJIVd+VxqKE7OIoJg3rmZq8Nj+ZCyObRc9eSYohQ+apGAGgte0uOqnXC1NodkFCeBRnQhL6PVaPLTlFaXGtPGy8fBd0EjPmlMpMupPrh/jxPdWCEIUilXYVp5PQWGLefZxjdYde5VXmwwne7oO+HsRncQ0y3g3iXSULX3OirP8OCTuktR8t98MotaxDu2CFN8yyTyCimEuXb1OPq0ASx182DL7D7o3O6Ga2u28WrRXpoy6yJ9sVhAv6ysoaTyHTstNYL/LMZR3d9YVImoRcE9a3H7nULuPbYItcS/8f3MH7g0VQ1LclRA1/cltp1Tg1ElW+jJrDH4S4fQpSEEel7HgsIVBBcdYWZtY+h8L8/OA6t4ju4J7K7shuK6fzilJQPKJ33kvnmavPd8CU3QFIS+nOeMoyMgeL0HugV1g5HXOkptvMX3rGwpftE52Fx5CB7/FQeJ0UK0IOkNDvTpU2DUB/IpqiBrjSiqVe+irdVnYXC3Hu6azbAscxsY7/oPH8BOmNDqjwt1ZMhHGthfyw29UrRh0c3voLBrApybtgr09B+Tw3MNen+vBOT+3sN80Q0Q+/Qbh9m3U8uJKMo1GQc7pd/ACd0GLLEZSRnuQ/xJuAwWXRyEvYXSmLjxFDTbDeNcTws4+M6Tfy5+jfmPkkj64Vr4IJ5JlhZPsDVLCXb35GBgWBr1lVpBooQV1Kja8t7q25BbJcuHrjyDvKWGEH1yHBtr51PYUxEU/ScH0+6+RVQIwdk7DdDojDxKX3pFmiExIP5TEGeo5bDxung2fGkFTdc78XTpI/55WZ5ssR2OzhPnUZe3QvijNdCz3JX6vpfxtg5jqJWy55madni6+SE7ChZSyYEtJLvXAsbEL+E11yqpZEkOxYyfDHovyjFK8D+y7/iJjd8mYPK5NhIJkIFFp3/QtKA78PLSNPjjJghuK2Iw700nHzxxhGdf2wv9I2ZBvdcu9PvuCrs8Ylhc+jF06U6B668VSXeTE1mYCdOrGeNwqsl1jsqaz+aNzax23hdu+E+FoevKcHj4BeTK+tOP+YfgQmofCAhm4+pJ0fghW4POxdVhp+hn+lwmBi3TJmN0yzO4PruIRcMMcNYkf37XKIO+3ZIMu7JxcONjCNuvBTw9HQTmPSHXsSrwwHYrlMz+QN5JzmSyooeFq8uofudBXBMqAr6dh0m6r5hW1o0ho7IVfDb4FRoUp9K8sg1YuXEuW1jK8cguXTC40YK1Sml8+fgsfKB3B8cfDyD5LYk4tO4bvv19ipN+lEF9pAL4xtvhrewsbhIM5btSHVR30QGvxzPfOJsLmoZa7DxuM9+s0oK6r2Wg5FMF+aEuPMIwjZJXhpODiykd0Z4Fl67V4Gs6gY+rzaHcQ5uS7EOo4JgimWS5sXlyCUptuchOS5bStrXKtKV8Kyn/EocdQUG4YroI31mVQJJVgVS5KQwi7/3AotZb4DHvKEgV3qaZx8Xg9pog8J7bCnlW7dTl8xI+pb+jh1e74c7CDzzQ0o3nvz1jPiwCK8we4qaqjfhx7XJqL5dhx7u/oWjHWK7AR/zr8SqwvqaJK8zHQPrZXlJXEqNCU6YzrrNoxJsQcItWxfyVBexib8yVxe9pi7MAlF6x5FUhmnjtA0JKghsVKOtR6bU7fODoIlL+OQ4kHETI55sJTD4hSR7imiS1ewxtij5IIRmHqcH/C333OoEdU2N55btueCliBjKas6BaYgmIjSgju22VICb7kEa7TaTe3kRueXKT2w1e0Bx7fRD3fMc3Qk7BnFWC0BBeDHH54VxiUIIKlQngqd5KGqH1sGdIDSbU+pC50CbyzW4AAUt7VBe9RAl+Inw6UQQDpfvAeP0/vj1FB3biZPquxJDpOYNXm9/nmJCb9GAPwJWv+3F1hxuev34Zd30VgsNO/9H7HXV8LC4Hlzn/h8KfnqDqXUf8GvKRFr0txd+2/3jOX114sOYJi28y40GZ8fRhVwpZt27ghR/UePHSo2ju0I6Fx+TBq206bBl7lLTCCI8ZRxLHH6Etk1aztYA0/+3ZxNp2Hqw2rgDvPdcAqfEu/EJgPwef3sCNq+dzhlUxpSyXoRub1DDBJgQ3nx1HHjpC0PzvNPvlzCLFK1osINRECyY480ZpLfa0q6KVvTc5smkEWVdrwKs/x+jRDn/U+qZCRj3pXLz8OPUedOVyDx2U2ngaqvWLAc+ZQNCaGnJd2IWPJWRoQ2IFpy2OI1/HrdyVa0DlIMc2DiKQdtUAfDeuhqGOMCjo/IP/PZ/LZUKh8LBkMUsuVESf56MpWX4aBt7RBXNHYfSp+EPzKsQo0S6HdHA5R7/0x2ebVCDmxVn6aPOGLj8fB6dNzrKFQSp0BNewgL4Fa7U/Ja/gOvA2XYhfpwThMhdP3JkwEj66jSSjQiPYFvUD5q28gDdQnjf7PqQyW1N6w99g3YdMrB2rCrcVz5O7uxLcCl4H6uNiKcDMBOfOOcN/LzzHRIe9aHoqjZ6LSsEFBwvY4XcMct5/hPgNimA0azUc21uI91TdodBVETWnd9GbgslQNaGbjSZngHbQFrp0oRli/svHte6q9HtfEY18NpWPFYyjrCIR2B98BzRThmmlgw9/0Y7hH+YbOCvsF+o/6eXeewd5+R1NSO+ygqhVwthcV8ffrRfjwI0aqlb5yQ9KTkNuQBkscfPGUUlq0H1uCkxN3Mg5mhakXejCJ8pvUKjROMxfuI+GFo4nm4lzYbC9jUotp8KRE8jTJBs4+Ys3/vGoYcW6Lji3cxjuKuxEyTwlfvzpNL2cNh4w/B+HNn4BrR37qPayPvw0eoWCNf2sZPee64sn4c42AfxSoQlhkX5sPSmUbMcN4of15zgalmLAS3fUfjvAp+d/x1YLDzTaog77zp9F2HcB5LWD0aerEdM9GtH4Yhja2zeRtv8hPpdThd13dOCYrzn+Fn1B0bv9wTWEofGOGPY71+OeKZI8bsZ03LVzDWQ1aUK5jjXP3FRBc3+psq1zEK6IW8pLeBlE8ht4++ImW5wV4ylFhnA8pQCFMh05JCGbl+5dCTKW0+jQmu/geqYZ42PEMMv9L+y7oQYzvd9yztJlGNQjiR/XVDNPTgGrbVH0OmoAJ7nk0BU/EZx5ZDycC5pFfuUP6WFjFLyea0AOuqXU89uSr7b/ga+rokny8H78oaID+/r6+d+JRNwybzLKXWpB2fifJDi6jGQFU3hlSCOeEDbGe23WsMN5Ml9cIETya3zIUE8E54gshX9fUgjmPUZaXsA9X4xxo4QK+BvcJIeSSxgudYFNz/4Gge8bcHfFSVjesxsL6l+DmGMeTveVg1E27ewbVEhZmyVh3PNgSDaJZCfFx3gq7jo+eIn4RPgMLLoyCRK3zaG3iiP4XW0Whrid4TbTIly2JAwj1s7lxXUzuP+6C+smILxcs4ZfHl2NP0+EoEnlFS4M0+X7+ukw5qEAZ72wx4B7ZfhTWxdupT1h89cL+bFLMQoedKZXj2pwunw9Rh3IplnJ50CicgsmdQjBTLsg6Mh+TN51BH+WurN0VCnUyI3BwKSrULZ0LG9NFyHj+Cmwa50QXbafTtIJs0HnzgZ4rl0J0mXLoapRl4Ymm+Ply4l08r4sPH5SDpvEP8I2l+kYc24IPncrU/ANI1RL1CdZkeMctMYTq0WtQPRzACed8QVa4MeeTmtAV2kT118sBZOTZbDqYQQHbe0HOqIOdaGH0e1DC8fefYcXvr+E/i1t0Jd1gprG2+CKqcm4L7UeLD6ZQU2mBpq2DMHI6PkkGjyVCpW7IMDNjHV2TqKZWpNQpNuCdruLQv8RezqQO4MXHO6j/r+r4POVFBBKWsyB873w8zLmAf9kGmgQhPLX08EhPA48zwdj4GAde++NR/+tGfQ01h5nxzyARXMXcc0KSaDrnSQalcrTXizC3R9KOWfUf6y+4CC9sTrNN80E2WuDDUVKmsFN2R6avGwJr2jMoBEBx+j8zSRItdmDSbYz0V4tnIJbpKl/kgLYjC+C1LvP0eTKVrhQ+YkUsr3hyqHbkFhmA2bml6HhyGK0lZkMmSkBRMuXosOEcr5uW4OS2Y5ksLCYHBaHkN0JEfy79xqfny8J6muy+X6WFkwyj4czH+9imVMULSsJBLcv10jxsQpY6TTw1PNG4JOvjoJ/DnPeQh9cVZzIf+7tguUbXDDEKogyzZ6w7rMsCKkQBy/VbLwjpYpvQxNBf1oFteQgbVR7wckubRwTnIR/CxfxwdSp8GzBBKywU+HnP7/C7jNf2UNOh1KCxvITXXXq6wjiqHYb/AVaEJy1hrHTj7N8NGjevwwSMoumVw+syXeuEC4SXEIVB6MpOnAC5EhHwL0FXSCVMQ2LRqwEtyUzYfnsJorsn4rbBhbBprqxoP/QGgQmdUFo4kKufRGPnbnpqDcxGOQKP3Hp1kgu8TSg8MZmaDttDS9fj2IXszw4ObIIzgY8gyzV67B4RjDkSTbg3KgMniSZTmU2lrDe7BKoHzWH4yIN/Mi6CaZP1McJh/eys/kSGCx4za315dS1Ux0uzK8HE9NQcB44QzPHh4FX5Ve+eCqIv42MwEXnfal3rjcW3ZMG8SEHvLy9FNdLe+KdHwcgY8J+1LOOB4y6RVkulvwgdze+/aIJ05p6sN3VlrIPh2F1ngx2L7Dmgs3jSSgjmGy2neEfX2ZA6jdBuL13Ei+adgiTZc+xeN4+kCpuwx7f27DuliLVrexFl2xlLhiSB/n7D7FaKgSFXtWS+JtysNptCVnz3UF+ewNdSLVFdXtFnu1pCptC9tO9fZ9hUo0PCM84De90QmFabhNu+eFCOdofeOLJsyw/SRO8d2jg58eeJD82giZJOOExXA6bV72DKy43sKTMgtZ97SCZmYow/VQgLfJ5gZnOxaR+KJUsyv35TbcTLSB5aBpdxNZ7H7B8nAkUZJXBebG3dOaMJZFADN1a00jaIhvwW2MhZ92NxaoAT1BsNwL/dzXUnu/ArJTLUe8aoKz2HrqLh/GIZS8xd1UeHjCQ5cb9alD4wgak8xdzlM4R2DzhKmwtz6Vr1oPkmzsWNPwEIOXvEay7ZgR+ek/x4ndd+q7RAYEFhSz1cS+1PTtJgd4PMO1DL6gEvqbrBVNhrpkweEM3HdL5yRZx++n0JV985PwDlCVj+cmeQ/Sz0gTtmqZBNSRCnEIjSrV2YdssIyxJTyKJti/Evg5kbXuSpgdeJ6EJMjDlWQSUt5/A1Y/M0a9GmbwGa3HGm/EwMaCLxx/UoD1F9yBPRRqenpPEX4V3cHPTdVq+4i0r6qdQyO0YyMOdfDToJqwbiMX7+ePBZmEeZqZcY5emnzyDjKHgPyPsiTsAhnOj+Xy1Bn8umoLzqyaCc5MwfYofhNF7r0GjSzue1CvjiuontLlpNqa1feU1Ecm8yAZgQbMsCeY84omOT/FGeSSda06iNf4PadGZY1j8SppLbmxiwWgDuCq/BafdfwZD45RYe5s7xlkZUV+tJz8cs5tzPUbygqeZbHhbC1yabpPsxAsUs10YlA914FJpUbg/JEGm/sKgXT6XyxbJst4Nc7hx9iXt9fpIiXODQN65gdwmm9Ep4Tfsn3adciyTuUNkBr8VMgWF/Zfg0vLFbKE+TPND9ckmczwYHPxC7d4T2X+uLR6YvAPtE2TA6Po8Hti4HcysMymn5y4NPdkF3tVWrNnrhD12rVyp9YSzm/QgxTYIAq8tgKdPZXH3zo34VlAU31U2s7PZRZb1GA2zdpfjdhoNC0IfQMriTIBhT85asobaUptIU1uFRmhfwq59Wiw34xUqpxuCrFQeHos5xgJqqfzr8HGIOdRDdjJi/CU2iJqeNbLo6xF4mqVhVMtsmOfmjcMRmjBVupFKCi0QHfJIt3gTJI6egXWHEkEyTR3aPvWRSVgeP5cMpMARytDzvZbsv96HuB1SPFNmCHdez+IP13XBvN4TzVqlObZeAJaP8eWYIiuKd/jHZjSaY1pTuCP6ByroK0Hl3yiYu3sNbv7Uy0nVR2nu0zWYcDUWl8/5C+//K+QdTyR5QgHDtIoprGW4iYW9peFU6FFer9hKFzd+xurQcugZEU2jIwRZzkkU7m27C/mnUmml3hQyPfYTxFTK4HW5GelP+gtH5AP5nPxJvm7DoJ59maHOkcqNQ/nqL3O8JnyM61XaaYb5Weq2FeKTpcq4Pk8W9h1ZhDmXG/Ba4HJ6LFfCciKb2e34Rv6yZABLqv+B2WZr3NppDAdtdvKM4X5QdCzmWS3TEHkmKDefhrb/JNhpoQVh832urJQAOVoJIrmlEFbqimsLXKEu5T7urmjDTTky9PKoLGwfd5KrJeVgqXQeRrzOo/uhr0nl2VbWl9LBXYl2WJZmTnoG28hVcRQ8cBMAxyUCYK63nfU//IMJil3071Ue3NA6QJpT1oLyfnvecuoeNyxXgzcmsbRm6BOvawhF6ZIIXC78EX/bp7LADTXyKxnJjmqfWBglYVBpFd1TdIfVX49wTFMB5m1R44NPF1JB+ywYOzWFRn8K54UXJ8OXjwLoWi1I1jNzaFPwb56RuQsvalhCqN4qiJ22GVQKy2H+aG3w9K/C9bI72PrUCfB5KcqjmvbgH/WPlJ62HE+4F4DLgpc0WCMFc57sged+02FITxKPHbKjf3QUJ63L57Fzj2Hp+n2gsHEZ1ueJgPhKd/CXU0DTK9M5/L95WOiiSgo/n4KAdi8c+PObJFL3Yt0daZg+x4HlWgx5R64r9Qt5kk99Jd3SN+VviibY9d4YrZyK4USWNjTqHQe7tTMwds9RtnmvAVYdU/mAhRt+tbtBnZdt0STlON8oGw27tn/CsH4v3CF9g7WdFDjn808QMstHK/lAcpnXSBOtxDnplBxcd8uGEl8BWCHwFJQvpWLBsXu0rvEurn/oxGavfMlqxRAfK7IC/0M/QcjDCZqKL1EvrGcN/60kmVaMv2XHAojOoTF+2RC+dCycDX1JIyobeV63FPztdcSDgn/gs4cheyiowfHT69FlVzPkKKlDao0ws2EE/KxvA490H3hm9IfXug7AWirhMXdtIXrWfFYvmg5NNsp8wMMdVGM6+fBAL92vMCZb7QR+Fp+CGw644fPnkuAIVvAobDxXHLFAqe1mfFVkNYi9OIczf9lhpGoGJnjpcX+hCkoqmkHHQQOeXFCJ0jfNIOOeAUQIv4POcncee/cChD2PYtF5qWzmKAVj1d5BdbsAR0/8zfdjkuF5ayE7WN+k4HmOsFDnCkyp/ESyyuLg0GcN38VPkPijNgDLHVix6RTeshFD0WVxEBRwEl8f+QqN2pZQc3kqG2c786idO+Br9CTqsf6AIRqdaNB+gZ+kzSajxil4zmgMhD51pYqlH+HesffcX7ySx166SpFdTvhGdhEWF6XSRtMNGHxJB0RvvOSK5XbslLwNdceEsVTaVowv+kavqr+AiOMV0E5vpJDVWpBRnIkn87RwudI1ip0UDsOnJbHvUg/ve+TBWSq6kLnnAO5SEIcvc/2gOfsR/XxlSwXOmvjS/RW45myhNa7FdM8zFAZldmHceFX4uX01JSbIUc/899hzZTdcv/ee1GsCyVtgIj0W2UM9fff5SRJCzfQgUL5oRYMDx7BIUwz9ZJdBhHUOHhr3iF/fFme9iwtpT8lEEM9xQVXDaHitewNXqyZA4NwFkNWdS3lV7RxRsw1tbSvx1CcJWB1wCewv9qGSkTrrbbFGjZ5sqPPNggfOX2lZ6WYKUr2FoWUTYfuVj7zTo5w9LyRxksEG0HpxjpsH2+ngip80R00L9xnGQcg+dai3t0QW34cWQ2Wcl9DBN41nc9Y3fRqpYMhv2qNx1OoF/HiHASTMUsNvd07ypopEfrt4DSTd/g6vbFRh8X5Bqu/YC3Yrjblp2xiQ2TQZ7FfGYqJrLzituQ/bznqyZHEDRJ0/w/rBM+mokDVd/igCjWbvaHDxfGh+pIfGTxNx973XaHdfC98s3krdX8Ig7ugwhz60gtef1Vjj8S4W6R7gOcNiuDnoLHld2Mg2chrk6NYHd2XKMXKWLPhGdGH6k2JKPjeblGwY9G+MxCNTi/DbqloWjXpOS07+5BGJOpAuPIUip07kVztLWG+6L30ys6PoC3vxv9oskkgcwPsDryl4vQoI3vVhk1XqkHcwGITltTDNxYHPGRfCzutHwcdyED1UF5DTf8qwtvcaf/p0g4oUvTAt4Tdl6QVTzDJxejJHEMx1zoFtrDfPeTAGju/ewyHZAmDgrgv/rRYBEb9/MP3EAFfHBVDy/pUwPOiJ6mmKsOWGMryzPgp1V9bhmjIfDM0QpP0T/Fln/22KdB/mmr5OtkyXgK/ZdWzhcId3lSvD4bGXMCrpCKrvteS1yovwTZIqp4zzp7nTZKFggQ+i0W0qe3wQnrnZ0/5Romi8uwNjkq9QxhoNWPv1PN4KMYUse0fqnz4emt1aeedTb9p8fj71bGsGHdc0Drl7BP/2TSIHNR2IWmrMhul/odTwOy0dNQUPrHsJ639cwskLT9DekkLY/Tcc9GZIgITJZ74YlgWr4gewI+E1Lg29iHrLL3Fhw3kcdXknZ7wt5ivuYyC2xhKmFX+khBeqtMeyg2XOj+GVIRv5y3+enP9qO+TyMfQ7LwiDxxv5TOYuPrr+LPl+r6Vn09PpzVAfuIzwoCWOi1jMcCmeSVeDbV1rIK/jLiq2m7Fj+Ds0WXeHjJ3WUuTIYpwnkwfKG1/jOBd5+Pq+Eg59OAvbijNwe2Q2DF3O42HlUIo1HM2PhP6Sz9omPlGrBOZHPmGd3V1W6ZkIqZ6m4HvIHQ2MbNE7MBjFtjSyxL4s8AgRBpl0EbymNpNeTPDHXSZCJNxki1PMIumeeg2Fl4QxqxyEwbPjobcgh+oCW3CqXyybjjWCaVOf8NP3A3Bq4DQsPtxKvu/WwqfR02DL28k4Js8Fo2f0UZSLGK+RTKNxv8fg1q5OaHi9kGr3VtE35QkQtD+blacrcNVJP9hsfA63xdqyTNY7Vuvfgx/Kw1FZrwNKWyZCy9F9NMfnNqxYtgKNBz/RytooVuoGPlbxhrt70nhCSSe2gBQouy0HQZMVuMJDHvXqc0hzXQkN1z4koCL81pvKcceO4euhEdBqOAyq595zUfxX2FG1Ff4oVMGJXWd44Jsq+KlvoCUBJ0HxuzBUZ1bTmc17uXvcFAgrXEZdJqN5f8Nx+qJ9nKuuHSA8uAtElsrAzamHUe34EJ6btAfD1wjD3vgXIGV3Br+fmQSbtvagIkqCV4AMxFl4wP3s8/he9xFMGxUIQxUTaaKWHlwcdxUX75Ai62WC/PabFvw9rQh7fkdAay5wRoQuesytpIpba7jhSxRG3JMFg2ehcNXSCpqrT/G2VGlWi9Zhic6REFNpyFXth/DvsWXgovsWtOWTqK9AF8bcHeZXll8od8tJvv1TkAcsnnP40c0U3j0PXpalULmmM7W+MoSGf//RG1V/ipb3hdiL0mAoexiV7UWpf3sA/Vh8j0b2VOGZw2PgSOBjkJ9rAT81yoDPKLHL7HF8jTPgUNQzTPjggHJ+8vxSdCRM+J4BZ15pse+BLFws1gxC3WPI6ZcHf5xwFKdsMODMn8rYq28Gt5fr4fP5BrwpVoXkEmpA7pIUcmUPqnhshQUdR+D2WwE8nqQNebkXad0ZAfj8UoJC6qbS7zVnMNR+Jw+GxPAG24c0fk46H1MZBxunPaC8yvccoWQDC2YVk9WjV/TRcjw67qtnMS9/0ntlhVv1psDr9S6s8vwEuW4eDanFBbDmVSzN0HxGLw//5pde6nD30ljusJGG4ZhPfCnxFB8pvM/n8rKxNVAEH5oVwcx9dXjO346Cb29mkaMakPrTGOcodoBjmjDuPh3PZv2H4WZwIkQf3ocDmY/YIr8T+2eOhQVusfjhdj9WjY6nUIXN7HnpCrfVaEAOGtLD6fJcOphMhz7JQfLz1Rw8byYJCeWRLbfRhmW3UKTZieOv5NJq0Qq+87EXu2dpQd2+n7irsA763ffz0HzmuJWX6YzqFazQbAb3vCa84iCP6ycqQUKENDbfuQ1VErfo5B9bUJjZD4mJXbx4xHmqyWikHT+kyV9PHjT2mcGNmgSqK3wIe6oiQXLmNdQKKyKFU4loMXs+CK8/wzdbBGCt2HkarjjL+nFzIJJ8QN4yAO1Of6VucWGMs3kE6x7Opd1GsrBv2JdVLOug3MQMig7IkHdJCBplOaChxAncVvcB11cfQiU3bWj8pcozIufy8gCCOTaBkPv5DMxMbsUc71DImSTCRssH+N9zhD1NR3nrkZ908/AdzF3ihBt2GMD6jN+QWa2AO3VGUuyYidy7VxWOnNQEJeVmPjaD8H1wAQdeekDuC7VBfJs1/p0RQV8OdEHGPkV4sNSLu74YYNBWO3757AF3uhrT/F55cH5lhFt/+JDIw0xSKNaCnJOv2PzbC9K/dJAvmZ1n7eVn6YTwUS4+P5Ga0xLpZmIQzewxgBBnJ3xpeQTytMr5SDbj4WXfqDztL5T0a5GWjg0LCb2hFVkj4cKlNE5MmwyFkIDVT5VRdVQmvXVei5vgKjtN7wOnw4+xM04MqmoX0ZEzD3jXIwn84W4K0U0laPrvMXT99cSPv5bDGKrj1v1iYP0mF59u7CEBNVfKyFyAKsu60DxFFm/NWASNbafh8cMW3BE2BVx5F90Ozefy28Owqe8uXrsxjNKCY3CERiEciVtO6tfG8Iu5cjCucQDs31bh1R2J+CK5kR2d5WheewdULqqBXFgMctbJuL97EuDzZXRQ+yUvW34Tv/z3Bd06O3Hb6Z+UYz+SjaMcefOmNHYulQLb8vm870Erycruo6FLI3i3uiWdfngY5ty7hbXp+XChTAOvhWuDq1kqCczeTRVOk+jviOdwfUYsfBc0JdVN13jR9QjwKg1HCWENqJT6yPEDdXBwoTYvnJ+FVwt2YHi7IJyNeIFD4ZKYPnYFdEXJQcdNYOmVNSg6wgIC63fj1gnz2PFyOV7RyuWumFM8bvQCVm5D8Fw5Gp+ErcPobdvok3cn+AW/ocbuZFY97oc2Wb78ol+FP2hOhEUTNOHJ8DdcfUqa934cBKctm3DhlgIqsYrkX1PsccWCKpLfpgROPnf5TeRfvFgnD2FSbzhw9yEOkG7h5L02qDkkgiojv3PSdUH4oOrJe1fN4K8bpGGJ2ylUb5FC28jjoHf9LZXOswTVEVKQ+Qch5Iwd91xK5PIjQxSeaQkr3ItonfFqcrvwmzFoNcZKeNEDU3mwybzC1xvsIN/tL8mIbUCvXl+qOFwO544oYP+zQ2i0ZjEc/6YOHZLpeGJgLdU2ekLElFV892goJu+x40rN+3C1t5yTZJPo0WNrGOp5z18b5rPSlWS4m3mC116/g9e/9XBszVxq3p8FoVZCoDzbAMaMucU34rRo+ooqGrnhEhz6mwNefbFwYF8nvTz6ASz+HIRdJdNhxsY2XPcxB8a+MOThIB+84zQZjyVcplztN3hoxBH0HDaCDI+xYPYjn7J6m2lgyAo9m3ZiZYEBBSUlsNW3Pbz/8Fq4liGOZaEWoHa/BF3UfdlefDmYfIqExIIw1EzpwNrNJjRjhgRkFQzjsg+TIK+1ljZ0PYTpIfUYXfYGWpwRa/tUye7wGuj0MKeNJt00/q8UvP09nXo+lfKx4THkrPaS3z6bjd9y7rKhxWMqnZoB7fYrob1hLETa/qBTFpM5y1MSpN9Kc7KhJNwMLKHjmbdob7orydf8ouIJo6BR1YhXeZvg7ygfli7O5OLdypD8SxDHbnwGESbi0HnEG/vMpSFznxl+mVoKAfU2FGl7FCqaovHqovW03L4Q9mxchTcVVoFCmSkIx53F42LhqPTqA8rqlIK52Q8SGPwAv1fo0wz/FaTgsgDX4GgQGH0Eymy3QUD6QTr07Sr+XXYEwjeuAj+ZCPw00RTcT52GbRma8HZ1Hjz1SuFNsRXo0GtLxk+6INRJHLVPieHhR59hToAsmSxXhc0OTmCz9R5emaPLZzdJYeizGGwvquR3uvW8/r+zlN45GtdOtIQEmTQS+9zFy86fgx8lg7zzP1fOFJ8LsXG6uM55PZeWb8WapSNBpesZB4psocmLvfFR7AB/PxwDiUuuU5T6ZlBt1CG/W5no2CQLuVkLsF9oMq6+vBvCU0vhQsB5qE+dg93DOfzw7RJWl/0Cuh5KsDViAEbM6IDTNm18MLCbted34rcxK3HPHT0MbT1JYr3JoJZmAX3zc6k78RKW+2zFpH436JFbyJZHHsCr7ihQ/zuT/tzTp/pVBrCruQiUPN9TWvdGsvs3jW2f3uNBizTKe32NU4av0jNaivqOmrCvtYYm7ZDh8XAD1FNGwEJZOw65vYMzbJahStt4KLS6DttXjoWAjac4cNRJFAyqx6f2z+B6fgArrbaBTvNDtKJ8CetcDSXzyolwxd2eQCsKRBaW4lPNY1Tddpgs94SRk0AW1T8JgGKBhXAr1AicXMQxaWAaFbppw8g4azxQJsD3KhZB7C8JKI1OhTDxZligZQDuJXMgg4cor0WB0wWqQCS5CB84DvBnn164KXKf5z4ey0sbNeCCexmG7FHlmFWv4IrvfB677hLfTLOg24vqoVbsEAntf4t+NOX/7v+1/jakhDV2UFq+nfj0X34JV9lg8QDB2O1cdGUtvfyQRbrHx4LHuRLyzUZW3pcAH9oSMHX1RFoeP54cjGUow2skr3C7wmOua8BT/VQIH2iHP5tjwHOcOIqq61Df51do96qFm6Y1465ZEdwxLAdn9S5CivQFEsoPxqyT+RBweh0M7zOmuN1erO4lS5ebxbi0ejpcsvCGVM0hXGooQzbZOqjmvoz7hSJAdYsX8MLJnCf/DbK3K8G0DY2ctH4xh07vwdFWG3hv8T7IS9oI64fOYtDWGBbK/sRWXurwdJ4r3Gnr41/ZI6GzbgiX7ZNG3dMO2NAxiFGifaS1fhb2xImATL4At/13BDxfP4fuGgkMk1lPh3vEWb1xKzs/nk/t83NZScUIar5NRUfvBBqjvpiql1WjlLswyHbH8tBVJ1iQasxXnk7hDqWR4Cw1TMW12nhhhzlZWEjR1Rde7GthyIVR1RAntZU3DIxhh2sKEGr/AWJbB6jpvwLu8WmnyBgbNFtRzO1eKnTx8AHy+90LY75rwK+SMzTb+hacbKnnGue3VOLRyodUZemXz26W0heDaY91+fFaNdAaTKKTwmuxYv54qj7dw1u3+PKthFbc1b+AXlhVUEJOMLqPE4F/X/P4uh3CznAderaE+NtLd4pz8+ZPh3TxktAtOL7OFt8PmMBnE3Ue+SMZKh/V0eDSvVAblY2fco/B0lsHYUOPI9tUqOMY50nw3TMCfxsVg255MUaHh6HFyj0U7WuDC8fE8QBH4s+4FyzkoAPJQhdZ7IoBnD0jQHOiX/HZwFioay/AT2cz8ejtvfg0vZWDGsXgesxSEKvPhHdSEyBnfD9ZD59mL7/3SAHxZCTxESJGvebSX5PgXsQ+3Hi+HL8PWFPS80cgedsGKk3zaJP5RDwfXAT78paTWJoU5Jp20HtbHUzqecI72lrxwzVj6FX2B28BY9x47QzH/R7g+N1qsCV/EMqm3IL47WYgszWPn7z3osuT56H/Z1Ny74jAUEN/vLvOFGaqLIWx/z5D7KjzbJg6EW2PVuLJknjanquA+p+30rhjljDhtQR0mnuyra4Q3d/9kbfYBNPvK1F0/8NjfDVVia8OvgbTumvUv0UM5OKYJs6pgk/h3/DP3K/00NAYKi5VYGiUMJ+cE0PBCW3QVyoDEQ3zsHedIx13VeI/7mHwpEYFLbbLQtgLCQxVaQY5CUfUlJwKW3J6IWjbS4q2P8Q/f3rDnhpBMrTN4xsV6zCgtId+rH7G8V/V4eaPy2z8YgBsHUrpuNUffup7hXTMLGjmRScwPy9MWwubOSFfC86XddMjtyMg4D8LFkqdw1+Sc0Hl6Qi+u2Mp9nuGUYntPHw2VxFk4vfD6+ubaUGQLCvPPMzjrMR49i5LbpcXxTbhDN6ccg8z/lMBjUu68PXpR851lCfFIMI80ZEUIDgHqz9LYMudYej0lkZepwm/WkIpvPghZJqewozXDpA4WwS7Ll+E/Z1/scPrL92MfwIdReaQdOQ1XvvhzG90NvPsM5Lc8F8yatIqKOr6RNl1d1jyZDqk+8jDXGN7OPG8kacVRCCIX2OR13W4+2EhSSh04beobn4wvBhc283g6kwFWqI+jewnJMJUwQOs61pF+hmDMOLJRQh0acaLP95Rna8yrOm4A4dPmnHyjp0o98geQ+TXcF79WJwzRwB8NkbwxaB26F+pCkYLSigI6jBg9TH+o2ZHPq4vOcdVDsd/1yff/HgyXtnOF30APN/8pLxIfZjhrQ0N+7y5SjCagw94c5UU8nqB6zRTeBsfuGEBjdgFw6NXML+oZ8lUQzCbkE/68YtoncMe1LogBRkpnvx4syxskhDEycbD/HJpCCon6PHjo4rcEnYR0kcOs6iCB2RUJMDFq2qQbyqPuS77OcbmO+kKbqQZ9ob00SMetKTP0zLhZE4SXcDKWePgam4q3l/iTPXzrNFrTgvb2ffAzB51vHU/mrK0K+iUbh0FLZSFhaHz0DXDAxcWD3JL1Bf+3Tya9s2/g9nN4+j4wAw4cPM/UNo4DSLe7cdnLX84+LoUisk+xPgKA6wQGkOfVplAeLQ2vT93l3a+nwpX99ygk/U2mDLPjb0iTXHmknF48OsO/LTKCWklgoXHfv5x2gSefjmEqVW34f2H63zkpSAu+V1Ip8S2Ydiic2R9sx+jUspRI0UXpC78xLO5W/G/qc9R6RiggelrOlhZyXUoCmWjgJ6c6GCVR1KgeHaYZarseLenNueEPEanT3sp5c4XOl1OVJs+mqMzHFF6eATMEjgDbXbXcO+HRNZI38AHR63jO4sNYEvNadY+m4QjNwnwmGcmUHf+FMhdiOeV46ywcM0dGJwrRSkt/QSZU+DCtS8cM+MMfGsdCWO2tpK4eyZUltrR62gT3jj1AuwoywH70I847dxieOlhAUk+E+HH2ET4fWg8X8v7Ahe37YavL3bSvTx7GP6ZydfqZkHzoxswFKIDB4K3YEOlKlpeC+f50iJ87+5FvLP6HVY/usp7Holyadsozr83Df52q/GomCE26k3CNXHr6FGgNahU3INJ0u20sTcFl7n/pu69smAqUkl+VQdxvsZXXPniA3gcApxcvQ6jB+VoyaxNOMrvMbxCLUgb0wun57/FU+6XYba3M8q4zed7CcHs63Ccs2TXYmG+EPu0S8AV08O4aPZXlgxZS5lFh7jRRABfPn0CC0/soNX52jCg7s/6mXrw0FWFYr9Lst3Li6wush7/GT6n9B/zscv0GjdkxtLgw7l8tul/BMAHIBAIFADQPxKSZEYhW2ggZZSdpowWTWmRjIqSllARDSQqu0FCFBERSRpUKA2VksRZJVGhusfQeyQNb0Qb0y7H67j+5HM0C/HgDfKdHJhkCpJ3Einw60n+V0TQNL6Jv/m94g29sjzavB4ngxC9uJtApkpFpCjqyyXdilA1RhOyCSDgaAXVuL/g2w88QOzXEbzyKJ9dF7bTmJJCNJXcQbbZo+BfuQWYrJmILX8FKeNWAiStvMb10kPg674e7vgdYk3L21STagAtOa8oukwC7lUnsPL35TipUZESV++gAJFGahj+gi9tL/PgWjX4E1fP4lbFvM3NixJNiRd1VLKTxFyQ5yo8O/AVM9JfkYTgGLhvvgAnVhmxiXA52nlXw1ibb5DntIm2D7by7OjbfFJ1FpY2qkHSlRpMrGQMu7Ge5ofawb1CcbA8Y4XnhfaiZIEet189TvKZCuAY/wTPd0nTuJfR8Kp9HItUC/L62V+wRP0Yyf4WgxdT9TlgpjC0ZrrQpIU2uGNSK02bZoXlC25QdzPj7p89JLZtK13V3UBNkzXhWNpsTjaVgkUT/5CViyDuqNnFpTe+wDm3FNgh5kA3hkq5pngMjOyLAi2dAX7lHgOe+fNg22UbWBFsiU9y96Dk/XY6d/ghNU8fBy27h3iG13fYWJMJJua/6aWTK6o+uEVaCsG46kQMP9gygNZC5mA2qA5tVVdgzMajcHZ0Ec3aEYDZNy7Tw8RqeL/DGZ3MC3l6vjEYlS3GLUvaSCJvBHhrOELIjj/0afRNyN0zmbT9taGnWhIru8zhSLky9b7342cbUviCKKHG1Pec3aeGrnemQtQuJ4q+aUFLkkwBziKYW02i3HZXvOnmA4uX3cCC0C7YuUuYlUavYZ/j4SicrgHnU3+gVXcWfm0ahLDpSkQdCymxYh0fu36BZkUokI3Rc9Dy1wCBxTLo1iGGJTeDadoGXXhTqccCy1sou3kP1rfbwI0sdXpP0uB58QoV8l+q6FgDmHMO3BSfku2piyhybyEUlLtS6Pc+fn5uIqjkH0Hb6NVYVKaDJuueU4ygO1WuUuXqL7dooGIQwPcrlhqLQ55VFh8q9Mb1l6Rp6Z1IdHb/wR0FKylhRB05n0uhB1LZpPpOGlQL5oFvxDf47bwV3y2fi7qeMhhpF0CbhDMxNWA++G5bRqW/dADuKcKC0SaoX7OC/BoSYYxLO5p/SePn1WehSy4Eue8b27VpwS/Fi9i0SYI1LYxRsUabl6U2sVpjFP5JO8KV0Tb04/kHDFZQArnUkdBlZodrCleR+HllMp5vR/G+fmxvYQy3lmXS7xHbeXaeABhMn0sG+7PYYaYRmFnuwdQqWzYO1eORKWe46EQAPlqehFEb1ME2+xIPeu6mO4mnaDD+Jn+W6eY/14tBZ9ZTEsntodcDkTxhvxqMmzMTZYUFSWTRVDbSl8WDK+7SpUMGcDxzDK+SG0m6L5fQmgEtWNFXDTPmfYY712dw7rV4kHonRFc/pmLW2BJcu6wYRH4vhJpQeUiKkOcxmnZo59SBE9r7OUwkHgQSNVHdQhYme6pTSPJlKNhtDFpztblq8yh0zvZkidxb7HH8DyxbtZoHvObDx8fiYDawBdsMZeB40xRetEcOHukJkvP6OD4hNIYeTJjNIsZ1eP9MPwxQHh+7Nwr2fPYBhWMBpJTtjV5JOhg5cJAXak2nCR0fsG1lK/KlFVR8YTJcbnXh98+C8c+umTh67h5e12cKccUJuPajAq9a8Z3TrbLR47YhjBOwRy+397zp0SHKXv2T0+63skDafPTfPZ5l67wgmWZjjpYJKP78DUe2xsNmqbmwybmMh4o0WOmRD+7bJIjbGrJQQoPgw3cZ6Ozazz3mSWgulsMuKnaUfNkXBM6/ZY2gIX5r4ci7rZQotWksNAfdpQbdrzBTcw+a7TRnMZVQ/nfZj7Z2nuK00tHcYZbKqz4TSJ0s4/HSK3mBynJ+WunI2j968U/5VtQ57M0XEodg9b9V+ERBHYJmH+EMu8foPOosmVQOknGPDI6Zm4N5hfpg/bIRW+T08EitFhwwcUI9vSkw5WsZR716Rk82B8Cp/CywdVuO/WLtaLG9GqeKacCeJWeoMKEZnsx9TNWBLnSxy5mo6CDdqFhKolv9qbTXD/rlBYHErcn6hCOKap7jR1v7yM31PkwROkd21k48LmkNjugWBf9wFXitU8WBLs182bccxU74g9L3z2TmvwW2LfZn9cQBblPrJiVReZComIllIUPomjcA+U+3kVDkIK4TH4/Cgj34wv0P3FN6xe9vacLZpAS6I2VBD961QUt8KV8sPk5HffaySOYAeLQzXzbbQjHChiC3JAwMMh14glA3hNxZCLE7G2Fe3Ewc4ZYLui+1ueG+H3ttNIdQw1nw+U0cf3Y3Z40NMzFSzZyXJAmjxa4UMv9wlHf5jMFpM2dB49kxnPv4NbXt9ofH74Ow4oM4hj0YC+rD10G4/SFfl5LmkepKsOjuVTgArzHBfQP36qyn7T6OtCCuDbtMtlPLslfc217MKRGykK5+i4ZqJ9O5MdMo/ctGUPqwil7f2UAynAghC8ZBofxTGtytDqptleiy0xw/TD3IaetPcrFAM5u9z0DfmBCYHT0TVL6s5onlo2FHuQr2BB/EWYO6uNDYiCv//odK14NwXrAYT06fweHtvfS8biYMVtjwHHt/vLBKlz+jPTUXLkJHh0jSCwznUw6qEFMTTM9ixsGn/Tf41H93yEHfFyKv/kL5HY28+FkDNNiehpP2xzDU/SHabRQD87hGqp/WBS1W5bj4ozjfX3Cbw3S6OPJiMXbaXqHB95tY+ZQu/Ji9BcxX7ueXhdk0fcodmFVtweJvLHDbHGco9BjCz6pEYg1yILduHkb1ylAGFuEPEwe0kmjHyK+i8EvrJo4+sROrhzxQMUwO3k4UhyaBR+BmaQrm3+y4VlCDBiZ84jTS4tDqb7RGKxCemzBIxI9GUf/x7B80BcRejqDfpc40mOlOtslpYDRqIoeriJNo6kxoVY7GF+rfSOZxNPZ/XQNR09PQW+oE/njwAW7t9KUvU4Xp808N8KrOR8OLB+noyC1w2uYQHzBZzMOyhGnSDbTusRyIntIkb70RYFDsgTuChfmx/3ES7LmO6R8msmn3EbyX8ZTcb+rjJgV1kjSdDo93RtClfBkcTQm8oG0fOf1soV37fKnChTFpTDFn3vxO316KQ++t47QucyFfv3EXZYQbaDjJgkr3y/LEiEW4yWYnK0fUQtVTEZgpvoHTxt3jXaCAtburWKXPFju2p6Jy0kkuuxeMyqZrQHW7BEjXT+G9Lucg8kcn5JaOIqU2fW6TtsKFJYEYwTXchg04qlgaJBK8yOH5XH71epA0t2+lR9XzOPV5BB1c/JPj7q2nRSr3eKqqCtjaNFHE2DU8Xy0C/MoCsbY3gcVblpFCyFia/lWWswWeYM8+I4gzjIKO4z/4jYctRiRJoL7dXJ7/Lor/3V2G5Uk+lPNaF+tuMGTsSUaDL9v4Qn4unSpdyScnWpJTjjNWPcmjzoKR8GeUGr2IUID3I7TB26iNBc54U/uPXnp3IA3dbnfRtZctsHmELXmc9GJXHRGw/mcFFaPr4K3lIJsNHMGPCpY05sI7EpFaTr0qkuhY/BPPKOvCzp9eMKj+B1ePLOX83XVoo/mG9dNtYNYcfazKu4dLhCNw2nlxCD38G+wnKdB37VYwKm/h3U/eQX1FFob8sIQIIzHoz3/J/n+lQXOpOa3cMB3Xly1AWYPDdGcgiS0TD2OWwyrW6V/CNjN38+hKY1CTXMGJXYhtua5oUh5FjXWHCdSFOKn2ME9ycSKLu60gaqYOq5PjcfShaPJS9Oa/5bdQK/oVT9IKociuDljYawSKK/zBcPV40FYtw6eL8sFloijl6l6GSW+HqT/2Ckc12YHi+hz43GvGUwT0IeePAFx/f5u/DQ/gtFu3qOt5PXRqZpOZ5Afo3tWMeYfqaE6/GjS3SmD8tWusMqRFV8XCKUDjKJnFH8H29TPxykIPeDLJh1PlRsEvFTs2c/5LZxf+Ih91TWiP/A9jZ/ix9/uNoPhHjJ1E5AHkx4JErjiYF5zH69EyrGumj4+rvtFjjxZa+b2Vn1W95x+qGSTSZQ6GVySweEsFtxqd5bPzJ7FDWSWPv8eoNHgbrXu2UoEn00a58XB3/QMemLCRlc/c4hdz77Dfryf4zSkMl8/RAqusRnLcsYNPzx8JGQK6oGh3H6Lr1dGiXplTo1Xg5tc6vmVWTBfdNUHwUhCE2k2Ezu2PedPQLy5praC1Tf941Lvv8KNWjbsGPHCD7BsuqR3DJRPEQCMrl2KmvGW5qWU8ep44WE+ZxnXRs3jXuTGgOXYdBz6whMLwmXD95nxI/KZKh/e50t+zc2BXqwtWTf0Nkva/0DPpBup9O48L02fAmz/j4ExoEZRmj8Ow2YE8rrec4i6tpjWXlvKjrRX44IYPvGoyAPHNmzk86ARcC33Cm7RdseHFb1ByvwrNKYx2vwrB6vVNmPl6JFguyqLltx/RRVRmiO4nF1F7PuxiQj/jD/GGlRNwZeRKeLlgMpw+f4o8fPayg68c/lNexe97q9BBdTvtaZ6E9/yCQXaeMG+KE4KCoa3Y5CcBgZ9G8vRpfXx2wzGWd6ygnzO+wJXerzyku5i6t0+H23LXMeqVIo4Y7Q7nDOZR6q1fDMfGwGe3izjn5nyCJnXI8DSAaw9FYPS4Hlx85itbPg7luZ2ENQUnKVXKkMdX+oPIlAwasXAKfIURlCgwGvpiDEEg+SMVTTLnvAIrdCspQo+S5bRvoQfsfTANQhTm4ZsD5Zij+BQUlL1ppetTkG/v5OpICU42soJxM1TRqE8F3i2phakLztCD4SIyMA+EWftVUSIykA0TsmGXtgFsv7wYH2tpwvnf26isSYe6FhTCnbFXsHVwORUeGqTUjPH4aJsXBKqEYUUCwffYQAxOX8POT2aw8qJ0mBE8gxN0T1FRSyGIfdegS58kuW2fNnxeVE7SnsuZJ28HL49SOmZfiPavr/H6Zm/c3LeLlse0wnQBE+gZLCOvrNP86fxtjtKYxEXrrpBKohMZOl2mLxXbaIWlE6yaIA8nw4/ByT+j2D9UDBxTw+ho92rQe2TClmCL9XanaMK+BNh8XgHWiCTD1hVtHNVTBVFb6iD7kBKNc3GGoPEPMezrWzjmcBWljXWh1leJDWd8xlv3+oF3ZPMU9Qws6voGnt8tyUbYnc8dGYe3dmjAjR/6dGxrKciUV1KD/hC5So2g29bLQH3JDA6CrVw95hVYhUlBPgShe4IPfrMwxnJWwV0fDoKwSRXcOfYedB38YY3UMRbLmQSX6w/AlwBX0G0xwDV+r7DCRh96BXeCdaUP9Nktxbepx+DxFDPQCAynebvyuCV9D+676Ar/FVhh1LAphb0/TZmuJjTpxRHY+NAUsioXQMWiaj4h00nVk0WhaKCOTfMWwbyRp+BEzxT26UxhPcWJsPNtK0wPAMh8+gqufh3F/24+hFg3CfKdYEWlRRs45rQ466WOhPn+c2mq0z6oqFQn7TpbeDBvLyxzT8WisHIw7UrFMVNU+Nr4SfAg5zhsbLqBr0QscGvaWTY6LoV65w3YTaYCBmMfkAOr4r7x0uBc5MNXT3yk1dGdZCcYyyW5d1Fj80nQH3rIUy0/wvKV93hD6WgwWmkKosE3wTXrIK0ffkmypjpUsq8YLqpch7LWPFr/TBrfrFWBchdlmNYvjNrNNSRfvhDzL+ih1tJLLCNYRYfVR9Ohl010X1wLImL344O9zTBriRod/iCO15zs+EZ+K1gsnIW3Y99T0avNtGuhLvjs2YhPr+fzrT8aEBb7FUoTt8Can66Q9uEPv7t0Fr8ey+DgHFmo7PGkSNtuzJO8g2GVWRx79SVGLcwD3VYzOP7jPWRFNdCROga3K+WYbjSHdP55cIfuHHAc+xynqFTykhPPafT4wzR4MBp170pC824ZFvkTBi17C9nbRJjjC6IwTe0zPL//lH+JSvOGBHNYNloblu+UgEv+Z2jNfCdIvbICznmN5Eub98LyYjPO037OtluukuAvcUhWT8JPi605cFwyeZ11ooxpYfTsjT90yF/mtFftHBZzGyncBJbCFDhjf4AfbH4INx7dZIfubjxrmg8vje0IHUw4YNlhXGAlC26mm2HIWQ//aL0je4WZ+G7yI7w61oGqB8twT70y3fl6haSMRsE51cOgWv0Hu832wLLG32T67gXrnUqAgz97yWJyL+gfW4QvUAGGxgaSxb552PpsNd3pMkPboAV85OoLUg1shUc7V9CkNkFaKD8CBIMlWNNZml2089hnTB9YicXCAs8fZCxC6OdmgIrjTbm4SwvCtPVpj7A7W1mWUJX8Spq7rwnKxzD+uDAG/xkocU16OIzbJwnT44zBt0kLK0WlWCpsLgmM1YWaY8soRjgZlGc9pf3pr8B6rRIc2TmaPK2sIWdxPO6qkucJy15TjOAMeBS5l8caFuP3Zh+6MGMkdEIZ/HR140d+KmAwchr9l29J3yrcwcOnmTV2LOWO2GsgrzYV7LaM4bl9VVy4I41aG8dDhGg1vdHaAbZ2WiRvuoEvPKwA/UcTwKJCn7NVlPCJzwAaNRhiS1YMzH3vxCOUt1O3aBwLJZ+ij/MYWre/YLpdBEE3ltCxzEx+eLIR1ja08xmX7eQsasGXtsejqt542Fr7gk+FqtOwfD147Wvm+u5ervGdR+GRVrjJyZAqTT+yrI04bA+/iMfynEjg9g+eENFDQVkaJDt0HkJ3T+Buw59k/86FM1omwkb9l5RWtRp3blzM9330wF+3DF/U/mOphn00xrYBrspNhXR3Q2jbncBrl+ewW6km5l13YrBop5Npk2H431UYNSWOjpu60z97IZhhIQYOGnp4TfYsjNW8j2RRiwVRvbB51kwICg9Cs0YTkkvThw9zN/FBzdF8bFciNPoPsdR2oq0ZriCqKc5uCRtYDS/wCxgBhm9VWTk9EMPX5kHZznswPKEBdve348idyvziixscWm2Gmu4T4O+NdHbKseBpm1p5m+ZV+n7ZmXdLyHKF/XeUSPxFryTmU2PyVBhR3UcDs6Pw2b099PvlCuo2ncd5T7fDhbZGrOicyVc15XniFk2oNuqGT/iCTzicwQr1l3RRiHCF/hD6JJ2EHpUraOguhBqR0pCV4EJmNafB9nUAe+yPQg+d/2jMfUH+NL2aa7Z/gIjHxVzSawx3857RsqZSDLmXhtLq5bDy+AF492oGOq4u5HrVn9A/TxEHNWbD1LgQPKq4GsWuCEHq2OnUfdOWayT309clbtzVIondI0pwt588ZAe8QMdgbzhYsZWO+R9md83VpBhjS/HG/XRwvgvknDjHny2U4cYSD17b6ojxZjdApseBjI72ke9yEW7YqsgJQ5u4Zm0cxmhKA5yvZyGFzfjRfDfOmKiG3qte0vZRYbgpXhuqat/Dd3M9SAqbBLY2NqiA1dywxZYvxL7kdWPbod3DDHy/Lab4eh1SXZHG8zNnQNSp02R2+yQevjiKr3Uvg+mbX8KTdwL4xFcXVILbSVXhGXeai0LXFhVQPizPmdf/oLCxKfWKjEOzmCms8TCE1FSrkd+rkd1KedBU9CaHUT9owtRH5CJgjZ+81UCm/iLm6KRBW3EOnj71GqbGTobArdVY9cMZw6Vfoa/OFxpnvgJWP3kElWUT4ZX0ErRQ3ArxY7TgsckFML5+FayE31PP0ZOQo1EPbb8cqaexgs3Lv9Fnp/OQnAiQfPQwiE3roSynCBR0EOFVLoD55/bhk5wFnDwvF/dccKCbpfogOVSKey5k8dctWpTevYxz+2xQbupzuFJtwuhhimkSPrSwQgy0Dt3hU8/O4ZFhaZhgpUev/2jQJZmtGJ62Af979JS6ssvo3DqG6y7DdClWBs3abXDFwtdwPb4epz9JoZ1D1lTaKcBr7+aA+rcRcFDkMo2R2w06n5+yUZQNeYy0oHTbe+RWt4o/xruS9k8RLDwkBskLD7LW5E9cVfqKcp4x1YX5kejdmfjwJoL3KRE6NVOPvZoIDv4cjYvds6n8bS5dWFKH/W8FKTKog7ceCOZlv1+CQo8lYoEcpF3sgPbOVr5cv5urmjogf04M/TncAAJWCiwm0s3/9Nv4p68UrBYbxdvlf6OG21ZO8lYjWcWNEKCShM7ZObzQ2hAENsSTrsdIaHu3EodHvqWjtx7z9hJ3KGpRppiaOAxo38s59d7gca8I9jhPB53cYpBbFk/lMUJwY6IYqq/aRCdCV6KH+xf0vtkBGv99RrUYKVC1r8MF7k+p/Y03DyUL8Z7MVXgLukjGxpWyFEwodNlvvOEgB3aCc8lWeToM1yiSoepp+HFkP/hLH0BB8QGuCrzK09uD+dJSUZgmOgKfe8ngN4NGqp95lwcKtXCu5mhIEemHQ7IzMeuYMFq1iEJlchtVzaiFH//182zJvSiywpotljzG6KwLOO5WGaCVDRZpjAGbT5mU6ebAnp4lLBmCNEn7Glm0DPG0+W2Q0eJJi691soWEIVjIlaHAjRf8Yas3WOr4kozZNIwZrgGl43PpYoYND30T4/WFQiCzWwOUhr1pnnA0NrRsoysGmuj/uYGX+T6H8SlxoPTSEqWXToGJkUdwhXg+65/4yH5t/1g64AmGvIqnNe7VZLRUCw+0PeCeTANw6lzI9S/6aP8CXcoZEOYDy75TbnM8r465in1laZBVoI+1yWNhzraV9E7VgoocRUDLbzE0hpVB1/U0Gli4CVo2RtHgxHVw+B7BjB1dlJXxAhT3P2XxTC12ulfPuomr2eLjSxI+HUM/rFIoeaYs/Hn0hapvWWLk7QM4LegS3TnRTRWrpMnwaQBK7NdAa11PXtk7HZqzlMksWgJOWqrAdMk6FIn6BuFzxPjfst+YtUSRxQbPU9hpbYiVvslhEZH4ZcoB3PznJE6afxCehuwhrXdGJPxOkI/bDvP4fxNhvtBNkJ2QAz+Vg1nRqw6aRGJY+tE8/tzzmk9WTqZJfmdoROQUSKp8C+PLlSF13QFMEDqJBc1hOBQ6n8SF7EDQ1oDyk5pAUF0XOkfMxfctzfjqxHV636SMhVFi0P4wjo/Pm8oiP1fxq5Au3FasCBnjjnLKh1Qeq6GBR1rK+cy4aF5oH8mOHkK0N9GZZtw+QBGh6nC4rwWSXRaC059SCurNgW9xwXgkcxSJOvdATkUTLF7ZjodCZsF3U2NUPSPKz57fYxOtbBhhp8kyagUo4jOH2rEW97b5gdkjPViXkk7yNiFk82cE9CWdwq74Q9A9Up3eTtvNs+860q9b5/j6N0MI9WxH4UhTsjvayroX3Kh4ngc59ShSUfNUckvuh9n91zn9lyTMmmIKfeXjYe6zMehjUkZyvzZAw34pVHCN4JP7JGlu2HmadXgULB3hSv4+Ujy7wZydTsli1kYfdgjdwU5Pw8GvuQQ9573ChGp5mNC/jzQ/BcG43aOxuDCIPX97QeXoOmjOTMWfEo7oM8cDD3vNBCOVzxjga4WqOJeEo0fQySI7FFv0lA7nWdOdUUcgdUwl0UFdqNUd4BvzGuk/XQ/MVUkjd4/JdOP9a3x/xpO3rr0Lpm17sd5TCS6d68THWUM8/cR1dny2nyxbH4CHQin9N6OCZKzLceuF62hWJQVTfkdR2e14eLCkik7NY9SZeAn2YjddOz2F126OpO5FnTxd0hTmX5MmX+MyWqCQRIpH61Fq5m5+wDfg9ootLJpTBoE+DRj1byy8snKhaafvQOscpk9X6kBBopRfSr1BpdiVrBI9Dv3DLvPD+SNhm3oVBMrl84HrB2js1maad2MzPRYawvHdamx3pQrEFM6x6QMhGKe4kZYVL6Z0y2DKialnqeJiPL7MGpdKPab462YQeFSKP67TAhGbQ2DQmEu3hIbJOPwoVFWJgOx4H1qkGMEnWr+w9PHttOiUNNzOKmOxtmrMsL8IhTNuwg+TWN5QnM0ef88xZKWDgKg2DrpNAPeuAKx9NA6Vkqpop8IdNpogBqFXSqCiSIIkNpux0lYrihicBY/1zlBD+wPSSz6EUhYuoP1rGgY4yMMDeQPQW/wMMoQref9eIejPuIerM0Ph6tVAnluzkfV/jYd9QgglndEoGZFEwuGKGDdOGZ5PVcT0cZtQ4FQr+txcDz/d5eDoySI49m6Y/B6U4nq93XxESQk6grThUrUWXfyrjYrvTEAiuB5q7hexwX5vOr/VgEzrbrJbpCEsOPOAM6c5gMWdPk67Eo2/NW9x2t8IEvnnylf3XGBzAVNaJGcEB+8eoI9Ne3HL8tW0Ln0F/lVKgsraPfhLrpJnx2hDRYUnFzwUBcuEdHw2fQ8/MP1K+XUXGRTC8Yfld8gQP4N34DbOFJLFgB8GkJrrCg/cXsK5LxNpz45Eauvvx+2FsbR17H62fPIRRMTP4JwQeeg9vxt2ec6lGd+fQyZI4fO3A/S9zhnPGm4jnjmCjTaak2K9OFwVmYh5q3tA7eE08BfMppJPRah/7jz8HbWOf7nO45wdH3HjDoYJgXX02v0shG12hl7zDNyuKU4KxoegOXYX2NgsxkDDOHrsLgmZWZXgva4LzRpGUt+Bm+B8bhl5UhJNmZjIs/td4JPTWth1URAy3DaAi9grbt2hikMDBfTz0wt0zfGiIr0+6C+uhTDTUTzPXxTkewb4ovcXWOUQgb7h0+BcyCVULh6FQ3fsCYMbsW5GNgqEKEDazViUXXEUU19uJ1NdMzyWn8LRi9u4JvUL+ilU0rz4FIho1wDjNSlstM4BWiaaUOI2QT76pArD1rhzffIXqjo3A/+WhUEG6IFI+SA0h8WT+/RBXtSgRIdkPnP4TQncKb+fr1534BLjS+AeLQY6LvvgjtUdyozw4vnTc+BC1gfwfSUMPa9vgL7uKzor+xZbPfRh2KAcxZ4rYd3PDRwatwTf/rSlthQVHmfxFaJk0zn2shH/1DECk6GpON2rm5Ud2iH48hDHTrHEVK3vjAKHSCF7BSw7+I6t50+Hsr8aNOpBCIhNkqGuoXyGQ7P47L8VMP10IGUaHeUUnwSU8zKDqrkRLBXoyjvUJ3GSgiVJSr2hX3IJrPNajv5bFgvdbsOoFyUAk8NOU/weP2xrt6W8I7Y0Z1MxakXthfSf66hkUSeELl+H+s9mwCoTZVYOV8YZRRvoYLMWKvmKwHfd0ygf7sDD4X/BYWYzYqYs2CR5gOn2+Tx22A6/CIwE4ZWtuG5BB34MWId2p+OpLqUPv74VgqeFZ3DD6Fag6x9JNjQYvz2diEe7yyHVsh1EdDbi0efzyTFMFXYuUIIC7wcQlP+CpaVuYGi+NGWHBrL/jV0YcjSR/hPSwNzFyrD5QDVvMCyEb6vXgt3zGhja5wTy7f/ogMl5dDA4ir/O/UfD5mowOOyPFp032fJjJRRpOvOcpBSOUjqNvRoaeCD5M627uhmmnhkBnwPPwPbP1aBdJk2N2/byF+saeh+pDRIrLrK4zXF0eXsEO7yMoe7EbRL9LY8vrmpTZP9c8Fz9F3ggBYKebeVAgWKInRsLySP0YKBFg6Y0KBM81yHZJCW0VbrJoQU1tETiLAlo/oVtladoMEYS7m29w/IeVWC++y3eTu/D0KXSQAJiLAdXMeL+VezybEGJq7qg7eCNtlK7aV5qCm8fNKKID3HY9iUeDoQGUuTnLayccZo0giQhbkc11x0bBVlyV3h9hg2a2/pg19WJIHQ1nP1mxuFoK1t6umYUpE26CW7BLfx1ymNadloQ4zJ6qa3rIO2s7aRp8x1pya8p1KqMoDZ3FgUnLiW1ueb844czvwk/jOLSOXCiYBOcLVlHBav0SU9ZHZbna6CL2zcq6cxhv9bFuCTdGpT/ZoLIcSd2bA4C39/f2WkngKrsXfS0CYCbubGgHX+WPj36hi2Lz2JBgDDomjykXeUWbJUuCZdEHOCN3RwSfracczZfIZl6F95kEEXPhsZxp+ob7Axxw4mHx8Dq4P2w+uIZvlilj0sLtNH81jVQPB9Lq3/f4g3bnLH2UwUnvRwN9zq/c/TeEFw+UQzCb0zkxr/RvH1CCqtubuVuPw96XfAEXhQZwqbPcTBylzrbL3iEsuPzse2dAmm5XWSLcYE4LeIuvd43EQIzRsDLt+7c21HJMgY1LPKhkXalt4HfqvnkSeY4QtwUri0Ww1YbVbh5O4PVBPShfnYZ+F59SKEHklDx0Qg6cL0VzHYNgIH4I35+QwZ2qulB5bnr7OebASdzV6CMTiqTeikVlzbwmgQJ/Li4lM7U60PywmMU4B0OAw5Z4BSuQRNTM0HzqyJIKU6izmNB1F4cAN+3aYFeYh6dMjaF3Qve8/e4ZBbT2AVFjsMwn9s4pSEW07Ke8OE58jDDK52rb40HA6n5sMvgAvwYU4R7z6tRsoE1BOV9BqEfady83xDMrZ3Z/u06Gm1vhve/XUap7h5aorgMPfJT8M3tCXhcX5JPWYjCymdeON1lNdO1XNI63YCqYyRZ2CQY7/esp6EjSvjmvQqlW5qDUclezF0hgyFNz/m+7X0aZXeW+u6e5SWXj8M4eW/eb7ePntupg0adJLh6PKLYumc8NjcdI+VvUXHVLai0/IJixoW4vu8x67upQ9/zl1xs+pd1jrZh0Z1+7JL/wuuFbcnldimo7tGEOUuWk8ITA2hrmcBJO2exy79LnLDXD7zC9pHtiSn0dvwAk7Uqf8wsohUvxeGuxwOe9ewobFtbTkJaTnRPzRU1Bpdx+kpZ+jC2CcZmlnGJ6kgogVMU8/gQOi4N5de9Kez18jOc3PiUj193AQu3DpomsBc1yozB5tgFnjcvAmJ1toN6ijQt/RjJxavvwO8jMbTvWD7ZHzhKCh+UYHaRP32qvYnFi9fzz2ZhjtrsStol/2iy3WZ2yzPCRYJ99KtYCMSCh1F7nwR8ajxHO90qyFRvHnnfdaBNyatIYqsQDR8zpAEzBfj6liHxz3r+dF0Efnva47KZ4lDZqI9RIjux/elGsLSJxaFgXbCrtyennhba/PgunloQwyJraylRai+u6LmCih5tJHP/H4WtZtAYfZgU83eRvHkP7M1Wh0PRIrDFOhGKNqbT6/qVKDVpBRsfmg7LE+6j5b1L8HHvfDTb9R/6mX7E7PXyeHzyTejYHobxv3biN9fJIDO+HuZ8+o1nVweRY0Ulr/86h33mbuJkhddsZKGO12qSYNFXgteqHZgy/ID8jjbCRytB1nmSTu/l+in6eB2kuBuD6VUHSvoyGSSbUunWhxhSyV8H9S12ELn+KTtX7cNIv6tgd/AnzQu15g81M2Ha4Uz4PDqQLeuqeUyyKwreV0N83gAR7y6RZ9M2LLowkVss5KHuaR+r2R8gpfOmELP4EkQFjoOq+M0Uu7uDIjT7UL9yLvNbBslHIiT5tpGq1h6ABQFreNLKdHw1wRA7qtz4W/1hsHomD58t5cDhUgyl7RXkwM4DmBiiSkdlRuGP6yV4Yv1HSCh5RMODzfDi7ThoKX4ILy69ZdM0D7zT0E9tv3/RiRmrQeJsIH/7PButf42gh4LK4HjRB5rlrbBjxlrY21oKM8Le4W9IwtD/WlFDehq8a75Ce77OAJf+QA7arc4q2lsh+eNOaD+Sxoe+atDoB89ATmg3bOxw4aWvVWDAKxd/23iR9oMT+P1uEQZc/k6hxal8MLYXk2aew86P6zn+ox583WDAVXnKuMyhG8wyZLlvjjyPnqFM65rOYoMwYIvcJpKwNYeVmpn4+l00Hwrq5+FiV3a8m4dHH74mxfGOZFWah9KLb/PEJULApaPgSk8y9ZzcRu1+B2jdlBHgLWvEB3VGQVvpfjgIWjzLQQyMJFbS3urJvPpjNb63Wsiho7fg/bUZ5KR4nVc5nYF/b0O5YdIsoNIYuL13APKPz6Nrv1oR9k7Awxsdqa+zl1y/PCCp/vOc/FUV/gRug00VD+nuv1Z4oXaYZg2MxJ4Mc5jpqsGpbx7zm2niMKVAB46SK+8J+Ag6e97gr/ALfCM0CMWybXBHvS+Pv78CtLta4bCOECz0n4SjlhvQ1zkdLPK6DLfc6eIHiUp8JegvvXg3BspMQzihzBDGbfyLUvon6L/bz3lNaTkdGu9CW7pCMU3SlJp6F/I2LwmIsdACHckWkLqehAsHZsL9lkoWHbkI/thG0QrZLsqu34EKyYCqR82hfJUSzTH0hrAkD1It/wVR4x9RqLs7mHX8Bfm3QTytdhFeyZgODj1S0LtvmEMy9bDLpIecBYxok+VYlitP4gmevWCfNxNH6JqBTl0xy2n0s25XM73JZOhoOMKe1RO438SVfbxMac7OBdB7WB++56ry5To3inVfwWfmVmLm9o3U755JdmkumKsykSpcQzC4QwniL2nS1Ot2WF1kxY76aXDgsw19ubIEuv+rR+8pRzDXQAdcHJVhynRVSJV9gnElM8BS4imuy03ngjf/4aE51eT5Sw3XKIlg70FJUM1+igvs9Tm8O4UMnkyERSa2ZOxaSX+SbqPKmpV0TS8Fe9uUoG7zXZ6j9BcaB8xw6oAj2atXwWu/UyT7KgJiHEvIJDcAxB+Yw74FD1E9OgSNX1/FqVdjqNDFn2fo6fGcvXtZsmAQ/Lf4w6dgHaDYbp7l5oK/I9vA2nc1htjcB93bG+HabBF+KZTLUaNOQruRABheugSFkUtp2uMrIC5vy+/9C3jZvvWUa2MDHxON8dfuG1R6wwRkay/hmjsu8EohC16quvKfC5vpU3oWR349hONqJ9GHtV/o0HcduHH9FOWp51O+vwzOnZ6PJiE+pGntC24JLrD4czz8nugI7x1Hw8hoN5wsO4xpL2uh+OwvXOZgBdc8ZXhz6wR4J7wZbr8SwIIIIwgf/45q/mwFQz1RsLh8gbJNztMl6xXk7SUIlj2H4aU1YsQFc2guqMNd++eDl04Pbotegfudk/h1/iAox2WjTowt6KavhPtbTECntpNt0ixhyOQfLf9YAvXK3XzF+BEczR0JTulDlDXvCGrP14V1C/XYpuYvTUiZjv6rukjsw3naKyCOo4z1Ie+eGsWPFcDJSZow84gctkufJuFzjYQ0GyUS+7j2xF0sUXyEOac30L8N63FH7WyY/XwSZArfAy0BV/S8FEeHVjMb7lTizY+9yXLMA7JLOoChT6RBeXsAjh6RSOVanei9foAFAn7A3992ONIwnd/43Icor/dwSUsN6h+/hu2OQcjX1pHbu9+UPT0Q//vgD76Of/DagdXwbaoIRj0TgCTBXq4oGgLzoOv8zFMQmiZH07KHe+lt1iD4yB2hz4oraYTQaPCa9oC2iK+ljeMXs65LE6xYLA4r3q5k/0M7+ZfUJjRbbsI7Es3A7MJn+HzhNYfdKYDu4gasaPXhf89m4faJPpD/SwyqkxpwyyRFeH3zBz/z+MYV+aEos+0eGtoRPxSRwV+LD2Fdfy4pXPmG9hHTQWZCOJXP8oZxq32pGH34RcR2XuQdi7obOpE25sDa5S9gcthUUFeLJItTx1g1SJ4qjjPHHFHgIzPr6MnMJ2AgLsGzl9rS2NGz4c1dd7a6OwsVs99xQq0xnWx4xst6b1OdhBxrWl0A7dVN0BtoDD0/7nDvpPNcpfuYA0/uJo9ZwWDXoQC+Ts5Utb+Q33YcgcoFQvD6uDc7xJ3kxkIV8rFfB91rRnFjhQ7Im27ll0097OE8HmfEyUNEdA+o287H/PNbKfWjE73jb4z5zPUX9tP30pt4XKEBKwL1IOpuLb55XgY2oWt497FEftObjmqrDpPJ6hH4pOAPDd4o4uQHwpDiuAt316+hYLVLkBj3nibKxYHCXQNKrB6LDUsdOP/vIZ4rIAg32oYo+0sZJs5aRTNkBLg7ex3IKl+FCbe3cU2LIOYnbGHlaGEw0C5BoWlJpG+8nk2uCNAboxVQ5S8C2e++0+wNEog38mn3EU1oGqimVQGWoJ1SjT5Fl2FGWDC9Fx6gl3M78VinOsVY5bK0hi4UKh+n6jxXEIxYRenTXKDlwAeWPLAWVEZvJQFjH7T2a+GtOtqwI+sHJyRr8LwJfvT3eyZLFu4grUf9kNuziErqHGEs65B1+GjYeaQUEj4Fo43sLTh2ZjNslO6ga3Y7oH7SJ5ZpyKIbmq5wdJUKNCl34iWehmkpx2FFpBffXR0AV73EIHzbAD1x8KTQS6M44psoOF4LYi2NetZLSKCH/wZpe50kNYs58z6h3zQrNZhEXcbDJjkd+BMbgWI69bArTQHk6w6Qfvdatn30lwL6osHdQ5Cm9sSA1XkdwPxJmBffxsJn81DLpguXV2SRhU0pPPQ+BYkZz/islzVJvh4Jc0siKUJWHG+5rwcRVxmSWDaFtApLeNlTMQjP+Uea57+SJ5vBs0BlFHHYS9nGE+GZpRv2BV3jXZZysGTJCtZoPEep1t/wT4421IR8ZjmfOJIOCGd7q2scHzqKjYaA53cowyn/aaTl+Q6ZTcHl2WGMNb2NR78H0d7wN/RebCL83rucLd4e5B/uR/D6NmkYO1UIcs4gGNoZU8cdUyp5kAef115DscrnmP/jDnT82oNVNm24P90cxgvW0PQNqRSzzIajOl/CtsWJaLjvGn8q2o7ZHutZduxzPmdnCBnCm/n53KUER7pxevNmXvkA6Mvhkxhwtw+d/uxG/tHIvEQXEkIW4lHnCbBZx4MnmNSCr5UvCF1UxOw5kjhSxRzjG5tgTI0IpGSmoH7pAr5Ud4MeDufwHcUSKq/t5CVbcljc8CjefrKaxbPGg8iMRix1aMDKjG6eap9DYsUytCpwJA62/eTBbycpxSEZrGqEILuoA7NVo1hyzGwMmhMFHySl4NjPFKitGsstX0Uw62EH5o6aAsHtXnBLxxvUJX+A5QUXjJabjyPmJ5Pc8FkAf00Kl99NvQWTYN4mD/La6YoZrpN46JkzBzzWpGe3y7BxTBB63NJhxS5vcGrUhCvT/qMoY1WMDtbnhgtp/FZzDHsKHSdnkQVsUaLJSrNrYOV0fXh6aTyp2UuTu/4M9JZ5ylJpxQxeaXzn5AmKXLMQRBctw6DOsaC0UJbsPN+gNIqh8JaHIL2xnMXxEN8z80VHX2e2fzEMP4xk4cbZfugVdcVjB71hWWQ+MQbCAbfXmHJlAW74FoAntJ5iWwDDqxfX0SgjhKXfZZCSykpeMbIKjo2fz0JX02jvkzA8GZxB87NNoeuVPWh/PAwPt+yEuuVWaJ9sy6svtvB7zRUkey0Pm2tdqalfAST0d6Hl9AlkoJIB9q2tXGvqSNZBvXhwqBqf9ujDjafjUOy5KdSqjCTvjjdwZ88kPjxpC+vVH+alA2lU7l9Hp7pNoMh+EW7slIbB5ZoUvGc2zxkzi8tdv8A1+g9LNxyB3MGjOGv3CRT3u8arCsXAzvIQOB0s4sY/PyH+piyFf5XCaE1Z/FEpDttSM0EgHXHyLEGYdV6G8tUu82NRBX4ofoaddkWSzbZ9GKJ/FY27+1A4dgu8rp0Ntytz+Xy/GVw4aYdfi2bQ4eBDcKVpHKlVfsSEpjNQIPiOurpGwOjGWjZ12oObTJ9Q4t1daNlxj/w2fQVdBX+q6L9ARwraSfSFPIw78JuaT83GkYty4djXWpAKMKSvHiqwWTCBI03LuUbTDrxOqYB0cg9El29g53O+fHbsMbbyrebW6KtY6yGEP+eOw4IRnqAmogGFz21gkqIG5U0SoXu6/8G1kcVkqjkSXx4TZEEhS7is9ZMzig3AbuYFKnS3oqqps5Fm5pGV1TEqEAmH3n/1/DzoMy1a8wSk7gqBpcodgv9W0TnzOHj+bQ5YJIhix7bNsK5Tlv/aWpPwgDPF6amC7sI3nHBwMj9tXk3bW0XwqosrRx1fAyZasTRVbyvNrb/IuqWzYW82wcHFJ+A/u8X4dH8cD2ceYWMbMXJfHIBVsUfQzy0ZRTungIqPAmhnLOXdj5UoRPcEhZqMIDQa4nMvA6j3rS96Gw3B+0oB0BN25NXvyuD7ohsk9eMw1GiJALU+IXsPXfpbMYYeq30AsXvGoGl6DDuXyPFkGReebzaeIR44c7ovlsV48aKOqSy07x1O/iUH8+5ncMI5LRyxMxvlikRYZN5OHCd8GfbVXuUvtmHwZOpBVvpAYH6/C1QftNGf7RF82NSETA7OgUNzFSn+YSxdKt0DYpev0eguQyj98ATGKArCvdlp7Hctit4Mi4HR2h48tjMUq2Mews94Kw5dowRXuk3otIAnfe/xwWNCIRT6fSONurAbV1pVse9MIY4IH4RhlalwfsUP9om4T//uP8UVQzqwEl25Q8kOA87oYVapOjbNOQRBJ7Wgv3wiJFvPQxvvSRR0aQX/FlDj/X5DHLL7DEuPnUoHn/vAuRxxiAsWI2uZw1QzmAHfrTZC1NkvVJgmCTghFAs/uFPRzqngY6EOjfSYhX2TKHvjDr4+upLeXtDEA/NDMb13GO2EdeF7pB2WfTeA4Qn18EbTGYIy4+hh8UaSMcjg+JrTHDHpI/fdn0bnS/PgXPNsiBPURfOvm1DU4TLFjlXnx9PG8y0zH4iNqaBpqvPZR/QmhOROh6et9bT11FJ4GH6NbztVkNWWRMj5aUKN/nIoMP0ppaQ4Unm2OMxI2wKD4gdw3VIHPqBhxlc/nQOti4rUmiaNju7DyK7fuN9HEeRCBtngsRFtHncCz/zbi0anxPj4WYITtxR5/wYlSPH8hiqLZsG7wuMYoefJiyyfYcHTtXS/JgCu3VzEci0urLb4PC+cJUIFpAfnzd5jzbKbPLhVC14Gv4Uzs/XB5NdcUEsdD1gpwzFJfviD1cB/DlJSqjj3QToUDexHCa9GPLLNGn9sEwODPD8Ie/sGc631oarwPZsZqtKC5ffIRycd4spEqToYOO8x8XXr+bTAywWWtzDYyb/h9jgDsj2sh3GZvVTQPQx6P5PZsrOZU1YmoMovLSyz1oADkUq8wSAARO87gqKzM9+QngV/rJXxmM00KE8S4mVmJfhqgxnkaDyCV1tsYYZzC1yKPcRvhi1J07eDRhYa46j/7GGhfSlY3TQCkcszYMB4N32afREs+95hWPUAR+osR8sGF+7rV2YXn5+k9V4NFH4xWa8+TSNkCQukf3LQglAwdBehhJjz9HRtIWh8X0YflWfAbc390L9jGo39GEI6h8ZAgro+HtidTWV/BUkizJOMutfDgyPiYGnlSwsLp4Gq0UK6YFWLaz9N5neGf3naqWoe/8YR7UMFKaGN4F/wTzC9GMAlsx1ZW6YN6u80wdwvB9EJ7Fmm4SilXftObuECMFfrIA+czwLXiREUl3cedQ+F4/PmTE52TOIK6Vza1V7FJQdHgPABO6gJbKdnwQR88yFGP10HE1MCYKTacxItWIqlm09jVbwRyEoW4ZM/rpRYvBUGDiajw4h06rf/ja9uW9Isuzhaa+XG6y7OhtTYEhqvpstucg95U00Xf3opws+PCqOXpyB0/7vDgmIF0FRnAIJSkSi/pxmvNaayQM4pfnE6jzvOHEQ/n0/gUdkJoRs16JutHFx5Mhu1RTv41daL3HtnJNr//sfP1kTQyjl7eWJ7GgobJdGUYi24uWM5Xf8iSq5Wt9DZLIW+DWhBofwkPOm1iq1riNS1iki2URgUJBppVN5nFNiqxX32A1ArdJtMhMdQ8EUNfGofwJMtLKhu6WgYE3We+8Yn4sU1wyC9dRcv6XJB24pIvvfbD1o29NPJyBgev0kYCiIO4aIre3FJ0xCsr9WCw+8VoE1Umxe3lFCZeTrlyLyF4Gw5uJT9BBYeNMK/3lXgEDKMn3qHcHTaTTpRVEcTo61pz1Ax5ymMBZnCV/zhTz8qdU3lh1Jr6fm6YbTeLg8DspqQ8uwCJJ3yhwk1wnA1dh4brVFlC/tSrJVVwU92W9hR8BaFXG8np48/SGlPOF1rkIVNI06y6n538O8rodtZU0ltUjcmRP7P2n2oheDwCwD+jYaGhoZSaaloau8yIimUEJFEJJLIHpWI6h+ykyREaSGK0CClIhpIdklSRpGU1nmecw3fjbzvD3KWNQV54WTYCw+5NYhg2FqCbE238pzyNBzwr8bsWYlw/54+Vh07zWP0+6HllC+M8VaDjUNm/ONvGrRLr+PWk9tB54ces/BZPG31HxfMqaKt9XZwyt0eymzN8EBQIKkplGHuk/PQDZ50IXEqLhNJhk0LJ2CS5Qn+UqEM7qcq4M2s53x4og5lKz6F/9CGHhz9CCXecvjp6iY4rCeIL/xEwWOdPHx7nscffVtxf60yvL3sQEqxZ2hjwydqF9bF2MU9YFMoDyAwm+1zdmGS7TGMalhK+gNnwK9MhPNzQ6ndrIWSJ0niw70aIJk5gcMnD+MSQ23a8voyPy65yk8DcrC9rpKHAmXpm+NjWPVIGaZMngYRgaXAt0/x0ehEOuSyBfa2V4H0o018uf485y+/SrLdwrDI/wLGjvBCiSe7eOYocxoOO8TxOsvZ90o/9pjFQpRGNbZqjoWuvf0cIPIa7K/Oosi2lXh9F6Pwyy7avvI6unxK5SLvLprUIAVzzZWwM7aOyq5858K4LVRSZYmfBlrBMjMB1r4XYLer5RiSLA5XpF6RjOZ6nLNEDkq6BuBs9BxqqdgKvldHolaoAzUIbAb/RFEY73yGHJqzsHfXEhDsv8TOu1eB430HPLG/jCTXDrN90Bme5CAHO2euwLULG3F0gxmvHb2Mq3TesvXJWVQZ5Q3Jzl4wpFdGV8/KwHHhQ/T4aBXkrNPnZz3m2OPmREKnvGm0wHIIadxGnqeyQWW8OAS9nY2aZbcAK07QUGcd7tU0gpBL+2GE9w9s/L6DDMou8+iFJlB5yggFukRZyz0FpGRbYLvUZPjmrEnF3wfBb9xbSqjdRSd9pcA404PW/TcWbIaQui+o4sOJ3tSte4datz7Bu+4DOMtRk873ykJiQgI6/KhEvc0lsNZsBgyZ+oLa3rd4p6yF082/4tKbKjDzkTko3F+PlTPy0WvyARScWsODQWUwOLGagvt98dS8lZAncJ5zu8fC2mu9+NDvOmDcY64xace6k+FsOCUBw5uWgWhfA478OhnvaUyEvRGr6KjwVHBoGmLRbFcwy2ygu7tVyXSbLvQvSuOYrMf4qGgUbFJyAmd3R/bUiISGpekcVPSCLwafgCvlhZBSKQK7aDW/KBCEJcIWtG7NEER0NfKL5q18YKsbNlkBVC+T5U/N+6Bk2n0K3K4L+lu9KFMrANUNH+GotikUJzYDL87p4qU1FbAy5zie1bqGL421YZvlHdzTthOHK0+T1sjrpLI2BCsCX3Cd+ybqdUuksoReHj9rIvgIFGHdsnucXfiQbr72waKdLqzUFU2fjw2QdF86739QgC/PmgP93I5z/SxwY+MDTF6+mALv5lGA/l8I2XcIHHODaaqQCqiJTgBlmzia3n0QBSWmQIr+SZxsMogPPn3HFQ0/oO3xeGK3Qnjubgy+3XPx1Hl3rDuzE4ImPWfhWEdYL2yGflazSNP0EVVc+8qtjSIw/fhK9tv/CFU7emBhujuF3baE5GuLwK1oDP38e4e1hN9jgv8Y2PhlCP0rlPBq2E6yzdeH9h87Yf+rEXhC6h84dlSiWfRDzOtSh2FPSygwW45OQzfh3Gx1fPPVC16oTGX/pXbY+0uJXLce4Hljx8Ges8cpPN4a0jcdwvnX6jBKVZYiDujw10QNzhc0pMHAZ/BzhCjcKdIFv+St3COUg4fK83Fz6w/StssD2lqCSvHd+NjXm7TGysOXiEEa9yAQflir4Yi/5Sy6WIQTQ5ThSMAW0hH/Byu9LaFmlQ2IO6ihW3c6Vhs1kLmxMh23l+MXOdawdfMGXNLrRKf07XBUqAOodywHD3V3GCr14VXbPsGR1yXgHGZLL7ubcMNfW+gJ7YQvFmLwMxjJPLSBt9apo7mxNfdcUOc1EdV44FwkjfUcwCdzLnPiRQNo55OcfbgXRsT+YB1xM9bLP4d1a1K4dU8VqDcOcuZZLwzvMoG56wQhemkuicrH0dxJ9bx9ySymBQxPMZAuP5ahy3FXeM0IQ+iyYvRKQhx16TPlFn2kSYMh+CfAinw+HYHEIHnYOeEiVInagq11PXX6LYKsaCVqbNbgmIm78WdhO3cIVlJtfQYsqDuAHs2y/3P/b9L0Yf64ooO0Pw/TvPl9qOzkCbf/i8HFJe0QsNEErjk/B//DI+Hr2R/8VFUS1PK/4Sq1SZReMA3jqgfQetpNnrc/GkIHsjnJCmFy2VHWOzUTdN4t4rC7AtC/XIyvlsymILtTPG/dP0z8vgpahWRA7eNh2jBsh/oNY/hfvC+3zy2HtIITbLf5MQ/Zj6citXpq2T0RKnw+U2GUE90+PhXGZ74h7771JKUlC+JOM6G9aojL4p3BXVwabmh+4nw9D1Lhz5S+4z1NWHOZ84rj8Y9lAv77dAY9W6fgxCwtqP2dQUYX7Uh8qQxfXN1J301NyNPgI5b8voAzsx/S3jtbQYImQMG8XNhV/5xGifWR810f/IJq1Bv0CgLte7m5tYt+Do2i3TZSkK6pBEtGz6Wh7I+kqquMu3dmos6UGbTYfhy5dJ6noP0HqThaB3K+74MpXQK449lTdPqug5V/S9hNMIDUOn+zz6SbMKrqKwy4OkLG106OW7kNO26Y4fqHr1FHejWZzV6GI3PG4fv8RPD1amOebQ2SGyMhflY8uX5T4JTarTi7YD1GaB4Da4sjtG5zDR2ID4UeX0NoCRnD940IG3ycOXT3bvi8tBqV3O6jf/JLvGuWAU/5Be3WlIV9IiewavAk//r+gXTvXASTktm44egzSJs5kd/lSbHtsTMs5SkINvWTMPllD1Qn2MIIuQkQPTKYlXJf8IWmT/D1OXFc3WQyRl3YcXI6ngm7xHbH1/Db0AsU1zUG/kkvBP19D+jvpDNkpKfFKeu1QLpoDN0428PtPWqkHyDC6gWvKcilBBQXfoCncT4kNX8fD/dYwYr36awzfy3dlH2I2V2TaHdlPd+72Ew+aYc5PsodzBJFsOgeQv5qazJ4nwqBhpm8Lf8U+lE3zdYYR3DSGyS/f8GVA/Zk9NUeImeUws24LXy8RRAnOX0io5DTdPO4CTFPwAPzFFizLYh33jIHF7NFHHEwCJ4Nrocr8a6wS6mH5k5SBZv7jTDWwp3eP/IHq7VCYGzRix0tcyH14mqQot0ktiGLpMXc6WxoIQ0/jaPVc5n831vBS7971L9/Fuc0GcBgwDmqPxyLzx95s9xIX5QoXUvfL7bwwJdxEPL4D6crXuHNhr1s/P4O/hJLAFxcwj8erofNNql0a8QzfpphCSvW3oEb4y7zp6V3Wb+7HlslRTFOM4PHm5TClPQe7FX7BqxiAb/LzHDMtYP0I/M4CUqE4hypSfjhmgSc/nEZ3g9UQUG5KV5TVoRnvw6Txp08NpspQgrfNuDmdisIlI2HOwev8Of7t8lN2ZfSVgHMnSrB+Y19mOZZT+rqd7jjizg8yRYArQlC2L6zkKLaA+DAaWGwKnFgoceOqLgll4wTMtFjsBGOT6ni5V/2wtGRkeiuZM3ievKwffk4cBpIp+Dz99jBoBMEFIkvhftT8rjt3LTSlZa8EOI/C8eBeO8gbz3Riufya2F9lBCltUyF5oW1uNh1HBn/E+XfPvLcUKcBFoPP+ZTxADus/Uz/RXmgxac+2GORRTLbCvlZnQbUr15PUzJHwbyd7eTjLElip1fxTL0xvC9pOWV/TMKXMTZ4rCyJXc484GXFgiAQG82v7BOwLf4R+xxXgZG6/6HnOi/86i1C4QuiQc4umwX0ED6mXAD7KQr06347jJ8YRfGnO3GWQgnUfnnJd+EZBseWQKCYGPySm0slT7upNcuHyxzfwBa/YUgbXcmiUxNB1+IFC45/Tyf7VeFLxQrUyAQsjmhGuWdq0FQbA/EsCgeb26jOcyMlnf3MfY+0YJ3zdj4y25/mjdWh05kLsXXXbwozWYdhIqKgaWNCkxujwWirNozcEAKRscv4Q8wGerSlB8KtTnG02QhKeC/A5/M20JiDC+nullEwKiOYr9aYsomvDgYmL+Ol8x/jxVuL+EbsSqwcPUzXqi9g6GhBCJwmB8KTLClvaiRd/92ME9+MgPRLUyDFK5Tbcjyxs2UxbP4iDK/nhOGV7onQu/EqLBX1497/CkHg8FG6/C2JtaZPxeX2Sux/QBtSQvwYd09E6c3zyE3rCuvsuo56A3tINraf5yd+4EOyQ/T3sQi83+qPKxcvgNuHIlFf+wxfkdwLE5Pd4ZiIP2fXrIWCNFk+ouIA2d/C8PulJuw/kc5vvojT3xiC311TyOGJAp5ZpA8Cq3u4oFAIrGqaIMSkHB2xHuMkAkj0RD8pVunxiuRPnFkUDb3TL1MVqMKHj6dgQ/0+lp/4h97deAM3bd1gtWgC+25bCGPdqsAqZy4d3uAI564n85ZR0iDkexYbBoogt2gnGN65TeNl/+Jh1+/UkRWAa11FoW/aIPt4tUBxUTGONbCEFdH+5KU6EbpE5NF6mzKHrKomo4rR4BsYTpXjLTh6jiJKt6ujRvoJ3v7bBzutoyDeKptXApJgnByob+ujS8v1wXmRMffmF+MP24NwcKEnZnwwhOC5pWRz25cTKkQhO2UWR73p4kyHkSy9R48Pig/hefckSj04CE+6rUkiewHsjTGCES4J8Crdm2W074D5oq8k+Pozjoe5nLX9DLYIj2FnSX0cCLaAXWaCICu9Ei0smvDB9BQMHD0fIsyCMfnKD5z5QQkmJN8jgzPq8PDtLGJ3XZp1VI6PfHdkeXNlSpIyJc2sSOgvFcXCM19Zff0E8B9HFKv8h++//c2aOgp0w2IfVu8BrBH5jli3mznVHvu2m8Gcrl3gJ/MBevsi+XKXOa6LPoo2N1bzJBctKnXLp9dy9+CkuinM3WkGUwNdMCn4Cyt+T6L7LUO8bX823pFZxFp60rgoLYLGLrQBm3xD9hpWRo2CAjxxTgG+5nvQzpz1/OVEFi7IvkjTRTeD+OyxcFj0PM3tVga5v/9xpm8sfVZYCQvaZfHgokxINlnFtFMedTst4DY70dFrxfj5ZA0eDPkMronCUNWvBiIDOrjzXR+df1QAgo2q8DK4ju8+/gpf3Lz4/brH3PHiH2aVHuHFObMxazLzmDGufExACYpa5rNHUiXfyDyFvwQL2P/qBnBSkKRvj0aTafk0MmlqgdFTbcGoeyeknwkjR/lM/PvqBFg3ukDKlXP0p+E1D/TIo+a9R5y2fwTklq2h9KAc/DCuiVa/+8cqGW6YE5zJF17fwqMVI6E6S4g8DORg/wZZnrfbiQeNLeBY5ga+tecy7Duzg78L72Cv/pX8cYwgJ4qpQDf+wPihfbS0+Tt1H8mgmTXSdDLHlcWn69LD2nQ8/WMfSjlNANNdmex2NYI0E3spVwJQz9KdxUJDaUZpCsjtKEKZEW64t46gJnYC/pSP5usJyRwjPIXV576Fd5WzQLl0C0x+1IQ2eYng/ssRYjed4ADzIJotIEh5b7TYfVcfuvrW0VR/Id4afYa7YqIoKNcYtiW9Jhe1SPoX8YqiH1/EgLq1WD0rjpKeRuKY7B2Y2twBrt+kIcJaC21Kvbk1JJJtKit4k9dMsCl/TH/jfUk6bT8++eLHnpNN4NLC+TT9sBEWTTfBQ9oj+M+/TPITE8fVK4DH6obC90xV9gsXBsempZgcn06VhjPIy/Ayhna20cVzcST59y1/WeEILg9HwYTV0vClWpXi+4nu9M9j6yVLsWnNaXxz+A0XVyyAsf/6sE00BYRclWFVlw3Hdf5Fj+FePJTpjY+3PIQZYxy5YYIazZU14OWK01jFwh6sygAcbxzB1INb2DjqMHx4shaD1Zy4zd8CTi/SR9PrBqA8XhWC1BfjzYFeVrBK48SqCfRfpiiI1HeDw/G3oBydRG/u3qSZBqrwXqkDV3wvpU+TimhU+gBGju6DzuY6nL1hCVz6XoDu6jE8MUsa3nmkYsSMLvpUmwwfTceD5BIfFln+lVVl/Liudjw/KlVAD9QDq8paHMidBgneLlRvJETDhaG8omgM6Nz+xocPhrGB4kW2OS8HfnPsYZN3Gj3b9ZAv1rjDofnlcCTuK4UlbQY/fXnQ/5rOa0xM4MHTPi4p1YQfH5LZ6cdaHvnjF1942YHveq9QOTrThepKXGOvDg23llFk2n90fqsUDZT8Q0drO1z5+g/4f16FydukKPvrK+g3HgFJjX3Q9CAcnUAVz2iKY47lEAXtscM9HdIwIOmGsrqN4Hx8LOh2yFCp/g8KX9BAi6a08fzFE+GJZB8efJtI3hIquM3rIxQbKkO9vhIJptaD+kIXuNvwFtc8rsWkB30gu0KYdLoVqK9TE443I6heeIXjfcN4gdcV/hqRx163r/DJ4Wa6HBAJemLBeEf8KL3OsIUVm+6jx4bH/OBwKFbYeaGH+m3q9Qvml0usWTEkgbN93oF+gR7oyWhzwW8JLJSwJXm1a6wUbQr9Z9X59CxJGHXTD8K78mhoNULgsuugrKAPV44oc/6bv7AsdhnEKojQJbVIijkrjd6Oc3n2KGFYnKUClvEX+JN4DKaXGMDzWQOgG3MOB0NUYeHAKha6dAcLbihD7tPjJO12GB6Ebme9tK18+6Q0h1vk0X93OkDfcR+GhB0l2wgBCFyahRVuUXSmohQ8dXzRQOsiqS9x4tUiBzC5Zymyyh28lWQL70YtxMJlV0BUV4JvzjsIAU729MleHoK+Z5LBvecwfHQHrhdVBp0JBlSeaMzqj0LhsYQItr12ho6U+5DjtBL/ujyjtsHXVGSrD0N+6bj4YirUuJ8nzzFN8P3GaPhv2RbMyJDjT+6H4fp8PWqqmwhNWa1Y599ND46exVOvEtjX6B/NP9JOmrq7eVPnKh55Zgr5yMvB0Mz7HB70i9WmR5HOqgjQPFvFZNXLDvOecGLbT9zzZAUEtspBpJMLJXYcpEyZ6fj06RuIfC7Cx0ZOAe+Ucjp435hPhhryhg5teJltg6JNl1H5+naYNZDFz0Qegvg1VRhyVKJmiYcg13SGFioyHMuT4YLpWaAQWoH+jg2U8lIb/y0ewpbmHSCaOotD4+OxtskWzpVHs+LWJjKaMgdmG6yh1JtqnN1zgzan1fDbcflwfu4FlDeTg/TUIs75dpW7o0XQUmcQZYzcKTuDoG9/FSb2d8OIeCNUCDCAZZU72cBlEGvdVvKMhS2c/2kf6FhagkSiN3V9XE2T387C4mMGsF9SiDvfevOjBbn4OnEtTBAbwusVwag6+yEW3BhLv1LX8boEXTBaIQW2UxdzxF0ZsFs5SHUd3TQ2/CcsDdTiMglzElDU48O3ZcHzwxnWrZMD67Fx/KvmF552kuPJRZ9ptXIYG7+s5Z6ESgw4awGpaQL093gMZXw3JCE3bZivEEPml5ZiR4QV6//txgIvO9hmJguptfshpNeEI1b+R0drzvHxbglMf72MVze+I2VlQf6ZXAmmtbpQbNmJb64iH8ssgl9DEtzZ/wmD+t1h5YTb4H5sCy1rKQP9QHGo2j+brgwcxZv7fOCeshWYaD2CC2ME4XCkChf0DdOeAB/w1FCCQ3W5eLRZABR9D5D8NDk80HmQbaWb+Gl8D9QVWkLUtQ9gKawFe5qu8l7ZPvp52RgnrKyHO9OP0s1NH2hh72yMebqRxh28TVYjzUC+YxELP1mAS41KsVxYm6wDjRiWd3LysWe84s53rp1XSd+C9EFISggfjn+FVqaNVOCehtfLw+iVVTRfHKuGV/pk8OXnTFi1wQiyC6tgkUg6NFhl0NdGS3ioqEk9W57i4DFFmGHTztl+WRyUaga63S8pWfEcxjX85WXVarTWxwOmjdqPdXsW0bEFBdi0vhht/xsJX0/vAc9NZWR9rwl7G9WZhz1ZUXoTBz7bR9UdUZS+MB0GNznAphkL2b3OBU7ElNF/0cfgUnM70atKemfZCnIXgqHYtYOCcydA/MNQfrlKjrKmT0UPx0GO2+DPt+wZ8/9mQETmX0hZqcoOJiYwX+sS1Db7YY+9CES2fcT7riko6CFMqrE5dEswhW66l+KN7Y7QP9eZ/fKNMcJ6F81zc6OoG8ZsJzaHl3/4Qm80GTdLD+OB5nGwvzae9nkHQ6PZBJ5WmA5P3vuiyuAX/GP/C7t3SmKgZD6L+RpCaccwmeZcJpN/2zDEvpZLAobgnX0v6ovdJAf+wBFTqnDsMRV4WPGBt0Rn4SkjaxQ0kCaTwcMknxwKMxzsOOa+DIZZS8DX6yaQWfGUMbcAXb/ro9ztRTjP5DPcCRuA3lI5fjo3kd0eyoD+XQcIcZfjNT1bIaGtmbY1jaFckySc802Mg/U/UqevASdLfMV1ZArnLrrAOKNJ/KbvLSaN7wLPtFbcJTSIW8I3ko5cGi7VFKHZbVrQodRD/63L5tELjFl2sigN9s2AS+FWnOleRBfGM24KLaCx3yWhRX8qtDxZRg3eQdw5aQ/KLCmn2DVnSKLgHNioOrHwgwjW8xAFuTcuvId7oTvmM4e3DFJ00m/MTcvnZfbO8NvSjhPoFV2rM4THU3X5yiN17j0+Eawrm/HgdAU8fm4bxR1fSE7H/3Lh3Ze074QV5BU2UH+/Ni1f/xUtrjxAsUQlWOVghS5PjlDuoTJefdsJfS0twfb2fxTJ9vxUTA/SlwWCuegZqpVRAe57xuLnpUDEaQaeypCCmsUGtExIkY95+LFGw2M6c24XfEpxIQ3Bi/hn8lGocDDi8+8I4vOaUDHqB6p++AZhdlqYpB/HNh/KUWWELjy4vYn/HVWjuUUWkDZxO/8J2YhGt8UpVdEJYsxf080rmuA+N5mDY/zgfcEvzn0uAVdK6iggoJri1X0hROcS37bcCt62t3jhPys+6aONfftj+ddOO6gN0KOSxCX8uSwLkyryUDmrk3aZKnDU83Qu8tjB6u/+41nH1EFt+m6ouRhF9gHNPGqcC8g4KGDRwV989vwdWPM9AlMOu+OHHY4Q2zWaY5auwAWRL+jrtrWweDgcZ8lXwPXOf2RqUMwxD5fhBWsZ2FipQX8kDcCke4h3l36h5ScaYc0kA8YTK/BOxExsn6ZHF+8juM6PweLFP0nxz3lYKBzOHoVtWLrtER26MImuK5yF7bfvwQw5I6jSPknlSuvx7yUC5bejuXNrNjvE/AGj6mlkIDoBrmywgdcLrGHClCe88psnGt/cytl5O2HMHyv6HbOZjcNa2am3hO7luoNXnwQE66uQan4LXO66Qlk1Q1RS04mJOBd8Xl5kv311cKJPBkK1hEDzVzE5Rb3il0G6bHIgk95u9IDZivehOk2Zbq86irKOgvj/b8tJafB7HYAnHiqAskAeNbt2k7L+VJ7ivY67p92iGZ9a4WnTBLCfuZ8dNIpxwdOXsOKSM4w1H+SRf1vJrdwBCma8oK7fc2idrTisu18Mv65Gg/eVe7RHoo6xt40nvf8F858rYuKoRjh1zoF3rLWCcrpGT4XmkWBqL1s9OANb1ZP4xzllNF4gBpETtLFddRzu2a4D9Z17yH3+Xr7tIAoSa6bDFxTGSg03+FtfwS8sdbl+4kiwmSUDj9dFgt25K3hzhwgPlvtiZNQkqJ4+Aw4meeCfw+bYe2see6uLQXbwUwrcvAHGZ5zDHyOM+dqrDKwJM+RL/v7cKbCYNmRfQd0tSmDsoQL7JJajne8Lbsu2Iffdu+iQUxbnz9+GriUzMGHbSb5zUh22VIlyVqEI3Xw6AGmzT9MxY1P6dPw1+RsYQeCWYJ76oAJiN0jA9fqTXNk/iaI9BzHk8k4UsXRluwiiGzvyYc8JWd7fUI2Vmx2hNngG/kw5wUmp+bhI6ysVTfOChe9M6azUcyT/jdjaXoX9pjpw0Ocr+uxcwD3jMsj/0koMUB+HAtUEo2Zo4CuHx7DGfgPWi6mCS2wsfJBUBq1xq9hgdwb+buymmNobfOC3D2+S2s57K0bAwdm6MNZxHx7NW8VpNpdxzYAab321nn702LG3cQ3Tvn5atyMOdnsagm3XCLTpW0Yvzs4n4ZazfHPLS/pxy4dHxViR45hYOCCwjedqqQGIerLMBx/4r9ybJtaX0HfpPMq7OY3WjqzAcIUACvQ14ctC46BC/j0Fq+pwXooWyfvaUkSHC3+7kYCrLVT5hPQgO7o4s0ueGRgmmULK91dcUi6KFxYaUkapIiXd6qSFu3pppFcXml8YxMK/dvDDfTt5TG2hIhNf3Hehi8+qLOJ584Los0g+fWqPxSd+m+DWNE1oHtQnKecYFE1ezaVnx+K4JYoUaJVNuFiFbk4bgZ7S5/nzHRPgmFq4c1OcJbOC4c2O1TRdqZonZodQsLcbdcx2pWnjGimlcQJseywEkw310OepNy+7V8gefeuo1/I8G0yMhfeSYrjS2Yr0L2lBh/xykhFQgKu3FGCrgxK8ErCBfMtjoOi/Ghx7XpBmpAMKHRGG2SL20KFdAFM9LqK3pDRWzEqn7idJ9IUmkKfwZDpIWrghyhAqPs3Dxs+HQSn7Ge35eY4/yk+Cjp0r8MKhU/C4aQ8IfKxkfC8Extr+9DZRAc+Odyb9npk0tNEAjcXOUcpxDzinughaE6rwpLEwHNZx40HnTJ7odA/c2q+x52xxev3PkZNOedH57i9cPKEQZ+tbg/2iR3RpwRs4Ft7I80dpYv+DA9h2SgmKPQguiGvxS39VNDcFGIw4Sao/DoFo3zRUrFrN9zeOpl5qgVURepwrvBdEdLeA3U81WMrHSeK0If+78B5XSfnyn+XxvPdBG/dqm+DMiwV077Ek/3tkCSHOH2D8NGma1rwQlHMvcZDSWQ7VO0SNRxX5V64KnlNYixarVGCR4wFyGlwOMicP4pxRDBcfTELp9Rt5SoYIbJwVjnXOY+GduRp8yzgOuXFVaF13CoL0lsNYDMGZ8X8ho/81CH7zoa7K3XxopgmURqyjhVMNkXMOQFRYLXpXutDje3ewYe92snmSBZuWC/LSdxowSz4CN8135HTFpZD0QodkztRSy9g2kj8sSaldCVTi6AMLEhXhx8h09nLsxHU2G3DWR236E53MpztjoSPqEyTdsgONfeWoZqwNm+rCWPa4JaQdP0VlJU/wy/NrlNU8n0LG7ubIhkto4R/KqxIBfJ7+YNcPYyA6xRKXkRFYVh3iOxIXcMvJUnQ+cJelnldyYLQkHEwLYt3f4TjcN5+XFc8i5xmeZLsnEzZkadCNTAt4c+kSTlluBx0JYuS3Po7MRuZgnMAvfCHlhobpNTzP2Y11qj3Z+NtGnuqgA2ey7lLANluUtU2kJX29uE8iAxN0fHnsj3pcXr0KOpYcInN3Q1hk2kme4WLQaDaMmypicMnkKCh66A1fekqo+4oiR2oFUZwpwIPBPRg0dJWqZ1mQQuh3Wm70js7Vj6c9rtqkq1KAYd26ICBmD4MNUfB1HIDq6l+QuTof3OXcKLZXiR4LZvOn60hDQTdJ4rkc5JsxWqeO4+nxgZD7VRaKxa7iq/FBdCU/C83dFtD+5LWwTUAU1hoOgNOI+eQ/9QR+TjKnQktvePjwH4nt2gaq+8S4STKUpBfIgnqyD51QKgFfC32yNNsKayfWYSgp4M57s8jvdyhtLW7Fw7vsIGmHCdr/d4pMTw7RBp10rBy6CWXnzOGtaAA2ipcj/PeDTz0YC24NGjB68WkwzPvMqW4pXPMpBCwLdHC+nBNL/eik4690OevaGPg25QHuVX5CJ/oMOarUm8y+zqD7H9VY9qY8119+RZcnlnBbPMP7R19gbcsT8gg4BupDEZBVuANUPHeizhEdgKuLMNerAj6mKMDb6zNxf+Ri+CWnyfXuPnhpiR+v6b+CoZWyaGUylQc9d/G+JE2Ybn4f25bYcLDjAK2OIFxklM7dtt30pe8B3iwThmdvBLkgUwoSY0R4WxVA94N4HGP8F00F7GHZ7hhaf+wc7DDRhX8b28h0khBEHt0O4m5aUOngzEORU1Birw6dvdKCy+NDaFh9Iiy75g/VYcrQd6+QnlT247jKEBwRI0NHhl6AhuZrHNBHeP7iBa4zawTtcADttCU4YWE3rfz8lJ9qFaOboy+9LO/CMMs69NS8RiPa5PAE60KT/1MutL6JJiM66fshH1gjk8Pbnp+kaXVL2TvlH+41S6eMTYIwWuQJTal5Rgs6poFSwAea964cH49/gbYeZ+F6+R7wGHUQX81XgtOpOfhx7iQ+kmZP/QI2MLd2BjS6d8MCNR1YdbCQlj/9DD+7LKBl93vKE7jGlUfyYXBlPvYvFuMZadqctqQL4uNSce7PV/DimjockfgLQT8+o3qLNHs8nYkak8JQN/knHfhRADXWTvB2QgjszbYBkatDfK7oNwl5nyPxYk+wuetFNn9fg7a3DKsHPmXf67l80XIs/Gq/g6ufuJCIkC72L54IHWYN+GR4Neq7mIL8kTz6eD4AX6XLQ3LZdBzfc4gUtt3DixbzsECrCxfH2oBYjgTJR9bRL7d4ClATANGVoZyWM4kENEQxXHsEjdFZjjeDBfn6641k+ukaLqvVY1VJDai3l6WPPRtgUZMsq84M4Olpj+FJSjued7rMYsX1XHXkKxQ6GMHGN3V8cvErnl9TQXPHjObJE9P5lNldvt/5CLqdhmDg6C8orJCG/3Z9w4QqOap9Y00DE85geW09K4e042DvSJzo5ABbbm3GhhtiYLBelfZHRXHq3lkUfM+HVoVO5sTtvZB/5BuvznDg0SnN1LtDDUaX3YA+tT2se2sfnH1miBGCF+jstem8Il4JQ1y6wbFDHS9fU4GmlbJc3VUJaKvAKmfG0wyzBjo+ygG+TKmEqpOPMBG9+UWlAUS+v8YzS61Je88HVi/+BfUowiLP/bDF/DUeDT8Cwnb1uOr8KJhSvxq33XXjmvmb6Pna6yRytxGL7x2BkrB7ODPyLa1/ep/bREShqr2GXwZmodqOTMhre43THtVgueUENn1/mF6KC+LkFQf46CpTeDJzmNd87+DWHjMqzLOlGzrIGunP4GvsDBT8V8Ft57fDAmk7EPG15PvVU/gZVpD9yxr4dkid1tqfwL9H/sHeS9NAe94lGrtSGbJ2/MVlC/eiu18hbzGuAplbVzF4oIgsblVSwfpjlJkmgR61htC2SAVDa/dj3EAEzBn+Rm9yJ7G8vCBbNBXR0Q/j4FXaUhy7ahRY+0+GqLrXeHXlcn70upr8Rk6jRslVPHz6KZyuU+SfKvMw5YMyjAu5QCHOXnxx62yKmr2Z98cuxALJLaTQFkNBL8K5z/wEf95sCiJfHVn0XiKnNYlwqtheTljoREc3aFOO8wK6MG0x/S5ypf+OCEOV9hpaF3GehSbbUb2YPvpofoRZjhI8tqWYfM67YPKqX+zvpQ+FI3LAIncx73kjC91zkK19jSl/+lyW6uhlN3dbKLdVZd/zgjBBzIIvPEii6SJq+H2UG59sqUP12evZ63kZPIIe8rh7gPcsHA2eG/U4+Nxv1J3+kb1aVeFA4hAmpBagdekHGK7ugOU9IfBfszZ0zpuOnwV/0bx9X9H5pwa5Pa7l8Hs9cPbgWNKbHAxbJWbQGCV1WJh8mxSP5YL/51+s0LiAH8woYbvbvdC3wIg7ryrin83ekLNuAuyLKmDvRxnQWDaPYmxG0syBFriwejScGwjgxktdcFh3GuepWcLSnH0cMLeX1/89T0rnpmGLay5MbRxBLV+qWaw5mYIc/fmWviMcWhAK9nVxcPCPGDdIi/OazCYi81o0WykAOSk2vFg8BREB0hZ5Qf+gDDQlH4PWysUIyyZQycyfKP6rhW0jr8IzEEAzNSFAhVOgln0cZhkY4J1JJmT+5QF/6DwCRs7yVLzCleYucMbaFyKwc+IUyPy3HUbfUYas/rd4JGoUFqSJg/dlRchVtOSRTu384vR4aOJ9mCubgTWx3ey+vIsOn9EHyVUX0XD0ZZ7TVYMaLztR8ZYj7F/3FT5uXQptp5CNnnixvsVfXiwWjc5HjTDizi6u+dwAcatHQp3LaArzzaB425n0ZBVBVXoaHPolCsnmRbhhzmWup2x8oGcDFjN1+VTDR34oVgRL3giTzPaPfPpDMpTkzKFsNSlq1dyFCj/NYXPIfDr48g8oR7zBpDSk3j/3OXxmBm96+Zif799FR16/haR1KnD9mjfMfdwKe8604RynKLoRM4blQtJhR+lWuv7hK2b0/AXXhQaw2+0PFJ+XohGvZuOZBSM4MMmAS2k3eYy+QF8tpSg0tYLtk43hklsC14z8wIvFa8F1Qx2pJGVgb+YwtbnJQIT1Izxypgm3PBEEbe+jJOpSTtdP28OzyDM8QywHhFWCILpoAOYVDmHYq53sbqcJB9INoNG1EGY5x1Pj3S5M0AmnYBFB6KoVJakOK/xmV0DDo2zgeWIL7PongmWPFtP2U8HQ6HOKfZ5mwOal+pA3vhY03A/Q5y36sGK3FizM3oGu+wzJ2ewABbim0DyXj3Sr+xqpbJeE1pVWNK+D4O/1WrqceQzDP9bDYTsRepd7A4t//cIbKcas/tiVqwxkqDmYIEJ5D3fG3IfJFi/oeS1j+jxJPH+4iffVneU3rYf4x9Vc+iavBeHXXLFsQBmU1lvBtkodfKffwBdeyWJ49UrYuxIwwC+WW/zF4WlLI+w2n4vjFR5R+yYTbtm8Eg+GZKHVfTcUmnYaAj8f5+EgB9gzazSmFe4Ege/VGDYqF+Q88klU+jPMKJxPBpKZ/FsujmbWWMCoU8vIZeopyKzp4FNfRkOdWCQ9l9lFGwcfYOeOXTwpIwEvTJMC6eDZLLtvCe2W34MR4zRJwaMdmg8QdPhY8wmnxzTVV4xCH0pAbrU+fb7UiV1r/5BYyGLYJWIJEgW70Sr1HF5p3ctfzOIZBcbBNsEQvPLbnvRP3iP1dWvIbaMlmQckUaumPsfftqMgKQuIzxaCVR27aaTlCtqo8ZXmTN3KoWF1UKP6hber+tDDkhVwMkuZog4qgPPat+y+8BoPZ6uRwO/tLK1mwiWlp9h8SjUeqdxJt5Xf0ukgYRh9vguPGJ5Av9UWuH3vOd63qgiUb5znZSHbsU0/i4py46lAwB685k7naZdU+b5UN3p1v4CEtzuxrLcOxoyToqsTbDm8zonmrDCHuu9j8XRRMTsuUaUf8ZfQYLsVOEfIo2K6HOxWn0RvDIXp+iwl+OLpzCk13tyxTh21f38j3YEddPfQJXa9gfw4QQ/Vwi/TgoN2sOSvHR96fBvaRB/BzjJ3rtr1CXr2Ic0QTsU8L0nqMNdirUMTId+/nAL7dmG57Qz4NV8L15a2UlnpA+qQ+0R3vsox/DvDqxxFwVOhiHwvWNLx9nDe5TgbXwYvh1HRY0E9XQKk05eCxBsHMrKwABsOh0uHCuGTjQosn3YCGoP6WHGiKQ3nrIf332fijUvrMUt6JNTF/OPa2wfJL2AKOG77SWbr8llPdgd4Kg7QCbsh/mWfz0+3GsJUkwNstHImne2ezK630uitTB1ekZZn4Xf/MEY5gEc2PGGRTj0Y1X+cr0nIgf2Lp2Q38gZUzRniRI+zoOTawcv98+F40AjsmGUPQbl7MeXeeHqxPhl2zlEj6VNW7H5tK9jL61PcvAYKuFRBAcOKYDgxFk+vOI6GMoUk35cGnXJ7oWLrbLIpkuQLWxPwRZQDTPpoCtmGcynZfiWl67ylnb+M4ZbaNqowasH2zGg6q9dBRm4ZcHGJCFQPSOK8ihhuVP/LL9LsaNaBFrppYIbv58Tx4e3uGCBRz38kjaGq5ha0KkiCcPsuCpPrYu8SO6ywfMW648eCVF0t/rT0os4kMxhSKOflyldxd7Y61TsL87lVezGsfgdvKDeGa2aJkKSzHUPV5SDltDxGthXRhHEqYPgshuaTHhS2bISWvlAe2jpEiaFnaMckQTA0JbJ56EzLd8qw1L73JHbuLm0XVYDOHccx7rgNCW7ew55jlGDKoUC4liHIm19nUmLrK+hkY1C9VomjFg/gws69kCTxiWNaHSFZ9ha2JLpjW/sF7JcqRZfyDWw9zp4mVIuhkUIbzM9eQF+E1KHc6x53tc0jteIgrvwXTQ3sAlpxf+Br3S9Qz1hP36ONYPkUPbgtOpPW2l6Di3YGNPXlW1Ax3smnrm6hjUEKEJtznPqnxEFnvDK8m+hIj4M7sc62mn5ICHJp5DJUvjwbL86ehjklG/lQymtOeykB4/Yshq3VymB0fQqkRbtzu1QXXbAmNrgRQlOEesk/NRWf37QFmeR5GDhTFR0D1GBKtwWINC/BaSs+c6x6Lz/IlOAHO59jSd9IGP6WT9+2tnK89TDZZ9rSG48o+vlwKfWklsN+UQE+ILkMm/ZpwO9heRzSNqDUvaUkqNHLneaNbNL8Bhvez4LiOYEQ+joBz7mZgvPUe/DqvR7GXk9H6bY8fvAjkqbuaoZXiqnUfiqW4pJ1aM2AOOwdEKCiEyfoSd8miJqzkSvPrQGLsFe48Z85f49Fmt0cix19QlCiEQamkdXQY7UT1hxOYi/BR7z5Xj99WDaS/81ZT/WJFtDsNALGx7tBUf9lfKYkjp07J5MttXLamUXYn0s0v6oft9W4cOC2sdBmmIFH5nyC3Kbj6JhSA6xhyy5/Q7FmtRE7CN1HwylZsExCBPYpnkHT9nx6oWtKksODPH76dPr+QgRkj4WjndBBmD5tNbV1mkLsV1suP/2G/+Z9h2zrsfi+WZrHHjOAjLxq0j4ghYcyyiB5tzZ0W8/ASfsLQDNwJQSbvuffp5U48KQktQgfhQM7NXn+hZEsvVAAdH4JklzPAD2ZXc37eTV75RRT7i1P3ADqsOJEMyhdnELDOeow2SsZHByaaXlzMeRYdpGRYQktjH+EBYpVOO6qFhSXaMNOOWnQNrrCu9N30MSaJeye8oH2urhg/ZZnJPRQjBVqk3hOyzl6+NYAPobNg5qJ4VTePRdst1+Hof0r4VLqM4j3O8n2YaPg+M42LutjqFRO5z9j5VnUUodrj/zFf5+1SXd5F218kEqL5v3BmPn9pBYoCTZZi+ix316OWxGBOkOrMEpYDTy33cHcJ8dg+Xx5dt/1DgMnjoYjOvNZ+dNaeJ1qDs3qF2l95z0YZf4Oc76u4drwDdBy04fOF4yCH67v8M5tMfx1yIIuuhuxi/Zo0Np8gyfp2WLh6Ao6djabkscIQ/TBCHgpBRzQGETPpyuC11NVnNR4EDWPXOTBv1ZoJilA4gkS0JpfhQ7qT6Cp7ibWTFhC9VqvafON33yx7g23nPfmSWo/UG60HsSNkKefjzqx4Xkjlu49RtopQrhv5mlIqCnGxP1dyJ9ewcOTDCdfaZF5UCNYpE3krkFDHhkryj0jHWip0X1YFTCT1qvtphmXhcAzbz0serUdRvZdgZUWGWjtkIXil57B4bBfdGDPO07JeUZaKrKgqToeNHU66H1hCpeNjoEbjw+QdEUx/5znRbcej8bwxtOQr6cEL3QDeWjwLKX4vcfhGlUOXRyOOsPqfE5kPl6QrKHxm5+g8HEt8PDL5bzNJ+BNfzInVe/C1vsLodc8Bl67rOAgtdXQWHWL66eowLmpL/m2eBQWjl6KJXuCoHzccvIxrAalA0S39glixxchPKUP8Gj3UZZpXMPNLrHoftgcUtMseURUIno2JtPpn4mkN+IJjE+wAp/fOSRdWM3TXkdyrkItldz7DlKDJ6Hhhh3fP7eZXl9z4tP9I2H3+1QoPrQVkiGLb6+Qgd13LvOAyg7sz7HlhLpXJPN7MeVqM0TFhYLJwCWO1MyjTzFLODLuG942HMm87CYn/DQmexbn82UqMOaKNcz3WIB3d1WRmrcELzisyampt0CgLQh+yafDScM8XiinAotXHSLNk7IInT+h9uUzqhh6C+PeAjuduYHfwk7SzS4d6BwUhnwVSzr6SQgbzd5gpJ8r1cSOgpt1++H0SDPIDbSm+kJBPvpaFkYFbqaShimoui+L8KML2j6Po4A7jMt6SuDeoy3wQo6pVFMYKs/PAYvf90DqajKVyhjhcm9RElz8HuTlArBkZBlf2P2Fdi6ThAv6EfTuwDPQ6amB3XctaM3gNvau1GW3qbfwwLqPXLd2LS/bqA5upMnL4+NYv9gIXR7o02vrKDp2YgOoldtQf+59tAw8Tf0rJsCgfAHaiQZg9ZZX9GqONo+ZPZvjN/pyY8sUfJH/kc/f3Mapyvag9J8U2DeewR8nUuhmig5UWJmxzFF/FA1N4394EN+pCPLQ6BFQWbIB54cvoqnpc6lbwoKv/3eXchYEob4GkevuL7TydjtrSRiC2LbtWFLnjZvzf8PzsjH8tr8cb/4T5niNYP5rKMNvtm7GEf80YL7oZo6xXU7OpR34/uwd2v+8kiN3CmP+yztQnI3wNCwERpfbQ/uGo7hlZhedGruYNsZJ0RNrMfI4/I5aAh6Rx75BMrrdQpc6JoDiu6P47G05f2hKRhPpu7RM2RO3bPGiW3vESHvCFdT84QIZm+1htZI0SkblcaFMFyS/8uerD05TRnwUZun9xF+b6/iihDRodgPMwjFQfrqMj2gWge9bJa6IT8fiH2MwtC6P9IILOSN+PBzXGwFV3juwObKWS2Z95jH7/HG2qSsZ2l3GBV6a8FZrGmrrieJYV1sYIdMGawqmQFf7d9iZvALiRodB5iMfDJNoBJH/PLDpbhw/k7KA+4fHsfrsNBaXNeNLYSchzTeK1Z1rUau6HDUrJsKVwhv4uk8J3M7sgIt7g0iqfRP65v8mxfnlNEnsBWcWVVD6lC5IfyyIkWp6ICFbyVKZJjRZ4CHK2beBrudxnDheEWqdDFmz+SY8+TsDqyYLQvmnEJxvVwVJI1qRFiRDlvNBrgiowB0WqzD2x2aaI54LbVlKkHWmkgOj/fFZmS4sarbG67OO4u+mPLo+KgGfrXmHDf2naU/lBNhwKoDK80qgftxsesFZdBPXoZt8NxmKn+PpT0bQRtPp6OQxHuoyYxhkl6G970/IES5HOlpNESeF+XdkMfVgCTqvMmDXjQ6QXqVH5hdOkuf+FaymlYf31Dz5pelG/G5dxj7mU1g12AKyZNQh8kAS79bRArPCRjzzfDpbz9aCd0fDmXkPfPg5GRZsiMXAF8KwK7Yfg0yjcbqQNqV+bOBXT0SxtaCUWhLO4JSSCC6KNaYdxSJAKy5xhnIppBvuR7t77+GK0B+4fTOMdA1e045d8WTXIYozN1nABOUJcKFoC2fk/IKzYRacYz0aCpoSIGDJBhS92Q8G32TQLVsVZI3LWCb1Ddn/TmFJ+zbWEMxmGcVqrBGxod9JpTTxvgJarLIH8QF9UFeXJrMrHvSpNgg+cgmtFOhDpxeDHDwuDreEPSSoHw9PS4eperYe/b16GDSHU7n3hAY+8x+CwW+FcO+nCzqsd6a11sIQ9CeMBlP6OSLpEWs8nYTDptIw6Z4D+m7wo59Or3Gq6lcKiLYD18CTpPYvGjR2NtFL8xAO7MjH0rsnwCxTA8NKxuDkb7PoVLs4SDRtQq/YOK5OmUpe5TN5/ulneOlZDz5eLEJVLTtwoqcZLuw2hILocVT2ogaiIubQo/mTuFWyDC7G76OoyPP0xTWGtmi24LoycwiPNqTtDSOwIf8dyASb8eJNd6go6CofC1fB3113eOXrPrZpk4KqWRqkMrebm9pKcc2xbaT11YarDaQhJmaQDM+d5LkJnjBxEsJBXsjn84/g3ufzaP3hRFZ9ZMQuRl/YRWA6TuiOoGue31mj3QEqNlrhhmEliE7Ow9Wnmnmh1kne0GVMvj7jUPJdG4wY+AbDJoKQW5dJ22b8R5aV4pSU+A7argnBnOEEWF8uQ65bt5KNvCq8XDAGgj8Y4HSPnRzz7xiULs4H3zHveLXCJ551dByFdd7Alh06/E/PFGZZbAf7q5tg3N3bOHzTD13jSsFjWhk6bv3Mrv/t5sCpKzD5NsKQxku+9DMAwk78Hyv3oRCCogYA+B9ppz0oadFAS6SkKJU0ZJetpLQTJ4nSktJGaVkZkaRooSIUoYgSCZES2WTGfYn7Il8l6H9KwT9nhujJrAf8ZV85BkYZw80NcmRWZALTw0JIWG4b5+YqMmdNp7ZZIXRPrwQmGY2i3/IttCEvCVNjZsCK3/9R0B4pKFuhjPFiepAfJAWK3Rnk0DiTM9WektvqWsqv0oNmTz2SNJOEvSvuQKfCKGr4bgKqJ29Q3chEsG35gubD8/matwW0FkTQI7FsdB+VzS3l3nC05AvaX3jGc+58p/RD2WA1PZ4iTsrDKW1ZXvTgBAxfK4C+C8b0pfQs7wIRtNBWotvmUXT2aDvVrteAk8o2IN+XxNrXWviUlQ/6R/4h3rid8ieHceGhDvxUnIN3D5lBlepcPqASCfuK9sGWcgnytpsJ+c9rsNhPnTvSm6H9FHDZTiN4+UCLJvbF0yqtcDKNbuaAS79wwANg3Nmv/GXUXUjPDKRRF/XA5P4Qjj64GGmGOaUENWB8YCpfLwpkyX138NPUfyDpPAY/BinCFhMNMLnUiZJvpDh3/mTcNecP5zz/ShL/beDkXXLQ/3MhN2gpwSzH49QTdJ+vlR3kaZX9qDWyGTO8u8lh9Wye5V1O1ao+LDDWCEZPWoYea2wIXryiL+uc8LalEKmt7aQmW3nY5VpHEVKr+d4zNTj24xOP7gshxYAeHis5xOY7x0Gq6yIoWFTFb86con7nAIoNMQWFrie8ZP8INPIuweKAQ/jDvxdy/rtHnsZzaHHZAu7uuwKTV02A5FB3rDuUhhmhIhh0tA3kGz6S19gSXH/QjctNlOH8ImuKnGgKHdu7KWJsBe686oM7sxM5yNQBIqwO8si4E6hr4IBNWr785Zw4GL4UpvoJ83l1uTCNl5jDyRJbKaFdG45m7YBd6t3om21Co9cKQ/Lc7/Tu2kOOnRlML+4cgmIbGxg+dJ0/Gm/FdZc0MXWNIW1sGwdzugdR9MAjvqz/hywWFnDkk5Po3mVMoqvP04v5+vgrbAa02AjBseyt+PxIMe/ffJxHVG3k4xtMeIlyPxa0pMBQpAZ+uiFAyUnaUK/YRnFeU1haOA8SbhtBnWs+hOrp4cNpaXSqYyRV/bAneUEzWO/rx8KezdgkepzeWnaCTNZtNtT7xpJ5xay2Spr0Rk/kFWgFOy3X8L5L1ah5bR/nBrqDyKJgnJ86gMZpo/icshE8HxMCx3+bw9i/00neRRN1M95AXFcwXLg/kaPM5+PLhYJcJD+HWsXi8Zu7MKRzLz/89pSURPwpRVCJPmgmYViHLC+OuEUzR0dD6cJGEJIVBtNVb8Er2YZtqw/jhxRv1N+9gk+X6sO/NctArmwqh/i/oJnbVWFPdR5eEZpPn3rOQtpKQ9gc1MWvMl9jqocPah2LATlTMdQZnAaj5zqCc2cR6I0ZwrS7tbg7uI7+bdtHmOiAW5uZZcP/YdBmM3glYwoXb48k2ZBZEOuqytuOPQGX93sgOOo9qk9XgK0HesnFcxT8i1uLcoZh0D16BF8ZEwef1A9QqNV7ij6/CD1W5dCrEZp0K0saKt/50EqZQfSdGsz5okXcLCpGy85vo29PPKH+0nG0mHWcdroKgePDIqjdvweifBL5tWA83Os7iN8rPlHl7XiwLVaFr1t307xwTdj99SMZm8XCX/ksyI9O4HFHR0KOnyH7iCiA98Ak7Nq2guy05SFNehWPzwpHV3OGzvzHtPnRIJj8fcZ3loZCbsRDFHlazd3FmnDRcy0bXldhISd3XLpZBZvi3/MUpxNgVjcJBRYLcJ+CGOXenwB5udHwr200OMl/xaYgfYg9M59WTDzMt6IDYOp+cSqeEsQ/CsRgT1oad295zVpmJ2Bs5Qhq5QFI96mGbvF26ir3Y5ktTbj/oDkYzNelLH8JsLh5kvatSaGGZ0bwoGAs9N/+hvNirGBWeQBPmyUG+k+/s63vOlQVXogLt+6h/TwGxz7dwUVmjlB1Yi0v0TqOqeMBWDYNezNT6WTASpryYAG8oV306shYTv31nltfX6E1OidY+9d0WNtYgGJSNvxhy2PYqn6euiQLccKVnZSsVwqj/Hr5+s+lNGK0BBg6WPCGrChIC/+C4S1jaelOXfwX4UG6ohvQ292TXy4FUmMA7npIIx5rcKzvDQzcvAZFxWL4ps16rOvYCLtODNDLhrlsddoCVtcuxVXnBGD0eHOimgQcU+jKnqtluN5CAz9MjUXPIAfquyoOrQ47UTF8Jg9v08f/DO/w4fAIfLAjA640NuCuUfvhvNAj3Js4Agq61lLNh7XUsXwszjvdAKWKc2nsuId0qaWHEh/5k1P/A5rmKwCqjmNhab8r641/RhcUn1PFhVaKcDsGQiO9afyqj/g2NYMFDgiDudY9mHHFmU93raYFw8IwvoxgbXsaXh7dBvZ157Bg4VNUlTOApMqVqL5sEa04qMD3mjq4N3I1T/kcxXsnNNH09xsx2Hw6Jc0aBeMnXubx0klkNCQKEsJe1Ji9kesCp1D0zt8UEu8OqlsGaNdkKygfnoX9U9/iVLfbqGjYxndOaFLT4xKyqUf2iDoGuwLF2fPiFLg2ZQsGqfbA/lXSvKbHiVo8RsCQ5m/qOTQIp90NsN30HC4bVIVZy6ai2egV/EzoAMWslIX5Dy/w1Qt6ZHOljx3nu1BImSc5pahArd4RaN6mBKukdTHNdyPJfmpDCdXxICGehzKS2vhpcAd7OMiBUoULBxuvJ7vwEq7WewoX9tbRx58LwXSbKc5KSQfZ37PRXd0CslZJUFveB1ZZaQffUJs9PhwAH792mFw5kibqveW98SXcdVIQDFIuc26HKzfMloGCK+VwsW0GmcZKk0N6Gq/4a8uHB9zgNY2GeR4a3JzaTWq6lrTO9hPa/5vErtVyLODvRj7K4awhFsx5nRqwsj8EdIZ3cMEtO9x3yZRytl9CiaIAWmi9FjS+tZGE6xv2+ikOlkvV+GHBbP717ybIrZbB9SbG8HtEJr9Vu846ZY4ww3IryMQwZGiNwc6DV2lJ1GX+L3I7OFmuwJgz72n1BisO/JDAd3tuUO6hsWDaW4RtHhXgdXQZWP/V4xfKmfhphiX6xUST4+dM0rk8Fee9loPfORHo+eIdp+q/Iw8pVzQ7cJVVrvlS58Y1PHfZI9p31Iz+C50EKS7e0Hq5CYRWzOaPviPxuJcCvzpdCms9s/DsxErY0z+Jq6aMgB3Jx6F5xwJ2Ea4nPRcbvCZixLURspDh5YDmT8vQIVEFplmpwYuVLjRqw0L8sfwn7mhdAou6sthMUIuLtj6hE08iqWBzMsttsYL84if8XCQRdVw+8PuMaHqiEAwmOYbonyPKcv3hMIRzSDNBDJywFfYGLmNFYSCFgycpOkCTimW28rFdgbA9zYHa191BsZ1akJtXjf4iCqz//hEnW7uxZW0hal2VYi0zAZQb3EFvvmjArTohKM9djStPDJLGYDsWbY/Foq0SXHZzK51Qf0k/bzdxB73nI3unQfR6fXSZdZ11rZ6RjVoHfLihxWH5WWTbaIBdP0TAJnw/vRcTgGO2F1khRZo73qXRAqUDvPDDJrZv62IF7+V4vFON+z6aQFiWLuiwOK+pVOOErAOkZDaHee0C+HUpB523WtBl83EsdTAeUmqswKbVDTqevcCA3EasnyUAnfHbycX9Gif+nI7l71S4qlKPu5XVYJZLGj7d5AIKHe/wv3U7YaX6KFwfcxS93G7grQFVXPPwG0Z7akHV2FY+adRGGY8FKPaeA4q2WnNGTTGbTDtNdhZN3NR7iQI/a8KLc2q0xyeN31ZLUs2hYyyMAtz6NxSzVo3nzR83Y//lLbTPSB6MFS+Cs4Af3U3I5GajUNz7Mh+athaDrIYllLSpgr2OJNS6Agz69nNNUzevRmMYu5ZZSf0u7QFFEE8bALFVB8C3ehrPjR8DM34U0/Z/MzlrvTucH/TEmT+rCXabwCefOvi9TYaXve4mvYfCkNEzGW22lvPXflHsvOHGSiOs0OOtFi/X04Sa0rE4bNuEdQKmsGfyF6r5eQbUl5fhron5GLx+MgSIPIP2gDeQ96eUGk8rwriqkaA07EItvyOhalIsWFs7sfaC/Sg1ezUL1y/iiyviwD5Pio0Mp0G4bhKPDvSAeTs+w72KXey96zfZFt6lKafSuTqG+GVXPtHDyeD8ZAxP8a6j2LXLcPfMC2glPwxWEYGwPiQP3W320fh6LTKfLQQ2s0LAtdMazpwJoq+zbsLNeG/wUfiPpnx6wX/bRejEh07IDzOHka0m8DRnDu8ybwHRZxJ8eN0RFnw0FvQP3YHSOXOofdlNyr0vByvb0qBTfAkORp6FSO23mL01kb9lB/EJy5XU1qMEtm7/8N8xeXirvRz6iybgzJPBILPFnjvmz8Qyry/0U/IWf98gCv03PtHASh1o3rSfo/AWetV+wPPreqH9QwtcHPgDqqumwfxKKTaQeAEGq9Vge2QjXHv4ka8qHge5OaFkXleCTY01MGqpJ86ZfhHjehUgNV4b6i13077vFdS/HvHSuS+oM6aB1Me7YUFbMepBJbm3j6fnzhZw5+8fVq/rp1cTTeDLiWp6X3aZr5zLoL61NrBmVg98zT4G556JwAVrf9yUuIb2HqmBDY8C4O/2HSRV50gpvyKxYbIZvrvciwF5EjCg9xocJLv47LKlMN1lB6xVKcS0iC7S8m1kn3gPUE18hFZCQlA1L4e/b/hCfePcoWWmG9ed+w6uufdYQjaeyqwXc8+FcHg7cgY4CB3lsAFHFpumwDelQ/F30X0y8DqAXaKjQE29G8tOKOPhaWKwV1ceZLTWwpLrJuia/54Kazr46O1aItt5kOg7F2pUnpNOrwLMMNiKcwo9uPXgTDa218Hh6ZZ4378Pxz1YTCW+4nha0RdK9sqAi2QOdm5xAKmUPGxL30maPcdp2OIGbd5nziHkijePnqKpDppwoTWHpi6ogKy2AYJXZ0hbOB1EHb+j1vxndGtXFjy0MsSDRQJQmzmKD1wToiXHJrOqqRlrhH2hMdXNPKf8EEftPoF31qynBSky8LJnLb0/0YRKZmPgdGcAHHv6AOYK/KKAoM3Q+NsHhX1c0c/REoY62knySghdd9uKGy80oUdcCu8XckYL6RT+7vCTFzZvxfcb5GGVQwyc8m8j8b93qXUOQv2RbzRVsogThq7Dr/dGNC1hPI6osYAa4280vNwTKzX/0cGDTRQb9okjlXtw5LMx9PKPIX+J3U7JhwGmLhVme6kXWKFeABmBu1B1phZdVdIFvTOPOT91K0s8LMb2iaMgrHkV63x7TiHHn9OVUQXgZSVLa/Rl+LfibHQ7EAY7Z/Xj3dtK0DLxOn6tt0M7OS9s/pCM0zekwkmNA2yyaxKsLtXGaVfLOTZWGgqHXBl3L6L7tSNI0HQsdH+vY5T5TL5HmyilnqFNoQc3NGhB6f7R3DUlDWx23OZdmi9A3CUMuxaZg9ObVVT0fA20DZ+gxFFGcNBqLpeYZUBKugKMD87G4wkNlLXfn/tPPeXZR8byatdI3uAkCyfEVMEp/TL9WXQCdnTZ4e+hW/xA5Dkmf1Hi0f4rcf+amySUKAz/Ago55q0aSN4v4QOjn0J6+mHKaJkOe2e9BzH9aPLts2Pt9smgu/IW7bLehUHXT+MJpTiWF7XjBSfS4Ja/GvztjKBp+/bw/o+a4LlaGX5L5eKmybfwyYp1mOszCDblefimRopvdv7E5vD39HCpKERqa2CooBsuTTtFZbabMFDVB8uKfmP3GX8asN3M4PQBEoLk4LO4CV4Sf49FYSJYLLaNFPcinzRYCJp6J3CdyDqq3WCGtRslYMKmYihpuQc96iqo6ldOk2485tV28dT4NgqKRhBsy/lDMltMYDjqBfxSkIGu+8bwOSaUR70w4wfT6+CMiQpuXmENWRbFcEFTGY5t7KFdKrLgsUcQTh78iw/s3PmDZS9t+qEKFTPPonrXGKzfMgmOSSbTpoIH4KdjxNGbU2H8mHSInazLr4RXgIlHOa2O/w+f+GvCI4tjPFUhHYubzGHCo8MYv0QQNCTnwq26SkyK3giTP0iRuq4BJG1pZdOqPrD/HMGe/jY4M3YHxb+2YicFYY6V38iqDXdg33RTWCQvieZK0+BYRwbpTVelDYtdsas+HXu3+8K1PGconqYLUfeUYeezA5T2LYZtX6iC5H5PeoOabNt1hpRSPanPzxtnen6gncnSYKNQiS//S8RxXA1vBn9AgtkEVCpLxKHo5fDHSp5Hv7WGD0eM4F3MfBBXCcBNpzXw7w0xzj9Uy2nPUyiyI5ZOXxfBwIHtoOcuDzdFxSjMSx8rT5bRf96FnOf6gtJatTCi3BOnLYmDv7Xu3JUsDq5tFnCttZRHP4jD4kDgdyuzyG+3PteFh/OuwlyYpxGB86J0gffE82vzrSQfaghjdc7C4S/N/GOKF05485XnP+mCwuhVNP+tOJTW5oPmsDgM/LDn2nl/+c6zCVQwwYJqt7ujg6orBj5rw4LPY+FYvS4mSI2kk78PYYqCH42qNQPvMWXsVPQbzjzdDCPejqTjihOgpMMczFYtx5DdD3De6svoWJ6LifeGMF7nH9Yr/KU5XYswuUQTzt7az8G+MtyifA0Trozmp1bRYBbjTIFNM9Gv7hInldVj72hDsD1SToFLWnjP3GBuzduIUlsMsP/qFHAyCsP02a74IN6fdhpNg8flWqynZst75ZbSPCPiJIslvP7wbCha2g7mH+fwcxsrfJ07ER55X8WewXj4aHQfZy69CHKOb/DNmqW84mQipOf7wL6K13DfUBrcXVtBSuoetum/pNcbauCo+yM+/zQFBhdXsKxoJmx09YCFy/TBYKiV47epkM/kFL4dZMS7m6R47oAYxJRuoOOWz9FuYBnETpKHf7LnuU+mlc4FCPD49c+gcJkfLrdWoYkau+j58CUWyJiNOb1acN45ib7u3Y3wPQm+KP7m6lZNVJQfA6ewlabYL6DFN6zhkYIqHKvcSj0pgyiiH4HhW/5Q3dBPlGiMZBPvEhr/rRtm/uolkSTl/7v/Jyz/Db+lVeM6qWY8u6SU8q92QuqWW9jz8jgVeWtDo4wxJR5Sg1L/FzRc3EVG7yJwsPYsyXZ40LmYSRAbOA62ZkTx0ngR0IsUAOcjJjwddvN4kQKM9y7Em12iOMXOkk8uLcJZLVF0IqEcnuyVhq8J03jiDUsyED3MzktvkEiqG549G8GltT8oU5TYJ/YcOoVLwK+USAzXZ26dp0Rj0+woY4cI6HjqcZJkIU41DKHwjwZ8br8a+JqeZsupf3lFrD0sPH0b3lUuhTv3/XFQ4z3nmYWTlMgL9PqnBmNl46nafyYtTxFmFzVTDhw8BeluxTikNJfcn30jixfV/EtIBALIlW/m/YSLv5ax8VdLGHa9A5FCfXBPzBqWz3vJe/89gqdOchDU5UeXNWpghEMN3Hk3n5WPbmN1b3PWWi4FyxaF8aExuyF7jSDk/ckHI/UnvNLPHLsmG/P7gbfQ5T0Db6qMhxsWquQkIYnix5RA3CMYDm4zZMWCFBAt/UXX9jvA8+uP6IhRNyhVpcDElKPwZu8IuGO8HJ2ELkDz+Os4L0oTv+shCOXX8aa9J7n47TCWThFB0RYAp5gYTFtkzSO9XHjRlnuQeuwZeR8/i4NLVoPk/HWwRtofKq8pw12Tt4RtwbS0+jovUBfATBUzfJzixlbzcnBMzF86N/crD8sqQohAJh+/0klPnj7HtLuKtNvoD061HIL9DU70pX+ANx524SE7RWCjaq7NuQJc1U/yy9eT6ttw2peoQzY5F+FVzRYyDfem51KioDvVlishjP8zXEPeM4L5Sast1Zamgm+IB7luOkmiuUFQOFIY4g7+4Hk9IZBt+w4Py2XD2wAfipt1l+UDmqCrdz2vfLqQG66OhI4v9ji4eBTuXX4eXr6JhxyjxTxz0Sg0nupL3nFNtLfBmDPapOHobg8QnXuYWyQMcZrACoj6Jc1FGgNw2/A2nZ9+hQVlNClbaRzcivSHcFMniM1ugXdZ/+CdeQFEVI8ik9APqCYkiDzjLZUnKYNawiW6KDSHZt+QwYKAXhJs+kUjH1lCqbM4/Legmj9ke8OG/dpwp3gM1wyI4vav5yFbezz+vb+IW50nwfiXSRjz6S57+v2GGu0p0MDr8fLko7RelXnY0Ylc82Wo/c9O3PomAVabauExkUze4oQQKXcU/lgIQpWqGj/sNqBue23Iss6k14qKVHtmMQwMZMKVDVPgn9dvFtdvpd4fS/ngK2l6dO0rOUVno1BOOnxS1qbirm/kEKANjbOmwaTHhTSj4zdJOjNbnJIhw2FznlRRyeO9NOAZH4DZhsrgPLAIz2S0QPbyVppV+QNs8h7C76gkOttxn606J6FI/l/a2T4BGlvewdDoAH636CukOIuxiuBhKpsqBp5/LEnukD71FOfibKORINw1GRv/xvCSdaK8qESY/A/rsFjzQzwy6RbknryNj+I1MCzTDMyqXuGiADO2eqhPu762wrSa56isXo/+t3P41oZRtHvjQYx/OAL2dfzFC//y6EOjLadv8sN9FafpYdMwz9/6k/ac6UeLAxKk/MAELozUx9KfGlixpAUv7E2BfOs03vmhH8dnTkJxz3XgtnkB+3yeDk2WaTz3XzwmjjvPbp5neTRHYvnFZbRkD+M9v0Je4HYe1qSOhu0V4lgJQnDQyQ4rbMroqtRCFM2Q5rgpCyDR05sfx86Aq69MYEFpKr41j4D6udtIZJ0QN40IIRuD/3hxxwUsTLeFhBkj6bSzHlSmV4JQkgV4rr+ELY4tYDvJnvSVNFFR7RzcXLEVdMc1sMdYAN26BaBXGUM39XZQY14XfPzaQTWHnFDYfwzZ2Wlit5EDrTHVh0JpFXouP50rmi9B8yI18FngiH1fZtHDsAtwx+owmcR9gKQWLfg+dIRXNZwm0edXMMhCED/ofyb/kgOYf9AFyquGKfL8WijPnQTpux/A0HMdTLkvS7/jK6BzYzKFSAzhzv1X6PqEGnIo7eb+Dfogdv44mqu5kbbFDRgMXYpPJE5QzulgGP82iedpxGFRmz7rb54Goq5L6Y3XDcw7fJnTtZdCQtt/lGE6ArWmdbLROoblH79gZYwOvFqnBDL7/XjywSKiw4tIMXErdd/IBkB/zL8+kscp7CS5jwowWiIVghK6uUh3Bjyyk6IlemLQ93U7OOUcBF+3NTA37SfrlwhDx+yjHCNdSqqSHnRtmSz9t3YePY2s5dPnJ/OOsk1Y/30sKE4SgaSYZLA50wBW32ZR8TgxLNeXxTFCvzBaYi6YPQgnuaMqqP5KEXY4m/CdtAb663gWRlu147P1yfTwkhp1ZgtxduFvPlxazYZnRKBYbBNtnXwLCkz8cEZPGlnntLJGxn/wIq4Uq1UEKU/kJE39LAJBHYWASkQN95Xwe9YElm1dy3Z7pED70gAq5/+B0aa+2GygAKop8fR8RwDf3lRLQ7Y/YeJMDXpqVQb9zx0xKTKcu4274dPyCTDcIcyylbnYeNeGl7jXsOFVOeoIegX36DFPt1WCCvG7eHeYYLHcC76+TY63/0mmltm7sHLQEjau8SSpSDvqDdoKel+eg9Y4C5A+sgy8DqvjSPlFdMTQiO45N4DNyF5QFUnHCZ9ycP/Nv6j7WR3OT1GGbZoL2CPem11KkqFsiQTslJEgXy138n4ShFMKfvItURlwCmllzdoaTo54QkvCR+KygM9svLQZK7/Ng7zvc0hgdDX+yzWEm+8auOBHKji0NVHcGCG4OnkmL5Z7wAcfB9Bq+IShdJj/DEwH06HRcPWxAT9Q6cPyzuPsaGbPF3ciiQkZ8MHYVXxi7g1aUmUJARMe01opMbQOIr70dQUdE91PkisG0WHRZ3jW9wb3HLLH7fYWcNxYhE4niYDWqEA6NvIU3au5jsnBLvg+0gBctijz3kcuvODBeIh8P5N9zKXRrkOWj1x9iXLNB9jypR5U5lqS9KW9sKFuNM40A4hVngtL1F3hcMZ/+KZZE9a9+wJT8paikl0M+0/Uok55N8pZgdBhf4kytJH6L6mjj/JD+jtsiLtCXCD19m/OXnUL/rEV7kiVApOkReyR1wUy70TAwkGCUyU28qfTtXTxezjGNXhxT48kVNvpw+BxEf7R/QBab2xB+V2+WLYtGg7aHWLZzEP0/V0olm9xJ/uZUrBPoZDejaniwpvABWgEjlk70W2HBUa17MDQj974unwJdJcwDHq3Ys2gGP/qE+SAL1okr1LFov4J/O6pNe7ulMey3hDeXzkNlh0xYnENL6w7/xnUIyfQLh+k5ZY1EN+qQ83HjelcSjbrbRODgfpSXiq8HX3a/6Lthykw2cAQPBzF0aznPk2EEfAobQp+fiABN9cCuMl8xwNX/dhvgTfuoRwsoWx2+mbNgzZPqerQdv52SgHaVwtQq4YgHzqqRo2Lk8G99xLeWpLNq9ZtgM4dsqj9MRUVi4xANKWUVBL2U59FJA+HRHHJpTDQXL6K9wlup5dwBIK1nnPRbi0YV7OenAOfwbyIIDiYnQOryYN6BpLJdN8GepPQyx1JrvDTQhueRbjA1YkCbPPfS/qnPAdtXC14u10Lv7/VSZpVthjj9IiWjCAwSj4AKo+suNBjGfi0f8BRIxXQdrwkihh38FffZvy9+QpwhRzU/JuEf4850JykueincpyEku3Q3vomWF8QZwOrBty6cB1/XG4OViVbYdL4RJzB6hDieAAP15yG9H13IDd5ARwSHqKIHIRlDxH8mwLxVGEu5xdqg2HpddZXEeE1nxNJt+AV6AVW0t9lk7GwWBw+CNhz+Zkqrp+sgpkLnODigBNtD3PnjwoXua8qCkOMz2N9thWMPLST40pP4qgZPrihShnNFm6GeWFTuDbEAxZNXEYLD4ni512CcMMhFd7ZnKXwfgEIvuiCVxW9UUU+iQ3lFVgjcy+FmERD6wFD0KyLwm25aSxz4hYaJJaRdtBhfLTcDgbEb2Hb7rH0TlsKxa+ZwpB/PCbVWWFstDVI3rBn1eMu9C3tLgekNxJWe9O7z51cViUIla+f0m6RGXhY3pcy5lbAFGd7XPJzH807qU59BRYo9v0OxW7SBYfN/VxdpQwjU/ezQdZGnjT1OD2T24GflRJ4pWkyzdi7jAxEJ4Py+Uf8yfwgWq3+SEfvHkGHZdNAaNc5zFDM4VHLbrJmVyjqSI2E1Hs/KPDeBJb+1sYvB4ewUCGPYm6qUmqxCRT+uAtbTwbClWlacLR7BfhJtWP7tyvk178SameNhC+ONtQcswoXyy8GkYSHdPKAJNRCC4oe6YHJ4um8O/QtdO0qBfGw27Cm7yOLNNTwp/u+tOGGOLRF7KBcuRdwuusc3v8bTXH6q3iG+13SdPeicyfncOiPXpqXqQITVi+G7wWu8D5LGnpmveFXs3eg7aF2XFm4hyVXaPCk5i3ke08RzrssoUk+R9HnfDCdUh0meyFBXtp5lCwv/CBxDW12TrehCV7mkPnkFiZdkWb5Aqb+a0cwZrwChSufhOp1j+Cu1Bu4KaoMY/ykIP3fAXy0Rxw11SwhzDqZq0v/46GaWXDq0kfa6G/LtxMmg8l8A1CQEcAQi7+4/PhUOCP1mKeEWtGi32I8fKAC5t49R9/VI9CpYCpsjA8m5eNOfKbkHbwteIuXTw3Qp9VieE79AG67upQ31tuBzl8VsNY8yRe68zD7gQcmT9jMRUkTwTZjFPwTd+XcLG1eYF7KruEiULIlGdst31HJG23ybIohiWURlCP3jmtOSNKLyD4O3WHM/4ULQdBgJj0Ss2ZJYyOeUyZJp1Ir2T8wBHxDnnC5/SRY6BsI5TMYBv5LhuU60Rj6i+jGzjLMdJfiU8+3Y0KlJF+/HAEq7wNpwc0JcH+6FWZmbYYRpa1w8WIIuKmk42mxapp56is8lJ2Fu88Jos1kA7g6eyOM2alBjXKved0GBX5yyxvmntvLf74Ryxdv44C76bzq71iIVj+LSeGtuOfaUV7yuxlzP55DDcEkWrbDGTd+SybNhWa8bRRBwIJGXFlzk3tFh6Fp73LquSPCw6q/4PfaxXjzPcPEqNscnzoC9JuieRqcgZGzL3GfyTdKmlWPAZnJpORxGWsPbifbG/a0emgG0I5OmHRkPqhME8CjkyRxg9hrzJ4/jP537sP+2y30PnIexiwQgAmN8/hsXTKGRR7C7+eywf2QH5zXKOS3k8rBXbiCRwY20uNSVbBofY0Ts57A/IR8PNfZjo1RKbiOXuKur6qY6d1B2+A9BAebw52Dn+BB1Cka9Iwh8cRaVJuWS3WGY3hiaAb80PgLE3Uf8lVdHZi1q5UL1o3HFrFYEglG3u8pQ9fF9pHyQg08FKMMNe2K9LUSwd4zDX/OrSOvlXp44KkKfrDVx2UN6qRTMB0PvrnBRZef0uBpgkP2hVRwcB1nvymAgbw+HD7bABtvN9O9A9FQ2nqIZvdOxYBBOfA5HkQ60zVoX+8XVqC/rDLSlLqDroOlowlfHDuLX6low/NvUyDnwU2s3i0HaRP0KUx9Hns0GfOohFUg9vICrO53hPqZ88Go2hKCVkiRy083vlywh1I0pcGt+gfvnrYGFKx+wTh7P1IWW8cbyAhCzs7jnhYJfnLdD8W89rC2xH9cI7cQrg0fwWcVdVy+ZRnV6M6A1dGO4MQbwShAFap6nPDhjGQINPoHez8mwQwnQYizuo+vPmnAhdxbfHt6FGoKLKGCj27cfnMub/uyj/ZOPgzJG/ZQtoEVDA6KQf1MZ1ZPD4O7uy7QuUOuLDI/hU1/xeF0j3jISejBJ0fjOEFeFLwOlaONTTk1z91LagIX0XzKbHps9JZmnJoKFYkzYUP2TVh+VRZu37hPHZrLcOnDBl7nNUgx8VsYz2rzy+5l1BU9F/0v1NPxzxNghIwBUuAFiN0QiLYSRpCqHQUfzz2lsEoRtK/R5cvbJejpOFmo5BQuscnkeyrmYJspRPtH20H/2fH0piGZ1aJ/0Ur7OrJOmgjTJVUw1u09OqXvh11rBGllawp4lXVC+a0ifD+7h2t0nkF3typU2YbC+IZkmnvVm10SJSk7V581jgqBvPIQ7n3vD6nOq3nNJFl4vPo5Lq0TJqseT/RNuAOGES9J79Nb+BHdj+uM7fGDeiQ42prD3BgF6KndziS7iX4MXoL1zxyo+/AULj4hhBpyvTT2tC0tsxeAuwPCKLx5NuQ2HwW/5eMJgj/SoqwrXJ/yAHrf11OqvQoePYYQLLWXlapkUV3IkW59ceW89R/Jcf02nvR3PW0tq6Ul0bW8KVQAvo5dDzPOefGUDQXYt2UZXRqZDHfr58Ali/u88Ndd0Dioz1VO00HEdIikM+L4h/BlutjfgUKOdzEtSZQkAubAwvBL+O6PFiTIKEGytToe60ll9anuHPoiGCMSg/BQYgE++yPAM0bF8I7HpvQiUxNk+97Tpzs/SCC3n43vVLJuYBDdtOvGRv0cFDllw8vynmDkdS0I938GNSdr2fZYBam9z6HDh9rAdkcqOricpPyXO/lmTxQXaRjC+KsiED5Vm66dGwFetyMxuSgNz37MhAktHSw92AiPFpnj9BA1EG2OojtjkiGy8xIvXXkdBZ6NomiLUK75/QamhLSyoM0TVEvSgQMR9rTpzzpyn6gMd0yb+FOVPKpL1bO+nxuU3b/HylFX4GS7AUx/FA168r5glDIMC7p3oOxNUQhIZVaNest1MA5KJF6ix041+Glvidb2z7Hp3BDpH36AYbcTUTt8MvR+/wC/PpvRC+/jIL5BATIuBbJuWyC2VjyhsZ57+Fz9PNDzk4dT3/bSn3O64DZtJ6UHG8DiOzvQvvENhLqZwAPxG/hwzDlM16oD313raY9dMb8ggJxRMlBxzhL3jGzjyW8L0ac3n8NOi8LZgpGww2QWL8wVoqHmM3z9kz6cMv4KC0MT8HFcBNUqSpLpvUXUeWkUhyhnw6LAp/w9Xx5bT6oABEWSdOUsUBct5pP+6TB89gmd9zKCvfaCsFhLkndajqbpohowwX0yPVm0FuqztkOttA5eWCuPxhE/WfulDtb4T6SIwT6+ETEZUn7ZwCmlENJvN8Vn4vY85qQJLN3Tx7f758PGyYnY6hTE4K8D7et3UtwuY3gUsZI37ZlJ4humcE3ZDujMb6SvKz7B4NYtKLlZHTp+JKBUYRR/NEgEa6kmdij5zXInfEC5XJK+6b7mhi5N2h88CU4bNQEW7aS7xUNwR/AyqO1RJGebAjRc/pd8D2VQSfpdOouy0BOaiLtcTFjgujmOKPrEgkfLOURwDnwV3IIL5IVx0xYF+GIgCJdnSuOOvGx+qz2Jw9y/Qem8RehtPwJ63Hpg+09vaqU9eE/LAE7u88E270WQ2/0B54Vug67WehI+v5d711fh9KFHGHpRC3a4C4G0rhLMn7wA1RZY4Q1BZX7imk7bdg/ROvFrbFV9leGwGeBrdfDWyaAsiRC8k5YB48p3ULtuJfTOHaJA+QY+POcHmN6r4tPJE+GVjyw6vhqLMo2BuDv4NakumYlCTV3Ip5xZ+uNKaOkUA/frU6GxSp2NF++gqOAXJCheATtv9YJkXw0cnhcNchYq/FV5AtSt1QVT2fnk6lvEGxoNufXzFIr4cRtT049x4EN71PDbjv0f55OQgjpEymXROCNDunNfA/x3auGrBcoc3+wLD6r/UY2OM8ZY96Fovx4YnvSC8HxJxC4DdD49gj8ljKOmC4fompsFy6/QxuzU8xiiIgQV0+zYsKsVO0MewMonf2GVSTgUvssEnbFWmG/4mr+9NuHgozIwI9GMniYm8pTjtXRs5FTe+0wO4zedgIdHy1klIJ6e2n3mH8q6YFgXDB83anFMlAzs79sOE08E8ReVWFgS/ZWHtNUpZls7mEcTSIvkgIrCF4wWsMTWuTp078txXDC7GQufLISbcoocb7Ga8l5Ywr0TAzSpI4n+1FVBS895mjFTn5s/dFOS7DI2Tfbmxw1WbC2pAM8aBsG4JhlLBVVhve5tPu6xEFA3ExbcjuTguNOw2+UtG+4VBZ34KgrVmIbVE7zB4nQvq9QN8571TOkxLhynIIIXxvvTtGM6cPB7Id4xIIg8ZgmChV8pYoIo1g+784bV0WBUOBNuzhbCXzqWIHDcHyw/a9N/uzZxWV8h+FdsomuvtvF/Ob+pT9yBfw3NwnEiehDoqs3P/AMx4IsQbtzxBPfkG8Cg0gbwNFWkRNNYHCE6k4KuiULymUyUsDmDHipJvElxCslM3Q2vVqngBc3j5PCqAHLfTuWXCzSgvb+If1VdwHTLd4zeK8ntxWZ6KRKBvpN18Ll+Gji0Lqf4uRKwDt7wvhUXcKqXCEj4bqMfZ57RknGb4P3bVDbe54hPRijC+UIDeBFfSEvWquIvfVvesmk3iBn5w2iSo/l+cSA1EIuJ857h2cuT4KFhM6uYmfKn2QdB+ag6l/6nyJvSNDj37GoKnhfGKDMePWcLgURyKjetuU9V4XthTYkxFvJr+hxcQp81dmOLhhi7B20E0esIMdbxvH3eH6xccRre2giCqFQ2hN3r4x6zYppc08Xn7nwiPytjCNUr5H0dQzAvLR/3S5fwoluZcKz/PZ/5409PAvag9dHxKLdNFo7PyifT1X+4TeEENxzfx16a+fDCNwIzpvZy0/VUyh13AhZNV4Xs2RtZM+8w/hdYBLqH1VkzqQ79rOVRsfEpzFh5jja/qAfpr0YQLtKI1x5MgOhjzbTTuALGaTO8DC3gw6vmg67AbJp+bx/d7B0FyUI/+aXeJsxO/QPj5MeQrVIvh80pxh7ZmxxYdZxvfH7M61AE+rozydNvJJT8OkyOLX0cPVABXyPV8Nt+ffC1vonLIYZ2N2rDTKcf5FDbwiv8kEtm23G8piPdVaxHj6XX6azJBXAYtQXVpTVAzuEnZj1Tg7DcQXwU+5vOcgtNzZgJUo5pcH5JNSx2y+KSHDMIGJiPz9dVYuvk5aBb+ZRetvXDdCxjl+rd4PAojAqu23FLuDgcqN6DeS6X+VLhKTb89xi7Jr3iJJmLfE60AebZxcDLuiGe6CQFBqvOkfxFRwy3KeAZUcTXQiW5emEXz9H6xlm6RSA56xWvrJoA2hsred27DHhj8YWa3p+i0wVJkH3vCD9ZHYZHZ1whiYxErva2hHcrHrL9vCgc0BgkIYdZOK3FiuUy02DYIZo32xxBH9k+fJmrDHEKWWC3J4mfKFujzP5B/BHXR8sv+ZHWwAfUvDgCssouU/RrK7h8wQNa9zih64az1GC/nSXkR9HVSb9g4nZHcg4ejVb0EyycxoHISyVa6VtKW+IaMeqSHBkvfwE/bvvTt+9teH9XAhxMWwbirZqQ9NiG7zi/Qx6dQbdQAhfvcaAbc7VJXrgPdp6vBPF775lip4NY926+1F3Dubdb8OWsFSC9rwsrylfDrzYB/nfJDXX3VZJrtDy0jg/AY1+KcU7rGAhbZUlKF9VoYcAolou24hPPtoHp5I944sUYeDjTkdInVNHhgxZontxIRi0RkJK1EmomZOK1jk2o12uNH1YZgvDYW/T42Ajs/HcIuq9lg9K/5aRd6QO+foLwamE4bFQ+A5eXasLLHjf2agnn7K4RFGhmg8YOkmh2fQEdVi3m4dnvMX6dABrbj4Ci4hrEK9X0y/wLvVF8jEYPN4DNRTEMiX+CMv0rcIL8CyqvBlDIdKeOrxtxq6MBWR0MphLnCBQ4vQmjnmaA9M0e6PMcAhVnaVC4X4fyrp9w6pdq2u47giJ6xFlRfAFLvw1l219HaKabLEheVYUMtsJzGqvA3XkzhseKYLPXMwo1OMDaX6dwncgSTCxRh4GHI8HtexOXpHykuF3rcLpJGs+s6IAJa2NxnVsh9Gf+Ae/yFbg9ZCJUn5zCwgvKKUe4DR4crsXQKHV+7aHEs11Ps1KWHFtsL4MzqqqwdN9WDLp3C+3va6Lqf0V89OFzrBxKhcrLfSwW486rWtaD4OZx4P+og0z5Kx03aQM7kbtkU2INKemL2EtxKvpUldH9wliabSUHbzp3Uqa2Edq6JkFY2iLcvnIx7NPMhIut67B3nx2POVxHBfFTYMnB9aRdLMdVn0ywveQSivQdQ+sSeYqU64HtI2vJLlOPMl+Ygaz4UQqwbeUHNqd42tcvnO9TgkEWV8il+R2Eh8Xzy62roVVTE9xf72fLkz5cQfY47Yww+VQcgLX0Ct4LO1FvZyYN8F2cajsKTEpkKTlmPeVlROHyoQsw2cgKvy2SxneCUcyS7eRceJdL6ibBSp95VFj7kARK5HjB3rk4//QcfOqyj/c2ifDjy9Fg3VBNN0crQeaRy5D88QrOV12EHmHdrLBtJZxyesuzvWdC0GZvNr9qiZ9vyUCcyDgAN2OKF1uL0cpP8cA9M0wTzKOW2Zv4tKIwjpFAeG1rBqP3lmDV0GOaZbmC2pY5sPd9I0zZnQASqin4qUCSxD5YY8bFMeAvd5Il/rPEhFJN2tIUQlvHm7LFzhWM05vo484TdGSXPxo3CkJ7nAfr6E7kxQYvYJSpPZTenYVPzsiT5+goFJVbQ1O6Z5BllyA4fP+J6zbdgetfrvLC4JF4p8sbS89a0OI+GVRfLAWnru+D2L9i0OCTCHorvSHkygISHZLhnFB3PPYvkXW5gRYGmvERZXPMv6gGf8TuQKl5K1kYd6Jw8RM4i7PotuxuWkqdUNmyHt598aUz0Qpw9tdzzDwwA6Zp94OBsCOEzvGme3mSlC32nF+viQLxUC88HG4C31bEokH+M765SAyrReNgx9t8SL1mx2Z9CXxgxg9YdyiPJ8orQX9gFwXWTCWjSCGSKRDHbtctoH1/PJw0fU3OufvIaOwfypSdCm11+lBRsxgn7V9HaXor6XTnMO4Jc8e09mk0d1o/RmzLhTUOZnC/TYGmdK1kvT8VOP/HEXQWCYZVh0p4OEuRvdrFYfnezzDopAG+m03glvIW9P9eC5XlbtAhvBIU1+XT21Qj+FHtxBYtrnCwUhau6Ulzj8k76hT7gUUDYrD2aj/0LhnCrAXvIThjPo1IH+LLixTgb6w6t5dcYrn5cexz/z7FHYnAOzk5oDe7BY9VO+C2GwFo4jgZFKbNoscxzjjd+SmqBlvDLU1r3pPfyQ3xuaAzP42Oem2GKfrjYE1OO62NPoAXyv6AZfMe2qz6ky5V26H6jGtwXm0ibEy1oogmBrwsASArDxfjG2hsy0U48yqBpdZUsJ6dFyvNsCe9tmws2igA45f8xmMSb0kjZCZPebgDnYMq4ec3BZZrmU8N1f+xo7wsTIRx0KitT/5Z12jPunx2lH5Gd+0uQEF9GDoHhhKojQPF1xb8qn8EbJvzhy0f2UCuWQ+XDxvhki/DMDpeDJQOPCLH46n8z/YHT0mXhI/apzkny4zHhR+lxF+VeHbEO2quC8D+nC6sHRpPn378ocuzNCGvroUfKw/iAX8L3ug/keNaZsBF/AlzYlygWGcedJ/ZyveOqMA+5dvwTOUezs19hM+cxeiXQwbX+yZAwcld0DROCG9G2qJprCr8yflBFv+qcO1kRTSavAvtpm4lxT8feOC/+2iy5yHf0NUhATNzkD2pjclFK+jB/EM0WOgEIUInae6StRRtOx2N9rxGjRNlLPDUGEqahDCufgfdEFqKFauARd5p8HrlQXB3mUlaMnksJJSPmt2mUJxkiyFuzzDo0QI0OGCDMvvFqeT6MFboh5KRty6/uz4HCn8pgefoOLyafpc+6XdxzKjp2De6FyNer4GKnOdUbW9GbvqifGFYASAph+rVV7KvxVwQ11eHUr9paODYwFucXHHukS1YonOHfp4naDiSy4V2v+nb2w4uzwql93dfYcnkPCiqGYs6R8fxkzQ1MJkkCS0Sm2jKi7VcEunGSz2D4PNHD9yf04iOhwRw9uAg3L49h9eMkgCXD7EYXyGPguIvKSP8Ax8abMZSJrqkEo3hYjv5ssE7jJtrCctfJMNrgSM0u9caoqceoiS5v/i6tZH9U8agiJQMflvdjrDJFMzbNSj0uSpq7x1gve0uuFpMHBT8FEgtdA4lSPrgRmsjtnyjA0t7lnGC/3ZW/NbH9pfLaPgC0OFNf3n20npaHLoFLwTpArxVgP0Z57jBPJbVPjD/TVGBVqs/LFdoTROzVKB+9DFOvXoOZx2UAOPtPhxbpgVp9+O5+IENn7kUzUI/KnFUhClNzJ1D/e9ayTlKHdaMWInXfFZyOW9H1ddD8J+kOY00kePAY5cg8MgeErrjBT8ECQRz9HDVpgaSVXzA4Za+vNB/Mz9IVONFjQ38ZswBPFdwgQW+6oK7ciOXRY6Ec2ID8PzrMfq2WQNud0fQiNmjWTX4D4yZuwK94sVh88MWFtxSxRW+r6A7Qpcq0zeyVZg+v+3axxUvNLhp603My5SBgI4U1n38kifc0oMxIgEsPjCG5WcEU+jBD+zaHA6eCmdx9nE5KNgfz7NTR3C+KtMn5Rc0z2IGRXuKk4zXCTj16QzkrZvKcadMQGp6P3ucLwK/wXn4WyGIRygmsqbmJgxun0avXKbxZpl86Lk1Hr4sXs5f47ZCUKs2pC5+TzPfZJCx8CO+8v0F3ZB/DeWrAuFvtCxMXaNJl9IraPf8zXzb4xk1v9OEP9slYNvfVhzZVYtbPo+iBbJG0HtIGsPmueDGeZu5ccwIshf0w8WPa3jylzE02/8g3vHsoO/CYmCz0Ih06gwxPWQxLJjfAEoPQ2Gw24nLgjax6oI/7JH3lKXmSMPg8+ewOXk+6z84R7UtYai+WpYCPI7BxC9J1F2XCVfW+9LWWB3Y8XEHOruFQ7LBKlDwfsqPky7AyU/eWOIdBUtzmnCicTT9SpoEqRslqVn6J5xqPI7V1+aAtsVmkK54CeU/5EmzTgaiZybgLTF1iHu4mevH27KeQiXcxigy0toEm7vq6aRNDSf5vKeouP+xch8KIShqAID/0ZAmoZKWVCq091CJCBmlkqREZRRCCQ1CqYwQRSIhhKJCSUWpkISUKJKKzKQl6tyXuC/yncMuyTFQtv4BTrWORi/hcNLWrmaXYUuOz0+Cb1edeH6WEG1T7YXgxulgyG3os6ObDjSXQ5//T/A/HgPpBYXs71yOP+pm06IFHiCpowuKCk0krLOdLa6Ohffdt1i9aAjP6q/E389L8HiFD8Lxl6x2SgVWpiWC1sJALjPcDTdsH1P9+5/sn3iANXPPYN9gIR0+XkP1XZPhxctf+DlqHHywDAPlomes/OMEzQ37AocuVKHB9r3YV+gJCfrSkCqzFU8/aKXdWafgSb4bg7ILLYzQgIAmA5qcaMIxa3N5ibIGdKvGQKNtM6lW/UAXp5GQ3WLEg1o9cMXSmjX/u4PjpUfCR3djaND5COZC4mRetZU+KkxmtcrlfPi3Kv5b2ggVBcZ8pyCNQuv04cZ9ETosfAIuVP1iTa9s3GuRya7KEdzeMo/ifTeR5wE7XJ1lBGugHouNC6DP9h7BlhUsr1CFWjovQFzwDhiez6eiJgsosDeElN53cE5BnJ+p3qOtemd4r5ss1ziUgXTPe5i6cjfu+7YatN9OgLTOHtiv+BDd/k2EWkERfn7+Fp5PCaeoS0v4GhvzpAVrcVDcFOp8/uDSjwWUKjCVjp8P4nFH9XnGvMW4bbQw+L++TZoffUmPxKHNfSfJKTaRV9xydIxv5mNrv/Khn6PBSVuVzkSVcsuFW1w6HWF23ivKjzBCpYtOKB8lzn6rTrGWqhDGyAGNLxJnMDFDvRYdiLIYRO2DM1nz6xWImmyLmm9ScdMSW4KFD8gaTOjDkuVcc0QOnC/o0STzMajwpIRaQ6bwsl+TWdpVn1oinnKjpwvPj79FeVEjIFBcFCe7Xsfv7U4wpuAPZJ1MhNVBUXDe1QM+dwjA6x2r6YABQoBhKc0IXQuSn/fyvYJ4PNx0GEeomHLslQiOi/KCwuD14P5DF5Y+dYXSfy08Vb2VK+SW05mDJ3jFNQX28PeB73M1sTNiM4v/nQJSgWnQmZvJx1RP483CGn4/so/z3kbi5IKJLGQkSH7v5sKoXkuY/saBx+h+hLO6FbTVfAa+Gf+P64+spPseBTSt1x26Lr6HR4cJdOeo47YrqrwnbCI5ZBqR0/YPIDbWmq/UrAKzvGF8uP8G2wWOBCPFrTh220vYNKeDzncsBPv6aBhMvo3NS/eD8MeZWNauyHoxqrAs4xPO//SGJ28+yL0FX2jYMYIXOvmSyLkiND1/D9tOD/Gm/bJQc3AGVFSbgMyOVawx5iPIXNaHtqhevjitia7MNCS7FMCGrRYQ8LYcVDOCYZHFA6zy3kLrEl2hWbwZikPv4cOh9/DhYAUX9MnCNxMNWHbqADq9PM7x8wwpAGUxbaonCm3bD/PtP9DMmBxOSZsO/6aIg4atJvaIOJOVWyaqTfrA0Zqv4F/WLDQpucPl3fOxvVMZVGNM+PeiH/wgs4rmv97KXbl17GmnQNfXr+Mb2ZJ4SLMCKqN04af9aPadW4ZqEZ+pQ/IkKLhuoRtfy/CE+DVeqVpK1lPDOdNYCZR3r6Xwc0WofmEeBBitoZvT08myUZIWnH0Cgspl+LorAkNSx8GT/X/hoZ0Mrr82yL15jaTlO5ZW/X7KcQ6f8eKfWtjb9YWeFUhBltk99seR6PExny9Uu4F2/CsqVrzD0bUWYD4yFM8WRvCyAT343S/A1c+f4SdPPUjZthCalXRh2g0X/jp2EOw6/uP5FXPYYZkg/Fm6ii7eiqHgQ+WYYNDAc4RtyTi1mf5or6CceZtQP+8hrH+hC6x2AhJmxnO6xDDE6azG1wuvcGvQKDQ+FIosEM1rw+5x2wV9WGMygsIX/eHNEEt9j85T7tFAKNBp5KNFp3i6fTFfzhXF7wbW8HH0Npi7+Q3qX33NkZLv6O/z0Zg76xL++rUMDkVbU9hEJVxUrgNxstP448NYWB0Yy8H7TaFloTzsCp1H2+SW4uqXu/mAczh6JsuB1t4/aNzwlIvsP5PWtX5wu3ObPyZ/g8wXSVBnNAPexq6lAy0agE8HMPjmMiqcvxknpVihU2AdPlF2grLjidjsN41Gn30NT0cKgMGrUuBtVyE+aCKv/PwIzzwP41uqhuDVr0EfHPohd24/Cw2qwr5rXnAkrxL77VI5ry2Hv9/W4O5bq+GppweW6H/m2zfyQeW2DoTIHmCdkz7gvHMAV+isgt4D7Zie8Z4U3unRM4MyDD3oyDGG1vBTthZtAtXAb3wZ6w6MoqYlvigVXw+fj+dCstNL2vzLAP2eSoLHxQf8vdgLg0Ypk/cHC7gy8gA96nWmWrfr/FIkghcMeOF8C3FIWXuNJB/0YOu/zSA7sAgWB+ymPSLdLGjvxaPXX+L6WT7Q/Uka7NX3osjQZZ5YmoKXfXIhevZ0cr/axIeXtMLcTYIw+GY0DJTrwbKZkeB7ro+Lo5Mo4oAJzutw5DtNSzD9qRdeeZJBG45E41aLaVAeWIIeVb0Y+nQv1S+KgHPd3/FQ6XGwWmXI58eNw8ioLdDcOwW+hkzB568+cyMVYqjADAgaUIGFia/pwDoTfO3mTPfey9CFLjHIzXPAzuZZ5KVkiym9Dqy5xgjiXdThx8/dHFpnhQcVdOAGWsLczLXwReM5e8lf5z8ed9ng0Vaa+f4on5+9DTZpzka/i3Ww5KwVWJSs4OnVxMcVgdoWXkfVH1X8Ic8OdCNu4c+sZTCEwZB4RApkw0wopGIGfDVYQT2CB+GpgRz/2PuV0q9MoifvbeBf3kr2TTUBL9d7cP5aE6pkIf8sfktvNtyCr7iHtqXpcX1TMZQ6BqJh7RQo3PaDTm24g8b7Anh9yggq1cmj5SKfOOr6cvy6xJFMJXMwRtwQ7mcxbro6hAqufUyNxJrC4fS9LR0Fd93gpPRVEGb0DzKdLeHn/lb6lp/FNHiKDa220YDQBCyasBzeebegVsw3Ni87B6eLx8A+0TbM+ZjC0yOIhxVDsOSzAyW5nKQf3ZF4aF4TO2kswv52Xdhq4gpvvJ6TheEieFlaBKmLR8DwmPc8zUEJbkr3QIq9FbOAGZzc/5xinHNgTcUMBscKzLX34zsbkunmm9tks/ollmsKUp2cDrRb6vE/dwlwTTmJTlt9YWLgTVQRtUKt0CegJWbFl6M6cJyyLJiOCqSbg/nsFz8dmiJ18PNfMSwW1QbZ4pNY/WYsZcQ1cE+MFfwplySnjlJac/0Wdy2NwKqLgnBqnAfKtGvAq69tYDrVD7YbmYClcDBmBPbjw6Gp2LMljH8+u0nPRHRo2t0x/FNdjAJmzaU9MtPgiEUDZau30ouhSNY+w7TCSZ3vegvRuzPMimNt+a9rCp/KHwFPzsyGyJMDZD4rDtRTZ2Nt1ibcOzGEcwqJ7t02hGalXE7WUobbK3fjJLl3KJ4dBw9Uo+CbXB7Hhs7gvQ0JHJhYzrpHuujzdjkQDFblbhF3fGZ8le87a4PyMlN4vjQFc182o7VdBZeoVMETcUvoU9+BfVfzIOnvHsybUIdhQwtRZvt2rli0jL1DfuJdnVT+EYIQOkKdFK/mIyuP5KYzF7jWQQPPPaiEW3JCEC7ozO0GZ0FovwBMHr0cU3wKUSWhH75WbaUOhdPQkbaHiidbwdKx0ih1ejJe6xAHy19GcKlZGszshtEk+yhmNbbQ3YFaanhVwHsMzmLdqodg8mw6jE3bjU3hD3GKZAEt+CRGckcseMumCdQgPBFPZPbiXLH/UNBGBg5Ef+STS1aB0Et1+DRjDO013g0jKs/C+c4Euu1khxGJo1nQXBWM7WJwYGcTRVxI40qdQ1Do54TWbx/ipUWyuMI4EbRuSpDVBTUYt2cdzkrYB1XvZ9BO8724bWY2v7RwBsvLyWg8u57LKlo4XUsVMlou86/UX+gmb0blJrvhW+kUPPRBEUpsp2Jdsy9PnCILiVri4Pq1gK6WROPOjH04Z2sZ580bg1W0j6UfB9KNx+2wc54LOyyZAt1vm2Dl7DTUDCrkrnn78YLCf5Tfn091La1kHBOL2St0yeSwCmx9YI4rAgM5LOMESLr0Y9TSxSxw4hj7u0iC07l5PO2gMovkmcAP5Z9gULGLbYeLMXPVE+zOMuUFh8X4zNb/SEJGi5xFQvj8WWEQNn+JhfiUEvIec8elifAj2AkwfAOLLd4LbRohkHp6CsolaMPFm2fhNZfh7MokWhHZwCapE3izURAbhNdAyYo/7HugDEOmyUP1Bkt8sVoOJL+cZO1LPXShciY969pPeW35uG2XJkooHOR63/FwKMCOpF2T2KeuhHsT1sDNWbL0es0RVvBazp5rx7AAGJOWkDxcOmyBI+LkKNI8h6+cMgOHy8YQtX8ThI/t4RyR33xzbh6eGRaGzOcVOCFhOTlvKSLR9CI0n1kFDcvXwU8Ox9rzHzHlTzBF5QqD0pn/6G3VR/xn2ghHsnYxxH3AxCUrCW5NhuyJH/HSkwEuOjEe5kXZkcJEUXA4GYjymhK41W41j1KtwuyZZvjlkyuKCnuDVKUiBHadgZKeeo6yvw8zPr6luMY+svpyEkPUkyG/IpWvn9GGyLPSMM1hJlU0qaDLkDWruZ6BbX/F8Hb2EOZu/QWCGzZA4A0xSKiwAMVaRZYXy8FsnVAYffMx1cStIZGIatp1ZiFmZOSQ8vBFeBVpDem+vniLC2nc1X1gcKkVFFZY450X19Hldw53pI0i7aEJXP9bDkjGG+4bp/Pezdr49Gg7eDuNo7jRX+j84CVYYqeCvTnvuOS9JJzcNwmv7TiDi59Zo4ekOaap1PIckcuY65cDCiEZeObRD3CykoVmd3dc2LgeZttEc7bHY4T4qZBzvofThXfCFvMtaCX2B+8e1YBT8WP4xLeJHDmmFK/mngELpb/4+c18Gtm5kj7McuQtKYdhj7ocNDe2cXjLdZTaex0sTlxHR60FVCflR1q2LnzDvBJvC/rDpHolEG1SAY0STfCanMgbgxeCaeEp/mzVB+B5id63n8eCzFFoOGUczMmeRHEdMmAraMh71z2BontW2HRwFf2bPZOcv++ARWIxnF1oCC0G3zhj/XPSdJxOM39/JbmFB8na0BmSMwdoisITVP8SRElKFqBuMQOVY6+xY00cxtlGkJrtQe5LauZM2eV8DSLgq7o+DbjrQJJwGkOhN34/vZc6KsNo+PQtmq1eB95KM+jBPS+Ii5jPv3pkQMJbgNuK/XCynSG2mG4l67ohePQzCMbvWsgiP3Iwa5kZLjimDJ/3NODZxxtQ7kwWlem1oE39axL/fZfP2d7kLXNW05KzL2CzjRScel7Kt+zfUILgOLx5cgsfy9TAXT4nSC3Pn+rOZbJGszGtUzSF2okK/HbyGHL/e5eLkoYpKqoAfqfEko3LWF4ilAQPQlrxmqoGzB+MQI2Ri9jxxzWwzKzFMedPQ92pbRyz7Cs1fBhDJ8ZfA+dcFVjRcQHCjz5jp3867OO5nnzGaKNA/xAt/WZBf7r6ce2mWTRvhDh0NZpSZv53tBs8y5dVUkFn1Fv4u8cbBAqXoODBjRz1vZgjPUZBhPVSihJfhyefPcBFpzfBsK4xlpTkUWRBK13LiIHCJZ3Q42sNWUJeYLTpBIR8c6RnlS3w9O16enB8Lq9facge2hPggrIfFF2VBDeFZRDdPgyehcdggcoZNE0IgfF33TDkQxN7eTBdniKFCxoIDqVaQugHKfBX3kHif+7whl3dcLX6Epn3nIGiXl+yK26iqJ9y0LjYGMf5jSbndm1QnfaaLVKe8vmZI8l72TGIH13M860z8dVFRej/+IDmlO6AmYKKILlJh1Z5/8EPSrq0Nms9re+RpNEtMtiUw5DraI9vGw3x6UxjasySgQ3yThRedAaP5ihBVkQnm4qO5ucHReGe8WfszC7CGt+JkGFozE5uf2mh7nxKlGhGxcuvOCg+jNOKJ0HJwjsUVi2M/Xse4hTxPSR9YQbZdXWhm/Q5/DFlAqDqcdicqgrn32Wwu2YChzo9ZU1PEToakUALz9hzaFYq2u6Swn9PtLGsWgh+lgnzyCdmkCt1k6US5GnssDCr+nnCLldx/Jj+DiJtbsL1syNhcLQkVku+gBGrZ6Caw2PQ/RQADZOSaKgnCmOPNFDRhFp+PU4MrG60kr+xFyq8USPZzy6s5rsC831dOCSilLwqnoNxoR8M6VhAyiQjOtveSb7p5nRS5ziOPjUHRuYPQ2RkHk677EffqlMg/KIV+Bzq4dP1UTgkcJjl5/tTmvlvLL7aCJMlZqDuyj6sObUc076qgoN9D5cbvuL2Ym3Q1HkEvRMK+YvjZDD7bAvzbo/HwZhKGpUqDHEyH3nFYSL3l35UPGxGctMu8FttV1y1I5O1tp9FpTtjaVBFCIZdPEh9ah87HhHA+b2lcH5SLpRs0uZaxWhYJW+NqpdnspKLDLTqB+HQumsYdiwOxx9ZjCcS62GM2Q+ceuIiTdj6B98758D7idJQ/7IX7DKEwVDQkL43VODU3hEEJw7yjpKttPviRE53moyF0rLQNs4WHsSf4o21EbApfyWGudmxA93F6j33sHK/McZlLsRBKR1oSYjhnDZ1mnNJmd89fcyGZkVok1CHJ5Z+ZdxnA/ckN2FygDrk10vQqs0m/FL9OkUfPsM5Yen8vmQWzHl1mrp7QyBXUJ3KqmRBIHSY14lvIlntlfiw9y9G7bMBg8V7cdtqEUqakMZd1r/A5aAkiBxSp7apNnhsVRvHbg3D1p54aHpox5fnToNRWmqUq9PJNZ1yMBCPLC3tz5HqX2GTbjR/H5GCVgrPsYZssD3kEPhGJUOllD7UZrTy2R+PSLt1PMeUJYJCVz5vqwxE7ciFaDr3Ky9KFuXi3nEw8PUwLXYLRh1TMwpf7EJpG01QsWE2HSm/h3p7fpBb/QsqSFUDxX31UBhbAkv78qE5Zh4UHCigsX+HYMpbJ8zoaOGBV2vhTbgZRGpu40SjENDJcMGV3k3gavuTszdG0PazVaifvRR/vz3O0urj4aHda8xNjoSS6CusZ6tKWy/EU0u8NJWvfIGVzzT59UoTmlwnDgpV03jxilRIWF4Pz59Y05eZkzCww52VFFN55ZFUOCwzi902joSHO/6hfuUQLr6TSU+m9/D1qky2lTLh8Tc0KVjmHJaNW8nZI8dA0dcnfMh+Dcw8dhIfdn/lT1LSqHyPaFrpEfwzcIFWze4CwRM68DK5mZKrPPDd/dfgN9UJlprcgv8aVpHc6CU86nIb++kY81kJdXj8eDLMmJaESzMVYKT+T6pcI0vqqjXg/kmG3JRj+NUyLRYyMYbt33I5tvA0vl1/iARu5sJyvXBYrSQCdm9ek56rEtdoNBJZqMKxwV6Yab6SXH/E4fWAFI6fYo/9tmdQrn0zXJIJhDC7jXT91FiY5LWC28fHgdGyvbA0TYHrC7roWWcV9uh84voYf0ixtcD9/iNg1yPkl0P2XFLQjx+zzmKn3FQ4v0GJFHw1ae5KRRTwtMDHa0xgvronOF3Qg/fbR1ONqQedPVgEIolAY+fIga7RL/6W0ctrw5SB3q2HpFxD8OrbAp7PuzhhIJfWfJ6DvXaB2JgdzK0WS6H05Fj4+UUCuvar8rlcGVKZVcm6ZgIwsG0P6PVMoY1RwWgoYEmqGRPg4u9Z2NG6FO117qDhwDLUykhiV/kAmCPqRvr/VcHC/QdhiiaB05ytdKW9n3T8yzDs6BbUyLmKPiKx+KxXBpz/zuJDm7/ywGFFmCI9kveJinF0gBl9E/uChUcFMGNxOPBWR0z2f0SjV0hinLElhPz4S41b/+PqblGQ2CGAl9ulsLvyJFe7vgO9r4qYGKiEW4unQVV8Ka/SqoTzMkK489hJfFfpBeLa+7lOJAzMHsyERu9AGChRgzua1iAkVEmWclu5LzOcHnd24my3idT2wwv6upZR1201MNqhCHJbJIjWDPOnA3XULX2blmxXx2Mu2zB27BKqrkhB45ZHYNNpCl0/trKFvgZ8N9SHty9OUcSm11ClORGGdK+R0l9hviveAqP/KMMWg28sFRVAnLEcexKyQK1FBZ5GNLHCOw268F2RjMVOMuuYg/fD/1hrdTOkpB7DtvxfON4qhv4Z+HHaiES6O/49mb7yQfdYczBc6s4rTpzFrHnl4N5/j4W/3CKHKkvwXLQFhECUXYfKYccEKXiV9BHLx13Ex+Em+EjkOxnY3eHtuxbxqrh7+OWPKkQLrKTpiSow2C5DxxZ6Ao5cAasWLaEVR2x470kR6Hw5hw6464F3xks6Hz0GJkpZYv+pkXh2xEmcnhOMa4pKeHHfFZpbKU8SlwN417ZyrBQfCVpywjD3ogXOs38BlyfYUUN3Hp67nU7+2fmUmLCHpm0ZwP1euvBdrQZaK7/gWhhCK+9wDN4/ljLadrLZn+ngMtka+4S+YM0pUTDTT+XcmmzchMKcNaMAm7Rng0H4Av7i4QY9Ncx9I0eA1H8A51PiOLFoE3W51cPEi27wZSibN5124ltPXPFdvizWi6aT8FoL0H9Wx0vmutPF12rs5XOdbPYtIb1aS/Ajf27oeMt2j7LpoKIhzP7ViAqrJGHft3ic9PECOqgWYnjQdVIoFsK9j005dMwZ3LnFGBb7vsO4lwUsql3Gg/E57DNrJJ/7KwZCVpZ49RNjdYgK3bK1gF+pj8EtppeXBBjT16O+/Dsxkafr1KO8lBkOevWhkeZkiLc0h43eL2BbwEX4p6KB4T6z0f5aAukcruU5lr9BKHcHLFffiNWyJhB3ZAWs7jSFjI1SvL1ElqIm3+Ekwys8KXwQJtka0RWVlRyzTBTyMR7HLC8Gz6vX2G7CNKqqbsb1OAedyxeSkMw5trKZxetPMjxc3QiKb+6wbFs0Yc9OXPq+huf392LWxu8YMyeRG/49pOKXBBaWW3FK9Tl8+nst5U4bD5Gf9HDeP2N+9/Q539pznMV9H+BHtIDvjVNZRA3hWdFxkFwUADVN2uSzxhx8p5VifcR3fG04jIGCBnDSaiNcuPoMpn//xldfe8CYRa24euQmqhLdiErNMvypqRaubVQHoe2LsVDhOAvb/0HALBbO3gvbimR59igp1L68Cd+OZVT5NQ52yXvghj478HJwpujTt/nWjRp4FNoCQSHD8DfeEwSPv8Rk0gHzoBL4VaEB60RVue7RMRbuFae3des42Oc/mFz9H6UUH8b2u0oQJSzCY7YuIB/vWJy/dTbOPT2Mooq+sNagnKWFl0Kzx2EMlhOF7Yf8udnCn+LGPYC5V17zu5g8qJV2x8qtw6R/Zxd4rKrinwIiIGG/h+fsbafP1dfoQmAB+/Z1wy7pDjip74h6pbfR/VguqG9QgZ/vzdgu+TTlu22Aep87/NU7Ev/MXw+OA8s4YMMKyqxy5sVzzaHmjyaN81Sjc9ds6Wf2TfxZ+ZJPn1LguGJPoqvjaHNLJP17KgjjjwxhzqSHNPnscjJsE+fbgg0U1OjCr6Vc4aPBfq5YoEweey1h3TEBWBSbAqImH/h2RyaEVfwBx2mW8O35GVCQfsIx767BKmVBSFY6gfMfBFPOykS6J5RINUqLsHLhVz5r/g3fabSz68duHFtoDOOelfDxmgaKP24Lerfj8JKEK1YnxoPL1wdw+mwd58iKw8kbUnD6fCGNfe/AWLSIzN/P4k/BAfDBW5GUnbT54ohZZDf+CYW9EQfpL2Y8aFQCl8uPk7poIj4rTGdHoRa+L+AIZXXfuf/aGfitoQVa88uwbOcQrsnqgcxX/1hLqg7cbHdi6yhr9B+upfaUbhD6IgctanmULtJCtg5BJDB/LXk59+PRluMg7dPEoQu7+Xy5GzbOtYLpd8tZ/eIkTLP/Ar6fLsPM+kn0AeWxv+wZG6t/p0NT96FnhCQsW5ZCaxrucJPWRxY1KcDcYG8Kdhymja0NmLAyEA5fL0E9w1FgOtMbHjV+RP2uHpixp5dvL/WlHbddUCK7Bgz+mNMtTWca4S4M2eOP001jJVgn2Eq3BqTwrYANFms/gi2JD/FAjwQ08n102TwJylrvYXb8Fr72YQz6Tf7NdaZD4BA8AEZJYZzpUcC/PAfhZ/oE+BX7ll44IdSt7Cat7iYS9unjIz9VSbkzEo+FqOMB1yhKUFOB7fpnwcXtH7g/RBb/8g/F9SqpNPEdVV6chEa7OllOYzmkPlGHcNcn9Eqygm472LPp7wXc/sAb1syZBQruAXSnaAHMqAmhI1KSMBBtSr/eJHGTaiKsFzLjLQ7JMH+NIziGbKfi7J20/N4hGndAGWw15GjNmlCc1aEP6rfa4Ma2lxwkX0b940vo0gtXEgjr5YdyghD1YwPc1m0BiddeEPjXG0UufMHWuUH4qXMuPmwLB8FJOrDltAFssC3ng40RcGSyDUypPgRD1zOxskgMDnjYoauBBQ48PELbXojAwXvroGSbDnW6SdGFHY10Jq2Xnt3q5sNzGhlGZYO/iROKGoyBY5LOfPOWNzUkpXP25L+claLB8tVNaKP3HXhjDPgsSqSwsqkQ/7GeUamWJj/JYWUHF9hea8ur2JO1E3ohLa8AupasxTNaOsBdLhw8sAJmSQeg9Np08Fu8lDx4NYd1JnGpnx08XCiJ7uZSsNctmEV+bOD+jHbOXbmY3L/vwYGf2tDps4HSDT3p7IqxtDpTEWxSBGH6nd983kIaCitD8co5Nb42p5/rWyWxYaMKFubugtM/GTaIZpL0tTScX+hHoxpd8P2wFE7eK4Cdh/bzlhXucCX5PP9p1gQn+d+sanWIfuzaiz82KmGP/DuaPOY8ffrziEfV1qCaxSSYtEwD1stfgR3hbmw9bx0E/pZCi9XRjC9dSTf3Fmyw7QHPmXbw8Jw0vP9cSt/sf0NLcgbuNvmBjet8OS9IizzPTIOq7ffw+Yul/LF8HNy3A9TNKuMFWhPxgZUDq15wIl2TEBo+fxPtOg0oaGYFXgvVguhR7bhdcxgyvP+Qytdh1DdYxxfDJyPm3kGB97LYdsWB7/gYgnuqAkqXe/Cpz8Gw53gris34hzgznJL80iE2fRS5H1aD5/KCINt8CUsjJTj5RzLt/+cOGh7ruGnDQ5wx4jYWmw2i0fM6qNSWgPcxD2hzUgdm3CznvKeptNk9CO96KWOW+F1YsMoHrw09w1jnCUDx5TSoFo+5QRfRxvAi2OnfxVf7bODCbw/UOlADr7omU2qHFkTN3M1RR0P5e4gyn1MIoEd1f0FkvRhfmDgGnr51huvyP2huvRLM/GaIh36Gste1dxA+NAOPfdhHP51G0tbjHZBbeoIfdN9i+D0NykrGUv+ekdx3V5LvvdoHS1b/QYu9MzCo4i28O9SKPje1cPU0C3go5IiSQgPgHXgZdu6awzKrnoNdsgm07l0OlWwLZ8ptcMSANEQ2uEK2XA1vAh0oHRKmXTH3oPJ9Mk7RVcJK3yuo7R6J3VdGwY0XyXTc6CM3vneC4D9JnBN+DLuU/sG2qknc++EFT9OypdfHdEDmnhzOU/mP/spqcneQF6R516F+zAs+pJdE10Wn4JYlm0Avj0Fn/3iaFPIc9LGetFoG2PTHcrCKG48RlhYs2v2azcVGEmXrQ/lETZ5+2hxMunSoSCoSPbqUuVeqgpadGMnus/0otugbl9daQehrOb6XpEwHjzmz6OB3rLjQQMb+lzDzcQJXKTnQofgsWBmrBrlqL1jGVgOuRtZhREk5yBTlwwGBQS68OgrsVOJpHGhSlbc+RO/Up89rrtHDwI0s2yaPZWY3YMLmPoj06INmUUV0HnOFH+tYgxq5w+rfy9hpoQ06vkjF8KfaOOfbS/Jv2UyRpzzpwMlEmPnXAn7I+vP1L1XwdWw6xh1OpcqcMjj9MQiSlDLgSE09F7wH7pgI8KS8BBqkzpLZoptUozUemtw/g1a7N+6X/4FT8qrZ0zwYjf6j/7v/lywzQA9dz8KZpANkens9/ztFfP9BOntqCpHrjR/U9CeCUjYowp06KR5W7cHyFFsce3Ii5skMgZbdHi4tWUAhSaM4Qz2UbkmMhva0jeAWRFy4/TEXGUzDg6GeYKy0ETuFXOB+Xi9+tz3GSrv0QKv9GbisFUPj0RJ46tEx1O/rp7vmp/CYrTsc6hBjq4vD4HFHCP4Yt8BP+53gPeIUFouPwyq9fIxz0aAVA/Y8yVaM3Y8gTZxnDcEdd8BneSQ9uaVHI16uosuwml79O0ArIwxo+sKzPNVXkt+pSoD003IY1LpACxzceZeFDUmvrwZ8+ADmHG5D76dM4vd/cd8kM5iYsplH9XvRsFgb9w/XwHX/Rhg98zInK0+Dpc2uWHfWGv12jIG2nza03sOICndm4b5N/bQn/jM4jjlBC4Md2XX+bhAeP5/6W0WhfuVVuuykRI/F95DR1SDQiO0nkU038c3pQnRedojbjdVphLYxuG7VBNm9Xth1U5bOjS0Gh77dvOWAC85Id4ZdhwvZa+sr9hqeDie6t8JV8TKsYkeaPquRu6Legfum5yzj3ck10a/p79XtfHqPNhT9KafgHf10pMaMysQG8JStFUWnFcIK40N48MpLWh60CnbqyMCbVcFAcSK00GMH9S9ooVrpS2yctA9f12/DhN2rUa3QhroLxwNqjcSBImkKvRgLxcdloFl+JIs+K8O/M0y5JKQOHnt+wLBSURDovAdvp8bT8h0+HNjpwdKtD+C7/RNI313L5yetJmfbTFgrLQPF1RoQOaOcjeZtohV6y+n4iRbM9nvFl7c9J/V5jVzZ1QoqRtpgkrqAbsSJsGdXC0Q0H6bY19dw++uDKHMiig/3+nNmjgq2ihlApUMrJ8ZloNZWbZBcvZ7q7AzxRFYB3agMhVexKvzbIQ1fSk2GhoDNXOpUwE+OjqV3PndhXtgGHH/0M6yJWM8H07pIzsWOrjtNhCcjzqJbqyAXy+9nwRM6kDzHFbKO68HtWXa8I0wAL7sPcMELBZCvcMZg/eWM0WvxU2Q835hqgo3fvmPgKysQWbUN133Vh8k+xuDxORsmTLCCZUVJEOUuhD07AzjhuScLdJmC23p3/DT7Fc4UMAQNVSEYKp+FOeqvKN0vFBNUw1CwzwsinFfxOa9oHls1xC93asElDxus+BjKP5oT0GyPHP/dmoPHVJrBU1kBlXTOwdbGB9yUbgm7vjPfqgvGU92JFDF7DQuNN+fn6zbjrWkqUK+mBbEHpsGkqwRtqp8hWegRzQlKA7W0A7jjijolfOzBLn8n6t1cgV7707jffzQsm57OYFTLq6uX4fBnEQ6zmwVyvd/Q0UmAZ8waS0755XQvRx8kRkSQqfUGdmwLY5nuIjzWrocCQ26ke301rFl6hWeEL8CjbUbgvu4cDWmY4EJPc1y2Mhuybb7wDnkDmvjNDiROPsb1l4IhTngcjPwWSHEahWyfeh07P1xE6YybfOHQRniQNR5Lx+ygtPyj9DvaDFQCfPCkwRNQKu7i2dJhsP/4aCif74ULfqdwiKMrtadshroBKzB0nEqjL1ljUEgAt3cUUHLyV6zKHcSoH5J02K4Z/d/Oo+0lJhD61ZUyw/3g73pJcNPaRT3Pa2jdgitwTWIHXsyYib7HhHjtHimozpwPiZc2Yu9OL/ZPmMWTC3/D5xkXKS9wMlw1PAiReWK8JGosuCsI8bkTc2mRkhZlPf1FLa93ocP8lTgjSpMyy9qoWKwJc+brwvplpuDkvhQdQl9Q+opsfra2C71eSGPPs15a4CiJ509kwqWXI2H7qVI0G6sPbhYheNJGD/pwPO9RiaH8aF146hSCx0xKWX27CpyYoMKp6yeg9fQcaC6xo8VTu3DN1vd8c2k+RHkeIJ2gRzjLVBrMmwzovMU5WLjlOK2uFKFjK31YTjqdpAZ9KGS/IEvcaKL91wXg1dJifHSXUFpWGFsqRaDupAJUV5uyfsZ0tF46B5rnOfJPR3FISNnFv1cu4B0VZlBeUQAW8o4ccyiEl+6+j64v63i2szBcixGDf516vKw6mE8X5HH5o02wRW8SxwszJ77dgMGjklDq3CNuiJGCXf5PMc9rAtxcPopjvz0lQ90tsNfhBLTeDuRlr/vozahAtGwbCdOrH5PzbWN+dLqbG0oi+Y5WG8xp86ElUsAj1tuz6br5sOezKPiHa3Pdm05S3bOKlLtzeaOCLHiH9pLRUVdoPO7DyzUDYM9tgJoOoilrs2GhTRjHbZXAsfoB+OBcEIx7JALai5+Bla0R3EidDiUP3fl3cR5v03yBWtcOcGwTovdFTxaJyCOnDE3sjhSi0DHjYYzJTBwyiqZU9Wm8ZLc0WVmq89mQuyh0ajxdNfbgPJFTLHJkEpDhE76Qm0AuwzrYpnIF3pVO58irl/jepiu4JSyLDLt38LLSCRA3Tww9vbW5fe8I+HD9MX2YXsqryYz+vXsCtb5LeOGtfPydLgerrkXDiW9nWV9bg5+VZkL7gARETTgBpjGDGFDeiqNG5ZJNryRoxvxAyUXLqFPYE1/rLAIJNx2qu6YDf/WRzdL+0aWP2ux81xiWTCiG87PNIG9tMBXXlMGD6OlQalTMMY/H0+IMX1of7kibMzUhIOwP2BankFmTPV89dQud9daRsmQozu+7yGceaJLq7QZu3D4Wqj5a4IsnGiTUvBhcgk3Z4oQN+ogglsh+wikgSPk3HchjlRK8/TQRlbZ/h7US8vC4P5Mbv42CNv9vtPNAN2gXCtByoUqyl9aD3askqOyQLbHHBArfIUtBUhKwrsSb1h+ZCW835aJ+jTesmTUCIC6A/DQ6YZGGCJks3wv/PZsAcsNRNKrsDE21vwumaV7wwFEe/sb+5r2KN+jt7G5207lEpitD+ezo15Dx/jRP2JxHIgYFJDpNG/I61lBPsBz7WAjByLfzcI32WB6zO5+HxM7hROkxtKapj8ftHw+748RB4EUyv/p5i0fYqmKhQTxq7/eADaN7ecoDTbz3wI5zR5jCausxjL3GsLzBh0avaqV/z96QwbsicBIMYsX8WMpf0IB+pYZQsFYKHlX+B8u85eDWUXEWC1FCuRZvSvsWiM8k3PjjyNP40UYNLtSLYtmKAkraMAZzdKaArnQNqAgksY5VBOOZZD49dJH/uyAIx1Xlocc9k99tvw7qYQRjn51jseVjMWihD57ecg+j9v2Cjo3TYNQ/B9xlPJWm8S2oz2mnUfV6/Hm0OAfURdEM4WQ4RB507o8QhEn8xi33RtCvDUW0qG4T6YeU4jtcSCvUL8KzidX4bvwiHpWtA2FbtlORzAFIfu/D74ejMfrraSzTF6eIrlrymVaBu1KQ+8bJwpyEdWi7fRvkzHgLD63TeXDdA44tUWPrxm0kNH42D7RNxScXAP4kI0cH+FPV4eVg3ZrAP1csp7SwP2Dtuh6nFhVRnMEgzJUwhasZ4TRj6A4OfV9EWn0vWGrZXYw4m8gXHDK44LYTTdFaBePyFcDqdySEDG6Cj8+k2E/tFUzIaYI9brE0s0kHatWGaKFtFjrnyUK2101WFlmKK1SD4VraBZC+gmycZwFJ6bHgbVdKDxPuEU5Xhv7/EulhvxunXlQk7/u/+EOrKf6n482V467CuQgDlA2S4ICLU0EgaxGtFNuAW9alk8IpAVJvaGSnv4Po++M4BJhF4+tFYuBpawQb4nXpg6gbtqvlQdD1V9y5cAp7mBGuz8nDsHVnQFKglnbrKcP2V6J8+JUwXLnhRKV/9PG710VoevKHGwr96JSlGD+cMB3EJIRBdL4oBy08D3JnnqLfswDqvSoBDzZIAY9uhZ1O9rDj1jqOD50EKdscqfxsPF3ufIlXorxRL2cJHpsQQZD+CQ6EzuMfeqV075M5/K1isv52hV/N2Qg+Soup6eE8mO+sx7N95/Hlxfnk73MNm88rQn/lfBqxQx2n5rRCmd4eSnt4j0adn0MNLUtR7fwjvPTtMh+awZD9YT10f85j2YQlIFawGTvyU/FU7E78z8CdQ66KYW7RDXLImA55+Zfxt+cmcJ7mRgFA+LZtkIc3N4HCzqswP9YEntp3g+s3hEf/lbHfcwe8K9CLGYESfNDmLqYpLkKB75fZVv8VHb/VCBaORmCQYoOzA+XQt/QtzN6EOHNGES1bGgmxKhtodccJNtZTw9pcC1jtEM3rtZpISPEieoYshaj73vgxKxb1HBbhwrAgnGrgBuNsZSDgrxBnd6+hGJ9ukI9RwN/P00lXSx0OZD2h2z0yODUqGL88NgbfpXlgTRUQbHoD/mqG4Si/xZBnbEFOi1bQpbm10JN/HpomIZxMPUZ7HO/D6rkhFPi9mH6XuVBc71wQlB/BU0bmc322LT/zVQAZN1WYdPsrjZuwEdOVMrlZMhlntJuClJUFtPnvh1H2VjBlijXwxEmUuPEayaidQEVtR9p3uZYPlsdjbrQsZavdpkYsw0xfHdiy3BAiry6ACToHcbHpNtilEMt3SxNR/Oh79vypT5+DjkLCPwWo957Ajb+u8ue7O/n+6jJwfnQc3q3/TJ1+u2EyNNK+bVpwz1cNytplcY/WBLonV0TZY07DKbd//OK4Gf50HQfP++7DzOPLOeGmPATsO4v4Lp6S7cvo48/PsHaOOQQoTEPhsF5aZTsBtm/P59k2RqDba8bNFWPo5vW3sPX6C4Qqd/pNStweMxsufzrC86oT8eYtSzCxNIfUoBWQ/nwB+Y67yn/z0zh0ngi/01ci43xj0rE4BbdNTOHkySW4Ia2fP/tvp7IRiKuKFpKo5Re+vkWG3WJ+wobqLbx8+UgwRAdYoevIokssGG4Mgp38WHzrc5gyZxZS9Lk51BRuwLafdGFZ3WHSG3OEnny1onUakbxexYMEZu/nu4eKIfBbDKj7ncFnB0dBhG4/CX1rhid673CyZze2Tqzg/FgfDtQdg2KvclAzoQHE8mUgqW8F2cyugMzUm6grOJGfGYdzzOk+eGw2A0duWwtz9N/w3aqR8DSmifx6JEmUWzBrkTzGClTCbev58G+lH+p2ZlLURn2Yna8EDt3JqH5NDfXHT6VzYoI8mLyOV9fXcHadPk26dAfb7O2gZZkl9Cl8hBvuHbg6sBU2F4iw83ot7Et4yU83KOOCgSFQ3n0Ks28ZwLqFCnDG1pPmLN5O+jaJUOxgyJEFn7FOyQCCpQo41XcQpvVLw9/rQ2Aj2QySa8LAReMwVE2xIy0BF8xXbIQC/V6e6x8Ps9eIwHNbBXwYvpfXOFfw/lxXcJ60HO/NEsP024u59OBYrJqqAa/u6UOI/VmoUG5jfU8tjnV/R5cXrOCxsmE4OOMWHn7cwEY/ven5c32QwVncE7eYYts0YNjGkIbas+nNuH9894ENnwYT+vOqA1+a6UBe3yMWnHMMVRZsoJpf8ty+cwG5+pbx208ZOGdJOdluT+eYwXGgrDKC5bu9yH70TpSfpgSpZ+155afVtPFXLX6Q76Apk+eSfpQI2MyNoPpFg5Rj/xN2XnuBxRUeKPM9hP+xBZ702ID3nWMgaJYUWATm4eiYZrLzn0sWarWsOC8ErOLb+VSRGCyZ/JWTjZnjl4wCcmKOu3ECDj9aAdmvlWHvklV0Scyf/8of5dy1O8hWezz2gBoYtSXj+ObL4J3QxFb7ZWhfOYJO7Gx46vwNanLE8HNDMAUfUACf1GUgWv0W067Fw/0lMVj6zInzzd7x4fZX2LNnK80WOQ6NswiO3L/DbtLTWSu8HRImalOomBGNWFnJh7rFaHpfIMZlHqUVcwAy0wVQaP4hdlk3Di9YJsKa6ky8O3MPuzx/Q1J3XkF45SiwmCMAstWu/LPWFscXHaJFn55DbvdtSjl3l8Mv9XCQgSeq/TajBGcFiPZzhgXkxw9rk6hztQ0b/FCFgCPmqPu9Fp5ZJ9C99n08nIqQ0i0AzueGsOvJO5L3PE9+8y3B9ud7NpDWoNH1Lvh8dgFLqQjAmfHuGCQphTlLLkBk1jzeTfWsoRfEdcpL8P6n37QgIwsb0qThc0Ejnl90Eob/LMbgLckIIwzA0jMfqpZuw6GsC5y+SQqz/5hCr4kETbo3EjaOK4fzCzpg8rkLNPVQB0ZfGAl87zQfy7gL24LHQfzPLVBsNotMFF/zV+NQ2DDvHxw6K0bZioI4pekKj5vqgl1VOnBGIZpSSt5D055+2iawGP9NfAgFbcdINO4Ifn0qDrplG+jDFBn4etERLPuVsDqvBw9cr+Yb1eXo87iJY60+0ckWMVgraAUvxgtBfGwUyQ+3o6NjPNur2VHUXxXW8paC1llb8M5AM++s0Me57RIwsYE5ssUI8/tPwSzH32S+zJw/Sb2lIzt20MH/jLgkrxxS2hA+PPSFKQqVqBshh6MqMjBqyhVSMpLA1B8p6Bixlr/sEaayt/Iw/XgLHPWsgkuJqfi+yZE77Fyo6agOKrkmg3RSLsYUXATPTyYgM6mQLGX0aIfKGyyOToWJbjdo8aeNvPf2SogwysX5r7Pxyfax0HlnGyj9+E5Rj+5TaYEgLgubi0ndUzn/qgU3flGGCi1HuGY2AQbEZCjr8Ur6z8UfA94eRgnxkfDnyDzM8jdlQR95OCjAlBA0GmZsqoGnMkfxXdJ+3DHaGpcszgJr01Bcvusxq3Wm8yLLB+B2WwYCLqVw05X72OR5mD7PZPazvA956vrA3xIoRm4ejCk6AJlfLcDGpZgD1DZR0ooMUIlJxw23lOC5YRu9FLdDy0QHThKJhkHShdvyD7HttCQqf+lgnThDbP3pyhNYFgy1VpNJ1VgsDPKipdYWULjABz7Ez+eJmTLsKh5DfzO28+lMJZrYooMBZWfR4dYD6LAdCdutj+HCEgmonaVHl9Y7U6nmMjxR1IHPRGth5T5ZsH8ayGs+msK8sb18Il0Mlt5Sohf95/FAsiL4ilrhgMxcvpnpzY1yTnjTUgtKFIsp3Xkjn14wSA4ebvDm5SBWql1BA6VWkv0VCmedX5BnpSTMtBCEe7n9PNXYjaIOlMASzacooe0Cg05bYWx1PTcmmZPUM22oaDyEi3f85Qfy7rg3LYU8nlZBrXUDbJCwwLUvrsFXvdd8aKU12MQ6gMyCH/gxpA5+WN8A4XVDmPn+B9+tWQwbx4WR0zNJ+NAkAnMsXejovAv0cs5fiB/5k2YPnUSrZYdpbcwVenlfHD7oJnOiiAGcnLQHjF3+8ouBA2h9+xH53RXCF4820KPJV8BA5jQbPp/EQacU4PjSq9zdfhQevfgO8p9PoKP7CZh20BiSY6rA5OAJfvJlMZaPVgBVUV1e/6sdhsuE6aviUbxnfxV2qmqBXUMtpNWJYOjqQ+RxTA26Ig1wZ9I/6nMbS0qxT8mj/yZ+GV6Kpy+Xgl31dy5YcRaN1+mAdfF43JdSAJ0JF2j1DSvM659JglYf0GCnBsYG1eOxhA0wFDIOgiJ1afSyWN77NJlXt62hzTV2EPBAGTvWfwGr0i5aIWOP2vP14HqVO0zwW8C5okkwc9UGXBIhwX/cIuity0f+i+Y4ariI34WKwiOnM+jk9w9uOInyKIfRZPP7MHK2CFp4u3DBsbH0LzYV/kyygDsxQ+AbtYlXPtlMbmvLMWJVM2itMcdPiR14v2kMWkol0S0nS7Da3Et9flIUulENGi6vgdY5a6haWJyiinr4YIoJfnDKY0EnU5jWF8PO2+bxt42j6eGBD9DRIQU7jz+H7/aVbJQzg0p+FfNBd3Mw+eQEnVkLQLfdHs5t1eAZ3sPoeOUWX3Lu5OhMf3ow1wKWa0nAlMWx5AouGLvqL34tRF4j+waO6vvjlO3jIN/WguMkBmHqKwU45zsKPryaiNudq/nm1DpwUjxA1tNGQJl/AewfEUJ+TvtogbkYvF9qgbp/nal9aTw4P/ei3P3FMFW+Ej9N3smT51WRoPxd+lVvCk+0GvH3q6k0ev1trL6UwnkHjWCH7z5yDa+FTWn1NKV6C5zzGQFyauq0TT0DArQUALe70aG9yFuLs2nW/Bi+NHEXH176noJV1SDilQMf046nu1MU+G5PMbsk/o9j++AKgVEDAPyOFH0pJe2iVFqkUtHUoCFUlJJKRYooGmiQJBoUISE0yEpFUVkpiiQUiWQUERpkJtxz7g95XuKoUB1UydfARb77+buxGgSrzoCNE7fQ1Q8Hwf1ICwyGF1P7p1zY5heMA4VT2Sk0lea2TSKhAWXo+5RLFYvO89tXC2nFRimKErWmvP6RZJv0nTJPbQGBcDkMNFGFM+tjMT0vD3hRLuuWtLKTym8efTkeftrHwKTFJVjvbIsZHkpgPK0CC0N6WDjqFknESkK0swQ/a/8NY4dvoGHbQ/p3UxTbSADO9s2mS8fU0G7KF/RO3sEPOnOQXEx5VcZvUCjbx1GHa3mCrwSoZJnSG3cf3pQSSrnf59Pe7mjS+TsJI9xMUDb3N2rKTaPvqA4Ndp94rqQ1j75sB537b2OW1GJwnWWEy5aW4i3Xybh/2gagWaNB3ECTjINm8btLG3jkogF8N2Mp/HM4xvY6y3G6xDjwH3Ger9WYwl9bEfjwSIbCfJ/BuJAgvv9QildeeMpKForw/UAtOGycB03aWqDRuAU901+RiVIovOmo5nHZxfTj6jy6aa/OOjGm/LpXCL0yNaB4kyu/mC+GmrYx8ML4HNv1ZKLrZ3/O0WlCJd1fYL+qCEQGp0HBq14aG9ICv4UDoHVmCj7SMiNt67f8/pAPTDI6ApPaVKjzngrI3hHBxC2VUOzfSz5Gqnw5RJltxmRjyZuZ+KulEAVcjuLmZhPQ3n2bNO8I0M2I1+Q9qMuCy7zRLu8GZs4vxZaBNTjm1A/sOiAPY6IS4c/WNZiVuYznv/kOCZrarPLzN99Nr8fpW3MhPN4OjJJHQOQ2IcBTFVid5kTFxx7xhqBk0o804jp7W1T9OZOeXfwFdrJyIGMfButc30Hg9SCw21sO0idaOHjLNnCs8OYHUgY0te4uzt1uDL2K42Fk7Ab0Xp/Hc7akYp1JAg6bzMBVZl/p9Mk8iu6vgOli0+CRQh0vsuzFlyfi4PaqyWi3xwVOpPyCgH06UJCcR26nRoPJfQVQ/HALhfoP48K0RbAxPp5/KlmQweY1XNFWgMrf4riqWZtanc3hS0I33HQL5++HduM9L1++Mu0GJantQZmGCZgxbMyJPmvorrEy+PivQEk3LzhUSFA97MbdhsnQsasLn9bPYMlwB9SMVQB7OyFYIqAA5zYF4JcjwVS/TRVuBSbzpN6vZFqbi2aZVrh3oQS4RI2A0UJvOGaoD2t9g+CfyUcCexv2HtMHl4xduOX2L5gd/B+f9TKErpI0Pnq+CWbYmtD17f+gfEoe3S26S7avlpGFxUWcFfEWjtWKwfyZvlS1IQ9KnExwdfYHUMN9HDJTmhKrK6HA7guFaD7h8qf6MHPjWogIfA03Tp+GcxFf0EpZgR1qZ/BbI2Vsa83mnE9fwDJCAzRPZGHYvDmwx8Wca3Ef+Usuo+FsNQgPz6C7WulUfsWZX0aaQtnb3fy77QMGXNUi26qvPEZcFhfUZWFO7WfuthWhCUkL4dojcai50Y3rKu/zQqkieNy/AFYNXkTdyoPQ1CMLl/0ekKf6NqxnfYgPvgD1jTspNqQadx+L4aqMQhwyes2GQiLgo2dAxdXjqD91Ogg+08OX5VZscy2bd6u5QXJCPge/f8TBwjasou/BS4rOsHsuwQ4xZ75qsBpUMoLoJN4jwS4L/NPQy4a3I7Birzf4mHXCx3mmsEbDkDeU+0CTmDeqKP8k6atZ3P96OxW+P47h/wx4h8QiPuQzAy6cuk+77V0IIk7TWIW34BMQzE8WzQIzu7FkuiOflx7oQFVbEYjYuhocdcygzSuILltm0y2l7SAiN5U2CIzHf5Y3+OH2UHx6URY2mY3BTplIFI0fz7JO7yi3KwLzTq5l69BeDtR9iIr1/zhOQgRs+/9jl+67EObUwCkOX/lF/0s6VBQBD0atgL/ZguwrIwX9lRbwsr2G7o78hklbhGDuyoekMWMHjDrzCybbVmOj+hBhiwBunjoa+s6EU9+4JFjw3AYUm6tYYfNjmvtgBISHPmLX5ashpmcbuTgTPFcfBRXtbcz69qhvaAq/RrfTL68VvOOEK2/6eYN+6xeh/gRBaAxPBLcRa7g7rAYKdmXCf2ez6XredIi885knDx/BgMEQpK0aELDzENw4mEU1w8VgPXiOBsfuJOEiXyx/OxfDwqpx4Spvik4yg4eBQpCRchzSdv7mO0oDsLPkK541N2DbWcX8vJbQ/P0idJ8yFtQuNVLn2GEUcdhNuv23yCZ+B8ceEeJp7WP4tuJeeLO1hR9/FoKrUT4YtsgSfnYa84mhbsjadhB1Y1tw18BmdBRcBwqu/Txj2mSwLzuGcg4FOHF7GB34Yk0LTRZS8vqHXGEexPWn+/hkhBgo9hmCqWcBRd+KZ/FphwDnx2D7uH/kq1BOxoNjIPGyKj/V2EJvcyxAqWYa9En5oULbY3ToTAEx023k/XAu/mzazfFTC3nCsV5OyB4Po96MJIW7l0nJuojy38lzb/pK7FtzhRTjXAnVDUC/3Ydcbf+D66onaXbNNPybbI1RxQ1wz6uInjS+h513ftBr0yuYrqsC9WUi4Cc1hcSnzGIZ8f106MpGOrt6CkVtWIO7n7RA+C4vVE7+RiKN0iBu7kEZK9djxOaR0HB8DwxADLzUmsbzhw25Z3wMffx8g1b1icI9gct05WMSK/mvA8OnkfxU8h4bxmfToxwvPqO3FKwnxsCoCnUot9uKA+df80wbHXR3H8QnmdspWiSQ3XJnwc3sRnLcvZZjZRThu+4oGPwkTjNWfSA//Uc8vm8K7Btzil41dKAu/6b9qRNpSslEMAvfScKbzlDJkXT6kvqHImr+0THDCfDFyBFU3keB1NtwvDRBFway1oO5lQy9w3DsPPyRjmWe40vVK+DHnEPkWroO5giYQH7sDGg9f57Lp5zA7c0LIOdXCaxau5rkRu6ixXnu/ABl6LNiO3VvMQWlNAWIUSqlKp9O0Luxig7MLqC4TXosumkQ9db+oq5iLcwImwjlHzLJZ1wMPvXywYO3aqC0dQeWHyzHUTNqYX6rMzl6SUFty2QYWePNdh4mVNl1h7KyZuCsMxnk6jqCL94R5IF5c/jZcDn2yMtC+YkcOrfNj6+ve476inXQ5d3N5jsqmbaWsuwNMfpk94ZVL4+AuStKMLkrB/1nrMU9NqdQxiOHNXA/xWqlkQ33sr/oOEzbLQ3JXxdh59HrODU4kZ2nt2BtSD8+vrKLMl/34Svj/8hd9S+MkbGEbdvjKe3JFn702JLvoTc8Tu2FXId1NMdwJT59Mga8o9zIUUQYsq8aY6SsB3nZn6bJ3b7ksa2Nn9X0sLDmBuysbudZNfG46ZQJPBd6Tpkzx4DM7xVU9SuSkhKfQLKLOu/e6kqBEypAR9MCn2SZA5wrYpsn3vBpgSP0NYTR+NuKHPLPgA3s3+N8h9fYti+cTAY0oUl7HFv8tUWP8dtpqckkWvVaFsRWetCsf1Hw12kFyHy4Bb8PaoDL0QK890yC93+wZttbiiRwzgO7M+JpjGwfFdwRYMeFQqDWhVDWkQ/LY3NQe3YzyA4sxavjh+BgVje4bRQAN+k19DF4N4r8NAP120XgbR5PDRvvku50E6B3yfQ3exb3qP3jr3teYfzvWOpxNwanZV5YME8RHDV9YVzBGPK2tqZ9rWfIRHYN2mzfRCdDxXn0OUM4vkgDlhj5oPr2ILjeU0m37yHEV9VB4tZ76FWdQ7myndy8QAJ03EeDv4gO+r5tpaPetdCk9otSzu3kyIFC7m7Moq179pNw8hgw9pfmw9/7QfjIb9RcfJU6fsRAVPtW+u3zhe3f1bOB+Eqo7BaAdZLZsHJCKXd3HWNqHqJ/xyvA3/49bJ3ezOkOxZSyxI0WqQOU94yHrGwh/voxjD4EnGLxhGZ0PTUWXXQ3Q3GpH58YzaAVqAmr5iXhnNBDALlJ/CTkKQUMT4TLLxRAsrAMft0ogYTEUHwiMRK61u6lmSE1VHhKBZRLbPDDvwr8s0YQJdIuY67mHXxu+hg7rS3g+zY7Hpo/lQQWeUOlfA3pLJfjRY/i8Il+Lq18L0pd9dvxe4MsZHl6wn6xS9SemAtLHMyA0ifA7zOh/OXbHlSNKILLi41olqAejM0egtbFVfhQdJibzSTxV8Nj9JdQJ30vVZzU8xtHPnBhZzME2Qt7odRJmzKNFtB4ofnsPeIoWASVEVa9wgrbA6SeW4i9cfKg/3I8nEhYSCV9W1FzRBEOKZ2EyVf2w4KvItjQuhcOTCjDwORJsEUjAmbta0Knv2dpZ8IcfpW3h6X642nuUlUOVuzhpOMB4CGkDAv9dpLghnaIbgrGqQ892V+tG06MfowKB+fDsmMrUPDwN5ZtQpiXF8yeDxXBzn05zsUlvOTbFaj3/IpHH9TScdn3aMlvuMlyNMjpNvLhI1bgIBPEnfliLPXSDQISRCg5x4/+LCzFiSb+aLtCGh5PEGXDUkd4+OIN56kKkIG2Bqf+UKfNe9WhbW49Bh+cwWuOS8NyDaSHeq/Br3Q6TflezgcPn8KOuU4gs3aYq0KVYVSQEafHikKbwjcqvVEH71r3krS0PYu+OwbdVyThyecV1OISwsY2M+F41CQIlmrBFNUefvykhOx/2IHwyqlQOseLd3UNUeU1d/yhsQWDZQECdftBI1QBs6+34a1HezCy2odalm+mUz9nQLuLJe1dIAeylaNheIMTLja3wz+CFuT2TxXHfnCH4yvX4cgYFfB8ZYLX5OR5T8Y0eGKXzBUpZ8Dbdi5sFK/FGy2buHlzNSx8eAXboBeTVVbDjQIVaHIuRp3w/yBDyYFu9d3Frx027C5iA7sP5ULhlc+grvyA/yTrgPqPjVg6cIc+DEmiyZKROH3ZNxDqsUJdOVmwaeij64VKsP8egGreH/qqZczm/a9wmo0znPmxmxsXV+IhCVdaNpTEvp5BaF9mAjL7D2FpaBOXdpbxmZg4sIz7jA6zV+Lz2an0JFeUWq5OgANxhiCVZ8KHCtdjbO4j7DjRRQcPbYfteU7kXRhAtrb3ebTsJxLrmggvLB6x3OEH6GAvgnnlWTBmA4OyaTUPT1Pn7c8W88tnUqB+TgXmNd9DxwIlTNk2C9SHwmiWuTO3CyRjv+NyGrvFmr9/GcWmP+RBJuwpRDw7it8zfdhN4zcbvi9GectGPt38E+O+rYeJSpOoPcsM1IrLcOeJSg5u+Qhz7vjCv85U6n2hQFrFs9FxhRTqR2pj0tkpsPf3LZiSC3jZVo0ttU0os2QCaW0+AU9tDVjgxTi+M7sQh9OE4OKFQR5nf5QMRJFn1m+FFsGJvNnUgWVad0HhhxB4GKcGB7Yg7BtzH+a/mUsfyo056PJn0uBQWF/TCobxcuAWGA/rKtUpsp5B6psabL7RgR+L9UBO8wE4RL4GxR2i8LlrJQjvHsT2o9P5r5w56KUPwPfto8FqaBh0A6by14eilBDxDntHD3LlS0FuuvAcB1Yrg/i+bHoyUMahZgHks8gfioqH4Y94HqmlC2CTWCSrP7iHWoFicOqoBjrenMN7Yuzxu+Ekuus4BM0qGex0vBpUVh7hEP95rNuqCjOidtKcdxqwwC2PfinvoBEOF6htijYvqTDmJVZiNC9MH2yvSIGL71k8gMdAa3sxayr1wcFrm1G6PBIl5viyg7UsHtl5ld+tF4Y5bZOooUqRmpe8RcEwGXru94w3z3uDykltVLElGNcf7uGxLQTtWnZ8/akgHXVCspx1jda+LafR1a9wnnwtnonMAIOietJ4ZgqbdmhS8aKrnPSuE8q8g0DlmhbIf/bk6zetIe9QDgqu7aK0USPBtXMYJSrPwsjbI/BYRyqlvX3JlzrP0NruE/TvvTgJr3pF63Q04EuIJokulACx5aJ8vXkpPFu3ivJP9uDunFIoDVCDF72EDzK0YW3UFV6U9pM3Te4CKUdllreMAFXzbnytoAn2drdxeb092aZPhE9xa0FQdj30F9rizwOnSduwkmyG3oCsqD08FZrC90Vfw55AgrfKr2Fq5TCIV71hp9tN9DK7DI9DLq/4V4/tiSf4QmUxGZggmAWp88kDg5ig7QwyO0/hSB1rVMoywAWr02FyTzmmpomD920DcFXeh8J+DfTysTM0ThwP774pwOlTMZSzQpRUbjby+pmD1PBcCe7XP6QpVrvw809FCLv6jCXAAg+nxJDbyD/0JmEney0ww2mfR4BpfjIXhd1B66O7QSAoD6OchcH6WSrFKlTwqqur6bXdK9i9Zxrkp3/gjyNK+V6zLb1SysNsS0S5eubPzu0sY3kNZ8t7omGfPNRelKSoF7NxYPUbsv5kgTUUysplvtCftQUPC9ziIz9FOFDfFNqPKkFt8Bh+nCQKl7aMhB+33vFhKyWer3EcAr/lMbo+wEEthEeGppQfYIJjytfzh3N50KEE4Ld8Cg8N/8E9EeEUEr0SPOJNYOcpC1JJ2ot/RMJ4pLAuOjy6hIOfevCo0V+2qHWE8LQMuJoiAv2X+3DjcRPKiNnGR3/IUUDpKPK2ziA4q4FTK0RBIscdRrQJgUvTaNBufoSSmgpoV78Df/UU8wRzawrTWszBslPw08adLHZuAowf2wn5l5ZD0Rt5PikdwEIT1HCv5zl2S9KnUs11EKh9HS91agNkReBzo342Tz9LySxHWyao8bNjavDnwzQ4+UiaDlEsbWyWBemdfeh7oohlE2Mwc7gdYyR06fbzuegSZwpt1y6zxiorDFgxHbLNb3P6rFQOXBeJR2aN5yAVUZTSu0zWcxeAZYgCfvztDtWumpDs8RUkd9ayyrtx9GVwJedHnEDPT1vZbrULXNhyHt0jZOnjdICC1v+46q4mWBt8w1ctyripZzQ0WrVwzIA0eQjYot6sTVRcJQwZa7N5e3INvZveij+tgE+xI7fO8EfTWDX+Y63OaZUyFHZqEuT9zYOGqknY/N8TTthyggfPHMWOuaupvqQbcu4exuG+rxgioQGzO7O4zOA0R06Ih/1l99kyG/nnhjL+lxnM4beXk7meG1fYScH+h295T10A9b3QpnUO87FkYDy80ZPBSLthODBUA2biKbjPRAeyjRajmaAvRN+LZnz0lCyW+mC551S8HWuGsWtn07iRjzhbVwvsQmShs/4sLD7BEFprBA9Kq6jjexdLPyhHfxEHcvh2GeRC5CFRsxz3iZjxeue9oPxpNyduG8IDRkakl3Ua6ybp4fE/bug1TwAKFn3ggqEjuMjpGu8LqSajb/NBsagfTbY+xjyBEpp17yQoBqhDxqAm1Vxrhh9T52DVqZEUbngcD1sW8IHXd6n9azHPSKsByYWqkGndi/mLnUBCxAO2rlrFHse3g3pJO2VMCIJoLy8uU+viQDdJiD4tDT/dAN1mXoTHuS74595OJr0NlBYOMNMnCA/ny5OjtBgsapYHfc13OD7wOxyO2Eyph8RgiuB1nPFuLr5LbYHF2RtpTIoOhFiW4MIzIuxTkoghp+3B7kEBef95ztOD1kPxjmXsGp3HtioisMLpL5hcf0LC6p/xq/BptjQ4iU9Gl+B3PUOy2/SL/trsgxBNc5habYY+GtdYLVEItG9co321vzmsKpY0C7Np1zVjED5RATeUDWCs/Hj4OL2DZvbcxEEJS7y0bxC6xt+jyUmvMGKCD/T+nQEykbpgs1EYlKrVQDnhI3lqjWbHf1vx8PtQuJVqSj7zhvjn1XJq+WgBOY7LUfr2FND5JgaZ163w+6gEwEFH6u1U5H1Fm+hJtAv/qxwNWaXJ0BAogBM+vKP5eoP84lEcrnHU5lvR69HojDtu+/ADfjnpwf6lnhz9cCtXrMpjHc1eUqt8Su8z6tja/zcFCcdx/61VmFwjD1XvxnFwvyYpa1Xg1jePqC/mElltcAfpFU/RLqUf/7k1oXKKOQgtPIV2XZL0UegiRdceoe7rrjQ8uJT26b6kfd/yOdRKml+ZKELm8mecNrEc3e9fZrzcAmlVwbRYXwx2PviO1le+4fnGL2AxgmG6yXO2VZUl0RAfRvUInnkpEnLDfrKUhR18exlAF0z3UGTrVBihnwM2v55A0LhbJGA8B0QGRqHq5288T2QQHyT9hBUhDzhlqSacHLmaEy+2sKHXfNb3303p5bK8Ys5TurYrjJX39VDTLHUy7NeA/u4MTrgbB7ZNytz1pJxnZDmR+81tdHSDKny03k11qwR44LwmHD00xNu+nYGkGXogo3Afy5uWctBb5k5ZQb65RoVEg75yZRKAZ8sXXhceC6e9IrAhcjHqLQjmIxIKuHuEIWX7SOBMkXrqyRMBt6ZQOJJ0nU9ElOHZT2qUHqcBlQIm6PQ8Fff+fUnSnok01VQfpjfa4IpNTWQb0IS2R0eBmfBY1q4PxLEhFVx8VJVu0kH0Gj8a7G3rMa1+MwVJ3AUFpWe02H011Mw5z5++b8d10xxwQb4fHzWRAVMxKayrU4Khr6487vJLnvTfPd6zSYW2HjlJk866c6HIQvxvoQW8l7uNN1rXw6WLmXQkIQt1Ey7yEdFj8PB3HktkLWVP+3aaYaMBK5ev4xcPrrLbzzSoH66jFbGPSLY1Bo3vxrFYYBcpyjSjS7YRpEx4zh17jtHfrDZuVV0NI8IDUZoXY5NQOm880olBZ8ax5xoJiNY+AwoPtHB2UDvnP92OsjefskLGfhT07qEbpvnkqv2BnC30ILDIHA4rXwfPsd+5ZNtu7Lz6iROPFdPfH+spcN4mKHV+CfOL9UBc/CN3uQZizipJ3hfpQq1qn3ij/CTYKlnBiXXnAXMa+SHqwaM8MXpZfYzL5efhwnNuYFTpTW4qk/lLQzfKX0+kTtNI8NCUhoSBmRQ1UMcFuj3UtjqXpiZspXI7ObojWsMTx3mB18O95O0kB5K7WmisRzW/KBCCPSDHm+RaoZj6ScXWH/94vOM7Jm6U3T0dyHAzw1UxSHBqYZV7N3FzmgEcqc3l//xM2CDAh+4kfILzGWPBeNlSLrgnjqdmNrKr3lhUdjiOD0Re4DGDVDri2Mev3s7jyCWKcF7xAhWLKJK+2Ep4NPEIvG9IpyINFejNzCU1/z00TeU0qmopgY3NEPbtiCTBlgSmpcZ8yHghxf3XiK5qvjyo+wScP3rxSVs5+NA7mpuSUiBSw4Zl9UO4waWZduo8Z7kpVbTr1Rm8khzGKztGw480RNq2nLVu5lHOi34s3XmWj1rkw0mjLP7iPwmGrghh2V5dUL7kRPfDSiHAeCEcWv4UNpY85y3KzeSmswjKh45xqXIYHJkjCJUTlfjPvGj4k3qRrRXW4eraLdxmGo8dOjXgd0iV8bgkZk2UB/V5P+hY+goMTjzJrk4R6LnwKbV6z2fJivkY9aKEp226DvUVBrBawRTWxqvg1/i5aLpNF/odkP4+G6TO6L18MMwfV1VL0p5vE2G+qw9PrAoAe+NsfmY3kYXTRHDB3iCsi0lHc+NG3uAziH+yJ8CWQTG6OLOB5Ega7m5M4xHr6ujlVW/y6boFpovDWafPnteFT4akjWVgLRQEz4evUb3UN/Zo/0OZLkVccGINr2ibRRdHfaBoi8mgFQSkUJJHqh+tUXMOsF5pKh9aIsMy8034wQ1XXOy1B9dtFAU6IcspJhtJyjMSb+3ZQZ/PeuM8j246PvkJLfgii4177tN5RQ0o8O3mnZed2UGgCOMXO7Lw+jE0Uq8P/nInjymbQDrjH/KXRA0QrbtCc15Y0Xr5RvgxsApdOhPJwOkQJhdsxPhdb3iy+TCmjzKEhTsnUEpiJr4e+gFe2m046XUyTp/vh5qtU6n2rCX9OCbEHy/JwOEuL1609BjuG8zkxphnKNFTSVrZz0Dm3GnykDwDtjuLeU32GHD5HIu7Z+4gS+1NtH2iPbvOyoE0+3/YlWVKSo72IGI1Dqc4i8BNiSjMu/gbJqq8wdQ9xGf1AXyVneiiTwtYBGeTWIIqeotLwHqxq7jn9DOMPncKPO5+x+qQ51wZ9p5zp5uxQuA73Gh0BpqDR8ENVWke+3oajtBOwEeq8mTk68AzkzOp8NUmSPqkR5EBx1n6mBjM8SxBhfdVXAbz+Y+oOu2WaCQVx70k8OUZlrw8yQGJ6bCiZQY8a1LAgafbaMXgRHScNZtkfQRo4McZMJm/DG+ej4UxW2T48m9jkI48SOoVorTy80ueMjmHr2bUwsAbT7pQNQHe/reFFe+7w3MLUxicZY8Npt/BV0iVlt+qo6LCSO6MMoehQoTS+o9g3+HFl72E4frPL/z1TQT+bGzjeXZ36a2iNg2qu4G8tQt183HodnlAicZq4Pl+CPpeXYLbRr2QuuUzXUn25qWdsTDvazh+fv6KbSJL6aqvPIyZvJbW2dRRxPX/4GKIOx1TvgWhp//hrTFDtFlenWwMa8nGxQCmnLsM6iGyEKCUyovXptKFnd5w3q6c3wiHYkbbRHLf8A2hRASkAqbCeEt9vv9PD+4ccETJ+iEsk6vE++6NvO/eEVDJC4ZzB2bA+IUCdOjqfig2DAO3ZCdKvT3IFbHLyHS0M+Qm7yfa/Ri3PJ4Bag+HOMVGHYymB4NOjSQfXDcf0+6L0zr7Q0z7YuDHyYXsstYcXKWbuNH8EcZ8EqBpvr5Uv/UdVamvoLnfO0igVYYVH3iQ0XtD+Nrkz9g0Cq5oR3AK5tPMV/+hbO50mKahye13gSDoFTx3UAUR/1789FsMOxYlwq7iBJwichC/JMxE81nX6OSWDzzXSYxku03AQiUbQOAhb2vSQ1tnLbpXeAzsLzhw0eBBkLF/TYdXb4eVU+Qh4PZVFHkVTmJFDvDm/RWy3q5IBiI36bvzGeiVPIhfD3yksq4JoNu1Eg6ZVGNfwx1w8y3F9oPDKDhlDXnvqEK15bPJ6elCKG+fANan2qHvpwfWrjYAFcHj6LlQmZbVOVLQlKO8bO4C2BZHrDQkAJ+LKmi3myEsOn+NFufvoxztszQ7epgkrfxROuYQecbXcdBVS1gjuwaiNH35y7c29D61i3YNLMPW+Leo7G/NKisVYWf0dWxfOxIWL/kKF/yq+faq5XT85FcS8c0jV90XkHW1h9YJZeDax6WUe9gQHKPeYsEsCbz+biQnhz+HOdZqOHAoFFcOTAff+Ov4p0cd0raZwnn/ENQOqoWFFv701v09dx38Cq02tVjXuBfF1nqwt5oY3jkvCI83bYdloRP4WJ0X9Mc6gJ7lXxDrG0fHD5XDrhXZcLblC+79pQqJxeHoNU6M7rcpwSqdOPSYdB2cs0zAcJ0jh5lKo8iBEqhRUIV482JujKqEzOyN5Gc1Glf7K7H6uv/YubALuww3wuOD/Wh+UAcmvpGiRKnjzDP9cJmzJbYMpGF8jBBbxf3AunPvKNtsDto0SsPvyDlcObWf+3zK4fSdQuz9lM7N+7Xpxal3LLbYk6Wl3/AudwM4ru+BH6TaqPpXMnTF6mDtniESAh+s+h3ON7/74v4vH/CVhyWMjrzJBWv+8Q/TDxR+Yh0MkDb86i/Fj9uKuPBJNeekiPPwDUtoG3hIBurTIOJRB6UuSIS9zTfw0pQLPF3EFrJ2+eN7bqW5r8bAJIGzsOyfESqd/Uwtpqp4ImU5n42bhBmKaSBw4x++SZRmO5aH4nUx0Hn1AHxzUaeKtBoolJ0FSTHN+FrqKgvsVkZf14ec120KuerlNF0sn6U+fcRRRhvoe2UB6e7vZbHmUBix0xGr692g238ieKxglvlTCaIXmjhy7292vj8HDE+Npd+2xXzwzTuc/LwP3VcbQMgct/9728aDuRzzIZifrm7Az1cl8eq9CrgWLsDZFw/SuxNG0O7Vwz6jPHCJqwwoP/bE4iEk6bwF8O7kJW7dUsszvG9CoLIpBGjnI9cdgIVVSjxby5RdKt7wpeSPONkuh/5KDdPLxAVcc1ESIi8Ugl/hZNzzYiM9zp1JIjIX+PG7i7jyexWlO2ex6Ig47BZlCOYW8qexHDriLmuKbIWEb8204UwQ1BSIQs2kX3gYunHrXkn471sM/DJwY+dagoak68xT56Nb01easG0HtPRP5bVxQnzQehK4Gjzi8/3O+C80DXrui7GmWByEzyaa19yPbw9EweOWDHibOgPihhpgxT8lEJX+RlGxy/C29SDJCMtxfJ4OpOqcxe0FMbjKXx72vS3Bro6JuOCiNiT0vSMzqUKuUvQAj6gu8PUNgXY3GTjiNx7em4dD8S47zNZcgFnTp2OisSaIdi7ga53+WPn8NSd9ekmB56ZDpvgZWul5lNta5+OnyU9Yd0gOBb928I7DzuzWHEgXolTJpHE8fGqI5rZ/zSy6o4dnfnpKMf+eYfTNNj6evAA/TVVjvfOP+GqWPoyTCcRb60VALeYVNpQvRM/18/iIwip4rLMEhKos2UrOiRNXSYH2cCoJDQfz4QcytFBcC62iE0F082nU1H/J31oPwKlkKTo2dTpA9H+wtC2elp59ihHbm+mSWD+LqR6iIjFlkutdAEcVldhSXRKqO6TxulMIahm9ZWMPRvm+C4QjH+Oa2BZQfjWRx7dZ4c0lBI/7U+lb/V68n1BNsY1VMHNcEn3tu87JY+XZ1kEdmg8Wkb6GOVTersSzOT7cLjGH86ZUUf7jzdAqeJPck95w5sNU8NfIhie6YuBRtIGThc7D0VV3UHyGAd8c7KSe3+to1bV90HDKFvt64qCrSATMIm/D247b6FAVSTs+umD85XDYOiqF1yTX8uW0enw59htKJJlC45oI7DPYQOlaO+B24j3cu+Isf7hfyZFFS1mnzA/lovMpGSaDiOBYSvBwwF1fHSHTbD5Xq7ui3IxV0Jn/CDY5F7LDlEQsGDSHHwV2aOW2FOcIDWPhqBp2juuC2obPqNW/hq0GN9Gu53+g4/x0KLi5BKq/rIRl77UxNXEnn3pRxDVV99B/YDL17LbnHIUnlPphGlwZLOOMv1t5/a2zvEIrH37WBFKPthN9UK4lx89FEBKaDcW646DHthNtViVhvnUXf5oVS+eUBMBIeDo5vLhGxVe+UOWs3djuMAJOdgnjtBVGcM2qFJ7cfgIHQR28751Gh+waXPXbhx8FRoK4qDKM39hBdw+OgRlfbmKa7Bsc3T+NbzidQZ+ziFlGmnBAahTNnK4H6P+ULPqyca6NHyfV/yT9+gb48WAt/eov4HOfqsipMxqNThvAtPeFdM68AzM+SVK05SsU9jmPw5Ons02kEEVFJEG5kgMW/QLY1CrOpROy8MyGCjhwVZyfbh/ByjUlOFyXiKtFR8Leih1Q7jEGHNS3QVClEj5r30ctEudAN/wGf9ToYzWdL9QRlwdG+hmUfksWlMbp8+YkLb7z8glXqCdj6JyfIKezk44d7idby2wIvXMQZO9IwPYsI6hS6wPdulcYJz+Xp93cglLnrElKchKfft8Dfk7XINBfH8yDfFlXs4cGEwXxV8lHjPKWBsvH4dx8PZlrW8yg2Okkz/8oBuoy3Wx8fSsMLdBCm6N3UeaHCB/2V2C7EyJ8tw+x8WIshE5jKIjQ4f0/psDS0FRYU9KPif7HoTkvjCPHCXJG2jj2GyjBkrW6cG7bGVYJJ5Sq74XN7ttgR/My6jpyDLYpnYQHKXoY/PMZZRzRh1UnS+nj3YVU9/kA35g7TIm/b9AIa2loKrwBi/E9Qj7QnRZZOD59NBXqXeZRR9RoqU4QL2oPY5JCWHTehi/dbwJLq19ov0IYJMu7QX6JOI9S1+fHIUo8YlQyuo5VhqWGS0DFvYxlf9Wgii7BIpc7cNrgD3wXDOUcWw+cOlkaS1RbqfZvFG/0msr3ntzj4ZvTIH2ghxaFOvL2f1fgloMctyaY052mTVA0rgJfnWvGF47HseXuNNj+wYKtC0bgcMJjbH0kifNfJ7DiEikIwWzKfzsPd6WGU6GzBVzpTIO6WlkamIk4/8ZcdJ87EdOX7GK/pDvUqXeLHe+ewr0uClAX64ebpx7EjmYvyhiryPTrM5uVvOSLcvJ40sIeBMK2cvlkYfhu2cQbzNyotzQNzj6vh+DLoRwh3gprl2dipds4WmATRjNmiEBM+w6Odg/G4Ocz+UbwE9i5XRhDvvSBuHMmSuzyowN+TdydKg4OEn8h8PIkdJEQ4USXfK70iMRT02xwj+0x3u45wJkjD9PuA+NBR/gIVSXkwEDcS/z+PQ0+/vcTxr8TppX9DWwcL4pzy2oYLGQgq7kBDG/Uoez1eNxYbQ33zDdTTGYt2GQkkHj1VHYxA5LZoQtXKhvxbnkAuo3WgsVW1jSmrhT3rZ2OhfbmPE54H/vl3GSVJBk4tHUNDstZQbm6K2wbWsh/O4r5vvgLmC+2n2UXP4OBJWbktwvh2o2HPHJ3Lg0/zObo4TzQF31AdUUxbFXvRcIve+nLRltUcpoKjgPe/G+FH1mZZWOc0AFKXHMXE68I88Hfr9AxRhK7zk4E8VuqEFtmDE5lpyBDMYfPPc8EV8HPIGrfjTmWcrw2bhTWLitlY4Hx4LfRheyDJEDlqxVc2hWNg6W67LvVla+a7OX9NY142F2RRrmNhwtevygiMIpNAt+yzIogcu7ox68jbnL9VU/scIlGheh88HacDDriMTgiIAMvxmrhSyVp2JOQha8sRnOregPeDtdl3/kCsGmEDvgqmtACl5NsopgGNSev4XMzU9hkuInPu52Ah3OPscDqkSTUpQVzZAZoktI/WhK9jIKzV5B0zVQq69GispmXcM6+Hg7Y1Iq2j3Vgn6cWyZi24PMscUpJc2GRzN0ULbYTDlzwBKOUL2Q05I1lpvrgKp+HD6408AWj0bDNZyPLpMynXft3k/SWJNjo70s5y57hhmhDiLadxHOkonFfWzxgchjOzpRio4gFfMMsF20by3n3oDGI64yFff/+48bTfRDkcAdyHi1kIdyMAQUX0TOmAaaf/UsNZ80pVHkGXEz/Az9WboAf99JphMtbnjYyFk/6FVGKkj/UighD5eenXI96cDkwmMtu7aX9v1pp211DHjH1AIo6dNP63p8cJavBT+IEMOPjNJh9Vg2njTCGUskToB3ry/d+LsOLn0cgsxievH2OVYqUuWq2LrjkpuA+9yYaJ5FF1+xmgUhnJR9IcMf7NxdwOrzB3BuOaL8fYa7RW6y2ksLNvXuxOCoKDT/MoxPj0sA9fwIvy/kKqgUmtNNBB5aXZMGX19rw0yGGd/6nBXGy20HTDEilI4Q+B7zlbW0BnJwuDpsbflB99jLamOrMav3bUaRCnVO2GOMp8XyO9bUEb9F2+PhbF4ZHC9Ks17955LE82rhlDPkujCLls4L4vHIvKCufAQ8QQ6e1xnBSJIErizq5XCwcrIrluLjdCgpqJ/Lzi3IoaL+YRn8x4Tlbp4C07DKw/bKezW7b8S/dMZz11gNFfreR/KcFLH90HMRK/MHNfkrAvfp81C0UTcJGsqzpBtDsVcXL6ims+FeNGy7L0NPBZyQgJgP9Are43GshW7ycgVe8Onjyrrk4PXYUj6xP4nx1C1Q1K2DRXDnA4hJaNzYXxCemc+DJW5R79yeVWtylv7U25NdrzIFT9nDZdxno4fX03fkW+/Y+oK+v1tGtiCP4t9QErBya8W7ULo7yXYWrNBRhZPsrePPtJSwyr4Uq5zwcZTEKTvbXgVFbJnoMyvAdmX52kzGAkY5hLLDHCIaPj+Vb/6bwhmUB8Nc4kX7mfseYjsskVaiF43b+B5jiiUfyjfFNYjlJdQah9oZl8P6tHfYV30X9Z5Op7pgPpk6whPzVunRWzZrXmszmh3dKoazqDr8MfE/LAq3wv7YnaBDmTMJyIvBTN4+9AxfA+s/htK5uKz/I8OdbETdh85FBON/TQjIl32HL/HEQD8/pwVRZNDDvBP2l2ejdL0rX51VgROtHyFER5TnSBvhMAGDPv0kIcvtY0HMXjd0ygYPPLkWrMWGwUP8L5o04wtfjbuKi6lGwqD+YFeeWYF+pK2fuPgvR85bz8rc9/FdpI5fcWcTVTwbAfcckCN8KmHKnnztHbeOge6YU++copXb08JZpJjCzZj5myHfA9ZsI+YuL6ahFEjqHTiChmrsgop2KaWvCIPxGCBdt7ufngxt43o6R4DI1BRXWVWLbTGlsMl/ERVFvOF35Eu8yn0COHxPQ5NNeWr3UGALj9Kl/eByphDfx2PRD+HbdFpo6bxTUaM6kc5aT2ObgAUpuHwG1pQUs1PIKy94dgQrTOGjpP4gDY4xpe1kYfVU8x5pzHqB+gClkpmeCdr8it9ZYUUeZH2qtuck+hhnknjhMR05Ygu7EP6jVqgyBG9Jpi/BHSHp3k0vUnchoSidtzMunvTpnYGrJXDSVy4cjetJwcq4xSE5UQrj0GT7/eAN7ZO7TeO+PkJt8mfIqN8L6/L8kH6kIbddOkF+2Ajbkv6aHttugpv8JyK1soubQCvj67ik6ZwvjLkl1+L3qPCuN+wkZky0wsfsN2MslkdEBX2jXMOOsXRFk47AOxq+Wg7xdWRibOYFK4lfgjH0BNNrThvTSPLjaZhN/PbOMo2PvkXmhICgvWoq74+rg0qxMUrYTh99jJvKi9iy4ffMA9VrOpGVxdbBDfQLcSOqEv7E9/PF4N3u46nHIKHMYseUv7vEroY6Un7j7aTy6npgEC16kgG7pAYqUNATNSRtolkAvaVj6w+MsURC5+wsSg6x5wr5xEKlkjyr2CyhT6gNV5LyFxo46mO8gx9Nvf4YV0ITV2kb8vlEQ4m+sw2viO/GxhiGtbQiHpr8vWKymlOb95wzlC27yDxsTUG0ShF8jv1LUbGcyKFpHUVeL8PzISbTnx0Le/GMBq+Zpwwm9O3h59Bj4XwAAAP//cFmFyw==" diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go deleted file mode 100644 index e862060..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go +++ /dev/null @@ -1,943 +0,0 @@ -// Copyright (c) 2015-2021 The Decred developers -// Copyright 2013-2014 The btcsuite developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -import ( - "encoding/hex" - "math/big" -) - -// References: -// [SECG]: Recommended Elliptic Curve Domain Parameters -// https://www.secg.org/sec2-v2.pdf -// -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) -// -// [BRID]: On Binary Representations of Integers with Digits -1, 0, 1 -// (Prodinger, Helmut) - -// All group operations are performed using Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) -// where x = x1/z1^2 and y = y1/z1^3. - -// hexToFieldVal converts the passed hex string into a FieldVal and will panic -// if there is an error. This is only provided for the hard-coded constants so -// errors in the source code can be detected. It will only (and must only) be -// called with hard-coded values. -func hexToFieldVal(s string) *FieldVal { - b, err := hex.DecodeString(s) - if err != nil { - panic("invalid hex in source file: " + s) - } - var f FieldVal - if overflow := f.SetByteSlice(b); overflow { - panic("hex in source file overflows mod P: " + s) - } - return &f -} - -var ( - // Next 6 constants are from Hal Finney's bitcointalk.org post: - // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565 - // May he rest in peace. - // - // They have also been independently derived from the code in the - // EndomorphismVectors function in genstatics.go. - endomorphismLambda = fromHex("5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72") - endomorphismBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee") - endomorphismA1 = fromHex("3086d221a7d46bcde86c90e49284eb15") - endomorphismB1 = fromHex("-e4437ed6010e88286f547fa90abfe4c3") - endomorphismA2 = fromHex("114ca50f7a8e2f3f657c1108d9d44cfd8") - endomorphismB2 = fromHex("3086d221a7d46bcde86c90e49284eb15") - - // Alternatively, the following parameters are valid as well, however, they - // seem to be about 8% slower in practice. - // - // endomorphismLambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE") - // endomorphismBeta = hexToFieldVal("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40") - // endomorphismA1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3") - // endomorphismB1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15") - // endomorphismA2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") - // endomorphismB2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") -) - -// JacobianPoint is an element of the group formed by the secp256k1 curve in -// Jacobian projective coordinates and thus represents a point on the curve. -type JacobianPoint struct { - // The X coordinate in Jacobian projective coordinates. The affine point is - // X/z^2. - X FieldVal - - // The Y coordinate in Jacobian projective coordinates. The affine point is - // Y/z^3. - Y FieldVal - - // The Z coordinate in Jacobian projective coordinates. - Z FieldVal -} - -// MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z -// coordinates. -func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint { - var p JacobianPoint - p.X.Set(x) - p.Y.Set(y) - p.Z.Set(z) - return p -} - -// Set sets the Jacobian point to the provided point. -func (p *JacobianPoint) Set(other *JacobianPoint) { - p.X.Set(&other.X) - p.Y.Set(&other.Y) - p.Z.Set(&other.Z) -} - -// ToAffine reduces the Z value of the existing point to 1 effectively -// making it an affine coordinate in constant time. The point will be -// normalized. -func (p *JacobianPoint) ToAffine() { - // Inversions are expensive and both point addition and point doubling - // are faster when working with points that have a z value of one. So, - // if the point needs to be converted to affine, go ahead and normalize - // the point itself at the same time as the calculation is the same. - var zInv, tempZ FieldVal - zInv.Set(&p.Z).Inverse() // zInv = Z^-1 - tempZ.SquareVal(&zInv) // tempZ = Z^-2 - p.X.Mul(&tempZ) // X = X/Z^2 (mag: 1) - p.Y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1) - p.Z.SetInt(1) // Z = 1 (mag: 1) - - // Normalize the x and y values. - p.X.Normalize() - p.Y.Normalize() -} - -// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have -// z values of 1 and stores the result in the provided result param. That is to -// say result = p1 + p2. It performs faster addition than the generic add -// routine since less arithmetic is needed due to the ability to avoid the z -// value multiplications. -// -// NOTE: The points must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func addZ1AndZ2EqualsOne(p1, p2, result *JacobianPoint) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using the method shown at: - // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl - // - // In particular it performs the calculations using the following: - // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I - // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H - // - // This results in a cost of 4 field multiplications, 2 field squarings, - // 6 field additions, and 5 integer multiplications. - x1, y1 := &p1.X, &p1.Y - x2, y2 := &p2.X, &p2.Y - x3, y3, z3 := &result.X, &result.Y, &result.Z - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity per the group law for elliptic curve cryptography. - if x1.Equals(x2) { - if y1.Equals(y2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - DoubleNonConst(p1, result) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var h, i, j, r, v FieldVal - var negJ, neg2V, negX3 FieldVal - h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3) - i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4) - j.Mul2(&h, &i) // J = H*I (mag: 1) - r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6) - v.Mul2(x1, &i) // V = X1*I (mag: 1) - negJ.Set(&j).Negate(1) // negJ = -J (mag: 2) - neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3) - x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6) - negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7) - j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3) - y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4) - z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// addZ1EqualsZ2 adds two Jacobian points that are already known to have the -// same z value and stores the result in the provided result param. That is to -// say result = p1 + p2. It performs faster addition than the generic add -// routine since less arithmetic is needed due to the known equivalence. -// -// NOTE: The points must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func addZ1EqualsZ2(p1, p2, result *JacobianPoint) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using a slightly modified version - // of the method shown at: - // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl - // - // In particular it performs the calculations using the following: - // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B - // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A - // - // This results in a cost of 5 field multiplications, 2 field squarings, - // 9 field additions, and 0 integer multiplications. - x1, y1, z1 := &p1.X, &p1.Y, &p1.Z - x2, y2 := &p2.X, &p2.Y - x3, y3, z3 := &result.X, &result.Y, &result.Z - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity per the group law for elliptic curve cryptography. - if x1.Equals(x2) { - if y1.Equals(y2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - DoubleNonConst(p1, result) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var a, b, c, d, e, f FieldVal - var negX1, negY1, negE, negX3 FieldVal - negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) - negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) - a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3) - b.SquareVal(&a) // B = A^2 (mag: 1) - c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3) - d.SquareVal(&c) // D = C^2 (mag: 1) - e.Mul2(x1, &b) // E = X1*B (mag: 1) - negE.Set(&e).Negate(1) // negE = -E (mag: 2) - f.Mul2(x2, &b) // F = X2*B (mag: 1) - x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5) - negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1) - y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4) - y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5) - z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// addZ2EqualsOne adds two Jacobian points when the second point is already -// known to have a z value of 1 (and the z value for the first point is not 1) -// and stores the result in the provided result param. That is to say result = -// p1 + p2. It performs faster addition than the generic add routine since -// less arithmetic is needed due to the ability to avoid multiplications by the -// second point's z value. -// -// NOTE: The points must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func addZ2EqualsOne(p1, p2, result *JacobianPoint) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using the method shown at: - // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl - // - // In particular it performs the calculations using the following: - // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2, - // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I - // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH - // - // This results in a cost of 7 field multiplications, 4 field squarings, - // 9 field additions, and 4 integer multiplications. - x1, y1, z1 := &p1.X, &p1.Y, &p1.Z - x2, y2 := &p2.X, &p2.Y - x3, y3, z3 := &result.X, &result.Y, &result.Z - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity per the group law for elliptic curve cryptography. Since - // any number of Jacobian coordinates can represent the same affine - // point, the x and y values need to be converted to like terms. Due to - // the assumption made for this function that the second point has a z - // value of 1 (z2=1), the first point is already "converted". - var z1z1, u2, s2 FieldVal - z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) - u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) - s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) - if x1.Equals(&u2) { - if y1.Equals(&s2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - DoubleNonConst(p1, result) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var h, hh, i, j, r, rr, v FieldVal - var negX1, negY1, negX3 FieldVal - negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) - h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3) - hh.SquareVal(&h) // HH = H^2 (mag: 1) - i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4) - j.Mul2(&h, &i) // J = H*I (mag: 1) - negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) - r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6) - rr.SquareVal(&r) // rr = r^2 (mag: 1) - v.Mul2(x1, &i) // V = X1*I (mag: 1) - x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) - x3.Add(&rr) // X3 = r^2+X3 (mag: 5) - negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) - y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3) - y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) - z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1) - z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// addGeneric adds two Jacobian points without any assumptions about the z -// values of the two points and stores the result in the provided result param. -// That is to say result = p1 + p2. It is the slowest of the add routines due -// to requiring the most arithmetic. -// -// NOTE: The points must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func addGeneric(p1, p2, result *JacobianPoint) { - // To compute the point addition efficiently, this implementation splits - // the equation into intermediate elements which are used to minimize - // the number of field multiplications using the method shown at: - // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl - // - // In particular it performs the calculations using the following: - // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2 - // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1) - // V = U1*I - // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H - // - // This results in a cost of 11 field multiplications, 5 field squarings, - // 9 field additions, and 4 integer multiplications. - x1, y1, z1 := &p1.X, &p1.Y, &p1.Z - x2, y2, z2 := &p2.X, &p2.Y, &p2.Z - x3, y3, z3 := &result.X, &result.Y, &result.Z - - // When the x coordinates are the same for two points on the curve, the - // y coordinates either must be the same, in which case it is point - // doubling, or they are opposite and the result is the point at - // infinity. Since any number of Jacobian coordinates can represent the - // same affine point, the x and y values need to be converted to like - // terms. - var z1z1, z2z2, u1, u2, s1, s2 FieldVal - z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) - z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1) - u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1) - u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) - s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1) - s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) - if u1.Equals(&u2) { - if s1.Equals(&s2) { - // Since x1 == x2 and y1 == y2, point doubling must be - // done, otherwise the addition would end up dividing - // by zero. - DoubleNonConst(p1, result) - return - } - - // Since x1 == x2 and y1 == -y2, the sum is the point at - // infinity per the group law. - x3.SetInt(0) - y3.SetInt(0) - z3.SetInt(0) - return - } - - // Calculate X3, Y3, and Z3 according to the intermediate elements - // breakdown above. - var h, i, j, r, rr, v FieldVal - var negU1, negS1, negX3 FieldVal - negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2) - h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3) - i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2) - j.Mul2(&h, &i) // J = H*I (mag: 1) - negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2) - r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6) - rr.SquareVal(&r) // rr = r^2 (mag: 1) - v.Mul2(&u1, &i) // V = U1*I (mag: 1) - x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) - x3.Add(&rr) // X3 = r^2+X3 (mag: 5) - negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) - y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3) - y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) - z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1) - z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4) - z3.Mul(&h) // Z3 = Z3*H (mag: 1) - - // Normalize the resulting field values to a magnitude of 1 as needed. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// AddNonConst adds the passed Jacobian points together and stores the result in -// the provided result param in *non-constant* time. -// -// NOTE: The points must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func AddNonConst(p1, p2, result *JacobianPoint) { - // A point at infinity is the identity according to the group law for - // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. - if (p1.X.IsZero() && p1.Y.IsZero()) || p1.Z.IsZero() { - result.Set(p2) - return - } - if (p2.X.IsZero() && p2.Y.IsZero()) || p2.Z.IsZero() { - result.Set(p1) - return - } - - // Faster point addition can be achieved when certain assumptions are - // met. For example, when both points have the same z value, arithmetic - // on the z values can be avoided. This section thus checks for these - // conditions and calls an appropriate add function which is accelerated - // by using those assumptions. - isZ1One := p1.Z.IsOne() - isZ2One := p2.Z.IsOne() - switch { - case isZ1One && isZ2One: - addZ1AndZ2EqualsOne(p1, p2, result) - return - case p1.Z.Equals(&p2.Z): - addZ1EqualsZ2(p1, p2, result) - return - case isZ2One: - addZ2EqualsOne(p1, p2, result) - return - } - - // None of the above assumptions are true, so fall back to generic - // point addition. - addGeneric(p1, p2, result) -} - -// doubleZ1EqualsOne performs point doubling on the passed Jacobian point when -// the point is already known to have a z value of 1 and stores the result in -// the provided result param. That is to say result = 2*p. It performs faster -// point doubling than the generic routine since less arithmetic is needed due -// to the ability to avoid multiplication by the z value. -// -// NOTE: The resulting point will be normalized. -func doubleZ1EqualsOne(p, result *JacobianPoint) { - // This function uses the assumptions that z1 is 1, thus the point - // doubling formulas reduce to: - // - // X3 = (3*X1^2)^2 - 8*X1*Y1^2 - // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 - // Z3 = 2*Y1 - // - // To compute the above efficiently, this implementation splits the - // equation into intermediate elements which are used to minimize the - // number of field multiplications in favor of field squarings which - // are roughly 35% faster than field multiplications with the current - // implementation at the time this was written. - // - // This uses a slightly modified version of the method shown at: - // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl - // - // In particular it performs the calculations using the following: - // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) - // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C - // Z3 = 2*Y1 - // - // This results in a cost of 1 field multiplication, 5 field squarings, - // 6 field additions, and 5 integer multiplications. - x1, y1 := &p.X, &p.Y - x3, y3, z3 := &result.X, &result.Y, &result.Z - var a, b, c, d, e, f FieldVal - z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2) - a.SquareVal(x1) // A = X1^2 (mag: 1) - b.SquareVal(y1) // B = Y1^2 (mag: 1) - c.SquareVal(&b) // C = B^2 (mag: 1) - b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) - d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) - d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) - e.Set(&a).MulInt(3) // E = 3*A (mag: 3) - f.SquareVal(&e) // F = E^2 (mag: 1) - x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) - x3.Add(&f) // X3 = F+X3 (mag: 18) - f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) - y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) - y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) - - // Normalize the field values back to a magnitude of 1. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// doubleGeneric performs point doubling on the passed Jacobian point without -// any assumptions about the z value and stores the result in the provided -// result param. That is to say result = 2*p. It is the slowest of the point -// doubling routines due to requiring the most arithmetic. -// -// NOTE: The resulting point will be normalized. -func doubleGeneric(p, result *JacobianPoint) { - // Point doubling formula for Jacobian coordinates for the secp256k1 - // curve: - // - // X3 = (3*X1^2)^2 - 8*X1*Y1^2 - // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 - // Z3 = 2*Y1*Z1 - // - // To compute the above efficiently, this implementation splits the - // equation into intermediate elements which are used to minimize the - // number of field multiplications in favor of field squarings which - // are roughly 35% faster than field multiplications with the current - // implementation at the time this was written. - // - // This uses a slightly modified version of the method shown at: - // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - // - // In particular it performs the calculations using the following: - // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) - // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C - // Z3 = 2*Y1*Z1 - // - // This results in a cost of 1 field multiplication, 5 field squarings, - // 6 field additions, and 5 integer multiplications. - x1, y1, z1 := &p.X, &p.Y, &p.Z - x3, y3, z3 := &result.X, &result.Y, &result.Z - var a, b, c, d, e, f FieldVal - z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2) - a.SquareVal(x1) // A = X1^2 (mag: 1) - b.SquareVal(y1) // B = Y1^2 (mag: 1) - c.SquareVal(&b) // C = B^2 (mag: 1) - b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) - d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) - d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) - e.Set(&a).MulInt(3) // E = 3*A (mag: 3) - f.SquareVal(&e) // F = E^2 (mag: 1) - x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) - x3.Add(&f) // X3 = F+X3 (mag: 18) - f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) - y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) - y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) - - // Normalize the field values back to a magnitude of 1. - x3.Normalize() - y3.Normalize() - z3.Normalize() -} - -// DoubleNonConst doubles the passed Jacobian point and stores the result in the -// provided result parameter in *non-constant* time. -// -// NOTE: The point must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func DoubleNonConst(p, result *JacobianPoint) { - // Doubling a point at infinity is still infinity. - if p.Y.IsZero() || p.Z.IsZero() { - result.X.SetInt(0) - result.Y.SetInt(0) - result.Z.SetInt(0) - return - } - - // Slightly faster point doubling can be achieved when the z value is 1 - // by avoiding the multiplication on the z value. This section calls - // a point doubling function which is accelerated by using that - // assumption when possible. - if p.Z.IsOne() { - doubleZ1EqualsOne(p, result) - return - } - - // Fall back to generic point doubling which works with arbitrary z - // values. - doubleGeneric(p, result) -} - -// splitK returns a balanced length-two representation of k and their signs. -// This is algorithm 3.74 from [GECC]. -// -// One thing of note about this algorithm is that no matter what c1 and c2 are, -// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is -// provable mathematically due to how a1/b1/a2/b2 are computed. -// -// c1 and c2 are chosen to minimize the max(k1,k2). -func splitK(k []byte) ([]byte, []byte, int, int) { - // All math here is done with big.Int, which is slow. - // At some point, it might be useful to write something similar to - // FieldVal but for N instead of P as the prime field if this ends up - // being a bottleneck. - bigIntK := new(big.Int) - c1, c2 := new(big.Int), new(big.Int) - tmp1, tmp2 := new(big.Int), new(big.Int) - k1, k2 := new(big.Int), new(big.Int) - - bigIntK.SetBytes(k) - // c1 = round(b2 * k / n) from step 4. - // Rounding isn't really necessary and costs too much, hence skipped - c1.Mul(endomorphismB2, bigIntK) - c1.Div(c1, curveParams.N) - // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step) - // Rounding isn't really necessary and costs too much, hence skipped - c2.Mul(endomorphismB1, bigIntK) - c2.Div(c2, curveParams.N) - // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed) - tmp1.Mul(c1, endomorphismA1) - tmp2.Mul(c2, endomorphismA2) - k1.Sub(bigIntK, tmp1) - k1.Add(k1, tmp2) - // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed) - tmp1.Mul(c1, endomorphismB1) - tmp2.Mul(c2, endomorphismB2) - k2.Sub(tmp2, tmp1) - - // Note Bytes() throws out the sign of k1 and k2. This matters - // since k1 and/or k2 can be negative. Hence, we pass that - // back separately. - return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign() -} - -// nafScalar represents a positive integer up to a maximum value of 2^256 - 1 -// encoded in non-adjacent form. -// -// NAF is a signed-digit representation where each digit can be +1, 0, or -1. -// -// In order to efficiently encode that information, this type uses two arrays, a -// "positive" array where set bits represent the +1 signed digits and a -// "negative" array where set bits represent the -1 signed digits. 0 is -// represented by neither array having a bit set in that position. -// -// The Pos and Neg methods return the aforementioned positive and negative -// arrays, respectively. -type nafScalar struct { - // pos houses the positive portion of the representation. An additional - // byte is required for the positive portion because the NAF encoding can be - // up to 1 bit longer than the normal binary encoding of the value. - // - // neg houses the negative portion of the representation. Even though the - // additional byte is not required for the negative portion, since it can - // never exceed the length of the normal binary encoding of the value, - // keeping the same length for positive and negative portions simplifies - // working with the representation and allows extra conditional branches to - // be avoided. - // - // start and end specify the starting and ending index to use within the pos - // and neg arrays, respectively. This allows fixed size arrays to be used - // versus needing to dynamically allocate space on the heap. - // - // NOTE: The fields are defined in the order that they are to minimize the - // padding on 32-bit and 64-bit platforms. - pos [33]byte - start, end uint8 - neg [33]byte -} - -// Pos returns the bytes of the encoded value with bits set in the positions -// that represent a signed digit of +1. -func (s *nafScalar) Pos() []byte { - return s.pos[s.start:s.end] -} - -// Neg returns the bytes of the encoded value with bits set in the positions -// that represent a signed digit of -1. -func (s *nafScalar) Neg() []byte { - return s.neg[s.start:s.end] -} - -// naf takes a positive integer up to a maximum value of 2^256 - 1 and returns -// its non-adjacent form (NAF), which is a unique signed-digit representation -// such that no two consecutive digits are nonzero. See the documentation for -// the returned type for details on how the representation is encoded -// efficiently and how to interpret it -// -// NAF is useful in that it has the fewest nonzero digits of any signed digit -// representation, only 1/3rd of its digits are nonzero on average, and at least -// half of the digits will be 0. -// -// The aforementioned properties are particularly beneficial for optimizing -// elliptic curve point multiplication because they effectively minimize the -// number of required point additions in exchange for needing to perform a mix -// of fewer point additions and subtractions and possibly one additional point -// doubling. This is an excellent tradeoff because subtraction of points has -// the same computational complexity as addition of points and point doubling is -// faster than both. -func naf(k []byte) nafScalar { - // Strip leading zero bytes. - for len(k) > 0 && k[0] == 0x00 { - k = k[1:] - } - - // The non-adjacent form (NAF) of a positive integer k is an expression - // k = ∑_(i=0, l-1) k_i * 2^i where k_i ∈ {0,±1}, k_(l-1) != 0, and no two - // consecutive digits k_i are nonzero. - // - // The traditional method of computing the NAF of a positive integer is - // given by algorithm 3.30 in [GECC]. It consists of repeatedly dividing k - // by 2 and choosing the remainder so that the quotient (k−r)/2 is even - // which ensures the next NAF digit is 0. This requires log_2(k) steps. - // - // However, in [BRID], Prodinger notes that a closed form expression for the - // NAF representation is the bitwise difference 3k/2 - k/2. This is more - // efficient as it can be computed in O(1) versus the O(log(n)) of the - // traditional approach. - // - // The following code makes use of that formula to compute the NAF more - // efficiently. - // - // To understand the logic here, observe that the only way the NAF has a - // nonzero digit at a given bit is when either 3k/2 or k/2 has a bit set in - // that position, but not both. In other words, the result of a bitwise - // xor. This can be seen simply by considering that when the bits are the - // same, the subtraction is either 0-0 or 1-1, both of which are 0. - // - // Further, observe that the "+1" digits in the result are contributed by - // 3k/2 while the "-1" digits are from k/2. So, they can be determined by - // taking the bitwise and of each respective value with the result of the - // xor which identifies which bits are nonzero. - // - // Using that information, this loops backwards from the least significant - // byte to the most significant byte while performing the aforementioned - // calculations by propagating the potential carry and high order bit from - // the next word during the right shift. - kLen := len(k) - var result nafScalar - var carry uint8 - for byteNum := kLen - 1; byteNum >= 0; byteNum-- { - // Calculate k/2. Notice the carry from the previous word is added and - // the low order bit from the next word is shifted in accordingly. - kc := uint16(k[byteNum]) + uint16(carry) - var nextWord uint8 - if byteNum > 0 { - nextWord = k[byteNum-1] - } - halfK := kc>>1 | uint16(nextWord<<7) - - // Calculate 3k/2 and determine the non-zero digits in the result. - threeHalfK := kc + halfK - nonZeroResultDigits := threeHalfK ^ halfK - - // Determine the signed digits {0, ±1}. - result.pos[byteNum+1] = uint8(threeHalfK & nonZeroResultDigits) - result.neg[byteNum+1] = uint8(halfK & nonZeroResultDigits) - - // Propagate the potential carry from the 3k/2 calculation. - carry = uint8(threeHalfK >> 8) - } - result.pos[0] = carry - - // Set the starting and ending positions within the fixed size arrays to - // identify the bytes that are actually used. This is important since the - // encoding is big endian and thus trailing zero bytes changes its value. - result.start = 1 - carry - result.end = uint8(kLen + 1) - return result -} - -// ScalarMultNonConst multiplies k*P where k is a big endian integer modulo the -// curve order and P is a point in Jacobian projective coordinates and stores -// the result in the provided Jacobian point. -// -// NOTE: The point must be normalized for this function to return the correct -// result. The resulting point will be normalized. -func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) { - // Decompose K into k1 and k2 in order to halve the number of EC ops. - // See Algorithm 3.74 in [GECC]. - kBytes := k.Bytes() - k1, k2, signK1, signK2 := splitK(kBytes[:]) - zeroArray32(&kBytes) - - // The main equation here to remember is: - // k * P = k1 * P + k2 * ϕ(P) - // - // P1 below is P in the equation, P2 below is ϕ(P) in the equation - p1, p1Neg := new(JacobianPoint), new(JacobianPoint) - p1.Set(point) - p1Neg.Set(p1) - p1Neg.Y.Negate(1).Normalize() - - // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinates are the same, so this - // math goes through. - p2, p2Neg := new(JacobianPoint), new(JacobianPoint) - p2.Set(p1) - p2.X.Mul(endomorphismBeta).Normalize() - p2Neg.Set(p2) - p2Neg.Y.Negate(1).Normalize() - - // Flip the positive and negative values of the points as needed - // depending on the signs of k1 and k2. As mentioned in the equation - // above, each of k1 and k2 are multiplied by the respective point. - // Since -k * P is the same thing as k * -P, and the group law for - // elliptic curves states that P(x, y) = -P(x, -y), it's faster and - // simplifies the code to just make the point negative. - if signK1 == -1 { - p1, p1Neg = p1Neg, p1 - } - if signK2 == -1 { - p2, p2Neg = p2Neg, p2 - } - - // NAF versions of k1 and k2 should have a lot more zeros. - // - // The Pos version of the bytes contain the +1s and the Neg versions - // contain the -1s. - k1NAF, k2NAF := naf(k1), naf(k2) - k1PosNAF, k1NegNAF := k1NAF.Pos(), k1NAF.Neg() - k2PosNAF, k2NegNAF := k2NAF.Pos(), k2NAF.Neg() - k1Len, k2Len := len(k1PosNAF), len(k2PosNAF) - - m := k1Len - if m < k2Len { - m = k2Len - } - - // Point Q = ∞ (point at infinity). - var q JacobianPoint - - // Add left-to-right using the NAF optimization. See algorithm 3.77 - // from [GECC]. This should be faster overall since there will be a lot - // more instances of 0, hence reducing the number of Jacobian additions - // at the cost of 1 possible extra doubling. - for i := 0; i < m; i++ { - // Since k1 and k2 are potentially different lengths and the calculation - // is being done left to right, pad the front of the shorter one with - // 0s. - var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte - if i >= m-k1Len { - k1BytePos, k1ByteNeg = k1PosNAF[i-(m-k1Len)], k1NegNAF[i-(m-k1Len)] - } - if i >= m-k2Len { - k2BytePos, k2ByteNeg = k2PosNAF[i-(m-k2Len)], k2NegNAF[i-(m-k2Len)] - } - for bit, mask := 7, uint8(1<<7); bit >= 0; bit, mask = bit-1, mask>>1 { - // Q = 2 * Q - DoubleNonConst(&q, &q) - - // Add or subtract the first point based on the signed digit of the - // NAF representation of k1 at this bit position. - // - // +1: Q = Q + p1 - // -1: Q = Q - p1 - // 0: Q = Q (no change) - if k1BytePos&mask == mask { - AddNonConst(&q, p1, &q) - } else if k1ByteNeg&mask == mask { - AddNonConst(&q, p1Neg, &q) - } - - // Add or subtract the second point based on the signed digit of the - // NAF representation of k2 at this bit position. - // - // +1: Q = Q + p2 - // -1: Q = Q - p2 - // 0: Q = Q (no change) - if k2BytePos&mask == mask { - AddNonConst(&q, p2, &q) - } else if k2ByteNeg&mask == mask { - AddNonConst(&q, p2Neg, &q) - } - } - } - - result.Set(&q) -} - -// ScalarBaseMultNonConst multiplies k*G where G is the base point of the group -// and k is a big endian integer. The result is stored in Jacobian coordinates -// (x1, y1, z1). -// -// NOTE: The resulting point will be normalized. -func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) { - bytePoints := s256BytePoints() - - // Point Q = ∞ (point at infinity). - var q JacobianPoint - - // curve.bytePoints has all 256 byte points for each 8-bit window. The - // strategy is to add up the byte points. This is best understood by - // expressing k in base-256 which it already sort of is. Each "digit" in - // the 8-bit window can be looked up using bytePoints and added together. - var pt JacobianPoint - for i, byteVal := range k.Bytes() { - p := bytePoints[i][byteVal] - pt.X.Set(&p[0]) - pt.Y.Set(&p[1]) - pt.Z.SetInt(1) - AddNonConst(&q, &pt, &q) - } - - result.Set(&q) -} - -// isOnCurve returns whether or not the affine point (x,y) is on the curve. -func isOnCurve(fx, fy *FieldVal) bool { - // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 - y2 := new(FieldVal).SquareVal(fy).Normalize() - result := new(FieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize() - return y2.Equals(result) -} - -// DecompressY attempts to calculate the Y coordinate for the given X coordinate -// such that the result pair is a point on the secp256k1 curve. It adjusts Y -// based on the desired oddness and returns whether or not it was successful -// since not all X coordinates are valid. -// -// The magnitude of the provided X coordinate field val must be a max of 8 for a -// correct result. The resulting Y field val will have a max magnitude of 2. -func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool { - // The curve equation for secp256k1 is: y^2 = x^3 + 7. Thus - // y = +-sqrt(x^3 + 7). - // - // The x coordinate must be invalid if there is no square root for the - // calculated rhs because it means the X coordinate is not for a point on - // the curve. - x3PlusB := new(FieldVal).SquareVal(x).Mul(x).AddInt(7) - if hasSqrt := resultY.SquareRootVal(x3PlusB); !hasSqrt { - return false - } - if resultY.Normalize().IsOdd() != odd { - resultY.Negate(1) - } - return true -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/doc.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/doc.go deleted file mode 100644 index 91a670e..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/doc.go +++ /dev/null @@ -1,58 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Copyright (c) 2015-2019 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package secp256k1 implements optimized secp256k1 elliptic curve operations. - -This package provides an optimized pure Go implementation of elliptic curve -cryptography operations over the secp256k1 curve as well as data structures and -functions for working with public and private secp256k1 keys. See -https://www.secg.org/sec2-v2.pdf for details on the standard. - -In addition, sub packages are provided to produce, verify, parse, and serialize -ECDSA signatures and EC-Schnorr-DCRv0 (a custom Schnorr-based signature scheme -specific to Decred) signatures. See the README.md files in the relevant sub -packages for more details about those aspects. - -An overview of the features provided by this package are as follows: - - - Private key generation, serialization, and parsing - - Public key generation, serialization and parsing per ANSI X9.62-1998 - - Parses uncompressed, compressed, and hybrid public keys - - Serializes uncompressed and compressed public keys - - Specialized types for performing optimized and constant time field operations - - FieldVal type for working modulo the secp256k1 field prime - - ModNScalar type for working modulo the secp256k1 group order - - Elliptic curve operations in Jacobian projective coordinates - - Point addition - - Point doubling - - Scalar multiplication with an arbitrary point - - Scalar multiplication with the base point (group generator) - - Point decompression from a given x coordinate - - Nonce generation via RFC6979 with support for extra data and version - information that can be used to prevent nonce reuse between signing - algorithms - -It also provides an implementation of the Go standard library crypto/elliptic -Curve interface via the S256 function so that it may be used with other packages -in the standard library such as crypto/tls, crypto/x509, and crypto/ecdsa. -However, in the case of ECDSA, it is highly recommended to use the ecdsa sub -package of this package instead since it is optimized specifically for secp256k1 -and is significantly faster as a result. - -Although this package was primarily written for dcrd, it has intentionally been -designed so it can be used as a standalone package for any projects needing to -use optimized secp256k1 elliptic curve cryptography. - -Finally, a comprehensive suite of tests is provided to provide a high level of -quality assurance. - -Use of secp256k1 in Decred - -At the time of this writing, the primary public key cryptography in widespread -use on the Decred network used to secure coins is based on elliptic curves -defined by the secp256k1 domain parameters. -*/ -package secp256k1 diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdh.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdh.go deleted file mode 100644 index ebbdfc5..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdh.go +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright (c) 2015 The btcsuite developers -// Copyright (c) 2015-2016 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -// GenerateSharedSecret generates a shared secret based on a private key and a -// public key using Diffie-Hellman key exchange (ECDH) (RFC 5903). -// RFC5903 Section 9 states we should only return x. -// -// It is recommended to securily hash the result before using as a cryptographic -// key. -func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte { - var point, result JacobianPoint - pubkey.AsJacobian(&point) - ScalarMultNonConst(&privkey.Key, &point, &result) - result.ToAffine() - xBytes := result.X.Bytes() - return xBytes[:] -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/README.md b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/README.md deleted file mode 100644 index cc3c0aa..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/README.md +++ /dev/null @@ -1,52 +0,0 @@ -ecdsa -===== - -[![Build Status](https://github.com/decred/dcrd/workflows/Build%20and%20Test/badge.svg)](https://github.com/decred/dcrd/actions) -[![ISC License](https://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) -[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa) - -Package ecdsa provides secp256k1-optimized ECDSA signing and verification. - -This package provides data structures and functions necessary to produce and -verify deterministic canonical signatures in accordance with RFC6979 and -BIP0062, optimized specifically for the secp256k1 curve using the Elliptic Curve -Digital Signature Algorithm (ECDSA), as defined in FIPS 186-3. See -https://www.secg.org/sec2-v2.pdf for details on the secp256k1 standard. - -It also provides functions to parse and serialize the ECDSA signatures with the -more strict Distinguished Encoding Rules (DER) of ISO/IEC 8825-1 and some -additional restrictions specific to secp256k1. - -In addition, it supports a custom "compact" signature format which allows -efficient recovery of the public key from a given valid signature and message -hash combination. - -A comprehensive suite of tests is provided to ensure proper functionality. - -## ECDSA use in Decred - -At the time of this writing, ECDSA signatures are heavily used for proving coin -ownership in Decred as the vast majority of transactions consist of what is -effectively transferring ownership of coins to a public key associated with a -private key only known to the recipient of the coins along with an encumbrance -that requires an ECDSA signature that proves the new owner possesses the private -key without actually revealing it. - -## Installation and Updating - -This package is part of the `github.com/decred/dcrd/dcrec/secp256k1/v4` module. -Use the standard go tooling for working with modules to incorporate it. - -## Examples - -* [Sign Message](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa#example-package-SignMessage) - Demonstrates signing a message with a secp256k1 private key that is first - parsed from raw bytes and serializing the generated signature. - -* [Verify Signature](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa#example-Signature.Verify) - Demonstrates verifying a secp256k1 signature against a public key that is - first parsed from raw bytes. The signature is also parsed from raw bytes. - -## License - -Package ecdsa is licensed under the [copyfree](http://copyfree.org) ISC License. diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/doc.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/doc.go deleted file mode 100644 index 14f38ef..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/doc.go +++ /dev/null @@ -1,42 +0,0 @@ -// Copyright (c) 2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -/* -Package ecdsa provides secp256k1-optimized ECDSA signing and verification. - -This package provides data structures and functions necessary to produce and -verify deterministic canonical signatures in accordance with RFC6979 and -BIP0062, optimized specifically for the secp256k1 curve using the Elliptic Curve -Digital Signature Algorithm (ECDSA), as defined in FIPS 186-3. See -https://www.secg.org/sec2-v2.pdf for details on the secp256k1 standard. - -It also provides functions to parse and serialize the ECDSA signatures with the -more strict Distinguished Encoding Rules (DER) of ISO/IEC 8825-1 and some -additional restrictions specific to secp256k1. - -In addition, it supports a custom "compact" signature format which allows -efficient recovery of the public key from a given valid signature and message -hash combination. - -A comprehensive suite of tests is provided to ensure proper functionality. - -ECDSA use in Decred - -At the time of this writing, ECDSA signatures are heavily used for proving coin -ownership in Decred as the vast majority of transactions consist of what is -effectively transferring ownership of coins to a public key associated with a -private key only known to the recipient of the coins along with an encumbrance -that requires an ECDSA signature that proves the new owner possesses the private -key without actually revealing it. - -Errors - -Errors returned by this package are of type ecdsa.Error and fully support the -standard library errors.Is and errors.As functions. This allows the caller to -programmatically determine the specific error by examining the ErrorKind field -of the type asserted ecdsa.Error while still providing rich error messages with -contextual information. See ErrorKind in the package documentation for a full -list. -*/ -package ecdsa diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/error.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/error.go deleted file mode 100644 index 45f8252..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/error.go +++ /dev/null @@ -1,116 +0,0 @@ -// Copyright (c) 2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package ecdsa - -// ErrorKind identifies a kind of error. It has full support for -// errors.Is and errors.As, so the caller can directly check against -// an error kind when determining the reason for an error. -type ErrorKind string - -// These constants are used to identify a specific Error. -const ( - // ErrSigTooShort is returned when a signature that should be a DER - // signature is too short. - ErrSigTooShort = ErrorKind("ErrSigTooShort") - - // ErrSigTooLong is returned when a signature that should be a DER signature - // is too long. - ErrSigTooLong = ErrorKind("ErrSigTooLong") - - // ErrSigInvalidSeqID is returned when a signature that should be a DER - // signature does not have the expected ASN.1 sequence ID. - ErrSigInvalidSeqID = ErrorKind("ErrSigInvalidSeqID") - - // ErrSigInvalidDataLen is returned when a signature that should be a DER - // signature does not specify the correct number of remaining bytes for the - // R and S portions. - ErrSigInvalidDataLen = ErrorKind("ErrSigInvalidDataLen") - - // ErrSigMissingSTypeID is returned when a signature that should be a DER - // signature does not provide the ASN.1 type ID for S. - ErrSigMissingSTypeID = ErrorKind("ErrSigMissingSTypeID") - - // ErrSigMissingSLen is returned when a signature that should be a DER - // signature does not provide the length of S. - ErrSigMissingSLen = ErrorKind("ErrSigMissingSLen") - - // ErrSigInvalidSLen is returned when a signature that should be a DER - // signature does not specify the correct number of bytes for the S portion. - ErrSigInvalidSLen = ErrorKind("ErrSigInvalidSLen") - - // ErrSigInvalidRIntID is returned when a signature that should be a DER - // signature does not have the expected ASN.1 integer ID for R. - ErrSigInvalidRIntID = ErrorKind("ErrSigInvalidRIntID") - - // ErrSigZeroRLen is returned when a signature that should be a DER - // signature has an R length of zero. - ErrSigZeroRLen = ErrorKind("ErrSigZeroRLen") - - // ErrSigNegativeR is returned when a signature that should be a DER - // signature has a negative value for R. - ErrSigNegativeR = ErrorKind("ErrSigNegativeR") - - // ErrSigTooMuchRPadding is returned when a signature that should be a DER - // signature has too much padding for R. - ErrSigTooMuchRPadding = ErrorKind("ErrSigTooMuchRPadding") - - // ErrSigRIsZero is returned when a signature has R set to the value zero. - ErrSigRIsZero = ErrorKind("ErrSigRIsZero") - - // ErrSigRTooBig is returned when a signature has R with a value that is - // greater than or equal to the group order. - ErrSigRTooBig = ErrorKind("ErrSigRTooBig") - - // ErrSigInvalidSIntID is returned when a signature that should be a DER - // signature does not have the expected ASN.1 integer ID for S. - ErrSigInvalidSIntID = ErrorKind("ErrSigInvalidSIntID") - - // ErrSigZeroSLen is returned when a signature that should be a DER - // signature has an S length of zero. - ErrSigZeroSLen = ErrorKind("ErrSigZeroSLen") - - // ErrSigNegativeS is returned when a signature that should be a DER - // signature has a negative value for S. - ErrSigNegativeS = ErrorKind("ErrSigNegativeS") - - // ErrSigTooMuchSPadding is returned when a signature that should be a DER - // signature has too much padding for S. - ErrSigTooMuchSPadding = ErrorKind("ErrSigTooMuchSPadding") - - // ErrSigSIsZero is returned when a signature has S set to the value zero. - ErrSigSIsZero = ErrorKind("ErrSigSIsZero") - - // ErrSigSTooBig is returned when a signature has S with a value that is - // greater than or equal to the group order. - ErrSigSTooBig = ErrorKind("ErrSigSTooBig") -) - -// Error satisfies the error interface and prints human-readable errors. -func (e ErrorKind) Error() string { - return string(e) -} - -// Error identifies an error related to an ECDSA signature. It has full -// support for errors.Is and errors.As, so the caller can ascertain the -// specific reason for the error by checking the underlying error. -type Error struct { - Err error - Description string -} - -// Error satisfies the error interface and prints human-readable errors. -func (e Error) Error() string { - return e.Description -} - -// Unwrap returns the underlying wrapped error. -func (e Error) Unwrap() error { - return e.Err -} - -// signatureError creates an Error given a set of arguments. -func signatureError(kind ErrorKind, desc string) Error { - return Error{Err: kind, Description: desc} -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/signature.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/signature.go deleted file mode 100644 index 50f1721..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa/signature.go +++ /dev/null @@ -1,925 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Copyright (c) 2015-2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package ecdsa - -import ( - "errors" - "fmt" - - "github.com/decred/dcrd/dcrec/secp256k1/v4" -) - -// References: -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) -// -// [ISO/IEC 8825-1]: Information technology — ASN.1 encoding rules: -// Specification of Basic Encoding Rules (BER), Canonical Encoding Rules -// (CER) and Distinguished Encoding Rules (DER) -// -// [SEC1]: Elliptic Curve Cryptography (May 31, 2009, Version 2.0) -// https://www.secg.org/sec1-v2.pdf - -var ( - // zero32 is an array of 32 bytes used for the purposes of zeroing and is - // defined here to avoid extra allocations. - zero32 = [32]byte{} - - // orderAsFieldVal is the order of the secp256k1 curve group stored as a - // field value. It is provided here to avoid the need to create it multiple - // times. - orderAsFieldVal = func() *secp256k1.FieldVal { - var f secp256k1.FieldVal - f.SetByteSlice(secp256k1.Params().N.Bytes()) - return &f - }() -) - -const ( - // asn1SequenceID is the ASN.1 identifier for a sequence and is used when - // parsing and serializing signatures encoded with the Distinguished - // Encoding Rules (DER) format per section 10 of [ISO/IEC 8825-1]. - asn1SequenceID = 0x30 - - // asn1IntegerID is the ASN.1 identifier for an integer and is used when - // parsing and serializing signatures encoded with the Distinguished - // Encoding Rules (DER) format per section 10 of [ISO/IEC 8825-1]. - asn1IntegerID = 0x02 -) - -// Signature is a type representing an ECDSA signature. -type Signature struct { - r secp256k1.ModNScalar - s secp256k1.ModNScalar -} - -// NewSignature instantiates a new signature given some r and s values. -func NewSignature(r, s *secp256k1.ModNScalar) *Signature { - return &Signature{*r, *s} -} - -// Serialize returns the ECDSA signature in the Distinguished Encoding Rules -// (DER) format per section 10 of [ISO/IEC 8825-1] and such that the S component -// of the signature is less than or equal to the half order of the group. -// -// Note that the serialized bytes returned do not include the appended hash type -// used in Decred signature scripts. -func (sig *Signature) Serialize() []byte { - // The format of a DER encoded signature is as follows: - // - // 0x30 0x02 0x02 - // - 0x30 is the ASN.1 identifier for a sequence. - // - Total length is 1 byte and specifies length of all remaining data. - // - 0x02 is the ASN.1 identifier that specifies an integer follows. - // - Length of R is 1 byte and specifies how many bytes R occupies. - // - R is the arbitrary length big-endian encoded number which - // represents the R value of the signature. DER encoding dictates - // that the value must be encoded using the minimum possible number - // of bytes. This implies the first byte can only be null if the - // highest bit of the next byte is set in order to prevent it from - // being interpreted as a negative number. - // - 0x02 is once again the ASN.1 integer identifier. - // - Length of S is 1 byte and specifies how many bytes S occupies. - // - S is the arbitrary length big-endian encoded number which - // represents the S value of the signature. The encoding rules are - // identical as those for R. - - // Ensure the S component of the signature is less than or equal to the half - // order of the group because both S and its negation are valid signatures - // modulo the order, so this forces a consistent choice to reduce signature - // malleability. - sigS := new(secp256k1.ModNScalar).Set(&sig.s) - if sigS.IsOverHalfOrder() { - sigS.Negate() - } - - // Serialize the R and S components of the signature into their fixed - // 32-byte big-endian encoding. Note that the extra leading zero byte is - // used to ensure it is canonical per DER and will be stripped if needed - // below. - var rBuf, sBuf [33]byte - sig.r.PutBytesUnchecked(rBuf[1:33]) - sigS.PutBytesUnchecked(sBuf[1:33]) - - // Ensure the encoded bytes for the R and S components are canonical per DER - // by trimming all leading zero bytes so long as the next byte does not have - // the high bit set and it's not the final byte. - canonR, canonS := rBuf[:], sBuf[:] - for len(canonR) > 1 && canonR[0] == 0x00 && canonR[1]&0x80 == 0 { - canonR = canonR[1:] - } - for len(canonS) > 1 && canonS[0] == 0x00 && canonS[1]&0x80 == 0 { - canonS = canonS[1:] - } - - // Total length of returned signature is 1 byte for each magic and length - // (6 total), plus lengths of R and S. - totalLen := 6 + len(canonR) + len(canonS) - b := make([]byte, 0, totalLen) - b = append(b, asn1SequenceID) - b = append(b, byte(totalLen-2)) - b = append(b, asn1IntegerID) - b = append(b, byte(len(canonR))) - b = append(b, canonR...) - b = append(b, asn1IntegerID) - b = append(b, byte(len(canonS))) - b = append(b, canonS...) - return b -} - -// zeroArray32 zeroes the provided 32-byte buffer. -func zeroArray32(b *[32]byte) { - copy(b[:], zero32[:]) -} - -// fieldToModNScalar converts a field value to scalar modulo the group order and -// returns the scalar along with either 1 if it was reduced (aka it overflowed) -// or 0 otherwise. -// -// Note that a bool is not used here because it is not possible in Go to convert -// from a bool to numeric value in constant time and many constant-time -// operations require a numeric value. -func fieldToModNScalar(v *secp256k1.FieldVal) (secp256k1.ModNScalar, uint32) { - var buf [32]byte - v.PutBytes(&buf) - var s secp256k1.ModNScalar - overflow := s.SetBytes(&buf) - zeroArray32(&buf) - return s, overflow -} - -// modNScalarToField converts a scalar modulo the group order to a field value. -func modNScalarToField(v *secp256k1.ModNScalar) secp256k1.FieldVal { - var buf [32]byte - v.PutBytes(&buf) - var fv secp256k1.FieldVal - fv.SetBytes(&buf) - return fv -} - -// Verify returns whether or not the signature is valid for the provided hash -// and secp256k1 public key. -func (sig *Signature) Verify(hash []byte, pubKey *secp256k1.PublicKey) bool { - // The algorithm for verifying an ECDSA signature is given as algorithm 4.30 - // in [GECC]. - // - // The following is a paraphrased version for reference: - // - // G = curve generator - // N = curve order - // Q = public key - // m = message - // R, S = signature - // - // 1. Fail if R and S are not in [1, N-1] - // 2. e = H(m) - // 3. w = S^-1 mod N - // 4. u1 = e * w mod N - // u2 = R * w mod N - // 5. X = u1G + u2Q - // 6. Fail if X is the point at infinity - // 7. x = X.x mod N (X.x is the x coordinate of X) - // 8. Verified if x == R - // - // However, since all group operations are done internally in Jacobian - // projective space, the algorithm is modified slightly here in order to - // avoid an expensive inversion back into affine coordinates at step 7. - // Credits to Greg Maxwell for originally suggesting this optimization. - // - // Ordinarily, step 7 involves converting the x coordinate to affine by - // calculating x = x / z^2 (mod P) and then calculating the remainder as - // x = x (mod N). Then step 8 compares it to R. - // - // Note that since R is the x coordinate mod N from a random point that was - // originally mod P, and the cofactor of the secp256k1 curve is 1, there are - // only two possible x coordinates that the original random point could have - // been to produce R: x, where x < N, and x+N, where x+N < P. - // - // This implies that the signature is valid if either: - // a) R == X.x / X.z^2 (mod P) - // => R * X.z^2 == X.x (mod P) - // --or-- - // b) R + N < P && R + N == X.x / X.z^2 (mod P) - // => R + N < P && (R + N) * X.z^2 == X.x (mod P) - // - // Therefore the following modified algorithm is used: - // - // 1. Fail if R and S are not in [1, N-1] - // 2. e = H(m) - // 3. w = S^-1 mod N - // 4. u1 = e * w mod N - // u2 = R * w mod N - // 5. X = u1G + u2Q - // 6. Fail if X is the point at infinity - // 7. z = (X.z)^2 mod P (X.z is the z coordinate of X) - // 8. Verified if R * z == X.x (mod P) - // 9. Fail if R + N >= P - // 10. Verified if (R + N) * z == X.x (mod P) - - // Step 1. - // - // Fail if R and S are not in [1, N-1]. - if sig.r.IsZero() || sig.s.IsZero() { - return false - } - - // Step 2. - // - // e = H(m) - var e secp256k1.ModNScalar - e.SetByteSlice(hash) - - // Step 3. - // - // w = S^-1 mod N - w := new(secp256k1.ModNScalar).InverseValNonConst(&sig.s) - - // Step 4. - // - // u1 = e * w mod N - // u2 = R * w mod N - u1 := new(secp256k1.ModNScalar).Mul2(&e, w) - u2 := new(secp256k1.ModNScalar).Mul2(&sig.r, w) - - // Step 5. - // - // X = u1G + u2Q - var X, Q, u1G, u2Q secp256k1.JacobianPoint - pubKey.AsJacobian(&Q) - secp256k1.ScalarBaseMultNonConst(u1, &u1G) - secp256k1.ScalarMultNonConst(u2, &Q, &u2Q) - secp256k1.AddNonConst(&u1G, &u2Q, &X) - - // Step 6. - // - // Fail if X is the point at infinity - if (X.X.IsZero() && X.Y.IsZero()) || X.Z.IsZero() { - return false - } - - // Step 7. - // - // z = (X.z)^2 mod P (X.z is the z coordinate of X) - z := new(secp256k1.FieldVal).SquareVal(&X.Z) - - // Step 8. - // - // Verified if R * z == X.x (mod P) - sigRModP := modNScalarToField(&sig.r) - result := new(secp256k1.FieldVal).Mul2(&sigRModP, z).Normalize() - if result.Equals(&X.X) { - return true - } - - // Step 9. - // - // Fail if R + N >= P - if sigRModP.IsGtOrEqPrimeMinusOrder() { - return false - } - - // Step 10. - // - // Verified if (R + N) * z == X.x (mod P) - sigRModP.Add(orderAsFieldVal) - result.Mul2(&sigRModP, z).Normalize() - return result.Equals(&X.X) -} - -// IsEqual compares this Signature instance to the one passed, returning true if -// both Signatures are equivalent. A signature is equivalent to another, if -// they both have the same scalar value for R and S. -func (sig *Signature) IsEqual(otherSig *Signature) bool { - return sig.r.Equals(&otherSig.r) && sig.s.Equals(&otherSig.s) -} - -// ParseDERSignature parses a signature in the Distinguished Encoding Rules -// (DER) format per section 10 of [ISO/IEC 8825-1] and enforces the following -// additional restrictions specific to secp256k1: -// -// - The R and S values must be in the valid range for secp256k1 scalars: -// - Negative values are rejected -// - Zero is rejected -// - Values greater than or equal to the secp256k1 group order are rejected -func ParseDERSignature(sig []byte) (*Signature, error) { - // The format of a DER encoded signature for secp256k1 is as follows: - // - // 0x30 0x02 0x02 - // - 0x30 is the ASN.1 identifier for a sequence - // - Total length is 1 byte and specifies length of all remaining data - // - 0x02 is the ASN.1 identifier that specifies an integer follows - // - Length of R is 1 byte and specifies how many bytes R occupies - // - R is the arbitrary length big-endian encoded number which - // represents the R value of the signature. DER encoding dictates - // that the value must be encoded using the minimum possible number - // of bytes. This implies the first byte can only be null if the - // highest bit of the next byte is set in order to prevent it from - // being interpreted as a negative number. - // - 0x02 is once again the ASN.1 integer identifier - // - Length of S is 1 byte and specifies how many bytes S occupies - // - S is the arbitrary length big-endian encoded number which - // represents the S value of the signature. The encoding rules are - // identical as those for R. - // - // NOTE: The DER specification supports specifying lengths that can occupy - // more than 1 byte, however, since this is specific to secp256k1 - // signatures, all lengths will be a single byte. - const ( - // minSigLen is the minimum length of a DER encoded signature and is - // when both R and S are 1 byte each. - // - // 0x30 + <1-byte> + 0x02 + 0x01 + + 0x2 + 0x01 + - minSigLen = 8 - - // maxSigLen is the maximum length of a DER encoded signature and is - // when both R and S are 33 bytes each. It is 33 bytes because a - // 256-bit integer requires 32 bytes and an additional leading null byte - // might be required if the high bit is set in the value. - // - // 0x30 + <1-byte> + 0x02 + 0x21 + <33 bytes> + 0x2 + 0x21 + <33 bytes> - maxSigLen = 72 - - // sequenceOffset is the byte offset within the signature of the - // expected ASN.1 sequence identifier. - sequenceOffset = 0 - - // dataLenOffset is the byte offset within the signature of the expected - // total length of all remaining data in the signature. - dataLenOffset = 1 - - // rTypeOffset is the byte offset within the signature of the ASN.1 - // identifier for R and is expected to indicate an ASN.1 integer. - rTypeOffset = 2 - - // rLenOffset is the byte offset within the signature of the length of - // R. - rLenOffset = 3 - - // rOffset is the byte offset within the signature of R. - rOffset = 4 - ) - - // The signature must adhere to the minimum and maximum allowed length. - sigLen := len(sig) - if sigLen < minSigLen { - str := fmt.Sprintf("malformed signature: too short: %d < %d", sigLen, - minSigLen) - return nil, signatureError(ErrSigTooShort, str) - } - if sigLen > maxSigLen { - str := fmt.Sprintf("malformed signature: too long: %d > %d", sigLen, - maxSigLen) - return nil, signatureError(ErrSigTooLong, str) - } - - // The signature must start with the ASN.1 sequence identifier. - if sig[sequenceOffset] != asn1SequenceID { - str := fmt.Sprintf("malformed signature: format has wrong type: %#x", - sig[sequenceOffset]) - return nil, signatureError(ErrSigInvalidSeqID, str) - } - - // The signature must indicate the correct amount of data for all elements - // related to R and S. - if int(sig[dataLenOffset]) != sigLen-2 { - str := fmt.Sprintf("malformed signature: bad length: %d != %d", - sig[dataLenOffset], sigLen-2) - return nil, signatureError(ErrSigInvalidDataLen, str) - } - - // Calculate the offsets of the elements related to S and ensure S is inside - // the signature. - // - // rLen specifies the length of the big-endian encoded number which - // represents the R value of the signature. - // - // sTypeOffset is the offset of the ASN.1 identifier for S and, like its R - // counterpart, is expected to indicate an ASN.1 integer. - // - // sLenOffset and sOffset are the byte offsets within the signature of the - // length of S and S itself, respectively. - rLen := int(sig[rLenOffset]) - sTypeOffset := rOffset + rLen - sLenOffset := sTypeOffset + 1 - if sTypeOffset >= sigLen { - str := "malformed signature: S type indicator missing" - return nil, signatureError(ErrSigMissingSTypeID, str) - } - if sLenOffset >= sigLen { - str := "malformed signature: S length missing" - return nil, signatureError(ErrSigMissingSLen, str) - } - - // The lengths of R and S must match the overall length of the signature. - // - // sLen specifies the length of the big-endian encoded number which - // represents the S value of the signature. - sOffset := sLenOffset + 1 - sLen := int(sig[sLenOffset]) - if sOffset+sLen != sigLen { - str := "malformed signature: invalid S length" - return nil, signatureError(ErrSigInvalidSLen, str) - } - - // R elements must be ASN.1 integers. - if sig[rTypeOffset] != asn1IntegerID { - str := fmt.Sprintf("malformed signature: R integer marker: %#x != %#x", - sig[rTypeOffset], asn1IntegerID) - return nil, signatureError(ErrSigInvalidRIntID, str) - } - - // Zero-length integers are not allowed for R. - if rLen == 0 { - str := "malformed signature: R length is zero" - return nil, signatureError(ErrSigZeroRLen, str) - } - - // R must not be negative. - if sig[rOffset]&0x80 != 0 { - str := "malformed signature: R is negative" - return nil, signatureError(ErrSigNegativeR, str) - } - - // Null bytes at the start of R are not allowed, unless R would otherwise be - // interpreted as a negative number. - if rLen > 1 && sig[rOffset] == 0x00 && sig[rOffset+1]&0x80 == 0 { - str := "malformed signature: R value has too much padding" - return nil, signatureError(ErrSigTooMuchRPadding, str) - } - - // S elements must be ASN.1 integers. - if sig[sTypeOffset] != asn1IntegerID { - str := fmt.Sprintf("malformed signature: S integer marker: %#x != %#x", - sig[sTypeOffset], asn1IntegerID) - return nil, signatureError(ErrSigInvalidSIntID, str) - } - - // Zero-length integers are not allowed for S. - if sLen == 0 { - str := "malformed signature: S length is zero" - return nil, signatureError(ErrSigZeroSLen, str) - } - - // S must not be negative. - if sig[sOffset]&0x80 != 0 { - str := "malformed signature: S is negative" - return nil, signatureError(ErrSigNegativeS, str) - } - - // Null bytes at the start of S are not allowed, unless S would otherwise be - // interpreted as a negative number. - if sLen > 1 && sig[sOffset] == 0x00 && sig[sOffset+1]&0x80 == 0 { - str := "malformed signature: S value has too much padding" - return nil, signatureError(ErrSigTooMuchSPadding, str) - } - - // The signature is validly encoded per DER at this point, however, enforce - // additional restrictions to ensure R and S are in the range [1, N-1] since - // valid ECDSA signatures are required to be in that range per spec. - // - // Also note that while the overflow checks are required to make use of the - // specialized mod N scalar type, rejecting zero here is not strictly - // required because it is also checked when verifying the signature, but - // there really isn't a good reason not to fail early here on signatures - // that do not conform to the ECDSA spec. - - // Strip leading zeroes from R. - rBytes := sig[rOffset : rOffset+rLen] - for len(rBytes) > 0 && rBytes[0] == 0x00 { - rBytes = rBytes[1:] - } - - // R must be in the range [1, N-1]. Notice the check for the maximum number - // of bytes is required because SetByteSlice truncates as noted in its - // comment so it could otherwise fail to detect the overflow. - var r secp256k1.ModNScalar - if len(rBytes) > 32 { - str := "invalid signature: R is larger than 256 bits" - return nil, signatureError(ErrSigRTooBig, str) - } - if overflow := r.SetByteSlice(rBytes); overflow { - str := "invalid signature: R >= group order" - return nil, signatureError(ErrSigRTooBig, str) - } - if r.IsZero() { - str := "invalid signature: R is 0" - return nil, signatureError(ErrSigRIsZero, str) - } - - // Strip leading zeroes from S. - sBytes := sig[sOffset : sOffset+sLen] - for len(sBytes) > 0 && sBytes[0] == 0x00 { - sBytes = sBytes[1:] - } - - // S must be in the range [1, N-1]. Notice the check for the maximum number - // of bytes is required because SetByteSlice truncates as noted in its - // comment so it could otherwise fail to detect the overflow. - var s secp256k1.ModNScalar - if len(sBytes) > 32 { - str := "invalid signature: S is larger than 256 bits" - return nil, signatureError(ErrSigSTooBig, str) - } - if overflow := s.SetByteSlice(sBytes); overflow { - str := "invalid signature: S >= group order" - return nil, signatureError(ErrSigSTooBig, str) - } - if s.IsZero() { - str := "invalid signature: S is 0" - return nil, signatureError(ErrSigSIsZero, str) - } - - // Create and return the signature. - return NewSignature(&r, &s), nil -} - -// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 -// and BIP 62 and returns it along with an additional public key recovery code -// for efficiently recovering the public key from the signature. -func signRFC6979(privKey *secp256k1.PrivateKey, hash []byte) (*Signature, byte) { - // The algorithm for producing an ECDSA signature is given as algorithm 4.29 - // in [GECC]. - // - // The following is a paraphrased version for reference: - // - // G = curve generator - // N = curve order - // d = private key - // m = message - // r, s = signature - // - // 1. Select random nonce k in [1, N-1] - // 2. Compute kG - // 3. r = kG.x mod N (kG.x is the x coordinate of the point kG) - // Repeat from step 1 if r = 0 - // 4. e = H(m) - // 5. s = k^-1(e + dr) mod N - // Repeat from step 1 if s = 0 - // 6. Return (r,s) - // - // This is slightly modified here to conform to RFC6979 and BIP 62 as - // follows: - // - // A. Instead of selecting a random nonce in step 1, use RFC6979 to generate - // a deterministic nonce in [1, N-1] parameterized by the private key, - // message being signed, and an iteration count for the repeat cases - // B. Negate s calculated in step 5 if it is > N/2 - // This is done because both s and its negation are valid signatures - // modulo the curve order N, so it forces a consistent choice to reduce - // signature malleability - - privKeyScalar := &privKey.Key - var privKeyBytes [32]byte - privKeyScalar.PutBytes(&privKeyBytes) - defer zeroArray32(&privKeyBytes) - for iteration := uint32(0); ; iteration++ { - // Step 1 with modification A. - // - // Generate a deterministic nonce in [1, N-1] parameterized by the - // private key, message being signed, and iteration count. - k := secp256k1.NonceRFC6979(privKeyBytes[:], hash, nil, nil, iteration) - - // Step 2. - // - // Compute kG - // - // Note that the point must be in affine coordinates. - var kG secp256k1.JacobianPoint - secp256k1.ScalarBaseMultNonConst(k, &kG) - kG.ToAffine() - - // Step 3. - // - // r = kG.x mod N - // Repeat from step 1 if r = 0 - r, overflow := fieldToModNScalar(&kG.X) - if r.IsZero() { - k.Zero() - continue - } - - // Since the secp256k1 curve has a cofactor of 1, when recovering a - // public key from an ECDSA signature over it, there are four possible - // candidates corresponding to the following cases: - // - // 1) The X coord of the random point is < N and its Y coord even - // 2) The X coord of the random point is < N and its Y coord is odd - // 3) The X coord of the random point is >= N and its Y coord is even - // 4) The X coord of the random point is >= N and its Y coord is odd - // - // Rather than forcing the recovery procedure to check all possible - // cases, this creates a recovery code that uniquely identifies which of - // the cases apply by making use of 2 bits. Bit 0 identifies the - // oddness case and Bit 1 identifies the overflow case (aka when the X - // coord >= N). - // - // It is also worth noting that making use of Hasse's theorem shows - // there are around log_2((p-n)/p) ~= -127.65 ~= 1 in 2^127 points where - // the X coordinate is >= N. It is not possible to calculate these - // points since that would require breaking the ECDLP, but, in practice - // this strongly implies with extremely high probability that there are - // only a few actual points for which this case is true. - pubKeyRecoveryCode := byte(overflow<<1) | byte(kG.Y.IsOddBit()) - - // Step 4. - // - // e = H(m) - // - // Note that this actually sets e = H(m) mod N which is correct since - // it is only used in step 5 which itself is mod N. - var e secp256k1.ModNScalar - e.SetByteSlice(hash) - - // Step 5 with modification B. - // - // s = k^-1(e + dr) mod N - // Repeat from step 1 if s = 0 - // s = -s if s > N/2 - kInv := new(secp256k1.ModNScalar).InverseValNonConst(k) - k.Zero() - s := new(secp256k1.ModNScalar).Mul2(privKeyScalar, &r).Add(&e).Mul(kInv) - if s.IsZero() { - continue - } - if s.IsOverHalfOrder() { - s.Negate() - - // Negating s corresponds to the random point that would have been - // generated by -k (mod N), which necessarily has the opposite - // oddness since N is prime, thus flip the pubkey recovery code - // oddness bit accordingly. - pubKeyRecoveryCode ^= 0x01 - } - - // Step 6. - // - // Return (r,s) - return NewSignature(&r, s), pubKeyRecoveryCode - } -} - -// Sign generates an ECDSA signature over the secp256k1 curve for the provided -// hash (which should be the result of hashing a larger message) using the given -// private key. The produced signature is deterministic (same message and same -// key yield the same signature) and canonical in accordance with RFC6979 and -// BIP0062. -func Sign(key *secp256k1.PrivateKey, hash []byte) *Signature { - signature, _ := signRFC6979(key, hash) - return signature -} - -const ( - // compactSigSize is the size of a compact signature. It consists of a - // compact signature recovery code byte followed by the R and S components - // serialized as 32-byte big-endian values. 1+32*2 = 65. - // for the R and S components. 1+32+32=65. - compactSigSize = 65 - - // compactSigMagicOffset is a value used when creating the compact signature - // recovery code inherited from Bitcoin and has no meaning, but has been - // retained for compatibility. For historical purposes, it was originally - // picked to avoid a binary representation that would allow compact - // signatures to be mistaken for other components. - compactSigMagicOffset = 27 - - // compactSigCompPubKey is a value used when creating the compact signature - // recovery code to indicate the original public key was compressed. - compactSigCompPubKey = 4 - - // pubKeyRecoveryCodeOddnessBit specifies the bit that indicates the oddess - // of the Y coordinate of the random point calculated when creating a - // signature. - pubKeyRecoveryCodeOddnessBit = 1 << 0 - - // pubKeyRecoveryCodeOverflowBit specifies the bit that indicates the X - // coordinate of the random point calculated when creating a signature was - // >= N, where N is the order of the group. - pubKeyRecoveryCodeOverflowBit = 1 << 1 -) - -// SignCompact produces a compact ECDSA signature over the secp256k1 curve for -// the provided hash (which should be the result of hashing a larger message) -// using the given private key. The isCompressedKey parameter specifies if the -// produced signature should reference a compressed public key or not. -// -// Compact signature format: -// <1-byte compact sig recovery code><32-byte R><32-byte S> -// -// The compact sig recovery code is the value 27 + public key recovery code + 4 -// if the compact signature was created with a compressed public key. -func SignCompact(key *secp256k1.PrivateKey, hash []byte, isCompressedKey bool) []byte { - // Create the signature and associated pubkey recovery code and calculate - // the compact signature recovery code. - sig, pubKeyRecoveryCode := signRFC6979(key, hash) - compactSigRecoveryCode := compactSigMagicOffset + pubKeyRecoveryCode - if isCompressedKey { - compactSigRecoveryCode += compactSigCompPubKey - } - - // Output <32-byte R><32-byte S>. - var b [compactSigSize]byte - b[0] = compactSigRecoveryCode - sig.r.PutBytesUnchecked(b[1:33]) - sig.s.PutBytesUnchecked(b[33:65]) - return b[:] -} - -// RecoverCompact attempts to recover the secp256k1 public key from the provided -// compact signature and message hash. It first verifies the signature, and, if -// the signature matches then the recovered public key will be returned as well -// as a boolean indicating whether or not the original key was compressed. -func RecoverCompact(signature, hash []byte) (*secp256k1.PublicKey, bool, error) { - // The following is very loosely based on the information and algorithm that - // describes recovering a public key from and ECDSA signature in section - // 4.1.6 of [SEC1]. - // - // Given the following parameters: - // - // G = curve generator - // N = group order - // P = field prime - // Q = public key - // m = message - // e = hash of the message - // r, s = signature - // X = random point used when creating signature whose x coordinate is r - // - // The equation to recover a public key candidate from an ECDSA signature - // is: - // Q = r^-1(sX - eG). - // - // This can be verified by plugging it in for Q in the sig verification - // equation: - // X = s^-1(eG + rQ) (mod N) - // => s^-1(eG + r(r^-1(sX - eG))) (mod N) - // => s^-1(eG + sX - eG) (mod N) - // => s^-1(sX) (mod N) - // => X (mod N) - // - // However, note that since r is the x coordinate mod N from a random point - // that was originally mod P, and the cofactor of the secp256k1 curve is 1, - // there are four possible points that the original random point could have - // been to produce r: (r,y), (r,-y), (r+N,y), and (r+N,-y). At least 2 of - // those points will successfully verify, and all 4 will successfully verify - // when the original x coordinate was in the range [N+1, P-1], but in any - // case, only one of them corresponds to the original private key used. - // - // The method described by section 4.1.6 of [SEC1] to determine which one is - // the correct one involves calculating each possibility as a candidate - // public key and comparing the candidate to the authentic public key. It - // also hints that is is possible to generate the signature in a such a - // way that only one of the candidate public keys is viable. - // - // A more efficient approach that is specific to the secp256k1 curve is used - // here instead which is to produce a "pubkey recovery code" when signing - // that uniquely identifies which of the 4 possibilities is correct for the - // original random point and using that to recover the pubkey directly as - // follows: - // - // 1. Fail if r and s are not in [1, N-1] - // 2. Convert r to integer mod P - // 3. If pubkey recovery code overflow bit is set: - // 3.1 Fail if r + N >= P - // 3.2 r = r + N (mod P) - // 4. y = +sqrt(r^3 + 7) (mod P) - // 4.1 Fail if y does not exist - // 4.2 y = -y if needed to match pubkey recovery code oddness bit - // 5. X = (r, y) - // 6. e = H(m) mod N - // 7. w = r^-1 mod N - // 8. u1 = -(e * w) mod N - // u2 = s * w mod N - // 9. Q = u1G + u2X - // 10. Fail if Q is the point at infinity - - // A compact signature consists of a recovery byte followed by the R and - // S components serialized as 32-byte big-endian values. - if len(signature) != compactSigSize { - return nil, false, errors.New("invalid compact signature size") - } - - // Parse and validate the compact signature recovery code. - const ( - minValidCode = compactSigMagicOffset - maxValidCode = compactSigMagicOffset + compactSigCompPubKey + 3 - ) - sigRecoveryCode := signature[0] - if sigRecoveryCode < minValidCode || sigRecoveryCode > maxValidCode { - return nil, false, errors.New("invalid compact signature recovery code") - } - sigRecoveryCode -= compactSigMagicOffset - wasCompressed := sigRecoveryCode&compactSigCompPubKey != 0 - pubKeyRecoveryCode := sigRecoveryCode & 3 - - // Step 1. - // - // Parse and validate the R and S signature components. - // - // Fail if r and s are not in [1, N-1]. - var r, s secp256k1.ModNScalar - if overflow := r.SetByteSlice(signature[1:33]); overflow { - return nil, false, errors.New("signature R is >= curve order") - } - if r.IsZero() { - return nil, false, errors.New("signature R is 0") - } - if overflow := s.SetByteSlice(signature[33:]); overflow { - return nil, false, errors.New("signature S is >= curve order") - } - if s.IsZero() { - return nil, false, errors.New("signature S is 0") - } - - // Step 2. - // - // Convert r to integer mod P. - fieldR := modNScalarToField(&r) - - // Step 3. - // - // If pubkey recovery code overflow bit is set: - if pubKeyRecoveryCode&pubKeyRecoveryCodeOverflowBit != 0 { - // Step 3.1. - // - // Fail if r + N >= P - // - // Either the signature or the recovery code must be invalid if the - // recovery code overflow bit is set and adding N to the R component - // would exceed the field prime since R originally came from the X - // coordinate of a random point on the curve. - if fieldR.IsGtOrEqPrimeMinusOrder() { - return nil, false, errors.New("signature R + N >= P") - } - - // Step 3.2. - // - // r = r + N (mod P) - fieldR.Add(orderAsFieldVal) - } - - // Step 4. - // - // y = +sqrt(r^3 + 7) (mod P) - // Fail if y does not exist. - // y = -y if needed to match pubkey recovery code oddness bit - // - // The signature must be invalid if the calculation fails because the X - // coord originally came from a random point on the curve which means there - // must be a Y coord that satisfies the equation for a valid signature. - oddY := pubKeyRecoveryCode&pubKeyRecoveryCodeOddnessBit != 0 - var y secp256k1.FieldVal - if valid := secp256k1.DecompressY(&fieldR, oddY, &y); !valid { - return nil, false, errors.New("signature is not for a valid curve point") - } - - // Step 5. - // - // X = (r, y) - var X secp256k1.JacobianPoint - X.X.Set(&fieldR) - X.Y.Set(&y) - X.Z.SetInt(1) - - // Step 6. - // - // e = H(m) mod N - var e secp256k1.ModNScalar - e.SetByteSlice(hash) - - // Step 7. - // - // w = r^-1 mod N - w := new(secp256k1.ModNScalar).InverseValNonConst(&r) - - // Step 8. - // - // u1 = -(e * w) mod N - // u2 = s * w mod N - u1 := new(secp256k1.ModNScalar).Mul2(&e, w).Negate() - u2 := new(secp256k1.ModNScalar).Mul2(&s, w) - - // Step 9. - // - // Q = u1G + u2X - var Q, u1G, u2X secp256k1.JacobianPoint - secp256k1.ScalarBaseMultNonConst(u1, &u1G) - secp256k1.ScalarMultNonConst(u2, &X, &u2X) - secp256k1.AddNonConst(&u1G, &u2X, &Q) - - // Step 10. - // - // Fail if Q is the point at infinity. - // - // Either the signature or the pubkey recovery code must be invalid if the - // recovered pubkey is the point at infinity. - if (Q.X.IsZero() && Q.Y.IsZero()) || Q.Z.IsZero() { - return nil, false, errors.New("recovered pubkey is the point at infinity") - } - - // Notice that the public key is in affine coordinates. - Q.ToAffine() - pubKey := secp256k1.NewPublicKey(&Q.X, &Q.Y) - return pubKey, wasCompressed, nil -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ellipticadaptor.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ellipticadaptor.go deleted file mode 100644 index a271ff6..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/ellipticadaptor.go +++ /dev/null @@ -1,255 +0,0 @@ -// Copyright 2020-2021 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -// References: -// [SECG]: Recommended Elliptic Curve Domain Parameters -// https://www.secg.org/sec2-v2.pdf -// -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) - -import ( - "crypto/ecdsa" - "crypto/elliptic" - "math/big" -) - -// CurveParams contains the parameters for the secp256k1 curve. -type CurveParams struct { - // P is the prime used in the secp256k1 field. - P *big.Int - - // N is the order of the secp256k1 curve group generated by the base point. - N *big.Int - - // Gx and Gy are the x and y coordinate of the base point, respectively. - Gx, Gy *big.Int - - // BitSize is the size of the underlying secp256k1 field in bits. - BitSize int - - // H is the cofactor of the secp256k1 curve. - H int - - // ByteSize is simply the bit size / 8 and is provided for convenience - // since it is calculated repeatedly. - ByteSize int -} - -// Curve parameters taken from [SECG] section 2.4.1. -var curveParams = CurveParams{ - P: fromHex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"), - N: fromHex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"), - Gx: fromHex("79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"), - Gy: fromHex("483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"), - BitSize: 256, - H: 1, - ByteSize: 256 / 8, -} - -// Params returns the secp256k1 curve parameters for convenience. -func Params() *CurveParams { - return &curveParams -} - -// KoblitzCurve provides an implementation for secp256k1 that fits the ECC Curve -// interface from crypto/elliptic. -type KoblitzCurve struct { - *elliptic.CurveParams -} - -// bigAffineToJacobian takes an affine point (x, y) as big integers and converts -// it to Jacobian point with Z=1. -func bigAffineToJacobian(x, y *big.Int, result *JacobianPoint) { - result.X.SetByteSlice(x.Bytes()) - result.Y.SetByteSlice(y.Bytes()) - result.Z.SetInt(1) -} - -// jacobianToBigAffine takes a Jacobian point (x, y, z) as field values and -// converts it to an affine point as big integers. -func jacobianToBigAffine(point *JacobianPoint) (*big.Int, *big.Int) { - point.ToAffine() - - // Convert the field values for the now affine point to big.Ints. - x3, y3 := new(big.Int), new(big.Int) - x3.SetBytes(point.X.Bytes()[:]) - y3.SetBytes(point.Y.Bytes()[:]) - return x3, y3 -} - -// Params returns the parameters for the curve. -// -// This is part of the elliptic.Curve interface implementation. -func (curve *KoblitzCurve) Params() *elliptic.CurveParams { - return curve.CurveParams -} - -// IsOnCurve returns whether or not the affine point (x,y) is on the curve. -// -// This is part of the elliptic.Curve interface implementation. This function -// differs from the crypto/elliptic algorithm since a = 0 not -3. -func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool { - // Convert big ints to a Jacobian point for faster arithmetic. - var point JacobianPoint - bigAffineToJacobian(x, y, &point) - return isOnCurve(&point.X, &point.Y) -} - -// Add returns the sum of (x1,y1) and (x2,y2). -// -// This is part of the elliptic.Curve interface implementation. -func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - // A point at infinity is the identity according to the group law for - // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. - if x1.Sign() == 0 && y1.Sign() == 0 { - return x2, y2 - } - if x2.Sign() == 0 && y2.Sign() == 0 { - return x1, y1 - } - - // Convert the affine coordinates from big integers to Jacobian points, - // do the point addition in Jacobian projective space, and convert the - // Jacobian point back to affine big.Ints. - var p1, p2, result JacobianPoint - bigAffineToJacobian(x1, y1, &p1) - bigAffineToJacobian(x2, y2, &p2) - AddNonConst(&p1, &p2, &result) - return jacobianToBigAffine(&result) -} - -// Double returns 2*(x1,y1). -// -// This is part of the elliptic.Curve interface implementation. -func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - if y1.Sign() == 0 { - return new(big.Int), new(big.Int) - } - - // Convert the affine coordinates from big integers to Jacobian points, - // do the point doubling in Jacobian projective space, and convert the - // Jacobian point back to affine big.Ints. - var point, result JacobianPoint - bigAffineToJacobian(x1, y1, &point) - DoubleNonConst(&point, &result) - return jacobianToBigAffine(&result) -} - -// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This -// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and -// thus any other valid point on the elliptic curve has the same order. -func moduloReduce(k []byte) []byte { - // Since the order of G is curve.N, we can use a much smaller number by - // doing modulo curve.N - if len(k) > curveParams.ByteSize { - tmpK := new(big.Int).SetBytes(k) - tmpK.Mod(tmpK, curveParams.N) - return tmpK.Bytes() - } - - return k -} - -// ScalarMult returns k*(Bx, By) where k is a big endian integer. -// -// This is part of the elliptic.Curve interface implementation. -func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { - // Convert the affine coordinates from big integers to Jacobian points, - // do the multiplication in Jacobian projective space, and convert the - // Jacobian point back to affine big.Ints. - var kModN ModNScalar - kModN.SetByteSlice(moduloReduce(k)) - var point, result JacobianPoint - bigAffineToJacobian(Bx, By, &point) - ScalarMultNonConst(&kModN, &point, &result) - return jacobianToBigAffine(&result) -} - -// ScalarBaseMult returns k*G where G is the base point of the group and k is a -// big endian integer. -// -// This is part of the elliptic.Curve interface implementation. -func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - // Perform the multiplication and convert the Jacobian point back to affine - // big.Ints. - var kModN ModNScalar - kModN.SetByteSlice(moduloReduce(k)) - var result JacobianPoint - ScalarBaseMultNonConst(&kModN, &result) - return jacobianToBigAffine(&result) -} - -// X returns the x coordinate of the public key. -func (p *PublicKey) X() *big.Int { - return new(big.Int).SetBytes(p.x.Bytes()[:]) -} - -// Y returns the y coordinate of the public key. -func (p *PublicKey) Y() *big.Int { - return new(big.Int).SetBytes(p.y.Bytes()[:]) -} - -// ToECDSA returns the public key as a *ecdsa.PublicKey. -func (p *PublicKey) ToECDSA() *ecdsa.PublicKey { - return &ecdsa.PublicKey{ - Curve: S256(), - X: p.X(), - Y: p.Y(), - } -} - -// ToECDSA returns the private key as a *ecdsa.PrivateKey. -func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey { - var privKeyBytes [PrivKeyBytesLen]byte - p.Key.PutBytes(&privKeyBytes) - var result JacobianPoint - ScalarBaseMultNonConst(&p.Key, &result) - x, y := jacobianToBigAffine(&result) - newPrivKey := &ecdsa.PrivateKey{ - PublicKey: ecdsa.PublicKey{ - Curve: S256(), - X: x, - Y: y, - }, - D: new(big.Int).SetBytes(privKeyBytes[:]), - } - zeroArray32(&privKeyBytes) - return newPrivKey -} - -// fromHex converts the passed hex string into a big integer pointer and will -// panic is there is an error. This is only provided for the hard-coded -// constants so errors in the source code can bet detected. It will only (and -// must only) be called for initialization purposes. -func fromHex(s string) *big.Int { - if s == "" { - return big.NewInt(0) - } - r, ok := new(big.Int).SetString(s, 16) - if !ok { - panic("invalid hex in source file: " + s) - } - return r -} - -// secp256k1 is a global instance of the KoblitzCurve implementation which in -// turn embeds and implements elliptic.CurveParams. -var secp256k1 = &KoblitzCurve{ - CurveParams: &elliptic.CurveParams{ - P: curveParams.P, - N: curveParams.N, - B: fromHex("0000000000000000000000000000000000000000000000000000000000000007"), - Gx: curveParams.Gx, - Gy: curveParams.Gy, - BitSize: curveParams.BitSize, - Name: "secp256k1", - }, -} - -// S256 returns a Curve which implements secp256k1. -func S256() *KoblitzCurve { - return secp256k1 -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/error.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/error.go deleted file mode 100644 index ac8c451..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/error.go +++ /dev/null @@ -1,67 +0,0 @@ -// Copyright (c) 2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -// ErrorKind identifies a kind of error. It has full support for errors.Is and -// errors.As, so the caller can directly check against an error kind when -// determining the reason for an error. -type ErrorKind string - -// These constants are used to identify a specific RuleError. -const ( - // ErrPubKeyInvalidLen indicates that the length of a serialized public - // key is not one of the allowed lengths. - ErrPubKeyInvalidLen = ErrorKind("ErrPubKeyInvalidLen") - - // ErrPubKeyInvalidFormat indicates an attempt was made to parse a public - // key that does not specify one of the supported formats. - ErrPubKeyInvalidFormat = ErrorKind("ErrPubKeyInvalidFormat") - - // ErrPubKeyXTooBig indicates that the x coordinate for a public key - // is greater than or equal to the prime of the field underlying the group. - ErrPubKeyXTooBig = ErrorKind("ErrPubKeyXTooBig") - - // ErrPubKeyYTooBig indicates that the y coordinate for a public key is - // greater than or equal to the prime of the field underlying the group. - ErrPubKeyYTooBig = ErrorKind("ErrPubKeyYTooBig") - - // ErrPubKeyNotOnCurve indicates that a public key is not a point on the - // secp256k1 curve. - ErrPubKeyNotOnCurve = ErrorKind("ErrPubKeyNotOnCurve") - - // ErrPubKeyMismatchedOddness indicates that a hybrid public key specified - // an oddness of the y coordinate that does not match the actual oddness of - // the provided y coordinate. - ErrPubKeyMismatchedOddness = ErrorKind("ErrPubKeyMismatchedOddness") -) - -// Error satisfies the error interface and prints human-readable errors. -func (e ErrorKind) Error() string { - return string(e) -} - -// Error identifies an error related to public key cryptography using a -// sec256k1 curve. It has full support for errors.Is and errors.As, so the -// caller can ascertain the specific reason for the error by checking -// the underlying error. -type Error struct { - Err error - Description string -} - -// Error satisfies the error interface and prints human-readable errors. -func (e Error) Error() string { - return e.Description -} - -// Unwrap returns the underlying wrapped error. -func (e Error) Unwrap() error { - return e.Err -} - -// makeError creates an Error given a set of arguments. -func makeError(kind ErrorKind, desc string) Error { - return Error{Err: kind, Description: desc} -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go deleted file mode 100644 index 43e27a9..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go +++ /dev/null @@ -1,1680 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers -// Copyright (c) 2013-2021 Dave Collins -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -// References: -// [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone. -// http://cacr.uwaterloo.ca/hac/ - -// All elliptic curve operations for secp256k1 are done in a finite field -// characterized by a 256-bit prime. Given this precision is larger than the -// biggest available native type, obviously some form of bignum math is needed. -// This package implements specialized fixed-precision field arithmetic rather -// than relying on an arbitrary-precision arithmetic package such as math/big -// for dealing with the field math since the size is known. As a result, rather -// large performance gains are achieved by taking advantage of many -// optimizations not available to arbitrary-precision arithmetic and generic -// modular arithmetic algorithms. -// -// There are various ways to internally represent each finite field element. -// For example, the most obvious representation would be to use an array of 4 -// uint64s (64 bits * 4 = 256 bits). However, that representation suffers from -// a couple of issues. First, there is no native Go type large enough to handle -// the intermediate results while adding or multiplying two 64-bit numbers, and -// second there is no space left for overflows when performing the intermediate -// arithmetic between each array element which would lead to expensive carry -// propagation. -// -// Given the above, this implementation represents the field elements as -// 10 uint32s with each word (array entry) treated as base 2^26. This was -// chosen for the following reasons: -// 1) Most systems at the current time are 64-bit (or at least have 64-bit -// registers available for specialized purposes such as MMX) so the -// intermediate results can typically be done using a native register (and -// using uint64s to avoid the need for additional half-word arithmetic) -// 2) In order to allow addition of the internal words without having to -// propagate the carry, the max normalized value for each register must -// be less than the number of bits available in the register -// 3) Since we're dealing with 32-bit values, 64-bits of overflow is a -// reasonable choice for #2 -// 4) Given the need for 256-bits of precision and the properties stated in #1, -// #2, and #3, the representation which best accommodates this is 10 uint32s -// with base 2^26 (26 bits * 10 = 260 bits, so the final word only needs 22 -// bits) which leaves the desired 64 bits (32 * 10 = 320, 320 - 256 = 64) for -// overflow -// -// Since it is so important that the field arithmetic is extremely fast for high -// performance crypto, this type does not perform any validation where it -// ordinarily would. See the documentation for FieldVal for more details. - -import ( - "encoding/hex" -) - -// Constants used to make the code more readable. -const ( - twoBitsMask = 0x3 - fourBitsMask = 0xf - sixBitsMask = 0x3f - eightBitsMask = 0xff -) - -// Constants related to the field representation. -const ( - // fieldWords is the number of words used to internally represent the - // 256-bit value. - fieldWords = 10 - - // fieldBase is the exponent used to form the numeric base of each word. - // 2^(fieldBase*i) where i is the word position. - fieldBase = 26 - - // fieldBaseMask is the mask for the bits in each word needed to - // represent the numeric base of each word (except the most significant - // word). - fieldBaseMask = (1 << fieldBase) - 1 - - // fieldMSBBits is the number of bits in the most significant word used - // to represent the value. - fieldMSBBits = 256 - (fieldBase * (fieldWords - 1)) - - // fieldMSBMask is the mask for the bits in the most significant word - // needed to represent the value. - fieldMSBMask = (1 << fieldMSBBits) - 1 - - // These fields provide convenient access to each of the words of the - // secp256k1 prime in the internal field representation to improve code - // readability. - fieldPrimeWordZero = 0x03fffc2f - fieldPrimeWordOne = 0x03ffffbf - fieldPrimeWordTwo = 0x03ffffff - fieldPrimeWordThree = 0x03ffffff - fieldPrimeWordFour = 0x03ffffff - fieldPrimeWordFive = 0x03ffffff - fieldPrimeWordSix = 0x03ffffff - fieldPrimeWordSeven = 0x03ffffff - fieldPrimeWordEight = 0x03ffffff - fieldPrimeWordNine = 0x003fffff -) - -// FieldVal implements optimized fixed-precision arithmetic over the -// secp256k1 finite field. This means all arithmetic is performed modulo -// 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f. -// -// WARNING: Since it is so important for the field arithmetic to be extremely -// fast for high performance crypto, this type does not perform any validation -// of documented preconditions where it ordinarily would. As a result, it is -// IMPERATIVE for callers to understand some key concepts that are described -// below and ensure the methods are called with the necessary preconditions that -// each method is documented with. For example, some methods only give the -// correct result if the field value is normalized and others require the field -// values involved to have a maximum magnitude and THERE ARE NO EXPLICIT CHECKS -// TO ENSURE THOSE PRECONDITIONS ARE SATISFIED. This does, unfortunately, make -// the type more difficult to use correctly and while I typically prefer to -// ensure all state and input is valid for most code, this is a bit of an -// exception because those extra checks really add up in what ends up being -// critical hot paths. -// -// The first key concept when working with this type is normalization. In order -// to avoid the need to propagate a ton of carries, the internal representation -// provides additional overflow bits for each word of the overall 256-bit value. -// This means that there are multiple internal representations for the same -// value and, as a result, any methods that rely on comparison of the value, -// such as equality and oddness determination, require the caller to provide a -// normalized value. -// -// The second key concept when working with this type is magnitude. As -// previously mentioned, the internal representation provides additional -// overflow bits which means that the more math operations that are performed on -// the field value between normalizations, the more those overflow bits -// accumulate. The magnitude is effectively that maximum possible number of -// those overflow bits that could possibly be required as a result of a given -// operation. Since there are only a limited number of overflow bits available, -// this implies that the max possible magnitude MUST be tracked by the caller -// and the caller MUST normalize the field value if a given operation would -// cause the magnitude of the result to exceed the max allowed value. -// -// IMPORTANT: The max allowed magnitude of a field value is 64. -type FieldVal struct { - // Each 256-bit value is represented as 10 32-bit integers in base 2^26. - // This provides 6 bits of overflow in each word (10 bits in the most - // significant word) for a total of 64 bits of overflow (9*6 + 10 = 64). It - // only implements the arithmetic needed for elliptic curve operations. - // - // The following depicts the internal representation: - // ----------------------------------------------------------------- - // | n[9] | n[8] | ... | n[0] | - // | 32 bits available | 32 bits available | ... | 32 bits available | - // | 22 bits for value | 26 bits for value | ... | 26 bits for value | - // | 10 bits overflow | 6 bits overflow | ... | 6 bits overflow | - // | Mult: 2^(26*9) | Mult: 2^(26*8) | ... | Mult: 2^(26*0) | - // ----------------------------------------------------------------- - // - // For example, consider the number 2^49 + 1. It would be represented as: - // n[0] = 1 - // n[1] = 2^23 - // n[2..9] = 0 - // - // The full 256-bit value is then calculated by looping i from 9..0 and - // doing sum(n[i] * 2^(26i)) like so: - // n[9] * 2^(26*9) = 0 * 2^234 = 0 - // n[8] * 2^(26*8) = 0 * 2^208 = 0 - // ... - // n[1] * 2^(26*1) = 2^23 * 2^26 = 2^49 - // n[0] * 2^(26*0) = 1 * 2^0 = 1 - // Sum: 0 + 0 + ... + 2^49 + 1 = 2^49 + 1 - n [10]uint32 -} - -// String returns the field value as a normalized human-readable hex string. -// -// Preconditions: None -// Output Normalized: Field is not modified -- same as input value -// Output Max Magnitude: Field is not modified -- same as input value -func (f FieldVal) String() string { - // f is a copy, so it's safe to normalize it without mutating the original. - f.Normalize() - return hex.EncodeToString(f.Bytes()[:]) -} - -// Zero sets the field value to zero in constant time. A newly created field -// value is already set to zero. This function can be useful to clear an -// existing field value for reuse. -// -// Preconditions: None -// Output Normalized: Yes -// Output Max Magnitude: 1 -func (f *FieldVal) Zero() { - f.n[0] = 0 - f.n[1] = 0 - f.n[2] = 0 - f.n[3] = 0 - f.n[4] = 0 - f.n[5] = 0 - f.n[6] = 0 - f.n[7] = 0 - f.n[8] = 0 - f.n[9] = 0 -} - -// Set sets the field value equal to the passed value in constant time. The -// normalization and magnitude of the two fields will be identical. -// -// The field value is returned to support chaining. This enables syntax like: -// f := new(FieldVal).Set(f2).Add(1) so that f = f2 + 1 where f2 is not -// modified. -// -// Preconditions: None -// Output Normalized: Same as input value -// Output Max Magnitude: Same as input value -func (f *FieldVal) Set(val *FieldVal) *FieldVal { - *f = *val - return f -} - -// SetInt sets the field value to the passed integer in constant time. This is -// a convenience function since it is fairly common to perform some arithmetic -// with small native integers. -// -// The field value is returned to support chaining. This enables syntax such -// as f := new(FieldVal).SetInt(2).Mul(f2) so that f = 2 * f2. -// -// Preconditions: None -// Output Normalized: Yes -// Output Max Magnitude: 1 -func (f *FieldVal) SetInt(ui uint16) *FieldVal { - f.Zero() - f.n[0] = uint32(ui) - return f -} - -// SetBytes packs the passed 32-byte big-endian value into the internal field -// value representation in constant time. SetBytes interprets the provided -// array as a 256-bit big-endian unsigned integer, packs it into the internal -// field value representation, and returns either 1 if it is greater than or -// equal to the field prime (aka it overflowed) or 0 otherwise in constant time. -// -// Note that a bool is not used here because it is not possible in Go to convert -// from a bool to numeric value in constant time and many constant-time -// operations require a numeric value. -// -// Preconditions: None -// Output Normalized: Yes if no overflow, no otherwise -// Output Max Magnitude: 1 -func (f *FieldVal) SetBytes(b *[32]byte) uint32 { - // Pack the 256 total bits across the 10 uint32 words with a max of - // 26-bits per word. This could be done with a couple of for loops, - // but this unrolled version is significantly faster. Benchmarks show - // this is about 34 times faster than the variant which uses loops. - f.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 | - (uint32(b[28])&twoBitsMask)<<24 - f.n[1] = uint32(b[28])>>2 | uint32(b[27])<<6 | uint32(b[26])<<14 | - (uint32(b[25])&fourBitsMask)<<22 - f.n[2] = uint32(b[25])>>4 | uint32(b[24])<<4 | uint32(b[23])<<12 | - (uint32(b[22])&sixBitsMask)<<20 - f.n[3] = uint32(b[22])>>6 | uint32(b[21])<<2 | uint32(b[20])<<10 | - uint32(b[19])<<18 - f.n[4] = uint32(b[18]) | uint32(b[17])<<8 | uint32(b[16])<<16 | - (uint32(b[15])&twoBitsMask)<<24 - f.n[5] = uint32(b[15])>>2 | uint32(b[14])<<6 | uint32(b[13])<<14 | - (uint32(b[12])&fourBitsMask)<<22 - f.n[6] = uint32(b[12])>>4 | uint32(b[11])<<4 | uint32(b[10])<<12 | - (uint32(b[9])&sixBitsMask)<<20 - f.n[7] = uint32(b[9])>>6 | uint32(b[8])<<2 | uint32(b[7])<<10 | - uint32(b[6])<<18 - f.n[8] = uint32(b[5]) | uint32(b[4])<<8 | uint32(b[3])<<16 | - (uint32(b[2])&twoBitsMask)<<24 - f.n[9] = uint32(b[2])>>2 | uint32(b[1])<<6 | uint32(b[0])<<14 - - // The intuition here is that the field value is greater than the prime if - // one of the higher individual words is greater than corresponding word of - // the prime and all higher words in the field value are equal to their - // corresponding word of the prime. Since this type is modulo the prime, - // being equal is also an overflow back to 0. - // - // Note that because the input is 32 bytes and it was just packed into the - // field representation, the only words that can possibly be greater are - // zero and one, because ceil(log_2(2^256 - 1 - P)) = 33 bits max and the - // internal field representation encodes 26 bits with each word. - // - // Thus, there is no need to test if the upper words of the field value - // exceeds them, hence, only equality is checked for them. - highWordsEq := constantTimeEq(f.n[9], fieldPrimeWordNine) - highWordsEq &= constantTimeEq(f.n[8], fieldPrimeWordEight) - highWordsEq &= constantTimeEq(f.n[7], fieldPrimeWordSeven) - highWordsEq &= constantTimeEq(f.n[6], fieldPrimeWordSix) - highWordsEq &= constantTimeEq(f.n[5], fieldPrimeWordFive) - highWordsEq &= constantTimeEq(f.n[4], fieldPrimeWordFour) - highWordsEq &= constantTimeEq(f.n[3], fieldPrimeWordThree) - highWordsEq &= constantTimeEq(f.n[2], fieldPrimeWordTwo) - overflow := highWordsEq & constantTimeGreater(f.n[1], fieldPrimeWordOne) - highWordsEq &= constantTimeEq(f.n[1], fieldPrimeWordOne) - overflow |= highWordsEq & constantTimeGreaterOrEq(f.n[0], fieldPrimeWordZero) - - return overflow -} - -// SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned -// integer (meaning it is truncated to the first 32 bytes), packs it into the -// internal field value representation, and returns whether or not the resulting -// truncated 256-bit integer is greater than or equal to the field prime (aka it -// overflowed) in constant time. -// -// Note that since passing a slice with more than 32 bytes is truncated, it is -// possible that the truncated value is less than the field prime and hence it -// will not be reported as having overflowed in that case. It is up to the -// caller to decide whether it needs to provide numbers of the appropriate size -// or it if is acceptable to use this function with the described truncation and -// overflow behavior. -// -// Preconditions: None -// Output Normalized: Yes if no overflow, no otherwise -// Output Max Magnitude: 1 -func (f *FieldVal) SetByteSlice(b []byte) bool { - var b32 [32]byte - b = b[:constantTimeMin(uint32(len(b)), 32)] - copy(b32[:], b32[:32-len(b)]) - copy(b32[32-len(b):], b) - result := f.SetBytes(&b32) - zeroArray32(&b32) - return result != 0 -} - -// Normalize normalizes the internal field words into the desired range and -// performs fast modular reduction over the secp256k1 prime by making use of the -// special form of the prime in constant time. -// -// Preconditions: None -// Output Normalized: Yes -// Output Max Magnitude: 1 -func (f *FieldVal) Normalize() *FieldVal { - // The field representation leaves 6 bits of overflow in each word so - // intermediate calculations can be performed without needing to - // propagate the carry to each higher word during the calculations. In - // order to normalize, we need to "compact" the full 256-bit value to - // the right while propagating any carries through to the high order - // word. - // - // Since this field is doing arithmetic modulo the secp256k1 prime, we - // also need to perform modular reduction over the prime. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, highly efficient - // reduction can be achieved. - // - // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits - // this criteria. - // - // 4294968273 in field representation (base 2^26) is: - // n[0] = 977 - // n[1] = 64 - // That is to say (2^26 * 64) + 977 = 4294968273 - // - // The algorithm presented in the referenced section typically repeats - // until the quotient is zero. However, due to our field representation - // we already know to within one reduction how many times we would need - // to repeat as it's the uppermost bits of the high order word. Thus we - // can simply multiply the magnitude by the field representation of the - // prime and do a single iteration. After this step there might be an - // additional carry to bit 256 (bit 22 of the high order word). - t9 := f.n[9] - m := t9 >> fieldMSBBits - t9 = t9 & fieldMSBMask - t0 := f.n[0] + m*977 - t1 := (t0 >> fieldBase) + f.n[1] + (m << 6) - t0 = t0 & fieldBaseMask - t2 := (t1 >> fieldBase) + f.n[2] - t1 = t1 & fieldBaseMask - t3 := (t2 >> fieldBase) + f.n[3] - t2 = t2 & fieldBaseMask - t4 := (t3 >> fieldBase) + f.n[4] - t3 = t3 & fieldBaseMask - t5 := (t4 >> fieldBase) + f.n[5] - t4 = t4 & fieldBaseMask - t6 := (t5 >> fieldBase) + f.n[6] - t5 = t5 & fieldBaseMask - t7 := (t6 >> fieldBase) + f.n[7] - t6 = t6 & fieldBaseMask - t8 := (t7 >> fieldBase) + f.n[8] - t7 = t7 & fieldBaseMask - t9 = (t8 >> fieldBase) + t9 - t8 = t8 & fieldBaseMask - - // At this point, the magnitude is guaranteed to be one, however, the - // value could still be greater than the prime if there was either a - // carry through to bit 256 (bit 22 of the higher order word) or the - // value is greater than or equal to the field characteristic. The - // following determines if either or these conditions are true and does - // the final reduction in constant time. - // - // Also note that 'm' will be zero when neither of the aforementioned - // conditions are true and the value will not be changed when 'm' is zero. - m = constantTimeEq(t9, fieldMSBMask) - m &= constantTimeEq(t8&t7&t6&t5&t4&t3&t2, fieldBaseMask) - m &= constantTimeGreater(t1+64+((t0+977)>>fieldBase), fieldBaseMask) - m |= t9 >> fieldMSBBits - t0 = t0 + m*977 - t1 = (t0 >> fieldBase) + t1 + (m << 6) - t0 = t0 & fieldBaseMask - t2 = (t1 >> fieldBase) + t2 - t1 = t1 & fieldBaseMask - t3 = (t2 >> fieldBase) + t3 - t2 = t2 & fieldBaseMask - t4 = (t3 >> fieldBase) + t4 - t3 = t3 & fieldBaseMask - t5 = (t4 >> fieldBase) + t5 - t4 = t4 & fieldBaseMask - t6 = (t5 >> fieldBase) + t6 - t5 = t5 & fieldBaseMask - t7 = (t6 >> fieldBase) + t7 - t6 = t6 & fieldBaseMask - t8 = (t7 >> fieldBase) + t8 - t7 = t7 & fieldBaseMask - t9 = (t8 >> fieldBase) + t9 - t8 = t8 & fieldBaseMask - t9 = t9 & fieldMSBMask // Remove potential multiple of 2^256. - - // Finally, set the normalized and reduced words. - f.n[0] = t0 - f.n[1] = t1 - f.n[2] = t2 - f.n[3] = t3 - f.n[4] = t4 - f.n[5] = t5 - f.n[6] = t6 - f.n[7] = t7 - f.n[8] = t8 - f.n[9] = t9 - return f -} - -// PutBytesUnchecked unpacks the field value to a 32-byte big-endian value -// directly into the passed byte slice in constant time. The target slice must -// must have at least 32 bytes available or it will panic. -// -// There is a similar function, PutBytes, which unpacks the field value into a -// 32-byte array directly. This version is provided since it can be useful -// to write directly into part of a larger buffer without needing a separate -// allocation. -// -// Preconditions: -// - The field value MUST be normalized -// - The target slice MUST have at least 32 bytes available -func (f *FieldVal) PutBytesUnchecked(b []byte) { - // Unpack the 256 total bits from the 10 uint32 words with a max of - // 26-bits per word. This could be done with a couple of for loops, - // but this unrolled version is a bit faster. Benchmarks show this is - // about 10 times faster than the variant which uses loops. - b[31] = byte(f.n[0] & eightBitsMask) - b[30] = byte((f.n[0] >> 8) & eightBitsMask) - b[29] = byte((f.n[0] >> 16) & eightBitsMask) - b[28] = byte((f.n[0]>>24)&twoBitsMask | (f.n[1]&sixBitsMask)<<2) - b[27] = byte((f.n[1] >> 6) & eightBitsMask) - b[26] = byte((f.n[1] >> 14) & eightBitsMask) - b[25] = byte((f.n[1]>>22)&fourBitsMask | (f.n[2]&fourBitsMask)<<4) - b[24] = byte((f.n[2] >> 4) & eightBitsMask) - b[23] = byte((f.n[2] >> 12) & eightBitsMask) - b[22] = byte((f.n[2]>>20)&sixBitsMask | (f.n[3]&twoBitsMask)<<6) - b[21] = byte((f.n[3] >> 2) & eightBitsMask) - b[20] = byte((f.n[3] >> 10) & eightBitsMask) - b[19] = byte((f.n[3] >> 18) & eightBitsMask) - b[18] = byte(f.n[4] & eightBitsMask) - b[17] = byte((f.n[4] >> 8) & eightBitsMask) - b[16] = byte((f.n[4] >> 16) & eightBitsMask) - b[15] = byte((f.n[4]>>24)&twoBitsMask | (f.n[5]&sixBitsMask)<<2) - b[14] = byte((f.n[5] >> 6) & eightBitsMask) - b[13] = byte((f.n[5] >> 14) & eightBitsMask) - b[12] = byte((f.n[5]>>22)&fourBitsMask | (f.n[6]&fourBitsMask)<<4) - b[11] = byte((f.n[6] >> 4) & eightBitsMask) - b[10] = byte((f.n[6] >> 12) & eightBitsMask) - b[9] = byte((f.n[6]>>20)&sixBitsMask | (f.n[7]&twoBitsMask)<<6) - b[8] = byte((f.n[7] >> 2) & eightBitsMask) - b[7] = byte((f.n[7] >> 10) & eightBitsMask) - b[6] = byte((f.n[7] >> 18) & eightBitsMask) - b[5] = byte(f.n[8] & eightBitsMask) - b[4] = byte((f.n[8] >> 8) & eightBitsMask) - b[3] = byte((f.n[8] >> 16) & eightBitsMask) - b[2] = byte((f.n[8]>>24)&twoBitsMask | (f.n[9]&sixBitsMask)<<2) - b[1] = byte((f.n[9] >> 6) & eightBitsMask) - b[0] = byte((f.n[9] >> 14) & eightBitsMask) -} - -// PutBytes unpacks the field value to a 32-byte big-endian value using the -// passed byte array in constant time. -// -// There is a similar function, PutBytesUnchecked, which unpacks the field value -// into a slice that must have at least 32 bytes available. This version is -// provided since it can be useful to write directly into an array that is type -// checked. -// -// Alternatively, there is also Bytes, which unpacks the field value into a new -// array and returns that which can sometimes be more ergonomic in applications -// that aren't concerned about an additional copy. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) PutBytes(b *[32]byte) { - f.PutBytesUnchecked(b[:]) -} - -// Bytes unpacks the field value to a 32-byte big-endian value in constant time. -// -// See PutBytes and PutBytesUnchecked for variants that allow an array or slice -// to be passed which can be useful to cut down on the number of allocations by -// allowing the caller to reuse a buffer or write directly into part of a larger -// buffer. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) Bytes() *[32]byte { - b := new([32]byte) - f.PutBytesUnchecked(b[:]) - return b -} - -// IsZeroBit returns 1 when the field value is equal to zero or 0 otherwise in -// constant time. -// -// Note that a bool is not used here because it is not possible in Go to convert -// from a bool to numeric value in constant time and many constant-time -// operations require a numeric value. See IsZero for the version that returns -// a bool. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsZeroBit() uint32 { - // The value can only be zero if no bits are set in any of the words. - // This is a constant time implementation. - bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] | - f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9] - - return constantTimeEq(bits, 0) -} - -// IsZero returns whether or not the field value is equal to zero in constant -// time. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsZero() bool { - // The value can only be zero if no bits are set in any of the words. - // This is a constant time implementation. - bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] | - f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9] - - return bits == 0 -} - -// IsOneBit returns 1 when the field value is equal to one or 0 otherwise in -// constant time. -// -// Note that a bool is not used here because it is not possible in Go to convert -// from a bool to numeric value in constant time and many constant-time -// operations require a numeric value. See IsOne for the version that returns a -// bool. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsOneBit() uint32 { - // The value can only be one if the single lowest significant bit is set in - // the first word and no other bits are set in any of the other words. - // This is a constant time implementation. - bits := (f.n[0] ^ 1) | f.n[1] | f.n[2] | f.n[3] | f.n[4] | f.n[5] | - f.n[6] | f.n[7] | f.n[8] | f.n[9] - - return constantTimeEq(bits, 0) -} - -// IsOne returns whether or not the field value is equal to one in constant -// time. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsOne() bool { - // The value can only be one if the single lowest significant bit is set in - // the first word and no other bits are set in any of the other words. - // This is a constant time implementation. - bits := (f.n[0] ^ 1) | f.n[1] | f.n[2] | f.n[3] | f.n[4] | f.n[5] | - f.n[6] | f.n[7] | f.n[8] | f.n[9] - - return bits == 0 -} - -// IsOddBit returns 1 when the field value is an odd number or 0 otherwise in -// constant time. -// -// Note that a bool is not used here because it is not possible in Go to convert -// from a bool to numeric value in constant time and many constant-time -// operations require a numeric value. See IsOdd for the version that returns a -// bool. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsOddBit() uint32 { - // Only odd numbers have the bottom bit set. - return f.n[0] & 1 -} - -// IsOdd returns whether or not the field value is an odd number in constant -// time. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsOdd() bool { - // Only odd numbers have the bottom bit set. - return f.n[0]&1 == 1 -} - -// Equals returns whether or not the two field values are the same in constant -// time. -// -// Preconditions: -// - Both field values being compared MUST be normalized -func (f *FieldVal) Equals(val *FieldVal) bool { - // Xor only sets bits when they are different, so the two field values - // can only be the same if no bits are set after xoring each word. - // This is a constant time implementation. - bits := (f.n[0] ^ val.n[0]) | (f.n[1] ^ val.n[1]) | (f.n[2] ^ val.n[2]) | - (f.n[3] ^ val.n[3]) | (f.n[4] ^ val.n[4]) | (f.n[5] ^ val.n[5]) | - (f.n[6] ^ val.n[6]) | (f.n[7] ^ val.n[7]) | (f.n[8] ^ val.n[8]) | - (f.n[9] ^ val.n[9]) - - return bits == 0 -} - -// NegateVal negates the passed value and stores the result in f in constant -// time. The caller must provide the magnitude of the passed value for a -// correct result. -// -// The field value is returned to support chaining. This enables syntax like: -// f.NegateVal(f2).AddInt(1) so that f = -f2 + 1. -// -// Preconditions: -// - The max magnitude MUST be 63 -// Output Normalized: No -// Output Max Magnitude: Input magnitude + 1 -func (f *FieldVal) NegateVal(val *FieldVal, magnitude uint32) *FieldVal { - // Negation in the field is just the prime minus the value. However, - // in order to allow negation against a field value without having to - // normalize/reduce it first, multiply by the magnitude (that is how - // "far" away it is from the normalized value) to adjust. Also, since - // negating a value pushes it one more order of magnitude away from the - // normalized range, add 1 to compensate. - // - // For some intuition here, imagine you're performing mod 12 arithmetic - // (picture a clock) and you are negating the number 7. So you start at - // 12 (which is of course 0 under mod 12) and count backwards (left on - // the clock) 7 times to arrive at 5. Notice this is just 12-7 = 5. - // Now, assume you're starting with 19, which is a number that is - // already larger than the modulus and congruent to 7 (mod 12). When a - // value is already in the desired range, its magnitude is 1. Since 19 - // is an additional "step", its magnitude (mod 12) is 2. Since any - // multiple of the modulus is congruent to zero (mod m), the answer can - // be shortcut by simply multiplying the magnitude by the modulus and - // subtracting. Keeping with the example, this would be (2*12)-19 = 5. - f.n[0] = (magnitude+1)*fieldPrimeWordZero - val.n[0] - f.n[1] = (magnitude+1)*fieldPrimeWordOne - val.n[1] - f.n[2] = (magnitude+1)*fieldBaseMask - val.n[2] - f.n[3] = (magnitude+1)*fieldBaseMask - val.n[3] - f.n[4] = (magnitude+1)*fieldBaseMask - val.n[4] - f.n[5] = (magnitude+1)*fieldBaseMask - val.n[5] - f.n[6] = (magnitude+1)*fieldBaseMask - val.n[6] - f.n[7] = (magnitude+1)*fieldBaseMask - val.n[7] - f.n[8] = (magnitude+1)*fieldBaseMask - val.n[8] - f.n[9] = (magnitude+1)*fieldMSBMask - val.n[9] - - return f -} - -// Negate negates the field value in constant time. The existing field value is -// modified. The caller must provide the magnitude of the field value for a -// correct result. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Negate().AddInt(1) so that f = -f + 1. -// -// Preconditions: -// - The max magnitude MUST be 63 -// Output Normalized: No -// Output Max Magnitude: Input magnitude + 1 -func (f *FieldVal) Negate(magnitude uint32) *FieldVal { - return f.NegateVal(f, magnitude) -} - -// AddInt adds the passed integer to the existing field value and stores the -// result in f in constant time. This is a convenience function since it is -// fairly common to perform some arithmetic with small native integers. -// -// The field value is returned to support chaining. This enables syntax like: -// f.AddInt(1).Add(f2) so that f = f + 1 + f2. -// -// Preconditions: -// - The field value MUST have a max magnitude of 63 -// Output Normalized: No -// Output Max Magnitude: Existing field magnitude + 1 -func (f *FieldVal) AddInt(ui uint16) *FieldVal { - // Since the field representation intentionally provides overflow bits, - // it's ok to use carryless addition as the carry bit is safely part of - // the word and will be normalized out. - f.n[0] += uint32(ui) - - return f -} - -// Add adds the passed value to the existing field value and stores the result -// in f in constant time. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Add(f2).AddInt(1) so that f = f + f2 + 1. -// -// Preconditions: -// - The sum of the magnitudes of the two field values MUST be a max of 64 -// Output Normalized: No -// Output Max Magnitude: Sum of the magnitude of the two individual field values -func (f *FieldVal) Add(val *FieldVal) *FieldVal { - // Since the field representation intentionally provides overflow bits, - // it's ok to use carryless addition as the carry bit is safely part of - // each word and will be normalized out. This could obviously be done - // in a loop, but the unrolled version is faster. - f.n[0] += val.n[0] - f.n[1] += val.n[1] - f.n[2] += val.n[2] - f.n[3] += val.n[3] - f.n[4] += val.n[4] - f.n[5] += val.n[5] - f.n[6] += val.n[6] - f.n[7] += val.n[7] - f.n[8] += val.n[8] - f.n[9] += val.n[9] - - return f -} - -// Add2 adds the passed two field values together and stores the result in f in -// constant time. -// -// The field value is returned to support chaining. This enables syntax like: -// f3.Add2(f, f2).AddInt(1) so that f3 = f + f2 + 1. -// -// Preconditions: -// - The sum of the magnitudes of the two field values MUST be a max of 64 -// Output Normalized: No -// Output Max Magnitude: Sum of the magnitude of the two field values -func (f *FieldVal) Add2(val *FieldVal, val2 *FieldVal) *FieldVal { - // Since the field representation intentionally provides overflow bits, - // it's ok to use carryless addition as the carry bit is safely part of - // each word and will be normalized out. This could obviously be done - // in a loop, but the unrolled version is faster. - f.n[0] = val.n[0] + val2.n[0] - f.n[1] = val.n[1] + val2.n[1] - f.n[2] = val.n[2] + val2.n[2] - f.n[3] = val.n[3] + val2.n[3] - f.n[4] = val.n[4] + val2.n[4] - f.n[5] = val.n[5] + val2.n[5] - f.n[6] = val.n[6] + val2.n[6] - f.n[7] = val.n[7] + val2.n[7] - f.n[8] = val.n[8] + val2.n[8] - f.n[9] = val.n[9] + val2.n[9] - - return f -} - -// MulInt multiplies the field value by the passed int and stores the result in -// f in constant time. Note that this function can overflow if multiplying the -// value by any of the individual words exceeds a max uint32. Therefore it is -// important that the caller ensures no overflows will occur before using this -// function. -// -// The field value is returned to support chaining. This enables syntax like: -// f.MulInt(2).Add(f2) so that f = 2 * f + f2. -// -// Preconditions: -// - The field value magnitude multiplied by given val MUST be a max of 64 -// Output Normalized: No -// Output Max Magnitude: Existing field magnitude times the provided integer val -func (f *FieldVal) MulInt(val uint8) *FieldVal { - // Since each word of the field representation can hold up to - // 32 - fieldBase extra bits which will be normalized out, it's safe - // to multiply each word without using a larger type or carry - // propagation so long as the values won't overflow a uint32. This - // could obviously be done in a loop, but the unrolled version is - // faster. - ui := uint32(val) - f.n[0] *= ui - f.n[1] *= ui - f.n[2] *= ui - f.n[3] *= ui - f.n[4] *= ui - f.n[5] *= ui - f.n[6] *= ui - f.n[7] *= ui - f.n[8] *= ui - f.n[9] *= ui - - return f -} - -// Mul multiplies the passed value to the existing field value and stores the -// result in f in constant time. Note that this function can overflow if -// multiplying any of the individual words exceeds a max uint32. In practice, -// this means the magnitude of either value involved in the multiplication must -// be a max of 8. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Mul(f2).AddInt(1) so that f = (f * f2) + 1. -// -// Preconditions: -// - Both field values MUST have a max magnitude of 8 -// Output Normalized: No -// Output Max Magnitude: 1 -func (f *FieldVal) Mul(val *FieldVal) *FieldVal { - return f.Mul2(f, val) -} - -// Mul2 multiplies the passed two field values together and stores the result -// result in f in constant time. Note that this function can overflow if -// multiplying any of the individual words exceeds a max uint32. In practice, -// this means the magnitude of either value involved in the multiplication must -// be a max of 8. -// -// The field value is returned to support chaining. This enables syntax like: -// f3.Mul2(f, f2).AddInt(1) so that f3 = (f * f2) + 1. -// -// Preconditions: -// - Both input field values MUST have a max magnitude of 8 -// Output Normalized: No -// Output Max Magnitude: 1 -func (f *FieldVal) Mul2(val *FieldVal, val2 *FieldVal) *FieldVal { - // This could be done with a couple of for loops and an array to store - // the intermediate terms, but this unrolled version is significantly - // faster. - - // Terms for 2^(fieldBase*0). - m := uint64(val.n[0]) * uint64(val2.n[0]) - t0 := m & fieldBaseMask - - // Terms for 2^(fieldBase*1). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[1]) + - uint64(val.n[1])*uint64(val2.n[0]) - t1 := m & fieldBaseMask - - // Terms for 2^(fieldBase*2). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[2]) + - uint64(val.n[1])*uint64(val2.n[1]) + - uint64(val.n[2])*uint64(val2.n[0]) - t2 := m & fieldBaseMask - - // Terms for 2^(fieldBase*3). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[3]) + - uint64(val.n[1])*uint64(val2.n[2]) + - uint64(val.n[2])*uint64(val2.n[1]) + - uint64(val.n[3])*uint64(val2.n[0]) - t3 := m & fieldBaseMask - - // Terms for 2^(fieldBase*4). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[4]) + - uint64(val.n[1])*uint64(val2.n[3]) + - uint64(val.n[2])*uint64(val2.n[2]) + - uint64(val.n[3])*uint64(val2.n[1]) + - uint64(val.n[4])*uint64(val2.n[0]) - t4 := m & fieldBaseMask - - // Terms for 2^(fieldBase*5). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[5]) + - uint64(val.n[1])*uint64(val2.n[4]) + - uint64(val.n[2])*uint64(val2.n[3]) + - uint64(val.n[3])*uint64(val2.n[2]) + - uint64(val.n[4])*uint64(val2.n[1]) + - uint64(val.n[5])*uint64(val2.n[0]) - t5 := m & fieldBaseMask - - // Terms for 2^(fieldBase*6). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[6]) + - uint64(val.n[1])*uint64(val2.n[5]) + - uint64(val.n[2])*uint64(val2.n[4]) + - uint64(val.n[3])*uint64(val2.n[3]) + - uint64(val.n[4])*uint64(val2.n[2]) + - uint64(val.n[5])*uint64(val2.n[1]) + - uint64(val.n[6])*uint64(val2.n[0]) - t6 := m & fieldBaseMask - - // Terms for 2^(fieldBase*7). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[7]) + - uint64(val.n[1])*uint64(val2.n[6]) + - uint64(val.n[2])*uint64(val2.n[5]) + - uint64(val.n[3])*uint64(val2.n[4]) + - uint64(val.n[4])*uint64(val2.n[3]) + - uint64(val.n[5])*uint64(val2.n[2]) + - uint64(val.n[6])*uint64(val2.n[1]) + - uint64(val.n[7])*uint64(val2.n[0]) - t7 := m & fieldBaseMask - - // Terms for 2^(fieldBase*8). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[8]) + - uint64(val.n[1])*uint64(val2.n[7]) + - uint64(val.n[2])*uint64(val2.n[6]) + - uint64(val.n[3])*uint64(val2.n[5]) + - uint64(val.n[4])*uint64(val2.n[4]) + - uint64(val.n[5])*uint64(val2.n[3]) + - uint64(val.n[6])*uint64(val2.n[2]) + - uint64(val.n[7])*uint64(val2.n[1]) + - uint64(val.n[8])*uint64(val2.n[0]) - t8 := m & fieldBaseMask - - // Terms for 2^(fieldBase*9). - m = (m >> fieldBase) + - uint64(val.n[0])*uint64(val2.n[9]) + - uint64(val.n[1])*uint64(val2.n[8]) + - uint64(val.n[2])*uint64(val2.n[7]) + - uint64(val.n[3])*uint64(val2.n[6]) + - uint64(val.n[4])*uint64(val2.n[5]) + - uint64(val.n[5])*uint64(val2.n[4]) + - uint64(val.n[6])*uint64(val2.n[3]) + - uint64(val.n[7])*uint64(val2.n[2]) + - uint64(val.n[8])*uint64(val2.n[1]) + - uint64(val.n[9])*uint64(val2.n[0]) - t9 := m & fieldBaseMask - - // Terms for 2^(fieldBase*10). - m = (m >> fieldBase) + - uint64(val.n[1])*uint64(val2.n[9]) + - uint64(val.n[2])*uint64(val2.n[8]) + - uint64(val.n[3])*uint64(val2.n[7]) + - uint64(val.n[4])*uint64(val2.n[6]) + - uint64(val.n[5])*uint64(val2.n[5]) + - uint64(val.n[6])*uint64(val2.n[4]) + - uint64(val.n[7])*uint64(val2.n[3]) + - uint64(val.n[8])*uint64(val2.n[2]) + - uint64(val.n[9])*uint64(val2.n[1]) - t10 := m & fieldBaseMask - - // Terms for 2^(fieldBase*11). - m = (m >> fieldBase) + - uint64(val.n[2])*uint64(val2.n[9]) + - uint64(val.n[3])*uint64(val2.n[8]) + - uint64(val.n[4])*uint64(val2.n[7]) + - uint64(val.n[5])*uint64(val2.n[6]) + - uint64(val.n[6])*uint64(val2.n[5]) + - uint64(val.n[7])*uint64(val2.n[4]) + - uint64(val.n[8])*uint64(val2.n[3]) + - uint64(val.n[9])*uint64(val2.n[2]) - t11 := m & fieldBaseMask - - // Terms for 2^(fieldBase*12). - m = (m >> fieldBase) + - uint64(val.n[3])*uint64(val2.n[9]) + - uint64(val.n[4])*uint64(val2.n[8]) + - uint64(val.n[5])*uint64(val2.n[7]) + - uint64(val.n[6])*uint64(val2.n[6]) + - uint64(val.n[7])*uint64(val2.n[5]) + - uint64(val.n[8])*uint64(val2.n[4]) + - uint64(val.n[9])*uint64(val2.n[3]) - t12 := m & fieldBaseMask - - // Terms for 2^(fieldBase*13). - m = (m >> fieldBase) + - uint64(val.n[4])*uint64(val2.n[9]) + - uint64(val.n[5])*uint64(val2.n[8]) + - uint64(val.n[6])*uint64(val2.n[7]) + - uint64(val.n[7])*uint64(val2.n[6]) + - uint64(val.n[8])*uint64(val2.n[5]) + - uint64(val.n[9])*uint64(val2.n[4]) - t13 := m & fieldBaseMask - - // Terms for 2^(fieldBase*14). - m = (m >> fieldBase) + - uint64(val.n[5])*uint64(val2.n[9]) + - uint64(val.n[6])*uint64(val2.n[8]) + - uint64(val.n[7])*uint64(val2.n[7]) + - uint64(val.n[8])*uint64(val2.n[6]) + - uint64(val.n[9])*uint64(val2.n[5]) - t14 := m & fieldBaseMask - - // Terms for 2^(fieldBase*15). - m = (m >> fieldBase) + - uint64(val.n[6])*uint64(val2.n[9]) + - uint64(val.n[7])*uint64(val2.n[8]) + - uint64(val.n[8])*uint64(val2.n[7]) + - uint64(val.n[9])*uint64(val2.n[6]) - t15 := m & fieldBaseMask - - // Terms for 2^(fieldBase*16). - m = (m >> fieldBase) + - uint64(val.n[7])*uint64(val2.n[9]) + - uint64(val.n[8])*uint64(val2.n[8]) + - uint64(val.n[9])*uint64(val2.n[7]) - t16 := m & fieldBaseMask - - // Terms for 2^(fieldBase*17). - m = (m >> fieldBase) + - uint64(val.n[8])*uint64(val2.n[9]) + - uint64(val.n[9])*uint64(val2.n[8]) - t17 := m & fieldBaseMask - - // Terms for 2^(fieldBase*18). - m = (m >> fieldBase) + uint64(val.n[9])*uint64(val2.n[9]) - t18 := m & fieldBaseMask - - // What's left is for 2^(fieldBase*19). - t19 := m >> fieldBase - - // At this point, all of the terms are grouped into their respective - // base. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, highly efficient - // reduction can be achieved per the provided algorithm. - // - // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits - // this criteria. - // - // 4294968273 in field representation (base 2^26) is: - // n[0] = 977 - // n[1] = 64 - // That is to say (2^26 * 64) + 977 = 4294968273 - // - // Since each word is in base 26, the upper terms (t10 and up) start - // at 260 bits (versus the final desired range of 256 bits), so the - // field representation of 'c' from above needs to be adjusted for the - // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 = - // 68719492368. Thus, the adjusted field representation of 'c' is: - // n[0] = 977 * 16 = 15632 - // n[1] = 64 * 16 = 1024 - // That is to say (2^26 * 1024) + 15632 = 68719492368 - // - // To reduce the final term, t19, the entire 'c' value is needed instead - // of only n[0] because there are no more terms left to handle n[1]. - // This means there might be some magnitude left in the upper bits that - // is handled below. - m = t0 + t10*15632 - t0 = m & fieldBaseMask - m = (m >> fieldBase) + t1 + t10*1024 + t11*15632 - t1 = m & fieldBaseMask - m = (m >> fieldBase) + t2 + t11*1024 + t12*15632 - t2 = m & fieldBaseMask - m = (m >> fieldBase) + t3 + t12*1024 + t13*15632 - t3 = m & fieldBaseMask - m = (m >> fieldBase) + t4 + t13*1024 + t14*15632 - t4 = m & fieldBaseMask - m = (m >> fieldBase) + t5 + t14*1024 + t15*15632 - t5 = m & fieldBaseMask - m = (m >> fieldBase) + t6 + t15*1024 + t16*15632 - t6 = m & fieldBaseMask - m = (m >> fieldBase) + t7 + t16*1024 + t17*15632 - t7 = m & fieldBaseMask - m = (m >> fieldBase) + t8 + t17*1024 + t18*15632 - t8 = m & fieldBaseMask - m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368 - t9 = m & fieldMSBMask - m = m >> fieldMSBBits - - // At this point, if the magnitude is greater than 0, the overall value - // is greater than the max possible 256-bit value. In particular, it is - // "how many times larger" than the max value it is. - // - // The algorithm presented in [HAC] section 14.3.4 repeats until the - // quotient is zero. However, due to the above, we already know at - // least how many times we would need to repeat as it's the value - // currently in m. Thus we can simply multiply the magnitude by the - // field representation of the prime and do a single iteration. Notice - // that nothing will be changed when the magnitude is zero, so we could - // skip this in that case, however always running regardless allows it - // to run in constant time. The final result will be in the range - // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a - // magnitude of 1, but it is denormalized. - d := t0 + m*977 - f.n[0] = uint32(d & fieldBaseMask) - d = (d >> fieldBase) + t1 + m*64 - f.n[1] = uint32(d & fieldBaseMask) - f.n[2] = uint32((d >> fieldBase) + t2) - f.n[3] = uint32(t3) - f.n[4] = uint32(t4) - f.n[5] = uint32(t5) - f.n[6] = uint32(t6) - f.n[7] = uint32(t7) - f.n[8] = uint32(t8) - f.n[9] = uint32(t9) - - return f -} - -// SquareRootVal either calculates the square root of the passed value when it -// exists or the square root of the negation of the value when it does not exist -// and stores the result in f in constant time. The return flag is true when -// the calculated square root is for the passed value itself and false when it -// is for its negation. -// -// Note that this function can overflow if multiplying any of the individual -// words exceeds a max uint32. In practice, this means the magnitude of the -// field must be a max of 8 to prevent overflow. The magnitude of the result -// will be 1. -// -// Preconditions: -// - The input field value MUST have a max magnitude of 8 -// Output Normalized: No -// Output Max Magnitude: 1 -func (f *FieldVal) SquareRootVal(val *FieldVal) bool { - // This uses the Tonelli-Shanks method for calculating the square root of - // the value when it exists. The key principles of the method follow. - // - // Fermat's little theorem states that for a nonzero number 'a' and prime - // 'p', a^(p-1) ≡ 1 (mod p). - // - // Further, Euler's criterion states that an integer 'a' has a square root - // (aka is a quadratic residue) modulo a prime if a^((p-1)/2) ≡ 1 (mod p) - // and, conversely, when it does NOT have a square root (aka 'a' is a - // non-residue) a^((p-1)/2) ≡ -1 (mod p). - // - // This can be seen by considering that Fermat's little theorem can be - // written as (a^((p-1)/2) - 1)(a^((p-1)/2) + 1) ≡ 0 (mod p). Therefore, - // one of the two factors must be 0. Then, when a ≡ x^2 (aka 'a' is a - // quadratic residue), (x^2)^((p-1)/2) ≡ x^(p-1) ≡ 1 (mod p) which implies - // the first factor must be zero. Finally, per Lagrange's theorem, the - // non-residues are the only remaining possible solutions and thus must make - // the second factor zero to satisfy Fermat's little theorem implying that - // a^((p-1)/2) ≡ -1 (mod p) for that case. - // - // The Tonelli-Shanks method uses these facts along with factoring out - // powers of two to solve a congruence that results in either the solution - // when the square root exists or the square root of the negation of the - // value when it does not. In the case of primes that are ≡ 3 (mod 4), the - // possible solutions are r = ±a^((p+1)/4) (mod p). Therefore, either r^2 ≡ - // a (mod p) is true in which case ±r are the two solutions, or r^2 ≡ -a - // (mod p) in which case 'a' is a non-residue and there are no solutions. - // - // The secp256k1 prime is ≡ 3 (mod 4), so this result applies. - // - // In other words, calculate a^((p+1)/4) and then square it and check it - // against the original value to determine if it is actually the square - // root. - // - // In order to efficiently compute a^((p+1)/4), (p+1)/4 needs to be split - // into a sequence of squares and multiplications that minimizes the number - // of multiplications needed (since they are more costly than squarings). - // - // The secp256k1 prime + 1 / 4 is 2^254 - 2^30 - 244. In binary, that is: - // - // 00111111 11111111 11111111 11111111 - // 11111111 11111111 11111111 11111111 - // 11111111 11111111 11111111 11111111 - // 11111111 11111111 11111111 11111111 - // 11111111 11111111 11111111 11111111 - // 11111111 11111111 11111111 11111111 - // 11111111 11111111 11111111 11111111 - // 10111111 11111111 11111111 00001100 - // - // Notice that can be broken up into three windows of consecutive 1s (in - // order of least to most signifcant) as: - // - // 6-bit window with two bits set (bits 4, 5, 6, 7 unset) - // 23-bit window with 22 bits set (bit 30 unset) - // 223-bit window with all 223 bits set - // - // Thus, the groups of 1 bits in each window forms the set: - // S = {2, 22, 223}. - // - // The strategy is to calculate a^(2^n - 1) for each grouping via an - // addition chain with a sliding window. - // - // The addition chain used is (credits to Peter Dettman): - // (0,0),(1,0),(2,2),(3,2),(4,1),(5,5),(6,6),(7,7),(8,8),(9,7),(10,2) - // => 2^1 2^[2] 2^3 2^6 2^9 2^11 2^[22] 2^44 2^88 2^176 2^220 2^[223] - // - // This has a cost of 254 field squarings and 13 field multiplications. - var a, a2, a3, a6, a9, a11, a22, a44, a88, a176, a220, a223 FieldVal - a.Set(val) - a2.SquareVal(&a).Mul(&a) // a2 = a^(2^2 - 1) - a3.SquareVal(&a2).Mul(&a) // a3 = a^(2^3 - 1) - a6.SquareVal(&a3).Square().Square() // a6 = a^(2^6 - 2^3) - a6.Mul(&a3) // a6 = a^(2^6 - 1) - a9.SquareVal(&a6).Square().Square() // a9 = a^(2^9 - 2^3) - a9.Mul(&a3) // a9 = a^(2^9 - 1) - a11.SquareVal(&a9).Square() // a11 = a^(2^11 - 2^2) - a11.Mul(&a2) // a11 = a^(2^11 - 1) - a22.SquareVal(&a11).Square().Square().Square().Square() // a22 = a^(2^16 - 2^5) - a22.Square().Square().Square().Square().Square() // a22 = a^(2^21 - 2^10) - a22.Square() // a22 = a^(2^22 - 2^11) - a22.Mul(&a11) // a22 = a^(2^22 - 1) - a44.SquareVal(&a22).Square().Square().Square().Square() // a44 = a^(2^27 - 2^5) - a44.Square().Square().Square().Square().Square() // a44 = a^(2^32 - 2^10) - a44.Square().Square().Square().Square().Square() // a44 = a^(2^37 - 2^15) - a44.Square().Square().Square().Square().Square() // a44 = a^(2^42 - 2^20) - a44.Square().Square() // a44 = a^(2^44 - 2^22) - a44.Mul(&a22) // a44 = a^(2^44 - 1) - a88.SquareVal(&a44).Square().Square().Square().Square() // a88 = a^(2^49 - 2^5) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^54 - 2^10) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^59 - 2^15) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^64 - 2^20) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^69 - 2^25) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^74 - 2^30) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^79 - 2^35) - a88.Square().Square().Square().Square().Square() // a88 = a^(2^84 - 2^40) - a88.Square().Square().Square().Square() // a88 = a^(2^88 - 2^44) - a88.Mul(&a44) // a88 = a^(2^88 - 1) - a176.SquareVal(&a88).Square().Square().Square().Square() // a176 = a^(2^93 - 2^5) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^98 - 2^10) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^103 - 2^15) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^108 - 2^20) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^113 - 2^25) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^118 - 2^30) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^123 - 2^35) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^128 - 2^40) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^133 - 2^45) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^138 - 2^50) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^143 - 2^55) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^148 - 2^60) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^153 - 2^65) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^158 - 2^70) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^163 - 2^75) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^168 - 2^80) - a176.Square().Square().Square().Square().Square() // a176 = a^(2^173 - 2^85) - a176.Square().Square().Square() // a176 = a^(2^176 - 2^88) - a176.Mul(&a88) // a176 = a^(2^176 - 1) - a220.SquareVal(&a176).Square().Square().Square().Square() // a220 = a^(2^181 - 2^5) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^186 - 2^10) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^191 - 2^15) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^196 - 2^20) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^201 - 2^25) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^206 - 2^30) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^211 - 2^35) - a220.Square().Square().Square().Square().Square() // a220 = a^(2^216 - 2^40) - a220.Square().Square().Square().Square() // a220 = a^(2^220 - 2^44) - a220.Mul(&a44) // a220 = a^(2^220 - 1) - a223.SquareVal(&a220).Square().Square() // a223 = a^(2^223 - 2^3) - a223.Mul(&a3) // a223 = a^(2^223 - 1) - - f.SquareVal(&a223).Square().Square().Square().Square() // f = a^(2^228 - 2^5) - f.Square().Square().Square().Square().Square() // f = a^(2^233 - 2^10) - f.Square().Square().Square().Square().Square() // f = a^(2^238 - 2^15) - f.Square().Square().Square().Square().Square() // f = a^(2^243 - 2^20) - f.Square().Square().Square() // f = a^(2^246 - 2^23) - f.Mul(&a22) // f = a^(2^246 - 2^22 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^251 - 2^27 - 2^5) - f.Square() // f = a^(2^252 - 2^28 - 2^6) - f.Mul(&a2) // f = a^(2^252 - 2^28 - 2^6 - 2^1 - 1) - f.Square().Square() // f = a^(2^254 - 2^30 - 2^8 - 2^3 - 2^2) - // // = a^(2^254 - 2^30 - 244) - // // = a^((p+1)/4) - - // Ensure the calculated result is actually the square root by squaring it - // and checking against the original value. - var sqr FieldVal - return sqr.SquareVal(f).Normalize().Equals(val.Normalize()) -} - -// Square squares the field value in constant time. The existing field value is -// modified. Note that this function can overflow if multiplying any of the -// individual words exceeds a max uint32. In practice, this means the magnitude -// of the field must be a max of 8 to prevent overflow. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Square().Mul(f2) so that f = f^2 * f2. -// -// Preconditions: -// - The field value MUST have a max magnitude of 8 -// Output Normalized: No -// Output Max Magnitude: 1 -func (f *FieldVal) Square() *FieldVal { - return f.SquareVal(f) -} - -// SquareVal squares the passed value and stores the result in f in constant -// time. Note that this function can overflow if multiplying any of the -// individual words exceeds a max uint32. In practice, this means the magnitude -// of the field being squared must be a max of 8 to prevent overflow. -// -// The field value is returned to support chaining. This enables syntax like: -// f3.SquareVal(f).Mul(f) so that f3 = f^2 * f = f^3. -// -// Preconditions: -// - The input field value MUST have a max magnitude of 8 -// Output Normalized: No -// Output Max Magnitude: 1 -func (f *FieldVal) SquareVal(val *FieldVal) *FieldVal { - // This could be done with a couple of for loops and an array to store - // the intermediate terms, but this unrolled version is significantly - // faster. - - // Terms for 2^(fieldBase*0). - m := uint64(val.n[0]) * uint64(val.n[0]) - t0 := m & fieldBaseMask - - // Terms for 2^(fieldBase*1). - m = (m >> fieldBase) + 2*uint64(val.n[0])*uint64(val.n[1]) - t1 := m & fieldBaseMask - - // Terms for 2^(fieldBase*2). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[2]) + - uint64(val.n[1])*uint64(val.n[1]) - t2 := m & fieldBaseMask - - // Terms for 2^(fieldBase*3). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[3]) + - 2*uint64(val.n[1])*uint64(val.n[2]) - t3 := m & fieldBaseMask - - // Terms for 2^(fieldBase*4). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[4]) + - 2*uint64(val.n[1])*uint64(val.n[3]) + - uint64(val.n[2])*uint64(val.n[2]) - t4 := m & fieldBaseMask - - // Terms for 2^(fieldBase*5). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[5]) + - 2*uint64(val.n[1])*uint64(val.n[4]) + - 2*uint64(val.n[2])*uint64(val.n[3]) - t5 := m & fieldBaseMask - - // Terms for 2^(fieldBase*6). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[6]) + - 2*uint64(val.n[1])*uint64(val.n[5]) + - 2*uint64(val.n[2])*uint64(val.n[4]) + - uint64(val.n[3])*uint64(val.n[3]) - t6 := m & fieldBaseMask - - // Terms for 2^(fieldBase*7). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[7]) + - 2*uint64(val.n[1])*uint64(val.n[6]) + - 2*uint64(val.n[2])*uint64(val.n[5]) + - 2*uint64(val.n[3])*uint64(val.n[4]) - t7 := m & fieldBaseMask - - // Terms for 2^(fieldBase*8). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[8]) + - 2*uint64(val.n[1])*uint64(val.n[7]) + - 2*uint64(val.n[2])*uint64(val.n[6]) + - 2*uint64(val.n[3])*uint64(val.n[5]) + - uint64(val.n[4])*uint64(val.n[4]) - t8 := m & fieldBaseMask - - // Terms for 2^(fieldBase*9). - m = (m >> fieldBase) + - 2*uint64(val.n[0])*uint64(val.n[9]) + - 2*uint64(val.n[1])*uint64(val.n[8]) + - 2*uint64(val.n[2])*uint64(val.n[7]) + - 2*uint64(val.n[3])*uint64(val.n[6]) + - 2*uint64(val.n[4])*uint64(val.n[5]) - t9 := m & fieldBaseMask - - // Terms for 2^(fieldBase*10). - m = (m >> fieldBase) + - 2*uint64(val.n[1])*uint64(val.n[9]) + - 2*uint64(val.n[2])*uint64(val.n[8]) + - 2*uint64(val.n[3])*uint64(val.n[7]) + - 2*uint64(val.n[4])*uint64(val.n[6]) + - uint64(val.n[5])*uint64(val.n[5]) - t10 := m & fieldBaseMask - - // Terms for 2^(fieldBase*11). - m = (m >> fieldBase) + - 2*uint64(val.n[2])*uint64(val.n[9]) + - 2*uint64(val.n[3])*uint64(val.n[8]) + - 2*uint64(val.n[4])*uint64(val.n[7]) + - 2*uint64(val.n[5])*uint64(val.n[6]) - t11 := m & fieldBaseMask - - // Terms for 2^(fieldBase*12). - m = (m >> fieldBase) + - 2*uint64(val.n[3])*uint64(val.n[9]) + - 2*uint64(val.n[4])*uint64(val.n[8]) + - 2*uint64(val.n[5])*uint64(val.n[7]) + - uint64(val.n[6])*uint64(val.n[6]) - t12 := m & fieldBaseMask - - // Terms for 2^(fieldBase*13). - m = (m >> fieldBase) + - 2*uint64(val.n[4])*uint64(val.n[9]) + - 2*uint64(val.n[5])*uint64(val.n[8]) + - 2*uint64(val.n[6])*uint64(val.n[7]) - t13 := m & fieldBaseMask - - // Terms for 2^(fieldBase*14). - m = (m >> fieldBase) + - 2*uint64(val.n[5])*uint64(val.n[9]) + - 2*uint64(val.n[6])*uint64(val.n[8]) + - uint64(val.n[7])*uint64(val.n[7]) - t14 := m & fieldBaseMask - - // Terms for 2^(fieldBase*15). - m = (m >> fieldBase) + - 2*uint64(val.n[6])*uint64(val.n[9]) + - 2*uint64(val.n[7])*uint64(val.n[8]) - t15 := m & fieldBaseMask - - // Terms for 2^(fieldBase*16). - m = (m >> fieldBase) + - 2*uint64(val.n[7])*uint64(val.n[9]) + - uint64(val.n[8])*uint64(val.n[8]) - t16 := m & fieldBaseMask - - // Terms for 2^(fieldBase*17). - m = (m >> fieldBase) + 2*uint64(val.n[8])*uint64(val.n[9]) - t17 := m & fieldBaseMask - - // Terms for 2^(fieldBase*18). - m = (m >> fieldBase) + uint64(val.n[9])*uint64(val.n[9]) - t18 := m & fieldBaseMask - - // What's left is for 2^(fieldBase*19). - t19 := m >> fieldBase - - // At this point, all of the terms are grouped into their respective - // base. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, highly efficient - // reduction can be achieved per the provided algorithm. - // - // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits - // this criteria. - // - // 4294968273 in field representation (base 2^26) is: - // n[0] = 977 - // n[1] = 64 - // That is to say (2^26 * 64) + 977 = 4294968273 - // - // Since each word is in base 26, the upper terms (t10 and up) start - // at 260 bits (versus the final desired range of 256 bits), so the - // field representation of 'c' from above needs to be adjusted for the - // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 = - // 68719492368. Thus, the adjusted field representation of 'c' is: - // n[0] = 977 * 16 = 15632 - // n[1] = 64 * 16 = 1024 - // That is to say (2^26 * 1024) + 15632 = 68719492368 - // - // To reduce the final term, t19, the entire 'c' value is needed instead - // of only n[0] because there are no more terms left to handle n[1]. - // This means there might be some magnitude left in the upper bits that - // is handled below. - m = t0 + t10*15632 - t0 = m & fieldBaseMask - m = (m >> fieldBase) + t1 + t10*1024 + t11*15632 - t1 = m & fieldBaseMask - m = (m >> fieldBase) + t2 + t11*1024 + t12*15632 - t2 = m & fieldBaseMask - m = (m >> fieldBase) + t3 + t12*1024 + t13*15632 - t3 = m & fieldBaseMask - m = (m >> fieldBase) + t4 + t13*1024 + t14*15632 - t4 = m & fieldBaseMask - m = (m >> fieldBase) + t5 + t14*1024 + t15*15632 - t5 = m & fieldBaseMask - m = (m >> fieldBase) + t6 + t15*1024 + t16*15632 - t6 = m & fieldBaseMask - m = (m >> fieldBase) + t7 + t16*1024 + t17*15632 - t7 = m & fieldBaseMask - m = (m >> fieldBase) + t8 + t17*1024 + t18*15632 - t8 = m & fieldBaseMask - m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368 - t9 = m & fieldMSBMask - m = m >> fieldMSBBits - - // At this point, if the magnitude is greater than 0, the overall value - // is greater than the max possible 256-bit value. In particular, it is - // "how many times larger" than the max value it is. - // - // The algorithm presented in [HAC] section 14.3.4 repeats until the - // quotient is zero. However, due to the above, we already know at - // least how many times we would need to repeat as it's the value - // currently in m. Thus we can simply multiply the magnitude by the - // field representation of the prime and do a single iteration. Notice - // that nothing will be changed when the magnitude is zero, so we could - // skip this in that case, however always running regardless allows it - // to run in constant time. The final result will be in the range - // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a - // magnitude of 1, but it is denormalized. - n := t0 + m*977 - f.n[0] = uint32(n & fieldBaseMask) - n = (n >> fieldBase) + t1 + m*64 - f.n[1] = uint32(n & fieldBaseMask) - f.n[2] = uint32((n >> fieldBase) + t2) - f.n[3] = uint32(t3) - f.n[4] = uint32(t4) - f.n[5] = uint32(t5) - f.n[6] = uint32(t6) - f.n[7] = uint32(t7) - f.n[8] = uint32(t8) - f.n[9] = uint32(t9) - - return f -} - -// Inverse finds the modular multiplicative inverse of the field value in -// constant time. The existing field value is modified. -// -// The field value is returned to support chaining. This enables syntax like: -// f.Inverse().Mul(f2) so that f = f^-1 * f2. -// -// Preconditions: -// - The field value MUST have a max magnitude of 8 -// Output Normalized: No -// Output Max Magnitude: 1 -func (f *FieldVal) Inverse() *FieldVal { - // Fermat's little theorem states that for a nonzero number a and prime - // prime p, a^(p-1) = 1 (mod p). Since the multiplicative inverse is - // a*b = 1 (mod p), it follows that b = a*a^(p-2) = a^(p-1) = 1 (mod p). - // Thus, a^(p-2) is the multiplicative inverse. - // - // In order to efficiently compute a^(p-2), p-2 needs to be split into - // a sequence of squares and multiplications that minimizes the number - // of multiplications needed (since they are more costly than - // squarings). Intermediate results are saved and reused as well. - // - // The secp256k1 prime - 2 is 2^256 - 4294968275. - // - // This has a cost of 258 field squarings and 33 field multiplications. - var a2, a3, a4, a10, a11, a21, a42, a45, a63, a1019, a1023 FieldVal - a2.SquareVal(f) - a3.Mul2(&a2, f) - a4.SquareVal(&a2) - a10.SquareVal(&a4).Mul(&a2) - a11.Mul2(&a10, f) - a21.Mul2(&a10, &a11) - a42.SquareVal(&a21) - a45.Mul2(&a42, &a3) - a63.Mul2(&a42, &a21) - a1019.SquareVal(&a63).Square().Square().Square().Mul(&a11) - a1023.Mul2(&a1019, &a4) - f.Set(&a63) // f = a^(2^6 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^11 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^16 - 1024) - f.Mul(&a1023) // f = a^(2^16 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^21 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^26 - 1024) - f.Mul(&a1023) // f = a^(2^26 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^31 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^36 - 1024) - f.Mul(&a1023) // f = a^(2^36 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^41 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^46 - 1024) - f.Mul(&a1023) // f = a^(2^46 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^51 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^56 - 1024) - f.Mul(&a1023) // f = a^(2^56 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^61 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^66 - 1024) - f.Mul(&a1023) // f = a^(2^66 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^71 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^76 - 1024) - f.Mul(&a1023) // f = a^(2^76 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^81 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^86 - 1024) - f.Mul(&a1023) // f = a^(2^86 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^91 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^96 - 1024) - f.Mul(&a1023) // f = a^(2^96 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^101 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^106 - 1024) - f.Mul(&a1023) // f = a^(2^106 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^111 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^116 - 1024) - f.Mul(&a1023) // f = a^(2^116 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^121 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^126 - 1024) - f.Mul(&a1023) // f = a^(2^126 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^131 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^136 - 1024) - f.Mul(&a1023) // f = a^(2^136 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^141 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^146 - 1024) - f.Mul(&a1023) // f = a^(2^146 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^151 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^156 - 1024) - f.Mul(&a1023) // f = a^(2^156 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^161 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^166 - 1024) - f.Mul(&a1023) // f = a^(2^166 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^171 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^176 - 1024) - f.Mul(&a1023) // f = a^(2^176 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^181 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^186 - 1024) - f.Mul(&a1023) // f = a^(2^186 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^191 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^196 - 1024) - f.Mul(&a1023) // f = a^(2^196 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^201 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^206 - 1024) - f.Mul(&a1023) // f = a^(2^206 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^211 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^216 - 1024) - f.Mul(&a1023) // f = a^(2^216 - 1) - f.Square().Square().Square().Square().Square() // f = a^(2^221 - 32) - f.Square().Square().Square().Square().Square() // f = a^(2^226 - 1024) - f.Mul(&a1019) // f = a^(2^226 - 5) - f.Square().Square().Square().Square().Square() // f = a^(2^231 - 160) - f.Square().Square().Square().Square().Square() // f = a^(2^236 - 5120) - f.Mul(&a1023) // f = a^(2^236 - 4097) - f.Square().Square().Square().Square().Square() // f = a^(2^241 - 131104) - f.Square().Square().Square().Square().Square() // f = a^(2^246 - 4195328) - f.Mul(&a1023) // f = a^(2^246 - 4194305) - f.Square().Square().Square().Square().Square() // f = a^(2^251 - 134217760) - f.Square().Square().Square().Square().Square() // f = a^(2^256 - 4294968320) - return f.Mul(&a45) // f = a^(2^256 - 4294968275) = a^(p-2) -} - -// IsGtOrEqPrimeMinusOrder returns whether or not the field value exceeds the -// group order divided by 2 in constant time. -// -// Preconditions: -// - The field value MUST be normalized -func (f *FieldVal) IsGtOrEqPrimeMinusOrder() bool { - // The secp256k1 prime is equivalent to 2^256 - 4294968273 and the group - // order is 2^256 - 432420386565659656852420866394968145599. Thus, - // the prime minus the group order is: - // 432420386565659656852420866390673177326 - // - // In hex that is: - // 0x00000000 00000000 00000000 00000001 45512319 50b75fc4 402da172 2fc9baee - // - // Converting that to field representation (base 2^26) is: - // - // n[0] = 0x03c9baee - // n[1] = 0x03685c8b - // n[2] = 0x01fc4402 - // n[3] = 0x006542dd - // n[4] = 0x01455123 - // - // This can be verified with the following test code: - // pMinusN := new(big.Int).Sub(curveParams.P, curveParams.N) - // var fv FieldVal - // fv.SetByteSlice(pMinusN.Bytes()) - // t.Logf("%x", fv.n) - // - // Outputs: [3c9baee 3685c8b 1fc4402 6542dd 1455123 0 0 0 0 0] - const ( - pMinusNWordZero = 0x03c9baee - pMinusNWordOne = 0x03685c8b - pMinusNWordTwo = 0x01fc4402 - pMinusNWordThree = 0x006542dd - pMinusNWordFour = 0x01455123 - pMinusNWordFive = 0x00000000 - pMinusNWordSix = 0x00000000 - pMinusNWordSeven = 0x00000000 - pMinusNWordEight = 0x00000000 - pMinusNWordNine = 0x00000000 - ) - - // The intuition here is that the value is greater than field prime minus - // the group order if one of the higher individual words is greater than the - // corresponding word and all higher words in the value are equal. - result := constantTimeGreater(f.n[9], pMinusNWordNine) - highWordsEqual := constantTimeEq(f.n[9], pMinusNWordNine) - result |= highWordsEqual & constantTimeGreater(f.n[8], pMinusNWordEight) - highWordsEqual &= constantTimeEq(f.n[8], pMinusNWordEight) - result |= highWordsEqual & constantTimeGreater(f.n[7], pMinusNWordSeven) - highWordsEqual &= constantTimeEq(f.n[7], pMinusNWordSeven) - result |= highWordsEqual & constantTimeGreater(f.n[6], pMinusNWordSix) - highWordsEqual &= constantTimeEq(f.n[6], pMinusNWordSix) - result |= highWordsEqual & constantTimeGreater(f.n[5], pMinusNWordFive) - highWordsEqual &= constantTimeEq(f.n[5], pMinusNWordFive) - result |= highWordsEqual & constantTimeGreater(f.n[4], pMinusNWordFour) - highWordsEqual &= constantTimeEq(f.n[4], pMinusNWordFour) - result |= highWordsEqual & constantTimeGreater(f.n[3], pMinusNWordThree) - highWordsEqual &= constantTimeEq(f.n[3], pMinusNWordThree) - result |= highWordsEqual & constantTimeGreater(f.n[2], pMinusNWordTwo) - highWordsEqual &= constantTimeEq(f.n[2], pMinusNWordTwo) - result |= highWordsEqual & constantTimeGreater(f.n[1], pMinusNWordOne) - highWordsEqual &= constantTimeEq(f.n[1], pMinusNWordOne) - result |= highWordsEqual & constantTimeGreaterOrEq(f.n[0], pMinusNWordZero) - - return result != 0 -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/genstatics.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/genstatics.go deleted file mode 100644 index fa613de..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/genstatics.go +++ /dev/null @@ -1,196 +0,0 @@ -// Copyright (c) 2014-2015 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -// This file is ignored during the regular build due to the following build tag. -// This build tag is set during go generate. -//go:build gensecp256k1 -// +build gensecp256k1 - -package secp256k1 - -// References: -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) - -import ( - "encoding/binary" - "math/big" -) - -// compressedBytePoints are dummy points used so the code which generates the -// real values can compile. -var compressedBytePoints = "" - -// SerializedBytePoints returns a serialized byte slice which contains all of -// the possible points per 8-bit window. This is used to when generating -// compressedbytepoints.go. -func SerializedBytePoints() []byte { - // Calculate G^(2^i) for i in 0..255. These are used to avoid recomputing - // them for each digit of the 8-bit windows. - doublingPoints := make([]JacobianPoint, curveParams.BitSize) - var q JacobianPoint - bigAffineToJacobian(curveParams.Gx, curveParams.Gy, &q) - for i := 0; i < curveParams.BitSize; i++ { - // Q = 2*Q. - doublingPoints[i] = q - DoubleNonConst(&q, &q) - } - - // Separate the bits into byte-sized windows. - curveByteSize := curveParams.BitSize / 8 - serialized := make([]byte, curveByteSize*256*2*10*4) - offset := 0 - for byteNum := 0; byteNum < curveByteSize; byteNum++ { - // Grab the 8 bits that make up this byte from doubling points. - startingBit := 8 * (curveByteSize - byteNum - 1) - windowPoints := doublingPoints[startingBit : startingBit+8] - - // Compute all points in this window, convert them to affine, and - // serialize them. - for i := 0; i < 256; i++ { - var point JacobianPoint - for bit := 0; bit < 8; bit++ { - if i>>uint(bit)&1 == 1 { - AddNonConst(&point, &windowPoints[bit], &point) - } - } - point.ToAffine() - - for i := 0; i < len(point.X.n); i++ { - binary.LittleEndian.PutUint32(serialized[offset:], point.X.n[i]) - offset += 4 - } - for i := 0; i < len(point.Y.n); i++ { - binary.LittleEndian.PutUint32(serialized[offset:], point.Y.n[i]) - offset += 4 - } - } - } - - return serialized -} - -// sqrt returns the square root of the provided big integer using Newton's -// method. It's only compiled and used during generation of pre-computed -// values, so speed is not a huge concern. -func sqrt(n *big.Int) *big.Int { - // Initial guess = 2^(log_2(n)/2) - guess := big.NewInt(2) - guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil) - - // Now refine using Newton's method. - big2 := big.NewInt(2) - prevGuess := big.NewInt(0) - for { - prevGuess.Set(guess) - guess.Add(guess, new(big.Int).Div(n, guess)) - guess.Div(guess, big2) - if guess.Cmp(prevGuess) == 0 { - break - } - } - return guess -} - -// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to -// generate the linearly independent vectors needed to generate a balanced -// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and -// returns them. Since the values will always be the same given the fact that N -// and λ are fixed, the final results can be accelerated by storing the -// precomputed values. -func EndomorphismVectors() (a1, b1, a2, b2 *big.Int) { - bigMinus1 := big.NewInt(-1) - - // This section uses an extended Euclidean algorithm to generate a - // sequence of equations: - // s[i] * N + t[i] * λ = r[i] - - nSqrt := sqrt(curveParams.N) - u, v := new(big.Int).Set(curveParams.N), new(big.Int).Set(endomorphismLambda) - x1, y1 := big.NewInt(1), big.NewInt(0) - x2, y2 := big.NewInt(0), big.NewInt(1) - q, r := new(big.Int), new(big.Int) - qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int) - s, t := new(big.Int), new(big.Int) - ri, ti := new(big.Int), new(big.Int) - a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int) - found, oneMore := false, false - for u.Sign() != 0 { - // q = v/u - q.Div(v, u) - - // r = v - q*u - qu.Mul(q, u) - r.Sub(v, qu) - - // s = x2 - q*x1 - qx1.Mul(q, x1) - s.Sub(x2, qx1) - - // t = y2 - q*y1 - qy1.Mul(q, y1) - t.Sub(y2, qy1) - - // v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t - v.Set(u) - u.Set(r) - x2.Set(x1) - x1.Set(s) - y2.Set(y1) - y1.Set(t) - - // As soon as the remainder is less than the sqrt of n, the - // values of a1 and b1 are known. - if !found && r.Cmp(nSqrt) < 0 { - // When this condition executes ri and ti represent the - // r[i] and t[i] values such that i is the greatest - // index for which r >= sqrt(n). Meanwhile, the current - // r and t values are r[i+1] and t[i+1], respectively. - - // a1 = r[i+1], b1 = -t[i+1] - a1.Set(r) - b1.Mul(t, bigMinus1) - found = true - oneMore = true - - // Skip to the next iteration so ri and ti are not - // modified. - continue - - } else if oneMore { - // When this condition executes ri and ti still - // represent the r[i] and t[i] values while the current - // r and t are r[i+2] and t[i+2], respectively. - - // sum1 = r[i]^2 + t[i]^2 - rSquared := new(big.Int).Mul(ri, ri) - tSquared := new(big.Int).Mul(ti, ti) - sum1 := new(big.Int).Add(rSquared, tSquared) - - // sum2 = r[i+2]^2 + t[i+2]^2 - r2Squared := new(big.Int).Mul(r, r) - t2Squared := new(big.Int).Mul(t, t) - sum2 := new(big.Int).Add(r2Squared, t2Squared) - - // if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2) - if sum1.Cmp(sum2) <= 0 { - // a2 = r[i], b2 = -t[i] - a2.Set(ri) - b2.Mul(ti, bigMinus1) - } else { - // a2 = r[i+2], b2 = -t[i+2] - a2.Set(r) - b2.Mul(t, bigMinus1) - } - - // All done. - break - } - - ri.Set(r) - ti.Set(t) - } - - return a1, b1, a2, b2 -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/loadprecomputed.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/loadprecomputed.go deleted file mode 100644 index 9f975b5..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/loadprecomputed.go +++ /dev/null @@ -1,91 +0,0 @@ -// Copyright 2015 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -import ( - "compress/zlib" - "encoding/base64" - "encoding/binary" - "io" - "strings" - "sync" -) - -//go:generate go run -tags gensecp256k1 genprecomps.go - -// bytePointTable describes a table used to house pre-computed values for -// accelerating scalar base multiplication. -type bytePointTable [32][256][2]FieldVal - -// s256BytePoints houses pre-computed values used to accelerate scalar base -// multiplication such that they are only loaded on first use. -var s256BytePoints = func() func() *bytePointTable { - // mustLoadBytePoints decompresses and deserializes the pre-computed byte - // points used to accelerate scalar base multiplication for the secp256k1 - // curve. - // - // This approach is used since it allows the compile to use significantly - // less ram and be performed much faster than it is with hard-coding the - // final in-memory data structure. At the same time, it is quite fast to - // generate the in-memory data structure on first use with this approach - // versus computing the table. - // - // It will panic on any errors because the data is hard coded and thus any - // errors means something is wrong in the source code. - var data *bytePointTable - mustLoadBytePoints := func() { - // There will be no byte points to load when generating them. - bp := compressedBytePoints - if len(bp) == 0 { - return - } - - // Decompress the pre-computed table used to accelerate scalar base - // multiplication. - decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(bp)) - r, err := zlib.NewReader(decoder) - if err != nil { - panic(err) - } - serialized, err := io.ReadAll(r) - if err != nil { - panic(err) - } - - // Deserialize the precomputed byte points and set the memory table to - // them. - offset := 0 - var bytePoints bytePointTable - for byteNum := 0; byteNum < len(bytePoints); byteNum++ { - // All points in this window. - for i := 0; i < len(bytePoints[byteNum]); i++ { - px := &bytePoints[byteNum][i][0] - py := &bytePoints[byteNum][i][1] - for i := 0; i < len(px.n); i++ { - px.n[i] = binary.LittleEndian.Uint32(serialized[offset:]) - offset += 4 - } - for i := 0; i < len(py.n); i++ { - py.n[i] = binary.LittleEndian.Uint32(serialized[offset:]) - offset += 4 - } - } - } - data = &bytePoints - } - - // Return a closure that initializes the data on first access. This is done - // because the table takes a non-trivial amount of memory and initializing - // it unconditionally would cause anything that imports the package, either - // directly, or indirectly via transitive deps, to use that memory even if - // the caller never accesses any parts of the package that actually needs - // access to it. - var loadBytePointsOnce sync.Once - return func() *bytePointTable { - loadBytePointsOnce.Do(mustLoadBytePoints) - return data - } -}() diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go deleted file mode 100644 index 8125d9a..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go +++ /dev/null @@ -1,1088 +0,0 @@ -// Copyright (c) 2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -import ( - "encoding/hex" - "math/big" -) - -// References: -// [SECG]: Recommended Elliptic Curve Domain Parameters -// https://www.secg.org/sec2-v2.pdf -// -// [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone. -// http://cacr.uwaterloo.ca/hac/ - -// Many elliptic curve operations require working with scalars in a finite field -// characterized by the order of the group underlying the secp256k1 curve. -// Given this precision is larger than the biggest available native type, -// obviously some form of bignum math is needed. This code implements -// specialized fixed-precision field arithmetic rather than relying on an -// arbitrary-precision arithmetic package such as math/big for dealing with the -// math modulo the group order since the size is known. As a result, rather -// large performance gains are achieved by taking advantage of many -// optimizations not available to arbitrary-precision arithmetic and generic -// modular arithmetic algorithms. -// -// There are various ways to internally represent each element. For example, -// the most obvious representation would be to use an array of 4 uint64s (64 -// bits * 4 = 256 bits). However, that representation suffers from the fact -// that there is no native Go type large enough to handle the intermediate -// results while adding or multiplying two 64-bit numbers. -// -// Given the above, this implementation represents the field elements as 8 -// uint32s with each word (array entry) treated as base 2^32. This was chosen -// because most systems at the current time are 64-bit (or at least have 64-bit -// registers available for specialized purposes such as MMX) so the intermediate -// results can typically be done using a native register (and using uint64s to -// avoid the need for additional half-word arithmetic) - -const ( - // These fields provide convenient access to each of the words of the - // secp256k1 curve group order N to improve code readability. - // - // The group order of the curve per [SECG] is: - // 0xffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141 - orderWordZero uint32 = 0xd0364141 - orderWordOne uint32 = 0xbfd25e8c - orderWordTwo uint32 = 0xaf48a03b - orderWordThree uint32 = 0xbaaedce6 - orderWordFour uint32 = 0xfffffffe - orderWordFive uint32 = 0xffffffff - orderWordSix uint32 = 0xffffffff - orderWordSeven uint32 = 0xffffffff - - // These fields provide convenient access to each of the words of the two's - // complement of the secp256k1 curve group order N to improve code - // readability. - // - // The two's complement of the group order is: - // 0x00000000 00000000 00000000 00000001 45512319 50b75fc4 402da173 2fc9bebf - orderComplementWordZero uint32 = (^orderWordZero) + 1 - orderComplementWordOne uint32 = ^orderWordOne - orderComplementWordTwo uint32 = ^orderWordTwo - orderComplementWordThree uint32 = ^orderWordThree - //orderComplementWordFour uint32 = ^orderWordFour // unused - //orderComplementWordFive uint32 = ^orderWordFive // unused - //orderComplementWordSix uint32 = ^orderWordSix // unused - //orderComplementWordSeven uint32 = ^orderWordSeven // unused - - // These fields provide convenient access to each of the words of the - // secp256k1 curve group order N / 2 to improve code readability and avoid - // the need to recalculate them. - // - // The half order of the secp256k1 curve group is: - // 0x7fffffff ffffffff ffffffff ffffffff 5d576e73 57a4501d dfe92f46 681b20a0 - halfOrderWordZero uint32 = 0x681b20a0 - halfOrderWordOne uint32 = 0xdfe92f46 - halfOrderWordTwo uint32 = 0x57a4501d - halfOrderWordThree uint32 = 0x5d576e73 - halfOrderWordFour uint32 = 0xffffffff - halfOrderWordFive uint32 = 0xffffffff - halfOrderWordSix uint32 = 0xffffffff - halfOrderWordSeven uint32 = 0x7fffffff - - // uint32Mask is simply a mask with all bits set for a uint32 and is used to - // improve the readability of the code. - uint32Mask = 0xffffffff -) - -var ( - // zero32 is an array of 32 bytes used for the purposes of zeroing and is - // defined here to avoid extra allocations. - zero32 = [32]byte{} -) - -// ModNScalar implements optimized 256-bit constant-time fixed-precision -// arithmetic over the secp256k1 group order. This means all arithmetic is -// performed modulo: -// -// 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 -// -// It only implements the arithmetic needed for elliptic curve operations, -// however, the operations that are not implemented can typically be worked -// around if absolutely needed. For example, subtraction can be performed by -// adding the negation. -// -// Should it be absolutely necessary, conversion to the standard library -// math/big.Int can be accomplished by using the Bytes method, slicing the -// resulting fixed-size array, and feeding it to big.Int.SetBytes. However, -// that should typically be avoided when possible as conversion to big.Ints -// requires allocations, is not constant time, and is slower when working modulo -// the group order. -type ModNScalar struct { - // The scalar is represented as 8 32-bit integers in base 2^32. - // - // The following depicts the internal representation: - // --------------------------------------------------------- - // | n[7] | n[6] | ... | n[0] | - // | 32 bits | 32 bits | ... | 32 bits | - // | Mult: 2^(32*7) | Mult: 2^(32*6) | ... | Mult: 2^(32*0) | - // --------------------------------------------------------- - // - // For example, consider the number 2^87 + 2^42 + 1. It would be - // represented as: - // n[0] = 1 - // n[1] = 2^10 - // n[2] = 2^23 - // n[3..7] = 0 - // - // The full 256-bit value is then calculated by looping i from 7..0 and - // doing sum(n[i] * 2^(32i)) like so: - // n[7] * 2^(32*7) = 0 * 2^224 = 0 - // n[6] * 2^(32*6) = 0 * 2^192 = 0 - // ... - // n[2] * 2^(32*2) = 2^23 * 2^64 = 2^87 - // n[1] * 2^(32*1) = 2^10 * 2^32 = 2^42 - // n[0] * 2^(32*0) = 1 * 2^0 = 1 - // Sum: 0 + 0 + ... + 2^87 + 2^42 + 1 = 2^87 + 2^42 + 1 - n [8]uint32 -} - -// String returns the scalar as a human-readable hex string. -// -// This is NOT constant time. -func (s ModNScalar) String() string { - b := s.Bytes() - return hex.EncodeToString(b[:]) -} - -// Set sets the scalar equal to a copy of the passed one in constant time. -// -// The scalar is returned to support chaining. This enables syntax like: -// s := new(ModNScalar).Set(s2).Add(1) so that s = s2 + 1 where s2 is not -// modified. -func (s *ModNScalar) Set(val *ModNScalar) *ModNScalar { - *s = *val - return s -} - -// Zero sets the scalar to zero in constant time. A newly created scalar is -// already set to zero. This function can be useful to clear an existing scalar -// for reuse. -func (s *ModNScalar) Zero() { - s.n[0] = 0 - s.n[1] = 0 - s.n[2] = 0 - s.n[3] = 0 - s.n[4] = 0 - s.n[5] = 0 - s.n[6] = 0 - s.n[7] = 0 -} - -// IsZero returns whether or not the scalar is equal to zero in constant time. -func (s *ModNScalar) IsZero() bool { - // The scalar can only be zero if no bits are set in any of the words. - bits := s.n[0] | s.n[1] | s.n[2] | s.n[3] | s.n[4] | s.n[5] | s.n[6] | s.n[7] - return bits == 0 -} - -// SetInt sets the scalar to the passed integer in constant time. This is a -// convenience function since it is fairly common to perform some arithmetic -// with small native integers. -// -// The scalar is returned to support chaining. This enables syntax like: -// s := new(ModNScalar).SetInt(2).Mul(s2) so that s = 2 * s2. -func (s *ModNScalar) SetInt(ui uint32) *ModNScalar { - s.Zero() - s.n[0] = ui - return s -} - -// constantTimeEq returns 1 if a == b or 0 otherwise in constant time. -func constantTimeEq(a, b uint32) uint32 { - return uint32((uint64(a^b) - 1) >> 63) -} - -// constantTimeNotEq returns 1 if a != b or 0 otherwise in constant time. -func constantTimeNotEq(a, b uint32) uint32 { - return ^uint32((uint64(a^b)-1)>>63) & 1 -} - -// constantTimeLess returns 1 if a < b or 0 otherwise in constant time. -func constantTimeLess(a, b uint32) uint32 { - return uint32((uint64(a) - uint64(b)) >> 63) -} - -// constantTimeLessOrEq returns 1 if a <= b or 0 otherwise in constant time. -func constantTimeLessOrEq(a, b uint32) uint32 { - return uint32((uint64(a) - uint64(b) - 1) >> 63) -} - -// constantTimeGreater returns 1 if a > b or 0 otherwise in constant time. -func constantTimeGreater(a, b uint32) uint32 { - return constantTimeLess(b, a) -} - -// constantTimeGreaterOrEq returns 1 if a >= b or 0 otherwise in constant time. -func constantTimeGreaterOrEq(a, b uint32) uint32 { - return constantTimeLessOrEq(b, a) -} - -// constantTimeMin returns min(a,b) in constant time. -func constantTimeMin(a, b uint32) uint32 { - return b ^ ((a ^ b) & -constantTimeLess(a, b)) -} - -// overflows determines if the current scalar is greater than or equal to the -// group order in constant time and returns 1 if it is or 0 otherwise. -func (s *ModNScalar) overflows() uint32 { - // The intuition here is that the scalar is greater than the group order if - // one of the higher individual words is greater than corresponding word of - // the group order and all higher words in the scalar are equal to their - // corresponding word of the group order. Since this type is modulo the - // group order, being equal is also an overflow back to 0. - // - // Note that the words 5, 6, and 7 are all the max uint32 value, so there is - // no need to test if those individual words of the scalar exceeds them, - // hence, only equality is checked for them. - highWordsEqual := constantTimeEq(s.n[7], orderWordSeven) - highWordsEqual &= constantTimeEq(s.n[6], orderWordSix) - highWordsEqual &= constantTimeEq(s.n[5], orderWordFive) - overflow := highWordsEqual & constantTimeGreater(s.n[4], orderWordFour) - highWordsEqual &= constantTimeEq(s.n[4], orderWordFour) - overflow |= highWordsEqual & constantTimeGreater(s.n[3], orderWordThree) - highWordsEqual &= constantTimeEq(s.n[3], orderWordThree) - overflow |= highWordsEqual & constantTimeGreater(s.n[2], orderWordTwo) - highWordsEqual &= constantTimeEq(s.n[2], orderWordTwo) - overflow |= highWordsEqual & constantTimeGreater(s.n[1], orderWordOne) - highWordsEqual &= constantTimeEq(s.n[1], orderWordOne) - overflow |= highWordsEqual & constantTimeGreaterOrEq(s.n[0], orderWordZero) - - return overflow -} - -// reduce256 reduces the current scalar modulo the group order in accordance -// with the overflows parameter in constant time. The overflows parameter -// specifies whether or not the scalar is known to be greater than the group -// order and MUST either be 1 in the case it is or 0 in the case it is not for a -// correct result. -func (s *ModNScalar) reduce256(overflows uint32) { - // Notice that since s < 2^256 < 2N (where N is the group order), the max - // possible number of reductions required is one. Therefore, in the case a - // reduction is needed, it can be performed with a single subtraction of N. - // Also, recall that subtraction is equivalent to addition by the two's - // complement while ignoring the carry. - // - // When s >= N, the overflows parameter will be 1. Conversely, it will be 0 - // when s < N. Thus multiplying by the overflows parameter will either - // result in 0 or the multiplicand itself. - // - // Combining the above along with the fact that s + 0 = s, the following is - // a constant time implementation that works by either adding 0 or the two's - // complement of N as needed. - // - // The final result will be in the range 0 <= s < N as expected. - overflows64 := uint64(overflows) - c := uint64(s.n[0]) + overflows64*uint64(orderComplementWordZero) - s.n[0] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[1]) + overflows64*uint64(orderComplementWordOne) - s.n[1] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[2]) + overflows64*uint64(orderComplementWordTwo) - s.n[2] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[3]) + overflows64*uint64(orderComplementWordThree) - s.n[3] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[4]) + overflows64 // * 1 - s.n[4] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[5]) // + overflows64 * 0 - s.n[5] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[6]) // + overflows64 * 0 - s.n[6] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(s.n[7]) // + overflows64 * 0 - s.n[7] = uint32(c & uint32Mask) -} - -// SetBytes interprets the provided array as a 256-bit big-endian unsigned -// integer, reduces it modulo the group order, sets the scalar to the result, -// and returns either 1 if it was reduced (aka it overflowed) or 0 otherwise in -// constant time. -// -// Note that a bool is not used here because it is not possible in Go to convert -// from a bool to numeric value in constant time and many constant-time -// operations require a numeric value. -func (s *ModNScalar) SetBytes(b *[32]byte) uint32 { - // Pack the 256 total bits across the 8 uint32 words. This could be done - // with a for loop, but benchmarks show this unrolled version is about 2 - // times faster than the variant that uses a loop. - s.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 | uint32(b[28])<<24 - s.n[1] = uint32(b[27]) | uint32(b[26])<<8 | uint32(b[25])<<16 | uint32(b[24])<<24 - s.n[2] = uint32(b[23]) | uint32(b[22])<<8 | uint32(b[21])<<16 | uint32(b[20])<<24 - s.n[3] = uint32(b[19]) | uint32(b[18])<<8 | uint32(b[17])<<16 | uint32(b[16])<<24 - s.n[4] = uint32(b[15]) | uint32(b[14])<<8 | uint32(b[13])<<16 | uint32(b[12])<<24 - s.n[5] = uint32(b[11]) | uint32(b[10])<<8 | uint32(b[9])<<16 | uint32(b[8])<<24 - s.n[6] = uint32(b[7]) | uint32(b[6])<<8 | uint32(b[5])<<16 | uint32(b[4])<<24 - s.n[7] = uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 - - // The value might be >= N, so reduce it as required and return whether or - // not it was reduced. - needsReduce := s.overflows() - s.reduce256(needsReduce) - return needsReduce -} - -// zeroArray32 zeroes the provided 32-byte buffer. -func zeroArray32(b *[32]byte) { - copy(b[:], zero32[:]) -} - -// SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned -// integer (meaning it is truncated to the first 32 bytes), reduces it modulo -// the group order, sets the scalar to the result, and returns whether or not -// the resulting truncated 256-bit integer overflowed in constant time. -// -// Note that since passing a slice with more than 32 bytes is truncated, it is -// possible that the truncated value is less than the order of the curve and -// hence it will not be reported as having overflowed in that case. It is up to -// the caller to decide whether it needs to provide numbers of the appropriate -// size or it is acceptable to use this function with the described truncation -// and overflow behavior. -func (s *ModNScalar) SetByteSlice(b []byte) bool { - var b32 [32]byte - b = b[:constantTimeMin(uint32(len(b)), 32)] - copy(b32[:], b32[:32-len(b)]) - copy(b32[32-len(b):], b) - result := s.SetBytes(&b32) - zeroArray32(&b32) - return result != 0 -} - -// PutBytesUnchecked unpacks the scalar to a 32-byte big-endian value directly -// into the passed byte slice in constant time. The target slice must must have -// at least 32 bytes available or it will panic. -// -// There is a similar function, PutBytes, which unpacks the scalar into a -// 32-byte array directly. This version is provided since it can be useful to -// write directly into part of a larger buffer without needing a separate -// allocation. -// -// Preconditions: -// - The target slice MUST have at least 32 bytes available -func (s *ModNScalar) PutBytesUnchecked(b []byte) { - // Unpack the 256 total bits from the 8 uint32 words. This could be done - // with a for loop, but benchmarks show this unrolled version is about 2 - // times faster than the variant which uses a loop. - b[31] = byte(s.n[0]) - b[30] = byte(s.n[0] >> 8) - b[29] = byte(s.n[0] >> 16) - b[28] = byte(s.n[0] >> 24) - b[27] = byte(s.n[1]) - b[26] = byte(s.n[1] >> 8) - b[25] = byte(s.n[1] >> 16) - b[24] = byte(s.n[1] >> 24) - b[23] = byte(s.n[2]) - b[22] = byte(s.n[2] >> 8) - b[21] = byte(s.n[2] >> 16) - b[20] = byte(s.n[2] >> 24) - b[19] = byte(s.n[3]) - b[18] = byte(s.n[3] >> 8) - b[17] = byte(s.n[3] >> 16) - b[16] = byte(s.n[3] >> 24) - b[15] = byte(s.n[4]) - b[14] = byte(s.n[4] >> 8) - b[13] = byte(s.n[4] >> 16) - b[12] = byte(s.n[4] >> 24) - b[11] = byte(s.n[5]) - b[10] = byte(s.n[5] >> 8) - b[9] = byte(s.n[5] >> 16) - b[8] = byte(s.n[5] >> 24) - b[7] = byte(s.n[6]) - b[6] = byte(s.n[6] >> 8) - b[5] = byte(s.n[6] >> 16) - b[4] = byte(s.n[6] >> 24) - b[3] = byte(s.n[7]) - b[2] = byte(s.n[7] >> 8) - b[1] = byte(s.n[7] >> 16) - b[0] = byte(s.n[7] >> 24) -} - -// PutBytes unpacks the scalar to a 32-byte big-endian value using the passed -// byte array in constant time. -// -// There is a similar function, PutBytesUnchecked, which unpacks the scalar into -// a slice that must have at least 32 bytes available. This version is provided -// since it can be useful to write directly into an array that is type checked. -// -// Alternatively, there is also Bytes, which unpacks the scalar into a new array -// and returns that which can sometimes be more ergonomic in applications that -// aren't concerned about an additional copy. -func (s *ModNScalar) PutBytes(b *[32]byte) { - s.PutBytesUnchecked(b[:]) -} - -// Bytes unpacks the scalar to a 32-byte big-endian value in constant time. -// -// See PutBytes and PutBytesUnchecked for variants that allow an array or slice -// to be passed which can be useful to cut down on the number of allocations -// by allowing the caller to reuse a buffer or write directly into part of a -// larger buffer. -func (s *ModNScalar) Bytes() [32]byte { - var b [32]byte - s.PutBytesUnchecked(b[:]) - return b -} - -// IsOdd returns whether or not the scalar is an odd number in constant time. -func (s *ModNScalar) IsOdd() bool { - // Only odd numbers have the bottom bit set. - return s.n[0]&1 == 1 -} - -// Equals returns whether or not the two scalars are the same in constant time. -func (s *ModNScalar) Equals(val *ModNScalar) bool { - // Xor only sets bits when they are different, so the two scalars can only - // be the same if no bits are set after xoring each word. - bits := (s.n[0] ^ val.n[0]) | (s.n[1] ^ val.n[1]) | (s.n[2] ^ val.n[2]) | - (s.n[3] ^ val.n[3]) | (s.n[4] ^ val.n[4]) | (s.n[5] ^ val.n[5]) | - (s.n[6] ^ val.n[6]) | (s.n[7] ^ val.n[7]) - - return bits == 0 -} - -// Add2 adds the passed two scalars together modulo the group order in constant -// time and stores the result in s. -// -// The scalar is returned to support chaining. This enables syntax like: -// s3.Add2(s, s2).AddInt(1) so that s3 = s + s2 + 1. -func (s *ModNScalar) Add2(val1, val2 *ModNScalar) *ModNScalar { - c := uint64(val1.n[0]) + uint64(val2.n[0]) - s.n[0] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[1]) + uint64(val2.n[1]) - s.n[1] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[2]) + uint64(val2.n[2]) - s.n[2] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[3]) + uint64(val2.n[3]) - s.n[3] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[4]) + uint64(val2.n[4]) - s.n[4] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[5]) + uint64(val2.n[5]) - s.n[5] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[6]) + uint64(val2.n[6]) - s.n[6] = uint32(c & uint32Mask) - c = (c >> 32) + uint64(val1.n[7]) + uint64(val2.n[7]) - s.n[7] = uint32(c & uint32Mask) - - // The result is now 256 bits, but it might still be >= N, so use the - // existing normal reduce method for 256-bit values. - s.reduce256(uint32(c>>32) + s.overflows()) - return s -} - -// Add adds the passed scalar to the existing one modulo the group order in -// constant time and stores the result in s. -// -// The scalar is returned to support chaining. This enables syntax like: -// s.Add(s2).AddInt(1) so that s = s + s2 + 1. -func (s *ModNScalar) Add(val *ModNScalar) *ModNScalar { - return s.Add2(s, val) -} - -// accumulator96 provides a 96-bit accumulator for use in the intermediate -// calculations requiring more than 64-bits. -type accumulator96 struct { - n [3]uint32 -} - -// Add adds the passed unsigned 64-bit value to the accumulator. -func (a *accumulator96) Add(v uint64) { - low := uint32(v & uint32Mask) - hi := uint32(v >> 32) - a.n[0] += low - hi += constantTimeLess(a.n[0], low) // Carry if overflow in n[0]. - a.n[1] += hi - a.n[2] += constantTimeLess(a.n[1], hi) // Carry if overflow in n[1]. -} - -// Rsh32 right shifts the accumulator by 32 bits. -func (a *accumulator96) Rsh32() { - a.n[0] = a.n[1] - a.n[1] = a.n[2] - a.n[2] = 0 -} - -// reduce385 reduces the 385-bit intermediate result in the passed terms modulo -// the group order in constant time and stores the result in s. -func (s *ModNScalar) reduce385(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12 uint64) { - // At this point, the intermediate result in the passed terms has been - // reduced to fit within 385 bits, so reduce it again using the same method - // described in reduce512. As before, the intermediate result will end up - // being reduced by another 127 bits to 258 bits, thus 9 32-bit terms are - // needed for this iteration. The reduced terms are assigned back to t0 - // through t8. - // - // Note that several of the intermediate calculations require adding 64-bit - // products together which would overflow a uint64, so a 96-bit accumulator - // is used instead until the value is reduced enough to use native uint64s. - - // Terms for 2^(32*0). - var acc accumulator96 - acc.n[0] = uint32(t0) // == acc.Add(t0) because acc is guaranteed to be 0. - acc.Add(t8 * uint64(orderComplementWordZero)) - t0 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*1). - acc.Add(t1) - acc.Add(t8 * uint64(orderComplementWordOne)) - acc.Add(t9 * uint64(orderComplementWordZero)) - t1 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*2). - acc.Add(t2) - acc.Add(t8 * uint64(orderComplementWordTwo)) - acc.Add(t9 * uint64(orderComplementWordOne)) - acc.Add(t10 * uint64(orderComplementWordZero)) - t2 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*3). - acc.Add(t3) - acc.Add(t8 * uint64(orderComplementWordThree)) - acc.Add(t9 * uint64(orderComplementWordTwo)) - acc.Add(t10 * uint64(orderComplementWordOne)) - acc.Add(t11 * uint64(orderComplementWordZero)) - t3 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*4). - acc.Add(t4) - acc.Add(t8) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t9 * uint64(orderComplementWordThree)) - acc.Add(t10 * uint64(orderComplementWordTwo)) - acc.Add(t11 * uint64(orderComplementWordOne)) - acc.Add(t12 * uint64(orderComplementWordZero)) - t4 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*5). - acc.Add(t5) - // acc.Add(t8 * uint64(orderComplementWordFive)) // 0 - acc.Add(t9) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t10 * uint64(orderComplementWordThree)) - acc.Add(t11 * uint64(orderComplementWordTwo)) - acc.Add(t12 * uint64(orderComplementWordOne)) - t5 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*6). - acc.Add(t6) - // acc.Add(t8 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t9 * uint64(orderComplementWordFive)) // 0 - acc.Add(t10) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t11 * uint64(orderComplementWordThree)) - acc.Add(t12 * uint64(orderComplementWordTwo)) - t6 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*7). - acc.Add(t7) - // acc.Add(t8 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t9 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t10 * uint64(orderComplementWordFive)) // 0 - acc.Add(t11) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t12 * uint64(orderComplementWordThree)) - t7 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*8). - // acc.Add(t9 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t10 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t11 * uint64(orderComplementWordFive)) // 0 - acc.Add(t12) // * uint64(orderComplementWordFour) // * 1 - t8 = uint64(acc.n[0]) - // acc.Rsh32() // No need since not used after this. Guaranteed to be 0. - - // NOTE: All of the remaining multiplications for this iteration result in 0 - // as they all involve multiplying by combinations of the fifth, sixth, and - // seventh words of the two's complement of N, which are 0, so skip them. - - // At this point, the result is reduced to fit within 258 bits, so reduce it - // again using a slightly modified version of the same method. The maximum - // value in t8 is 2 at this point and therefore multiplying it by each word - // of the two's complement of N and adding it to a 32-bit term will result - // in a maximum requirement of 33 bits, so it is safe to use native uint64s - // here for the intermediate term carry propagation. - // - // Also, since the maximum value in t8 is 2, this ends up reducing by - // another 2 bits to 256 bits. - c := t0 + t8*uint64(orderComplementWordZero) - s.n[0] = uint32(c & uint32Mask) - c = (c >> 32) + t1 + t8*uint64(orderComplementWordOne) - s.n[1] = uint32(c & uint32Mask) - c = (c >> 32) + t2 + t8*uint64(orderComplementWordTwo) - s.n[2] = uint32(c & uint32Mask) - c = (c >> 32) + t3 + t8*uint64(orderComplementWordThree) - s.n[3] = uint32(c & uint32Mask) - c = (c >> 32) + t4 + t8 // * uint64(orderComplementWordFour) == * 1 - s.n[4] = uint32(c & uint32Mask) - c = (c >> 32) + t5 // + t8*uint64(orderComplementWordFive) == 0 - s.n[5] = uint32(c & uint32Mask) - c = (c >> 32) + t6 // + t8*uint64(orderComplementWordSix) == 0 - s.n[6] = uint32(c & uint32Mask) - c = (c >> 32) + t7 // + t8*uint64(orderComplementWordSeven) == 0 - s.n[7] = uint32(c & uint32Mask) - - // The result is now 256 bits, but it might still be >= N, so use the - // existing normal reduce method for 256-bit values. - s.reduce256(uint32(c>>32) + s.overflows()) -} - -// reduce512 reduces the 512-bit intermediate result in the passed terms modulo -// the group order down to 385 bits in constant time and stores the result in s. -func (s *ModNScalar) reduce512(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15 uint64) { - // At this point, the intermediate result in the passed terms is grouped - // into the respective bases. - // - // Per [HAC] section 14.3.4: Reduction method of moduli of special form, - // when the modulus is of the special form m = b^t - c, where log_2(c) < t, - // highly efficient reduction can be achieved per the provided algorithm. - // - // The secp256k1 group order fits this criteria since it is: - // 2^256 - 432420386565659656852420866394968145599 - // - // Technically the max possible value here is (N-1)^2 since the two scalars - // being multiplied are always mod N. Nevertheless, it is safer to consider - // it to be (2^256-1)^2 = 2^512 - 2^256 + 1 since it is the product of two - // 256-bit values. - // - // The algorithm is to reduce the result modulo the prime by subtracting - // multiples of the group order N. However, in order simplify carry - // propagation, this adds with the two's complement of N to achieve the same - // result. - // - // Since the two's complement of N has 127 leading zero bits, this will end - // up reducing the intermediate result from 512 bits to 385 bits, resulting - // in 13 32-bit terms. The reduced terms are assigned back to t0 through - // t12. - // - // Note that several of the intermediate calculations require adding 64-bit - // products together which would overflow a uint64, so a 96-bit accumulator - // is used instead. - - // Terms for 2^(32*0). - var acc accumulator96 - acc.n[0] = uint32(t0) // == acc.Add(t0) because acc is guaranteed to be 0. - acc.Add(t8 * uint64(orderComplementWordZero)) - t0 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*1). - acc.Add(t1) - acc.Add(t8 * uint64(orderComplementWordOne)) - acc.Add(t9 * uint64(orderComplementWordZero)) - t1 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*2). - acc.Add(t2) - acc.Add(t8 * uint64(orderComplementWordTwo)) - acc.Add(t9 * uint64(orderComplementWordOne)) - acc.Add(t10 * uint64(orderComplementWordZero)) - t2 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*3). - acc.Add(t3) - acc.Add(t8 * uint64(orderComplementWordThree)) - acc.Add(t9 * uint64(orderComplementWordTwo)) - acc.Add(t10 * uint64(orderComplementWordOne)) - acc.Add(t11 * uint64(orderComplementWordZero)) - t3 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*4). - acc.Add(t4) - acc.Add(t8) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t9 * uint64(orderComplementWordThree)) - acc.Add(t10 * uint64(orderComplementWordTwo)) - acc.Add(t11 * uint64(orderComplementWordOne)) - acc.Add(t12 * uint64(orderComplementWordZero)) - t4 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*5). - acc.Add(t5) - // acc.Add(t8 * uint64(orderComplementWordFive)) // 0 - acc.Add(t9) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t10 * uint64(orderComplementWordThree)) - acc.Add(t11 * uint64(orderComplementWordTwo)) - acc.Add(t12 * uint64(orderComplementWordOne)) - acc.Add(t13 * uint64(orderComplementWordZero)) - t5 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*6). - acc.Add(t6) - // acc.Add(t8 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t9 * uint64(orderComplementWordFive)) // 0 - acc.Add(t10) // * uint64(orderComplementWordFour)) // * 1 - acc.Add(t11 * uint64(orderComplementWordThree)) - acc.Add(t12 * uint64(orderComplementWordTwo)) - acc.Add(t13 * uint64(orderComplementWordOne)) - acc.Add(t14 * uint64(orderComplementWordZero)) - t6 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*7). - acc.Add(t7) - // acc.Add(t8 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t9 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t10 * uint64(orderComplementWordFive)) // 0 - acc.Add(t11) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t12 * uint64(orderComplementWordThree)) - acc.Add(t13 * uint64(orderComplementWordTwo)) - acc.Add(t14 * uint64(orderComplementWordOne)) - acc.Add(t15 * uint64(orderComplementWordZero)) - t7 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*8). - // acc.Add(t9 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t10 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t11 * uint64(orderComplementWordFive)) // 0 - acc.Add(t12) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t13 * uint64(orderComplementWordThree)) - acc.Add(t14 * uint64(orderComplementWordTwo)) - acc.Add(t15 * uint64(orderComplementWordOne)) - t8 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*9). - // acc.Add(t10 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t11 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t12 * uint64(orderComplementWordFive)) // 0 - acc.Add(t13) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t14 * uint64(orderComplementWordThree)) - acc.Add(t15 * uint64(orderComplementWordTwo)) - t9 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*10). - // acc.Add(t11 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t12 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t13 * uint64(orderComplementWordFive)) // 0 - acc.Add(t14) // * uint64(orderComplementWordFour) // * 1 - acc.Add(t15 * uint64(orderComplementWordThree)) - t10 = uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*11). - // acc.Add(t12 * uint64(orderComplementWordSeven)) // 0 - // acc.Add(t13 * uint64(orderComplementWordSix)) // 0 - // acc.Add(t14 * uint64(orderComplementWordFive)) // 0 - acc.Add(t15) // * uint64(orderComplementWordFour) // * 1 - t11 = uint64(acc.n[0]) - acc.Rsh32() - - // NOTE: All of the remaining multiplications for this iteration result in 0 - // as they all involve multiplying by combinations of the fifth, sixth, and - // seventh words of the two's complement of N, which are 0, so skip them. - - // Terms for 2^(32*12). - t12 = uint64(acc.n[0]) - // acc.Rsh32() // No need since not used after this. Guaranteed to be 0. - - // At this point, the result is reduced to fit within 385 bits, so reduce it - // again using the same method accordingly. - s.reduce385(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12) -} - -// Mul2 multiplies the passed two scalars together modulo the group order in -// constant time and stores the result in s. -// -// The scalar is returned to support chaining. This enables syntax like: -// s3.Mul2(s, s2).AddInt(1) so that s3 = (s * s2) + 1. -func (s *ModNScalar) Mul2(val, val2 *ModNScalar) *ModNScalar { - // This could be done with for loops and an array to store the intermediate - // terms, but this unrolled version is significantly faster. - - // The overall strategy employed here is: - // 1) Calculate the 512-bit product of the two scalars using the standard - // pencil-and-paper method. - // 2) Reduce the result modulo the prime by effectively subtracting - // multiples of the group order N (actually performed by adding multiples - // of the two's complement of N to avoid implementing subtraction). - // 3) Repeat step 2 noting that each iteration reduces the required number - // of bits by 127 because the two's complement of N has 127 leading zero - // bits. - // 4) Once reduced to 256 bits, call the existing reduce method to perform - // a final reduction as needed. - // - // Note that several of the intermediate calculations require adding 64-bit - // products together which would overflow a uint64, so a 96-bit accumulator - // is used instead. - - // Terms for 2^(32*0). - var acc accumulator96 - acc.Add(uint64(val.n[0]) * uint64(val2.n[0])) - t0 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*1). - acc.Add(uint64(val.n[0]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[0])) - t1 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*2). - acc.Add(uint64(val.n[0]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[0])) - t2 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*3). - acc.Add(uint64(val.n[0]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[0])) - t3 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*4). - acc.Add(uint64(val.n[0]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[0])) - t4 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*5). - acc.Add(uint64(val.n[0]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[0])) - t5 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*6). - acc.Add(uint64(val.n[0]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[0])) - t6 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*7). - acc.Add(uint64(val.n[0]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[1]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[1])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[0])) - t7 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*8). - acc.Add(uint64(val.n[1]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[2]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[2])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[1])) - t8 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*9). - acc.Add(uint64(val.n[2]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[3]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[3])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[2])) - t9 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*10). - acc.Add(uint64(val.n[3]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[4]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[4])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[3])) - t10 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*11). - acc.Add(uint64(val.n[4]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[5]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[5])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[4])) - t11 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*12). - acc.Add(uint64(val.n[5]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[6]) * uint64(val2.n[6])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[5])) - t12 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*13). - acc.Add(uint64(val.n[6]) * uint64(val2.n[7])) - acc.Add(uint64(val.n[7]) * uint64(val2.n[6])) - t13 := uint64(acc.n[0]) - acc.Rsh32() - - // Terms for 2^(32*14). - acc.Add(uint64(val.n[7]) * uint64(val2.n[7])) - t14 := uint64(acc.n[0]) - acc.Rsh32() - - // What's left is for 2^(32*15). - t15 := uint64(acc.n[0]) - // acc.Rsh32() // No need since not used after this. Guaranteed to be 0. - - // At this point, all of the terms are grouped into their respective base - // and occupy up to 512 bits. Reduce the result accordingly. - s.reduce512(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, - t15) - return s -} - -// Mul multiplies the passed scalar with the existing one modulo the group order -// in constant time and stores the result in s. -// -// The scalar is returned to support chaining. This enables syntax like: -// s.Mul(s2).AddInt(1) so that s = (s * s2) + 1. -func (s *ModNScalar) Mul(val *ModNScalar) *ModNScalar { - return s.Mul2(s, val) -} - -// SquareVal squares the passed scalar modulo the group order in constant time -// and stores the result in s. -// -// The scalar is returned to support chaining. This enables syntax like: -// s3.SquareVal(s).Mul(s) so that s3 = s^2 * s = s^3. -func (s *ModNScalar) SquareVal(val *ModNScalar) *ModNScalar { - // This could technically be optimized slightly to take advantage of the - // fact that many of the intermediate calculations in squaring are just - // doubling, however, benchmarking has shown that due to the need to use a - // 96-bit accumulator, any savings are essentially offset by that and - // consequently there is no real difference in performance over just - // multiplying the value by itself to justify the extra code for now. This - // can be revisited in the future if it becomes a bottleneck in practice. - - return s.Mul2(val, val) -} - -// Square squares the scalar modulo the group order in constant time. The -// existing scalar is modified. -// -// The scalar is returned to support chaining. This enables syntax like: -// s.Square().Mul(s2) so that s = s^2 * s2. -func (s *ModNScalar) Square() *ModNScalar { - return s.SquareVal(s) -} - -// NegateVal negates the passed scalar modulo the group order and stores the -// result in s in constant time. -// -// The scalar is returned to support chaining. This enables syntax like: -// s.NegateVal(s2).AddInt(1) so that s = -s2 + 1. -func (s *ModNScalar) NegateVal(val *ModNScalar) *ModNScalar { - // Since the scalar is already in the range 0 <= val < N, where N is the - // group order, negation modulo the group order is just the group order - // minus the value. This implies that the result will always be in the - // desired range with the sole exception of 0 because N - 0 = N itself. - // - // Therefore, in order to avoid the need to reduce the result for every - // other case in order to achieve constant time, this creates a mask that is - // all 0s in the case of the scalar being negated is 0 and all 1s otherwise - // and bitwise ands that mask with each word. - // - // Finally, to simplify the carry propagation, this adds the two's - // complement of the scalar to N in order to achieve the same result. - bits := val.n[0] | val.n[1] | val.n[2] | val.n[3] | val.n[4] | val.n[5] | - val.n[6] | val.n[7] - mask := uint64(uint32Mask * constantTimeNotEq(bits, 0)) - c := uint64(orderWordZero) + (uint64(^val.n[0]) + 1) - s.n[0] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordOne) + uint64(^val.n[1]) - s.n[1] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordTwo) + uint64(^val.n[2]) - s.n[2] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordThree) + uint64(^val.n[3]) - s.n[3] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordFour) + uint64(^val.n[4]) - s.n[4] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordFive) + uint64(^val.n[5]) - s.n[5] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordSix) + uint64(^val.n[6]) - s.n[6] = uint32(c & mask) - c = (c >> 32) + uint64(orderWordSeven) + uint64(^val.n[7]) - s.n[7] = uint32(c & mask) - return s -} - -// Negate negates the scalar modulo the group order in constant time. The -// existing scalar is modified. -// -// The scalar is returned to support chaining. This enables syntax like: -// s.Negate().AddInt(1) so that s = -s + 1. -func (s *ModNScalar) Negate() *ModNScalar { - return s.NegateVal(s) -} - -// InverseValNonConst finds the modular multiplicative inverse of the passed -// scalar and stores result in s in *non-constant* time. -// -// The scalar is returned to support chaining. This enables syntax like: -// s3.InverseVal(s1).Mul(s2) so that s3 = s1^-1 * s2. -func (s *ModNScalar) InverseValNonConst(val *ModNScalar) *ModNScalar { - // This is making use of big integers for now. Ideally it will be replaced - // with an implementation that does not depend on big integers. - valBytes := val.Bytes() - bigVal := new(big.Int).SetBytes(valBytes[:]) - bigVal.ModInverse(bigVal, curveParams.N) - s.SetByteSlice(bigVal.Bytes()) - return s -} - -// InverseNonConst finds the modular multiplicative inverse of the scalar in -// *non-constant* time. The existing scalar is modified. -// -// The scalar is returned to support chaining. This enables syntax like: -// s.Inverse().Mul(s2) so that s = s^-1 * s2. -func (s *ModNScalar) InverseNonConst() *ModNScalar { - return s.InverseValNonConst(s) -} - -// IsOverHalfOrder returns whether or not the scalar exceeds the group order -// divided by 2 in constant time. -func (s *ModNScalar) IsOverHalfOrder() bool { - // The intuition here is that the scalar is greater than half of the group - // order if one of the higher individual words is greater than the - // corresponding word of the half group order and all higher words in the - // scalar are equal to their corresponding word of the half group order. - // - // Note that the words 4, 5, and 6 are all the max uint32 value, so there is - // no need to test if those individual words of the scalar exceeds them, - // hence, only equality is checked for them. - result := constantTimeGreater(s.n[7], halfOrderWordSeven) - highWordsEqual := constantTimeEq(s.n[7], halfOrderWordSeven) - highWordsEqual &= constantTimeEq(s.n[6], halfOrderWordSix) - highWordsEqual &= constantTimeEq(s.n[5], halfOrderWordFive) - highWordsEqual &= constantTimeEq(s.n[4], halfOrderWordFour) - result |= highWordsEqual & constantTimeGreater(s.n[3], halfOrderWordThree) - highWordsEqual &= constantTimeEq(s.n[3], halfOrderWordThree) - result |= highWordsEqual & constantTimeGreater(s.n[2], halfOrderWordTwo) - highWordsEqual &= constantTimeEq(s.n[2], halfOrderWordTwo) - result |= highWordsEqual & constantTimeGreater(s.n[1], halfOrderWordOne) - highWordsEqual &= constantTimeEq(s.n[1], halfOrderWordOne) - result |= highWordsEqual & constantTimeGreater(s.n[0], halfOrderWordZero) - - return result != 0 -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/nonce.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/nonce.go deleted file mode 100644 index 81b205d..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/nonce.go +++ /dev/null @@ -1,263 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Copyright (c) 2015-2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -import ( - "bytes" - "crypto/sha256" - "hash" -) - -// References: -// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) -// -// [ISO/IEC 8825-1]: Information technology — ASN.1 encoding rules: -// Specification of Basic Encoding Rules (BER), Canonical Encoding Rules -// (CER) and Distinguished Encoding Rules (DER) -// -// [SEC1]: Elliptic Curve Cryptography (May 31, 2009, Version 2.0) -// https://www.secg.org/sec1-v2.pdf - -var ( - // singleZero is used during RFC6979 nonce generation. It is provided - // here to avoid the need to create it multiple times. - singleZero = []byte{0x00} - - // zeroInitializer is used during RFC6979 nonce generation. It is provided - // here to avoid the need to create it multiple times. - zeroInitializer = bytes.Repeat([]byte{0x00}, sha256.BlockSize) - - // singleOne is used during RFC6979 nonce generation. It is provided - // here to avoid the need to create it multiple times. - singleOne = []byte{0x01} - - // oneInitializer is used during RFC6979 nonce generation. It is provided - // here to avoid the need to create it multiple times. - oneInitializer = bytes.Repeat([]byte{0x01}, sha256.Size) -) - -// hmacsha256 implements a resettable version of HMAC-SHA256. -type hmacsha256 struct { - inner, outer hash.Hash - ipad, opad [sha256.BlockSize]byte -} - -// Write adds data to the running hash. -func (h *hmacsha256) Write(p []byte) { - h.inner.Write(p) -} - -// initKey initializes the HMAC-SHA256 instance to the provided key. -func (h *hmacsha256) initKey(key []byte) { - // Hash the key if it is too large. - if len(key) > sha256.BlockSize { - h.outer.Write(key) - key = h.outer.Sum(nil) - } - copy(h.ipad[:], key) - copy(h.opad[:], key) - for i := range h.ipad { - h.ipad[i] ^= 0x36 - } - for i := range h.opad { - h.opad[i] ^= 0x5c - } - h.inner.Write(h.ipad[:]) -} - -// ResetKey resets the HMAC-SHA256 to its initial state and then initializes it -// with the provided key. It is equivalent to creating a new instance with the -// provided key without allocating more memory. -func (h *hmacsha256) ResetKey(key []byte) { - h.inner.Reset() - h.outer.Reset() - copy(h.ipad[:], zeroInitializer) - copy(h.opad[:], zeroInitializer) - h.initKey(key) -} - -// Resets the HMAC-SHA256 to its initial state using the current key. -func (h *hmacsha256) Reset() { - h.inner.Reset() - h.inner.Write(h.ipad[:]) -} - -// Sum returns the hash of the written data. -func (h *hmacsha256) Sum() []byte { - h.outer.Reset() - h.outer.Write(h.opad[:]) - h.outer.Write(h.inner.Sum(nil)) - return h.outer.Sum(nil) -} - -// newHMACSHA256 returns a new HMAC-SHA256 hasher using the provided key. -func newHMACSHA256(key []byte) *hmacsha256 { - h := new(hmacsha256) - h.inner = sha256.New() - h.outer = sha256.New() - h.initKey(key) - return h -} - -// NonceRFC6979 generates a nonce deterministically according to RFC 6979 using -// HMAC-SHA256 for the hashing function. It takes a 32-byte hash as an input -// and returns a 32-byte nonce to be used for deterministic signing. The extra -// and version arguments are optional, but allow additional data to be added to -// the input of the HMAC. When provided, the extra data must be 32-bytes and -// version must be 16 bytes or they will be ignored. -// -// Finally, the extraIterations parameter provides a method to produce a stream -// of deterministic nonces to ensure the signing code is able to produce a nonce -// that results in a valid signature in the extremely unlikely event the -// original nonce produced results in an invalid signature (e.g. R == 0). -// Signing code should start with 0 and increment it if necessary. -func NonceRFC6979(privKey []byte, hash []byte, extra []byte, version []byte, extraIterations uint32) *ModNScalar { - // Input to HMAC is the 32-byte private key and the 32-byte hash. In - // addition, it may include the optional 32-byte extra data and 16-byte - // version. Create a fixed-size array to avoid extra allocs and slice it - // properly. - const ( - privKeyLen = 32 - hashLen = 32 - extraLen = 32 - versionLen = 16 - ) - var keyBuf [privKeyLen + hashLen + extraLen + versionLen]byte - - // Truncate rightmost bytes of private key and hash if they are too long and - // leave left padding of zeros when they're too short. - if len(privKey) > privKeyLen { - privKey = privKey[:privKeyLen] - } - if len(hash) > hashLen { - hash = hash[:hashLen] - } - offset := privKeyLen - len(privKey) // Zero left padding if needed. - offset += copy(keyBuf[offset:], privKey) - offset += hashLen - len(hash) // Zero left padding if needed. - offset += copy(keyBuf[offset:], hash) - if len(extra) == extraLen { - offset += copy(keyBuf[offset:], extra) - if len(version) == versionLen { - offset += copy(keyBuf[offset:], version) - } - } else if len(version) == versionLen { - // When the version was specified, but not the extra data, leave the - // extra data portion all zero. - offset += privKeyLen - offset += copy(keyBuf[offset:], version) - } - key := keyBuf[:offset] - - // Step B. - // - // V = 0x01 0x01 0x01 ... 0x01 such that the length of V, in bits, is - // equal to 8*ceil(hashLen/8). - // - // Note that since the hash length is a multiple of 8 for the chosen hash - // function in this optimized implementation, the result is just the hash - // length, so avoid the extra calculations. Also, since it isn't modified, - // start with a global value. - v := oneInitializer - - // Step C (Go zeroes all allocated memory). - // - // K = 0x00 0x00 0x00 ... 0x00 such that the length of K, in bits, is - // equal to 8*ceil(hashLen/8). - // - // As above, since the hash length is a multiple of 8 for the chosen hash - // function in this optimized implementation, the result is just the hash - // length, so avoid the extra calculations. - k := zeroInitializer[:hashLen] - - // Step D. - // - // K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1)) - // - // Note that key is the "int2octets(x) || bits2octets(h1)" portion along - // with potential additional data as described by section 3.6 of the RFC. - hasher := newHMACSHA256(k) - hasher.Write(oneInitializer) - hasher.Write(singleZero[:]) - hasher.Write(key) - k = hasher.Sum() - - // Step E. - // - // V = HMAC_K(V) - hasher.ResetKey(k) - hasher.Write(v) - v = hasher.Sum() - - // Step F. - // - // K = HMAC_K(V || 0x01 || int2octets(x) || bits2octets(h1)) - // - // Note that key is the "int2octets(x) || bits2octets(h1)" portion along - // with potential additional data as described by section 3.6 of the RFC. - hasher.Reset() - hasher.Write(v) - hasher.Write(singleOne[:]) - hasher.Write(key[:]) - k = hasher.Sum() - - // Step G. - // - // V = HMAC_K(V) - hasher.ResetKey(k) - hasher.Write(v) - v = hasher.Sum() - - // Step H. - // - // Repeat until the value is nonzero and less than the curve order. - var generated uint32 - for { - // Step H1 and H2. - // - // Set T to the empty sequence. The length of T (in bits) is denoted - // tlen; thus, at that point, tlen = 0. - // - // While tlen < qlen, do the following: - // V = HMAC_K(V) - // T = T || V - // - // Note that because the hash function output is the same length as the - // private key in this optimized implementation, there is no need to - // loop or create an intermediate T. - hasher.Reset() - hasher.Write(v) - v = hasher.Sum() - - // Step H3. - // - // k = bits2int(T) - // If k is within the range [1,q-1], return it. - // - // Otherwise, compute: - // K = HMAC_K(V || 0x00) - // V = HMAC_K(V) - var secret ModNScalar - overflow := secret.SetByteSlice(v) - if !overflow && !secret.IsZero() { - generated++ - if generated > extraIterations { - return &secret - } - } - - // K = HMAC_K(V || 0x00) - hasher.Reset() - hasher.Write(v) - hasher.Write(singleZero[:]) - k = hasher.Sum() - - // V = HMAC_K(V) - hasher.ResetKey(k) - hasher.Write(v) - v = hasher.Sum() - } -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/privkey.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/privkey.go deleted file mode 100644 index 3590346..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/privkey.go +++ /dev/null @@ -1,77 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Copyright (c) 2015-2020 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -import ( - "crypto/ecdsa" - "crypto/rand" -) - -// PrivateKey provides facilities for working with secp256k1 private keys within -// this package and includes functionality such as serializing and parsing them -// as well as computing their associated public key. -type PrivateKey struct { - Key ModNScalar -} - -// NewPrivateKey instantiates a new private key from a scalar encoded as a -// big integer. -func NewPrivateKey(key *ModNScalar) *PrivateKey { - return &PrivateKey{Key: *key} -} - -// PrivKeyFromBytes returns a private based on the provided byte slice which is -// interpreted as an unsigned 256-bit big-endian integer in the range [0, N-1], -// where N is the order of the curve. -// -// Note that this means passing a slice with more than 32 bytes is truncated and -// that truncated value is reduced modulo N. It is up to the caller to either -// provide a value in the appropriate range or choose to accept the described -// behavior. -// -// Typically callers should simply make use of GeneratePrivateKey when creating -// private keys which properly handles generation of appropriate values. -func PrivKeyFromBytes(privKeyBytes []byte) *PrivateKey { - var privKey PrivateKey - privKey.Key.SetByteSlice(privKeyBytes) - return &privKey -} - -// GeneratePrivateKey returns a private key that is suitable for use with -// secp256k1. -func GeneratePrivateKey() (*PrivateKey, error) { - key, err := ecdsa.GenerateKey(S256(), rand.Reader) - if err != nil { - return nil, err - } - return PrivKeyFromBytes(key.D.Bytes()), nil -} - -// PubKey computes and returns the public key corresponding to this private key. -func (p *PrivateKey) PubKey() *PublicKey { - var result JacobianPoint - ScalarBaseMultNonConst(&p.Key, &result) - result.ToAffine() - return NewPublicKey(&result.X, &result.Y) -} - -// Zero manually clears the memory associated with the private key. This can be -// used to explicitly clear key material from memory for enhanced security -// against memory scraping. -func (p *PrivateKey) Zero() { - p.Key.Zero() -} - -// PrivKeyBytesLen defines the length in bytes of a serialized private key. -const PrivKeyBytesLen = 32 - -// Serialize returns the private key as a 256-bit big-endian binary-encoded -// number, padded to a length of 32 bytes. -func (p PrivateKey) Serialize() []byte { - var privKeyBytes [PrivKeyBytesLen]byte - p.Key.PutBytes(&privKeyBytes) - return privKeyBytes[:] -} diff --git a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/pubkey.go b/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/pubkey.go deleted file mode 100644 index 6716583..0000000 --- a/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/pubkey.go +++ /dev/null @@ -1,232 +0,0 @@ -// Copyright (c) 2013-2014 The btcsuite developers -// Copyright (c) 2015-2021 The Decred developers -// Use of this source code is governed by an ISC -// license that can be found in the LICENSE file. - -package secp256k1 - -// References: -// [SEC1] Elliptic Curve Cryptography -// https://www.secg.org/sec1-v2.pdf -// -// [SEC2] Recommended Elliptic Curve Domain Parameters -// https://www.secg.org/sec2-v2.pdf -// -// [ANSI X9.62-1998] Public Key Cryptography For The Financial Services -// Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) - -import ( - "fmt" -) - -const ( - // PubKeyBytesLenCompressed is the number of bytes of a serialized - // compressed public key. - PubKeyBytesLenCompressed = 33 - - // PubKeyBytesLenUncompressed is the number of bytes of a serialized - // uncompressed public key. - PubKeyBytesLenUncompressed = 65 - - // PubKeyFormatCompressedEven is the identifier prefix byte for a public key - // whose Y coordinate is even when serialized in the compressed format per - // section 2.3.4 of [SEC1](https://secg.org/sec1-v2.pdf#subsubsection.2.3.4). - PubKeyFormatCompressedEven byte = 0x02 - - // PubKeyFormatCompressedOdd is the identifier prefix byte for a public key - // whose Y coordinate is odd when serialized in the compressed format per - // section 2.3.4 of [SEC1](https://secg.org/sec1-v2.pdf#subsubsection.2.3.4). - PubKeyFormatCompressedOdd byte = 0x03 - - // PubKeyFormatUncompressed is the identifier prefix byte for a public key - // when serialized according in the uncompressed format per section 2.3.3 of - // [SEC1](https://secg.org/sec1-v2.pdf#subsubsection.2.3.3). - PubKeyFormatUncompressed byte = 0x04 - - // PubKeyFormatHybridEven is the identifier prefix byte for a public key - // whose Y coordinate is even when serialized according to the hybrid format - // per section 4.3.6 of [ANSI X9.62-1998]. - // - // NOTE: This format makes little sense in practice an therefore this - // package will not produce public keys serialized in this format. However, - // it will parse them since they exist in the wild. - PubKeyFormatHybridEven byte = 0x06 - - // PubKeyFormatHybridOdd is the identifier prefix byte for a public key - // whose Y coordingate is odd when serialized according to the hybrid format - // per section 4.3.6 of [ANSI X9.62-1998]. - // - // NOTE: This format makes little sense in practice an therefore this - // package will not produce public keys serialized in this format. However, - // it will parse them since they exist in the wild. - PubKeyFormatHybridOdd byte = 0x07 -) - -// PublicKey provides facilities for efficiently working with secp256k1 public -// keys within this package and includes functions to serialize in both -// uncompressed and compressed SEC (Standards for Efficient Cryptography) -// formats. -type PublicKey struct { - x FieldVal - y FieldVal -} - -// NewPublicKey instantiates a new public key with the given x and y -// coordinates. -// -// It should be noted that, unlike ParsePubKey, since this accepts arbitrary x -// and y coordinates, it allows creation of public keys that are not valid -// points on the secp256k1 curve. The IsOnCurve method of the returned instance -// can be used to determine validity. -func NewPublicKey(x, y *FieldVal) *PublicKey { - var pubKey PublicKey - pubKey.x.Set(x) - pubKey.y.Set(y) - return &pubKey -} - -// ParsePubKey parses a secp256k1 public key encoded according to the format -// specified by ANSI X9.62-1998, which means it is also compatible with the -// SEC (Standards for Efficient Cryptography) specification which is a subset of -// the former. In other words, it supports the uncompressed, compressed, and -// hybrid formats as follows: -// -// Compressed: -// <32-byte X coordinate> -// Uncompressed: -// <32-byte X coordinate><32-byte Y coordinate> -// Hybrid: -// <32-byte X coordinate><32-byte Y coordinate> -// -// NOTE: The hybrid format makes little sense in practice an therefore this -// package will not produce public keys serialized in this format. However, -// this function will properly parse them since they exist in the wild. -func ParsePubKey(serialized []byte) (key *PublicKey, err error) { - var x, y FieldVal - switch len(serialized) { - case PubKeyBytesLenUncompressed: - // Reject unsupported public key formats for the given length. - format := serialized[0] - switch format { - case PubKeyFormatUncompressed: - case PubKeyFormatHybridEven, PubKeyFormatHybridOdd: - default: - str := fmt.Sprintf("invalid public key: unsupported format: %x", - format) - return nil, makeError(ErrPubKeyInvalidFormat, str) - } - - // Parse the x and y coordinates while ensuring that they are in the - // allowed range. - if overflow := x.SetByteSlice(serialized[1:33]); overflow { - str := "invalid public key: x >= field prime" - return nil, makeError(ErrPubKeyXTooBig, str) - } - if overflow := y.SetByteSlice(serialized[33:]); overflow { - str := "invalid public key: y >= field prime" - return nil, makeError(ErrPubKeyYTooBig, str) - } - - // Ensure the oddness of the y coordinate matches the specified format - // for hybrid public keys. - if format == PubKeyFormatHybridEven || format == PubKeyFormatHybridOdd { - wantOddY := format == PubKeyFormatHybridOdd - if y.IsOdd() != wantOddY { - str := fmt.Sprintf("invalid public key: y oddness does not "+ - "match specified value of %v", wantOddY) - return nil, makeError(ErrPubKeyMismatchedOddness, str) - } - } - - // Reject public keys that are not on the secp256k1 curve. - if !isOnCurve(&x, &y) { - str := fmt.Sprintf("invalid public key: [%v,%v] not on secp256k1 "+ - "curve", x, y) - return nil, makeError(ErrPubKeyNotOnCurve, str) - } - - case PubKeyBytesLenCompressed: - // Reject unsupported public key formats for the given length. - format := serialized[0] - switch format { - case PubKeyFormatCompressedEven, PubKeyFormatCompressedOdd: - default: - str := fmt.Sprintf("invalid public key: unsupported format: %x", - format) - return nil, makeError(ErrPubKeyInvalidFormat, str) - } - - // Parse the x coordinate while ensuring that it is in the allowed - // range. - if overflow := x.SetByteSlice(serialized[1:33]); overflow { - str := "invalid public key: x >= field prime" - return nil, makeError(ErrPubKeyXTooBig, str) - } - - // Attempt to calculate the y coordinate for the given x coordinate such - // that the result pair is a point on the secp256k1 curve and the - // solution with desired oddness is chosen. - wantOddY := format == PubKeyFormatCompressedOdd - if !DecompressY(&x, wantOddY, &y) { - str := fmt.Sprintf("invalid public key: x coordinate %v is not on "+ - "the secp256k1 curve", x) - return nil, makeError(ErrPubKeyNotOnCurve, str) - } - y.Normalize() - - default: - str := fmt.Sprintf("malformed public key: invalid length: %d", - len(serialized)) - return nil, makeError(ErrPubKeyInvalidLen, str) - } - - return NewPublicKey(&x, &y), nil -} - -// SerializeUncompressed serializes a public key in the 65-byte uncompressed -// format. -func (p PublicKey) SerializeUncompressed() []byte { - // 0x04 || 32-byte x coordinate || 32-byte y coordinate - var b [PubKeyBytesLenUncompressed]byte - b[0] = PubKeyFormatUncompressed - p.x.PutBytesUnchecked(b[1:33]) - p.y.PutBytesUnchecked(b[33:65]) - return b[:] -} - -// SerializeCompressed serializes a public key in the 33-byte compressed format. -func (p PublicKey) SerializeCompressed() []byte { - // Choose the format byte depending on the oddness of the Y coordinate. - format := PubKeyFormatCompressedEven - if p.y.IsOdd() { - format = PubKeyFormatCompressedOdd - } - - // 0x02 or 0x03 || 32-byte x coordinate - var b [PubKeyBytesLenCompressed]byte - b[0] = format - p.x.PutBytesUnchecked(b[1:33]) - return b[:] -} - -// IsEqual compares this PublicKey instance to the one passed, returning true if -// both PublicKeys are equivalent. A PublicKey is equivalent to another, if they -// both have the same X and Y coordinate. -func (p *PublicKey) IsEqual(otherPubKey *PublicKey) bool { - return p.x.Equals(&otherPubKey.x) && p.y.Equals(&otherPubKey.y) -} - -// AsJacobian converts the public key into a Jacobian point with Z=1 and stores -// the result in the provided result param. This allows the public key to be -// treated a Jacobian point in the secp256k1 group in calculations. -func (p *PublicKey) AsJacobian(result *JacobianPoint) { - result.X.Set(&p.x) - result.Y.Set(&p.y) - result.Z.SetInt(1) -} - -// IsOnCurve returns whether or not the public key represents a point on the -// secp256k1 curve. -func (p *PublicKey) IsOnCurve() bool { - return isOnCurve(&p.x, &p.y) -} diff --git a/vendor/github.com/tyler-smith/go-bip39/.gitignore b/vendor/github.com/tyler-smith/go-bip39/.gitignore deleted file mode 100644 index 0f49594..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/.gitignore +++ /dev/null @@ -1,56 +0,0 @@ -# Executable from build -go-bip39 - - -# Dev utils -.ackrc - -# Compiled Object files, Static and Dynamic libs (Shared Objects) -coverage.out -*.o -*.a -*.so -*.db - -# Temp files -*~ -*.kate-swp -*.orig -debug -*.txt -*.log -.vscode/ -.idea/ -peers.json -*.csv -*.gz - -# Folders -_obj -_test -bin -pkg -.vagrant - -# Architecture specific extensions/prefixes -*.[568vq] -[568vq].out - -*.cgo1.go -*.cgo2.c -_cgo_defun.c -_cgo_gotypes.go -_cgo_export.* - -_testmain.go - -*.exe -*.test -*.block -*.entry - -.DS_Store - -*.out -.idea/ -----* diff --git a/vendor/github.com/tyler-smith/go-bip39/.travis.yml b/vendor/github.com/tyler-smith/go-bip39/.travis.yml deleted file mode 100644 index 65041c9..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/.travis.yml +++ /dev/null @@ -1,13 +0,0 @@ -language: go -go: - - "1.11.x" - - "1.12.x" - - "1.13.x" - - "1.14.x" - - "tip" - -env: - - GO111MODULE=on - -script: - - make profile_tests diff --git a/vendor/github.com/tyler-smith/go-bip39/LICENSE b/vendor/github.com/tyler-smith/go-bip39/LICENSE deleted file mode 100644 index 4dae82d..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -The MIT License (MIT) - -Copyright (c) 2014-2018 Tyler Smith and contributors - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/vendor/github.com/tyler-smith/go-bip39/Makefile b/vendor/github.com/tyler-smith/go-bip39/Makefile deleted file mode 100644 index f0f3fe8..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/Makefile +++ /dev/null @@ -1,11 +0,0 @@ -.DEFAULT_GOAL := help - -tests: ## Run tests with coverage - go test -v -cover ./... - -profile_tests: ## Run tests and output coverage profiling - go test -v -coverprofile=coverage.out . - go tool cover -html=coverage.out - -help: - @grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' diff --git a/vendor/github.com/tyler-smith/go-bip39/README.md b/vendor/github.com/tyler-smith/go-bip39/README.md deleted file mode 100644 index 933296f..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/README.md +++ /dev/null @@ -1,45 +0,0 @@ -# go-bip39 -[![Build Status](https://travis-ci.org/tyler-smith/go-bip39.svg?branch=master)](https://travis-ci.org/tyler-smith/go-bip39) -[![license](https://img.shields.io/github/license/tyler-smith/go-bip39.svg?maxAge=2592000)](https://github.com/tyler-smith/go-bip39/blob/master/LICENSE) -[![Documentation](https://godoc.org/github.com/tyler-smith/go-bip39?status.svg)](http://godoc.org/github.com/tyler-smith/go-bip39) -[![Go Report Card](https://goreportcard.com/badge/github.com/tyler-smith/go-bip39)](https://goreportcard.com/report/github.com/tyler-smith/go-bip39) -[![GitHub issues](https://img.shields.io/github/issues/tyler-smith/go-bip39.svg)](https://github.com/tyler-smith/go-bip39/issues) - - -A golang implementation of the BIP0039 spec for mnemonic seeds - -## Example - -```go -package main - -import ( - "github.com/tyler-smith/go-bip39" - "github.com/tyler-smith/go-bip32" - "fmt" -) - -func main(){ - // Generate a mnemonic for memorization or user-friendly seeds - entropy, _ := bip39.NewEntropy(256) - mnemonic, _ := bip39.NewMnemonic(entropy) - - // Generate a Bip32 HD wallet for the mnemonic and a user supplied password - seed := bip39.NewSeed(mnemonic, "Secret Passphrase") - - masterKey, _ := bip32.NewMasterKey(seed) - publicKey := masterKey.PublicKey() - - // Display mnemonic and keys - fmt.Println("Mnemonic: ", mnemonic) - fmt.Println("Master private key: ", masterKey) - fmt.Println("Master public key: ", publicKey) -} -``` - -## Credits - -Wordlists are from the [bip39 spec](https://github.com/bitcoin/bips/tree/master/bip-0039). - -Test vectors are from the standard Python BIP0039 implementation from the -Trezor team: [https://github.com/trezor/python-mnemonic](https://github.com/trezor/python-mnemonic) diff --git a/vendor/github.com/tyler-smith/go-bip39/bip39.go b/vendor/github.com/tyler-smith/go-bip39/bip39.go deleted file mode 100644 index 180adda..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/bip39.go +++ /dev/null @@ -1,360 +0,0 @@ -// Package bip39 is the Golang implementation of the BIP39 spec. -// -// The official BIP39 spec can be found at -// https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki -package bip39 - -import ( - "crypto/rand" - "crypto/sha256" - "crypto/sha512" - "encoding/binary" - "errors" - "fmt" - "math/big" - "strings" - - "github.com/tyler-smith/go-bip39/wordlists" - "golang.org/x/crypto/pbkdf2" -) - -var ( - // Some bitwise operands for working with big.Ints - last11BitsMask = big.NewInt(2047) - shift11BitsMask = big.NewInt(2048) - bigOne = big.NewInt(1) - bigTwo = big.NewInt(2) - - // used to isolate the checksum bits from the entropy+checksum byte array - wordLengthChecksumMasksMapping = map[int]*big.Int{ - 12: big.NewInt(15), - 15: big.NewInt(31), - 18: big.NewInt(63), - 21: big.NewInt(127), - 24: big.NewInt(255), - } - // used to use only the desired x of 8 available checksum bits. - // 256 bit (word length 24) requires all 8 bits of the checksum, - // and thus no shifting is needed for it (we would get a divByZero crash if we did) - wordLengthChecksumShiftMapping = map[int]*big.Int{ - 12: big.NewInt(16), - 15: big.NewInt(8), - 18: big.NewInt(4), - 21: big.NewInt(2), - } - - // wordList is the set of words to use - wordList []string - - // wordMap is a reverse lookup map for wordList - wordMap map[string]int -) - -var ( - // ErrInvalidMnemonic is returned when trying to use a malformed mnemonic. - ErrInvalidMnemonic = errors.New("Invalid mnenomic") - - // ErrEntropyLengthInvalid is returned when trying to use an entropy set with - // an invalid size. - ErrEntropyLengthInvalid = errors.New("Entropy length must be [128, 256] and a multiple of 32") - - // ErrValidatedSeedLengthMismatch is returned when a validated seed is not the - // same size as the given seed. This should never happen is present only as a - // sanity assertion. - ErrValidatedSeedLengthMismatch = errors.New("Seed length does not match validated seed length") - - // ErrChecksumIncorrect is returned when entropy has the incorrect checksum. - ErrChecksumIncorrect = errors.New("Checksum incorrect") -) - -func init() { - SetWordList(wordlists.English) -} - -// SetWordList sets the list of words to use for mnemonics. Currently the list -// that is set is used package-wide. -func SetWordList(list []string) { - wordList = list - wordMap = map[string]int{} - for i, v := range wordList { - wordMap[v] = i - } -} - -// GetWordList gets the list of words to use for mnemonics. -func GetWordList() []string { - return wordList -} - -// GetWordIndex gets word index in wordMap. -func GetWordIndex(word string) (int, bool) { - idx, ok := wordMap[word] - return idx, ok -} - -// NewEntropy will create random entropy bytes -// so long as the requested size bitSize is an appropriate size. -// -// bitSize has to be a multiple 32 and be within the inclusive range of {128, 256} -func NewEntropy(bitSize int) ([]byte, error) { - err := validateEntropyBitSize(bitSize) - if err != nil { - return nil, err - } - - entropy := make([]byte, bitSize/8) - _, err = rand.Read(entropy) - return entropy, err -} - -// EntropyFromMnemonic takes a mnemonic generated by this library, -// and returns the input entropy used to generate the given mnemonic. -// An error is returned if the given mnemonic is invalid. -func EntropyFromMnemonic(mnemonic string) ([]byte, error) { - mnemonicSlice, isValid := splitMnemonicWords(mnemonic) - if !isValid { - return nil, ErrInvalidMnemonic - } - - // Decode the words into a big.Int. - b := big.NewInt(0) - for _, v := range mnemonicSlice { - index, found := wordMap[v] - if found == false { - return nil, fmt.Errorf("word `%v` not found in reverse map", v) - } - var wordBytes [2]byte - binary.BigEndian.PutUint16(wordBytes[:], uint16(index)) - b = b.Mul(b, shift11BitsMask) - b = b.Or(b, big.NewInt(0).SetBytes(wordBytes[:])) - } - - // Build and add the checksum to the big.Int. - checksum := big.NewInt(0) - checksumMask := wordLengthChecksumMasksMapping[len(mnemonicSlice)] - checksum = checksum.And(b, checksumMask) - - b.Div(b, big.NewInt(0).Add(checksumMask, bigOne)) - - // The entropy is the underlying bytes of the big.Int. Any upper bytes of - // all 0's are not returned so we pad the beginning of the slice with empty - // bytes if necessary. - entropy := b.Bytes() - entropy = padByteSlice(entropy, len(mnemonicSlice)/3*4) - - // Generate the checksum and compare with the one we got from the mneomnic. - entropyChecksumBytes := computeChecksum(entropy) - entropyChecksum := big.NewInt(int64(entropyChecksumBytes[0])) - if l := len(mnemonicSlice); l != 24 { - checksumShift := wordLengthChecksumShiftMapping[l] - entropyChecksum.Div(entropyChecksum, checksumShift) - } - - if checksum.Cmp(entropyChecksum) != 0 { - return nil, ErrChecksumIncorrect - } - - return entropy, nil -} - -// NewMnemonic will return a string consisting of the mnemonic words for -// the given entropy. -// If the provide entropy is invalid, an error will be returned. -func NewMnemonic(entropy []byte) (string, error) { - // Compute some lengths for convenience. - entropyBitLength := len(entropy) * 8 - checksumBitLength := entropyBitLength / 32 - sentenceLength := (entropyBitLength + checksumBitLength) / 11 - - // Validate that the requested size is supported. - err := validateEntropyBitSize(entropyBitLength) - if err != nil { - return "", err - } - - // Add checksum to entropy. - entropy = addChecksum(entropy) - - // Break entropy up into sentenceLength chunks of 11 bits. - // For each word AND mask the rightmost 11 bits and find the word at that index. - // Then bitshift entropy 11 bits right and repeat. - // Add to the last empty slot so we can work with LSBs instead of MSB. - - // Entropy as an int so we can bitmask without worrying about bytes slices. - entropyInt := new(big.Int).SetBytes(entropy) - - // Slice to hold words in. - words := make([]string, sentenceLength) - - // Throw away big.Int for AND masking. - word := big.NewInt(0) - - for i := sentenceLength - 1; i >= 0; i-- { - // Get 11 right most bits and bitshift 11 to the right for next time. - word.And(entropyInt, last11BitsMask) - entropyInt.Div(entropyInt, shift11BitsMask) - - // Get the bytes representing the 11 bits as a 2 byte slice. - wordBytes := padByteSlice(word.Bytes(), 2) - - // Convert bytes to an index and add that word to the list. - words[i] = wordList[binary.BigEndian.Uint16(wordBytes)] - } - - return strings.Join(words, " "), nil -} - -// MnemonicToByteArray takes a mnemonic string and turns it into a byte array -// suitable for creating another mnemonic. -// An error is returned if the mnemonic is invalid. -func MnemonicToByteArray(mnemonic string, raw ...bool) ([]byte, error) { - var ( - mnemonicSlice = strings.Split(mnemonic, " ") - entropyBitSize = len(mnemonicSlice) * 11 - checksumBitSize = entropyBitSize % 32 - fullByteSize = (entropyBitSize-checksumBitSize)/8 + 1 - checksumByteSize = fullByteSize - (fullByteSize % 4) - ) - - // Pre validate that the mnemonic is well formed and only contains words that - // are present in the word list. - if !IsMnemonicValid(mnemonic) { - return nil, ErrInvalidMnemonic - } - - // Convert word indices to a big.Int representing the entropy. - checksummedEntropy := big.NewInt(0) - modulo := big.NewInt(2048) - for _, v := range mnemonicSlice { - index := big.NewInt(int64(wordMap[v])) - checksummedEntropy.Mul(checksummedEntropy, modulo) - checksummedEntropy.Add(checksummedEntropy, index) - } - - // Calculate the unchecksummed entropy so we can validate that the checksum is - // correct. - checksumModulo := big.NewInt(0).Exp(bigTwo, big.NewInt(int64(checksumBitSize)), nil) - rawEntropy := big.NewInt(0).Div(checksummedEntropy, checksumModulo) - - // Convert big.Ints to byte padded byte slices. - rawEntropyBytes := padByteSlice(rawEntropy.Bytes(), checksumByteSize) - checksummedEntropyBytes := padByteSlice(checksummedEntropy.Bytes(), fullByteSize) - - // Validate that the checksum is correct. - newChecksummedEntropyBytes := padByteSlice(addChecksum(rawEntropyBytes), fullByteSize) - if !compareByteSlices(checksummedEntropyBytes, newChecksummedEntropyBytes) { - return nil, ErrChecksumIncorrect - } - - if len(raw) > 0 && raw[0] { - return rawEntropyBytes, nil - } - - return checksummedEntropyBytes, nil -} - -// NewSeedWithErrorChecking creates a hashed seed output given the mnemonic string and a password. -// An error is returned if the mnemonic is not convertible to a byte array. -func NewSeedWithErrorChecking(mnemonic string, password string) ([]byte, error) { - _, err := MnemonicToByteArray(mnemonic) - if err != nil { - return nil, err - } - return NewSeed(mnemonic, password), nil -} - -// NewSeed creates a hashed seed output given a provided string and password. -// No checking is performed to validate that the string provided is a valid mnemonic. -func NewSeed(mnemonic string, password string) []byte { - return pbkdf2.Key([]byte(mnemonic), []byte("mnemonic"+password), 2048, 64, sha512.New) -} - -// IsMnemonicValid attempts to verify that the provided mnemonic is valid. -// Validity is determined by both the number of words being appropriate, -// and that all the words in the mnemonic are present in the word list. -func IsMnemonicValid(mnemonic string) bool { - _, err := EntropyFromMnemonic(mnemonic) - return err == nil -} - -// Appends to data the first (len(data) / 32)bits of the result of sha256(data) -// Currently only supports data up to 32 bytes -func addChecksum(data []byte) []byte { - // Get first byte of sha256 - hash := computeChecksum(data) - firstChecksumByte := hash[0] - - // len() is in bytes so we divide by 4 - checksumBitLength := uint(len(data) / 4) - - // For each bit of check sum we want we shift the data one the left - // and then set the (new) right most bit equal to checksum bit at that index - // staring from the left - dataBigInt := new(big.Int).SetBytes(data) - for i := uint(0); i < checksumBitLength; i++ { - // Bitshift 1 left - dataBigInt.Mul(dataBigInt, bigTwo) - - // Set rightmost bit if leftmost checksum bit is set - if uint8(firstChecksumByte&(1<<(7-i))) > 0 { - dataBigInt.Or(dataBigInt, bigOne) - } - } - - return dataBigInt.Bytes() -} - -func computeChecksum(data []byte) []byte { - hasher := sha256.New() - hasher.Write(data) - return hasher.Sum(nil) -} - -// validateEntropyBitSize ensures that entropy is the correct size for being a -// mnemonic. -func validateEntropyBitSize(bitSize int) error { - if (bitSize%32) != 0 || bitSize < 128 || bitSize > 256 { - return ErrEntropyLengthInvalid - } - return nil -} - -// padByteSlice returns a byte slice of the given size with contents of the -// given slice left padded and any empty spaces filled with 0's. -func padByteSlice(slice []byte, length int) []byte { - offset := length - len(slice) - if offset <= 0 { - return slice - } - newSlice := make([]byte, length) - copy(newSlice[offset:], slice) - return newSlice -} - -// compareByteSlices returns true of the byte slices have equal contents and -// returns false otherwise. -func compareByteSlices(a, b []byte) bool { - if len(a) != len(b) { - return false - } - for i := range a { - if a[i] != b[i] { - return false - } - } - return true -} - -func splitMnemonicWords(mnemonic string) ([]string, bool) { - // Create a list of all the words in the mnemonic sentence - words := strings.Fields(mnemonic) - - // Get num of words - numOfWords := len(words) - - // The number of words should be 12, 15, 18, 21 or 24 - if numOfWords%3 != 0 || numOfWords < 12 || numOfWords > 24 { - return nil, false - } - return words, true -} diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/chinese_simplified.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/chinese_simplified.go deleted file mode 100644 index 0ee2972..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/chinese_simplified.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/chinese_simplified.txt - // $ crc32 chinese_simplified.txt - // e3721bbf - checksum := crc32.ChecksumIEEE([]byte(chineseSimplified)) - if fmt.Sprintf("%x", checksum) != "e3721bbf" { - panic("chineseSimplified checksum invalid") - } -} - -// ChineseSimplified is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/chinese_simplified.txt -var ChineseSimplified = strings.Split(strings.TrimSpace(chineseSimplified), "\n") -var chineseSimplified = `的 -一 -是 -在 -不 -了 -有 -和 -人 -这 -中 -大 -为 -上 -个 -国 -我 -以 -要 -他 -时 -来 -用 -们 -生 -到 -作 -地 -于 -出 -就 -分 -对 -成 -会 -可 -主 -发 -年 -动 -同 -工 -也 -能 -下 -过 -子 -说 -产 -种 -面 -而 -方 -后 -多 -定 -行 -学 -法 -所 -民 -得 -经 -十 -三 -之 -进 -着 -等 -部 -度 -家 -电 -力 -里 -如 -水 -化 -高 -自 -二 -理 -起 -小 -物 -现 -实 -加 -量 -都 -两 -体 -制 -机 -当 -使 -点 -从 -业 -本 -去 -把 -性 -好 -应 -开 -它 -合 -还 -因 -由 -其 -些 -然 -前 -外 -天 -政 -四 -日 -那 -社 -义 -事 -平 -形 -相 -全 -表 -间 -样 -与 -关 -各 -重 -新 -线 -内 -数 -正 -心 -反 -你 -明 -看 -原 -又 -么 -利 -比 -或 -但 -质 -气 -第 -向 -道 -命 -此 -变 -条 -只 -没 -结 -解 -问 -意 -建 -月 -公 -无 -系 -军 -很 -情 -者 -最 -立 -代 -想 -已 -通 -并 -提 -直 -题 -党 -程 -展 -五 -果 -料 -象 -员 -革 -位 -入 -常 -文 -总 -次 -品 -式 -活 -设 -及 -管 -特 -件 -长 -求 -老 -头 -基 -资 -边 -流 -路 -级 -少 -图 -山 -统 -接 -知 -较 -将 -组 -见 -计 -别 -她 -手 -角 -期 -根 -论 -运 -农 -指 -几 -九 -区 -强 -放 -决 -西 -被 -干 -做 -必 -战 -先 -回 -则 -任 -取 -据 -处 -队 -南 -给 -色 -光 -门 -即 -保 -治 -北 -造 -百 -规 -热 -领 -七 -海 -口 -东 -导 -器 -压 -志 -世 -金 -增 -争 -济 -阶 -油 -思 -术 -极 -交 -受 -联 -什 -认 -六 -共 -权 -收 -证 -改 -清 -美 -再 -采 -转 -更 -单 -风 -切 -打 -白 -教 -速 -花 -带 -安 -场 -身 -车 -例 -真 -务 -具 -万 -每 -目 -至 -达 -走 -积 -示 -议 -声 -报 -斗 -完 -类 -八 -离 -华 -名 -确 -才 -科 -张 -信 -马 -节 -话 -米 -整 -空 -元 -况 -今 -集 -温 -传 -土 -许 -步 -群 -广 -石 -记 -需 -段 -研 -界 -拉 -林 -律 -叫 -且 -究 -观 -越 -织 -装 -影 -算 -低 -持 -音 -众 -书 -布 -复 -容 -儿 -须 -际 -商 -非 -验 -连 -断 -深 -难 -近 -矿 -千 -周 -委 -素 -技 -备 -半 -办 -青 -省 -列 -习 -响 -约 -支 -般 -史 -感 -劳 -便 -团 -往 -酸 -历 -市 -克 -何 -除 -消 -构 -府 -称 -太 -准 -精 -值 -号 -率 -族 -维 -划 -选 -标 -写 -存 -候 -毛 -亲 -快 -效 -斯 -院 -查 -江 -型 -眼 -王 -按 -格 -养 -易 -置 -派 -层 -片 -始 -却 -专 -状 -育 -厂 -京 -识 -适 -属 -圆 -包 -火 -住 -调 -满 -县 -局 -照 -参 -红 -细 -引 -听 -该 -铁 -价 -严 -首 -底 -液 -官 -德 -随 -病 -苏 -失 -尔 -死 -讲 -配 -女 -黄 -推 -显 -谈 -罪 -神 -艺 -呢 -席 -含 -企 -望 -密 -批 -营 -项 -防 -举 -球 -英 -氧 -势 -告 -李 -台 -落 -木 -帮 -轮 -破 -亚 -师 -围 -注 -远 -字 -材 -排 -供 -河 -态 -封 -另 -施 -减 -树 -溶 -怎 -止 -案 -言 -士 -均 -武 -固 -叶 -鱼 -波 -视 -仅 -费 -紧 -爱 -左 -章 -早 -朝 -害 -续 -轻 -服 -试 -食 -充 -兵 -源 -判 -护 -司 -足 -某 -练 -差 -致 -板 -田 -降 -黑 -犯 -负 -击 -范 -继 -兴 -似 -余 -坚 -曲 -输 -修 -故 -城 -夫 -够 -送 -笔 -船 -占 -右 -财 -吃 -富 -春 -职 -觉 -汉 -画 -功 -巴 -跟 -虽 -杂 -飞 -检 -吸 -助 -升 -阳 -互 -初 -创 -抗 -考 -投 -坏 -策 -古 -径 -换 -未 -跑 -留 -钢 -曾 -端 -责 -站 -简 -述 -钱 -副 -尽 -帝 -射 -草 -冲 -承 -独 -令 -限 -阿 -宣 -环 -双 -请 -超 -微 -让 -控 -州 -良 -轴 -找 -否 -纪 -益 -依 -优 -顶 -础 -载 -倒 -房 -突 -坐 -粉 -敌 -略 -客 -袁 -冷 -胜 -绝 -析 -块 -剂 -测 -丝 -协 -诉 -念 -陈 -仍 -罗 -盐 -友 -洋 -错 -苦 -夜 -刑 -移 -频 -逐 -靠 -混 -母 -短 -皮 -终 -聚 -汽 -村 -云 -哪 -既 -距 -卫 -停 -烈 -央 -察 -烧 -迅 -境 -若 -印 -洲 -刻 -括 -激 -孔 -搞 -甚 -室 -待 -核 -校 -散 -侵 -吧 -甲 -游 -久 -菜 -味 -旧 -模 -湖 -货 -损 -预 -阻 -毫 -普 -稳 -乙 -妈 -植 -息 -扩 -银 -语 -挥 -酒 -守 -拿 -序 -纸 -医 -缺 -雨 -吗 -针 -刘 -啊 -急 -唱 -误 -训 -愿 -审 -附 -获 -茶 -鲜 -粮 -斤 -孩 -脱 -硫 -肥 -善 -龙 -演 -父 -渐 -血 -欢 -械 -掌 -歌 -沙 -刚 -攻 -谓 -盾 -讨 -晚 -粒 -乱 -燃 -矛 -乎 -杀 -药 -宁 -鲁 -贵 -钟 -煤 -读 -班 -伯 -香 -介 -迫 -句 -丰 -培 -握 -兰 -担 -弦 -蛋 -沉 -假 -穿 -执 -答 -乐 -谁 -顺 -烟 -缩 -征 -脸 -喜 -松 -脚 -困 -异 -免 -背 -星 -福 -买 -染 -井 -概 -慢 -怕 -磁 -倍 -祖 -皇 -促 -静 -补 -评 -翻 -肉 -践 -尼 -衣 -宽 -扬 -棉 -希 -伤 -操 -垂 -秋 -宜 -氢 -套 -督 -振 -架 -亮 -末 -宪 -庆 -编 -牛 -触 -映 -雷 -销 -诗 -座 -居 -抓 -裂 -胞 -呼 -娘 -景 -威 -绿 -晶 -厚 -盟 -衡 -鸡 -孙 -延 -危 -胶 -屋 -乡 -临 -陆 -顾 -掉 -呀 -灯 -岁 -措 -束 -耐 -剧 -玉 -赵 -跳 -哥 -季 -课 -凯 -胡 -额 -款 -绍 -卷 -齐 -伟 -蒸 -殖 -永 -宗 -苗 -川 -炉 -岩 -弱 -零 -杨 -奏 -沿 -露 -杆 -探 -滑 -镇 -饭 -浓 -航 -怀 -赶 -库 -夺 -伊 -灵 -税 -途 -灭 -赛 -归 -召 -鼓 -播 -盘 -裁 -险 -康 -唯 -录 -菌 -纯 -借 -糖 -盖 -横 -符 -私 -努 -堂 -域 -枪 -润 -幅 -哈 -竟 -熟 -虫 -泽 -脑 -壤 -碳 -欧 -遍 -侧 -寨 -敢 -彻 -虑 -斜 -薄 -庭 -纳 -弹 -饲 -伸 -折 -麦 -湿 -暗 -荷 -瓦 -塞 -床 -筑 -恶 -户 -访 -塔 -奇 -透 -梁 -刀 -旋 -迹 -卡 -氯 -遇 -份 -毒 -泥 -退 -洗 -摆 -灰 -彩 -卖 -耗 -夏 -择 -忙 -铜 -献 -硬 -予 -繁 -圈 -雪 -函 -亦 -抽 -篇 -阵 -阴 -丁 -尺 -追 -堆 -雄 -迎 -泛 -爸 -楼 -避 -谋 -吨 -野 -猪 -旗 -累 -偏 -典 -馆 -索 -秦 -脂 -潮 -爷 -豆 -忽 -托 -惊 -塑 -遗 -愈 -朱 -替 -纤 -粗 -倾 -尚 -痛 -楚 -谢 -奋 -购 -磨 -君 -池 -旁 -碎 -骨 -监 -捕 -弟 -暴 -割 -贯 -殊 -释 -词 -亡 -壁 -顿 -宝 -午 -尘 -闻 -揭 -炮 -残 -冬 -桥 -妇 -警 -综 -招 -吴 -付 -浮 -遭 -徐 -您 -摇 -谷 -赞 -箱 -隔 -订 -男 -吹 -园 -纷 -唐 -败 -宋 -玻 -巨 -耕 -坦 -荣 -闭 -湾 -键 -凡 -驻 -锅 -救 -恩 -剥 -凝 -碱 -齿 -截 -炼 -麻 -纺 -禁 -废 -盛 -版 -缓 -净 -睛 -昌 -婚 -涉 -筒 -嘴 -插 -岸 -朗 -庄 -街 -藏 -姑 -贸 -腐 -奴 -啦 -惯 -乘 -伙 -恢 -匀 -纱 -扎 -辩 -耳 -彪 -臣 -亿 -璃 -抵 -脉 -秀 -萨 -俄 -网 -舞 -店 -喷 -纵 -寸 -汗 -挂 -洪 -贺 -闪 -柬 -爆 -烯 -津 -稻 -墙 -软 -勇 -像 -滚 -厘 -蒙 -芳 -肯 -坡 -柱 -荡 -腿 -仪 -旅 -尾 -轧 -冰 -贡 -登 -黎 -削 -钻 -勒 -逃 -障 -氨 -郭 -峰 -币 -港 -伏 -轨 -亩 -毕 -擦 -莫 -刺 -浪 -秘 -援 -株 -健 -售 -股 -岛 -甘 -泡 -睡 -童 -铸 -汤 -阀 -休 -汇 -舍 -牧 -绕 -炸 -哲 -磷 -绩 -朋 -淡 -尖 -启 -陷 -柴 -呈 -徒 -颜 -泪 -稍 -忘 -泵 -蓝 -拖 -洞 -授 -镜 -辛 -壮 -锋 -贫 -虚 -弯 -摩 -泰 -幼 -廷 -尊 -窗 -纲 -弄 -隶 -疑 -氏 -宫 -姐 -震 -瑞 -怪 -尤 -琴 -循 -描 -膜 -违 -夹 -腰 -缘 -珠 -穷 -森 -枝 -竹 -沟 -催 -绳 -忆 -邦 -剩 -幸 -浆 -栏 -拥 -牙 -贮 -礼 -滤 -钠 -纹 -罢 -拍 -咱 -喊 -袖 -埃 -勤 -罚 -焦 -潜 -伍 -墨 -欲 -缝 -姓 -刊 -饱 -仿 -奖 -铝 -鬼 -丽 -跨 -默 -挖 -链 -扫 -喝 -袋 -炭 -污 -幕 -诸 -弧 -励 -梅 -奶 -洁 -灾 -舟 -鉴 -苯 -讼 -抱 -毁 -懂 -寒 -智 -埔 -寄 -届 -跃 -渡 -挑 -丹 -艰 -贝 -碰 -拔 -爹 -戴 -码 -梦 -芽 -熔 -赤 -渔 -哭 -敬 -颗 -奔 -铅 -仲 -虎 -稀 -妹 -乏 -珍 -申 -桌 -遵 -允 -隆 -螺 -仓 -魏 -锐 -晓 -氮 -兼 -隐 -碍 -赫 -拨 -忠 -肃 -缸 -牵 -抢 -博 -巧 -壳 -兄 -杜 -讯 -诚 -碧 -祥 -柯 -页 -巡 -矩 -悲 -灌 -龄 -伦 -票 -寻 -桂 -铺 -圣 -恐 -恰 -郑 -趣 -抬 -荒 -腾 -贴 -柔 -滴 -猛 -阔 -辆 -妻 -填 -撤 -储 -签 -闹 -扰 -紫 -砂 -递 -戏 -吊 -陶 -伐 -喂 -疗 -瓶 -婆 -抚 -臂 -摸 -忍 -虾 -蜡 -邻 -胸 -巩 -挤 -偶 -弃 -槽 -劲 -乳 -邓 -吉 -仁 -烂 -砖 -租 -乌 -舰 -伴 -瓜 -浅 -丙 -暂 -燥 -橡 -柳 -迷 -暖 -牌 -秧 -胆 -详 -簧 -踏 -瓷 -谱 -呆 -宾 -糊 -洛 -辉 -愤 -竞 -隙 -怒 -粘 -乃 -绪 -肩 -籍 -敏 -涂 -熙 -皆 -侦 -悬 -掘 -享 -纠 -醒 -狂 -锁 -淀 -恨 -牲 -霸 -爬 -赏 -逆 -玩 -陵 -祝 -秒 -浙 -貌 -役 -彼 -悉 -鸭 -趋 -凤 -晨 -畜 -辈 -秩 -卵 -署 -梯 -炎 -滩 -棋 -驱 -筛 -峡 -冒 -啥 -寿 -译 -浸 -泉 -帽 -迟 -硅 -疆 -贷 -漏 -稿 -冠 -嫩 -胁 -芯 -牢 -叛 -蚀 -奥 -鸣 -岭 -羊 -凭 -串 -塘 -绘 -酵 -融 -盆 -锡 -庙 -筹 -冻 -辅 -摄 -袭 -筋 -拒 -僚 -旱 -钾 -鸟 -漆 -沈 -眉 -疏 -添 -棒 -穗 -硝 -韩 -逼 -扭 -侨 -凉 -挺 -碗 -栽 -炒 -杯 -患 -馏 -劝 -豪 -辽 -勃 -鸿 -旦 -吏 -拜 -狗 -埋 -辊 -掩 -饮 -搬 -骂 -辞 -勾 -扣 -估 -蒋 -绒 -雾 -丈 -朵 -姆 -拟 -宇 -辑 -陕 -雕 -偿 -蓄 -崇 -剪 -倡 -厅 -咬 -驶 -薯 -刷 -斥 -番 -赋 -奉 -佛 -浇 -漫 -曼 -扇 -钙 -桃 -扶 -仔 -返 -俗 -亏 -腔 -鞋 -棱 -覆 -框 -悄 -叔 -撞 -骗 -勘 -旺 -沸 -孤 -吐 -孟 -渠 -屈 -疾 -妙 -惜 -仰 -狠 -胀 -谐 -抛 -霉 -桑 -岗 -嘛 -衰 -盗 -渗 -脏 -赖 -涌 -甜 -曹 -阅 -肌 -哩 -厉 -烃 -纬 -毅 -昨 -伪 -症 -煮 -叹 -钉 -搭 -茎 -笼 -酷 -偷 -弓 -锥 -恒 -杰 -坑 -鼻 -翼 -纶 -叙 -狱 -逮 -罐 -络 -棚 -抑 -膨 -蔬 -寺 -骤 -穆 -冶 -枯 -册 -尸 -凸 -绅 -坯 -牺 -焰 -轰 -欣 -晋 -瘦 -御 -锭 -锦 -丧 -旬 -锻 -垄 -搜 -扑 -邀 -亭 -酯 -迈 -舒 -脆 -酶 -闲 -忧 -酚 -顽 -羽 -涨 -卸 -仗 -陪 -辟 -惩 -杭 -姚 -肚 -捉 -飘 -漂 -昆 -欺 -吾 -郎 -烷 -汁 -呵 -饰 -萧 -雅 -邮 -迁 -燕 -撒 -姻 -赴 -宴 -烦 -债 -帐 -斑 -铃 -旨 -醇 -董 -饼 -雏 -姿 -拌 -傅 -腹 -妥 -揉 -贤 -拆 -歪 -葡 -胺 -丢 -浩 -徽 -昂 -垫 -挡 -览 -贪 -慰 -缴 -汪 -慌 -冯 -诺 -姜 -谊 -凶 -劣 -诬 -耀 -昏 -躺 -盈 -骑 -乔 -溪 -丛 -卢 -抹 -闷 -咨 -刮 -驾 -缆 -悟 -摘 -铒 -掷 -颇 -幻 -柄 -惠 -惨 -佳 -仇 -腊 -窝 -涤 -剑 -瞧 -堡 -泼 -葱 -罩 -霍 -捞 -胎 -苍 -滨 -俩 -捅 -湘 -砍 -霞 -邵 -萄 -疯 -淮 -遂 -熊 -粪 -烘 -宿 -档 -戈 -驳 -嫂 -裕 -徙 -箭 -捐 -肠 -撑 -晒 -辨 -殿 -莲 -摊 -搅 -酱 -屏 -疫 -哀 -蔡 -堵 -沫 -皱 -畅 -叠 -阁 -莱 -敲 -辖 -钩 -痕 -坝 -巷 -饿 -祸 -丘 -玄 -溜 -曰 -逻 -彭 -尝 -卿 -妨 -艇 -吞 -韦 -怨 -矮 -歇 -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/chinese_traditional.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/chinese_traditional.go deleted file mode 100644 index 83812ce..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/chinese_traditional.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/chinese_traditional.txt - // $ crc32 chinese_traditional.txt - // 3c20b443 - checksum := crc32.ChecksumIEEE([]byte(chineseTraditional)) - if fmt.Sprintf("%x", checksum) != "3c20b443" { - panic("chineseTraditional checksum invalid") - } -} - -// ChineseTraditional is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/chinese_traditional.txt -var ChineseTraditional = strings.Split(strings.TrimSpace(chineseTraditional), "\n") -var chineseTraditional = `的 -一 -是 -在 -不 -了 -有 -和 -人 -這 -中 -大 -為 -上 -個 -國 -我 -以 -要 -他 -時 -來 -用 -們 -生 -到 -作 -地 -於 -出 -就 -分 -對 -成 -會 -可 -主 -發 -年 -動 -同 -工 -也 -能 -下 -過 -子 -說 -產 -種 -面 -而 -方 -後 -多 -定 -行 -學 -法 -所 -民 -得 -經 -十 -三 -之 -進 -著 -等 -部 -度 -家 -電 -力 -裡 -如 -水 -化 -高 -自 -二 -理 -起 -小 -物 -現 -實 -加 -量 -都 -兩 -體 -制 -機 -當 -使 -點 -從 -業 -本 -去 -把 -性 -好 -應 -開 -它 -合 -還 -因 -由 -其 -些 -然 -前 -外 -天 -政 -四 -日 -那 -社 -義 -事 -平 -形 -相 -全 -表 -間 -樣 -與 -關 -各 -重 -新 -線 -內 -數 -正 -心 -反 -你 -明 -看 -原 -又 -麼 -利 -比 -或 -但 -質 -氣 -第 -向 -道 -命 -此 -變 -條 -只 -沒 -結 -解 -問 -意 -建 -月 -公 -無 -系 -軍 -很 -情 -者 -最 -立 -代 -想 -已 -通 -並 -提 -直 -題 -黨 -程 -展 -五 -果 -料 -象 -員 -革 -位 -入 -常 -文 -總 -次 -品 -式 -活 -設 -及 -管 -特 -件 -長 -求 -老 -頭 -基 -資 -邊 -流 -路 -級 -少 -圖 -山 -統 -接 -知 -較 -將 -組 -見 -計 -別 -她 -手 -角 -期 -根 -論 -運 -農 -指 -幾 -九 -區 -強 -放 -決 -西 -被 -幹 -做 -必 -戰 -先 -回 -則 -任 -取 -據 -處 -隊 -南 -給 -色 -光 -門 -即 -保 -治 -北 -造 -百 -規 -熱 -領 -七 -海 -口 -東 -導 -器 -壓 -志 -世 -金 -增 -爭 -濟 -階 -油 -思 -術 -極 -交 -受 -聯 -什 -認 -六 -共 -權 -收 -證 -改 -清 -美 -再 -採 -轉 -更 -單 -風 -切 -打 -白 -教 -速 -花 -帶 -安 -場 -身 -車 -例 -真 -務 -具 -萬 -每 -目 -至 -達 -走 -積 -示 -議 -聲 -報 -鬥 -完 -類 -八 -離 -華 -名 -確 -才 -科 -張 -信 -馬 -節 -話 -米 -整 -空 -元 -況 -今 -集 -溫 -傳 -土 -許 -步 -群 -廣 -石 -記 -需 -段 -研 -界 -拉 -林 -律 -叫 -且 -究 -觀 -越 -織 -裝 -影 -算 -低 -持 -音 -眾 -書 -布 -复 -容 -兒 -須 -際 -商 -非 -驗 -連 -斷 -深 -難 -近 -礦 -千 -週 -委 -素 -技 -備 -半 -辦 -青 -省 -列 -習 -響 -約 -支 -般 -史 -感 -勞 -便 -團 -往 -酸 -歷 -市 -克 -何 -除 -消 -構 -府 -稱 -太 -準 -精 -值 -號 -率 -族 -維 -劃 -選 -標 -寫 -存 -候 -毛 -親 -快 -效 -斯 -院 -查 -江 -型 -眼 -王 -按 -格 -養 -易 -置 -派 -層 -片 -始 -卻 -專 -狀 -育 -廠 -京 -識 -適 -屬 -圓 -包 -火 -住 -調 -滿 -縣 -局 -照 -參 -紅 -細 -引 -聽 -該 -鐵 -價 -嚴 -首 -底 -液 -官 -德 -隨 -病 -蘇 -失 -爾 -死 -講 -配 -女 -黃 -推 -顯 -談 -罪 -神 -藝 -呢 -席 -含 -企 -望 -密 -批 -營 -項 -防 -舉 -球 -英 -氧 -勢 -告 -李 -台 -落 -木 -幫 -輪 -破 -亞 -師 -圍 -注 -遠 -字 -材 -排 -供 -河 -態 -封 -另 -施 -減 -樹 -溶 -怎 -止 -案 -言 -士 -均 -武 -固 -葉 -魚 -波 -視 -僅 -費 -緊 -愛 -左 -章 -早 -朝 -害 -續 -輕 -服 -試 -食 -充 -兵 -源 -判 -護 -司 -足 -某 -練 -差 -致 -板 -田 -降 -黑 -犯 -負 -擊 -范 -繼 -興 -似 -餘 -堅 -曲 -輸 -修 -故 -城 -夫 -夠 -送 -筆 -船 -佔 -右 -財 -吃 -富 -春 -職 -覺 -漢 -畫 -功 -巴 -跟 -雖 -雜 -飛 -檢 -吸 -助 -昇 -陽 -互 -初 -創 -抗 -考 -投 -壞 -策 -古 -徑 -換 -未 -跑 -留 -鋼 -曾 -端 -責 -站 -簡 -述 -錢 -副 -盡 -帝 -射 -草 -衝 -承 -獨 -令 -限 -阿 -宣 -環 -雙 -請 -超 -微 -讓 -控 -州 -良 -軸 -找 -否 -紀 -益 -依 -優 -頂 -礎 -載 -倒 -房 -突 -坐 -粉 -敵 -略 -客 -袁 -冷 -勝 -絕 -析 -塊 -劑 -測 -絲 -協 -訴 -念 -陳 -仍 -羅 -鹽 -友 -洋 -錯 -苦 -夜 -刑 -移 -頻 -逐 -靠 -混 -母 -短 -皮 -終 -聚 -汽 -村 -雲 -哪 -既 -距 -衛 -停 -烈 -央 -察 -燒 -迅 -境 -若 -印 -洲 -刻 -括 -激 -孔 -搞 -甚 -室 -待 -核 -校 -散 -侵 -吧 -甲 -遊 -久 -菜 -味 -舊 -模 -湖 -貨 -損 -預 -阻 -毫 -普 -穩 -乙 -媽 -植 -息 -擴 -銀 -語 -揮 -酒 -守 -拿 -序 -紙 -醫 -缺 -雨 -嗎 -針 -劉 -啊 -急 -唱 -誤 -訓 -願 -審 -附 -獲 -茶 -鮮 -糧 -斤 -孩 -脫 -硫 -肥 -善 -龍 -演 -父 -漸 -血 -歡 -械 -掌 -歌 -沙 -剛 -攻 -謂 -盾 -討 -晚 -粒 -亂 -燃 -矛 -乎 -殺 -藥 -寧 -魯 -貴 -鐘 -煤 -讀 -班 -伯 -香 -介 -迫 -句 -豐 -培 -握 -蘭 -擔 -弦 -蛋 -沉 -假 -穿 -執 -答 -樂 -誰 -順 -煙 -縮 -徵 -臉 -喜 -松 -腳 -困 -異 -免 -背 -星 -福 -買 -染 -井 -概 -慢 -怕 -磁 -倍 -祖 -皇 -促 -靜 -補 -評 -翻 -肉 -踐 -尼 -衣 -寬 -揚 -棉 -希 -傷 -操 -垂 -秋 -宜 -氫 -套 -督 -振 -架 -亮 -末 -憲 -慶 -編 -牛 -觸 -映 -雷 -銷 -詩 -座 -居 -抓 -裂 -胞 -呼 -娘 -景 -威 -綠 -晶 -厚 -盟 -衡 -雞 -孫 -延 -危 -膠 -屋 -鄉 -臨 -陸 -顧 -掉 -呀 -燈 -歲 -措 -束 -耐 -劇 -玉 -趙 -跳 -哥 -季 -課 -凱 -胡 -額 -款 -紹 -卷 -齊 -偉 -蒸 -殖 -永 -宗 -苗 -川 -爐 -岩 -弱 -零 -楊 -奏 -沿 -露 -桿 -探 -滑 -鎮 -飯 -濃 -航 -懷 -趕 -庫 -奪 -伊 -靈 -稅 -途 -滅 -賽 -歸 -召 -鼓 -播 -盤 -裁 -險 -康 -唯 -錄 -菌 -純 -借 -糖 -蓋 -橫 -符 -私 -努 -堂 -域 -槍 -潤 -幅 -哈 -竟 -熟 -蟲 -澤 -腦 -壤 -碳 -歐 -遍 -側 -寨 -敢 -徹 -慮 -斜 -薄 -庭 -納 -彈 -飼 -伸 -折 -麥 -濕 -暗 -荷 -瓦 -塞 -床 -築 -惡 -戶 -訪 -塔 -奇 -透 -梁 -刀 -旋 -跡 -卡 -氯 -遇 -份 -毒 -泥 -退 -洗 -擺 -灰 -彩 -賣 -耗 -夏 -擇 -忙 -銅 -獻 -硬 -予 -繁 -圈 -雪 -函 -亦 -抽 -篇 -陣 -陰 -丁 -尺 -追 -堆 -雄 -迎 -泛 -爸 -樓 -避 -謀 -噸 -野 -豬 -旗 -累 -偏 -典 -館 -索 -秦 -脂 -潮 -爺 -豆 -忽 -托 -驚 -塑 -遺 -愈 -朱 -替 -纖 -粗 -傾 -尚 -痛 -楚 -謝 -奮 -購 -磨 -君 -池 -旁 -碎 -骨 -監 -捕 -弟 -暴 -割 -貫 -殊 -釋 -詞 -亡 -壁 -頓 -寶 -午 -塵 -聞 -揭 -炮 -殘 -冬 -橋 -婦 -警 -綜 -招 -吳 -付 -浮 -遭 -徐 -您 -搖 -谷 -贊 -箱 -隔 -訂 -男 -吹 -園 -紛 -唐 -敗 -宋 -玻 -巨 -耕 -坦 -榮 -閉 -灣 -鍵 -凡 -駐 -鍋 -救 -恩 -剝 -凝 -鹼 -齒 -截 -煉 -麻 -紡 -禁 -廢 -盛 -版 -緩 -淨 -睛 -昌 -婚 -涉 -筒 -嘴 -插 -岸 -朗 -莊 -街 -藏 -姑 -貿 -腐 -奴 -啦 -慣 -乘 -夥 -恢 -勻 -紗 -扎 -辯 -耳 -彪 -臣 -億 -璃 -抵 -脈 -秀 -薩 -俄 -網 -舞 -店 -噴 -縱 -寸 -汗 -掛 -洪 -賀 -閃 -柬 -爆 -烯 -津 -稻 -牆 -軟 -勇 -像 -滾 -厘 -蒙 -芳 -肯 -坡 -柱 -盪 -腿 -儀 -旅 -尾 -軋 -冰 -貢 -登 -黎 -削 -鑽 -勒 -逃 -障 -氨 -郭 -峰 -幣 -港 -伏 -軌 -畝 -畢 -擦 -莫 -刺 -浪 -秘 -援 -株 -健 -售 -股 -島 -甘 -泡 -睡 -童 -鑄 -湯 -閥 -休 -匯 -舍 -牧 -繞 -炸 -哲 -磷 -績 -朋 -淡 -尖 -啟 -陷 -柴 -呈 -徒 -顏 -淚 -稍 -忘 -泵 -藍 -拖 -洞 -授 -鏡 -辛 -壯 -鋒 -貧 -虛 -彎 -摩 -泰 -幼 -廷 -尊 -窗 -綱 -弄 -隸 -疑 -氏 -宮 -姐 -震 -瑞 -怪 -尤 -琴 -循 -描 -膜 -違 -夾 -腰 -緣 -珠 -窮 -森 -枝 -竹 -溝 -催 -繩 -憶 -邦 -剩 -幸 -漿 -欄 -擁 -牙 -貯 -禮 -濾 -鈉 -紋 -罷 -拍 -咱 -喊 -袖 -埃 -勤 -罰 -焦 -潛 -伍 -墨 -欲 -縫 -姓 -刊 -飽 -仿 -獎 -鋁 -鬼 -麗 -跨 -默 -挖 -鏈 -掃 -喝 -袋 -炭 -污 -幕 -諸 -弧 -勵 -梅 -奶 -潔 -災 -舟 -鑑 -苯 -訟 -抱 -毀 -懂 -寒 -智 -埔 -寄 -屆 -躍 -渡 -挑 -丹 -艱 -貝 -碰 -拔 -爹 -戴 -碼 -夢 -芽 -熔 -赤 -漁 -哭 -敬 -顆 -奔 -鉛 -仲 -虎 -稀 -妹 -乏 -珍 -申 -桌 -遵 -允 -隆 -螺 -倉 -魏 -銳 -曉 -氮 -兼 -隱 -礙 -赫 -撥 -忠 -肅 -缸 -牽 -搶 -博 -巧 -殼 -兄 -杜 -訊 -誠 -碧 -祥 -柯 -頁 -巡 -矩 -悲 -灌 -齡 -倫 -票 -尋 -桂 -鋪 -聖 -恐 -恰 -鄭 -趣 -抬 -荒 -騰 -貼 -柔 -滴 -猛 -闊 -輛 -妻 -填 -撤 -儲 -簽 -鬧 -擾 -紫 -砂 -遞 -戲 -吊 -陶 -伐 -餵 -療 -瓶 -婆 -撫 -臂 -摸 -忍 -蝦 -蠟 -鄰 -胸 -鞏 -擠 -偶 -棄 -槽 -勁 -乳 -鄧 -吉 -仁 -爛 -磚 -租 -烏 -艦 -伴 -瓜 -淺 -丙 -暫 -燥 -橡 -柳 -迷 -暖 -牌 -秧 -膽 -詳 -簧 -踏 -瓷 -譜 -呆 -賓 -糊 -洛 -輝 -憤 -競 -隙 -怒 -粘 -乃 -緒 -肩 -籍 -敏 -塗 -熙 -皆 -偵 -懸 -掘 -享 -糾 -醒 -狂 -鎖 -淀 -恨 -牲 -霸 -爬 -賞 -逆 -玩 -陵 -祝 -秒 -浙 -貌 -役 -彼 -悉 -鴨 -趨 -鳳 -晨 -畜 -輩 -秩 -卵 -署 -梯 -炎 -灘 -棋 -驅 -篩 -峽 -冒 -啥 -壽 -譯 -浸 -泉 -帽 -遲 -矽 -疆 -貸 -漏 -稿 -冠 -嫩 -脅 -芯 -牢 -叛 -蝕 -奧 -鳴 -嶺 -羊 -憑 -串 -塘 -繪 -酵 -融 -盆 -錫 -廟 -籌 -凍 -輔 -攝 -襲 -筋 -拒 -僚 -旱 -鉀 -鳥 -漆 -沈 -眉 -疏 -添 -棒 -穗 -硝 -韓 -逼 -扭 -僑 -涼 -挺 -碗 -栽 -炒 -杯 -患 -餾 -勸 -豪 -遼 -勃 -鴻 -旦 -吏 -拜 -狗 -埋 -輥 -掩 -飲 -搬 -罵 -辭 -勾 -扣 -估 -蔣 -絨 -霧 -丈 -朵 -姆 -擬 -宇 -輯 -陝 -雕 -償 -蓄 -崇 -剪 -倡 -廳 -咬 -駛 -薯 -刷 -斥 -番 -賦 -奉 -佛 -澆 -漫 -曼 -扇 -鈣 -桃 -扶 -仔 -返 -俗 -虧 -腔 -鞋 -棱 -覆 -框 -悄 -叔 -撞 -騙 -勘 -旺 -沸 -孤 -吐 -孟 -渠 -屈 -疾 -妙 -惜 -仰 -狠 -脹 -諧 -拋 -黴 -桑 -崗 -嘛 -衰 -盜 -滲 -臟 -賴 -湧 -甜 -曹 -閱 -肌 -哩 -厲 -烴 -緯 -毅 -昨 -偽 -症 -煮 -嘆 -釘 -搭 -莖 -籠 -酷 -偷 -弓 -錐 -恆 -傑 -坑 -鼻 -翼 -綸 -敘 -獄 -逮 -罐 -絡 -棚 -抑 -膨 -蔬 -寺 -驟 -穆 -冶 -枯 -冊 -屍 -凸 -紳 -坯 -犧 -焰 -轟 -欣 -晉 -瘦 -禦 -錠 -錦 -喪 -旬 -鍛 -壟 -搜 -撲 -邀 -亭 -酯 -邁 -舒 -脆 -酶 -閒 -憂 -酚 -頑 -羽 -漲 -卸 -仗 -陪 -闢 -懲 -杭 -姚 -肚 -捉 -飄 -漂 -昆 -欺 -吾 -郎 -烷 -汁 -呵 -飾 -蕭 -雅 -郵 -遷 -燕 -撒 -姻 -赴 -宴 -煩 -債 -帳 -斑 -鈴 -旨 -醇 -董 -餅 -雛 -姿 -拌 -傅 -腹 -妥 -揉 -賢 -拆 -歪 -葡 -胺 -丟 -浩 -徽 -昂 -墊 -擋 -覽 -貪 -慰 -繳 -汪 -慌 -馮 -諾 -姜 -誼 -兇 -劣 -誣 -耀 -昏 -躺 -盈 -騎 -喬 -溪 -叢 -盧 -抹 -悶 -諮 -刮 -駕 -纜 -悟 -摘 -鉺 -擲 -頗 -幻 -柄 -惠 -慘 -佳 -仇 -臘 -窩 -滌 -劍 -瞧 -堡 -潑 -蔥 -罩 -霍 -撈 -胎 -蒼 -濱 -倆 -捅 -湘 -砍 -霞 -邵 -萄 -瘋 -淮 -遂 -熊 -糞 -烘 -宿 -檔 -戈 -駁 -嫂 -裕 -徙 -箭 -捐 -腸 -撐 -曬 -辨 -殿 -蓮 -攤 -攪 -醬 -屏 -疫 -哀 -蔡 -堵 -沫 -皺 -暢 -疊 -閣 -萊 -敲 -轄 -鉤 -痕 -壩 -巷 -餓 -禍 -丘 -玄 -溜 -曰 -邏 -彭 -嘗 -卿 -妨 -艇 -吞 -韋 -怨 -矮 -歇 -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/czech.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/czech.go deleted file mode 100644 index 284dcf1..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/czech.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/czech.txt - // $ crc32 czech.txt - // d1b5fda0 - checksum := crc32.ChecksumIEEE([]byte(czech)) - if fmt.Sprintf("%x", checksum) != "d1b5fda0" { - panic("czech checksum invalid") - } -} - -// Czech is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/czech.txt -var Czech = strings.Split(strings.TrimSpace(czech), "\n") -var czech = `abdikace -abeceda -adresa -agrese -akce -aktovka -alej -alkohol -amputace -ananas -andulka -anekdota -anketa -antika -anulovat -archa -arogance -asfalt -asistent -aspirace -astma -astronom -atlas -atletika -atol -autobus -azyl -babka -bachor -bacil -baculka -badatel -bageta -bagr -bahno -bakterie -balada -baletka -balkon -balonek -balvan -balza -bambus -bankomat -barbar -baret -barman -baroko -barva -baterka -batoh -bavlna -bazalka -bazilika -bazuka -bedna -beran -beseda -bestie -beton -bezinka -bezmoc -beztak -bicykl -bidlo -biftek -bikiny -bilance -biograf -biolog -bitva -bizon -blahobyt -blatouch -blecha -bledule -blesk -blikat -blizna -blokovat -bloudit -blud -bobek -bobr -bodlina -bodnout -bohatost -bojkot -bojovat -bokorys -bolest -borec -borovice -bota -boubel -bouchat -bouda -boule -bourat -boxer -bradavka -brambora -branka -bratr -brepta -briketa -brko -brloh -bronz -broskev -brunetka -brusinka -brzda -brzy -bublina -bubnovat -buchta -buditel -budka -budova -bufet -bujarost -bukvice -buldok -bulva -bunda -bunkr -burza -butik -buvol -buzola -bydlet -bylina -bytovka -bzukot -capart -carevna -cedr -cedule -cejch -cejn -cela -celer -celkem -celnice -cenina -cennost -cenovka -centrum -cenzor -cestopis -cetka -chalupa -chapadlo -charita -chata -chechtat -chemie -chichot -chirurg -chlad -chleba -chlubit -chmel -chmura -chobot -chochol -chodba -cholera -chomout -chopit -choroba -chov -chrapot -chrlit -chrt -chrup -chtivost -chudina -chutnat -chvat -chvilka -chvost -chyba -chystat -chytit -cibule -cigareta -cihelna -cihla -cinkot -cirkus -cisterna -citace -citrus -cizinec -cizost -clona -cokoliv -couvat -ctitel -ctnost -cudnost -cuketa -cukr -cupot -cvaknout -cval -cvik -cvrkot -cyklista -daleko -dareba -datel -datum -dcera -debata -dechovka -decibel -deficit -deflace -dekl -dekret -demokrat -deprese -derby -deska -detektiv -dikobraz -diktovat -dioda -diplom -disk -displej -divadlo -divoch -dlaha -dlouho -dluhopis -dnes -dobro -dobytek -docent -dochutit -dodnes -dohled -dohoda -dohra -dojem -dojnice -doklad -dokola -doktor -dokument -dolar -doleva -dolina -doma -dominant -domluvit -domov -donutit -dopad -dopis -doplnit -doposud -doprovod -dopustit -dorazit -dorost -dort -dosah -doslov -dostatek -dosud -dosyta -dotaz -dotek -dotknout -doufat -doutnat -dovozce -dozadu -doznat -dozorce -drahota -drak -dramatik -dravec -draze -drdol -drobnost -drogerie -drozd -drsnost -drtit -drzost -duben -duchovno -dudek -duha -duhovka -dusit -dusno -dutost -dvojice -dvorec -dynamit -ekolog -ekonomie -elektron -elipsa -email -emise -emoce -empatie -epizoda -epocha -epopej -epos -esej -esence -eskorta -eskymo -etiketa -euforie -evoluce -exekuce -exkurze -expedice -exploze -export -extrakt -facka -fajfka -fakulta -fanatik -fantazie -farmacie -favorit -fazole -federace -fejeton -fenka -fialka -figurant -filozof -filtr -finance -finta -fixace -fjord -flanel -flirt -flotila -fond -fosfor -fotbal -fotka -foton -frakce -freska -fronta -fukar -funkce -fyzika -galeje -garant -genetika -geolog -gilotina -glazura -glejt -golem -golfista -gotika -graf -gramofon -granule -grep -gril -grog -groteska -guma -hadice -hadr -hala -halenka -hanba -hanopis -harfa -harpuna -havran -hebkost -hejkal -hejno -hejtman -hektar -helma -hematom -herec -herna -heslo -hezky -historik -hladovka -hlasivky -hlava -hledat -hlen -hlodavec -hloh -hloupost -hltat -hlubina -hluchota -hmat -hmota -hmyz -hnis -hnojivo -hnout -hoblina -hoboj -hoch -hodiny -hodlat -hodnota -hodovat -hojnost -hokej -holinka -holka -holub -homole -honitba -honorace -horal -horda -horizont -horko -horlivec -hormon -hornina -horoskop -horstvo -hospoda -hostina -hotovost -houba -houf -houpat -houska -hovor -hradba -hranice -hravost -hrazda -hrbolek -hrdina -hrdlo -hrdost -hrnek -hrobka -hromada -hrot -hrouda -hrozen -hrstka -hrubost -hryzat -hubenost -hubnout -hudba -hukot -humr -husita -hustota -hvozd -hybnost -hydrant -hygiena -hymna -hysterik -idylka -ihned -ikona -iluze -imunita -infekce -inflace -inkaso -inovace -inspekce -internet -invalida -investor -inzerce -ironie -jablko -jachta -jahoda -jakmile -jakost -jalovec -jantar -jarmark -jaro -jasan -jasno -jatka -javor -jazyk -jedinec -jedle -jednatel -jehlan -jekot -jelen -jelito -jemnost -jenom -jepice -jeseter -jevit -jezdec -jezero -jinak -jindy -jinoch -jiskra -jistota -jitrnice -jizva -jmenovat -jogurt -jurta -kabaret -kabel -kabinet -kachna -kadet -kadidlo -kahan -kajak -kajuta -kakao -kaktus -kalamita -kalhoty -kalibr -kalnost -kamera -kamkoliv -kamna -kanibal -kanoe -kantor -kapalina -kapela -kapitola -kapka -kaple -kapota -kapr -kapusta -kapybara -karamel -karotka -karton -kasa -katalog -katedra -kauce -kauza -kavalec -kazajka -kazeta -kazivost -kdekoliv -kdesi -kedluben -kemp -keramika -kino -klacek -kladivo -klam -klapot -klasika -klaun -klec -klenba -klepat -klesnout -klid -klima -klisna -klobouk -klokan -klopa -kloub -klubovna -klusat -kluzkost -kmen -kmitat -kmotr -kniha -knot -koalice -koberec -kobka -kobliha -kobyla -kocour -kohout -kojenec -kokos -koktejl -kolaps -koleda -kolize -kolo -komando -kometa -komik -komnata -komora -kompas -komunita -konat -koncept -kondice -konec -konfese -kongres -konina -konkurs -kontakt -konzerva -kopanec -kopie -kopnout -koprovka -korbel -korektor -kormidlo -koroptev -korpus -koruna -koryto -korzet -kosatec -kostka -kotel -kotleta -kotoul -koukat -koupelna -kousek -kouzlo -kovboj -koza -kozoroh -krabice -krach -krajina -kralovat -krasopis -kravata -kredit -krejcar -kresba -kreveta -kriket -kritik -krize -krkavec -krmelec -krmivo -krocan -krok -kronika -kropit -kroupa -krovka -krtek -kruhadlo -krupice -krutost -krvinka -krychle -krypta -krystal -kryt -kudlanka -kufr -kujnost -kukla -kulajda -kulich -kulka -kulomet -kultura -kuna -kupodivu -kurt -kurzor -kutil -kvalita -kvasinka -kvestor -kynolog -kyselina -kytara -kytice -kytka -kytovec -kyvadlo -labrador -lachtan -ladnost -laik -lakomec -lamela -lampa -lanovka -lasice -laso -lastura -latinka -lavina -lebka -leckdy -leden -lednice -ledovka -ledvina -legenda -legie -legrace -lehce -lehkost -lehnout -lektvar -lenochod -lentilka -lepenka -lepidlo -letadlo -letec -letmo -letokruh -levhart -levitace -levobok -libra -lichotka -lidojed -lidskost -lihovina -lijavec -lilek -limetka -linie -linka -linoleum -listopad -litina -litovat -lobista -lodivod -logika -logoped -lokalita -loket -lomcovat -lopata -lopuch -lord -losos -lotr -loudal -louh -louka -louskat -lovec -lstivost -lucerna -lucifer -lump -lusk -lustrace -lvice -lyra -lyrika -lysina -madam -madlo -magistr -mahagon -majetek -majitel -majorita -makak -makovice -makrela -malba -malina -malovat -malvice -maminka -mandle -manko -marnost -masakr -maskot -masopust -matice -matrika -maturita -mazanec -mazivo -mazlit -mazurka -mdloba -mechanik -meditace -medovina -melasa -meloun -mentolka -metla -metoda -metr -mezera -migrace -mihnout -mihule -mikina -mikrofon -milenec -milimetr -milost -mimika -mincovna -minibar -minomet -minulost -miska -mistr -mixovat -mladost -mlha -mlhovina -mlok -mlsat -mluvit -mnich -mnohem -mobil -mocnost -modelka -modlitba -mohyla -mokro -molekula -momentka -monarcha -monokl -monstrum -montovat -monzun -mosaz -moskyt -most -motivace -motorka -motyka -moucha -moudrost -mozaika -mozek -mozol -mramor -mravenec -mrkev -mrtvola -mrzet -mrzutost -mstitel -mudrc -muflon -mulat -mumie -munice -muset -mutace -muzeum -muzikant -myslivec -mzda -nabourat -nachytat -nadace -nadbytek -nadhoz -nadobro -nadpis -nahlas -nahnat -nahodile -nahradit -naivita -najednou -najisto -najmout -naklonit -nakonec -nakrmit -nalevo -namazat -namluvit -nanometr -naoko -naopak -naostro -napadat -napevno -naplnit -napnout -naposled -naprosto -narodit -naruby -narychlo -nasadit -nasekat -naslepo -nastat -natolik -navenek -navrch -navzdory -nazvat -nebe -nechat -necky -nedaleko -nedbat -neduh -negace -nehet -nehoda -nejen -nejprve -neklid -nelibost -nemilost -nemoc -neochota -neonka -nepokoj -nerost -nerv -nesmysl -nesoulad -netvor -neuron -nevina -nezvykle -nicota -nijak -nikam -nikdy -nikl -nikterak -nitro -nocleh -nohavice -nominace -nora -norek -nositel -nosnost -nouze -noviny -novota -nozdra -nuda -nudle -nuget -nutit -nutnost -nutrie -nymfa -obal -obarvit -obava -obdiv -obec -obehnat -obejmout -obezita -obhajoba -obilnice -objasnit -objekt -obklopit -oblast -oblek -obliba -obloha -obluda -obnos -obohatit -obojek -obout -obrazec -obrna -obruba -obrys -obsah -obsluha -obstarat -obuv -obvaz -obvinit -obvod -obvykle -obyvatel -obzor -ocas -ocel -ocenit -ochladit -ochota -ochrana -ocitnout -odboj -odbyt -odchod -odcizit -odebrat -odeslat -odevzdat -odezva -odhadce -odhodit -odjet -odjinud -odkaz -odkoupit -odliv -odluka -odmlka -odolnost -odpad -odpis -odplout -odpor -odpustit -odpykat -odrazka -odsoudit -odstup -odsun -odtok -odtud -odvaha -odveta -odvolat -odvracet -odznak -ofina -ofsajd -ohlas -ohnisko -ohrada -ohrozit -ohryzek -okap -okenice -oklika -okno -okouzlit -okovy -okrasa -okres -okrsek -okruh -okupant -okurka -okusit -olejnina -olizovat -omak -omeleta -omezit -omladina -omlouvat -omluva -omyl -onehdy -opakovat -opasek -operace -opice -opilost -opisovat -opora -opozice -opravdu -oproti -orbital -orchestr -orgie -orlice -orloj -ortel -osada -oschnout -osika -osivo -oslava -oslepit -oslnit -oslovit -osnova -osoba -osolit -ospalec -osten -ostraha -ostuda -ostych -osvojit -oteplit -otisk -otop -otrhat -otrlost -otrok -otruby -otvor -ovanout -ovar -oves -ovlivnit -ovoce -oxid -ozdoba -pachatel -pacient -padouch -pahorek -pakt -palanda -palec -palivo -paluba -pamflet -pamlsek -panenka -panika -panna -panovat -panstvo -pantofle -paprika -parketa -parodie -parta -paruka -paryba -paseka -pasivita -pastelka -patent -patrona -pavouk -pazneht -pazourek -pecka -pedagog -pejsek -peklo -peloton -penalta -pendrek -penze -periskop -pero -pestrost -petarda -petice -petrolej -pevnina -pexeso -pianista -piha -pijavice -pikle -piknik -pilina -pilnost -pilulka -pinzeta -pipeta -pisatel -pistole -pitevna -pivnice -pivovar -placenta -plakat -plamen -planeta -plastika -platit -plavidlo -plaz -plech -plemeno -plenta -ples -pletivo -plevel -plivat -plnit -plno -plocha -plodina -plomba -plout -pluk -plyn -pobavit -pobyt -pochod -pocit -poctivec -podat -podcenit -podepsat -podhled -podivit -podklad -podmanit -podnik -podoba -podpora -podraz -podstata -podvod -podzim -poezie -pohanka -pohnutka -pohovor -pohroma -pohyb -pointa -pojistka -pojmout -pokazit -pokles -pokoj -pokrok -pokuta -pokyn -poledne -polibek -polknout -poloha -polynom -pomalu -pominout -pomlka -pomoc -pomsta -pomyslet -ponechat -ponorka -ponurost -popadat -popel -popisek -poplach -poprosit -popsat -popud -poradce -porce -porod -porucha -poryv -posadit -posed -posila -poskok -poslanec -posoudit -pospolu -postava -posudek -posyp -potah -potkan -potlesk -potomek -potrava -potupa -potvora -poukaz -pouto -pouzdro -povaha -povidla -povlak -povoz -povrch -povstat -povyk -povzdech -pozdrav -pozemek -poznatek -pozor -pozvat -pracovat -prahory -praktika -prales -praotec -praporek -prase -pravda -princip -prkno -probudit -procento -prodej -profese -prohra -projekt -prolomit -promile -pronikat -propad -prorok -prosba -proton -proutek -provaz -prskavka -prsten -prudkost -prut -prvek -prvohory -psanec -psovod -pstruh -ptactvo -puberta -puch -pudl -pukavec -puklina -pukrle -pult -pumpa -punc -pupen -pusa -pusinka -pustina -putovat -putyka -pyramida -pysk -pytel -racek -rachot -radiace -radnice -radon -raft -ragby -raketa -rakovina -rameno -rampouch -rande -rarach -rarita -rasovna -rastr -ratolest -razance -razidlo -reagovat -reakce -recept -redaktor -referent -reflex -rejnok -reklama -rekord -rekrut -rektor -reputace -revize -revma -revolver -rezerva -riskovat -riziko -robotika -rodokmen -rohovka -rokle -rokoko -romaneto -ropovod -ropucha -rorejs -rosol -rostlina -rotmistr -rotoped -rotunda -roubenka -roucho -roup -roura -rovina -rovnice -rozbor -rozchod -rozdat -rozeznat -rozhodce -rozinka -rozjezd -rozkaz -rozloha -rozmar -rozpad -rozruch -rozsah -roztok -rozum -rozvod -rubrika -ruchadlo -rukavice -rukopis -ryba -rybolov -rychlost -rydlo -rypadlo -rytina -ryzost -sadista -sahat -sako -samec -samizdat -samota -sanitka -sardinka -sasanka -satelit -sazba -sazenice -sbor -schovat -sebranka -secese -sedadlo -sediment -sedlo -sehnat -sejmout -sekera -sekta -sekunda -sekvoje -semeno -seno -servis -sesadit -seshora -seskok -seslat -sestra -sesuv -sesypat -setba -setina -setkat -setnout -setrvat -sever -seznam -shoda -shrnout -sifon -silnice -sirka -sirotek -sirup -situace -skafandr -skalisko -skanzen -skaut -skeptik -skica -skladba -sklenice -sklo -skluz -skoba -skokan -skoro -skripta -skrz -skupina -skvost -skvrna -slabika -sladidlo -slanina -slast -slavnost -sledovat -slepec -sleva -slezina -slib -slina -sliznice -slon -sloupek -slovo -sluch -sluha -slunce -slupka -slza -smaragd -smetana -smilstvo -smlouva -smog -smrad -smrk -smrtka -smutek -smysl -snad -snaha -snob -sobota -socha -sodovka -sokol -sopka -sotva -souboj -soucit -soudce -souhlas -soulad -soumrak -souprava -soused -soutok -souviset -spalovna -spasitel -spis -splav -spodek -spojenec -spolu -sponzor -spornost -spousta -sprcha -spustit -sranda -sraz -srdce -srna -srnec -srovnat -srpen -srst -srub -stanice -starosta -statika -stavba -stehno -stezka -stodola -stolek -stopa -storno -stoupat -strach -stres -strhnout -strom -struna -studna -stupnice -stvol -styk -subjekt -subtropy -suchar -sudost -sukno -sundat -sunout -surikata -surovina -svah -svalstvo -svetr -svatba -svazek -svisle -svitek -svoboda -svodidlo -svorka -svrab -sykavka -sykot -synek -synovec -sypat -sypkost -syrovost -sysel -sytost -tabletka -tabule -tahoun -tajemno -tajfun -tajga -tajit -tajnost -taktika -tamhle -tampon -tancovat -tanec -tanker -tapeta -tavenina -tazatel -technika -tehdy -tekutina -telefon -temnota -tendence -tenista -tenor -teplota -tepna -teprve -terapie -termoska -textil -ticho -tiskopis -titulek -tkadlec -tkanina -tlapka -tleskat -tlukot -tlupa -tmel -toaleta -topinka -topol -torzo -touha -toulec -tradice -traktor -tramp -trasa -traverza -trefit -trest -trezor -trhavina -trhlina -trochu -trojice -troska -trouba -trpce -trpitel -trpkost -trubec -truchlit -truhlice -trus -trvat -tudy -tuhnout -tuhost -tundra -turista -turnaj -tuzemsko -tvaroh -tvorba -tvrdost -tvrz -tygr -tykev -ubohost -uboze -ubrat -ubrousek -ubrus -ubytovna -ucho -uctivost -udivit -uhradit -ujednat -ujistit -ujmout -ukazatel -uklidnit -uklonit -ukotvit -ukrojit -ulice -ulita -ulovit -umyvadlo -unavit -uniforma -uniknout -upadnout -uplatnit -uplynout -upoutat -upravit -uran -urazit -usednout -usilovat -usmrtit -usnadnit -usnout -usoudit -ustlat -ustrnout -utahovat -utkat -utlumit -utonout -utopenec -utrousit -uvalit -uvolnit -uvozovka -uzdravit -uzel -uzenina -uzlina -uznat -vagon -valcha -valoun -vana -vandal -vanilka -varan -varhany -varovat -vcelku -vchod -vdova -vedro -vegetace -vejce -velbloud -veletrh -velitel -velmoc -velryba -venkov -veranda -verze -veselka -veskrze -vesnice -vespodu -vesta -veterina -veverka -vibrace -vichr -videohra -vidina -vidle -vila -vinice -viset -vitalita -vize -vizitka -vjezd -vklad -vkus -vlajka -vlak -vlasec -vlevo -vlhkost -vliv -vlnovka -vloupat -vnucovat -vnuk -voda -vodivost -vodoznak -vodstvo -vojensky -vojna -vojsko -volant -volba -volit -volno -voskovka -vozidlo -vozovna -vpravo -vrabec -vracet -vrah -vrata -vrba -vrcholek -vrhat -vrstva -vrtule -vsadit -vstoupit -vstup -vtip -vybavit -vybrat -vychovat -vydat -vydra -vyfotit -vyhledat -vyhnout -vyhodit -vyhradit -vyhubit -vyjasnit -vyjet -vyjmout -vyklopit -vykonat -vylekat -vymazat -vymezit -vymizet -vymyslet -vynechat -vynikat -vynutit -vypadat -vyplatit -vypravit -vypustit -vyrazit -vyrovnat -vyrvat -vyslovit -vysoko -vystavit -vysunout -vysypat -vytasit -vytesat -vytratit -vyvinout -vyvolat -vyvrhel -vyzdobit -vyznat -vzadu -vzbudit -vzchopit -vzdor -vzduch -vzdychat -vzestup -vzhledem -vzkaz -vzlykat -vznik -vzorek -vzpoura -vztah -vztek -xylofon -zabrat -zabydlet -zachovat -zadarmo -zadusit -zafoukat -zahltit -zahodit -zahrada -zahynout -zajatec -zajet -zajistit -zaklepat -zakoupit -zalepit -zamezit -zamotat -zamyslet -zanechat -zanikat -zaplatit -zapojit -zapsat -zarazit -zastavit -zasunout -zatajit -zatemnit -zatknout -zaujmout -zavalit -zavelet -zavinit -zavolat -zavrtat -zazvonit -zbavit -zbrusu -zbudovat -zbytek -zdaleka -zdarma -zdatnost -zdivo -zdobit -zdroj -zdvih -zdymadlo -zelenina -zeman -zemina -zeptat -zezadu -zezdola -zhatit -zhltnout -zhluboka -zhotovit -zhruba -zima -zimnice -zjemnit -zklamat -zkoumat -zkratka -zkumavka -zlato -zlehka -zloba -zlom -zlost -zlozvyk -zmapovat -zmar -zmatek -zmije -zmizet -zmocnit -zmodrat -zmrzlina -zmutovat -znak -znalost -znamenat -znovu -zobrazit -zotavit -zoubek -zoufale -zplodit -zpomalit -zprava -zprostit -zprudka -zprvu -zrada -zranit -zrcadlo -zrnitost -zrno -zrovna -zrychlit -zrzavost -zticha -ztratit -zubovina -zubr -zvednout -zvenku -zvesela -zvon -zvrat -zvukovod -zvyk -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/english.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/english.go deleted file mode 100644 index f69e8a4..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/english.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/english.txt - // $ crc32 english.txt - // c1dbd296 - checksum := crc32.ChecksumIEEE([]byte(english)) - if fmt.Sprintf("%x", checksum) != "c1dbd296" { - panic("english checksum invalid") - } -} - -// English is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/english.txt -var English = strings.Split(strings.TrimSpace(english), "\n") -var english = `abandon -ability -able -about -above -absent -absorb -abstract -absurd -abuse -access -accident -account -accuse -achieve -acid -acoustic -acquire -across -act -action -actor -actress -actual -adapt -add -addict -address -adjust -admit -adult -advance -advice -aerobic -affair -afford -afraid -again -age -agent -agree -ahead -aim -air -airport -aisle -alarm -album -alcohol -alert -alien -all -alley -allow -almost -alone -alpha -already -also -alter -always -amateur -amazing -among -amount -amused -analyst -anchor -ancient -anger -angle -angry -animal -ankle -announce -annual -another -answer -antenna -antique -anxiety -any -apart -apology -appear -apple -approve -april -arch -arctic -area -arena -argue -arm -armed -armor -army -around -arrange -arrest -arrive -arrow -art -artefact -artist -artwork -ask -aspect -assault -asset -assist -assume -asthma -athlete -atom -attack -attend -attitude -attract -auction -audit -august -aunt -author -auto -autumn -average -avocado -avoid -awake -aware -away -awesome -awful -awkward -axis -baby -bachelor -bacon -badge -bag -balance -balcony -ball -bamboo -banana -banner -bar -barely -bargain -barrel -base -basic -basket -battle -beach -bean -beauty -because -become -beef -before -begin -behave -behind -believe -below -belt -bench -benefit -best -betray -better -between -beyond -bicycle -bid -bike -bind -biology -bird -birth -bitter -black -blade -blame -blanket -blast -bleak -bless -blind -blood -blossom -blouse -blue -blur -blush -board -boat -body -boil -bomb -bone -bonus -book -boost -border -boring -borrow -boss -bottom -bounce -box -boy -bracket -brain -brand -brass -brave -bread -breeze -brick -bridge -brief -bright -bring -brisk -broccoli -broken -bronze -broom -brother -brown -brush -bubble -buddy -budget -buffalo -build -bulb -bulk -bullet -bundle -bunker -burden -burger -burst -bus -business -busy -butter -buyer -buzz -cabbage -cabin -cable -cactus -cage -cake -call -calm -camera -camp -can -canal -cancel -candy -cannon -canoe -canvas -canyon -capable -capital -captain -car -carbon -card -cargo -carpet -carry -cart -case -cash -casino -castle -casual -cat -catalog -catch -category -cattle -caught -cause -caution -cave -ceiling -celery -cement -census -century -cereal -certain -chair -chalk -champion -change -chaos -chapter -charge -chase -chat -cheap -check -cheese -chef -cherry -chest -chicken -chief -child -chimney -choice -choose -chronic -chuckle -chunk -churn -cigar -cinnamon -circle -citizen -city -civil -claim -clap -clarify -claw -clay -clean -clerk -clever -click -client -cliff -climb -clinic -clip -clock -clog -close -cloth -cloud -clown -club -clump -cluster -clutch -coach -coast -coconut -code -coffee -coil -coin -collect -color -column -combine -come -comfort -comic -common -company -concert -conduct -confirm -congress -connect -consider -control -convince -cook -cool -copper -copy -coral -core -corn -correct -cost -cotton -couch -country -couple -course -cousin -cover -coyote -crack -cradle -craft -cram -crane -crash -crater -crawl -crazy -cream -credit -creek -crew -cricket -crime -crisp -critic -crop -cross -crouch -crowd -crucial -cruel -cruise -crumble -crunch -crush -cry -crystal -cube -culture -cup -cupboard -curious -current -curtain -curve -cushion -custom -cute -cycle -dad -damage -damp -dance -danger -daring -dash -daughter -dawn -day -deal -debate -debris -decade -december -decide -decline -decorate -decrease -deer -defense -define -defy -degree -delay -deliver -demand -demise -denial -dentist -deny -depart -depend -deposit -depth -deputy -derive -describe -desert -design -desk -despair -destroy -detail -detect -develop -device -devote -diagram -dial -diamond -diary -dice -diesel -diet -differ -digital -dignity -dilemma -dinner -dinosaur -direct -dirt -disagree -discover -disease -dish -dismiss -disorder -display -distance -divert -divide -divorce -dizzy -doctor -document -dog -doll -dolphin -domain -donate -donkey -donor -door -dose -double -dove -draft -dragon -drama -drastic -draw -dream -dress -drift -drill -drink -drip -drive -drop -drum -dry -duck -dumb -dune -during -dust -dutch -duty -dwarf -dynamic -eager -eagle -early -earn -earth -easily -east -easy -echo -ecology -economy -edge -edit -educate -effort -egg -eight -either -elbow -elder -electric -elegant -element -elephant -elevator -elite -else -embark -embody -embrace -emerge -emotion -employ -empower -empty -enable -enact -end -endless -endorse -enemy -energy -enforce -engage -engine -enhance -enjoy -enlist -enough -enrich -enroll -ensure -enter -entire -entry -envelope -episode -equal -equip -era -erase -erode -erosion -error -erupt -escape -essay -essence -estate -eternal -ethics -evidence -evil -evoke -evolve -exact -example -excess -exchange -excite -exclude -excuse -execute -exercise -exhaust -exhibit -exile -exist -exit -exotic -expand -expect -expire -explain -expose -express -extend -extra -eye -eyebrow -fabric -face -faculty -fade -faint -faith -fall -false -fame -family -famous -fan -fancy -fantasy -farm -fashion -fat -fatal -father -fatigue -fault -favorite -feature -february -federal -fee -feed -feel -female -fence -festival -fetch -fever -few -fiber -fiction -field -figure -file -film -filter -final -find -fine -finger -finish -fire -firm -first -fiscal -fish -fit -fitness -fix -flag -flame -flash -flat -flavor -flee -flight -flip -float -flock -floor -flower -fluid -flush -fly -foam -focus -fog -foil -fold -follow -food -foot -force -forest -forget -fork -fortune -forum -forward -fossil -foster -found -fox -fragile -frame -frequent -fresh -friend -fringe -frog -front -frost -frown -frozen -fruit -fuel -fun -funny -furnace -fury -future -gadget -gain -galaxy -gallery -game -gap -garage -garbage -garden -garlic -garment -gas -gasp -gate -gather -gauge -gaze -general -genius -genre -gentle -genuine -gesture -ghost -giant -gift -giggle -ginger -giraffe -girl -give -glad -glance -glare -glass -glide -glimpse -globe -gloom -glory -glove -glow -glue -goat -goddess -gold -good -goose -gorilla -gospel -gossip -govern -gown -grab -grace -grain -grant -grape -grass -gravity -great -green -grid -grief -grit -grocery -group -grow -grunt -guard -guess -guide -guilt -guitar -gun -gym -habit -hair -half -hammer -hamster -hand -happy -harbor -hard -harsh -harvest -hat -have -hawk -hazard -head -health -heart -heavy -hedgehog -height -hello -helmet -help -hen -hero -hidden -high -hill -hint -hip -hire -history -hobby -hockey -hold -hole -holiday -hollow -home -honey -hood -hope -horn -horror -horse -hospital -host -hotel -hour -hover -hub -huge -human -humble -humor -hundred -hungry -hunt -hurdle -hurry -hurt -husband -hybrid -ice -icon -idea -identify -idle -ignore -ill -illegal -illness -image -imitate -immense -immune -impact -impose -improve -impulse -inch -include -income -increase -index -indicate -indoor -industry -infant -inflict -inform -inhale -inherit -initial -inject -injury -inmate -inner -innocent -input -inquiry -insane -insect -inside -inspire -install -intact -interest -into -invest -invite -involve -iron -island -isolate -issue -item -ivory -jacket -jaguar -jar -jazz -jealous -jeans -jelly -jewel -job -join -joke -journey -joy -judge -juice -jump -jungle -junior -junk -just -kangaroo -keen -keep -ketchup -key -kick -kid -kidney -kind -kingdom -kiss -kit -kitchen -kite -kitten -kiwi -knee -knife -knock -know -lab -label -labor -ladder -lady -lake -lamp -language -laptop -large -later -latin -laugh -laundry -lava -law -lawn -lawsuit -layer -lazy -leader -leaf -learn -leave -lecture -left -leg -legal -legend -leisure -lemon -lend -length -lens -leopard -lesson -letter -level -liar -liberty -library -license -life -lift -light -like -limb -limit -link -lion -liquid -list -little -live -lizard -load -loan -lobster -local -lock -logic -lonely -long -loop -lottery -loud -lounge -love -loyal -lucky -luggage -lumber -lunar -lunch -luxury -lyrics -machine -mad -magic -magnet -maid -mail -main -major -make -mammal -man -manage -mandate -mango -mansion -manual -maple -marble -march -margin -marine -market -marriage -mask -mass -master -match -material -math -matrix -matter -maximum -maze -meadow -mean -measure -meat -mechanic -medal -media -melody -melt -member -memory -mention -menu -mercy -merge -merit -merry -mesh -message -metal -method -middle -midnight -milk -million -mimic -mind -minimum -minor -minute -miracle -mirror -misery -miss -mistake -mix -mixed -mixture -mobile -model -modify -mom -moment -monitor -monkey -monster -month -moon -moral -more -morning -mosquito -mother -motion -motor -mountain -mouse -move -movie -much -muffin -mule -multiply -muscle -museum -mushroom -music -must -mutual -myself -mystery -myth -naive -name -napkin -narrow -nasty -nation -nature -near -neck -need -negative -neglect -neither -nephew -nerve -nest -net -network -neutral -never -news -next -nice -night -noble -noise -nominee -noodle -normal -north -nose -notable -note -nothing -notice -novel -now -nuclear -number -nurse -nut -oak -obey -object -oblige -obscure -observe -obtain -obvious -occur -ocean -october -odor -off -offer -office -often -oil -okay -old -olive -olympic -omit -once -one -onion -online -only -open -opera -opinion -oppose -option -orange -orbit -orchard -order -ordinary -organ -orient -original -orphan -ostrich -other -outdoor -outer -output -outside -oval -oven -over -own -owner -oxygen -oyster -ozone -pact -paddle -page -pair -palace -palm -panda -panel -panic -panther -paper -parade -parent -park -parrot -party -pass -patch -path -patient -patrol -pattern -pause -pave -payment -peace -peanut -pear -peasant -pelican -pen -penalty -pencil -people -pepper -perfect -permit -person -pet -phone -photo -phrase -physical -piano -picnic -picture -piece -pig -pigeon -pill -pilot -pink -pioneer -pipe -pistol -pitch -pizza -place -planet -plastic -plate -play -please -pledge -pluck -plug -plunge -poem -poet -point -polar -pole -police -pond -pony -pool -popular -portion -position -possible -post -potato -pottery -poverty -powder -power -practice -praise -predict -prefer -prepare -present -pretty -prevent -price -pride -primary -print -priority -prison -private -prize -problem -process -produce -profit -program -project -promote -proof -property -prosper -protect -proud -provide -public -pudding -pull -pulp -pulse -pumpkin -punch -pupil -puppy -purchase -purity -purpose -purse -push -put -puzzle -pyramid -quality -quantum -quarter -question -quick -quit -quiz -quote -rabbit -raccoon -race -rack -radar -radio -rail -rain -raise -rally -ramp -ranch -random -range -rapid -rare -rate -rather -raven -raw -razor -ready -real -reason -rebel -rebuild -recall -receive -recipe -record -recycle -reduce -reflect -reform -refuse -region -regret -regular -reject -relax -release -relief -rely -remain -remember -remind -remove -render -renew -rent -reopen -repair -repeat -replace -report -require -rescue -resemble -resist -resource -response -result -retire -retreat -return -reunion -reveal -review -reward -rhythm -rib -ribbon -rice -rich -ride -ridge -rifle -right -rigid -ring -riot -ripple -risk -ritual -rival -river -road -roast -robot -robust -rocket -romance -roof -rookie -room -rose -rotate -rough -round -route -royal -rubber -rude -rug -rule -run -runway -rural -sad -saddle -sadness -safe -sail -salad -salmon -salon -salt -salute -same -sample -sand -satisfy -satoshi -sauce -sausage -save -say -scale -scan -scare -scatter -scene -scheme -school -science -scissors -scorpion -scout -scrap -screen -script -scrub -sea -search -season -seat -second -secret -section -security -seed -seek -segment -select -sell -seminar -senior -sense -sentence -series -service -session -settle -setup -seven -shadow -shaft -shallow -share -shed -shell -sheriff -shield -shift -shine -ship -shiver -shock -shoe -shoot -shop -short -shoulder -shove -shrimp -shrug -shuffle -shy -sibling -sick -side -siege -sight -sign -silent -silk -silly -silver -similar -simple -since -sing -siren -sister -situate -six -size -skate -sketch -ski -skill -skin -skirt -skull -slab -slam -sleep -slender -slice -slide -slight -slim -slogan -slot -slow -slush -small -smart -smile -smoke -smooth -snack -snake -snap -sniff -snow -soap -soccer -social -sock -soda -soft -solar -soldier -solid -solution -solve -someone -song -soon -sorry -sort -soul -sound -soup -source -south -space -spare -spatial -spawn -speak -special -speed -spell -spend -sphere -spice -spider -spike -spin -spirit -split -spoil -sponsor -spoon -sport -spot -spray -spread -spring -spy -square -squeeze -squirrel -stable -stadium -staff -stage -stairs -stamp -stand -start -state -stay -steak -steel -stem -step -stereo -stick -still -sting -stock -stomach -stone -stool -story -stove -strategy -street -strike -strong -struggle -student -stuff -stumble -style -subject -submit -subway -success -such -sudden -suffer -sugar -suggest -suit -summer -sun -sunny -sunset -super -supply -supreme -sure -surface -surge -surprise -surround -survey -suspect -sustain -swallow -swamp -swap -swarm -swear -sweet -swift -swim -swing -switch -sword -symbol -symptom -syrup -system -table -tackle -tag -tail -talent -talk -tank -tape -target -task -taste -tattoo -taxi -teach -team -tell -ten -tenant -tennis -tent -term -test -text -thank -that -theme -then -theory -there -they -thing -this -thought -three -thrive -throw -thumb -thunder -ticket -tide -tiger -tilt -timber -time -tiny -tip -tired -tissue -title -toast -tobacco -today -toddler -toe -together -toilet -token -tomato -tomorrow -tone -tongue -tonight -tool -tooth -top -topic -topple -torch -tornado -tortoise -toss -total -tourist -toward -tower -town -toy -track -trade -traffic -tragic -train -transfer -trap -trash -travel -tray -treat -tree -trend -trial -tribe -trick -trigger -trim -trip -trophy -trouble -truck -true -truly -trumpet -trust -truth -try -tube -tuition -tumble -tuna -tunnel -turkey -turn -turtle -twelve -twenty -twice -twin -twist -two -type -typical -ugly -umbrella -unable -unaware -uncle -uncover -under -undo -unfair -unfold -unhappy -uniform -unique -unit -universe -unknown -unlock -until -unusual -unveil -update -upgrade -uphold -upon -upper -upset -urban -urge -usage -use -used -useful -useless -usual -utility -vacant -vacuum -vague -valid -valley -valve -van -vanish -vapor -various -vast -vault -vehicle -velvet -vendor -venture -venue -verb -verify -version -very -vessel -veteran -viable -vibrant -vicious -victory -video -view -village -vintage -violin -virtual -virus -visa -visit -visual -vital -vivid -vocal -voice -void -volcano -volume -vote -voyage -wage -wagon -wait -walk -wall -walnut -want -warfare -warm -warrior -wash -wasp -waste -water -wave -way -wealth -weapon -wear -weasel -weather -web -wedding -weekend -weird -welcome -west -wet -whale -what -wheat -wheel -when -where -whip -whisper -wide -width -wife -wild -will -win -window -wine -wing -wink -winner -winter -wire -wisdom -wise -wish -witness -wolf -woman -wonder -wood -wool -word -work -world -worry -worth -wrap -wreck -wrestle -wrist -write -wrong -yard -year -yellow -you -young -youth -zebra -zero -zone -zoo -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/french.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/french.go deleted file mode 100644 index 1ae685d..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/french.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/french.txt - // $ crc32 french.txt - // 3e56b216 - checksum := crc32.ChecksumIEEE([]byte(french)) - if fmt.Sprintf("%x", checksum) != "3e56b216" { - panic("french checksum invalid") - } -} - -// French is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/french.txt -var French = strings.Split(strings.TrimSpace(french), "\n") -var french = `abaisser -abandon -abdiquer -abeille -abolir -aborder -aboutir -aboyer -abrasif -abreuver -abriter -abroger -abrupt -absence -absolu -absurde -abusif -abyssal -académie -acajou -acarien -accabler -accepter -acclamer -accolade -accroche -accuser -acerbe -achat -acheter -aciduler -acier -acompte -acquérir -acronyme -acteur -actif -actuel -adepte -adéquat -adhésif -adjectif -adjuger -admettre -admirer -adopter -adorer -adoucir -adresse -adroit -adulte -adverbe -aérer -aéronef -affaire -affecter -affiche -affreux -affubler -agacer -agencer -agile -agiter -agrafer -agréable -agrume -aider -aiguille -ailier -aimable -aisance -ajouter -ajuster -alarmer -alchimie -alerte -algèbre -algue -aliéner -aliment -alléger -alliage -allouer -allumer -alourdir -alpaga -altesse -alvéole -amateur -ambigu -ambre -aménager -amertume -amidon -amiral -amorcer -amour -amovible -amphibie -ampleur -amusant -analyse -anaphore -anarchie -anatomie -ancien -anéantir -angle -angoisse -anguleux -animal -annexer -annonce -annuel -anodin -anomalie -anonyme -anormal -antenne -antidote -anxieux -apaiser -apéritif -aplanir -apologie -appareil -appeler -apporter -appuyer -aquarium -aqueduc -arbitre -arbuste -ardeur -ardoise -argent -arlequin -armature -armement -armoire -armure -arpenter -arracher -arriver -arroser -arsenic -artériel -article -aspect -asphalte -aspirer -assaut -asservir -assiette -associer -assurer -asticot -astre -astuce -atelier -atome -atrium -atroce -attaque -attentif -attirer -attraper -aubaine -auberge -audace -audible -augurer -aurore -automne -autruche -avaler -avancer -avarice -avenir -averse -aveugle -aviateur -avide -avion -aviser -avoine -avouer -avril -axial -axiome -badge -bafouer -bagage -baguette -baignade -balancer -balcon -baleine -balisage -bambin -bancaire -bandage -banlieue -bannière -banquier -barbier -baril -baron -barque -barrage -bassin -bastion -bataille -bateau -batterie -baudrier -bavarder -belette -bélier -belote -bénéfice -berceau -berger -berline -bermuda -besace -besogne -bétail -beurre -biberon -bicycle -bidule -bijou -bilan -bilingue -billard -binaire -biologie -biopsie -biotype -biscuit -bison -bistouri -bitume -bizarre -blafard -blague -blanchir -blessant -blinder -blond -bloquer -blouson -bobard -bobine -boire -boiser -bolide -bonbon -bondir -bonheur -bonifier -bonus -bordure -borne -botte -boucle -boueux -bougie -boulon -bouquin -bourse -boussole -boutique -boxeur -branche -brasier -brave -brebis -brèche -breuvage -bricoler -brigade -brillant -brioche -brique -brochure -broder -bronzer -brousse -broyeur -brume -brusque -brutal -bruyant -buffle -buisson -bulletin -bureau -burin -bustier -butiner -butoir -buvable -buvette -cabanon -cabine -cachette -cadeau -cadre -caféine -caillou -caisson -calculer -calepin -calibre -calmer -calomnie -calvaire -camarade -caméra -camion -campagne -canal -caneton -canon -cantine -canular -capable -caporal -caprice -capsule -capter -capuche -carabine -carbone -caresser -caribou -carnage -carotte -carreau -carton -cascade -casier -casque -cassure -causer -caution -cavalier -caverne -caviar -cédille -ceinture -céleste -cellule -cendrier -censurer -central -cercle -cérébral -cerise -cerner -cerveau -cesser -chagrin -chaise -chaleur -chambre -chance -chapitre -charbon -chasseur -chaton -chausson -chavirer -chemise -chenille -chéquier -chercher -cheval -chien -chiffre -chignon -chimère -chiot -chlorure -chocolat -choisir -chose -chouette -chrome -chute -cigare -cigogne -cimenter -cinéma -cintrer -circuler -cirer -cirque -citerne -citoyen -citron -civil -clairon -clameur -claquer -classe -clavier -client -cligner -climat -clivage -cloche -clonage -cloporte -cobalt -cobra -cocasse -cocotier -coder -codifier -coffre -cogner -cohésion -coiffer -coincer -colère -colibri -colline -colmater -colonel -combat -comédie -commande -compact -concert -conduire -confier -congeler -connoter -consonne -contact -convexe -copain -copie -corail -corbeau -cordage -corniche -corpus -correct -cortège -cosmique -costume -coton -coude -coupure -courage -couteau -couvrir -coyote -crabe -crainte -cravate -crayon -créature -créditer -crémeux -creuser -crevette -cribler -crier -cristal -critère -croire -croquer -crotale -crucial -cruel -crypter -cubique -cueillir -cuillère -cuisine -cuivre -culminer -cultiver -cumuler -cupide -curatif -curseur -cyanure -cycle -cylindre -cynique -daigner -damier -danger -danseur -dauphin -débattre -débiter -déborder -débrider -débutant -décaler -décembre -déchirer -décider -déclarer -décorer -décrire -décupler -dédale -déductif -déesse -défensif -défiler -défrayer -dégager -dégivrer -déglutir -dégrafer -déjeuner -délice -déloger -demander -demeurer -démolir -dénicher -dénouer -dentelle -dénuder -départ -dépenser -déphaser -déplacer -déposer -déranger -dérober -désastre -descente -désert -désigner -désobéir -dessiner -destrier -détacher -détester -détourer -détresse -devancer -devenir -deviner -devoir -diable -dialogue -diamant -dicter -différer -digérer -digital -digne -diluer -dimanche -diminuer -dioxyde -directif -diriger -discuter -disposer -dissiper -distance -divertir -diviser -docile -docteur -dogme -doigt -domaine -domicile -dompter -donateur -donjon -donner -dopamine -dortoir -dorure -dosage -doseur -dossier -dotation -douanier -double -douceur -douter -doyen -dragon -draper -dresser -dribbler -droiture -duperie -duplexe -durable -durcir -dynastie -éblouir -écarter -écharpe -échelle -éclairer -éclipse -éclore -écluse -école -économie -écorce -écouter -écraser -écrémer -écrivain -écrou -écume -écureuil -édifier -éduquer -effacer -effectif -effigie -effort -effrayer -effusion -égaliser -égarer -éjecter -élaborer -élargir -électron -élégant -éléphant -élève -éligible -élitisme -éloge -élucider -éluder -emballer -embellir -embryon -émeraude -émission -emmener -émotion -émouvoir -empereur -employer -emporter -emprise -émulsion -encadrer -enchère -enclave -encoche -endiguer -endosser -endroit -enduire -énergie -enfance -enfermer -enfouir -engager -engin -englober -énigme -enjamber -enjeu -enlever -ennemi -ennuyeux -enrichir -enrobage -enseigne -entasser -entendre -entier -entourer -entraver -énumérer -envahir -enviable -envoyer -enzyme -éolien -épaissir -épargne -épatant -épaule -épicerie -épidémie -épier -épilogue -épine -épisode -épitaphe -époque -épreuve -éprouver -épuisant -équerre -équipe -ériger -érosion -erreur -éruption -escalier -espadon -espèce -espiègle -espoir -esprit -esquiver -essayer -essence -essieu -essorer -estime -estomac -estrade -étagère -étaler -étanche -étatique -éteindre -étendoir -éternel -éthanol -éthique -ethnie -étirer -étoffer -étoile -étonnant -étourdir -étrange -étroit -étude -euphorie -évaluer -évasion -éventail -évidence -éviter -évolutif -évoquer -exact -exagérer -exaucer -exceller -excitant -exclusif -excuse -exécuter -exemple -exercer -exhaler -exhorter -exigence -exiler -exister -exotique -expédier -explorer -exposer -exprimer -exquis -extensif -extraire -exulter -fable -fabuleux -facette -facile -facture -faiblir -falaise -fameux -famille -farceur -farfelu -farine -farouche -fasciner -fatal -fatigue -faucon -fautif -faveur -favori -fébrile -féconder -fédérer -félin -femme -fémur -fendoir -féodal -fermer -féroce -ferveur -festival -feuille -feutre -février -fiasco -ficeler -fictif -fidèle -figure -filature -filetage -filière -filleul -filmer -filou -filtrer -financer -finir -fiole -firme -fissure -fixer -flairer -flamme -flasque -flatteur -fléau -flèche -fleur -flexion -flocon -flore -fluctuer -fluide -fluvial -folie -fonderie -fongible -fontaine -forcer -forgeron -formuler -fortune -fossile -foudre -fougère -fouiller -foulure -fourmi -fragile -fraise -franchir -frapper -frayeur -frégate -freiner -frelon -frémir -frénésie -frère -friable -friction -frisson -frivole -froid -fromage -frontal -frotter -fruit -fugitif -fuite -fureur -furieux -furtif -fusion -futur -gagner -galaxie -galerie -gambader -garantir -gardien -garnir -garrigue -gazelle -gazon -géant -gélatine -gélule -gendarme -général -génie -genou -gentil -géologie -géomètre -géranium -germe -gestuel -geyser -gibier -gicler -girafe -givre -glace -glaive -glisser -globe -gloire -glorieux -golfeur -gomme -gonfler -gorge -gorille -goudron -gouffre -goulot -goupille -gourmand -goutte -graduel -graffiti -graine -grand -grappin -gratuit -gravir -grenat -griffure -griller -grimper -grogner -gronder -grotte -groupe -gruger -grutier -gruyère -guépard -guerrier -guide -guimauve -guitare -gustatif -gymnaste -gyrostat -habitude -hachoir -halte -hameau -hangar -hanneton -haricot -harmonie -harpon -hasard -hélium -hématome -herbe -hérisson -hermine -héron -hésiter -heureux -hiberner -hibou -hilarant -histoire -hiver -homard -hommage -homogène -honneur -honorer -honteux -horde -horizon -horloge -hormone -horrible -houleux -housse -hublot -huileux -humain -humble -humide -humour -hurler -hydromel -hygiène -hymne -hypnose -idylle -ignorer -iguane -illicite -illusion -image -imbiber -imiter -immense -immobile -immuable -impact -impérial -implorer -imposer -imprimer -imputer -incarner -incendie -incident -incliner -incolore -indexer -indice -inductif -inédit -ineptie -inexact -infini -infliger -informer -infusion -ingérer -inhaler -inhiber -injecter -injure -innocent -inoculer -inonder -inscrire -insecte -insigne -insolite -inspirer -instinct -insulter -intact -intense -intime -intrigue -intuitif -inutile -invasion -inventer -inviter -invoquer -ironique -irradier -irréel -irriter -isoler -ivoire -ivresse -jaguar -jaillir -jambe -janvier -jardin -jauger -jaune -javelot -jetable -jeton -jeudi -jeunesse -joindre -joncher -jongler -joueur -jouissif -journal -jovial -joyau -joyeux -jubiler -jugement -junior -jupon -juriste -justice -juteux -juvénile -kayak -kimono -kiosque -label -labial -labourer -lacérer -lactose -lagune -laine -laisser -laitier -lambeau -lamelle -lampe -lanceur -langage -lanterne -lapin -largeur -larme -laurier -lavabo -lavoir -lecture -légal -léger -légume -lessive -lettre -levier -lexique -lézard -liasse -libérer -libre -licence -licorne -liège -lièvre -ligature -ligoter -ligue -limer -limite -limonade -limpide -linéaire -lingot -lionceau -liquide -lisière -lister -lithium -litige -littoral -livreur -logique -lointain -loisir -lombric -loterie -louer -lourd -loutre -louve -loyal -lubie -lucide -lucratif -lueur -lugubre -luisant -lumière -lunaire -lundi -luron -lutter -luxueux -machine -magasin -magenta -magique -maigre -maillon -maintien -mairie -maison -majorer -malaxer -maléfice -malheur -malice -mallette -mammouth -mandater -maniable -manquant -manteau -manuel -marathon -marbre -marchand -mardi -maritime -marqueur -marron -marteler -mascotte -massif -matériel -matière -matraque -maudire -maussade -mauve -maximal -méchant -méconnu -médaille -médecin -méditer -méduse -meilleur -mélange -mélodie -membre -mémoire -menacer -mener -menhir -mensonge -mentor -mercredi -mérite -merle -messager -mesure -métal -météore -méthode -métier -meuble -miauler -microbe -miette -mignon -migrer -milieu -million -mimique -mince -minéral -minimal -minorer -minute -miracle -miroiter -missile -mixte -mobile -moderne -moelleux -mondial -moniteur -monnaie -monotone -monstre -montagne -monument -moqueur -morceau -morsure -mortier -moteur -motif -mouche -moufle -moulin -mousson -mouton -mouvant -multiple -munition -muraille -murène -murmure -muscle -muséum -musicien -mutation -muter -mutuel -myriade -myrtille -mystère -mythique -nageur -nappe -narquois -narrer -natation -nation -nature -naufrage -nautique -navire -nébuleux -nectar -néfaste -négation -négliger -négocier -neige -nerveux -nettoyer -neurone -neutron -neveu -niche -nickel -nitrate -niveau -noble -nocif -nocturne -noirceur -noisette -nomade -nombreux -nommer -normatif -notable -notifier -notoire -nourrir -nouveau -novateur -novembre -novice -nuage -nuancer -nuire -nuisible -numéro -nuptial -nuque -nutritif -obéir -objectif -obliger -obscur -observer -obstacle -obtenir -obturer -occasion -occuper -océan -octobre -octroyer -octupler -oculaire -odeur -odorant -offenser -officier -offrir -ogive -oiseau -oisillon -olfactif -olivier -ombrage -omettre -onctueux -onduler -onéreux -onirique -opale -opaque -opérer -opinion -opportun -opprimer -opter -optique -orageux -orange -orbite -ordonner -oreille -organe -orgueil -orifice -ornement -orque -ortie -osciller -osmose -ossature -otarie -ouragan -ourson -outil -outrager -ouvrage -ovation -oxyde -oxygène -ozone -paisible -palace -palmarès -palourde -palper -panache -panda -pangolin -paniquer -panneau -panorama -pantalon -papaye -papier -papoter -papyrus -paradoxe -parcelle -paresse -parfumer -parler -parole -parrain -parsemer -partager -parure -parvenir -passion -pastèque -paternel -patience -patron -pavillon -pavoiser -payer -paysage -peigne -peintre -pelage -pélican -pelle -pelouse -peluche -pendule -pénétrer -pénible -pensif -pénurie -pépite -péplum -perdrix -perforer -période -permuter -perplexe -persil -perte -peser -pétale -petit -pétrir -peuple -pharaon -phobie -phoque -photon -phrase -physique -piano -pictural -pièce -pierre -pieuvre -pilote -pinceau -pipette -piquer -pirogue -piscine -piston -pivoter -pixel -pizza -placard -plafond -plaisir -planer -plaque -plastron -plateau -pleurer -plexus -pliage -plomb -plonger -pluie -plumage -pochette -poésie -poète -pointe -poirier -poisson -poivre -polaire -policier -pollen -polygone -pommade -pompier -ponctuel -pondérer -poney -portique -position -posséder -posture -potager -poteau -potion -pouce -poulain -poumon -pourpre -poussin -pouvoir -prairie -pratique -précieux -prédire -préfixe -prélude -prénom -présence -prétexte -prévoir -primitif -prince -prison -priver -problème -procéder -prodige -profond -progrès -proie -projeter -prologue -promener -propre -prospère -protéger -prouesse -proverbe -prudence -pruneau -psychose -public -puceron -puiser -pulpe -pulsar -punaise -punitif -pupitre -purifier -puzzle -pyramide -quasar -querelle -question -quiétude -quitter -quotient -racine -raconter -radieux -ragondin -raideur -raisin -ralentir -rallonge -ramasser -rapide -rasage -ratisser -ravager -ravin -rayonner -réactif -réagir -réaliser -réanimer -recevoir -réciter -réclamer -récolter -recruter -reculer -recycler -rédiger -redouter -refaire -réflexe -réformer -refrain -refuge -régalien -région -réglage -régulier -réitérer -rejeter -rejouer -relatif -relever -relief -remarque -remède -remise -remonter -remplir -remuer -renard -renfort -renifler -renoncer -rentrer -renvoi -replier -reporter -reprise -reptile -requin -réserve -résineux -résoudre -respect -rester -résultat -rétablir -retenir -réticule -retomber -retracer -réunion -réussir -revanche -revivre -révolte -révulsif -richesse -rideau -rieur -rigide -rigoler -rincer -riposter -risible -risque -rituel -rival -rivière -rocheux -romance -rompre -ronce -rondin -roseau -rosier -rotatif -rotor -rotule -rouge -rouille -rouleau -routine -royaume -ruban -rubis -ruche -ruelle -rugueux -ruiner -ruisseau -ruser -rustique -rythme -sabler -saboter -sabre -sacoche -safari -sagesse -saisir -salade -salive -salon -saluer -samedi -sanction -sanglier -sarcasme -sardine -saturer -saugrenu -saumon -sauter -sauvage -savant -savonner -scalpel -scandale -scélérat -scénario -sceptre -schéma -science -scinder -score -scrutin -sculpter -séance -sécable -sécher -secouer -sécréter -sédatif -séduire -seigneur -séjour -sélectif -semaine -sembler -semence -séminal -sénateur -sensible -sentence -séparer -séquence -serein -sergent -sérieux -serrure -sérum -service -sésame -sévir -sevrage -sextuple -sidéral -siècle -siéger -siffler -sigle -signal -silence -silicium -simple -sincère -sinistre -siphon -sirop -sismique -situer -skier -social -socle -sodium -soigneux -soldat -soleil -solitude -soluble -sombre -sommeil -somnoler -sonde -songeur -sonnette -sonore -sorcier -sortir -sosie -sottise -soucieux -soudure -souffle -soulever -soupape -source -soutirer -souvenir -spacieux -spatial -spécial -sphère -spiral -stable -station -sternum -stimulus -stipuler -strict -studieux -stupeur -styliste -sublime -substrat -subtil -subvenir -succès -sucre -suffixe -suggérer -suiveur -sulfate -superbe -supplier -surface -suricate -surmener -surprise -sursaut -survie -suspect -syllabe -symbole -symétrie -synapse -syntaxe -système -tabac -tablier -tactile -tailler -talent -talisman -talonner -tambour -tamiser -tangible -tapis -taquiner -tarder -tarif -tartine -tasse -tatami -tatouage -taupe -taureau -taxer -témoin -temporel -tenaille -tendre -teneur -tenir -tension -terminer -terne -terrible -tétine -texte -thème -théorie -thérapie -thorax -tibia -tiède -timide -tirelire -tiroir -tissu -titane -titre -tituber -toboggan -tolérant -tomate -tonique -tonneau -toponyme -torche -tordre -tornade -torpille -torrent -torse -tortue -totem -toucher -tournage -tousser -toxine -traction -trafic -tragique -trahir -train -trancher -travail -trèfle -tremper -trésor -treuil -triage -tribunal -tricoter -trilogie -triomphe -tripler -triturer -trivial -trombone -tronc -tropical -troupeau -tuile -tulipe -tumulte -tunnel -turbine -tuteur -tutoyer -tuyau -tympan -typhon -typique -tyran -ubuesque -ultime -ultrason -unanime -unifier -union -unique -unitaire -univers -uranium -urbain -urticant -usage -usine -usuel -usure -utile -utopie -vacarme -vaccin -vagabond -vague -vaillant -vaincre -vaisseau -valable -valise -vallon -valve -vampire -vanille -vapeur -varier -vaseux -vassal -vaste -vecteur -vedette -végétal -véhicule -veinard -véloce -vendredi -vénérer -venger -venimeux -ventouse -verdure -vérin -vernir -verrou -verser -vertu -veston -vétéran -vétuste -vexant -vexer -viaduc -viande -victoire -vidange -vidéo -vignette -vigueur -vilain -village -vinaigre -violon -vipère -virement -virtuose -virus -visage -viseur -vision -visqueux -visuel -vital -vitesse -viticole -vitrine -vivace -vivipare -vocation -voguer -voile -voisin -voiture -volaille -volcan -voltiger -volume -vorace -vortex -voter -vouloir -voyage -voyelle -wagon -xénon -yacht -zèbre -zénith -zeste -zoologie -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/italian.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/italian.go deleted file mode 100644 index 32cd2cf..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/italian.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/italian.txt - // $ crc32 italian.txt - // 2fc7d07e - checksum := crc32.ChecksumIEEE([]byte(italian)) - if fmt.Sprintf("%x", checksum) != "2fc7d07e" { - panic("italian checksum invalid") - } -} - -// Italian is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/italian.txt -var Italian = strings.Split(strings.TrimSpace(italian), "\n") -var italian = `abaco -abbaglio -abbinato -abete -abisso -abolire -abrasivo -abrogato -accadere -accenno -accusato -acetone -achille -acido -acqua -acre -acrilico -acrobata -acuto -adagio -addebito -addome -adeguato -aderire -adipe -adottare -adulare -affabile -affetto -affisso -affranto -aforisma -afoso -africano -agave -agente -agevole -aggancio -agire -agitare -agonismo -agricolo -agrumeto -aguzzo -alabarda -alato -albatro -alberato -albo -albume -alce -alcolico -alettone -alfa -algebra -aliante -alibi -alimento -allagato -allegro -allievo -allodola -allusivo -almeno -alogeno -alpaca -alpestre -altalena -alterno -alticcio -altrove -alunno -alveolo -alzare -amalgama -amanita -amarena -ambito -ambrato -ameba -america -ametista -amico -ammasso -ammenda -ammirare -ammonito -amore -ampio -ampliare -amuleto -anacardo -anagrafe -analista -anarchia -anatra -anca -ancella -ancora -andare -andrea -anello -angelo -angolare -angusto -anima -annegare -annidato -anno -annuncio -anonimo -anticipo -anzi -apatico -apertura -apode -apparire -appetito -appoggio -approdo -appunto -aprile -arabica -arachide -aragosta -araldica -arancio -aratura -arazzo -arbitro -archivio -ardito -arenile -argento -argine -arguto -aria -armonia -arnese -arredato -arringa -arrosto -arsenico -arso -artefice -arzillo -asciutto -ascolto -asepsi -asettico -asfalto -asino -asola -aspirato -aspro -assaggio -asse -assoluto -assurdo -asta -astenuto -astice -astratto -atavico -ateismo -atomico -atono -attesa -attivare -attorno -attrito -attuale -ausilio -austria -autista -autonomo -autunno -avanzato -avere -avvenire -avviso -avvolgere -azione -azoto -azzimo -azzurro -babele -baccano -bacino -baco -badessa -badilata -bagnato -baita -balcone -baldo -balena -ballata -balzano -bambino -bandire -baraonda -barbaro -barca -baritono -barlume -barocco -basilico -basso -batosta -battuto -baule -bava -bavosa -becco -beffa -belgio -belva -benda -benevole -benigno -benzina -bere -berlina -beta -bibita -bici -bidone -bifido -biga -bilancia -bimbo -binocolo -biologo -bipede -bipolare -birbante -birra -biscotto -bisesto -bisnonno -bisonte -bisturi -bizzarro -blando -blatta -bollito -bonifico -bordo -bosco -botanico -bottino -bozzolo -braccio -bradipo -brama -branca -bravura -bretella -brevetto -brezza -briglia -brillante -brindare -broccolo -brodo -bronzina -brullo -bruno -bubbone -buca -budino -buffone -buio -bulbo -buono -burlone -burrasca -bussola -busta -cadetto -caduco -calamaro -calcolo -calesse -calibro -calmo -caloria -cambusa -camerata -camicia -cammino -camola -campale -canapa -candela -cane -canino -canotto -cantina -capace -capello -capitolo -capogiro -cappero -capra -capsula -carapace -carcassa -cardo -carisma -carovana -carretto -cartolina -casaccio -cascata -caserma -caso -cassone -castello -casuale -catasta -catena -catrame -cauto -cavillo -cedibile -cedrata -cefalo -celebre -cellulare -cena -cenone -centesimo -ceramica -cercare -certo -cerume -cervello -cesoia -cespo -ceto -chela -chiaro -chicca -chiedere -chimera -china -chirurgo -chitarra -ciao -ciclismo -cifrare -cigno -cilindro -ciottolo -circa -cirrosi -citrico -cittadino -ciuffo -civetta -civile -classico -clinica -cloro -cocco -codardo -codice -coerente -cognome -collare -colmato -colore -colposo -coltivato -colza -coma -cometa -commando -comodo -computer -comune -conciso -condurre -conferma -congelare -coniuge -connesso -conoscere -consumo -continuo -convegno -coperto -copione -coppia -copricapo -corazza -cordata -coricato -cornice -corolla -corpo -corredo -corsia -cortese -cosmico -costante -cottura -covato -cratere -cravatta -creato -credere -cremoso -crescita -creta -criceto -crinale -crisi -critico -croce -cronaca -crostata -cruciale -crusca -cucire -cuculo -cugino -cullato -cupola -curatore -cursore -curvo -cuscino -custode -dado -daino -dalmata -damerino -daniela -dannoso -danzare -datato -davanti -davvero -debutto -decennio -deciso -declino -decollo -decreto -dedicato -definito -deforme -degno -delegare -delfino -delirio -delta -demenza -denotato -dentro -deposito -derapata -derivare -deroga -descritto -deserto -desiderio -desumere -detersivo -devoto -diametro -dicembre -diedro -difeso -diffuso -digerire -digitale -diluvio -dinamico -dinnanzi -dipinto -diploma -dipolo -diradare -dire -dirotto -dirupo -disagio -discreto -disfare -disgelo -disposto -distanza -disumano -dito -divano -divelto -dividere -divorato -doblone -docente -doganale -dogma -dolce -domato -domenica -dominare -dondolo -dono -dormire -dote -dottore -dovuto -dozzina -drago -druido -dubbio -dubitare -ducale -duna -duomo -duplice -duraturo -ebano -eccesso -ecco -eclissi -economia -edera -edicola -edile -editoria -educare -egemonia -egli -egoismo -egregio -elaborato -elargire -elegante -elencato -eletto -elevare -elfico -elica -elmo -elsa -eluso -emanato -emblema -emesso -emiro -emotivo -emozione -empirico -emulo -endemico -enduro -energia -enfasi -enoteca -entrare -enzima -epatite -epilogo -episodio -epocale -eppure -equatore -erario -erba -erboso -erede -eremita -erigere -ermetico -eroe -erosivo -errante -esagono -esame -esanime -esaudire -esca -esempio -esercito -esibito -esigente -esistere -esito -esofago -esortato -esoso -espanso -espresso -essenza -esso -esteso -estimare -estonia -estroso -esultare -etilico -etnico -etrusco -etto -euclideo -europa -evaso -evidenza -evitato -evoluto -evviva -fabbrica -faccenda -fachiro -falco -famiglia -fanale -fanfara -fango -fantasma -fare -farfalla -farinoso -farmaco -fascia -fastoso -fasullo -faticare -fato -favoloso -febbre -fecola -fede -fegato -felpa -feltro -femmina -fendere -fenomeno -fermento -ferro -fertile -fessura -festivo -fetta -feudo -fiaba -fiducia -fifa -figurato -filo -finanza -finestra -finire -fiore -fiscale -fisico -fiume -flacone -flamenco -flebo -flemma -florido -fluente -fluoro -fobico -focaccia -focoso -foderato -foglio -folata -folclore -folgore -fondente -fonetico -fonia -fontana -forbito -forchetta -foresta -formica -fornaio -foro -fortezza -forzare -fosfato -fosso -fracasso -frana -frassino -fratello -freccetta -frenata -fresco -frigo -frollino -fronde -frugale -frutta -fucilata -fucsia -fuggente -fulmine -fulvo -fumante -fumetto -fumoso -fune -funzione -fuoco -furbo -furgone -furore -fuso -futile -gabbiano -gaffe -galateo -gallina -galoppo -gambero -gamma -garanzia -garbo -garofano -garzone -gasdotto -gasolio -gastrico -gatto -gaudio -gazebo -gazzella -geco -gelatina -gelso -gemello -gemmato -gene -genitore -gennaio -genotipo -gergo -ghepardo -ghiaccio -ghisa -giallo -gilda -ginepro -giocare -gioiello -giorno -giove -girato -girone -gittata -giudizio -giurato -giusto -globulo -glutine -gnomo -gobba -golf -gomito -gommone -gonfio -gonna -governo -gracile -grado -grafico -grammo -grande -grattare -gravoso -grazia -greca -gregge -grifone -grigio -grinza -grotta -gruppo -guadagno -guaio -guanto -guardare -gufo -guidare -ibernato -icona -identico -idillio -idolo -idra -idrico -idrogeno -igiene -ignaro -ignorato -ilare -illeso -illogico -illudere -imballo -imbevuto -imbocco -imbuto -immane -immerso -immolato -impacco -impeto -impiego -importo -impronta -inalare -inarcare -inattivo -incanto -incendio -inchino -incisivo -incluso -incontro -incrocio -incubo -indagine -india -indole -inedito -infatti -infilare -inflitto -ingaggio -ingegno -inglese -ingordo -ingrosso -innesco -inodore -inoltrare -inondato -insano -insetto -insieme -insonnia -insulina -intasato -intero -intonaco -intuito -inumidire -invalido -invece -invito -iperbole -ipnotico -ipotesi -ippica -iride -irlanda -ironico -irrigato -irrorare -isolato -isotopo -isterico -istituto -istrice -italia -iterare -labbro -labirinto -lacca -lacerato -lacrima -lacuna -laddove -lago -lampo -lancetta -lanterna -lardoso -larga -laringe -lastra -latenza -latino -lattuga -lavagna -lavoro -legale -leggero -lembo -lentezza -lenza -leone -lepre -lesivo -lessato -lesto -letterale -leva -levigato -libero -lido -lievito -lilla -limatura -limitare -limpido -lineare -lingua -liquido -lira -lirica -lisca -lite -litigio -livrea -locanda -lode -logica -lombare -londra -longevo -loquace -lorenzo -loto -lotteria -luce -lucidato -lumaca -luminoso -lungo -lupo -luppolo -lusinga -lusso -lutto -macabro -macchina -macero -macinato -madama -magico -maglia -magnete -magro -maiolica -malafede -malgrado -malinteso -malsano -malto -malumore -mana -mancia -mandorla -mangiare -manifesto -mannaro -manovra -mansarda -mantide -manubrio -mappa -maratona -marcire -maretta -marmo -marsupio -maschera -massaia -mastino -materasso -matricola -mattone -maturo -mazurca -meandro -meccanico -mecenate -medesimo -meditare -mega -melassa -melis -melodia -meninge -meno -mensola -mercurio -merenda -merlo -meschino -mese -messere -mestolo -metallo -metodo -mettere -miagolare -mica -micelio -michele -microbo -midollo -miele -migliore -milano -milite -mimosa -minerale -mini -minore -mirino -mirtillo -miscela -missiva -misto -misurare -mitezza -mitigare -mitra -mittente -mnemonico -modello -modifica -modulo -mogano -mogio -mole -molosso -monastero -monco -mondina -monetario -monile -monotono -monsone -montato -monviso -mora -mordere -morsicato -mostro -motivato -motosega -motto -movenza -movimento -mozzo -mucca -mucosa -muffa -mughetto -mugnaio -mulatto -mulinello -multiplo -mummia -munto -muovere -murale -musa -muscolo -musica -mutevole -muto -nababbo -nafta -nanometro -narciso -narice -narrato -nascere -nastrare -naturale -nautica -naviglio -nebulosa -necrosi -negativo -negozio -nemmeno -neofita -neretto -nervo -nessuno -nettuno -neutrale -neve -nevrotico -nicchia -ninfa -nitido -nobile -nocivo -nodo -nome -nomina -nordico -normale -norvegese -nostrano -notare -notizia -notturno -novella -nucleo -nulla -numero -nuovo -nutrire -nuvola -nuziale -oasi -obbedire -obbligo -obelisco -oblio -obolo -obsoleto -occasione -occhio -occidente -occorrere -occultare -ocra -oculato -odierno -odorare -offerta -offrire -offuscato -oggetto -oggi -ognuno -olandese -olfatto -oliato -oliva -ologramma -oltre -omaggio -ombelico -ombra -omega -omissione -ondoso -onere -onice -onnivoro -onorevole -onta -operato -opinione -opposto -oracolo -orafo -ordine -orecchino -orefice -orfano -organico -origine -orizzonte -orma -ormeggio -ornativo -orologio -orrendo -orribile -ortensia -ortica -orzata -orzo -osare -oscurare -osmosi -ospedale -ospite -ossa -ossidare -ostacolo -oste -otite -otre -ottagono -ottimo -ottobre -ovale -ovest -ovino -oviparo -ovocito -ovunque -ovviare -ozio -pacchetto -pace -pacifico -padella -padrone -paese -paga -pagina -palazzina -palesare -pallido -palo -palude -pandoro -pannello -paolo -paonazzo -paprica -parabola -parcella -parere -pargolo -pari -parlato -parola -partire -parvenza -parziale -passivo -pasticca -patacca -patologia -pattume -pavone -peccato -pedalare -pedonale -peggio -peloso -penare -pendice -penisola -pennuto -penombra -pensare -pentola -pepe -pepita -perbene -percorso -perdonato -perforare -pergamena -periodo -permesso -perno -perplesso -persuaso -pertugio -pervaso -pesatore -pesista -peso -pestifero -petalo -pettine -petulante -pezzo -piacere -pianta -piattino -piccino -picozza -piega -pietra -piffero -pigiama -pigolio -pigro -pila -pilifero -pillola -pilota -pimpante -pineta -pinna -pinolo -pioggia -piombo -piramide -piretico -pirite -pirolisi -pitone -pizzico -placebo -planare -plasma -platano -plenario -pochezza -poderoso -podismo -poesia -poggiare -polenta -poligono -pollice -polmonite -polpetta -polso -poltrona -polvere -pomice -pomodoro -ponte -popoloso -porfido -poroso -porpora -porre -portata -posa -positivo -possesso -postulato -potassio -potere -pranzo -prassi -pratica -precluso -predica -prefisso -pregiato -prelievo -premere -prenotare -preparato -presenza -pretesto -prevalso -prima -principe -privato -problema -procura -produrre -profumo -progetto -prolunga -promessa -pronome -proposta -proroga -proteso -prova -prudente -prugna -prurito -psiche -pubblico -pudica -pugilato -pugno -pulce -pulito -pulsante -puntare -pupazzo -pupilla -puro -quadro -qualcosa -quasi -querela -quota -raccolto -raddoppio -radicale -radunato -raffica -ragazzo -ragione -ragno -ramarro -ramingo -ramo -randagio -rantolare -rapato -rapina -rappreso -rasatura -raschiato -rasente -rassegna -rastrello -rata -ravveduto -reale -recepire -recinto -recluta -recondito -recupero -reddito -redimere -regalato -registro -regola -regresso -relazione -remare -remoto -renna -replica -reprimere -reputare -resa -residente -responso -restauro -rete -retina -retorica -rettifica -revocato -riassunto -ribadire -ribelle -ribrezzo -ricarica -ricco -ricevere -riciclato -ricordo -ricreduto -ridicolo -ridurre -rifasare -riflesso -riforma -rifugio -rigare -rigettato -righello -rilassato -rilevato -rimanere -rimbalzo -rimedio -rimorchio -rinascita -rincaro -rinforzo -rinnovo -rinomato -rinsavito -rintocco -rinuncia -rinvenire -riparato -ripetuto -ripieno -riportare -ripresa -ripulire -risata -rischio -riserva -risibile -riso -rispetto -ristoro -risultato -risvolto -ritardo -ritegno -ritmico -ritrovo -riunione -riva -riverso -rivincita -rivolto -rizoma -roba -robotico -robusto -roccia -roco -rodaggio -rodere -roditore -rogito -rollio -romantico -rompere -ronzio -rosolare -rospo -rotante -rotondo -rotula -rovescio -rubizzo -rubrica -ruga -rullino -rumine -rumoroso -ruolo -rupe -russare -rustico -sabato -sabbiare -sabotato -sagoma -salasso -saldatura -salgemma -salivare -salmone -salone -saltare -saluto -salvo -sapere -sapido -saporito -saraceno -sarcasmo -sarto -sassoso -satellite -satira -satollo -saturno -savana -savio -saziato -sbadiglio -sbalzo -sbancato -sbarra -sbattere -sbavare -sbendare -sbirciare -sbloccato -sbocciato -sbrinare -sbruffone -sbuffare -scabroso -scadenza -scala -scambiare -scandalo -scapola -scarso -scatenare -scavato -scelto -scenico -scettro -scheda -schiena -sciarpa -scienza -scindere -scippo -sciroppo -scivolo -sclerare -scodella -scolpito -scomparto -sconforto -scoprire -scorta -scossone -scozzese -scriba -scrollare -scrutinio -scuderia -scultore -scuola -scuro -scusare -sdebitare -sdoganare -seccatura -secondo -sedano -seggiola -segnalato -segregato -seguito -selciato -selettivo -sella -selvaggio -semaforo -sembrare -seme -seminato -sempre -senso -sentire -sepolto -sequenza -serata -serbato -sereno -serio -serpente -serraglio -servire -sestina -setola -settimana -sfacelo -sfaldare -sfamato -sfarzoso -sfaticato -sfera -sfida -sfilato -sfinge -sfocato -sfoderare -sfogo -sfoltire -sforzato -sfratto -sfruttato -sfuggito -sfumare -sfuso -sgabello -sgarbato -sgonfiare -sgorbio -sgrassato -sguardo -sibilo -siccome -sierra -sigla -signore -silenzio -sillaba -simbolo -simpatico -simulato -sinfonia -singolo -sinistro -sino -sintesi -sinusoide -sipario -sisma -sistole -situato -slitta -slogatura -sloveno -smarrito -smemorato -smentito -smeraldo -smilzo -smontare -smottato -smussato -snellire -snervato -snodo -sobbalzo -sobrio -soccorso -sociale -sodale -soffitto -sogno -soldato -solenne -solido -sollazzo -solo -solubile -solvente -somatico -somma -sonda -sonetto -sonnifero -sopire -soppeso -sopra -sorgere -sorpasso -sorriso -sorso -sorteggio -sorvolato -sospiro -sosta -sottile -spada -spalla -spargere -spatola -spavento -spazzola -specie -spedire -spegnere -spelatura -speranza -spessore -spettrale -spezzato -spia -spigoloso -spillato -spinoso -spirale -splendido -sportivo -sposo -spranga -sprecare -spronato -spruzzo -spuntino -squillo -sradicare -srotolato -stabile -stacco -staffa -stagnare -stampato -stantio -starnuto -stasera -statuto -stelo -steppa -sterzo -stiletto -stima -stirpe -stivale -stizzoso -stonato -storico -strappo -stregato -stridulo -strozzare -strutto -stuccare -stufo -stupendo -subentro -succoso -sudore -suggerito -sugo -sultano -suonare -superbo -supporto -surgelato -surrogato -sussurro -sutura -svagare -svedese -sveglio -svelare -svenuto -svezia -sviluppo -svista -svizzera -svolta -svuotare -tabacco -tabulato -tacciare -taciturno -tale -talismano -tampone -tannino -tara -tardivo -targato -tariffa -tarpare -tartaruga -tasto -tattico -taverna -tavolata -tazza -teca -tecnico -telefono -temerario -tempo -temuto -tendone -tenero -tensione -tentacolo -teorema -terme -terrazzo -terzetto -tesi -tesserato -testato -tetro -tettoia -tifare -tigella -timbro -tinto -tipico -tipografo -tiraggio -tiro -titanio -titolo -titubante -tizio -tizzone -toccare -tollerare -tolto -tombola -tomo -tonfo -tonsilla -topazio -topologia -toppa -torba -tornare -torrone -tortora -toscano -tossire -tostatura -totano -trabocco -trachea -trafila -tragedia -tralcio -tramonto -transito -trapano -trarre -trasloco -trattato -trave -treccia -tremolio -trespolo -tributo -tricheco -trifoglio -trillo -trincea -trio -tristezza -triturato -trivella -tromba -trono -troppo -trottola -trovare -truccato -tubatura -tuffato -tulipano -tumulto -tunisia -turbare -turchino -tuta -tutela -ubicato -uccello -uccisore -udire -uditivo -uffa -ufficio -uguale -ulisse -ultimato -umano -umile -umorismo -uncinetto -ungere -ungherese -unicorno -unificato -unisono -unitario -unte -uovo -upupa -uragano -urgenza -urlo -usanza -usato -uscito -usignolo -usuraio -utensile -utilizzo -utopia -vacante -vaccinato -vagabondo -vagliato -valanga -valgo -valico -valletta -valoroso -valutare -valvola -vampata -vangare -vanitoso -vano -vantaggio -vanvera -vapore -varano -varcato -variante -vasca -vedetta -vedova -veduto -vegetale -veicolo -velcro -velina -velluto -veloce -venato -vendemmia -vento -verace -verbale -vergogna -verifica -vero -verruca -verticale -vescica -vessillo -vestale -veterano -vetrina -vetusto -viandante -vibrante -vicenda -vichingo -vicinanza -vidimare -vigilia -vigneto -vigore -vile -villano -vimini -vincitore -viola -vipera -virgola -virologo -virulento -viscoso -visione -vispo -vissuto -visura -vita -vitello -vittima -vivanda -vivido -viziare -voce -voga -volatile -volere -volpe -voragine -vulcano -zampogna -zanna -zappato -zattera -zavorra -zefiro -zelante -zelo -zenzero -zerbino -zibetto -zinco -zircone -zitto -zolla -zotico -zucchero -zufolo -zulu -zuppa -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/japanese.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/japanese.go deleted file mode 100644 index 23a76a3..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/japanese.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/japanese.txt - // $ crc32 japanese.txt - // 0acc1419 - checksum := crc32.ChecksumIEEE([]byte(japanese)) - if fmt.Sprintf("%x", checksum) != "acc1419" { - panic(fmt.Sprintf("japanese checksum invalid: %x", checksum)) - } -} - -// Japanese is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/japanese.txt -var Japanese = strings.Split(strings.TrimSpace(japanese), "\n") -var japanese = `あいこくしん -あいさつ -あいだ -あおぞら -あかちゃん -あきる -あけがた -あける -あこがれる -あさい -あさひ -あしあと -あじわう -あずかる -あずき -あそぶ -あたえる -あたためる -あたりまえ -あたる -あつい -あつかう -あっしゅく -あつまり -あつめる -あてな -あてはまる -あひる -あぶら -あぶる -あふれる -あまい -あまど -あまやかす -あまり -あみもの -あめりか -あやまる -あゆむ -あらいぐま -あらし -あらすじ -あらためる -あらゆる -あらわす -ありがとう -あわせる -あわてる -あんい -あんがい -あんこ -あんぜん -あんてい -あんない -あんまり -いいだす -いおん -いがい -いがく -いきおい -いきなり -いきもの -いきる -いくじ -いくぶん -いけばな -いけん -いこう -いこく -いこつ -いさましい -いさん -いしき -いじゅう -いじょう -いじわる -いずみ -いずれ -いせい -いせえび -いせかい -いせき -いぜん -いそうろう -いそがしい -いだい -いだく -いたずら -いたみ -いたりあ -いちおう -いちじ -いちど -いちば -いちぶ -いちりゅう -いつか -いっしゅん -いっせい -いっそう -いったん -いっち -いってい -いっぽう -いてざ -いてん -いどう -いとこ -いない -いなか -いねむり -いのち -いのる -いはつ -いばる -いはん -いびき -いひん -いふく -いへん -いほう -いみん -いもうと -いもたれ -いもり -いやがる -いやす -いよかん -いよく -いらい -いらすと -いりぐち -いりょう -いれい -いれもの -いれる -いろえんぴつ -いわい -いわう -いわかん -いわば -いわゆる -いんげんまめ -いんさつ -いんしょう -いんよう -うえき -うえる -うおざ -うがい -うかぶ -うかべる -うきわ -うくらいな -うくれれ -うけたまわる -うけつけ -うけとる -うけもつ -うける -うごかす -うごく -うこん -うさぎ -うしなう -うしろがみ -うすい -うすぎ -うすぐらい -うすめる -うせつ -うちあわせ -うちがわ -うちき -うちゅう -うっかり -うつくしい -うったえる -うつる -うどん -うなぎ -うなじ -うなずく -うなる -うねる -うのう -うぶげ -うぶごえ -うまれる -うめる -うもう -うやまう -うよく -うらがえす -うらぐち -うらない -うりあげ -うりきれ -うるさい -うれしい -うれゆき -うれる -うろこ -うわき -うわさ -うんこう -うんちん -うんてん -うんどう -えいえん -えいが -えいきょう -えいご -えいせい -えいぶん -えいよう -えいわ -えおり -えがお -えがく -えきたい -えくせる -えしゃく -えすて -えつらん -えのぐ -えほうまき -えほん -えまき -えもじ -えもの -えらい -えらぶ -えりあ -えんえん -えんかい -えんぎ -えんげき -えんしゅう -えんぜつ -えんそく -えんちょう -えんとつ -おいかける -おいこす -おいしい -おいつく -おうえん -おうさま -おうじ -おうせつ -おうたい -おうふく -おうべい -おうよう -おえる -おおい -おおう -おおどおり -おおや -おおよそ -おかえり -おかず -おがむ -おかわり -おぎなう -おきる -おくさま -おくじょう -おくりがな -おくる -おくれる -おこす -おこなう -おこる -おさえる -おさない -おさめる -おしいれ -おしえる -おじぎ -おじさん -おしゃれ -おそらく -おそわる -おたがい -おたく -おだやか -おちつく -おっと -おつり -おでかけ -おとしもの -おとなしい -おどり -おどろかす -おばさん -おまいり -おめでとう -おもいで -おもう -おもたい -おもちゃ -おやつ -おやゆび -およぼす -おらんだ -おろす -おんがく -おんけい -おんしゃ -おんせん -おんだん -おんちゅう -おんどけい -かあつ -かいが -がいき -がいけん -がいこう -かいさつ -かいしゃ -かいすいよく -かいぜん -かいぞうど -かいつう -かいてん -かいとう -かいふく -がいへき -かいほう -かいよう -がいらい -かいわ -かえる -かおり -かかえる -かがく -かがし -かがみ -かくご -かくとく -かざる -がぞう -かたい -かたち -がちょう -がっきゅう -がっこう -がっさん -がっしょう -かなざわし -かのう -がはく -かぶか -かほう -かほご -かまう -かまぼこ -かめれおん -かゆい -かようび -からい -かるい -かろう -かわく -かわら -がんか -かんけい -かんこう -かんしゃ -かんそう -かんたん -かんち -がんばる -きあい -きあつ -きいろ -ぎいん -きうい -きうん -きえる -きおう -きおく -きおち -きおん -きかい -きかく -きかんしゃ -ききて -きくばり -きくらげ -きけんせい -きこう -きこえる -きこく -きさい -きさく -きさま -きさらぎ -ぎじかがく -ぎしき -ぎじたいけん -ぎじにってい -ぎじゅつしゃ -きすう -きせい -きせき -きせつ -きそう -きぞく -きぞん -きたえる -きちょう -きつえん -ぎっちり -きつつき -きつね -きてい -きどう -きどく -きない -きなが -きなこ -きぬごし -きねん -きのう -きのした -きはく -きびしい -きひん -きふく -きぶん -きぼう -きほん -きまる -きみつ -きむずかしい -きめる -きもだめし -きもち -きもの -きゃく -きやく -ぎゅうにく -きよう -きょうりゅう -きらい -きらく -きりん -きれい -きれつ -きろく -ぎろん -きわめる -ぎんいろ -きんかくじ -きんじょ -きんようび -ぐあい -くいず -くうかん -くうき -くうぐん -くうこう -ぐうせい -くうそう -ぐうたら -くうふく -くうぼ -くかん -くきょう -くげん -ぐこう -くさい -くさき -くさばな -くさる -くしゃみ -くしょう -くすのき -くすりゆび -くせげ -くせん -ぐたいてき -くださる -くたびれる -くちこみ -くちさき -くつした -ぐっすり -くつろぐ -くとうてん -くどく -くなん -くねくね -くのう -くふう -くみあわせ -くみたてる -くめる -くやくしょ -くらす -くらべる -くるま -くれる -くろう -くわしい -ぐんかん -ぐんしょく -ぐんたい -ぐんて -けあな -けいかく -けいけん -けいこ -けいさつ -げいじゅつ -けいたい -げいのうじん -けいれき -けいろ -けおとす -けおりもの -げきか -げきげん -げきだん -げきちん -げきとつ -げきは -げきやく -げこう -げこくじょう -げざい -けさき -げざん -けしき -けしごむ -けしょう -げすと -けたば -けちゃっぷ -けちらす -けつあつ -けつい -けつえき -けっこん -けつじょ -けっせき -けってい -けつまつ -げつようび -げつれい -けつろん -げどく -けとばす -けとる -けなげ -けなす -けなみ -けぬき -げねつ -けねん -けはい -げひん -けぶかい -げぼく -けまり -けみかる -けむし -けむり -けもの -けらい -けろけろ -けわしい -けんい -けんえつ -けんお -けんか -げんき -けんげん -けんこう -けんさく -けんしゅう -けんすう -げんそう -けんちく -けんてい -けんとう -けんない -けんにん -げんぶつ -けんま -けんみん -けんめい -けんらん -けんり -こあくま -こいぬ -こいびと -ごうい -こうえん -こうおん -こうかん -ごうきゅう -ごうけい -こうこう -こうさい -こうじ -こうすい -ごうせい -こうそく -こうたい -こうちゃ -こうつう -こうてい -こうどう -こうない -こうはい -ごうほう -ごうまん -こうもく -こうりつ -こえる -こおり -ごかい -ごがつ -ごかん -こくご -こくさい -こくとう -こくない -こくはく -こぐま -こけい -こける -ここのか -こころ -こさめ -こしつ -こすう -こせい -こせき -こぜん -こそだて -こたい -こたえる -こたつ -こちょう -こっか -こつこつ -こつばん -こつぶ -こてい -こてん -ことがら -ことし -ことば -ことり -こなごな -こねこね -このまま -このみ -このよ -ごはん -こひつじ -こふう -こふん -こぼれる -ごまあぶら -こまかい -ごますり -こまつな -こまる -こむぎこ -こもじ -こもち -こもの -こもん -こやく -こやま -こゆう -こゆび -こよい -こよう -こりる -これくしょん -ころっけ -こわもて -こわれる -こんいん -こんかい -こんき -こんしゅう -こんすい -こんだて -こんとん -こんなん -こんびに -こんぽん -こんまけ -こんや -こんれい -こんわく -ざいえき -さいかい -さいきん -ざいげん -ざいこ -さいしょ -さいせい -ざいたく -ざいちゅう -さいてき -ざいりょう -さうな -さかいし -さがす -さかな -さかみち -さがる -さぎょう -さくし -さくひん -さくら -さこく -さこつ -さずかる -ざせき -さたん -さつえい -ざつおん -ざっか -ざつがく -さっきょく -ざっし -さつじん -ざっそう -さつたば -さつまいも -さてい -さといも -さとう -さとおや -さとし -さとる -さのう -さばく -さびしい -さべつ -さほう -さほど -さます -さみしい -さみだれ -さむけ -さめる -さやえんどう -さゆう -さよう -さよく -さらだ -ざるそば -さわやか -さわる -さんいん -さんか -さんきゃく -さんこう -さんさい -ざんしょ -さんすう -さんせい -さんそ -さんち -さんま -さんみ -さんらん -しあい -しあげ -しあさって -しあわせ -しいく -しいん -しうち -しえい -しおけ -しかい -しかく -じかん -しごと -しすう -じだい -したうけ -したぎ -したて -したみ -しちょう -しちりん -しっかり -しつじ -しつもん -してい -してき -してつ -じてん -じどう -しなぎれ -しなもの -しなん -しねま -しねん -しのぐ -しのぶ -しはい -しばかり -しはつ -しはらい -しはん -しひょう -しふく -じぶん -しへい -しほう -しほん -しまう -しまる -しみん -しむける -じむしょ -しめい -しめる -しもん -しゃいん -しゃうん -しゃおん -じゃがいも -しやくしょ -しゃくほう -しゃけん -しゃこ -しゃざい -しゃしん -しゃせん -しゃそう -しゃたい -しゃちょう -しゃっきん -じゃま -しゃりん -しゃれい -じゆう -じゅうしょ -しゅくはく -じゅしん -しゅっせき -しゅみ -しゅらば -じゅんばん -しょうかい -しょくたく -しょっけん -しょどう -しょもつ -しらせる -しらべる -しんか -しんこう -じんじゃ -しんせいじ -しんちく -しんりん -すあげ -すあし -すあな -ずあん -すいえい -すいか -すいとう -ずいぶん -すいようび -すうがく -すうじつ -すうせん -すおどり -すきま -すくう -すくない -すける -すごい -すこし -ずさん -すずしい -すすむ -すすめる -すっかり -ずっしり -ずっと -すてき -すてる -すねる -すのこ -すはだ -すばらしい -ずひょう -ずぶぬれ -すぶり -すふれ -すべて -すべる -ずほう -すぼん -すまい -すめし -すもう -すやき -すらすら -するめ -すれちがう -すろっと -すわる -すんぜん -すんぽう -せあぶら -せいかつ -せいげん -せいじ -せいよう -せおう -せかいかん -せきにん -せきむ -せきゆ -せきらんうん -せけん -せこう -せすじ -せたい -せたけ -せっかく -せっきゃく -ぜっく -せっけん -せっこつ -せっさたくま -せつぞく -せつだん -せつでん -せっぱん -せつび -せつぶん -せつめい -せつりつ -せなか -せのび -せはば -せびろ -せぼね -せまい -せまる -せめる -せもたれ -せりふ -ぜんあく -せんい -せんえい -せんか -せんきょ -せんく -せんげん -ぜんご -せんさい -せんしゅ -せんすい -せんせい -せんぞ -せんたく -せんちょう -せんてい -せんとう -せんぬき -せんねん -せんぱい -ぜんぶ -ぜんぽう -せんむ -せんめんじょ -せんもん -せんやく -せんゆう -せんよう -ぜんら -ぜんりゃく -せんれい -せんろ -そあく -そいとげる -そいね -そうがんきょう -そうき -そうご -そうしん -そうだん -そうなん -そうび -そうめん -そうり -そえもの -そえん -そがい -そげき -そこう -そこそこ -そざい -そしな -そせい -そせん -そそぐ -そだてる -そつう -そつえん -そっかん -そつぎょう -そっけつ -そっこう -そっせん -そっと -そとがわ -そとづら -そなえる -そなた -そふぼ -そぼく -そぼろ -そまつ -そまる -そむく -そむりえ -そめる -そもそも -そよかぜ -そらまめ -そろう -そんかい -そんけい -そんざい -そんしつ -そんぞく -そんちょう -ぞんび -ぞんぶん -そんみん -たあい -たいいん -たいうん -たいえき -たいおう -だいがく -たいき -たいぐう -たいけん -たいこ -たいざい -だいじょうぶ -だいすき -たいせつ -たいそう -だいたい -たいちょう -たいてい -だいどころ -たいない -たいねつ -たいのう -たいはん -だいひょう -たいふう -たいへん -たいほ -たいまつばな -たいみんぐ -たいむ -たいめん -たいやき -たいよう -たいら -たいりょく -たいる -たいわん -たうえ -たえる -たおす -たおる -たおれる -たかい -たかね -たきび -たくさん -たこく -たこやき -たさい -たしざん -だじゃれ -たすける -たずさわる -たそがれ -たたかう -たたく -ただしい -たたみ -たちばな -だっかい -だっきゃく -だっこ -だっしゅつ -だったい -たてる -たとえる -たなばた -たにん -たぬき -たのしみ -たはつ -たぶん -たべる -たぼう -たまご -たまる -だむる -ためいき -ためす -ためる -たもつ -たやすい -たよる -たらす -たりきほんがん -たりょう -たりる -たると -たれる -たれんと -たろっと -たわむれる -だんあつ -たんい -たんおん -たんか -たんき -たんけん -たんご -たんさん -たんじょうび -だんせい -たんそく -たんたい -だんち -たんてい -たんとう -だんな -たんにん -だんねつ -たんのう -たんぴん -だんぼう -たんまつ -たんめい -だんれつ -だんろ -だんわ -ちあい -ちあん -ちいき -ちいさい -ちえん -ちかい -ちから -ちきゅう -ちきん -ちけいず -ちけん -ちこく -ちさい -ちしき -ちしりょう -ちせい -ちそう -ちたい -ちたん -ちちおや -ちつじょ -ちてき -ちてん -ちぬき -ちぬり -ちのう -ちひょう -ちへいせん -ちほう -ちまた -ちみつ -ちみどろ -ちめいど -ちゃんこなべ -ちゅうい -ちゆりょく -ちょうし -ちょさくけん -ちらし -ちらみ -ちりがみ -ちりょう -ちるど -ちわわ -ちんたい -ちんもく -ついか -ついたち -つうか -つうじょう -つうはん -つうわ -つかう -つかれる -つくね -つくる -つけね -つける -つごう -つたえる -つづく -つつじ -つつむ -つとめる -つながる -つなみ -つねづね -つのる -つぶす -つまらない -つまる -つみき -つめたい -つもり -つもる -つよい -つるぼ -つるみく -つわもの -つわり -てあし -てあて -てあみ -ていおん -ていか -ていき -ていけい -ていこく -ていさつ -ていし -ていせい -ていたい -ていど -ていねい -ていひょう -ていへん -ていぼう -てうち -ておくれ -てきとう -てくび -でこぼこ -てさぎょう -てさげ -てすり -てそう -てちがい -てちょう -てつがく -てつづき -でっぱ -てつぼう -てつや -でぬかえ -てぬき -てぬぐい -てのひら -てはい -てぶくろ -てふだ -てほどき -てほん -てまえ -てまきずし -てみじか -てみやげ -てらす -てれび -てわけ -てわたし -でんあつ -てんいん -てんかい -てんき -てんぐ -てんけん -てんごく -てんさい -てんし -てんすう -でんち -てんてき -てんとう -てんない -てんぷら -てんぼうだい -てんめつ -てんらんかい -でんりょく -でんわ -どあい -といれ -どうかん -とうきゅう -どうぐ -とうし -とうむぎ -とおい -とおか -とおく -とおす -とおる -とかい -とかす -ときおり -ときどき -とくい -とくしゅう -とくてん -とくに -とくべつ -とけい -とける -とこや -とさか -としょかん -とそう -とたん -とちゅう -とっきゅう -とっくん -とつぜん -とつにゅう -とどける -ととのえる -とない -となえる -となり -とのさま -とばす -どぶがわ -とほう -とまる -とめる -ともだち -ともる -どようび -とらえる -とんかつ -どんぶり -ないかく -ないこう -ないしょ -ないす -ないせん -ないそう -なおす -ながい -なくす -なげる -なこうど -なさけ -なたでここ -なっとう -なつやすみ -ななおし -なにごと -なにもの -なにわ -なのか -なふだ -なまいき -なまえ -なまみ -なみだ -なめらか -なめる -なやむ -ならう -ならび -ならぶ -なれる -なわとび -なわばり -にあう -にいがた -にうけ -におい -にかい -にがて -にきび -にくしみ -にくまん -にげる -にさんかたんそ -にしき -にせもの -にちじょう -にちようび -にっか -にっき -にっけい -にっこう -にっさん -にっしょく -にっすう -にっせき -にってい -になう -にほん -にまめ -にもつ -にやり -にゅういん -にりんしゃ -にわとり -にんい -にんか -にんき -にんげん -にんしき -にんずう -にんそう -にんたい -にんち -にんてい -にんにく -にんぷ -にんまり -にんむ -にんめい -にんよう -ぬいくぎ -ぬかす -ぬぐいとる -ぬぐう -ぬくもり -ぬすむ -ぬまえび -ぬめり -ぬらす -ぬんちゃく -ねあげ -ねいき -ねいる -ねいろ -ねぐせ -ねくたい -ねくら -ねこぜ -ねこむ -ねさげ -ねすごす -ねそべる -ねだん -ねつい -ねっしん -ねつぞう -ねったいぎょ -ねぶそく -ねふだ -ねぼう -ねほりはほり -ねまき -ねまわし -ねみみ -ねむい -ねむたい -ねもと -ねらう -ねわざ -ねんいり -ねんおし -ねんかん -ねんきん -ねんぐ -ねんざ -ねんし -ねんちゃく -ねんど -ねんぴ -ねんぶつ -ねんまつ -ねんりょう -ねんれい -のいず -のおづま -のがす -のきなみ -のこぎり -のこす -のこる -のせる -のぞく -のぞむ -のたまう -のちほど -のっく -のばす -のはら -のべる -のぼる -のみもの -のやま -のらいぬ -のらねこ -のりもの -のりゆき -のれん -のんき -ばあい -はあく -ばあさん -ばいか -ばいく -はいけん -はいご -はいしん -はいすい -はいせん -はいそう -はいち -ばいばい -はいれつ -はえる -はおる -はかい -ばかり -はかる -はくしゅ -はけん -はこぶ -はさみ -はさん -はしご -ばしょ -はしる -はせる -ぱそこん -はそん -はたん -はちみつ -はつおん -はっかく -はづき -はっきり -はっくつ -はっけん -はっこう -はっさん -はっしん -はったつ -はっちゅう -はってん -はっぴょう -はっぽう -はなす -はなび -はにかむ -はぶらし -はみがき -はむかう -はめつ -はやい -はやし -はらう -はろうぃん -はわい -はんい -はんえい -はんおん -はんかく -はんきょう -ばんぐみ -はんこ -はんしゃ -はんすう -はんだん -ぱんち -ぱんつ -はんてい -はんとし -はんのう -はんぱ -はんぶん -はんぺん -はんぼうき -はんめい -はんらん -はんろん -ひいき -ひうん -ひえる -ひかく -ひかり -ひかる -ひかん -ひくい -ひけつ -ひこうき -ひこく -ひさい -ひさしぶり -ひさん -びじゅつかん -ひしょ -ひそか -ひそむ -ひたむき -ひだり -ひたる -ひつぎ -ひっこし -ひっし -ひつじゅひん -ひっす -ひつぜん -ぴったり -ぴっちり -ひつよう -ひてい -ひとごみ -ひなまつり -ひなん -ひねる -ひはん -ひびく -ひひょう -ひほう -ひまわり -ひまん -ひみつ -ひめい -ひめじし -ひやけ -ひやす -ひよう -びょうき -ひらがな -ひらく -ひりつ -ひりょう -ひるま -ひるやすみ -ひれい -ひろい -ひろう -ひろき -ひろゆき -ひんかく -ひんけつ -ひんこん -ひんしゅ -ひんそう -ぴんち -ひんぱん -びんぼう -ふあん -ふいうち -ふうけい -ふうせん -ぷうたろう -ふうとう -ふうふ -ふえる -ふおん -ふかい -ふきん -ふくざつ -ふくぶくろ -ふこう -ふさい -ふしぎ -ふじみ -ふすま -ふせい -ふせぐ -ふそく -ぶたにく -ふたん -ふちょう -ふつう -ふつか -ふっかつ -ふっき -ふっこく -ぶどう -ふとる -ふとん -ふのう -ふはい -ふひょう -ふへん -ふまん -ふみん -ふめつ -ふめん -ふよう -ふりこ -ふりる -ふるい -ふんいき -ぶんがく -ぶんぐ -ふんしつ -ぶんせき -ふんそう -ぶんぽう -へいあん -へいおん -へいがい -へいき -へいげん -へいこう -へいさ -へいしゃ -へいせつ -へいそ -へいたく -へいてん -へいねつ -へいわ -へきが -へこむ -べにいろ -べにしょうが -へらす -へんかん -べんきょう -べんごし -へんさい -へんたい -べんり -ほあん -ほいく -ぼうぎょ -ほうこく -ほうそう -ほうほう -ほうもん -ほうりつ -ほえる -ほおん -ほかん -ほきょう -ぼきん -ほくろ -ほけつ -ほけん -ほこう -ほこる -ほしい -ほしつ -ほしゅ -ほしょう -ほせい -ほそい -ほそく -ほたて -ほたる -ぽちぶくろ -ほっきょく -ほっさ -ほったん -ほとんど -ほめる -ほんい -ほんき -ほんけ -ほんしつ -ほんやく -まいにち -まかい -まかせる -まがる -まける -まこと -まさつ -まじめ -ますく -まぜる -まつり -まとめ -まなぶ -まぬけ -まねく -まほう -まもる -まゆげ -まよう -まろやか -まわす -まわり -まわる -まんが -まんきつ -まんぞく -まんなか -みいら -みうち -みえる -みがく -みかた -みかん -みけん -みこん -みじかい -みすい -みすえる -みせる -みっか -みつかる -みつける -みてい -みとめる -みなと -みなみかさい -みねらる -みのう -みのがす -みほん -みもと -みやげ -みらい -みりょく -みわく -みんか -みんぞく -むいか -むえき -むえん -むかい -むかう -むかえ -むかし -むぎちゃ -むける -むげん -むさぼる -むしあつい -むしば -むじゅん -むしろ -むすう -むすこ -むすぶ -むすめ -むせる -むせん -むちゅう -むなしい -むのう -むやみ -むよう -むらさき -むりょう -むろん -めいあん -めいうん -めいえん -めいかく -めいきょく -めいさい -めいし -めいそう -めいぶつ -めいれい -めいわく -めぐまれる -めざす -めした -めずらしい -めだつ -めまい -めやす -めんきょ -めんせき -めんどう -もうしあげる -もうどうけん -もえる -もくし -もくてき -もくようび -もちろん -もどる -もらう -もんく -もんだい -やおや -やける -やさい -やさしい -やすい -やすたろう -やすみ -やせる -やそう -やたい -やちん -やっと -やっぱり -やぶる -やめる -ややこしい -やよい -やわらかい -ゆうき -ゆうびんきょく -ゆうべ -ゆうめい -ゆけつ -ゆしゅつ -ゆせん -ゆそう -ゆたか -ゆちゃく -ゆでる -ゆにゅう -ゆびわ -ゆらい -ゆれる -ようい -ようか -ようきゅう -ようじ -ようす -ようちえん -よかぜ -よかん -よきん -よくせい -よくぼう -よけい -よごれる -よさん -よしゅう -よそう -よそく -よっか -よてい -よどがわく -よねつ -よやく -よゆう -よろこぶ -よろしい -らいう -らくがき -らくご -らくさつ -らくだ -らしんばん -らせん -らぞく -らたい -らっか -られつ -りえき -りかい -りきさく -りきせつ -りくぐん -りくつ -りけん -りこう -りせい -りそう -りそく -りてん -りねん -りゆう -りゅうがく -りよう -りょうり -りょかん -りょくちゃ -りょこう -りりく -りれき -りろん -りんご -るいけい -るいさい -るいじ -るいせき -るすばん -るりがわら -れいかん -れいぎ -れいせい -れいぞうこ -れいとう -れいぼう -れきし -れきだい -れんあい -れんけい -れんこん -れんさい -れんしゅう -れんぞく -れんらく -ろうか -ろうご -ろうじん -ろうそく -ろくが -ろこつ -ろじうら -ろしゅつ -ろせん -ろてん -ろめん -ろれつ -ろんぎ -ろんぱ -ろんぶん -ろんり -わかす -わかめ -わかやま -わかれる -わしつ -わじまし -わすれもの -わらう -われる -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/korean.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/korean.go deleted file mode 100644 index 1d31775..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/korean.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/korean.txt - // $ crc32 korean.txt - // 4ef461eb - checksum := crc32.ChecksumIEEE([]byte(korean)) - if fmt.Sprintf("%x", checksum) != "4ef461eb" { - panic("korean checksum invalid") - } -} - -// Korean is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/korean.txt -var Korean = strings.Split(strings.TrimSpace(korean), "\n") -var korean = `가격 -가끔 -가난 -가능 -가득 -가르침 -가뭄 -가방 -가상 -가슴 -가운데 -가을 -가이드 -가입 -가장 -가정 -가족 -가죽 -각오 -각자 -간격 -간부 -간섭 -간장 -간접 -간판 -갈등 -갈비 -갈색 -갈증 -감각 -감기 -감소 -감수성 -감자 -감정 -갑자기 -강남 -강당 -강도 -강력히 -강변 -강북 -강사 -강수량 -강아지 -강원도 -강의 -강제 -강조 -같이 -개구리 -개나리 -개방 -개별 -개선 -개성 -개인 -객관적 -거실 -거액 -거울 -거짓 -거품 -걱정 -건강 -건물 -건설 -건조 -건축 -걸음 -검사 -검토 -게시판 -게임 -겨울 -견해 -결과 -결국 -결론 -결석 -결승 -결심 -결정 -결혼 -경계 -경고 -경기 -경력 -경복궁 -경비 -경상도 -경영 -경우 -경쟁 -경제 -경주 -경찰 -경치 -경향 -경험 -계곡 -계단 -계란 -계산 -계속 -계약 -계절 -계층 -계획 -고객 -고구려 -고궁 -고급 -고등학생 -고무신 -고민 -고양이 -고장 -고전 -고집 -고춧가루 -고통 -고향 -곡식 -골목 -골짜기 -골프 -공간 -공개 -공격 -공군 -공급 -공기 -공동 -공무원 -공부 -공사 -공식 -공업 -공연 -공원 -공장 -공짜 -공책 -공통 -공포 -공항 -공휴일 -과목 -과일 -과장 -과정 -과학 -관객 -관계 -관광 -관념 -관람 -관련 -관리 -관습 -관심 -관점 -관찰 -광경 -광고 -광장 -광주 -괴로움 -굉장히 -교과서 -교문 -교복 -교실 -교양 -교육 -교장 -교직 -교통 -교환 -교훈 -구경 -구름 -구멍 -구별 -구분 -구석 -구성 -구속 -구역 -구입 -구청 -구체적 -국가 -국기 -국내 -국립 -국물 -국민 -국수 -국어 -국왕 -국적 -국제 -국회 -군대 -군사 -군인 -궁극적 -권리 -권위 -권투 -귀국 -귀신 -규정 -규칙 -균형 -그날 -그냥 -그늘 -그러나 -그룹 -그릇 -그림 -그제서야 -그토록 -극복 -극히 -근거 -근교 -근래 -근로 -근무 -근본 -근원 -근육 -근처 -글씨 -글자 -금강산 -금고 -금년 -금메달 -금액 -금연 -금요일 -금지 -긍정적 -기간 -기관 -기념 -기능 -기독교 -기둥 -기록 -기름 -기법 -기본 -기분 -기쁨 -기숙사 -기술 -기억 -기업 -기온 -기운 -기원 -기적 -기준 -기침 -기혼 -기획 -긴급 -긴장 -길이 -김밥 -김치 -김포공항 -깍두기 -깜빡 -깨달음 -깨소금 -껍질 -꼭대기 -꽃잎 -나들이 -나란히 -나머지 -나물 -나침반 -나흘 -낙엽 -난방 -날개 -날씨 -날짜 -남녀 -남대문 -남매 -남산 -남자 -남편 -남학생 -낭비 -낱말 -내년 -내용 -내일 -냄비 -냄새 -냇물 -냉동 -냉면 -냉방 -냉장고 -넥타이 -넷째 -노동 -노란색 -노력 -노인 -녹음 -녹차 -녹화 -논리 -논문 -논쟁 -놀이 -농구 -농담 -농민 -농부 -농업 -농장 -농촌 -높이 -눈동자 -눈물 -눈썹 -뉴욕 -느낌 -늑대 -능동적 -능력 -다방 -다양성 -다음 -다이어트 -다행 -단계 -단골 -단독 -단맛 -단순 -단어 -단위 -단점 -단체 -단추 -단편 -단풍 -달걀 -달러 -달력 -달리 -닭고기 -담당 -담배 -담요 -담임 -답변 -답장 -당근 -당분간 -당연히 -당장 -대규모 -대낮 -대단히 -대답 -대도시 -대략 -대량 -대륙 -대문 -대부분 -대신 -대응 -대장 -대전 -대접 -대중 -대책 -대출 -대충 -대통령 -대학 -대한민국 -대합실 -대형 -덩어리 -데이트 -도대체 -도덕 -도둑 -도망 -도서관 -도심 -도움 -도입 -도자기 -도저히 -도전 -도중 -도착 -독감 -독립 -독서 -독일 -독창적 -동화책 -뒷모습 -뒷산 -딸아이 -마누라 -마늘 -마당 -마라톤 -마련 -마무리 -마사지 -마약 -마요네즈 -마을 -마음 -마이크 -마중 -마지막 -마찬가지 -마찰 -마흔 -막걸리 -막내 -막상 -만남 -만두 -만세 -만약 -만일 -만점 -만족 -만화 -많이 -말기 -말씀 -말투 -맘대로 -망원경 -매년 -매달 -매력 -매번 -매스컴 -매일 -매장 -맥주 -먹이 -먼저 -먼지 -멀리 -메일 -며느리 -며칠 -면담 -멸치 -명단 -명령 -명예 -명의 -명절 -명칭 -명함 -모금 -모니터 -모델 -모든 -모범 -모습 -모양 -모임 -모조리 -모집 -모퉁이 -목걸이 -목록 -목사 -목소리 -목숨 -목적 -목표 -몰래 -몸매 -몸무게 -몸살 -몸속 -몸짓 -몸통 -몹시 -무관심 -무궁화 -무더위 -무덤 -무릎 -무슨 -무엇 -무역 -무용 -무조건 -무지개 -무척 -문구 -문득 -문법 -문서 -문제 -문학 -문화 -물가 -물건 -물결 -물고기 -물론 -물리학 -물음 -물질 -물체 -미국 -미디어 -미사일 -미술 -미역 -미용실 -미움 -미인 -미팅 -미혼 -민간 -민족 -민주 -믿음 -밀가루 -밀리미터 -밑바닥 -바가지 -바구니 -바나나 -바늘 -바닥 -바닷가 -바람 -바이러스 -바탕 -박물관 -박사 -박수 -반대 -반드시 -반말 -반발 -반성 -반응 -반장 -반죽 -반지 -반찬 -받침 -발가락 -발걸음 -발견 -발달 -발레 -발목 -발바닥 -발생 -발음 -발자국 -발전 -발톱 -발표 -밤하늘 -밥그릇 -밥맛 -밥상 -밥솥 -방금 -방면 -방문 -방바닥 -방법 -방송 -방식 -방안 -방울 -방지 -방학 -방해 -방향 -배경 -배꼽 -배달 -배드민턴 -백두산 -백색 -백성 -백인 -백제 -백화점 -버릇 -버섯 -버튼 -번개 -번역 -번지 -번호 -벌금 -벌레 -벌써 -범위 -범인 -범죄 -법률 -법원 -법적 -법칙 -베이징 -벨트 -변경 -변동 -변명 -변신 -변호사 -변화 -별도 -별명 -별일 -병실 -병아리 -병원 -보관 -보너스 -보라색 -보람 -보름 -보상 -보안 -보자기 -보장 -보전 -보존 -보통 -보편적 -보험 -복도 -복사 -복숭아 -복습 -볶음 -본격적 -본래 -본부 -본사 -본성 -본인 -본질 -볼펜 -봉사 -봉지 -봉투 -부근 -부끄러움 -부담 -부동산 -부문 -부분 -부산 -부상 -부엌 -부인 -부작용 -부장 -부정 -부족 -부지런히 -부친 -부탁 -부품 -부회장 -북부 -북한 -분노 -분량 -분리 -분명 -분석 -분야 -분위기 -분필 -분홍색 -불고기 -불과 -불교 -불꽃 -불만 -불법 -불빛 -불안 -불이익 -불행 -브랜드 -비극 -비난 -비닐 -비둘기 -비디오 -비로소 -비만 -비명 -비밀 -비바람 -비빔밥 -비상 -비용 -비율 -비중 -비타민 -비판 -빌딩 -빗물 -빗방울 -빗줄기 -빛깔 -빨간색 -빨래 -빨리 -사건 -사계절 -사나이 -사냥 -사람 -사랑 -사립 -사모님 -사물 -사방 -사상 -사생활 -사설 -사슴 -사실 -사업 -사용 -사월 -사장 -사전 -사진 -사촌 -사춘기 -사탕 -사투리 -사흘 -산길 -산부인과 -산업 -산책 -살림 -살인 -살짝 -삼계탕 -삼국 -삼십 -삼월 -삼촌 -상관 -상금 -상대 -상류 -상반기 -상상 -상식 -상업 -상인 -상자 -상점 -상처 -상추 -상태 -상표 -상품 -상황 -새벽 -색깔 -색연필 -생각 -생명 -생물 -생방송 -생산 -생선 -생신 -생일 -생활 -서랍 -서른 -서명 -서민 -서비스 -서양 -서울 -서적 -서점 -서쪽 -서클 -석사 -석유 -선거 -선물 -선배 -선생 -선수 -선원 -선장 -선전 -선택 -선풍기 -설거지 -설날 -설렁탕 -설명 -설문 -설사 -설악산 -설치 -설탕 -섭씨 -성공 -성당 -성명 -성별 -성인 -성장 -성적 -성질 -성함 -세금 -세미나 -세상 -세월 -세종대왕 -세탁 -센터 -센티미터 -셋째 -소규모 -소극적 -소금 -소나기 -소년 -소득 -소망 -소문 -소설 -소속 -소아과 -소용 -소원 -소음 -소중히 -소지품 -소질 -소풍 -소형 -속담 -속도 -속옷 -손가락 -손길 -손녀 -손님 -손등 -손목 -손뼉 -손실 -손질 -손톱 -손해 -솔직히 -솜씨 -송아지 -송이 -송편 -쇠고기 -쇼핑 -수건 -수년 -수단 -수돗물 -수동적 -수면 -수명 -수박 -수상 -수석 -수술 -수시로 -수업 -수염 -수영 -수입 -수준 -수집 -수출 -수컷 -수필 -수학 -수험생 -수화기 -숙녀 -숙소 -숙제 -순간 -순서 -순수 -순식간 -순위 -숟가락 -술병 -술집 -숫자 -스님 -스물 -스스로 -스승 -스웨터 -스위치 -스케이트 -스튜디오 -스트레스 -스포츠 -슬쩍 -슬픔 -습관 -습기 -승객 -승리 -승부 -승용차 -승진 -시각 -시간 -시골 -시금치 -시나리오 -시댁 -시리즈 -시멘트 -시민 -시부모 -시선 -시설 -시스템 -시아버지 -시어머니 -시월 -시인 -시일 -시작 -시장 -시절 -시점 -시중 -시즌 -시집 -시청 -시합 -시험 -식구 -식기 -식당 -식량 -식료품 -식물 -식빵 -식사 -식생활 -식초 -식탁 -식품 -신고 -신규 -신념 -신문 -신발 -신비 -신사 -신세 -신용 -신제품 -신청 -신체 -신화 -실감 -실내 -실력 -실례 -실망 -실수 -실습 -실시 -실장 -실정 -실질적 -실천 -실체 -실컷 -실태 -실패 -실험 -실현 -심리 -심부름 -심사 -심장 -심정 -심판 -쌍둥이 -씨름 -씨앗 -아가씨 -아나운서 -아드님 -아들 -아쉬움 -아스팔트 -아시아 -아울러 -아저씨 -아줌마 -아직 -아침 -아파트 -아프리카 -아픔 -아홉 -아흔 -악기 -악몽 -악수 -안개 -안경 -안과 -안내 -안녕 -안동 -안방 -안부 -안주 -알루미늄 -알코올 -암시 -암컷 -압력 -앞날 -앞문 -애인 -애정 -액수 -앨범 -야간 -야단 -야옹 -약간 -약국 -약속 -약수 -약점 -약품 -약혼녀 -양념 -양력 -양말 -양배추 -양주 -양파 -어둠 -어려움 -어른 -어젯밤 -어쨌든 -어쩌다가 -어쩐지 -언니 -언덕 -언론 -언어 -얼굴 -얼른 -얼음 -얼핏 -엄마 -업무 -업종 -업체 -엉덩이 -엉망 -엉터리 -엊그제 -에너지 -에어컨 -엔진 -여건 -여고생 -여관 -여군 -여권 -여대생 -여덟 -여동생 -여든 -여론 -여름 -여섯 -여성 -여왕 -여인 -여전히 -여직원 -여학생 -여행 -역사 -역시 -역할 -연결 -연구 -연극 -연기 -연락 -연설 -연세 -연속 -연습 -연애 -연예인 -연인 -연장 -연주 -연출 -연필 -연합 -연휴 -열기 -열매 -열쇠 -열심히 -열정 -열차 -열흘 -염려 -엽서 -영국 -영남 -영상 -영양 -영역 -영웅 -영원히 -영하 -영향 -영혼 -영화 -옆구리 -옆방 -옆집 -예감 -예금 -예방 -예산 -예상 -예선 -예술 -예습 -예식장 -예약 -예전 -예절 -예정 -예컨대 -옛날 -오늘 -오락 -오랫동안 -오렌지 -오로지 -오른발 -오븐 -오십 -오염 -오월 -오전 -오직 -오징어 -오페라 -오피스텔 -오히려 -옥상 -옥수수 -온갖 -온라인 -온몸 -온종일 -온통 -올가을 -올림픽 -올해 -옷차림 -와이셔츠 -와인 -완성 -완전 -왕비 -왕자 -왜냐하면 -왠지 -외갓집 -외국 -외로움 -외삼촌 -외출 -외침 -외할머니 -왼발 -왼손 -왼쪽 -요금 -요일 -요즘 -요청 -용기 -용서 -용어 -우산 -우선 -우승 -우연히 -우정 -우체국 -우편 -운동 -운명 -운반 -운전 -운행 -울산 -울음 -움직임 -웃어른 -웃음 -워낙 -원고 -원래 -원서 -원숭이 -원인 -원장 -원피스 -월급 -월드컵 -월세 -월요일 -웨이터 -위반 -위법 -위성 -위원 -위험 -위협 -윗사람 -유난히 -유럽 -유명 -유물 -유산 -유적 -유치원 -유학 -유행 -유형 -육군 -육상 -육십 -육체 -은행 -음력 -음료 -음반 -음성 -음식 -음악 -음주 -의견 -의논 -의문 -의복 -의식 -의심 -의외로 -의욕 -의원 -의학 -이것 -이곳 -이념 -이놈 -이달 -이대로 -이동 -이렇게 -이력서 -이론적 -이름 -이민 -이발소 -이별 -이불 -이빨 -이상 -이성 -이슬 -이야기 -이용 -이웃 -이월 -이윽고 -이익 -이전 -이중 -이튿날 -이틀 -이혼 -인간 -인격 -인공 -인구 -인근 -인기 -인도 -인류 -인물 -인생 -인쇄 -인연 -인원 -인재 -인종 -인천 -인체 -인터넷 -인하 -인형 -일곱 -일기 -일단 -일대 -일등 -일반 -일본 -일부 -일상 -일생 -일손 -일요일 -일월 -일정 -일종 -일주일 -일찍 -일체 -일치 -일행 -일회용 -임금 -임무 -입대 -입력 -입맛 -입사 -입술 -입시 -입원 -입장 -입학 -자가용 -자격 -자극 -자동 -자랑 -자부심 -자식 -자신 -자연 -자원 -자율 -자전거 -자정 -자존심 -자판 -작가 -작년 -작성 -작업 -작용 -작은딸 -작품 -잔디 -잔뜩 -잔치 -잘못 -잠깐 -잠수함 -잠시 -잠옷 -잠자리 -잡지 -장관 -장군 -장기간 -장래 -장례 -장르 -장마 -장면 -장모 -장미 -장비 -장사 -장소 -장식 -장애인 -장인 -장점 -장차 -장학금 -재능 -재빨리 -재산 -재생 -재작년 -재정 -재채기 -재판 -재학 -재활용 -저것 -저고리 -저곳 -저녁 -저런 -저렇게 -저번 -저울 -저절로 -저축 -적극 -적당히 -적성 -적용 -적응 -전개 -전공 -전기 -전달 -전라도 -전망 -전문 -전반 -전부 -전세 -전시 -전용 -전자 -전쟁 -전주 -전철 -전체 -전통 -전혀 -전후 -절대 -절망 -절반 -절약 -절차 -점검 -점수 -점심 -점원 -점점 -점차 -접근 -접시 -접촉 -젓가락 -정거장 -정도 -정류장 -정리 -정말 -정면 -정문 -정반대 -정보 -정부 -정비 -정상 -정성 -정오 -정원 -정장 -정지 -정치 -정확히 -제공 -제과점 -제대로 -제목 -제발 -제법 -제삿날 -제안 -제일 -제작 -제주도 -제출 -제품 -제한 -조각 -조건 -조금 -조깅 -조명 -조미료 -조상 -조선 -조용히 -조절 -조정 -조직 -존댓말 -존재 -졸업 -졸음 -종교 -종로 -종류 -종소리 -종업원 -종종 -종합 -좌석 -죄인 -주관적 -주름 -주말 -주머니 -주먹 -주문 -주민 -주방 -주변 -주식 -주인 -주일 -주장 -주전자 -주택 -준비 -줄거리 -줄기 -줄무늬 -중간 -중계방송 -중국 -중년 -중단 -중독 -중반 -중부 -중세 -중소기업 -중순 -중앙 -중요 -중학교 -즉석 -즉시 -즐거움 -증가 -증거 -증권 -증상 -증세 -지각 -지갑 -지경 -지극히 -지금 -지급 -지능 -지름길 -지리산 -지방 -지붕 -지식 -지역 -지우개 -지원 -지적 -지점 -지진 -지출 -직선 -직업 -직원 -직장 -진급 -진동 -진로 -진료 -진리 -진짜 -진찰 -진출 -진통 -진행 -질문 -질병 -질서 -짐작 -집단 -집안 -집중 -짜증 -찌꺼기 -차남 -차라리 -차량 -차림 -차별 -차선 -차츰 -착각 -찬물 -찬성 -참가 -참기름 -참새 -참석 -참여 -참외 -참조 -찻잔 -창가 -창고 -창구 -창문 -창밖 -창작 -창조 -채널 -채점 -책가방 -책방 -책상 -책임 -챔피언 -처벌 -처음 -천국 -천둥 -천장 -천재 -천천히 -철도 -철저히 -철학 -첫날 -첫째 -청년 -청바지 -청소 -청춘 -체계 -체력 -체온 -체육 -체중 -체험 -초등학생 -초반 -초밥 -초상화 -초순 -초여름 -초원 -초저녁 -초점 -초청 -초콜릿 -촛불 -총각 -총리 -총장 -촬영 -최근 -최상 -최선 -최신 -최악 -최종 -추석 -추억 -추진 -추천 -추측 -축구 -축소 -축제 -축하 -출근 -출발 -출산 -출신 -출연 -출입 -출장 -출판 -충격 -충고 -충돌 -충분히 -충청도 -취업 -취직 -취향 -치약 -친구 -친척 -칠십 -칠월 -칠판 -침대 -침묵 -침실 -칫솔 -칭찬 -카메라 -카운터 -칼국수 -캐릭터 -캠퍼스 -캠페인 -커튼 -컨디션 -컬러 -컴퓨터 -코끼리 -코미디 -콘서트 -콜라 -콤플렉스 -콩나물 -쾌감 -쿠데타 -크림 -큰길 -큰딸 -큰소리 -큰아들 -큰어머니 -큰일 -큰절 -클래식 -클럽 -킬로 -타입 -타자기 -탁구 -탁자 -탄생 -태권도 -태양 -태풍 -택시 -탤런트 -터널 -터미널 -테니스 -테스트 -테이블 -텔레비전 -토론 -토마토 -토요일 -통계 -통과 -통로 -통신 -통역 -통일 -통장 -통제 -통증 -통합 -통화 -퇴근 -퇴원 -퇴직금 -튀김 -트럭 -특급 -특별 -특성 -특수 -특징 -특히 -튼튼히 -티셔츠 -파란색 -파일 -파출소 -판결 -판단 -판매 -판사 -팔십 -팔월 -팝송 -패션 -팩스 -팩시밀리 -팬티 -퍼센트 -페인트 -편견 -편의 -편지 -편히 -평가 -평균 -평생 -평소 -평양 -평일 -평화 -포스터 -포인트 -포장 -포함 -표면 -표정 -표준 -표현 -품목 -품질 -풍경 -풍속 -풍습 -프랑스 -프린터 -플라스틱 -피곤 -피망 -피아노 -필름 -필수 -필요 -필자 -필통 -핑계 -하느님 -하늘 -하드웨어 -하룻밤 -하반기 -하숙집 -하순 -하여튼 -하지만 -하천 -하품 -하필 -학과 -학교 -학급 -학기 -학년 -학력 -학번 -학부모 -학비 -학생 -학술 -학습 -학용품 -학원 -학위 -학자 -학점 -한계 -한글 -한꺼번에 -한낮 -한눈 -한동안 -한때 -한라산 -한마디 -한문 -한번 -한복 -한식 -한여름 -한쪽 -할머니 -할아버지 -할인 -함께 -함부로 -합격 -합리적 -항공 -항구 -항상 -항의 -해결 -해군 -해답 -해당 -해물 -해석 -해설 -해수욕장 -해안 -핵심 -핸드백 -햄버거 -햇볕 -햇살 -행동 -행복 -행사 -행운 -행위 -향기 -향상 -향수 -허락 -허용 -헬기 -현관 -현금 -현대 -현상 -현실 -현장 -현재 -현지 -혈액 -협력 -형부 -형사 -형수 -형식 -형제 -형태 -형편 -혜택 -호기심 -호남 -호랑이 -호박 -호텔 -호흡 -혹시 -홀로 -홈페이지 -홍보 -홍수 -홍차 -화면 -화분 -화살 -화요일 -화장 -화학 -확보 -확인 -확장 -확정 -환갑 -환경 -환영 -환율 -환자 -활기 -활동 -활발히 -활용 -활짝 -회견 -회관 -회복 -회색 -회원 -회장 -회전 -횟수 -횡단보도 -효율적 -후반 -후춧가루 -훈련 -훨씬 -휴식 -휴일 -흉내 -흐름 -흑백 -흑인 -흔적 -흔히 -흥미 -흥분 -희곡 -희망 -희생 -흰색 -힘껏 -` diff --git a/vendor/github.com/tyler-smith/go-bip39/wordlists/spanish.go b/vendor/github.com/tyler-smith/go-bip39/wordlists/spanish.go deleted file mode 100644 index ad76da9..0000000 --- a/vendor/github.com/tyler-smith/go-bip39/wordlists/spanish.go +++ /dev/null @@ -1,2071 +0,0 @@ -package wordlists - -import ( - "fmt" - "hash/crc32" - "strings" -) - -func init() { - // Ensure word list is correct - // $ wget https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/spanish.txt - // $ crc32 spanish.txt - // 266e4f3d - checksum := crc32.ChecksumIEEE([]byte(spanish)) - if fmt.Sprintf("%x", checksum) != "266e4f3d" { - panic("spanish checksum invalid") - } -} - -// Spanish is a slice of mnemonic words taken from the bip39 specification -// https://raw.githubusercontent.com/bitcoin/bips/master/bip-0039/spanish.txt -var Spanish = strings.Split(strings.TrimSpace(spanish), "\n") -var spanish = `ábaco -abdomen -abeja -abierto -abogado -abono -aborto -abrazo -abrir -abuelo -abuso -acabar -academia -acceso -acción -aceite -acelga -acento -aceptar -ácido -aclarar -acné -acoger -acoso -activo -acto -actriz -actuar -acudir -acuerdo -acusar -adicto -admitir -adoptar -adorno -aduana -adulto -aéreo -afectar -afición -afinar -afirmar -ágil -agitar -agonía -agosto -agotar -agregar -agrio -agua -agudo -águila -aguja -ahogo -ahorro -aire -aislar -ajedrez -ajeno -ajuste -alacrán -alambre -alarma -alba -álbum -alcalde -aldea -alegre -alejar -alerta -aleta -alfiler -alga -algodón -aliado -aliento -alivio -alma -almeja -almíbar -altar -alteza -altivo -alto -altura -alumno -alzar -amable -amante -amapola -amargo -amasar -ámbar -ámbito -ameno -amigo -amistad -amor -amparo -amplio -ancho -anciano -ancla -andar -andén -anemia -ángulo -anillo -ánimo -anís -anotar -antena -antiguo -antojo -anual -anular -anuncio -añadir -añejo -año -apagar -aparato -apetito -apio -aplicar -apodo -aporte -apoyo -aprender -aprobar -apuesta -apuro -arado -araña -arar -árbitro -árbol -arbusto -archivo -arco -arder -ardilla -arduo -área -árido -aries -armonía -arnés -aroma -arpa -arpón -arreglo -arroz -arruga -arte -artista -asa -asado -asalto -ascenso -asegurar -aseo -asesor -asiento -asilo -asistir -asno -asombro -áspero -astilla -astro -astuto -asumir -asunto -atajo -ataque -atar -atento -ateo -ático -atleta -átomo -atraer -atroz -atún -audaz -audio -auge -aula -aumento -ausente -autor -aval -avance -avaro -ave -avellana -avena -avestruz -avión -aviso -ayer -ayuda -ayuno -azafrán -azar -azote -azúcar -azufre -azul -baba -babor -bache -bahía -baile -bajar -balanza -balcón -balde -bambú -banco -banda -baño -barba -barco -barniz -barro -báscula -bastón -basura -batalla -batería -batir -batuta -baúl -bazar -bebé -bebida -bello -besar -beso -bestia -bicho -bien -bingo -blanco -bloque -blusa -boa -bobina -bobo -boca -bocina -boda -bodega -boina -bola -bolero -bolsa -bomba -bondad -bonito -bono -bonsái -borde -borrar -bosque -bote -botín -bóveda -bozal -bravo -brazo -brecha -breve -brillo -brinco -brisa -broca -broma -bronce -brote -bruja -brusco -bruto -buceo -bucle -bueno -buey -bufanda -bufón -búho -buitre -bulto -burbuja -burla -burro -buscar -butaca -buzón -caballo -cabeza -cabina -cabra -cacao -cadáver -cadena -caer -café -caída -caimán -caja -cajón -cal -calamar -calcio -caldo -calidad -calle -calma -calor -calvo -cama -cambio -camello -camino -campo -cáncer -candil -canela -canguro -canica -canto -caña -cañón -caoba -caos -capaz -capitán -capote -captar -capucha -cara -carbón -cárcel -careta -carga -cariño -carne -carpeta -carro -carta -casa -casco -casero -caspa -castor -catorce -catre -caudal -causa -cazo -cebolla -ceder -cedro -celda -célebre -celoso -célula -cemento -ceniza -centro -cerca -cerdo -cereza -cero -cerrar -certeza -césped -cetro -chacal -chaleco -champú -chancla -chapa -charla -chico -chiste -chivo -choque -choza -chuleta -chupar -ciclón -ciego -cielo -cien -cierto -cifra -cigarro -cima -cinco -cine -cinta -ciprés -circo -ciruela -cisne -cita -ciudad -clamor -clan -claro -clase -clave -cliente -clima -clínica -cobre -cocción -cochino -cocina -coco -código -codo -cofre -coger -cohete -cojín -cojo -cola -colcha -colegio -colgar -colina -collar -colmo -columna -combate -comer -comida -cómodo -compra -conde -conejo -conga -conocer -consejo -contar -copa -copia -corazón -corbata -corcho -cordón -corona -correr -coser -cosmos -costa -cráneo -cráter -crear -crecer -creído -crema -cría -crimen -cripta -crisis -cromo -crónica -croqueta -crudo -cruz -cuadro -cuarto -cuatro -cubo -cubrir -cuchara -cuello -cuento -cuerda -cuesta -cueva -cuidar -culebra -culpa -culto -cumbre -cumplir -cuna -cuneta -cuota -cupón -cúpula -curar -curioso -curso -curva -cutis -dama -danza -dar -dardo -dátil -deber -débil -década -decir -dedo -defensa -definir -dejar -delfín -delgado -delito -demora -denso -dental -deporte -derecho -derrota -desayuno -deseo -desfile -desnudo -destino -desvío -detalle -detener -deuda -día -diablo -diadema -diamante -diana -diario -dibujo -dictar -diente -dieta -diez -difícil -digno -dilema -diluir -dinero -directo -dirigir -disco -diseño -disfraz -diva -divino -doble -doce -dolor -domingo -don -donar -dorado -dormir -dorso -dos -dosis -dragón -droga -ducha -duda -duelo -dueño -dulce -dúo -duque -durar -dureza -duro -ébano -ebrio -echar -eco -ecuador -edad -edición -edificio -editor -educar -efecto -eficaz -eje -ejemplo -elefante -elegir -elemento -elevar -elipse -élite -elixir -elogio -eludir -embudo -emitir -emoción -empate -empeño -empleo -empresa -enano -encargo -enchufe -encía -enemigo -enero -enfado -enfermo -engaño -enigma -enlace -enorme -enredo -ensayo -enseñar -entero -entrar -envase -envío -época -equipo -erizo -escala -escena -escolar -escribir -escudo -esencia -esfera -esfuerzo -espada -espejo -espía -esposa -espuma -esquí -estar -este -estilo -estufa -etapa -eterno -ética -etnia -evadir -evaluar -evento -evitar -exacto -examen -exceso -excusa -exento -exigir -exilio -existir -éxito -experto -explicar -exponer -extremo -fábrica -fábula -fachada -fácil -factor -faena -faja -falda -fallo -falso -faltar -fama -familia -famoso -faraón -farmacia -farol -farsa -fase -fatiga -fauna -favor -fax -febrero -fecha -feliz -feo -feria -feroz -fértil -fervor -festín -fiable -fianza -fiar -fibra -ficción -ficha -fideo -fiebre -fiel -fiera -fiesta -figura -fijar -fijo -fila -filete -filial -filtro -fin -finca -fingir -finito -firma -flaco -flauta -flecha -flor -flota -fluir -flujo -flúor -fobia -foca -fogata -fogón -folio -folleto -fondo -forma -forro -fortuna -forzar -fosa -foto -fracaso -frágil -franja -frase -fraude -freír -freno -fresa -frío -frito -fruta -fuego -fuente -fuerza -fuga -fumar -función -funda -furgón -furia -fusil -fútbol -futuro -gacela -gafas -gaita -gajo -gala -galería -gallo -gamba -ganar -gancho -ganga -ganso -garaje -garza -gasolina -gastar -gato -gavilán -gemelo -gemir -gen -género -genio -gente -geranio -gerente -germen -gesto -gigante -gimnasio -girar -giro -glaciar -globo -gloria -gol -golfo -goloso -golpe -goma -gordo -gorila -gorra -gota -goteo -gozar -grada -gráfico -grano -grasa -gratis -grave -grieta -grillo -gripe -gris -grito -grosor -grúa -grueso -grumo -grupo -guante -guapo -guardia -guerra -guía -guiño -guion -guiso -guitarra -gusano -gustar -haber -hábil -hablar -hacer -hacha -hada -hallar -hamaca -harina -haz -hazaña -hebilla -hebra -hecho -helado -helio -hembra -herir -hermano -héroe -hervir -hielo -hierro -hígado -higiene -hijo -himno -historia -hocico -hogar -hoguera -hoja -hombre -hongo -honor -honra -hora -hormiga -horno -hostil -hoyo -hueco -huelga -huerta -hueso -huevo -huida -huir -humano -húmedo -humilde -humo -hundir -huracán -hurto -icono -ideal -idioma -ídolo -iglesia -iglú -igual -ilegal -ilusión -imagen -imán -imitar -impar -imperio -imponer -impulso -incapaz -índice -inerte -infiel -informe -ingenio -inicio -inmenso -inmune -innato -insecto -instante -interés -íntimo -intuir -inútil -invierno -ira -iris -ironía -isla -islote -jabalí -jabón -jamón -jarabe -jardín -jarra -jaula -jazmín -jefe -jeringa -jinete -jornada -joroba -joven -joya -juerga -jueves -juez -jugador -jugo -juguete -juicio -junco -jungla -junio -juntar -júpiter -jurar -justo -juvenil -juzgar -kilo -koala -labio -lacio -lacra -lado -ladrón -lagarto -lágrima -laguna -laico -lamer -lámina -lámpara -lana -lancha -langosta -lanza -lápiz -largo -larva -lástima -lata -látex -latir -laurel -lavar -lazo -leal -lección -leche -lector -leer -legión -legumbre -lejano -lengua -lento -leña -león -leopardo -lesión -letal -letra -leve -leyenda -libertad -libro -licor -líder -lidiar -lienzo -liga -ligero -lima -límite -limón -limpio -lince -lindo -línea -lingote -lino -linterna -líquido -liso -lista -litera -litio -litro -llaga -llama -llanto -llave -llegar -llenar -llevar -llorar -llover -lluvia -lobo -loción -loco -locura -lógica -logro -lombriz -lomo -lonja -lote -lucha -lucir -lugar -lujo -luna -lunes -lupa -lustro -luto -luz -maceta -macho -madera -madre -maduro -maestro -mafia -magia -mago -maíz -maldad -maleta -malla -malo -mamá -mambo -mamut -manco -mando -manejar -manga -maniquí -manjar -mano -manso -manta -mañana -mapa -máquina -mar -marco -marea -marfil -margen -marido -mármol -marrón -martes -marzo -masa -máscara -masivo -matar -materia -matiz -matriz -máximo -mayor -mazorca -mecha -medalla -medio -médula -mejilla -mejor -melena -melón -memoria -menor -mensaje -mente -menú -mercado -merengue -mérito -mes -mesón -meta -meter -método -metro -mezcla -miedo -miel -miembro -miga -mil -milagro -militar -millón -mimo -mina -minero -mínimo -minuto -miope -mirar -misa -miseria -misil -mismo -mitad -mito -mochila -moción -moda -modelo -moho -mojar -molde -moler -molino -momento -momia -monarca -moneda -monja -monto -moño -morada -morder -moreno -morir -morro -morsa -mortal -mosca -mostrar -motivo -mover -móvil -mozo -mucho -mudar -mueble -muela -muerte -muestra -mugre -mujer -mula -muleta -multa -mundo -muñeca -mural -muro -músculo -museo -musgo -música -muslo -nácar -nación -nadar -naipe -naranja -nariz -narrar -nasal -natal -nativo -natural -náusea -naval -nave -navidad -necio -néctar -negar -negocio -negro -neón -nervio -neto -neutro -nevar -nevera -nicho -nido -niebla -nieto -niñez -niño -nítido -nivel -nobleza -noche -nómina -noria -norma -norte -nota -noticia -novato -novela -novio -nube -nuca -núcleo -nudillo -nudo -nuera -nueve -nuez -nulo -número -nutria -oasis -obeso -obispo -objeto -obra -obrero -observar -obtener -obvio -oca -ocaso -océano -ochenta -ocho -ocio -ocre -octavo -octubre -oculto -ocupar -ocurrir -odiar -odio -odisea -oeste -ofensa -oferta -oficio -ofrecer -ogro -oído -oír -ojo -ola -oleada -olfato -olivo -olla -olmo -olor -olvido -ombligo -onda -onza -opaco -opción -ópera -opinar -oponer -optar -óptica -opuesto -oración -orador -oral -órbita -orca -orden -oreja -órgano -orgía -orgullo -oriente -origen -orilla -oro -orquesta -oruga -osadía -oscuro -osezno -oso -ostra -otoño -otro -oveja -óvulo -óxido -oxígeno -oyente -ozono -pacto -padre -paella -página -pago -país -pájaro -palabra -palco -paleta -pálido -palma -paloma -palpar -pan -panal -pánico -pantera -pañuelo -papá -papel -papilla -paquete -parar -parcela -pared -parir -paro -párpado -parque -párrafo -parte -pasar -paseo -pasión -paso -pasta -pata -patio -patria -pausa -pauta -pavo -payaso -peatón -pecado -pecera -pecho -pedal -pedir -pegar -peine -pelar -peldaño -pelea -peligro -pellejo -pelo -peluca -pena -pensar -peñón -peón -peor -pepino -pequeño -pera -percha -perder -pereza -perfil -perico -perla -permiso -perro -persona -pesa -pesca -pésimo -pestaña -pétalo -petróleo -pez -pezuña -picar -pichón -pie -piedra -pierna -pieza -pijama -pilar -piloto -pimienta -pino -pintor -pinza -piña -piojo -pipa -pirata -pisar -piscina -piso -pista -pitón -pizca -placa -plan -plata -playa -plaza -pleito -pleno -plomo -pluma -plural -pobre -poco -poder -podio -poema -poesía -poeta -polen -policía -pollo -polvo -pomada -pomelo -pomo -pompa -poner -porción -portal -posada -poseer -posible -poste -potencia -potro -pozo -prado -precoz -pregunta -premio -prensa -preso -previo -primo -príncipe -prisión -privar -proa -probar -proceso -producto -proeza -profesor -programa -prole -promesa -pronto -propio -próximo -prueba -público -puchero -pudor -pueblo -puerta -puesto -pulga -pulir -pulmón -pulpo -pulso -puma -punto -puñal -puño -pupa -pupila -puré -quedar -queja -quemar -querer -queso -quieto -química -quince -quitar -rábano -rabia -rabo -ración -radical -raíz -rama -rampa -rancho -rango -rapaz -rápido -rapto -rasgo -raspa -rato -rayo -raza -razón -reacción -realidad -rebaño -rebote -recaer -receta -rechazo -recoger -recreo -recto -recurso -red -redondo -reducir -reflejo -reforma -refrán -refugio -regalo -regir -regla -regreso -rehén -reino -reír -reja -relato -relevo -relieve -relleno -reloj -remar -remedio -remo -rencor -rendir -renta -reparto -repetir -reposo -reptil -res -rescate -resina -respeto -resto -resumen -retiro -retorno -retrato -reunir -revés -revista -rey -rezar -rico -riego -rienda -riesgo -rifa -rígido -rigor -rincón -riñón -río -riqueza -risa -ritmo -rito -rizo -roble -roce -rociar -rodar -rodeo -rodilla -roer -rojizo -rojo -romero -romper -ron -ronco -ronda -ropa -ropero -rosa -rosca -rostro -rotar -rubí -rubor -rudo -rueda -rugir -ruido -ruina -ruleta -rulo -rumbo -rumor -ruptura -ruta -rutina -sábado -saber -sabio -sable -sacar -sagaz -sagrado -sala -saldo -salero -salir -salmón -salón -salsa -salto -salud -salvar -samba -sanción -sandía -sanear -sangre -sanidad -sano -santo -sapo -saque -sardina -sartén -sastre -satán -sauna -saxofón -sección -seco -secreto -secta -sed -seguir -seis -sello -selva -semana -semilla -senda -sensor -señal -señor -separar -sepia -sequía -ser -serie -sermón -servir -sesenta -sesión -seta -setenta -severo -sexo -sexto -sidra -siesta -siete -siglo -signo -sílaba -silbar -silencio -silla -símbolo -simio -sirena -sistema -sitio -situar -sobre -socio -sodio -sol -solapa -soldado -soledad -sólido -soltar -solución -sombra -sondeo -sonido -sonoro -sonrisa -sopa -soplar -soporte -sordo -sorpresa -sorteo -sostén -sótano -suave -subir -suceso -sudor -suegra -suelo -sueño -suerte -sufrir -sujeto -sultán -sumar -superar -suplir -suponer -supremo -sur -surco -sureño -surgir -susto -sutil -tabaco -tabique -tabla -tabú -taco -tacto -tajo -talar -talco -talento -talla -talón -tamaño -tambor -tango -tanque -tapa -tapete -tapia -tapón -taquilla -tarde -tarea -tarifa -tarjeta -tarot -tarro -tarta -tatuaje -tauro -taza -tazón -teatro -techo -tecla -técnica -tejado -tejer -tejido -tela -teléfono -tema -temor -templo -tenaz -tender -tener -tenis -tenso -teoría -terapia -terco -término -ternura -terror -tesis -tesoro -testigo -tetera -texto -tez -tibio -tiburón -tiempo -tienda -tierra -tieso -tigre -tijera -tilde -timbre -tímido -timo -tinta -tío -típico -tipo -tira -tirón -titán -títere -título -tiza -toalla -tobillo -tocar -tocino -todo -toga -toldo -tomar -tono -tonto -topar -tope -toque -tórax -torero -tormenta -torneo -toro -torpedo -torre -torso -tortuga -tos -tosco -toser -tóxico -trabajo -tractor -traer -tráfico -trago -traje -tramo -trance -trato -trauma -trazar -trébol -tregua -treinta -tren -trepar -tres -tribu -trigo -tripa -triste -triunfo -trofeo -trompa -tronco -tropa -trote -trozo -truco -trueno -trufa -tubería -tubo -tuerto -tumba -tumor -túnel -túnica -turbina -turismo -turno -tutor -ubicar -úlcera -umbral -unidad -unir -universo -uno -untar -uña -urbano -urbe -urgente -urna -usar -usuario -útil -utopía -uva -vaca -vacío -vacuna -vagar -vago -vaina -vajilla -vale -válido -valle -valor -válvula -vampiro -vara -variar -varón -vaso -vecino -vector -vehículo -veinte -vejez -vela -velero -veloz -vena -vencer -venda -veneno -vengar -venir -venta -venus -ver -verano -verbo -verde -vereda -verja -verso -verter -vía -viaje -vibrar -vicio -víctima -vida -vídeo -vidrio -viejo -viernes -vigor -vil -villa -vinagre -vino -viñedo -violín -viral -virgo -virtud -visor -víspera -vista -vitamina -viudo -vivaz -vivero -vivir -vivo -volcán -volumen -volver -voraz -votar -voto -voz -vuelo -vulgar -yacer -yate -yegua -yema -yerno -yeso -yodo -yoga -yogur -zafiro -zanja -zapato -zarza -zona -zorro -zumo -zurdo -` diff --git a/vendor/golang.org/x/crypto/AUTHORS b/vendor/golang.org/x/crypto/AUTHORS deleted file mode 100644 index 2b00ddb..0000000 --- a/vendor/golang.org/x/crypto/AUTHORS +++ /dev/null @@ -1,3 +0,0 @@ -# This source code refers to The Go Authors for copyright purposes. -# The master list of authors is in the main Go distribution, -# visible at https://tip.golang.org/AUTHORS. diff --git a/vendor/golang.org/x/crypto/CONTRIBUTORS b/vendor/golang.org/x/crypto/CONTRIBUTORS deleted file mode 100644 index 1fbd3e9..0000000 --- a/vendor/golang.org/x/crypto/CONTRIBUTORS +++ /dev/null @@ -1,3 +0,0 @@ -# This source code was written by the Go contributors. -# The master list of contributors is in the main Go distribution, -# visible at https://tip.golang.org/CONTRIBUTORS. diff --git a/vendor/golang.org/x/crypto/LICENSE b/vendor/golang.org/x/crypto/LICENSE deleted file mode 100644 index 6a66aea..0000000 --- a/vendor/golang.org/x/crypto/LICENSE +++ /dev/null @@ -1,27 +0,0 @@ -Copyright (c) 2009 The Go Authors. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are -met: - - * Redistributions of source code must retain the above copyright -notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above -copyright notice, this list of conditions and the following disclaimer -in the documentation and/or other materials provided with the -distribution. - * Neither the name of Google Inc. nor the names of its -contributors may be used to endorse or promote products derived from -this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vendor/golang.org/x/crypto/PATENTS b/vendor/golang.org/x/crypto/PATENTS deleted file mode 100644 index 7330990..0000000 --- a/vendor/golang.org/x/crypto/PATENTS +++ /dev/null @@ -1,22 +0,0 @@ -Additional IP Rights Grant (Patents) - -"This implementation" means the copyrightable works distributed by -Google as part of the Go project. - -Google hereby grants to You a perpetual, worldwide, non-exclusive, -no-charge, royalty-free, irrevocable (except as stated in this section) -patent license to make, have made, use, offer to sell, sell, import, -transfer and otherwise run, modify and propagate the contents of this -implementation of Go, where such license applies only to those patent -claims, both currently owned or controlled by Google and acquired in -the future, licensable by Google that are necessarily infringed by this -implementation of Go. This grant does not include claims that would be -infringed only as a consequence of further modification of this -implementation. If you or your agent or exclusive licensee institute or -order or agree to the institution of patent litigation against any -entity (including a cross-claim or counterclaim in a lawsuit) alleging -that this implementation of Go or any code incorporated within this -implementation of Go constitutes direct or contributory patent -infringement, or inducement of patent infringement, then any patent -rights granted to you under this License for this implementation of Go -shall terminate as of the date such litigation is filed. diff --git a/vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go b/vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go deleted file mode 100644 index 904b57e..0000000 --- a/vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go +++ /dev/null @@ -1,77 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -/* -Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC -2898 / PKCS #5 v2.0. - -A key derivation function is useful when encrypting data based on a password -or any other not-fully-random data. It uses a pseudorandom function to derive -a secure encryption key based on the password. - -While v2.0 of the standard defines only one pseudorandom function to use, -HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved -Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To -choose, you can pass the `New` functions from the different SHA packages to -pbkdf2.Key. -*/ -package pbkdf2 // import "golang.org/x/crypto/pbkdf2" - -import ( - "crypto/hmac" - "hash" -) - -// Key derives a key from the password, salt and iteration count, returning a -// []byte of length keylen that can be used as cryptographic key. The key is -// derived based on the method described as PBKDF2 with the HMAC variant using -// the supplied hash function. -// -// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you -// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by -// doing: -// -// dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New) -// -// Remember to get a good random salt. At least 8 bytes is recommended by the -// RFC. -// -// Using a higher iteration count will increase the cost of an exhaustive -// search but will also make derivation proportionally slower. -func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte { - prf := hmac.New(h, password) - hashLen := prf.Size() - numBlocks := (keyLen + hashLen - 1) / hashLen - - var buf [4]byte - dk := make([]byte, 0, numBlocks*hashLen) - U := make([]byte, hashLen) - for block := 1; block <= numBlocks; block++ { - // N.B.: || means concatenation, ^ means XOR - // for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter - // U_1 = PRF(password, salt || uint(i)) - prf.Reset() - prf.Write(salt) - buf[0] = byte(block >> 24) - buf[1] = byte(block >> 16) - buf[2] = byte(block >> 8) - buf[3] = byte(block) - prf.Write(buf[:4]) - dk = prf.Sum(dk) - T := dk[len(dk)-hashLen:] - copy(U, T) - - // U_n = PRF(password, U_(n-1)) - for n := 2; n <= iter; n++ { - prf.Reset() - prf.Write(U) - U = U[:0] - U = prf.Sum(U) - for x := range U { - T[x] ^= U[x] - } - } - } - return dk[:keyLen] -} diff --git a/vendor/golang.org/x/crypto/ripemd160/ripemd160.go b/vendor/golang.org/x/crypto/ripemd160/ripemd160.go deleted file mode 100644 index cf3eeb1..0000000 --- a/vendor/golang.org/x/crypto/ripemd160/ripemd160.go +++ /dev/null @@ -1,124 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package ripemd160 implements the RIPEMD-160 hash algorithm. -// -// Deprecated: RIPEMD-160 is a legacy hash and should not be used for new -// applications. Also, this package does not and will not provide an optimized -// implementation. Instead, use a modern hash like SHA-256 (from crypto/sha256). -package ripemd160 // import "golang.org/x/crypto/ripemd160" - -// RIPEMD-160 is designed by Hans Dobbertin, Antoon Bosselaers, and Bart -// Preneel with specifications available at: -// http://homes.esat.kuleuven.be/~cosicart/pdf/AB-9601/AB-9601.pdf. - -import ( - "crypto" - "hash" -) - -func init() { - crypto.RegisterHash(crypto.RIPEMD160, New) -} - -// The size of the checksum in bytes. -const Size = 20 - -// The block size of the hash algorithm in bytes. -const BlockSize = 64 - -const ( - _s0 = 0x67452301 - _s1 = 0xefcdab89 - _s2 = 0x98badcfe - _s3 = 0x10325476 - _s4 = 0xc3d2e1f0 -) - -// digest represents the partial evaluation of a checksum. -type digest struct { - s [5]uint32 // running context - x [BlockSize]byte // temporary buffer - nx int // index into x - tc uint64 // total count of bytes processed -} - -func (d *digest) Reset() { - d.s[0], d.s[1], d.s[2], d.s[3], d.s[4] = _s0, _s1, _s2, _s3, _s4 - d.nx = 0 - d.tc = 0 -} - -// New returns a new hash.Hash computing the checksum. -func New() hash.Hash { - result := new(digest) - result.Reset() - return result -} - -func (d *digest) Size() int { return Size } - -func (d *digest) BlockSize() int { return BlockSize } - -func (d *digest) Write(p []byte) (nn int, err error) { - nn = len(p) - d.tc += uint64(nn) - if d.nx > 0 { - n := len(p) - if n > BlockSize-d.nx { - n = BlockSize - d.nx - } - for i := 0; i < n; i++ { - d.x[d.nx+i] = p[i] - } - d.nx += n - if d.nx == BlockSize { - _Block(d, d.x[0:]) - d.nx = 0 - } - p = p[n:] - } - n := _Block(d, p) - p = p[n:] - if len(p) > 0 { - d.nx = copy(d.x[:], p) - } - return -} - -func (d0 *digest) Sum(in []byte) []byte { - // Make a copy of d0 so that caller can keep writing and summing. - d := *d0 - - // Padding. Add a 1 bit and 0 bits until 56 bytes mod 64. - tc := d.tc - var tmp [64]byte - tmp[0] = 0x80 - if tc%64 < 56 { - d.Write(tmp[0 : 56-tc%64]) - } else { - d.Write(tmp[0 : 64+56-tc%64]) - } - - // Length in bits. - tc <<= 3 - for i := uint(0); i < 8; i++ { - tmp[i] = byte(tc >> (8 * i)) - } - d.Write(tmp[0:8]) - - if d.nx != 0 { - panic("d.nx != 0") - } - - var digest [Size]byte - for i, s := range d.s { - digest[i*4] = byte(s) - digest[i*4+1] = byte(s >> 8) - digest[i*4+2] = byte(s >> 16) - digest[i*4+3] = byte(s >> 24) - } - - return append(in, digest[:]...) -} diff --git a/vendor/golang.org/x/crypto/ripemd160/ripemd160block.go b/vendor/golang.org/x/crypto/ripemd160/ripemd160block.go deleted file mode 100644 index e0edc02..0000000 --- a/vendor/golang.org/x/crypto/ripemd160/ripemd160block.go +++ /dev/null @@ -1,165 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// RIPEMD-160 block step. -// In its own file so that a faster assembly or C version -// can be substituted easily. - -package ripemd160 - -import ( - "math/bits" -) - -// work buffer indices and roll amounts for one line -var _n = [80]uint{ - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, - 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, - 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, - 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, -} - -var _r = [80]uint{ - 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, - 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, - 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, - 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, - 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, -} - -// same for the other parallel one -var n_ = [80]uint{ - 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, - 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, - 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, - 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, - 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11, -} - -var r_ = [80]uint{ - 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, - 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, - 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, - 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, - 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11, -} - -func _Block(md *digest, p []byte) int { - n := 0 - var x [16]uint32 - var alpha, beta uint32 - for len(p) >= BlockSize { - a, b, c, d, e := md.s[0], md.s[1], md.s[2], md.s[3], md.s[4] - aa, bb, cc, dd, ee := a, b, c, d, e - j := 0 - for i := 0; i < 16; i++ { - x[i] = uint32(p[j]) | uint32(p[j+1])<<8 | uint32(p[j+2])<<16 | uint32(p[j+3])<<24 - j += 4 - } - - // round 1 - i := 0 - for i < 16 { - alpha = a + (b ^ c ^ d) + x[_n[i]] - s := int(_r[i]) - alpha = bits.RotateLeft32(alpha, s) + e - beta = bits.RotateLeft32(c, 10) - a, b, c, d, e = e, alpha, b, beta, d - - // parallel line - alpha = aa + (bb ^ (cc | ^dd)) + x[n_[i]] + 0x50a28be6 - s = int(r_[i]) - alpha = bits.RotateLeft32(alpha, s) + ee - beta = bits.RotateLeft32(cc, 10) - aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd - - i++ - } - - // round 2 - for i < 32 { - alpha = a + (b&c | ^b&d) + x[_n[i]] + 0x5a827999 - s := int(_r[i]) - alpha = bits.RotateLeft32(alpha, s) + e - beta = bits.RotateLeft32(c, 10) - a, b, c, d, e = e, alpha, b, beta, d - - // parallel line - alpha = aa + (bb&dd | cc&^dd) + x[n_[i]] + 0x5c4dd124 - s = int(r_[i]) - alpha = bits.RotateLeft32(alpha, s) + ee - beta = bits.RotateLeft32(cc, 10) - aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd - - i++ - } - - // round 3 - for i < 48 { - alpha = a + (b | ^c ^ d) + x[_n[i]] + 0x6ed9eba1 - s := int(_r[i]) - alpha = bits.RotateLeft32(alpha, s) + e - beta = bits.RotateLeft32(c, 10) - a, b, c, d, e = e, alpha, b, beta, d - - // parallel line - alpha = aa + (bb | ^cc ^ dd) + x[n_[i]] + 0x6d703ef3 - s = int(r_[i]) - alpha = bits.RotateLeft32(alpha, s) + ee - beta = bits.RotateLeft32(cc, 10) - aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd - - i++ - } - - // round 4 - for i < 64 { - alpha = a + (b&d | c&^d) + x[_n[i]] + 0x8f1bbcdc - s := int(_r[i]) - alpha = bits.RotateLeft32(alpha, s) + e - beta = bits.RotateLeft32(c, 10) - a, b, c, d, e = e, alpha, b, beta, d - - // parallel line - alpha = aa + (bb&cc | ^bb&dd) + x[n_[i]] + 0x7a6d76e9 - s = int(r_[i]) - alpha = bits.RotateLeft32(alpha, s) + ee - beta = bits.RotateLeft32(cc, 10) - aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd - - i++ - } - - // round 5 - for i < 80 { - alpha = a + (b ^ (c | ^d)) + x[_n[i]] + 0xa953fd4e - s := int(_r[i]) - alpha = bits.RotateLeft32(alpha, s) + e - beta = bits.RotateLeft32(c, 10) - a, b, c, d, e = e, alpha, b, beta, d - - // parallel line - alpha = aa + (bb ^ cc ^ dd) + x[n_[i]] - s = int(r_[i]) - alpha = bits.RotateLeft32(alpha, s) + ee - beta = bits.RotateLeft32(cc, 10) - aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd - - i++ - } - - // combine results - dd += c + md.s[1] - md.s[1] = md.s[2] + d + ee - md.s[2] = md.s[3] + e + aa - md.s[3] = md.s[4] + a + bb - md.s[4] = md.s[0] + b + cc - md.s[0] = dd - - p = p[BlockSize:] - n += BlockSize - } - return n -} diff --git a/vendor/golang.org/x/crypto/sha3/doc.go b/vendor/golang.org/x/crypto/sha3/doc.go deleted file mode 100644 index decd8cf..0000000 --- a/vendor/golang.org/x/crypto/sha3/doc.go +++ /dev/null @@ -1,62 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package sha3 implements the SHA-3 fixed-output-length hash functions and -// the SHAKE variable-output-length hash functions defined by FIPS-202. -// -// Both types of hash function use the "sponge" construction and the Keccak -// permutation. For a detailed specification see http://keccak.noekeon.org/ -// -// # Guidance -// -// If you aren't sure what function you need, use SHAKE256 with at least 64 -// bytes of output. The SHAKE instances are faster than the SHA3 instances; -// the latter have to allocate memory to conform to the hash.Hash interface. -// -// If you need a secret-key MAC (message authentication code), prepend the -// secret key to the input, hash with SHAKE256 and read at least 32 bytes of -// output. -// -// # Security strengths -// -// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security -// strength against preimage attacks of x bits. Since they only produce "x" -// bits of output, their collision-resistance is only "x/2" bits. -// -// The SHAKE-256 and -128 functions have a generic security strength of 256 and -// 128 bits against all attacks, provided that at least 2x bits of their output -// is used. Requesting more than 64 or 32 bytes of output, respectively, does -// not increase the collision-resistance of the SHAKE functions. -// -// # The sponge construction -// -// A sponge builds a pseudo-random function from a public pseudo-random -// permutation, by applying the permutation to a state of "rate + capacity" -// bytes, but hiding "capacity" of the bytes. -// -// A sponge starts out with a zero state. To hash an input using a sponge, up -// to "rate" bytes of the input are XORed into the sponge's state. The sponge -// is then "full" and the permutation is applied to "empty" it. This process is -// repeated until all the input has been "absorbed". The input is then padded. -// The digest is "squeezed" from the sponge in the same way, except that output -// is copied out instead of input being XORed in. -// -// A sponge is parameterized by its generic security strength, which is equal -// to half its capacity; capacity + rate is equal to the permutation's width. -// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means -// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2. -// -// # Recommendations -// -// The SHAKE functions are recommended for most new uses. They can produce -// output of arbitrary length. SHAKE256, with an output length of at least -// 64 bytes, provides 256-bit security against all attacks. The Keccak team -// recommends it for most applications upgrading from SHA2-512. (NIST chose a -// much stronger, but much slower, sponge instance for SHA3-512.) -// -// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions. -// They produce output of the same length, with the same security strengths -// against all attacks. This means, in particular, that SHA3-256 only has -// 128-bit collision resistance, because its output length is 32 bytes. -package sha3 // import "golang.org/x/crypto/sha3" diff --git a/vendor/golang.org/x/crypto/sha3/hashes.go b/vendor/golang.org/x/crypto/sha3/hashes.go deleted file mode 100644 index 0d8043f..0000000 --- a/vendor/golang.org/x/crypto/sha3/hashes.go +++ /dev/null @@ -1,97 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package sha3 - -// This file provides functions for creating instances of the SHA-3 -// and SHAKE hash functions, as well as utility functions for hashing -// bytes. - -import ( - "hash" -) - -// New224 creates a new SHA3-224 hash. -// Its generic security strength is 224 bits against preimage attacks, -// and 112 bits against collision attacks. -func New224() hash.Hash { - if h := new224Asm(); h != nil { - return h - } - return &state{rate: 144, outputLen: 28, dsbyte: 0x06} -} - -// New256 creates a new SHA3-256 hash. -// Its generic security strength is 256 bits against preimage attacks, -// and 128 bits against collision attacks. -func New256() hash.Hash { - if h := new256Asm(); h != nil { - return h - } - return &state{rate: 136, outputLen: 32, dsbyte: 0x06} -} - -// New384 creates a new SHA3-384 hash. -// Its generic security strength is 384 bits against preimage attacks, -// and 192 bits against collision attacks. -func New384() hash.Hash { - if h := new384Asm(); h != nil { - return h - } - return &state{rate: 104, outputLen: 48, dsbyte: 0x06} -} - -// New512 creates a new SHA3-512 hash. -// Its generic security strength is 512 bits against preimage attacks, -// and 256 bits against collision attacks. -func New512() hash.Hash { - if h := new512Asm(); h != nil { - return h - } - return &state{rate: 72, outputLen: 64, dsbyte: 0x06} -} - -// NewLegacyKeccak256 creates a new Keccak-256 hash. -// -// Only use this function if you require compatibility with an existing cryptosystem -// that uses non-standard padding. All other users should use New256 instead. -func NewLegacyKeccak256() hash.Hash { return &state{rate: 136, outputLen: 32, dsbyte: 0x01} } - -// NewLegacyKeccak512 creates a new Keccak-512 hash. -// -// Only use this function if you require compatibility with an existing cryptosystem -// that uses non-standard padding. All other users should use New512 instead. -func NewLegacyKeccak512() hash.Hash { return &state{rate: 72, outputLen: 64, dsbyte: 0x01} } - -// Sum224 returns the SHA3-224 digest of the data. -func Sum224(data []byte) (digest [28]byte) { - h := New224() - h.Write(data) - h.Sum(digest[:0]) - return -} - -// Sum256 returns the SHA3-256 digest of the data. -func Sum256(data []byte) (digest [32]byte) { - h := New256() - h.Write(data) - h.Sum(digest[:0]) - return -} - -// Sum384 returns the SHA3-384 digest of the data. -func Sum384(data []byte) (digest [48]byte) { - h := New384() - h.Write(data) - h.Sum(digest[:0]) - return -} - -// Sum512 returns the SHA3-512 digest of the data. -func Sum512(data []byte) (digest [64]byte) { - h := New512() - h.Write(data) - h.Sum(digest[:0]) - return -} diff --git a/vendor/golang.org/x/crypto/sha3/hashes_generic.go b/vendor/golang.org/x/crypto/sha3/hashes_generic.go deleted file mode 100644 index c74fc20..0000000 --- a/vendor/golang.org/x/crypto/sha3/hashes_generic.go +++ /dev/null @@ -1,28 +0,0 @@ -// Copyright 2017 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !gc || purego || !s390x -// +build !gc purego !s390x - -package sha3 - -import ( - "hash" -) - -// new224Asm returns an assembly implementation of SHA3-224 if available, -// otherwise it returns nil. -func new224Asm() hash.Hash { return nil } - -// new256Asm returns an assembly implementation of SHA3-256 if available, -// otherwise it returns nil. -func new256Asm() hash.Hash { return nil } - -// new384Asm returns an assembly implementation of SHA3-384 if available, -// otherwise it returns nil. -func new384Asm() hash.Hash { return nil } - -// new512Asm returns an assembly implementation of SHA3-512 if available, -// otherwise it returns nil. -func new512Asm() hash.Hash { return nil } diff --git a/vendor/golang.org/x/crypto/sha3/keccakf.go b/vendor/golang.org/x/crypto/sha3/keccakf.go deleted file mode 100644 index 0f4ae8b..0000000 --- a/vendor/golang.org/x/crypto/sha3/keccakf.go +++ /dev/null @@ -1,413 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !amd64 || purego || !gc -// +build !amd64 purego !gc - -package sha3 - -// rc stores the round constants for use in the ι step. -var rc = [24]uint64{ - 0x0000000000000001, - 0x0000000000008082, - 0x800000000000808A, - 0x8000000080008000, - 0x000000000000808B, - 0x0000000080000001, - 0x8000000080008081, - 0x8000000000008009, - 0x000000000000008A, - 0x0000000000000088, - 0x0000000080008009, - 0x000000008000000A, - 0x000000008000808B, - 0x800000000000008B, - 0x8000000000008089, - 0x8000000000008003, - 0x8000000000008002, - 0x8000000000000080, - 0x000000000000800A, - 0x800000008000000A, - 0x8000000080008081, - 0x8000000000008080, - 0x0000000080000001, - 0x8000000080008008, -} - -// keccakF1600 applies the Keccak permutation to a 1600b-wide -// state represented as a slice of 25 uint64s. -func keccakF1600(a *[25]uint64) { - // Implementation translated from Keccak-inplace.c - // in the keccak reference code. - var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64 - - for i := 0; i < 24; i += 4 { - // Combines the 5 steps in each round into 2 steps. - // Unrolls 4 rounds per loop and spreads some steps across rounds. - - // Round 1 - bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] - bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] - bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] - bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] - bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] - d0 = bc4 ^ (bc1<<1 | bc1>>63) - d1 = bc0 ^ (bc2<<1 | bc2>>63) - d2 = bc1 ^ (bc3<<1 | bc3>>63) - d3 = bc2 ^ (bc4<<1 | bc4>>63) - d4 = bc3 ^ (bc0<<1 | bc0>>63) - - bc0 = a[0] ^ d0 - t = a[6] ^ d1 - bc1 = t<<44 | t>>(64-44) - t = a[12] ^ d2 - bc2 = t<<43 | t>>(64-43) - t = a[18] ^ d3 - bc3 = t<<21 | t>>(64-21) - t = a[24] ^ d4 - bc4 = t<<14 | t>>(64-14) - a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i] - a[6] = bc1 ^ (bc3 &^ bc2) - a[12] = bc2 ^ (bc4 &^ bc3) - a[18] = bc3 ^ (bc0 &^ bc4) - a[24] = bc4 ^ (bc1 &^ bc0) - - t = a[10] ^ d0 - bc2 = t<<3 | t>>(64-3) - t = a[16] ^ d1 - bc3 = t<<45 | t>>(64-45) - t = a[22] ^ d2 - bc4 = t<<61 | t>>(64-61) - t = a[3] ^ d3 - bc0 = t<<28 | t>>(64-28) - t = a[9] ^ d4 - bc1 = t<<20 | t>>(64-20) - a[10] = bc0 ^ (bc2 &^ bc1) - a[16] = bc1 ^ (bc3 &^ bc2) - a[22] = bc2 ^ (bc4 &^ bc3) - a[3] = bc3 ^ (bc0 &^ bc4) - a[9] = bc4 ^ (bc1 &^ bc0) - - t = a[20] ^ d0 - bc4 = t<<18 | t>>(64-18) - t = a[1] ^ d1 - bc0 = t<<1 | t>>(64-1) - t = a[7] ^ d2 - bc1 = t<<6 | t>>(64-6) - t = a[13] ^ d3 - bc2 = t<<25 | t>>(64-25) - t = a[19] ^ d4 - bc3 = t<<8 | t>>(64-8) - a[20] = bc0 ^ (bc2 &^ bc1) - a[1] = bc1 ^ (bc3 &^ bc2) - a[7] = bc2 ^ (bc4 &^ bc3) - a[13] = bc3 ^ (bc0 &^ bc4) - a[19] = bc4 ^ (bc1 &^ bc0) - - t = a[5] ^ d0 - bc1 = t<<36 | t>>(64-36) - t = a[11] ^ d1 - bc2 = t<<10 | t>>(64-10) - t = a[17] ^ d2 - bc3 = t<<15 | t>>(64-15) - t = a[23] ^ d3 - bc4 = t<<56 | t>>(64-56) - t = a[4] ^ d4 - bc0 = t<<27 | t>>(64-27) - a[5] = bc0 ^ (bc2 &^ bc1) - a[11] = bc1 ^ (bc3 &^ bc2) - a[17] = bc2 ^ (bc4 &^ bc3) - a[23] = bc3 ^ (bc0 &^ bc4) - a[4] = bc4 ^ (bc1 &^ bc0) - - t = a[15] ^ d0 - bc3 = t<<41 | t>>(64-41) - t = a[21] ^ d1 - bc4 = t<<2 | t>>(64-2) - t = a[2] ^ d2 - bc0 = t<<62 | t>>(64-62) - t = a[8] ^ d3 - bc1 = t<<55 | t>>(64-55) - t = a[14] ^ d4 - bc2 = t<<39 | t>>(64-39) - a[15] = bc0 ^ (bc2 &^ bc1) - a[21] = bc1 ^ (bc3 &^ bc2) - a[2] = bc2 ^ (bc4 &^ bc3) - a[8] = bc3 ^ (bc0 &^ bc4) - a[14] = bc4 ^ (bc1 &^ bc0) - - // Round 2 - bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] - bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] - bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] - bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] - bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] - d0 = bc4 ^ (bc1<<1 | bc1>>63) - d1 = bc0 ^ (bc2<<1 | bc2>>63) - d2 = bc1 ^ (bc3<<1 | bc3>>63) - d3 = bc2 ^ (bc4<<1 | bc4>>63) - d4 = bc3 ^ (bc0<<1 | bc0>>63) - - bc0 = a[0] ^ d0 - t = a[16] ^ d1 - bc1 = t<<44 | t>>(64-44) - t = a[7] ^ d2 - bc2 = t<<43 | t>>(64-43) - t = a[23] ^ d3 - bc3 = t<<21 | t>>(64-21) - t = a[14] ^ d4 - bc4 = t<<14 | t>>(64-14) - a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1] - a[16] = bc1 ^ (bc3 &^ bc2) - a[7] = bc2 ^ (bc4 &^ bc3) - a[23] = bc3 ^ (bc0 &^ bc4) - a[14] = bc4 ^ (bc1 &^ bc0) - - t = a[20] ^ d0 - bc2 = t<<3 | t>>(64-3) - t = a[11] ^ d1 - bc3 = t<<45 | t>>(64-45) - t = a[2] ^ d2 - bc4 = t<<61 | t>>(64-61) - t = a[18] ^ d3 - bc0 = t<<28 | t>>(64-28) - t = a[9] ^ d4 - bc1 = t<<20 | t>>(64-20) - a[20] = bc0 ^ (bc2 &^ bc1) - a[11] = bc1 ^ (bc3 &^ bc2) - a[2] = bc2 ^ (bc4 &^ bc3) - a[18] = bc3 ^ (bc0 &^ bc4) - a[9] = bc4 ^ (bc1 &^ bc0) - - t = a[15] ^ d0 - bc4 = t<<18 | t>>(64-18) - t = a[6] ^ d1 - bc0 = t<<1 | t>>(64-1) - t = a[22] ^ d2 - bc1 = t<<6 | t>>(64-6) - t = a[13] ^ d3 - bc2 = t<<25 | t>>(64-25) - t = a[4] ^ d4 - bc3 = t<<8 | t>>(64-8) - a[15] = bc0 ^ (bc2 &^ bc1) - a[6] = bc1 ^ (bc3 &^ bc2) - a[22] = bc2 ^ (bc4 &^ bc3) - a[13] = bc3 ^ (bc0 &^ bc4) - a[4] = bc4 ^ (bc1 &^ bc0) - - t = a[10] ^ d0 - bc1 = t<<36 | t>>(64-36) - t = a[1] ^ d1 - bc2 = t<<10 | t>>(64-10) - t = a[17] ^ d2 - bc3 = t<<15 | t>>(64-15) - t = a[8] ^ d3 - bc4 = t<<56 | t>>(64-56) - t = a[24] ^ d4 - bc0 = t<<27 | t>>(64-27) - a[10] = bc0 ^ (bc2 &^ bc1) - a[1] = bc1 ^ (bc3 &^ bc2) - a[17] = bc2 ^ (bc4 &^ bc3) - a[8] = bc3 ^ (bc0 &^ bc4) - a[24] = bc4 ^ (bc1 &^ bc0) - - t = a[5] ^ d0 - bc3 = t<<41 | t>>(64-41) - t = a[21] ^ d1 - bc4 = t<<2 | t>>(64-2) - t = a[12] ^ d2 - bc0 = t<<62 | t>>(64-62) - t = a[3] ^ d3 - bc1 = t<<55 | t>>(64-55) - t = a[19] ^ d4 - bc2 = t<<39 | t>>(64-39) - a[5] = bc0 ^ (bc2 &^ bc1) - a[21] = bc1 ^ (bc3 &^ bc2) - a[12] = bc2 ^ (bc4 &^ bc3) - a[3] = bc3 ^ (bc0 &^ bc4) - a[19] = bc4 ^ (bc1 &^ bc0) - - // Round 3 - bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] - bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] - bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] - bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] - bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] - d0 = bc4 ^ (bc1<<1 | bc1>>63) - d1 = bc0 ^ (bc2<<1 | bc2>>63) - d2 = bc1 ^ (bc3<<1 | bc3>>63) - d3 = bc2 ^ (bc4<<1 | bc4>>63) - d4 = bc3 ^ (bc0<<1 | bc0>>63) - - bc0 = a[0] ^ d0 - t = a[11] ^ d1 - bc1 = t<<44 | t>>(64-44) - t = a[22] ^ d2 - bc2 = t<<43 | t>>(64-43) - t = a[8] ^ d3 - bc3 = t<<21 | t>>(64-21) - t = a[19] ^ d4 - bc4 = t<<14 | t>>(64-14) - a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2] - a[11] = bc1 ^ (bc3 &^ bc2) - a[22] = bc2 ^ (bc4 &^ bc3) - a[8] = bc3 ^ (bc0 &^ bc4) - a[19] = bc4 ^ (bc1 &^ bc0) - - t = a[15] ^ d0 - bc2 = t<<3 | t>>(64-3) - t = a[1] ^ d1 - bc3 = t<<45 | t>>(64-45) - t = a[12] ^ d2 - bc4 = t<<61 | t>>(64-61) - t = a[23] ^ d3 - bc0 = t<<28 | t>>(64-28) - t = a[9] ^ d4 - bc1 = t<<20 | t>>(64-20) - a[15] = bc0 ^ (bc2 &^ bc1) - a[1] = bc1 ^ (bc3 &^ bc2) - a[12] = bc2 ^ (bc4 &^ bc3) - a[23] = bc3 ^ (bc0 &^ bc4) - a[9] = bc4 ^ (bc1 &^ bc0) - - t = a[5] ^ d0 - bc4 = t<<18 | t>>(64-18) - t = a[16] ^ d1 - bc0 = t<<1 | t>>(64-1) - t = a[2] ^ d2 - bc1 = t<<6 | t>>(64-6) - t = a[13] ^ d3 - bc2 = t<<25 | t>>(64-25) - t = a[24] ^ d4 - bc3 = t<<8 | t>>(64-8) - a[5] = bc0 ^ (bc2 &^ bc1) - a[16] = bc1 ^ (bc3 &^ bc2) - a[2] = bc2 ^ (bc4 &^ bc3) - a[13] = bc3 ^ (bc0 &^ bc4) - a[24] = bc4 ^ (bc1 &^ bc0) - - t = a[20] ^ d0 - bc1 = t<<36 | t>>(64-36) - t = a[6] ^ d1 - bc2 = t<<10 | t>>(64-10) - t = a[17] ^ d2 - bc3 = t<<15 | t>>(64-15) - t = a[3] ^ d3 - bc4 = t<<56 | t>>(64-56) - t = a[14] ^ d4 - bc0 = t<<27 | t>>(64-27) - a[20] = bc0 ^ (bc2 &^ bc1) - a[6] = bc1 ^ (bc3 &^ bc2) - a[17] = bc2 ^ (bc4 &^ bc3) - a[3] = bc3 ^ (bc0 &^ bc4) - a[14] = bc4 ^ (bc1 &^ bc0) - - t = a[10] ^ d0 - bc3 = t<<41 | t>>(64-41) - t = a[21] ^ d1 - bc4 = t<<2 | t>>(64-2) - t = a[7] ^ d2 - bc0 = t<<62 | t>>(64-62) - t = a[18] ^ d3 - bc1 = t<<55 | t>>(64-55) - t = a[4] ^ d4 - bc2 = t<<39 | t>>(64-39) - a[10] = bc0 ^ (bc2 &^ bc1) - a[21] = bc1 ^ (bc3 &^ bc2) - a[7] = bc2 ^ (bc4 &^ bc3) - a[18] = bc3 ^ (bc0 &^ bc4) - a[4] = bc4 ^ (bc1 &^ bc0) - - // Round 4 - bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] - bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] - bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] - bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] - bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] - d0 = bc4 ^ (bc1<<1 | bc1>>63) - d1 = bc0 ^ (bc2<<1 | bc2>>63) - d2 = bc1 ^ (bc3<<1 | bc3>>63) - d3 = bc2 ^ (bc4<<1 | bc4>>63) - d4 = bc3 ^ (bc0<<1 | bc0>>63) - - bc0 = a[0] ^ d0 - t = a[1] ^ d1 - bc1 = t<<44 | t>>(64-44) - t = a[2] ^ d2 - bc2 = t<<43 | t>>(64-43) - t = a[3] ^ d3 - bc3 = t<<21 | t>>(64-21) - t = a[4] ^ d4 - bc4 = t<<14 | t>>(64-14) - a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3] - a[1] = bc1 ^ (bc3 &^ bc2) - a[2] = bc2 ^ (bc4 &^ bc3) - a[3] = bc3 ^ (bc0 &^ bc4) - a[4] = bc4 ^ (bc1 &^ bc0) - - t = a[5] ^ d0 - bc2 = t<<3 | t>>(64-3) - t = a[6] ^ d1 - bc3 = t<<45 | t>>(64-45) - t = a[7] ^ d2 - bc4 = t<<61 | t>>(64-61) - t = a[8] ^ d3 - bc0 = t<<28 | t>>(64-28) - t = a[9] ^ d4 - bc1 = t<<20 | t>>(64-20) - a[5] = bc0 ^ (bc2 &^ bc1) - a[6] = bc1 ^ (bc3 &^ bc2) - a[7] = bc2 ^ (bc4 &^ bc3) - a[8] = bc3 ^ (bc0 &^ bc4) - a[9] = bc4 ^ (bc1 &^ bc0) - - t = a[10] ^ d0 - bc4 = t<<18 | t>>(64-18) - t = a[11] ^ d1 - bc0 = t<<1 | t>>(64-1) - t = a[12] ^ d2 - bc1 = t<<6 | t>>(64-6) - t = a[13] ^ d3 - bc2 = t<<25 | t>>(64-25) - t = a[14] ^ d4 - bc3 = t<<8 | t>>(64-8) - a[10] = bc0 ^ (bc2 &^ bc1) - a[11] = bc1 ^ (bc3 &^ bc2) - a[12] = bc2 ^ (bc4 &^ bc3) - a[13] = bc3 ^ (bc0 &^ bc4) - a[14] = bc4 ^ (bc1 &^ bc0) - - t = a[15] ^ d0 - bc1 = t<<36 | t>>(64-36) - t = a[16] ^ d1 - bc2 = t<<10 | t>>(64-10) - t = a[17] ^ d2 - bc3 = t<<15 | t>>(64-15) - t = a[18] ^ d3 - bc4 = t<<56 | t>>(64-56) - t = a[19] ^ d4 - bc0 = t<<27 | t>>(64-27) - a[15] = bc0 ^ (bc2 &^ bc1) - a[16] = bc1 ^ (bc3 &^ bc2) - a[17] = bc2 ^ (bc4 &^ bc3) - a[18] = bc3 ^ (bc0 &^ bc4) - a[19] = bc4 ^ (bc1 &^ bc0) - - t = a[20] ^ d0 - bc3 = t<<41 | t>>(64-41) - t = a[21] ^ d1 - bc4 = t<<2 | t>>(64-2) - t = a[22] ^ d2 - bc0 = t<<62 | t>>(64-62) - t = a[23] ^ d3 - bc1 = t<<55 | t>>(64-55) - t = a[24] ^ d4 - bc2 = t<<39 | t>>(64-39) - a[20] = bc0 ^ (bc2 &^ bc1) - a[21] = bc1 ^ (bc3 &^ bc2) - a[22] = bc2 ^ (bc4 &^ bc3) - a[23] = bc3 ^ (bc0 &^ bc4) - a[24] = bc4 ^ (bc1 &^ bc0) - } -} diff --git a/vendor/golang.org/x/crypto/sha3/keccakf_amd64.go b/vendor/golang.org/x/crypto/sha3/keccakf_amd64.go deleted file mode 100644 index 248a382..0000000 --- a/vendor/golang.org/x/crypto/sha3/keccakf_amd64.go +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build amd64 && !purego && gc -// +build amd64,!purego,gc - -package sha3 - -// This function is implemented in keccakf_amd64.s. - -//go:noescape - -func keccakF1600(a *[25]uint64) diff --git a/vendor/golang.org/x/crypto/sha3/keccakf_amd64.s b/vendor/golang.org/x/crypto/sha3/keccakf_amd64.s deleted file mode 100644 index 4cfa543..0000000 --- a/vendor/golang.org/x/crypto/sha3/keccakf_amd64.s +++ /dev/null @@ -1,391 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build amd64 && !purego && gc -// +build amd64,!purego,gc - -// This code was translated into a form compatible with 6a from the public -// domain sources at https://github.com/gvanas/KeccakCodePackage - -// Offsets in state -#define _ba (0*8) -#define _be (1*8) -#define _bi (2*8) -#define _bo (3*8) -#define _bu (4*8) -#define _ga (5*8) -#define _ge (6*8) -#define _gi (7*8) -#define _go (8*8) -#define _gu (9*8) -#define _ka (10*8) -#define _ke (11*8) -#define _ki (12*8) -#define _ko (13*8) -#define _ku (14*8) -#define _ma (15*8) -#define _me (16*8) -#define _mi (17*8) -#define _mo (18*8) -#define _mu (19*8) -#define _sa (20*8) -#define _se (21*8) -#define _si (22*8) -#define _so (23*8) -#define _su (24*8) - -// Temporary registers -#define rT1 AX - -// Round vars -#define rpState DI -#define rpStack SP - -#define rDa BX -#define rDe CX -#define rDi DX -#define rDo R8 -#define rDu R9 - -#define rBa R10 -#define rBe R11 -#define rBi R12 -#define rBo R13 -#define rBu R14 - -#define rCa SI -#define rCe BP -#define rCi rBi -#define rCo rBo -#define rCu R15 - -#define MOVQ_RBI_RCE MOVQ rBi, rCe -#define XORQ_RT1_RCA XORQ rT1, rCa -#define XORQ_RT1_RCE XORQ rT1, rCe -#define XORQ_RBA_RCU XORQ rBa, rCu -#define XORQ_RBE_RCU XORQ rBe, rCu -#define XORQ_RDU_RCU XORQ rDu, rCu -#define XORQ_RDA_RCA XORQ rDa, rCa -#define XORQ_RDE_RCE XORQ rDe, rCe - -#define mKeccakRound(iState, oState, rc, B_RBI_RCE, G_RT1_RCA, G_RT1_RCE, G_RBA_RCU, K_RT1_RCA, K_RT1_RCE, K_RBA_RCU, M_RT1_RCA, M_RT1_RCE, M_RBE_RCU, S_RDU_RCU, S_RDA_RCA, S_RDE_RCE) \ - /* Prepare round */ \ - MOVQ rCe, rDa; \ - ROLQ $1, rDa; \ - \ - MOVQ _bi(iState), rCi; \ - XORQ _gi(iState), rDi; \ - XORQ rCu, rDa; \ - XORQ _ki(iState), rCi; \ - XORQ _mi(iState), rDi; \ - XORQ rDi, rCi; \ - \ - MOVQ rCi, rDe; \ - ROLQ $1, rDe; \ - \ - MOVQ _bo(iState), rCo; \ - XORQ _go(iState), rDo; \ - XORQ rCa, rDe; \ - XORQ _ko(iState), rCo; \ - XORQ _mo(iState), rDo; \ - XORQ rDo, rCo; \ - \ - MOVQ rCo, rDi; \ - ROLQ $1, rDi; \ - \ - MOVQ rCu, rDo; \ - XORQ rCe, rDi; \ - ROLQ $1, rDo; \ - \ - MOVQ rCa, rDu; \ - XORQ rCi, rDo; \ - ROLQ $1, rDu; \ - \ - /* Result b */ \ - MOVQ _ba(iState), rBa; \ - MOVQ _ge(iState), rBe; \ - XORQ rCo, rDu; \ - MOVQ _ki(iState), rBi; \ - MOVQ _mo(iState), rBo; \ - MOVQ _su(iState), rBu; \ - XORQ rDe, rBe; \ - ROLQ $44, rBe; \ - XORQ rDi, rBi; \ - XORQ rDa, rBa; \ - ROLQ $43, rBi; \ - \ - MOVQ rBe, rCa; \ - MOVQ rc, rT1; \ - ORQ rBi, rCa; \ - XORQ rBa, rT1; \ - XORQ rT1, rCa; \ - MOVQ rCa, _ba(oState); \ - \ - XORQ rDu, rBu; \ - ROLQ $14, rBu; \ - MOVQ rBa, rCu; \ - ANDQ rBe, rCu; \ - XORQ rBu, rCu; \ - MOVQ rCu, _bu(oState); \ - \ - XORQ rDo, rBo; \ - ROLQ $21, rBo; \ - MOVQ rBo, rT1; \ - ANDQ rBu, rT1; \ - XORQ rBi, rT1; \ - MOVQ rT1, _bi(oState); \ - \ - NOTQ rBi; \ - ORQ rBa, rBu; \ - ORQ rBo, rBi; \ - XORQ rBo, rBu; \ - XORQ rBe, rBi; \ - MOVQ rBu, _bo(oState); \ - MOVQ rBi, _be(oState); \ - B_RBI_RCE; \ - \ - /* Result g */ \ - MOVQ _gu(iState), rBe; \ - XORQ rDu, rBe; \ - MOVQ _ka(iState), rBi; \ - ROLQ $20, rBe; \ - XORQ rDa, rBi; \ - ROLQ $3, rBi; \ - MOVQ _bo(iState), rBa; \ - MOVQ rBe, rT1; \ - ORQ rBi, rT1; \ - XORQ rDo, rBa; \ - MOVQ _me(iState), rBo; \ - MOVQ _si(iState), rBu; \ - ROLQ $28, rBa; \ - XORQ rBa, rT1; \ - MOVQ rT1, _ga(oState); \ - G_RT1_RCA; \ - \ - XORQ rDe, rBo; \ - ROLQ $45, rBo; \ - MOVQ rBi, rT1; \ - ANDQ rBo, rT1; \ - XORQ rBe, rT1; \ - MOVQ rT1, _ge(oState); \ - G_RT1_RCE; \ - \ - XORQ rDi, rBu; \ - ROLQ $61, rBu; \ - MOVQ rBu, rT1; \ - ORQ rBa, rT1; \ - XORQ rBo, rT1; \ - MOVQ rT1, _go(oState); \ - \ - ANDQ rBe, rBa; \ - XORQ rBu, rBa; \ - MOVQ rBa, _gu(oState); \ - NOTQ rBu; \ - G_RBA_RCU; \ - \ - ORQ rBu, rBo; \ - XORQ rBi, rBo; \ - MOVQ rBo, _gi(oState); \ - \ - /* Result k */ \ - MOVQ _be(iState), rBa; \ - MOVQ _gi(iState), rBe; \ - MOVQ _ko(iState), rBi; \ - MOVQ _mu(iState), rBo; \ - MOVQ _sa(iState), rBu; \ - XORQ rDi, rBe; \ - ROLQ $6, rBe; \ - XORQ rDo, rBi; \ - ROLQ $25, rBi; \ - MOVQ rBe, rT1; \ - ORQ rBi, rT1; \ - XORQ rDe, rBa; \ - ROLQ $1, rBa; \ - XORQ rBa, rT1; \ - MOVQ rT1, _ka(oState); \ - K_RT1_RCA; \ - \ - XORQ rDu, rBo; \ - ROLQ $8, rBo; \ - MOVQ rBi, rT1; \ - ANDQ rBo, rT1; \ - XORQ rBe, rT1; \ - MOVQ rT1, _ke(oState); \ - K_RT1_RCE; \ - \ - XORQ rDa, rBu; \ - ROLQ $18, rBu; \ - NOTQ rBo; \ - MOVQ rBo, rT1; \ - ANDQ rBu, rT1; \ - XORQ rBi, rT1; \ - MOVQ rT1, _ki(oState); \ - \ - MOVQ rBu, rT1; \ - ORQ rBa, rT1; \ - XORQ rBo, rT1; \ - MOVQ rT1, _ko(oState); \ - \ - ANDQ rBe, rBa; \ - XORQ rBu, rBa; \ - MOVQ rBa, _ku(oState); \ - K_RBA_RCU; \ - \ - /* Result m */ \ - MOVQ _ga(iState), rBe; \ - XORQ rDa, rBe; \ - MOVQ _ke(iState), rBi; \ - ROLQ $36, rBe; \ - XORQ rDe, rBi; \ - MOVQ _bu(iState), rBa; \ - ROLQ $10, rBi; \ - MOVQ rBe, rT1; \ - MOVQ _mi(iState), rBo; \ - ANDQ rBi, rT1; \ - XORQ rDu, rBa; \ - MOVQ _so(iState), rBu; \ - ROLQ $27, rBa; \ - XORQ rBa, rT1; \ - MOVQ rT1, _ma(oState); \ - M_RT1_RCA; \ - \ - XORQ rDi, rBo; \ - ROLQ $15, rBo; \ - MOVQ rBi, rT1; \ - ORQ rBo, rT1; \ - XORQ rBe, rT1; \ - MOVQ rT1, _me(oState); \ - M_RT1_RCE; \ - \ - XORQ rDo, rBu; \ - ROLQ $56, rBu; \ - NOTQ rBo; \ - MOVQ rBo, rT1; \ - ORQ rBu, rT1; \ - XORQ rBi, rT1; \ - MOVQ rT1, _mi(oState); \ - \ - ORQ rBa, rBe; \ - XORQ rBu, rBe; \ - MOVQ rBe, _mu(oState); \ - \ - ANDQ rBa, rBu; \ - XORQ rBo, rBu; \ - MOVQ rBu, _mo(oState); \ - M_RBE_RCU; \ - \ - /* Result s */ \ - MOVQ _bi(iState), rBa; \ - MOVQ _go(iState), rBe; \ - MOVQ _ku(iState), rBi; \ - XORQ rDi, rBa; \ - MOVQ _ma(iState), rBo; \ - ROLQ $62, rBa; \ - XORQ rDo, rBe; \ - MOVQ _se(iState), rBu; \ - ROLQ $55, rBe; \ - \ - XORQ rDu, rBi; \ - MOVQ rBa, rDu; \ - XORQ rDe, rBu; \ - ROLQ $2, rBu; \ - ANDQ rBe, rDu; \ - XORQ rBu, rDu; \ - MOVQ rDu, _su(oState); \ - \ - ROLQ $39, rBi; \ - S_RDU_RCU; \ - NOTQ rBe; \ - XORQ rDa, rBo; \ - MOVQ rBe, rDa; \ - ANDQ rBi, rDa; \ - XORQ rBa, rDa; \ - MOVQ rDa, _sa(oState); \ - S_RDA_RCA; \ - \ - ROLQ $41, rBo; \ - MOVQ rBi, rDe; \ - ORQ rBo, rDe; \ - XORQ rBe, rDe; \ - MOVQ rDe, _se(oState); \ - S_RDE_RCE; \ - \ - MOVQ rBo, rDi; \ - MOVQ rBu, rDo; \ - ANDQ rBu, rDi; \ - ORQ rBa, rDo; \ - XORQ rBi, rDi; \ - XORQ rBo, rDo; \ - MOVQ rDi, _si(oState); \ - MOVQ rDo, _so(oState) \ - -// func keccakF1600(state *[25]uint64) -TEXT ·keccakF1600(SB), 0, $200-8 - MOVQ state+0(FP), rpState - - // Convert the user state into an internal state - NOTQ _be(rpState) - NOTQ _bi(rpState) - NOTQ _go(rpState) - NOTQ _ki(rpState) - NOTQ _mi(rpState) - NOTQ _sa(rpState) - - // Execute the KeccakF permutation - MOVQ _ba(rpState), rCa - MOVQ _be(rpState), rCe - MOVQ _bu(rpState), rCu - - XORQ _ga(rpState), rCa - XORQ _ge(rpState), rCe - XORQ _gu(rpState), rCu - - XORQ _ka(rpState), rCa - XORQ _ke(rpState), rCe - XORQ _ku(rpState), rCu - - XORQ _ma(rpState), rCa - XORQ _me(rpState), rCe - XORQ _mu(rpState), rCu - - XORQ _sa(rpState), rCa - XORQ _se(rpState), rCe - MOVQ _si(rpState), rDi - MOVQ _so(rpState), rDo - XORQ _su(rpState), rCu - - mKeccakRound(rpState, rpStack, $0x0000000000000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x0000000000008082, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x800000000000808a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x8000000080008000, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x000000000000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x8000000000008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x000000000000008a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x0000000000000088, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x0000000080008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x000000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x000000008000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x800000000000008b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x8000000000008089, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x8000000000008003, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x8000000000008002, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x8000000000000080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x000000000000800a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x800000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x8000000000008080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpState, rpStack, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE) - mKeccakRound(rpStack, rpState, $0x8000000080008008, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP) - - // Revert the internal state to the user state - NOTQ _be(rpState) - NOTQ _bi(rpState) - NOTQ _go(rpState) - NOTQ _ki(rpState) - NOTQ _mi(rpState) - NOTQ _sa(rpState) - - RET diff --git a/vendor/golang.org/x/crypto/sha3/register.go b/vendor/golang.org/x/crypto/sha3/register.go deleted file mode 100644 index 8b4453a..0000000 --- a/vendor/golang.org/x/crypto/sha3/register.go +++ /dev/null @@ -1,19 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build go1.4 -// +build go1.4 - -package sha3 - -import ( - "crypto" -) - -func init() { - crypto.RegisterHash(crypto.SHA3_224, New224) - crypto.RegisterHash(crypto.SHA3_256, New256) - crypto.RegisterHash(crypto.SHA3_384, New384) - crypto.RegisterHash(crypto.SHA3_512, New512) -} diff --git a/vendor/golang.org/x/crypto/sha3/sha3.go b/vendor/golang.org/x/crypto/sha3/sha3.go deleted file mode 100644 index fa182be..0000000 --- a/vendor/golang.org/x/crypto/sha3/sha3.go +++ /dev/null @@ -1,193 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package sha3 - -// spongeDirection indicates the direction bytes are flowing through the sponge. -type spongeDirection int - -const ( - // spongeAbsorbing indicates that the sponge is absorbing input. - spongeAbsorbing spongeDirection = iota - // spongeSqueezing indicates that the sponge is being squeezed. - spongeSqueezing -) - -const ( - // maxRate is the maximum size of the internal buffer. SHAKE-256 - // currently needs the largest buffer. - maxRate = 168 -) - -type state struct { - // Generic sponge components. - a [25]uint64 // main state of the hash - buf []byte // points into storage - rate int // the number of bytes of state to use - - // dsbyte contains the "domain separation" bits and the first bit of - // the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the - // SHA-3 and SHAKE functions by appending bitstrings to the message. - // Using a little-endian bit-ordering convention, these are "01" for SHA-3 - // and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the - // padding rule from section 5.1 is applied to pad the message to a multiple - // of the rate, which involves adding a "1" bit, zero or more "0" bits, and - // a final "1" bit. We merge the first "1" bit from the padding into dsbyte, - // giving 00000110b (0x06) and 00011111b (0x1f). - // [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf - // "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and - // Extendable-Output Functions (May 2014)" - dsbyte byte - - storage storageBuf - - // Specific to SHA-3 and SHAKE. - outputLen int // the default output size in bytes - state spongeDirection // whether the sponge is absorbing or squeezing -} - -// BlockSize returns the rate of sponge underlying this hash function. -func (d *state) BlockSize() int { return d.rate } - -// Size returns the output size of the hash function in bytes. -func (d *state) Size() int { return d.outputLen } - -// Reset clears the internal state by zeroing the sponge state and -// the byte buffer, and setting Sponge.state to absorbing. -func (d *state) Reset() { - // Zero the permutation's state. - for i := range d.a { - d.a[i] = 0 - } - d.state = spongeAbsorbing - d.buf = d.storage.asBytes()[:0] -} - -func (d *state) clone() *state { - ret := *d - if ret.state == spongeAbsorbing { - ret.buf = ret.storage.asBytes()[:len(ret.buf)] - } else { - ret.buf = ret.storage.asBytes()[d.rate-cap(d.buf) : d.rate] - } - - return &ret -} - -// permute applies the KeccakF-1600 permutation. It handles -// any input-output buffering. -func (d *state) permute() { - switch d.state { - case spongeAbsorbing: - // If we're absorbing, we need to xor the input into the state - // before applying the permutation. - xorIn(d, d.buf) - d.buf = d.storage.asBytes()[:0] - keccakF1600(&d.a) - case spongeSqueezing: - // If we're squeezing, we need to apply the permutation before - // copying more output. - keccakF1600(&d.a) - d.buf = d.storage.asBytes()[:d.rate] - copyOut(d, d.buf) - } -} - -// pads appends the domain separation bits in dsbyte, applies -// the multi-bitrate 10..1 padding rule, and permutes the state. -func (d *state) padAndPermute(dsbyte byte) { - if d.buf == nil { - d.buf = d.storage.asBytes()[:0] - } - // Pad with this instance's domain-separator bits. We know that there's - // at least one byte of space in d.buf because, if it were full, - // permute would have been called to empty it. dsbyte also contains the - // first one bit for the padding. See the comment in the state struct. - d.buf = append(d.buf, dsbyte) - zerosStart := len(d.buf) - d.buf = d.storage.asBytes()[:d.rate] - for i := zerosStart; i < d.rate; i++ { - d.buf[i] = 0 - } - // This adds the final one bit for the padding. Because of the way that - // bits are numbered from the LSB upwards, the final bit is the MSB of - // the last byte. - d.buf[d.rate-1] ^= 0x80 - // Apply the permutation - d.permute() - d.state = spongeSqueezing - d.buf = d.storage.asBytes()[:d.rate] - copyOut(d, d.buf) -} - -// Write absorbs more data into the hash's state. It produces an error -// if more data is written to the ShakeHash after writing -func (d *state) Write(p []byte) (written int, err error) { - if d.state != spongeAbsorbing { - panic("sha3: write to sponge after read") - } - if d.buf == nil { - d.buf = d.storage.asBytes()[:0] - } - written = len(p) - - for len(p) > 0 { - if len(d.buf) == 0 && len(p) >= d.rate { - // The fast path; absorb a full "rate" bytes of input and apply the permutation. - xorIn(d, p[:d.rate]) - p = p[d.rate:] - keccakF1600(&d.a) - } else { - // The slow path; buffer the input until we can fill the sponge, and then xor it in. - todo := d.rate - len(d.buf) - if todo > len(p) { - todo = len(p) - } - d.buf = append(d.buf, p[:todo]...) - p = p[todo:] - - // If the sponge is full, apply the permutation. - if len(d.buf) == d.rate { - d.permute() - } - } - } - - return -} - -// Read squeezes an arbitrary number of bytes from the sponge. -func (d *state) Read(out []byte) (n int, err error) { - // If we're still absorbing, pad and apply the permutation. - if d.state == spongeAbsorbing { - d.padAndPermute(d.dsbyte) - } - - n = len(out) - - // Now, do the squeezing. - for len(out) > 0 { - n := copy(out, d.buf) - d.buf = d.buf[n:] - out = out[n:] - - // Apply the permutation if we've squeezed the sponge dry. - if len(d.buf) == 0 { - d.permute() - } - } - - return -} - -// Sum applies padding to the hash state and then squeezes out the desired -// number of output bytes. -func (d *state) Sum(in []byte) []byte { - // Make a copy of the original hash so that caller can keep writing - // and summing. - dup := d.clone() - hash := make([]byte, dup.outputLen) - dup.Read(hash) - return append(in, hash...) -} diff --git a/vendor/golang.org/x/crypto/sha3/sha3_s390x.go b/vendor/golang.org/x/crypto/sha3/sha3_s390x.go deleted file mode 100644 index 63a3edb..0000000 --- a/vendor/golang.org/x/crypto/sha3/sha3_s390x.go +++ /dev/null @@ -1,287 +0,0 @@ -// Copyright 2017 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc && !purego -// +build gc,!purego - -package sha3 - -// This file contains code for using the 'compute intermediate -// message digest' (KIMD) and 'compute last message digest' (KLMD) -// instructions to compute SHA-3 and SHAKE hashes on IBM Z. - -import ( - "hash" - - "golang.org/x/sys/cpu" -) - -// codes represent 7-bit KIMD/KLMD function codes as defined in -// the Principles of Operation. -type code uint64 - -const ( - // function codes for KIMD/KLMD - sha3_224 code = 32 - sha3_256 = 33 - sha3_384 = 34 - sha3_512 = 35 - shake_128 = 36 - shake_256 = 37 - nopad = 0x100 -) - -// kimd is a wrapper for the 'compute intermediate message digest' instruction. -// src must be a multiple of the rate for the given function code. -// -//go:noescape -func kimd(function code, chain *[200]byte, src []byte) - -// klmd is a wrapper for the 'compute last message digest' instruction. -// src padding is handled by the instruction. -// -//go:noescape -func klmd(function code, chain *[200]byte, dst, src []byte) - -type asmState struct { - a [200]byte // 1600 bit state - buf []byte // care must be taken to ensure cap(buf) is a multiple of rate - rate int // equivalent to block size - storage [3072]byte // underlying storage for buf - outputLen int // output length if fixed, 0 if not - function code // KIMD/KLMD function code - state spongeDirection // whether the sponge is absorbing or squeezing -} - -func newAsmState(function code) *asmState { - var s asmState - s.function = function - switch function { - case sha3_224: - s.rate = 144 - s.outputLen = 28 - case sha3_256: - s.rate = 136 - s.outputLen = 32 - case sha3_384: - s.rate = 104 - s.outputLen = 48 - case sha3_512: - s.rate = 72 - s.outputLen = 64 - case shake_128: - s.rate = 168 - case shake_256: - s.rate = 136 - default: - panic("sha3: unrecognized function code") - } - - // limit s.buf size to a multiple of s.rate - s.resetBuf() - return &s -} - -func (s *asmState) clone() *asmState { - c := *s - c.buf = c.storage[:len(s.buf):cap(s.buf)] - return &c -} - -// copyIntoBuf copies b into buf. It will panic if there is not enough space to -// store all of b. -func (s *asmState) copyIntoBuf(b []byte) { - bufLen := len(s.buf) - s.buf = s.buf[:len(s.buf)+len(b)] - copy(s.buf[bufLen:], b) -} - -// resetBuf points buf at storage, sets the length to 0 and sets cap to be a -// multiple of the rate. -func (s *asmState) resetBuf() { - max := (cap(s.storage) / s.rate) * s.rate - s.buf = s.storage[:0:max] -} - -// Write (via the embedded io.Writer interface) adds more data to the running hash. -// It never returns an error. -func (s *asmState) Write(b []byte) (int, error) { - if s.state != spongeAbsorbing { - panic("sha3: write to sponge after read") - } - length := len(b) - for len(b) > 0 { - if len(s.buf) == 0 && len(b) >= cap(s.buf) { - // Hash the data directly and push any remaining bytes - // into the buffer. - remainder := len(b) % s.rate - kimd(s.function, &s.a, b[:len(b)-remainder]) - if remainder != 0 { - s.copyIntoBuf(b[len(b)-remainder:]) - } - return length, nil - } - - if len(s.buf) == cap(s.buf) { - // flush the buffer - kimd(s.function, &s.a, s.buf) - s.buf = s.buf[:0] - } - - // copy as much as we can into the buffer - n := len(b) - if len(b) > cap(s.buf)-len(s.buf) { - n = cap(s.buf) - len(s.buf) - } - s.copyIntoBuf(b[:n]) - b = b[n:] - } - return length, nil -} - -// Read squeezes an arbitrary number of bytes from the sponge. -func (s *asmState) Read(out []byte) (n int, err error) { - n = len(out) - - // need to pad if we were absorbing - if s.state == spongeAbsorbing { - s.state = spongeSqueezing - - // write hash directly into out if possible - if len(out)%s.rate == 0 { - klmd(s.function, &s.a, out, s.buf) // len(out) may be 0 - s.buf = s.buf[:0] - return - } - - // write hash into buffer - max := cap(s.buf) - if max > len(out) { - max = (len(out)/s.rate)*s.rate + s.rate - } - klmd(s.function, &s.a, s.buf[:max], s.buf) - s.buf = s.buf[:max] - } - - for len(out) > 0 { - // flush the buffer - if len(s.buf) != 0 { - c := copy(out, s.buf) - out = out[c:] - s.buf = s.buf[c:] - continue - } - - // write hash directly into out if possible - if len(out)%s.rate == 0 { - klmd(s.function|nopad, &s.a, out, nil) - return - } - - // write hash into buffer - s.resetBuf() - if cap(s.buf) > len(out) { - s.buf = s.buf[:(len(out)/s.rate)*s.rate+s.rate] - } - klmd(s.function|nopad, &s.a, s.buf, nil) - } - return -} - -// Sum appends the current hash to b and returns the resulting slice. -// It does not change the underlying hash state. -func (s *asmState) Sum(b []byte) []byte { - if s.outputLen == 0 { - panic("sha3: cannot call Sum on SHAKE functions") - } - - // Copy the state to preserve the original. - a := s.a - - // Hash the buffer. Note that we don't clear it because we - // aren't updating the state. - klmd(s.function, &a, nil, s.buf) - return append(b, a[:s.outputLen]...) -} - -// Reset resets the Hash to its initial state. -func (s *asmState) Reset() { - for i := range s.a { - s.a[i] = 0 - } - s.resetBuf() - s.state = spongeAbsorbing -} - -// Size returns the number of bytes Sum will return. -func (s *asmState) Size() int { - return s.outputLen -} - -// BlockSize returns the hash's underlying block size. -// The Write method must be able to accept any amount -// of data, but it may operate more efficiently if all writes -// are a multiple of the block size. -func (s *asmState) BlockSize() int { - return s.rate -} - -// Clone returns a copy of the ShakeHash in its current state. -func (s *asmState) Clone() ShakeHash { - return s.clone() -} - -// new224Asm returns an assembly implementation of SHA3-224 if available, -// otherwise it returns nil. -func new224Asm() hash.Hash { - if cpu.S390X.HasSHA3 { - return newAsmState(sha3_224) - } - return nil -} - -// new256Asm returns an assembly implementation of SHA3-256 if available, -// otherwise it returns nil. -func new256Asm() hash.Hash { - if cpu.S390X.HasSHA3 { - return newAsmState(sha3_256) - } - return nil -} - -// new384Asm returns an assembly implementation of SHA3-384 if available, -// otherwise it returns nil. -func new384Asm() hash.Hash { - if cpu.S390X.HasSHA3 { - return newAsmState(sha3_384) - } - return nil -} - -// new512Asm returns an assembly implementation of SHA3-512 if available, -// otherwise it returns nil. -func new512Asm() hash.Hash { - if cpu.S390X.HasSHA3 { - return newAsmState(sha3_512) - } - return nil -} - -// newShake128Asm returns an assembly implementation of SHAKE-128 if available, -// otherwise it returns nil. -func newShake128Asm() ShakeHash { - if cpu.S390X.HasSHA3 { - return newAsmState(shake_128) - } - return nil -} - -// newShake256Asm returns an assembly implementation of SHAKE-256 if available, -// otherwise it returns nil. -func newShake256Asm() ShakeHash { - if cpu.S390X.HasSHA3 { - return newAsmState(shake_256) - } - return nil -} diff --git a/vendor/golang.org/x/crypto/sha3/sha3_s390x.s b/vendor/golang.org/x/crypto/sha3/sha3_s390x.s deleted file mode 100644 index a0e051b..0000000 --- a/vendor/golang.org/x/crypto/sha3/sha3_s390x.s +++ /dev/null @@ -1,34 +0,0 @@ -// Copyright 2017 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc && !purego -// +build gc,!purego - -#include "textflag.h" - -// func kimd(function code, chain *[200]byte, src []byte) -TEXT ·kimd(SB), NOFRAME|NOSPLIT, $0-40 - MOVD function+0(FP), R0 - MOVD chain+8(FP), R1 - LMG src+16(FP), R2, R3 // R2=base, R3=len - -continue: - WORD $0xB93E0002 // KIMD --, R2 - BVS continue // continue if interrupted - MOVD $0, R0 // reset R0 for pre-go1.8 compilers - RET - -// func klmd(function code, chain *[200]byte, dst, src []byte) -TEXT ·klmd(SB), NOFRAME|NOSPLIT, $0-64 - // TODO: SHAKE support - MOVD function+0(FP), R0 - MOVD chain+8(FP), R1 - LMG dst+16(FP), R2, R3 // R2=base, R3=len - LMG src+40(FP), R4, R5 // R4=base, R5=len - -continue: - WORD $0xB93F0024 // KLMD R2, R4 - BVS continue // continue if interrupted - MOVD $0, R0 // reset R0 for pre-go1.8 compilers - RET diff --git a/vendor/golang.org/x/crypto/sha3/shake.go b/vendor/golang.org/x/crypto/sha3/shake.go deleted file mode 100644 index d7be295..0000000 --- a/vendor/golang.org/x/crypto/sha3/shake.go +++ /dev/null @@ -1,173 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package sha3 - -// This file defines the ShakeHash interface, and provides -// functions for creating SHAKE and cSHAKE instances, as well as utility -// functions for hashing bytes to arbitrary-length output. -// -// -// SHAKE implementation is based on FIPS PUB 202 [1] -// cSHAKE implementations is based on NIST SP 800-185 [2] -// -// [1] https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf -// [2] https://doi.org/10.6028/NIST.SP.800-185 - -import ( - "encoding/binary" - "io" -) - -// ShakeHash defines the interface to hash functions that -// support arbitrary-length output. -type ShakeHash interface { - // Write absorbs more data into the hash's state. It panics if input is - // written to it after output has been read from it. - io.Writer - - // Read reads more output from the hash; reading affects the hash's - // state. (ShakeHash.Read is thus very different from Hash.Sum) - // It never returns an error. - io.Reader - - // Clone returns a copy of the ShakeHash in its current state. - Clone() ShakeHash - - // Reset resets the ShakeHash to its initial state. - Reset() -} - -// cSHAKE specific context -type cshakeState struct { - *state // SHA-3 state context and Read/Write operations - - // initBlock is the cSHAKE specific initialization set of bytes. It is initialized - // by newCShake function and stores concatenation of N followed by S, encoded - // by the method specified in 3.3 of [1]. - // It is stored here in order for Reset() to be able to put context into - // initial state. - initBlock []byte -} - -// Consts for configuring initial SHA-3 state -const ( - dsbyteShake = 0x1f - dsbyteCShake = 0x04 - rate128 = 168 - rate256 = 136 -) - -func bytepad(input []byte, w int) []byte { - // leftEncode always returns max 9 bytes - buf := make([]byte, 0, 9+len(input)+w) - buf = append(buf, leftEncode(uint64(w))...) - buf = append(buf, input...) - padlen := w - (len(buf) % w) - return append(buf, make([]byte, padlen)...) -} - -func leftEncode(value uint64) []byte { - var b [9]byte - binary.BigEndian.PutUint64(b[1:], value) - // Trim all but last leading zero bytes - i := byte(1) - for i < 8 && b[i] == 0 { - i++ - } - // Prepend number of encoded bytes - b[i-1] = 9 - i - return b[i-1:] -} - -func newCShake(N, S []byte, rate int, dsbyte byte) ShakeHash { - c := cshakeState{state: &state{rate: rate, dsbyte: dsbyte}} - - // leftEncode returns max 9 bytes - c.initBlock = make([]byte, 0, 9*2+len(N)+len(S)) - c.initBlock = append(c.initBlock, leftEncode(uint64(len(N)*8))...) - c.initBlock = append(c.initBlock, N...) - c.initBlock = append(c.initBlock, leftEncode(uint64(len(S)*8))...) - c.initBlock = append(c.initBlock, S...) - c.Write(bytepad(c.initBlock, c.rate)) - return &c -} - -// Reset resets the hash to initial state. -func (c *cshakeState) Reset() { - c.state.Reset() - c.Write(bytepad(c.initBlock, c.rate)) -} - -// Clone returns copy of a cSHAKE context within its current state. -func (c *cshakeState) Clone() ShakeHash { - b := make([]byte, len(c.initBlock)) - copy(b, c.initBlock) - return &cshakeState{state: c.clone(), initBlock: b} -} - -// Clone returns copy of SHAKE context within its current state. -func (c *state) Clone() ShakeHash { - return c.clone() -} - -// NewShake128 creates a new SHAKE128 variable-output-length ShakeHash. -// Its generic security strength is 128 bits against all attacks if at -// least 32 bytes of its output are used. -func NewShake128() ShakeHash { - if h := newShake128Asm(); h != nil { - return h - } - return &state{rate: rate128, dsbyte: dsbyteShake} -} - -// NewShake256 creates a new SHAKE256 variable-output-length ShakeHash. -// Its generic security strength is 256 bits against all attacks if -// at least 64 bytes of its output are used. -func NewShake256() ShakeHash { - if h := newShake256Asm(); h != nil { - return h - } - return &state{rate: rate256, dsbyte: dsbyteShake} -} - -// NewCShake128 creates a new instance of cSHAKE128 variable-output-length ShakeHash, -// a customizable variant of SHAKE128. -// N is used to define functions based on cSHAKE, it can be empty when plain cSHAKE is -// desired. S is a customization byte string used for domain separation - two cSHAKE -// computations on same input with different S yield unrelated outputs. -// When N and S are both empty, this is equivalent to NewShake128. -func NewCShake128(N, S []byte) ShakeHash { - if len(N) == 0 && len(S) == 0 { - return NewShake128() - } - return newCShake(N, S, rate128, dsbyteCShake) -} - -// NewCShake256 creates a new instance of cSHAKE256 variable-output-length ShakeHash, -// a customizable variant of SHAKE256. -// N is used to define functions based on cSHAKE, it can be empty when plain cSHAKE is -// desired. S is a customization byte string used for domain separation - two cSHAKE -// computations on same input with different S yield unrelated outputs. -// When N and S are both empty, this is equivalent to NewShake256. -func NewCShake256(N, S []byte) ShakeHash { - if len(N) == 0 && len(S) == 0 { - return NewShake256() - } - return newCShake(N, S, rate256, dsbyteCShake) -} - -// ShakeSum128 writes an arbitrary-length digest of data into hash. -func ShakeSum128(hash, data []byte) { - h := NewShake128() - h.Write(data) - h.Read(hash) -} - -// ShakeSum256 writes an arbitrary-length digest of data into hash. -func ShakeSum256(hash, data []byte) { - h := NewShake256() - h.Write(data) - h.Read(hash) -} diff --git a/vendor/golang.org/x/crypto/sha3/shake_generic.go b/vendor/golang.org/x/crypto/sha3/shake_generic.go deleted file mode 100644 index 5c0710e..0000000 --- a/vendor/golang.org/x/crypto/sha3/shake_generic.go +++ /dev/null @@ -1,20 +0,0 @@ -// Copyright 2017 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !gc || purego || !s390x -// +build !gc purego !s390x - -package sha3 - -// newShake128Asm returns an assembly implementation of SHAKE-128 if available, -// otherwise it returns nil. -func newShake128Asm() ShakeHash { - return nil -} - -// newShake256Asm returns an assembly implementation of SHAKE-256 if available, -// otherwise it returns nil. -func newShake256Asm() ShakeHash { - return nil -} diff --git a/vendor/golang.org/x/crypto/sha3/xor.go b/vendor/golang.org/x/crypto/sha3/xor.go deleted file mode 100644 index 59c8eb9..0000000 --- a/vendor/golang.org/x/crypto/sha3/xor.go +++ /dev/null @@ -1,24 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build (!amd64 && !386 && !ppc64le) || purego -// +build !amd64,!386,!ppc64le purego - -package sha3 - -// A storageBuf is an aligned array of maxRate bytes. -type storageBuf [maxRate]byte - -func (b *storageBuf) asBytes() *[maxRate]byte { - return (*[maxRate]byte)(b) -} - -var ( - xorIn = xorInGeneric - copyOut = copyOutGeneric - xorInUnaligned = xorInGeneric - copyOutUnaligned = copyOutGeneric -) - -const xorImplementationUnaligned = "generic" diff --git a/vendor/golang.org/x/crypto/sha3/xor_generic.go b/vendor/golang.org/x/crypto/sha3/xor_generic.go deleted file mode 100644 index 8d94771..0000000 --- a/vendor/golang.org/x/crypto/sha3/xor_generic.go +++ /dev/null @@ -1,28 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package sha3 - -import "encoding/binary" - -// xorInGeneric xors the bytes in buf into the state; it -// makes no non-portable assumptions about memory layout -// or alignment. -func xorInGeneric(d *state, buf []byte) { - n := len(buf) / 8 - - for i := 0; i < n; i++ { - a := binary.LittleEndian.Uint64(buf) - d.a[i] ^= a - buf = buf[8:] - } -} - -// copyOutGeneric copies uint64s to a byte buffer. -func copyOutGeneric(d *state, b []byte) { - for i := 0; len(b) >= 8; i++ { - binary.LittleEndian.PutUint64(b, d.a[i]) - b = b[8:] - } -} diff --git a/vendor/golang.org/x/crypto/sha3/xor_unaligned.go b/vendor/golang.org/x/crypto/sha3/xor_unaligned.go deleted file mode 100644 index 1ce6062..0000000 --- a/vendor/golang.org/x/crypto/sha3/xor_unaligned.go +++ /dev/null @@ -1,68 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build (amd64 || 386 || ppc64le) && !purego -// +build amd64 386 ppc64le -// +build !purego - -package sha3 - -import "unsafe" - -// A storageBuf is an aligned array of maxRate bytes. -type storageBuf [maxRate / 8]uint64 - -func (b *storageBuf) asBytes() *[maxRate]byte { - return (*[maxRate]byte)(unsafe.Pointer(b)) -} - -// xorInUnaligned uses unaligned reads and writes to update d.a to contain d.a -// XOR buf. -func xorInUnaligned(d *state, buf []byte) { - n := len(buf) - bw := (*[maxRate / 8]uint64)(unsafe.Pointer(&buf[0]))[: n/8 : n/8] - if n >= 72 { - d.a[0] ^= bw[0] - d.a[1] ^= bw[1] - d.a[2] ^= bw[2] - d.a[3] ^= bw[3] - d.a[4] ^= bw[4] - d.a[5] ^= bw[5] - d.a[6] ^= bw[6] - d.a[7] ^= bw[7] - d.a[8] ^= bw[8] - } - if n >= 104 { - d.a[9] ^= bw[9] - d.a[10] ^= bw[10] - d.a[11] ^= bw[11] - d.a[12] ^= bw[12] - } - if n >= 136 { - d.a[13] ^= bw[13] - d.a[14] ^= bw[14] - d.a[15] ^= bw[15] - d.a[16] ^= bw[16] - } - if n >= 144 { - d.a[17] ^= bw[17] - } - if n >= 168 { - d.a[18] ^= bw[18] - d.a[19] ^= bw[19] - d.a[20] ^= bw[20] - } -} - -func copyOutUnaligned(d *state, buf []byte) { - ab := (*[maxRate]uint8)(unsafe.Pointer(&d.a[0])) - copy(buf, ab[:]) -} - -var ( - xorIn = xorInUnaligned - copyOut = copyOutUnaligned -) - -const xorImplementationUnaligned = "unaligned" diff --git a/vendor/golang.org/x/sys/AUTHORS b/vendor/golang.org/x/sys/AUTHORS deleted file mode 100644 index 15167cd..0000000 --- a/vendor/golang.org/x/sys/AUTHORS +++ /dev/null @@ -1,3 +0,0 @@ -# This source code refers to The Go Authors for copyright purposes. -# The master list of authors is in the main Go distribution, -# visible at http://tip.golang.org/AUTHORS. diff --git a/vendor/golang.org/x/sys/CONTRIBUTORS b/vendor/golang.org/x/sys/CONTRIBUTORS deleted file mode 100644 index 1c4577e..0000000 --- a/vendor/golang.org/x/sys/CONTRIBUTORS +++ /dev/null @@ -1,3 +0,0 @@ -# This source code was written by the Go contributors. -# The master list of contributors is in the main Go distribution, -# visible at http://tip.golang.org/CONTRIBUTORS. diff --git a/vendor/golang.org/x/sys/LICENSE b/vendor/golang.org/x/sys/LICENSE deleted file mode 100644 index 6a66aea..0000000 --- a/vendor/golang.org/x/sys/LICENSE +++ /dev/null @@ -1,27 +0,0 @@ -Copyright (c) 2009 The Go Authors. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are -met: - - * Redistributions of source code must retain the above copyright -notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above -copyright notice, this list of conditions and the following disclaimer -in the documentation and/or other materials provided with the -distribution. - * Neither the name of Google Inc. nor the names of its -contributors may be used to endorse or promote products derived from -this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vendor/golang.org/x/sys/PATENTS b/vendor/golang.org/x/sys/PATENTS deleted file mode 100644 index 7330990..0000000 --- a/vendor/golang.org/x/sys/PATENTS +++ /dev/null @@ -1,22 +0,0 @@ -Additional IP Rights Grant (Patents) - -"This implementation" means the copyrightable works distributed by -Google as part of the Go project. - -Google hereby grants to You a perpetual, worldwide, non-exclusive, -no-charge, royalty-free, irrevocable (except as stated in this section) -patent license to make, have made, use, offer to sell, sell, import, -transfer and otherwise run, modify and propagate the contents of this -implementation of Go, where such license applies only to those patent -claims, both currently owned or controlled by Google and acquired in -the future, licensable by Google that are necessarily infringed by this -implementation of Go. This grant does not include claims that would be -infringed only as a consequence of further modification of this -implementation. If you or your agent or exclusive licensee institute or -order or agree to the institution of patent litigation against any -entity (including a cross-claim or counterclaim in a lawsuit) alleging -that this implementation of Go or any code incorporated within this -implementation of Go constitutes direct or contributory patent -infringement, or inducement of patent infringement, then any patent -rights granted to you under this License for this implementation of Go -shall terminate as of the date such litigation is filed. diff --git a/vendor/golang.org/x/sys/cpu/asm_aix_ppc64.s b/vendor/golang.org/x/sys/cpu/asm_aix_ppc64.s deleted file mode 100644 index db9171c..0000000 --- a/vendor/golang.org/x/sys/cpu/asm_aix_ppc64.s +++ /dev/null @@ -1,18 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc -// +build gc - -#include "textflag.h" - -// -// System calls for ppc64, AIX are implemented in runtime/syscall_aix.go -// - -TEXT ·syscall6(SB),NOSPLIT,$0-88 - JMP syscall·syscall6(SB) - -TEXT ·rawSyscall6(SB),NOSPLIT,$0-88 - JMP syscall·rawSyscall6(SB) diff --git a/vendor/golang.org/x/sys/cpu/byteorder.go b/vendor/golang.org/x/sys/cpu/byteorder.go deleted file mode 100644 index 271055b..0000000 --- a/vendor/golang.org/x/sys/cpu/byteorder.go +++ /dev/null @@ -1,66 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -import ( - "runtime" -) - -// byteOrder is a subset of encoding/binary.ByteOrder. -type byteOrder interface { - Uint32([]byte) uint32 - Uint64([]byte) uint64 -} - -type littleEndian struct{} -type bigEndian struct{} - -func (littleEndian) Uint32(b []byte) uint32 { - _ = b[3] // bounds check hint to compiler; see golang.org/issue/14808 - return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 -} - -func (littleEndian) Uint64(b []byte) uint64 { - _ = b[7] // bounds check hint to compiler; see golang.org/issue/14808 - return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | - uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 -} - -func (bigEndian) Uint32(b []byte) uint32 { - _ = b[3] // bounds check hint to compiler; see golang.org/issue/14808 - return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 -} - -func (bigEndian) Uint64(b []byte) uint64 { - _ = b[7] // bounds check hint to compiler; see golang.org/issue/14808 - return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | - uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 -} - -// hostByteOrder returns littleEndian on little-endian machines and -// bigEndian on big-endian machines. -func hostByteOrder() byteOrder { - switch runtime.GOARCH { - case "386", "amd64", "amd64p32", - "alpha", - "arm", "arm64", - "loong64", - "mipsle", "mips64le", "mips64p32le", - "nios2", - "ppc64le", - "riscv", "riscv64", - "sh": - return littleEndian{} - case "armbe", "arm64be", - "m68k", - "mips", "mips64", "mips64p32", - "ppc", "ppc64", - "s390", "s390x", - "shbe", - "sparc", "sparc64": - return bigEndian{} - } - panic("unknown architecture") -} diff --git a/vendor/golang.org/x/sys/cpu/cpu.go b/vendor/golang.org/x/sys/cpu/cpu.go deleted file mode 100644 index 83f112c..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu.go +++ /dev/null @@ -1,287 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package cpu implements processor feature detection for -// various CPU architectures. -package cpu - -import ( - "os" - "strings" -) - -// Initialized reports whether the CPU features were initialized. -// -// For some GOOS/GOARCH combinations initialization of the CPU features depends -// on reading an operating specific file, e.g. /proc/self/auxv on linux/arm -// Initialized will report false if reading the file fails. -var Initialized bool - -// CacheLinePad is used to pad structs to avoid false sharing. -type CacheLinePad struct{ _ [cacheLineSize]byte } - -// X86 contains the supported CPU features of the -// current X86/AMD64 platform. If the current platform -// is not X86/AMD64 then all feature flags are false. -// -// X86 is padded to avoid false sharing. Further the HasAVX -// and HasAVX2 are only set if the OS supports XMM and YMM -// registers in addition to the CPUID feature bit being set. -var X86 struct { - _ CacheLinePad - HasAES bool // AES hardware implementation (AES NI) - HasADX bool // Multi-precision add-carry instruction extensions - HasAVX bool // Advanced vector extension - HasAVX2 bool // Advanced vector extension 2 - HasAVX512 bool // Advanced vector extension 512 - HasAVX512F bool // Advanced vector extension 512 Foundation Instructions - HasAVX512CD bool // Advanced vector extension 512 Conflict Detection Instructions - HasAVX512ER bool // Advanced vector extension 512 Exponential and Reciprocal Instructions - HasAVX512PF bool // Advanced vector extension 512 Prefetch Instructions Instructions - HasAVX512VL bool // Advanced vector extension 512 Vector Length Extensions - HasAVX512BW bool // Advanced vector extension 512 Byte and Word Instructions - HasAVX512DQ bool // Advanced vector extension 512 Doubleword and Quadword Instructions - HasAVX512IFMA bool // Advanced vector extension 512 Integer Fused Multiply Add - HasAVX512VBMI bool // Advanced vector extension 512 Vector Byte Manipulation Instructions - HasAVX5124VNNIW bool // Advanced vector extension 512 Vector Neural Network Instructions Word variable precision - HasAVX5124FMAPS bool // Advanced vector extension 512 Fused Multiply Accumulation Packed Single precision - HasAVX512VPOPCNTDQ bool // Advanced vector extension 512 Double and quad word population count instructions - HasAVX512VPCLMULQDQ bool // Advanced vector extension 512 Vector carry-less multiply operations - HasAVX512VNNI bool // Advanced vector extension 512 Vector Neural Network Instructions - HasAVX512GFNI bool // Advanced vector extension 512 Galois field New Instructions - HasAVX512VAES bool // Advanced vector extension 512 Vector AES instructions - HasAVX512VBMI2 bool // Advanced vector extension 512 Vector Byte Manipulation Instructions 2 - HasAVX512BITALG bool // Advanced vector extension 512 Bit Algorithms - HasAVX512BF16 bool // Advanced vector extension 512 BFloat16 Instructions - HasBMI1 bool // Bit manipulation instruction set 1 - HasBMI2 bool // Bit manipulation instruction set 2 - HasCX16 bool // Compare and exchange 16 Bytes - HasERMS bool // Enhanced REP for MOVSB and STOSB - HasFMA bool // Fused-multiply-add instructions - HasOSXSAVE bool // OS supports XSAVE/XRESTOR for saving/restoring XMM registers. - HasPCLMULQDQ bool // PCLMULQDQ instruction - most often used for AES-GCM - HasPOPCNT bool // Hamming weight instruction POPCNT. - HasRDRAND bool // RDRAND instruction (on-chip random number generator) - HasRDSEED bool // RDSEED instruction (on-chip random number generator) - HasSSE2 bool // Streaming SIMD extension 2 (always available on amd64) - HasSSE3 bool // Streaming SIMD extension 3 - HasSSSE3 bool // Supplemental streaming SIMD extension 3 - HasSSE41 bool // Streaming SIMD extension 4 and 4.1 - HasSSE42 bool // Streaming SIMD extension 4 and 4.2 - _ CacheLinePad -} - -// ARM64 contains the supported CPU features of the -// current ARMv8(aarch64) platform. If the current platform -// is not arm64 then all feature flags are false. -var ARM64 struct { - _ CacheLinePad - HasFP bool // Floating-point instruction set (always available) - HasASIMD bool // Advanced SIMD (always available) - HasEVTSTRM bool // Event stream support - HasAES bool // AES hardware implementation - HasPMULL bool // Polynomial multiplication instruction set - HasSHA1 bool // SHA1 hardware implementation - HasSHA2 bool // SHA2 hardware implementation - HasCRC32 bool // CRC32 hardware implementation - HasATOMICS bool // Atomic memory operation instruction set - HasFPHP bool // Half precision floating-point instruction set - HasASIMDHP bool // Advanced SIMD half precision instruction set - HasCPUID bool // CPUID identification scheme registers - HasASIMDRDM bool // Rounding double multiply add/subtract instruction set - HasJSCVT bool // Javascript conversion from floating-point to integer - HasFCMA bool // Floating-point multiplication and addition of complex numbers - HasLRCPC bool // Release Consistent processor consistent support - HasDCPOP bool // Persistent memory support - HasSHA3 bool // SHA3 hardware implementation - HasSM3 bool // SM3 hardware implementation - HasSM4 bool // SM4 hardware implementation - HasASIMDDP bool // Advanced SIMD double precision instruction set - HasSHA512 bool // SHA512 hardware implementation - HasSVE bool // Scalable Vector Extensions - HasASIMDFHM bool // Advanced SIMD multiplication FP16 to FP32 - _ CacheLinePad -} - -// ARM contains the supported CPU features of the current ARM (32-bit) platform. -// All feature flags are false if: -// 1. the current platform is not arm, or -// 2. the current operating system is not Linux. -var ARM struct { - _ CacheLinePad - HasSWP bool // SWP instruction support - HasHALF bool // Half-word load and store support - HasTHUMB bool // ARM Thumb instruction set - Has26BIT bool // Address space limited to 26-bits - HasFASTMUL bool // 32-bit operand, 64-bit result multiplication support - HasFPA bool // Floating point arithmetic support - HasVFP bool // Vector floating point support - HasEDSP bool // DSP Extensions support - HasJAVA bool // Java instruction set - HasIWMMXT bool // Intel Wireless MMX technology support - HasCRUNCH bool // MaverickCrunch context switching and handling - HasTHUMBEE bool // Thumb EE instruction set - HasNEON bool // NEON instruction set - HasVFPv3 bool // Vector floating point version 3 support - HasVFPv3D16 bool // Vector floating point version 3 D8-D15 - HasTLS bool // Thread local storage support - HasVFPv4 bool // Vector floating point version 4 support - HasIDIVA bool // Integer divide instruction support in ARM mode - HasIDIVT bool // Integer divide instruction support in Thumb mode - HasVFPD32 bool // Vector floating point version 3 D15-D31 - HasLPAE bool // Large Physical Address Extensions - HasEVTSTRM bool // Event stream support - HasAES bool // AES hardware implementation - HasPMULL bool // Polynomial multiplication instruction set - HasSHA1 bool // SHA1 hardware implementation - HasSHA2 bool // SHA2 hardware implementation - HasCRC32 bool // CRC32 hardware implementation - _ CacheLinePad -} - -// MIPS64X contains the supported CPU features of the current mips64/mips64le -// platforms. If the current platform is not mips64/mips64le or the current -// operating system is not Linux then all feature flags are false. -var MIPS64X struct { - _ CacheLinePad - HasMSA bool // MIPS SIMD architecture - _ CacheLinePad -} - -// PPC64 contains the supported CPU features of the current ppc64/ppc64le platforms. -// If the current platform is not ppc64/ppc64le then all feature flags are false. -// -// For ppc64/ppc64le, it is safe to check only for ISA level starting on ISA v3.00, -// since there are no optional categories. There are some exceptions that also -// require kernel support to work (DARN, SCV), so there are feature bits for -// those as well. The struct is padded to avoid false sharing. -var PPC64 struct { - _ CacheLinePad - HasDARN bool // Hardware random number generator (requires kernel enablement) - HasSCV bool // Syscall vectored (requires kernel enablement) - IsPOWER8 bool // ISA v2.07 (POWER8) - IsPOWER9 bool // ISA v3.00 (POWER9), implies IsPOWER8 - _ CacheLinePad -} - -// S390X contains the supported CPU features of the current IBM Z -// (s390x) platform. If the current platform is not IBM Z then all -// feature flags are false. -// -// S390X is padded to avoid false sharing. Further HasVX is only set -// if the OS supports vector registers in addition to the STFLE -// feature bit being set. -var S390X struct { - _ CacheLinePad - HasZARCH bool // z/Architecture mode is active [mandatory] - HasSTFLE bool // store facility list extended - HasLDISP bool // long (20-bit) displacements - HasEIMM bool // 32-bit immediates - HasDFP bool // decimal floating point - HasETF3EH bool // ETF-3 enhanced - HasMSA bool // message security assist (CPACF) - HasAES bool // KM-AES{128,192,256} functions - HasAESCBC bool // KMC-AES{128,192,256} functions - HasAESCTR bool // KMCTR-AES{128,192,256} functions - HasAESGCM bool // KMA-GCM-AES{128,192,256} functions - HasGHASH bool // KIMD-GHASH function - HasSHA1 bool // K{I,L}MD-SHA-1 functions - HasSHA256 bool // K{I,L}MD-SHA-256 functions - HasSHA512 bool // K{I,L}MD-SHA-512 functions - HasSHA3 bool // K{I,L}MD-SHA3-{224,256,384,512} and K{I,L}MD-SHAKE-{128,256} functions - HasVX bool // vector facility - HasVXE bool // vector-enhancements facility 1 - _ CacheLinePad -} - -func init() { - archInit() - initOptions() - processOptions() -} - -// options contains the cpu debug options that can be used in GODEBUG. -// Options are arch dependent and are added by the arch specific initOptions functions. -// Features that are mandatory for the specific GOARCH should have the Required field set -// (e.g. SSE2 on amd64). -var options []option - -// Option names should be lower case. e.g. avx instead of AVX. -type option struct { - Name string - Feature *bool - Specified bool // whether feature value was specified in GODEBUG - Enable bool // whether feature should be enabled - Required bool // whether feature is mandatory and can not be disabled -} - -func processOptions() { - env := os.Getenv("GODEBUG") -field: - for env != "" { - field := "" - i := strings.IndexByte(env, ',') - if i < 0 { - field, env = env, "" - } else { - field, env = env[:i], env[i+1:] - } - if len(field) < 4 || field[:4] != "cpu." { - continue - } - i = strings.IndexByte(field, '=') - if i < 0 { - print("GODEBUG sys/cpu: no value specified for \"", field, "\"\n") - continue - } - key, value := field[4:i], field[i+1:] // e.g. "SSE2", "on" - - var enable bool - switch value { - case "on": - enable = true - case "off": - enable = false - default: - print("GODEBUG sys/cpu: value \"", value, "\" not supported for cpu option \"", key, "\"\n") - continue field - } - - if key == "all" { - for i := range options { - options[i].Specified = true - options[i].Enable = enable || options[i].Required - } - continue field - } - - for i := range options { - if options[i].Name == key { - options[i].Specified = true - options[i].Enable = enable - continue field - } - } - - print("GODEBUG sys/cpu: unknown cpu feature \"", key, "\"\n") - } - - for _, o := range options { - if !o.Specified { - continue - } - - if o.Enable && !*o.Feature { - print("GODEBUG sys/cpu: can not enable \"", o.Name, "\", missing CPU support\n") - continue - } - - if !o.Enable && o.Required { - print("GODEBUG sys/cpu: can not disable \"", o.Name, "\", required CPU feature\n") - continue - } - - *o.Feature = o.Enable - } -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_aix.go b/vendor/golang.org/x/sys/cpu/cpu_aix.go deleted file mode 100644 index 8aaeef5..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_aix.go +++ /dev/null @@ -1,34 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build aix -// +build aix - -package cpu - -const ( - // getsystemcfg constants - _SC_IMPL = 2 - _IMPL_POWER8 = 0x10000 - _IMPL_POWER9 = 0x20000 -) - -func archInit() { - impl := getsystemcfg(_SC_IMPL) - if impl&_IMPL_POWER8 != 0 { - PPC64.IsPOWER8 = true - } - if impl&_IMPL_POWER9 != 0 { - PPC64.IsPOWER8 = true - PPC64.IsPOWER9 = true - } - - Initialized = true -} - -func getsystemcfg(label int) (n uint64) { - r0, _ := callgetsystemcfg(label) - n = uint64(r0) - return -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_arm.go b/vendor/golang.org/x/sys/cpu/cpu_arm.go deleted file mode 100644 index 301b752..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_arm.go +++ /dev/null @@ -1,73 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -const cacheLineSize = 32 - -// HWCAP/HWCAP2 bits. -// These are specific to Linux. -const ( - hwcap_SWP = 1 << 0 - hwcap_HALF = 1 << 1 - hwcap_THUMB = 1 << 2 - hwcap_26BIT = 1 << 3 - hwcap_FAST_MULT = 1 << 4 - hwcap_FPA = 1 << 5 - hwcap_VFP = 1 << 6 - hwcap_EDSP = 1 << 7 - hwcap_JAVA = 1 << 8 - hwcap_IWMMXT = 1 << 9 - hwcap_CRUNCH = 1 << 10 - hwcap_THUMBEE = 1 << 11 - hwcap_NEON = 1 << 12 - hwcap_VFPv3 = 1 << 13 - hwcap_VFPv3D16 = 1 << 14 - hwcap_TLS = 1 << 15 - hwcap_VFPv4 = 1 << 16 - hwcap_IDIVA = 1 << 17 - hwcap_IDIVT = 1 << 18 - hwcap_VFPD32 = 1 << 19 - hwcap_LPAE = 1 << 20 - hwcap_EVTSTRM = 1 << 21 - - hwcap2_AES = 1 << 0 - hwcap2_PMULL = 1 << 1 - hwcap2_SHA1 = 1 << 2 - hwcap2_SHA2 = 1 << 3 - hwcap2_CRC32 = 1 << 4 -) - -func initOptions() { - options = []option{ - {Name: "pmull", Feature: &ARM.HasPMULL}, - {Name: "sha1", Feature: &ARM.HasSHA1}, - {Name: "sha2", Feature: &ARM.HasSHA2}, - {Name: "swp", Feature: &ARM.HasSWP}, - {Name: "thumb", Feature: &ARM.HasTHUMB}, - {Name: "thumbee", Feature: &ARM.HasTHUMBEE}, - {Name: "tls", Feature: &ARM.HasTLS}, - {Name: "vfp", Feature: &ARM.HasVFP}, - {Name: "vfpd32", Feature: &ARM.HasVFPD32}, - {Name: "vfpv3", Feature: &ARM.HasVFPv3}, - {Name: "vfpv3d16", Feature: &ARM.HasVFPv3D16}, - {Name: "vfpv4", Feature: &ARM.HasVFPv4}, - {Name: "half", Feature: &ARM.HasHALF}, - {Name: "26bit", Feature: &ARM.Has26BIT}, - {Name: "fastmul", Feature: &ARM.HasFASTMUL}, - {Name: "fpa", Feature: &ARM.HasFPA}, - {Name: "edsp", Feature: &ARM.HasEDSP}, - {Name: "java", Feature: &ARM.HasJAVA}, - {Name: "iwmmxt", Feature: &ARM.HasIWMMXT}, - {Name: "crunch", Feature: &ARM.HasCRUNCH}, - {Name: "neon", Feature: &ARM.HasNEON}, - {Name: "idivt", Feature: &ARM.HasIDIVT}, - {Name: "idiva", Feature: &ARM.HasIDIVA}, - {Name: "lpae", Feature: &ARM.HasLPAE}, - {Name: "evtstrm", Feature: &ARM.HasEVTSTRM}, - {Name: "aes", Feature: &ARM.HasAES}, - {Name: "crc32", Feature: &ARM.HasCRC32}, - } - -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_arm64.go b/vendor/golang.org/x/sys/cpu/cpu_arm64.go deleted file mode 100644 index 87dd5e3..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_arm64.go +++ /dev/null @@ -1,172 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -import "runtime" - -const cacheLineSize = 64 - -func initOptions() { - options = []option{ - {Name: "fp", Feature: &ARM64.HasFP}, - {Name: "asimd", Feature: &ARM64.HasASIMD}, - {Name: "evstrm", Feature: &ARM64.HasEVTSTRM}, - {Name: "aes", Feature: &ARM64.HasAES}, - {Name: "fphp", Feature: &ARM64.HasFPHP}, - {Name: "jscvt", Feature: &ARM64.HasJSCVT}, - {Name: "lrcpc", Feature: &ARM64.HasLRCPC}, - {Name: "pmull", Feature: &ARM64.HasPMULL}, - {Name: "sha1", Feature: &ARM64.HasSHA1}, - {Name: "sha2", Feature: &ARM64.HasSHA2}, - {Name: "sha3", Feature: &ARM64.HasSHA3}, - {Name: "sha512", Feature: &ARM64.HasSHA512}, - {Name: "sm3", Feature: &ARM64.HasSM3}, - {Name: "sm4", Feature: &ARM64.HasSM4}, - {Name: "sve", Feature: &ARM64.HasSVE}, - {Name: "crc32", Feature: &ARM64.HasCRC32}, - {Name: "atomics", Feature: &ARM64.HasATOMICS}, - {Name: "asimdhp", Feature: &ARM64.HasASIMDHP}, - {Name: "cpuid", Feature: &ARM64.HasCPUID}, - {Name: "asimrdm", Feature: &ARM64.HasASIMDRDM}, - {Name: "fcma", Feature: &ARM64.HasFCMA}, - {Name: "dcpop", Feature: &ARM64.HasDCPOP}, - {Name: "asimddp", Feature: &ARM64.HasASIMDDP}, - {Name: "asimdfhm", Feature: &ARM64.HasASIMDFHM}, - } -} - -func archInit() { - switch runtime.GOOS { - case "freebsd": - readARM64Registers() - case "linux", "netbsd": - doinit() - default: - // Most platforms don't seem to allow reading these registers. - // - // OpenBSD: - // See https://golang.org/issue/31746 - setMinimalFeatures() - } -} - -// setMinimalFeatures fakes the minimal ARM64 features expected by -// TestARM64minimalFeatures. -func setMinimalFeatures() { - ARM64.HasASIMD = true - ARM64.HasFP = true -} - -func readARM64Registers() { - Initialized = true - - parseARM64SystemRegisters(getisar0(), getisar1(), getpfr0()) -} - -func parseARM64SystemRegisters(isar0, isar1, pfr0 uint64) { - // ID_AA64ISAR0_EL1 - switch extractBits(isar0, 4, 7) { - case 1: - ARM64.HasAES = true - case 2: - ARM64.HasAES = true - ARM64.HasPMULL = true - } - - switch extractBits(isar0, 8, 11) { - case 1: - ARM64.HasSHA1 = true - } - - switch extractBits(isar0, 12, 15) { - case 1: - ARM64.HasSHA2 = true - case 2: - ARM64.HasSHA2 = true - ARM64.HasSHA512 = true - } - - switch extractBits(isar0, 16, 19) { - case 1: - ARM64.HasCRC32 = true - } - - switch extractBits(isar0, 20, 23) { - case 2: - ARM64.HasATOMICS = true - } - - switch extractBits(isar0, 28, 31) { - case 1: - ARM64.HasASIMDRDM = true - } - - switch extractBits(isar0, 32, 35) { - case 1: - ARM64.HasSHA3 = true - } - - switch extractBits(isar0, 36, 39) { - case 1: - ARM64.HasSM3 = true - } - - switch extractBits(isar0, 40, 43) { - case 1: - ARM64.HasSM4 = true - } - - switch extractBits(isar0, 44, 47) { - case 1: - ARM64.HasASIMDDP = true - } - - // ID_AA64ISAR1_EL1 - switch extractBits(isar1, 0, 3) { - case 1: - ARM64.HasDCPOP = true - } - - switch extractBits(isar1, 12, 15) { - case 1: - ARM64.HasJSCVT = true - } - - switch extractBits(isar1, 16, 19) { - case 1: - ARM64.HasFCMA = true - } - - switch extractBits(isar1, 20, 23) { - case 1: - ARM64.HasLRCPC = true - } - - // ID_AA64PFR0_EL1 - switch extractBits(pfr0, 16, 19) { - case 0: - ARM64.HasFP = true - case 1: - ARM64.HasFP = true - ARM64.HasFPHP = true - } - - switch extractBits(pfr0, 20, 23) { - case 0: - ARM64.HasASIMD = true - case 1: - ARM64.HasASIMD = true - ARM64.HasASIMDHP = true - } - - switch extractBits(pfr0, 32, 35) { - case 1: - ARM64.HasSVE = true - } -} - -func extractBits(data uint64, start, end uint) uint { - return (uint)(data>>start) & ((1 << (end - start + 1)) - 1) -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_arm64.s b/vendor/golang.org/x/sys/cpu/cpu_arm64.s deleted file mode 100644 index c61f95a..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_arm64.s +++ /dev/null @@ -1,32 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc -// +build gc - -#include "textflag.h" - -// func getisar0() uint64 -TEXT ·getisar0(SB),NOSPLIT,$0-8 - // get Instruction Set Attributes 0 into x0 - // mrs x0, ID_AA64ISAR0_EL1 = d5380600 - WORD $0xd5380600 - MOVD R0, ret+0(FP) - RET - -// func getisar1() uint64 -TEXT ·getisar1(SB),NOSPLIT,$0-8 - // get Instruction Set Attributes 1 into x0 - // mrs x0, ID_AA64ISAR1_EL1 = d5380620 - WORD $0xd5380620 - MOVD R0, ret+0(FP) - RET - -// func getpfr0() uint64 -TEXT ·getpfr0(SB),NOSPLIT,$0-8 - // get Processor Feature Register 0 into x0 - // mrs x0, ID_AA64PFR0_EL1 = d5380400 - WORD $0xd5380400 - MOVD R0, ret+0(FP) - RET diff --git a/vendor/golang.org/x/sys/cpu/cpu_gc_arm64.go b/vendor/golang.org/x/sys/cpu/cpu_gc_arm64.go deleted file mode 100644 index ccf542a..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gc_arm64.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc -// +build gc - -package cpu - -func getisar0() uint64 -func getisar1() uint64 -func getpfr0() uint64 diff --git a/vendor/golang.org/x/sys/cpu/cpu_gc_s390x.go b/vendor/golang.org/x/sys/cpu/cpu_gc_s390x.go deleted file mode 100644 index 0af2f24..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gc_s390x.go +++ /dev/null @@ -1,22 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc -// +build gc - -package cpu - -// haveAsmFunctions reports whether the other functions in this file can -// be safely called. -func haveAsmFunctions() bool { return true } - -// The following feature detection functions are defined in cpu_s390x.s. -// They are likely to be expensive to call so the results should be cached. -func stfle() facilityList -func kmQuery() queryResult -func kmcQuery() queryResult -func kmctrQuery() queryResult -func kmaQuery() queryResult -func kimdQuery() queryResult -func klmdQuery() queryResult diff --git a/vendor/golang.org/x/sys/cpu/cpu_gc_x86.go b/vendor/golang.org/x/sys/cpu/cpu_gc_x86.go deleted file mode 100644 index fa7cdb9..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gc_x86.go +++ /dev/null @@ -1,17 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build (386 || amd64 || amd64p32) && gc -// +build 386 amd64 amd64p32 -// +build gc - -package cpu - -// cpuid is implemented in cpu_x86.s for gc compiler -// and in cpu_gccgo.c for gccgo. -func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32) - -// xgetbv with ecx = 0 is implemented in cpu_x86.s for gc compiler -// and in cpu_gccgo.c for gccgo. -func xgetbv() (eax, edx uint32) diff --git a/vendor/golang.org/x/sys/cpu/cpu_gccgo_arm64.go b/vendor/golang.org/x/sys/cpu/cpu_gccgo_arm64.go deleted file mode 100644 index 2aff318..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gccgo_arm64.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gccgo -// +build gccgo - -package cpu - -func getisar0() uint64 { return 0 } -func getisar1() uint64 { return 0 } -func getpfr0() uint64 { return 0 } diff --git a/vendor/golang.org/x/sys/cpu/cpu_gccgo_s390x.go b/vendor/golang.org/x/sys/cpu/cpu_gccgo_s390x.go deleted file mode 100644 index 4bfbda6..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gccgo_s390x.go +++ /dev/null @@ -1,23 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gccgo -// +build gccgo - -package cpu - -// haveAsmFunctions reports whether the other functions in this file can -// be safely called. -func haveAsmFunctions() bool { return false } - -// TODO(mundaym): the following feature detection functions are currently -// stubs. See https://golang.org/cl/162887 for how to fix this. -// They are likely to be expensive to call so the results should be cached. -func stfle() facilityList { panic("not implemented for gccgo") } -func kmQuery() queryResult { panic("not implemented for gccgo") } -func kmcQuery() queryResult { panic("not implemented for gccgo") } -func kmctrQuery() queryResult { panic("not implemented for gccgo") } -func kmaQuery() queryResult { panic("not implemented for gccgo") } -func kimdQuery() queryResult { panic("not implemented for gccgo") } -func klmdQuery() queryResult { panic("not implemented for gccgo") } diff --git a/vendor/golang.org/x/sys/cpu/cpu_gccgo_x86.c b/vendor/golang.org/x/sys/cpu/cpu_gccgo_x86.c deleted file mode 100644 index e363c7d..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gccgo_x86.c +++ /dev/null @@ -1,43 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build 386 amd64 amd64p32 -// +build gccgo - -#include -#include - -// Need to wrap __get_cpuid_count because it's declared as static. -int -gccgoGetCpuidCount(uint32_t leaf, uint32_t subleaf, - uint32_t *eax, uint32_t *ebx, - uint32_t *ecx, uint32_t *edx) -{ - return __get_cpuid_count(leaf, subleaf, eax, ebx, ecx, edx); -} - -// xgetbv reads the contents of an XCR (Extended Control Register) -// specified in the ECX register into registers EDX:EAX. -// Currently, the only supported value for XCR is 0. -// -// TODO: Replace with a better alternative: -// -// #include -// -// #pragma GCC target("xsave") -// -// void gccgoXgetbv(uint32_t *eax, uint32_t *edx) { -// unsigned long long x = _xgetbv(0); -// *eax = x & 0xffffffff; -// *edx = (x >> 32) & 0xffffffff; -// } -// -// Note that _xgetbv is defined starting with GCC 8. -void -gccgoXgetbv(uint32_t *eax, uint32_t *edx) -{ - __asm(" xorl %%ecx, %%ecx\n" - " xgetbv" - : "=a"(*eax), "=d"(*edx)); -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_gccgo_x86.go b/vendor/golang.org/x/sys/cpu/cpu_gccgo_x86.go deleted file mode 100644 index 863d415..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_gccgo_x86.go +++ /dev/null @@ -1,33 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build (386 || amd64 || amd64p32) && gccgo -// +build 386 amd64 amd64p32 -// +build gccgo - -package cpu - -//extern gccgoGetCpuidCount -func gccgoGetCpuidCount(eaxArg, ecxArg uint32, eax, ebx, ecx, edx *uint32) - -func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32) { - var a, b, c, d uint32 - gccgoGetCpuidCount(eaxArg, ecxArg, &a, &b, &c, &d) - return a, b, c, d -} - -//extern gccgoXgetbv -func gccgoXgetbv(eax, edx *uint32) - -func xgetbv() (eax, edx uint32) { - var a, d uint32 - gccgoXgetbv(&a, &d) - return a, d -} - -// gccgo doesn't build on Darwin, per: -// https://github.com/Homebrew/homebrew-core/blob/HEAD/Formula/gcc.rb#L76 -func darwinSupportsAVX512() bool { - return false -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux.go b/vendor/golang.org/x/sys/cpu/cpu_linux.go deleted file mode 100644 index 159a686..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux.go +++ /dev/null @@ -1,16 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !386 && !amd64 && !amd64p32 && !arm64 -// +build !386,!amd64,!amd64p32,!arm64 - -package cpu - -func archInit() { - if err := readHWCAP(); err != nil { - return - } - doinit() - Initialized = true -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux_arm.go b/vendor/golang.org/x/sys/cpu/cpu_linux_arm.go deleted file mode 100644 index 2057006..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux_arm.go +++ /dev/null @@ -1,39 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -func doinit() { - ARM.HasSWP = isSet(hwCap, hwcap_SWP) - ARM.HasHALF = isSet(hwCap, hwcap_HALF) - ARM.HasTHUMB = isSet(hwCap, hwcap_THUMB) - ARM.Has26BIT = isSet(hwCap, hwcap_26BIT) - ARM.HasFASTMUL = isSet(hwCap, hwcap_FAST_MULT) - ARM.HasFPA = isSet(hwCap, hwcap_FPA) - ARM.HasVFP = isSet(hwCap, hwcap_VFP) - ARM.HasEDSP = isSet(hwCap, hwcap_EDSP) - ARM.HasJAVA = isSet(hwCap, hwcap_JAVA) - ARM.HasIWMMXT = isSet(hwCap, hwcap_IWMMXT) - ARM.HasCRUNCH = isSet(hwCap, hwcap_CRUNCH) - ARM.HasTHUMBEE = isSet(hwCap, hwcap_THUMBEE) - ARM.HasNEON = isSet(hwCap, hwcap_NEON) - ARM.HasVFPv3 = isSet(hwCap, hwcap_VFPv3) - ARM.HasVFPv3D16 = isSet(hwCap, hwcap_VFPv3D16) - ARM.HasTLS = isSet(hwCap, hwcap_TLS) - ARM.HasVFPv4 = isSet(hwCap, hwcap_VFPv4) - ARM.HasIDIVA = isSet(hwCap, hwcap_IDIVA) - ARM.HasIDIVT = isSet(hwCap, hwcap_IDIVT) - ARM.HasVFPD32 = isSet(hwCap, hwcap_VFPD32) - ARM.HasLPAE = isSet(hwCap, hwcap_LPAE) - ARM.HasEVTSTRM = isSet(hwCap, hwcap_EVTSTRM) - ARM.HasAES = isSet(hwCap2, hwcap2_AES) - ARM.HasPMULL = isSet(hwCap2, hwcap2_PMULL) - ARM.HasSHA1 = isSet(hwCap2, hwcap2_SHA1) - ARM.HasSHA2 = isSet(hwCap2, hwcap2_SHA2) - ARM.HasCRC32 = isSet(hwCap2, hwcap2_CRC32) -} - -func isSet(hwc uint, value uint) bool { - return hwc&value != 0 -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux_arm64.go b/vendor/golang.org/x/sys/cpu/cpu_linux_arm64.go deleted file mode 100644 index 79a38a0..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux_arm64.go +++ /dev/null @@ -1,71 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -// HWCAP/HWCAP2 bits. These are exposed by Linux. -const ( - hwcap_FP = 1 << 0 - hwcap_ASIMD = 1 << 1 - hwcap_EVTSTRM = 1 << 2 - hwcap_AES = 1 << 3 - hwcap_PMULL = 1 << 4 - hwcap_SHA1 = 1 << 5 - hwcap_SHA2 = 1 << 6 - hwcap_CRC32 = 1 << 7 - hwcap_ATOMICS = 1 << 8 - hwcap_FPHP = 1 << 9 - hwcap_ASIMDHP = 1 << 10 - hwcap_CPUID = 1 << 11 - hwcap_ASIMDRDM = 1 << 12 - hwcap_JSCVT = 1 << 13 - hwcap_FCMA = 1 << 14 - hwcap_LRCPC = 1 << 15 - hwcap_DCPOP = 1 << 16 - hwcap_SHA3 = 1 << 17 - hwcap_SM3 = 1 << 18 - hwcap_SM4 = 1 << 19 - hwcap_ASIMDDP = 1 << 20 - hwcap_SHA512 = 1 << 21 - hwcap_SVE = 1 << 22 - hwcap_ASIMDFHM = 1 << 23 -) - -func doinit() { - if err := readHWCAP(); err != nil { - // failed to read /proc/self/auxv, try reading registers directly - readARM64Registers() - return - } - - // HWCAP feature bits - ARM64.HasFP = isSet(hwCap, hwcap_FP) - ARM64.HasASIMD = isSet(hwCap, hwcap_ASIMD) - ARM64.HasEVTSTRM = isSet(hwCap, hwcap_EVTSTRM) - ARM64.HasAES = isSet(hwCap, hwcap_AES) - ARM64.HasPMULL = isSet(hwCap, hwcap_PMULL) - ARM64.HasSHA1 = isSet(hwCap, hwcap_SHA1) - ARM64.HasSHA2 = isSet(hwCap, hwcap_SHA2) - ARM64.HasCRC32 = isSet(hwCap, hwcap_CRC32) - ARM64.HasATOMICS = isSet(hwCap, hwcap_ATOMICS) - ARM64.HasFPHP = isSet(hwCap, hwcap_FPHP) - ARM64.HasASIMDHP = isSet(hwCap, hwcap_ASIMDHP) - ARM64.HasCPUID = isSet(hwCap, hwcap_CPUID) - ARM64.HasASIMDRDM = isSet(hwCap, hwcap_ASIMDRDM) - ARM64.HasJSCVT = isSet(hwCap, hwcap_JSCVT) - ARM64.HasFCMA = isSet(hwCap, hwcap_FCMA) - ARM64.HasLRCPC = isSet(hwCap, hwcap_LRCPC) - ARM64.HasDCPOP = isSet(hwCap, hwcap_DCPOP) - ARM64.HasSHA3 = isSet(hwCap, hwcap_SHA3) - ARM64.HasSM3 = isSet(hwCap, hwcap_SM3) - ARM64.HasSM4 = isSet(hwCap, hwcap_SM4) - ARM64.HasASIMDDP = isSet(hwCap, hwcap_ASIMDDP) - ARM64.HasSHA512 = isSet(hwCap, hwcap_SHA512) - ARM64.HasSVE = isSet(hwCap, hwcap_SVE) - ARM64.HasASIMDFHM = isSet(hwCap, hwcap_ASIMDFHM) -} - -func isSet(hwc uint, value uint) bool { - return hwc&value != 0 -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux_mips64x.go b/vendor/golang.org/x/sys/cpu/cpu_linux_mips64x.go deleted file mode 100644 index 6000db4..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux_mips64x.go +++ /dev/null @@ -1,24 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build linux && (mips64 || mips64le) -// +build linux -// +build mips64 mips64le - -package cpu - -// HWCAP bits. These are exposed by the Linux kernel 5.4. -const ( - // CPU features - hwcap_MIPS_MSA = 1 << 1 -) - -func doinit() { - // HWCAP feature bits - MIPS64X.HasMSA = isSet(hwCap, hwcap_MIPS_MSA) -} - -func isSet(hwc uint, value uint) bool { - return hwc&value != 0 -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux_noinit.go b/vendor/golang.org/x/sys/cpu/cpu_linux_noinit.go deleted file mode 100644 index f4992b1..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux_noinit.go +++ /dev/null @@ -1,10 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build linux && !arm && !arm64 && !mips64 && !mips64le && !ppc64 && !ppc64le && !s390x -// +build linux,!arm,!arm64,!mips64,!mips64le,!ppc64,!ppc64le,!s390x - -package cpu - -func doinit() {} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux_ppc64x.go b/vendor/golang.org/x/sys/cpu/cpu_linux_ppc64x.go deleted file mode 100644 index 021356d..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux_ppc64x.go +++ /dev/null @@ -1,32 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build linux && (ppc64 || ppc64le) -// +build linux -// +build ppc64 ppc64le - -package cpu - -// HWCAP/HWCAP2 bits. These are exposed by the kernel. -const ( - // ISA Level - _PPC_FEATURE2_ARCH_2_07 = 0x80000000 - _PPC_FEATURE2_ARCH_3_00 = 0x00800000 - - // CPU features - _PPC_FEATURE2_DARN = 0x00200000 - _PPC_FEATURE2_SCV = 0x00100000 -) - -func doinit() { - // HWCAP2 feature bits - PPC64.IsPOWER8 = isSet(hwCap2, _PPC_FEATURE2_ARCH_2_07) - PPC64.IsPOWER9 = isSet(hwCap2, _PPC_FEATURE2_ARCH_3_00) - PPC64.HasDARN = isSet(hwCap2, _PPC_FEATURE2_DARN) - PPC64.HasSCV = isSet(hwCap2, _PPC_FEATURE2_SCV) -} - -func isSet(hwc uint, value uint) bool { - return hwc&value != 0 -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_linux_s390x.go b/vendor/golang.org/x/sys/cpu/cpu_linux_s390x.go deleted file mode 100644 index 1517ac6..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_linux_s390x.go +++ /dev/null @@ -1,40 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -const ( - // bit mask values from /usr/include/bits/hwcap.h - hwcap_ZARCH = 2 - hwcap_STFLE = 4 - hwcap_MSA = 8 - hwcap_LDISP = 16 - hwcap_EIMM = 32 - hwcap_DFP = 64 - hwcap_ETF3EH = 256 - hwcap_VX = 2048 - hwcap_VXE = 8192 -) - -func initS390Xbase() { - // test HWCAP bit vector - has := func(featureMask uint) bool { - return hwCap&featureMask == featureMask - } - - // mandatory - S390X.HasZARCH = has(hwcap_ZARCH) - - // optional - S390X.HasSTFLE = has(hwcap_STFLE) - S390X.HasLDISP = has(hwcap_LDISP) - S390X.HasEIMM = has(hwcap_EIMM) - S390X.HasETF3EH = has(hwcap_ETF3EH) - S390X.HasDFP = has(hwcap_DFP) - S390X.HasMSA = has(hwcap_MSA) - S390X.HasVX = has(hwcap_VX) - if S390X.HasVX { - S390X.HasVXE = has(hwcap_VXE) - } -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_loong64.go b/vendor/golang.org/x/sys/cpu/cpu_loong64.go deleted file mode 100644 index 0f57b05..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_loong64.go +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2022 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build loong64 -// +build loong64 - -package cpu - -const cacheLineSize = 64 - -func initOptions() { -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_mips64x.go b/vendor/golang.org/x/sys/cpu/cpu_mips64x.go deleted file mode 100644 index f4063c6..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_mips64x.go +++ /dev/null @@ -1,16 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build mips64 || mips64le -// +build mips64 mips64le - -package cpu - -const cacheLineSize = 32 - -func initOptions() { - options = []option{ - {Name: "msa", Feature: &MIPS64X.HasMSA}, - } -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_mipsx.go b/vendor/golang.org/x/sys/cpu/cpu_mipsx.go deleted file mode 100644 index 07c4e36..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_mipsx.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build mips || mipsle -// +build mips mipsle - -package cpu - -const cacheLineSize = 32 - -func initOptions() {} diff --git a/vendor/golang.org/x/sys/cpu/cpu_netbsd_arm64.go b/vendor/golang.org/x/sys/cpu/cpu_netbsd_arm64.go deleted file mode 100644 index ebfb3fc..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_netbsd_arm64.go +++ /dev/null @@ -1,173 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -import ( - "syscall" - "unsafe" -) - -// Minimal copy of functionality from x/sys/unix so the cpu package can call -// sysctl without depending on x/sys/unix. - -const ( - _CTL_QUERY = -2 - - _SYSCTL_VERS_1 = 0x1000000 -) - -var _zero uintptr - -func sysctl(mib []int32, old *byte, oldlen *uintptr, new *byte, newlen uintptr) (err error) { - var _p0 unsafe.Pointer - if len(mib) > 0 { - _p0 = unsafe.Pointer(&mib[0]) - } else { - _p0 = unsafe.Pointer(&_zero) - } - _, _, errno := syscall.Syscall6( - syscall.SYS___SYSCTL, - uintptr(_p0), - uintptr(len(mib)), - uintptr(unsafe.Pointer(old)), - uintptr(unsafe.Pointer(oldlen)), - uintptr(unsafe.Pointer(new)), - uintptr(newlen)) - if errno != 0 { - return errno - } - return nil -} - -type sysctlNode struct { - Flags uint32 - Num int32 - Name [32]int8 - Ver uint32 - __rsvd uint32 - Un [16]byte - _sysctl_size [8]byte - _sysctl_func [8]byte - _sysctl_parent [8]byte - _sysctl_desc [8]byte -} - -func sysctlNodes(mib []int32) ([]sysctlNode, error) { - var olen uintptr - - // Get a list of all sysctl nodes below the given MIB by performing - // a sysctl for the given MIB with CTL_QUERY appended. - mib = append(mib, _CTL_QUERY) - qnode := sysctlNode{Flags: _SYSCTL_VERS_1} - qp := (*byte)(unsafe.Pointer(&qnode)) - sz := unsafe.Sizeof(qnode) - if err := sysctl(mib, nil, &olen, qp, sz); err != nil { - return nil, err - } - - // Now that we know the size, get the actual nodes. - nodes := make([]sysctlNode, olen/sz) - np := (*byte)(unsafe.Pointer(&nodes[0])) - if err := sysctl(mib, np, &olen, qp, sz); err != nil { - return nil, err - } - - return nodes, nil -} - -func nametomib(name string) ([]int32, error) { - // Split name into components. - var parts []string - last := 0 - for i := 0; i < len(name); i++ { - if name[i] == '.' { - parts = append(parts, name[last:i]) - last = i + 1 - } - } - parts = append(parts, name[last:]) - - mib := []int32{} - // Discover the nodes and construct the MIB OID. - for partno, part := range parts { - nodes, err := sysctlNodes(mib) - if err != nil { - return nil, err - } - for _, node := range nodes { - n := make([]byte, 0) - for i := range node.Name { - if node.Name[i] != 0 { - n = append(n, byte(node.Name[i])) - } - } - if string(n) == part { - mib = append(mib, int32(node.Num)) - break - } - } - if len(mib) != partno+1 { - return nil, err - } - } - - return mib, nil -} - -// aarch64SysctlCPUID is struct aarch64_sysctl_cpu_id from NetBSD's -type aarch64SysctlCPUID struct { - midr uint64 /* Main ID Register */ - revidr uint64 /* Revision ID Register */ - mpidr uint64 /* Multiprocessor Affinity Register */ - aa64dfr0 uint64 /* A64 Debug Feature Register 0 */ - aa64dfr1 uint64 /* A64 Debug Feature Register 1 */ - aa64isar0 uint64 /* A64 Instruction Set Attribute Register 0 */ - aa64isar1 uint64 /* A64 Instruction Set Attribute Register 1 */ - aa64mmfr0 uint64 /* A64 Memory Model Feature Register 0 */ - aa64mmfr1 uint64 /* A64 Memory Model Feature Register 1 */ - aa64mmfr2 uint64 /* A64 Memory Model Feature Register 2 */ - aa64pfr0 uint64 /* A64 Processor Feature Register 0 */ - aa64pfr1 uint64 /* A64 Processor Feature Register 1 */ - aa64zfr0 uint64 /* A64 SVE Feature ID Register 0 */ - mvfr0 uint32 /* Media and VFP Feature Register 0 */ - mvfr1 uint32 /* Media and VFP Feature Register 1 */ - mvfr2 uint32 /* Media and VFP Feature Register 2 */ - pad uint32 - clidr uint64 /* Cache Level ID Register */ - ctr uint64 /* Cache Type Register */ -} - -func sysctlCPUID(name string) (*aarch64SysctlCPUID, error) { - mib, err := nametomib(name) - if err != nil { - return nil, err - } - - out := aarch64SysctlCPUID{} - n := unsafe.Sizeof(out) - _, _, errno := syscall.Syscall6( - syscall.SYS___SYSCTL, - uintptr(unsafe.Pointer(&mib[0])), - uintptr(len(mib)), - uintptr(unsafe.Pointer(&out)), - uintptr(unsafe.Pointer(&n)), - uintptr(0), - uintptr(0)) - if errno != 0 { - return nil, errno - } - return &out, nil -} - -func doinit() { - cpuid, err := sysctlCPUID("machdep.cpu0.cpu_id") - if err != nil { - setMinimalFeatures() - return - } - parseARM64SystemRegisters(cpuid.aa64isar0, cpuid.aa64isar1, cpuid.aa64pfr0) - - Initialized = true -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_other_arm.go b/vendor/golang.org/x/sys/cpu/cpu_other_arm.go deleted file mode 100644 index d7b4fb4..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_other_arm.go +++ /dev/null @@ -1,10 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !linux && arm -// +build !linux,arm - -package cpu - -func archInit() {} diff --git a/vendor/golang.org/x/sys/cpu/cpu_other_arm64.go b/vendor/golang.org/x/sys/cpu/cpu_other_arm64.go deleted file mode 100644 index f8c484f..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_other_arm64.go +++ /dev/null @@ -1,10 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !linux && !netbsd && arm64 -// +build !linux,!netbsd,arm64 - -package cpu - -func doinit() {} diff --git a/vendor/golang.org/x/sys/cpu/cpu_other_mips64x.go b/vendor/golang.org/x/sys/cpu/cpu_other_mips64x.go deleted file mode 100644 index 0dafe96..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_other_mips64x.go +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build !linux && (mips64 || mips64le) -// +build !linux -// +build mips64 mips64le - -package cpu - -func archInit() { - Initialized = true -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_ppc64x.go b/vendor/golang.org/x/sys/cpu/cpu_ppc64x.go deleted file mode 100644 index 4e8acd1..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_ppc64x.go +++ /dev/null @@ -1,17 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build ppc64 || ppc64le -// +build ppc64 ppc64le - -package cpu - -const cacheLineSize = 128 - -func initOptions() { - options = []option{ - {Name: "darn", Feature: &PPC64.HasDARN}, - {Name: "scv", Feature: &PPC64.HasSCV}, - } -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_riscv64.go b/vendor/golang.org/x/sys/cpu/cpu_riscv64.go deleted file mode 100644 index bd6c128..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_riscv64.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build riscv64 -// +build riscv64 - -package cpu - -const cacheLineSize = 32 - -func initOptions() {} diff --git a/vendor/golang.org/x/sys/cpu/cpu_s390x.go b/vendor/golang.org/x/sys/cpu/cpu_s390x.go deleted file mode 100644 index 5881b88..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_s390x.go +++ /dev/null @@ -1,172 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cpu - -const cacheLineSize = 256 - -func initOptions() { - options = []option{ - {Name: "zarch", Feature: &S390X.HasZARCH, Required: true}, - {Name: "stfle", Feature: &S390X.HasSTFLE, Required: true}, - {Name: "ldisp", Feature: &S390X.HasLDISP, Required: true}, - {Name: "eimm", Feature: &S390X.HasEIMM, Required: true}, - {Name: "dfp", Feature: &S390X.HasDFP}, - {Name: "etf3eh", Feature: &S390X.HasETF3EH}, - {Name: "msa", Feature: &S390X.HasMSA}, - {Name: "aes", Feature: &S390X.HasAES}, - {Name: "aescbc", Feature: &S390X.HasAESCBC}, - {Name: "aesctr", Feature: &S390X.HasAESCTR}, - {Name: "aesgcm", Feature: &S390X.HasAESGCM}, - {Name: "ghash", Feature: &S390X.HasGHASH}, - {Name: "sha1", Feature: &S390X.HasSHA1}, - {Name: "sha256", Feature: &S390X.HasSHA256}, - {Name: "sha3", Feature: &S390X.HasSHA3}, - {Name: "sha512", Feature: &S390X.HasSHA512}, - {Name: "vx", Feature: &S390X.HasVX}, - {Name: "vxe", Feature: &S390X.HasVXE}, - } -} - -// bitIsSet reports whether the bit at index is set. The bit index -// is in big endian order, so bit index 0 is the leftmost bit. -func bitIsSet(bits []uint64, index uint) bool { - return bits[index/64]&((1<<63)>>(index%64)) != 0 -} - -// facility is a bit index for the named facility. -type facility uint8 - -const ( - // mandatory facilities - zarch facility = 1 // z architecture mode is active - stflef facility = 7 // store-facility-list-extended - ldisp facility = 18 // long-displacement - eimm facility = 21 // extended-immediate - - // miscellaneous facilities - dfp facility = 42 // decimal-floating-point - etf3eh facility = 30 // extended-translation 3 enhancement - - // cryptography facilities - msa facility = 17 // message-security-assist - msa3 facility = 76 // message-security-assist extension 3 - msa4 facility = 77 // message-security-assist extension 4 - msa5 facility = 57 // message-security-assist extension 5 - msa8 facility = 146 // message-security-assist extension 8 - msa9 facility = 155 // message-security-assist extension 9 - - // vector facilities - vx facility = 129 // vector facility - vxe facility = 135 // vector-enhancements 1 - vxe2 facility = 148 // vector-enhancements 2 -) - -// facilityList contains the result of an STFLE call. -// Bits are numbered in big endian order so the -// leftmost bit (the MSB) is at index 0. -type facilityList struct { - bits [4]uint64 -} - -// Has reports whether the given facilities are present. -func (s *facilityList) Has(fs ...facility) bool { - if len(fs) == 0 { - panic("no facility bits provided") - } - for _, f := range fs { - if !bitIsSet(s.bits[:], uint(f)) { - return false - } - } - return true -} - -// function is the code for the named cryptographic function. -type function uint8 - -const ( - // KM{,A,C,CTR} function codes - aes128 function = 18 // AES-128 - aes192 function = 19 // AES-192 - aes256 function = 20 // AES-256 - - // K{I,L}MD function codes - sha1 function = 1 // SHA-1 - sha256 function = 2 // SHA-256 - sha512 function = 3 // SHA-512 - sha3_224 function = 32 // SHA3-224 - sha3_256 function = 33 // SHA3-256 - sha3_384 function = 34 // SHA3-384 - sha3_512 function = 35 // SHA3-512 - shake128 function = 36 // SHAKE-128 - shake256 function = 37 // SHAKE-256 - - // KLMD function codes - ghash function = 65 // GHASH -) - -// queryResult contains the result of a Query function -// call. Bits are numbered in big endian order so the -// leftmost bit (the MSB) is at index 0. -type queryResult struct { - bits [2]uint64 -} - -// Has reports whether the given functions are present. -func (q *queryResult) Has(fns ...function) bool { - if len(fns) == 0 { - panic("no function codes provided") - } - for _, f := range fns { - if !bitIsSet(q.bits[:], uint(f)) { - return false - } - } - return true -} - -func doinit() { - initS390Xbase() - - // We need implementations of stfle, km and so on - // to detect cryptographic features. - if !haveAsmFunctions() { - return - } - - // optional cryptographic functions - if S390X.HasMSA { - aes := []function{aes128, aes192, aes256} - - // cipher message - km, kmc := kmQuery(), kmcQuery() - S390X.HasAES = km.Has(aes...) - S390X.HasAESCBC = kmc.Has(aes...) - if S390X.HasSTFLE { - facilities := stfle() - if facilities.Has(msa4) { - kmctr := kmctrQuery() - S390X.HasAESCTR = kmctr.Has(aes...) - } - if facilities.Has(msa8) { - kma := kmaQuery() - S390X.HasAESGCM = kma.Has(aes...) - } - } - - // compute message digest - kimd := kimdQuery() // intermediate (no padding) - klmd := klmdQuery() // last (padding) - S390X.HasSHA1 = kimd.Has(sha1) && klmd.Has(sha1) - S390X.HasSHA256 = kimd.Has(sha256) && klmd.Has(sha256) - S390X.HasSHA512 = kimd.Has(sha512) && klmd.Has(sha512) - S390X.HasGHASH = kimd.Has(ghash) // KLMD-GHASH does not exist - sha3 := []function{ - sha3_224, sha3_256, sha3_384, sha3_512, - shake128, shake256, - } - S390X.HasSHA3 = kimd.Has(sha3...) && klmd.Has(sha3...) - } -} diff --git a/vendor/golang.org/x/sys/cpu/cpu_s390x.s b/vendor/golang.org/x/sys/cpu/cpu_s390x.s deleted file mode 100644 index 96f81e2..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_s390x.s +++ /dev/null @@ -1,58 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc -// +build gc - -#include "textflag.h" - -// func stfle() facilityList -TEXT ·stfle(SB), NOSPLIT|NOFRAME, $0-32 - MOVD $ret+0(FP), R1 - MOVD $3, R0 // last doubleword index to store - XC $32, (R1), (R1) // clear 4 doublewords (32 bytes) - WORD $0xb2b01000 // store facility list extended (STFLE) - RET - -// func kmQuery() queryResult -TEXT ·kmQuery(SB), NOSPLIT|NOFRAME, $0-16 - MOVD $0, R0 // set function code to 0 (KM-Query) - MOVD $ret+0(FP), R1 // address of 16-byte return value - WORD $0xB92E0024 // cipher message (KM) - RET - -// func kmcQuery() queryResult -TEXT ·kmcQuery(SB), NOSPLIT|NOFRAME, $0-16 - MOVD $0, R0 // set function code to 0 (KMC-Query) - MOVD $ret+0(FP), R1 // address of 16-byte return value - WORD $0xB92F0024 // cipher message with chaining (KMC) - RET - -// func kmctrQuery() queryResult -TEXT ·kmctrQuery(SB), NOSPLIT|NOFRAME, $0-16 - MOVD $0, R0 // set function code to 0 (KMCTR-Query) - MOVD $ret+0(FP), R1 // address of 16-byte return value - WORD $0xB92D4024 // cipher message with counter (KMCTR) - RET - -// func kmaQuery() queryResult -TEXT ·kmaQuery(SB), NOSPLIT|NOFRAME, $0-16 - MOVD $0, R0 // set function code to 0 (KMA-Query) - MOVD $ret+0(FP), R1 // address of 16-byte return value - WORD $0xb9296024 // cipher message with authentication (KMA) - RET - -// func kimdQuery() queryResult -TEXT ·kimdQuery(SB), NOSPLIT|NOFRAME, $0-16 - MOVD $0, R0 // set function code to 0 (KIMD-Query) - MOVD $ret+0(FP), R1 // address of 16-byte return value - WORD $0xB93E0024 // compute intermediate message digest (KIMD) - RET - -// func klmdQuery() queryResult -TEXT ·klmdQuery(SB), NOSPLIT|NOFRAME, $0-16 - MOVD $0, R0 // set function code to 0 (KLMD-Query) - MOVD $ret+0(FP), R1 // address of 16-byte return value - WORD $0xB93F0024 // compute last message digest (KLMD) - RET diff --git a/vendor/golang.org/x/sys/cpu/cpu_wasm.go b/vendor/golang.org/x/sys/cpu/cpu_wasm.go deleted file mode 100644 index 7747d88..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_wasm.go +++ /dev/null @@ -1,18 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build wasm -// +build wasm - -package cpu - -// We're compiling the cpu package for an unknown (software-abstracted) CPU. -// Make CacheLinePad an empty struct and hope that the usual struct alignment -// rules are good enough. - -const cacheLineSize = 0 - -func initOptions() {} - -func archInit() {} diff --git a/vendor/golang.org/x/sys/cpu/cpu_x86.go b/vendor/golang.org/x/sys/cpu/cpu_x86.go deleted file mode 100644 index f5aacfc..0000000 --- a/vendor/golang.org/x/sys/cpu/cpu_x86.go +++ /dev/null @@ -1,145 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build 386 || amd64 || amd64p32 -// +build 386 amd64 amd64p32 - -package cpu - -import "runtime" - -const cacheLineSize = 64 - -func initOptions() { - options = []option{ - {Name: "adx", Feature: &X86.HasADX}, - {Name: "aes", Feature: &X86.HasAES}, - {Name: "avx", Feature: &X86.HasAVX}, - {Name: "avx2", Feature: &X86.HasAVX2}, - {Name: "avx512", Feature: &X86.HasAVX512}, - {Name: "avx512f", Feature: &X86.HasAVX512F}, - {Name: "avx512cd", Feature: &X86.HasAVX512CD}, - {Name: "avx512er", Feature: &X86.HasAVX512ER}, - {Name: "avx512pf", Feature: &X86.HasAVX512PF}, - {Name: "avx512vl", Feature: &X86.HasAVX512VL}, - {Name: "avx512bw", Feature: &X86.HasAVX512BW}, - {Name: "avx512dq", Feature: &X86.HasAVX512DQ}, - {Name: "avx512ifma", Feature: &X86.HasAVX512IFMA}, - {Name: "avx512vbmi", Feature: &X86.HasAVX512VBMI}, - {Name: "avx512vnniw", Feature: &X86.HasAVX5124VNNIW}, - {Name: "avx5124fmaps", Feature: &X86.HasAVX5124FMAPS}, - {Name: "avx512vpopcntdq", Feature: &X86.HasAVX512VPOPCNTDQ}, - {Name: "avx512vpclmulqdq", Feature: &X86.HasAVX512VPCLMULQDQ}, - {Name: "avx512vnni", Feature: &X86.HasAVX512VNNI}, - {Name: "avx512gfni", Feature: &X86.HasAVX512GFNI}, - {Name: "avx512vaes", Feature: &X86.HasAVX512VAES}, - {Name: "avx512vbmi2", Feature: &X86.HasAVX512VBMI2}, - {Name: "avx512bitalg", Feature: &X86.HasAVX512BITALG}, - {Name: "avx512bf16", Feature: &X86.HasAVX512BF16}, - {Name: "bmi1", Feature: &X86.HasBMI1}, - {Name: "bmi2", Feature: &X86.HasBMI2}, - {Name: "cx16", Feature: &X86.HasCX16}, - {Name: "erms", Feature: &X86.HasERMS}, - {Name: "fma", Feature: &X86.HasFMA}, - {Name: "osxsave", Feature: &X86.HasOSXSAVE}, - {Name: "pclmulqdq", Feature: &X86.HasPCLMULQDQ}, - {Name: "popcnt", Feature: &X86.HasPOPCNT}, - {Name: "rdrand", Feature: &X86.HasRDRAND}, - {Name: "rdseed", Feature: &X86.HasRDSEED}, - {Name: "sse3", Feature: &X86.HasSSE3}, - {Name: "sse41", Feature: &X86.HasSSE41}, - {Name: "sse42", Feature: &X86.HasSSE42}, - {Name: "ssse3", Feature: &X86.HasSSSE3}, - - // These capabilities should always be enabled on amd64: - {Name: "sse2", Feature: &X86.HasSSE2, Required: runtime.GOARCH == "amd64"}, - } -} - -func archInit() { - - Initialized = true - - maxID, _, _, _ := cpuid(0, 0) - - if maxID < 1 { - return - } - - _, _, ecx1, edx1 := cpuid(1, 0) - X86.HasSSE2 = isSet(26, edx1) - - X86.HasSSE3 = isSet(0, ecx1) - X86.HasPCLMULQDQ = isSet(1, ecx1) - X86.HasSSSE3 = isSet(9, ecx1) - X86.HasFMA = isSet(12, ecx1) - X86.HasCX16 = isSet(13, ecx1) - X86.HasSSE41 = isSet(19, ecx1) - X86.HasSSE42 = isSet(20, ecx1) - X86.HasPOPCNT = isSet(23, ecx1) - X86.HasAES = isSet(25, ecx1) - X86.HasOSXSAVE = isSet(27, ecx1) - X86.HasRDRAND = isSet(30, ecx1) - - var osSupportsAVX, osSupportsAVX512 bool - // For XGETBV, OSXSAVE bit is required and sufficient. - if X86.HasOSXSAVE { - eax, _ := xgetbv() - // Check if XMM and YMM registers have OS support. - osSupportsAVX = isSet(1, eax) && isSet(2, eax) - - if runtime.GOOS == "darwin" { - // Darwin doesn't save/restore AVX-512 mask registers correctly across signal handlers. - // Since users can't rely on mask register contents, let's not advertise AVX-512 support. - // See issue 49233. - osSupportsAVX512 = false - } else { - // Check if OPMASK and ZMM registers have OS support. - osSupportsAVX512 = osSupportsAVX && isSet(5, eax) && isSet(6, eax) && isSet(7, eax) - } - } - - X86.HasAVX = isSet(28, ecx1) && osSupportsAVX - - if maxID < 7 { - return - } - - _, ebx7, ecx7, edx7 := cpuid(7, 0) - X86.HasBMI1 = isSet(3, ebx7) - X86.HasAVX2 = isSet(5, ebx7) && osSupportsAVX - X86.HasBMI2 = isSet(8, ebx7) - X86.HasERMS = isSet(9, ebx7) - X86.HasRDSEED = isSet(18, ebx7) - X86.HasADX = isSet(19, ebx7) - - X86.HasAVX512 = isSet(16, ebx7) && osSupportsAVX512 // Because avx-512 foundation is the core required extension - if X86.HasAVX512 { - X86.HasAVX512F = true - X86.HasAVX512CD = isSet(28, ebx7) - X86.HasAVX512ER = isSet(27, ebx7) - X86.HasAVX512PF = isSet(26, ebx7) - X86.HasAVX512VL = isSet(31, ebx7) - X86.HasAVX512BW = isSet(30, ebx7) - X86.HasAVX512DQ = isSet(17, ebx7) - X86.HasAVX512IFMA = isSet(21, ebx7) - X86.HasAVX512VBMI = isSet(1, ecx7) - X86.HasAVX5124VNNIW = isSet(2, edx7) - X86.HasAVX5124FMAPS = isSet(3, edx7) - X86.HasAVX512VPOPCNTDQ = isSet(14, ecx7) - X86.HasAVX512VPCLMULQDQ = isSet(10, ecx7) - X86.HasAVX512VNNI = isSet(11, ecx7) - X86.HasAVX512GFNI = isSet(8, ecx7) - X86.HasAVX512VAES = isSet(9, ecx7) - X86.HasAVX512VBMI2 = isSet(6, ecx7) - X86.HasAVX512BITALG = isSet(12, ecx7) - - eax71, _, _, _ := cpuid(7, 1) - X86.HasAVX512BF16 = isSet(5, eax71) - } -} - -func isSet(bitpos uint, value uint32) bool { - return value&(1<> 63)) -) - -// For those platforms don't have a 'cpuid' equivalent we use HWCAP/HWCAP2 -// These are initialized in cpu_$GOARCH.go -// and should not be changed after they are initialized. -var hwCap uint -var hwCap2 uint - -func readHWCAP() error { - buf, err := ioutil.ReadFile(procAuxv) - if err != nil { - // e.g. on android /proc/self/auxv is not accessible, so silently - // ignore the error and leave Initialized = false. On some - // architectures (e.g. arm64) doinit() implements a fallback - // readout and will set Initialized = true again. - return err - } - bo := hostByteOrder() - for len(buf) >= 2*(uintSize/8) { - var tag, val uint - switch uintSize { - case 32: - tag = uint(bo.Uint32(buf[0:])) - val = uint(bo.Uint32(buf[4:])) - buf = buf[8:] - case 64: - tag = uint(bo.Uint64(buf[0:])) - val = uint(bo.Uint64(buf[8:])) - buf = buf[16:] - } - switch tag { - case _AT_HWCAP: - hwCap = val - case _AT_HWCAP2: - hwCap2 = val - } - } - return nil -} diff --git a/vendor/golang.org/x/sys/cpu/syscall_aix_gccgo.go b/vendor/golang.org/x/sys/cpu/syscall_aix_gccgo.go deleted file mode 100644 index 9613415..0000000 --- a/vendor/golang.org/x/sys/cpu/syscall_aix_gccgo.go +++ /dev/null @@ -1,27 +0,0 @@ -// Copyright 2020 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Recreate a getsystemcfg syscall handler instead of -// using the one provided by x/sys/unix to avoid having -// the dependency between them. (See golang.org/issue/32102) -// Moreover, this file will be used during the building of -// gccgo's libgo and thus must not used a CGo method. - -//go:build aix && gccgo -// +build aix,gccgo - -package cpu - -import ( - "syscall" -) - -//extern getsystemcfg -func gccgoGetsystemcfg(label uint32) (r uint64) - -func callgetsystemcfg(label int) (r1 uintptr, e1 syscall.Errno) { - r1 = uintptr(gccgoGetsystemcfg(uint32(label))) - e1 = syscall.GetErrno() - return -} diff --git a/vendor/golang.org/x/sys/cpu/syscall_aix_ppc64_gc.go b/vendor/golang.org/x/sys/cpu/syscall_aix_ppc64_gc.go deleted file mode 100644 index 904be42..0000000 --- a/vendor/golang.org/x/sys/cpu/syscall_aix_ppc64_gc.go +++ /dev/null @@ -1,36 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Minimal copy of x/sys/unix so the cpu package can make a -// system call on AIX without depending on x/sys/unix. -// (See golang.org/issue/32102) - -//go:build aix && ppc64 && gc -// +build aix,ppc64,gc - -package cpu - -import ( - "syscall" - "unsafe" -) - -//go:cgo_import_dynamic libc_getsystemcfg getsystemcfg "libc.a/shr_64.o" - -//go:linkname libc_getsystemcfg libc_getsystemcfg - -type syscallFunc uintptr - -var libc_getsystemcfg syscallFunc - -type errno = syscall.Errno - -// Implemented in runtime/syscall_aix.go. -func rawSyscall6(trap, nargs, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2 uintptr, err errno) -func syscall6(trap, nargs, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2 uintptr, err errno) - -func callgetsystemcfg(label int) (r1 uintptr, e1 errno) { - r1, _, e1 = syscall6(uintptr(unsafe.Pointer(&libc_getsystemcfg)), 1, uintptr(label), 0, 0, 0, 0, 0) - return -} diff --git a/vendor/modules.txt b/vendor/modules.txt deleted file mode 100644 index be5ef87..0000000 --- a/vendor/modules.txt +++ /dev/null @@ -1,55 +0,0 @@ -# github.com/btcsuite/btcd v0.22.1 -## explicit; go 1.17 -github.com/btcsuite/btcd/btcec -github.com/btcsuite/btcd/chaincfg -github.com/btcsuite/btcd/wire -# github.com/btcsuite/btcd/btcec/v2 v2.2.0 -## explicit; go 1.17 -github.com/btcsuite/btcd/btcec/v2 -github.com/btcsuite/btcd/btcec/v2/ecdsa -# github.com/btcsuite/btcd/chaincfg/chainhash v1.0.1 -## explicit; go 1.17 -github.com/btcsuite/btcd/chaincfg/chainhash -# github.com/btcsuite/btcutil v1.0.3-0.20201208143702-a53e38424cce -## explicit; go 1.14 -github.com/btcsuite/btcutil -github.com/btcsuite/btcutil/base58 -github.com/btcsuite/btcutil/bech32 -github.com/btcsuite/btcutil/hdkeychain -# github.com/davecgh/go-spew v1.1.1 -## explicit -github.com/davecgh/go-spew/spew -# github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1 -## explicit; go 1.16 -github.com/decred/dcrd/dcrec/secp256k1/v4 -github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa -# github.com/ethereum/go-ethereum v1.10.17 -## explicit; go 1.15 -github.com/ethereum/go-ethereum -github.com/ethereum/go-ethereum/accounts -github.com/ethereum/go-ethereum/common -github.com/ethereum/go-ethereum/common/hexutil -github.com/ethereum/go-ethereum/common/math -github.com/ethereum/go-ethereum/common/mclock -github.com/ethereum/go-ethereum/core/types -github.com/ethereum/go-ethereum/crypto -github.com/ethereum/go-ethereum/crypto/secp256k1 -github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1/include -github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1/src -github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1/src/modules/recovery -github.com/ethereum/go-ethereum/event -github.com/ethereum/go-ethereum/params -github.com/ethereum/go-ethereum/rlp -github.com/ethereum/go-ethereum/rlp/internal/rlpstruct -# github.com/tyler-smith/go-bip39 v1.1.0 -## explicit; go 1.14 -github.com/tyler-smith/go-bip39 -github.com/tyler-smith/go-bip39/wordlists -# golang.org/x/crypto v0.0.0-20220518034528-6f7dac969898 -## explicit; go 1.17 -golang.org/x/crypto/pbkdf2 -golang.org/x/crypto/ripemd160 -golang.org/x/crypto/sha3 -# golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a -## explicit; go 1.17 -golang.org/x/sys/cpu