Skip to content

Latest commit

 

History

History
631 lines (539 loc) · 81.3 KB

README.md

File metadata and controls

631 lines (539 loc) · 81.3 KB

FluidX3D

The fastest and most memory efficient lattice Boltzmann CFD software, running on all GPUs via OpenCL. Free for non-commercial use.


(click on images to show videos on YouTube)

Update History
  • v1.0 (04.08.2022)
    • initial release
  • v1.1 (29.09.2022)
    • added solid voxelization on GPU (slow algorithm)
    • added tool to print current camera position (key_H)
    • minor bug fix (workaround for Intel iGPU driver bug with triangle rendering)
  • v1.2 (24.10.2022)
    • added functions to compute force/torque on objects
    • added function to translate Mesh
    • added Stokes drag validation setup
  • v1.3 (10.11.2022)
    • added unit conversion functions for torque
    • FORCE_FIELD and VOLUME_FORCE can now be used independently
    • minor bug fix (workaround for AMD legacy driver bug with binary number literals)
  • v1.4 (14.12.2022)
    • complete rewrite of C++ graphics library to minimize API dependencies
    • added interactive graphics mode on Linux with X11
    • fixed streamline visualization bug in 2D
  • v2.0 (09.01.2023)
    • added (cross-vendor) multi-GPU support on a single node (PC/laptop/server)
  • v2.1 (15.01.2023)
    • made solid voxelization on GPU lightning fast (new algorithm, from minutes to milliseconds)
  • v2.2 (20.01.2023)
    • added option to voxelize moving/rotating geometry on GPU, with automatic velocity initialization for each grid point based on center of rotation, linear velocity and rotational velocity
    • cells that are converted from solid->fluid during re-voxelization now have their DDFs properly initialized
    • added option to not auto-scale mesh during read_stl(...), with negative size parameter
    • added kernel for solid boundary rendering with marching-cubes
  • v2.3 (30.01.2023)
    • added particles with immersed-boundary method (either passive or 2-way-coupled, only supported with single-GPU)
    • minor optimization to GPU voxelization algorithm (workgroup threads outside mesh bounding-box return after ray-mesh intersections have been found)
    • displayed GPU memory allocation size is now fully accurate
    • fixed bug in write_line() function in src/utilities.hpp
    • removed .exe file extension for Linux/macOS
  • v2.4 (11.03.2023)
    • added a help menu with key H that shows keyboard/mouse controls, visualization settings and simulation stats
    • improvements to keyboard/mouse control (+/- for zoom, mouseclick frees/locks cursor)
    • added suggestion of largest possible grid resolution if resolution is set larger than memory allows
    • minor optimizations in multi-GPU communication (insignificant performance difference)
    • fixed bug in temperature equilibrium function for temperature extension
    • fixed erroneous double literal for Intel iGPUs in skybox color functions
    • fixed bug in make.sh where multi-GPU device IDs would not get forwarded to the executable
    • minor bug fixes in graphics engine (free cursor not centered during rotation, labels in VR mode)
    • fixed bug in LBM::voxelize_stl() size parameter standard initialization
  • v2.5 (11.04.2023)
    • implemented light absorption in fluid for raytracing graphics (no performance impact)
    • improved raytracing framerate when camera is inside fluid
    • fixed skybox pole flickering artifacts
    • fixed bug where moving objects during re-voxelization would leave an erroneous trail of solid grid cells behind
  • v2.6 (16.04.2023)
    • patched OpenCL issues of Intel Arc GPUs: now VRAM allocations >4GB are possible and correct VRAM capacity is reported
  • v2.7 (29.05.2023)
    • added slice visualization (key 2 / key 3 modes, then switch through slice modes with key T, move slice with keys Q/E)
    • made flag wireframe / solid surface visualization kernels toggleable with key 1
    • added surface pressure visualization (key 1 when FORCE_FIELD is enabled and lbm.calculate_force_on_boundaries(); is called)
    • added binary .vtk export function for meshes with lbm.write_mesh_to_vtk(Mesh* mesh);
    • added time_step_multiplicator for integrate_particles() function in PARTICLES extension
    • made correction of wrong memory reporting on Intel Arc more robust
    • fixed bug in write_file() template functions
    • reverted back to separate cl::Context for each OpenCL device, as the shared Context otherwise would allocate extra VRAM on all other unused Nvidia GPUs
    • removed Debug and x86 configurations from Visual Studio solution file (one less complication for compiling)
    • fixed bug that particles could get too close to walls and get stuck, or leave the fluid phase (added boundary force)
  • v2.8 (24.06.2023)
    • finally added more documentation
    • cleaned up all sample setups in setup.cpp for more beginner-friendliness, and added required extensions in defines.hpp as comments to all setups
    • improved loading of composite .stl geometries, by adding an option to omit automatic mesh repositioning, added more functionality to Mesh struct in utilities.hpp
    • added uint3 resolution(float3 box_aspect_ratio, uint memory) function to compute simulation box resolution based on box aspect ratio and VRAM occupation in MB
    • added bool lbm.graphics.next_frame(...) function to export images for a specified video length in the main_setup compute loop
    • added VIS_... macros to ease setting visualization modes in headless graphics mode in lbm.graphics.visualization_modes
    • simulation box dimensions are now automatically made equally divisible by domains for multi-GPU simulations
    • fixed Info/Warning/Error message formatting for loading files and made Info/Warning/Error message labels colored
    • added Ahmed body setup as an example on how body forces and drag coefficient are computed
    • added Cessna 172 and Bell 222 setups to showcase loading composite .stl geometries and revoxelization of moving parts
    • added optional semi-transparent rendering mode (#define GRAPHICS_TRANSPARENCY 0.7f in defines.hpp)
    • fixed flickering of streamline visualization in interactive graphics
    • improved smooth positioning of streamlines in slice mode
    • fixed bug where mass and massex in SURFACE extension were also allocated in CPU RAM (not required)
    • fixed bug in Q-criterion rendering of halo data in multi-GPU mode, reduced gap width between domains
    • removed shared memory optimization from mesh voxelization kernel, as it crashes on Nvidia GPUs with new GPU drivers and is incompatible with old OpenCL 1.0 GPUs
    • fixed raytracing attenuation color when no surface is at the simulation box walls with periodic boundaries
  • v2.9 (31.07.2023)
    • added cross-platform parallel_for implementation in utilities.hpp using std::threads
    • significantly (>4x) faster simulation startup with multithreaded geometry initialization and sanity checks
    • faster calculate_force_on_object() and calculate_torque_on_object() functions with multithreading
    • added total runtime and LBM runtime to lbm.write_status()
    • fixed bug in voxelization ray direction for re-voxelizing rotating objects
    • fixed bug in Mesh::get_bounding_box_size()
    • fixed bug in print_message() function in utilities.hpp

How to get started?

Read the FluidX3D Documentation!

Compute Features - Getting the Memory Problem under Control

  • CFD model: lattice Boltzmann method (LBM)
    • streaming (part 2/2)

      f0temp(x,t) = f0(x, t)
      fitemp(x,t) = f(t%2 ? i : (i%2 ? i+1 : i-1))(i%2 ? x : x-ei, t)   for   i ∈ [1, q-1]

    • collision

      ρ(x,t) = (Σi fitemp(x,t)) + 1

      u(x,t) = 1ρ(x,t) Σi ci fitemp(x,t)

      fieq-shifted(x,t) = wi ρ · ((u°ci)2(2c4) - (u°u)(2c2) + (u°ci)c2) + wi (ρ-1)

      fitemp(x, tt) = fitemp(x,t) + Ωi(fitemp(x,t), fieq-shifted(x,t), τ)

    • streaming (part 1/2)

      f0(x, tt) = f0temp(x, tt)
      f(t%2 ? (i%2 ? i+1 : i-1) : i)(i%2 ? x+ei : x, tt) = fitemp(x, tt)   for   i ∈ [1, q-1]

    • velocity sets: D2Q9, D3Q15, D3Q19 (default), D3Q27
    • collision operators: single-relaxation-time (SRT/BGK) (default), two-relaxation-time (TRT)
    • DDF-shifting and other algebraic optimization to minimize round-off error
  • optimized to minimize VRAM footprint to 1/6 of other LBM codes
    • traditional LBM (D3Q19) with FP64 requires ~344 Bytes/cell

      • 🟧🟧🟧🟧🟧🟧🟧🟧🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟨🟨🟨🟨🟨🟨🟨🟨🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
        (density 🟧, velocity 🟦, flags 🟨, 2 copies of DDFs 🟩/🟥; each square = 1 Byte)
      • allows for 3 Million cells per 1 GB VRAM
    • FluidX3D (D3Q19) requires only 55 Bytes/cell with Esoteric-Pull+FP16

      • 🟧🟧🟧🟧🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟨🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩
        (density 🟧, velocity 🟦, flags 🟨, DDFs 🟩; each square = 1 Byte)

      • allows for 19 Million cells per 1 GB VRAM

      • in-place streaming with Esoteric-Pull: eliminates redundant copy B of density distribution functions (DDFs) in memory; almost cuts memory demand in half and slightly increases performance due to implicit bounce-back boundaries; offers optimal memory access patterns for single-cell in-place streaming

      • decoupled arithmetic precision (FP32) and memory precision (FP32 or FP16S or FP16C): all arithmetic is done in FP32 for compatibility on all hardware, but DDFs in memory can be compressed to FP16S or FP16C: almost cuts memory demand in half again and almost doubles performance, without impacting overall accuracy for most setups

      • only 8 flag bits per lattice point (can be used independently / at the same time)
        • TYPE_S (stationary or moving) solid boundaries
        • TYPE_E equilibrium boundaries (inflow/outflow)
        • TYPE_T temperature boundaries
        • TYPE_F free surface (fluid)
        • TYPE_I free surface (interface)
        • TYPE_G free surface (gas)
        • TYPE_X remaining for custom use or further extensions
        • TYPE_Y remaining for custom use or further extensions
    • large cost saving: comparison of maximum single-GPU grid resolution for D3Q19 LBM

      GPU VRAM capacity 1 GB 2 GB 3 GB 4 GB 6 GB 8 GB 10 GB 11 GB 12 GB 16 GB 20 GB 24 GB 32 GB 40 GB 48 GB 64 GB 80 GB 94 GB 128 GB 192 GB 256 GB
      approximate GPU price $25
      GT 210
      $25
      GTX 950
      $12
      GTX 1060
      $50
      GT 730
      $35
      GTX 1060
      $70
      RX 470
      $500
      RTX 3080
      $240
      GTX 1080 Ti
      $75
      Tesla M40
      $75
      Instinct MI25
      $900
      RX 7900 XT
      $205
      Tesla P40
      $600
      Instinct MI60
      $5500
      A100
      $2400
      RTX 8000
      $10k
      Instinct MI210
      $11k
      A100
      >$40k
      H100 NVL
      ?
      GPU Max 1550
      - -
      traditional LBM (FP64) 144³ 182³ 208³ 230³ 262³ 288³ 312³ 322³ 330³ 364³ 392³ 418³ 460³ 494³ 526³ 578³ 624³ 658³ 730³ 836³ 920³
      FluidX3D (FP32/FP32) 224³ 282³ 322³ 354³ 406³ 448³ 482³ 498³ 512³ 564³ 608³ 646³ 710³ 766³ 814³ 896³ 966³ 1018³ 1130³ 1292³ 1422³
      FluidX3D (FP32/FP16) 266³ 336³ 384³ 424³ 484³ 534³ 574³ 594³ 610³ 672³ 724³ 770³ 848³ 912³ 970³ 1068³ 1150³ 1214³ 1346³ 1540³ 1624³
  • cross-vendor multi-GPU support on a single PC/laptop/server
    • domain decomposition allows pooling VRAM from multiple GPUs for much larger grid resolution
    • each domain (GPU) can hold up to 4.29 billion (2³², 1624³) lattice points (225 GB memory)
    • GPUs don't have to be identical (not even from the same vendor), but similar VRAM capacity/bandwidth is recommended
    • domain communication architecture (simplified)
      ++   .-----------------------------------------------------------------.   ++
      ++   |                              GPU 0                              |   ++
      ++   |                          LBM Domain 0                           |   ++
      ++   '-----------------------------------------------------------------'   ++
      ++              |                 selective                /|\             ++
      ++             \|/               in-VRAM copy               |              ++
      ++        .-------------------------------------------------------.        ++
      ++        |               GPU 0 - Transfer Buffer 0               |        ++
      ++        '-------------------------------------------------------'        ++
      !!                            |     PCIe     /|\                           !!
      !!                           \|/    copy      |                            !!
      @@        .-------------------------.   .-------------------------.        @@
      @@        | CPU - Transfer Buffer 0 |   | CPU - Transfer Buffer 1 |        @@
      @@        '-------------------------'\ /'-------------------------'        @@
      @@                           pointer  X   swap                             @@
      @@        .-------------------------./ \.-------------------------.        @@
      @@        | CPU - Transfer Buffer 1 |   | CPU - Transfer Buffer 0 |        @@
      @@        '-------------------------'   '-------------------------'        @@
      !!                           /|\    PCIe      |                            !!
      !!                            |     copy     \|/                           !!
      ++        .-------------------------------------------------------.        ++
      ++        |               GPU 1 - Transfer Buffer 1               |        ++
      ++        '-------------------------------------------------------'        ++
      ++             /|\                selective                 |              ++
      ++              |                in-VRAM copy              \|/             ++
      ++   .-----------------------------------------------------------------.   ++
      ++   |                              GPU 1                              |   ++
      ++   |                          LBM Domain 1                           |   ++
      ++   '-----------------------------------------------------------------'   ++
      ##                                    |                                    ##
      ##                      domain synchronization barrier                     ##
      ##                                    |                                    ##
      ||   -------------------------------------------------------------> time   ||
    • domain communication architecture (detailed)
      ++   .-----------------------------------------------------------------.   ++
      ++   |                              GPU 0                              |   ++
      ++   |                          LBM Domain 0                           |   ++
      ++   '-----------------------------------------------------------------'   ++
      ++     |  selective in- /|\  |  selective in- /|\  |  selective in- /|\    ++
      ++    \|/ VRAM copy (X)  |  \|/ VRAM copy (Y)  |  \|/ VRAM copy (Z)  |     ++
      ++   .---------------------.---------------------.---------------------.   ++
      ++   |    GPU 0 - TB 0X+   |    GPU 0 - TB 0Y+   |    GPU 0 - TB 0Z+   |   ++
      ++   |    GPU 0 - TB 0X-   |    GPU 0 - TB 0Y-   |    GPU 0 - TB 0Z-   |   ++
      ++   '---------------------'---------------------'---------------------'   ++
      !!          | PCIe /|\            | PCIe /|\            | PCIe /|\         !!
      !!         \|/ copy |            \|/ copy |            \|/ copy |          !!
      @@   .---------. .---------.---------. .---------.---------. .---------.   @@
      @@   | CPU 0X+ | | CPU 1X- | CPU 0Y+ | | CPU 3Y- | CPU 0Z+ | | CPU 5Z- |   @@
      @@   | CPU 0X- | | CPU 2X+ | CPU 0Y- | | CPU 4Y+ | CPU 0Z- | | CPU 6Z+ |   @@
      @@   '---------\ /---------'---------\ /---------'---------\ /---------'   @@
      @@      pointer X swap (X)    pointer X swap (Y)    pointer X swap (Z)     @@
      @@   .---------/ \---------.---------/ \---------.---------/ \---------.   @@
      @@   | CPU 1X- | | CPU 0X+ | CPU 3Y- | | CPU 0Y+ | CPU 5Z- | | CPU 0Z+ |   @@
      @@   | CPU 2X+ | | CPU 0X- | CPU 4Y+ | | CPU 0Y- | CPU 6Z+ | | CPU 0Z- |   @@
      @@   '---------' '---------'---------' '---------'---------' '---------'   @@
      !!         /|\ PCIe |            /|\ PCIe |            /|\ PCIe |          !!
      !!          | copy \|/            | copy \|/            | copy \|/         !!
      ++   .--------------------..---------------------..--------------------.   ++
      ++   |   GPU 1 - TB 1X-   ||    GPU 3 - TB 3Y-   ||   GPU 5 - TB 5Z-   |   ++
      ++   :====================::=====================::====================:   ++
      ++   |   GPU 2 - TB 2X+   ||    GPU 4 - TB 4Y+   ||   GPU 6 - TB 6Z+   |   ++
      ++   '--------------------''---------------------''--------------------'   ++
      ++    /|\ selective in-  |  /|\ selective in-  |  /|\ selective in-  |     ++
      ++     |  VRAM copy (X) \|/  |  VRAM copy (Y) \|/  |  VRAM copy (Z) \|/    ++
      ++   .--------------------..---------------------..--------------------.   ++
      ++   |        GPU 1       ||        GPU 3        ||        GPU 5       |   ++
      ++   |    LBM Domain 1    ||    LBM Domain 3     ||    LBM Domain 5    |   ++
      ++   :====================::=====================::====================:   ++
      ++   |        GPU 2       ||        GPU 4        ||        GPU 6       |   ++
      ++   |    LBM Domain 2    ||    LBM Domain 4     ||    LBM Domain 6    |   ++
      ++   '--------------------''---------------------''--------------------'   ++
      ##              |                     |                     |              ##
      ##              |      domain synchronization barriers      |              ##
      ##              |                     |                     |              ##
      ||   -------------------------------------------------------------> time   ||
  • peak performance on GPUs (datacenter/gaming/professional/laptop)
  • powerful model extensions
    • boundary types
      • stationary mid-grid bounce-back boundaries (stationary solid boundaries)
      • moving mid-grid bounce-back boundaries (moving solid boundaries)
      • equilibrium boundaries (non-reflective inflow/outflow)
      • temperature boundaries (fixed temperature)
    • global force per volume (Guo forcing), can be modified on-the-fly
    • local force per volume (force field)
      • optional computation of forces from the fluid on solid boundaries
    • state-of-the-art free surface LBM (FSLBM) implementation:
    • thermal LBM to simulate thermal convection
    • Smagorinsky-Lilly subgrid turbulence LES model to keep simulations with very large Reynolds number stable

      Παβ = Σi e e (fi - fieq-shifted)

      Q = Σαβ Παβ2
                           ______________________
      τ = ½ (τ0 + √ τ02 + (16√2)(2) √Qρ )

    • particles with immersed-boundary method (either passive or 2-way-coupled, single-GPU only)

Solving the Visualization Problem

  • FluidX3D can do simulations so large that storing the volumetric data for later rendering becomes unmanageable (like 120GB for a single frame, hundreds of TeraByte for a video)
  • instead, FluidX3D allows rendering raw simulation data directly in VRAM, so no large volumetric files have to be exported to the hard disk (see my technical talk)
  • the rendering is so fast that it works interactively in real time for both rasterization and raytracing
  • if no monitor is available (like on a remote Linux server), there is an ASCII rendering mode to interactively visualize the simulation in the terminal (even in WSL and/or through SSH)
  • rendering is fully multi-GPU-parallelized via seamless domain decomposition rasterization
  • with interactive graphics mode disabled, image resolution can be as large as VRAM allows for (4K/8K/16K and above)
  • (interacitive) visualization modes:
    • flag wireframe / solid surface (and force vectors on solid cells or surface pressure if the extension is used)
    • velocity field (with slice mode)
    • streamlines (with slice mode)
    • velocity-colored Q-criterion isosurface
    • rasterized free surface with marching-cubes
    • raytraced free surface with fast ray-grid traversal and marching-cubes, either 1-4 rays/pixel or 1-10 rays/pixel

Solving the Compatibility Problem

  • FluidX3D is written in OpenCL 1.2, so it runs on any hardware from any vendor (Nvidia, AMD, Intel, ...):
    • world's fastest datacenter GPUs, like H100, A100, MI250(X), MI210, MI100, V100(S), P100, ...
    • gaming GPUs (desktop or laptop), like Nvidia GeForce, AMD Radeon, Intel Arc
    • professional/workstation GPUs, like Nvidia Quadro, AMD Radeon Pro / FirePro
    • integrated GPUs
    • Intel Xeon Phi (requires installation of Intel OpenCL CPU Runtime (Repo))
    • Intel/AMD CPUs (requires installation of Intel OpenCL CPU Runtime (Repo))
    • even smartphone ARM GPUs
  • native cross-vendor multi-GPU implementation
    • uses PCIe communication, so no SLI/Crossfire/NVLink/InfinityFabric required
    • single-node parallelization, so no MPI installation required
    • GPUs don't even have to be from the same vendor, but similar memory capacity and bandwidth are recommended
  • works in Windows and Linux with C++17, with limited support also for macOS and Android
  • supports importing and voxelizing triangle meshes from binary .stl files, with fast GPU voxelization
  • supports exporting volumetric data as binary .vtk files
  • supports exporting triangle meshes as binary .vtk files
  • supports exporting rendered images as .png/.qoi/.bmp files; encoding runs in parallel on the CPU while the simulation on GPU can continue without delay

Single-GPU/CPU Benchmarks

Here are performance benchmarks on various hardware in MLUPs/s, or how many million lattice cells are updated per second. The settings used for the benchmark are D3Q19 SRT with no extensions enabled (only LBM with implicit mid-grid bounce-back boundaries) and the setup consists of an empty cubic box with sufficient size (typically 256³). Without extensions, a single lattice cell requires:

  • a memory capacity of 93 (FP32/FP32) or 55 (FP32/FP16) Bytes
  • a memory bandwidth of 153 (FP32/FP32) or 77 (FP32/FP16) Bytes per time step
  • 363 (FP32/FP32) or 406 (FP32/FP16S) or 1275 (FP32/FP16C) FLOPs per time step (FP32+INT32 operations counted combined)

In consequence, the arithmetic intensity of this implementation is 2.37 (FP32/FP32) or 5.27 (FP32/FP16S) or 16.56 (FP32/FP16C) FLOPs/Byte. So performance is only limited by memory bandwidth.

If your GPU/CPU is not on the list yet, you can report your benchmarks here.

Colors: 🔴 AMD, 🔵 Intel, 🟢 Nvidia, ⚪ Apple, 🟡 ARM, 🟤 Glenfly

Device FP32
[TFlops/s]
Mem
[GB]
BW
[GB/s]
FP32/FP32
[MLUPs/s]
FP32/FP16S
[MLUPs/s]
FP32/FP16C
[MLUPs/s]
🔴 Instinct MI250 (1 GCD) 45.26 64 1638 5638 (53%) 9030 (42%) 8506 (40%)
🔴 Instinct MI210 45.26 64 1638 6517 (61%) 9547 (45%) 8829 (41%)
🔴 Instinct MI100 46.14 32 1228 5093 (63%) 8133 (51%) 8542 (54%)
🔴 Instinct MI60 14.75 32 1024 3570 (53%) 5047 (38%) 5111 (38%)
🔴 Radeon VII 13.83 16 1024 4898 (73%) 7778 (58%) 5256 (40%)
🔵 Data Center GPU Max 1100 22.22 48 1229 3487 (43%) 6209 (39%) 3252 (20%)
🟢 H100 PCIe 80GB 51.01 80 2000 11128 (85%) 20624 (79%) 13862 (53%)
🟢 A100 SXM4 80GB 19.49 80 2039 10228 (77%) 18448 (70%) 11197 (42%)
🟢 A100 PCIe 80GB 19.49 80 1935 9657 (76%) 17896 (71%) 10817 (43%)
🟢 A100 SXM4 40GB 19.49 40 1555 8522 (84%) 16013 (79%) 11251 (56%)
🟢 A100 PCIe 40GB 19.49 40 1555 8526 (84%) 16035 (79%) 11088 (55%)
🟢 Tesla V100 SXM2 32GB 15.67 32 900 4471 (76%) 8947 (77%) 7217 (62%)
🟢 Tesla V100 PCIe 16GB 14.13 16 900 5128 (87%) 10325 (88%) 7683 (66%)
🟢 Quadro GV100 16.66 32 870 3442 (61%) 6641 (59%) 5863 (52%)
🟢 Titan V 14.90 12 653 3601 (84%) 7253 (86%) 6957 (82%)
🟢 Tesla P100 16GB 9.52 16 732 3295 (69%) 5950 (63%) 4176 (44%)
🟢 Tesla P100 12GB 9.52 12 549 2427 (68%) 4141 (58%) 3999 (56%)
🟢 GeForce GTX TITAN 4.71 6 288 1460 (77%) 2500 (67%) 1113 (30%)
🟢 Tesla K40m 4.29 12 288 1131 (60%) 1868 (50%) 912 (24%)
🟢 Tesla K80 (1 GPU) 4.11 12 240 916 (58%) 1642 (53%) 943 (30%)
🟢 Tesla K20c 3.52 5 208 861 (63%) 1507 (56%) 720 (27%)
🔴 Radeon RX 7900 XTX 61.44 24 960 3665 (58%) 7644 (61%) 7716 (62%)
🔴 Radeon PRO W7900 61.30 48 864 3107 (55%) 5939 (53%) 5780 (52%)
🔴 Radeon RX 7900 XT 51.61 20 800 3013 (58%) 5856 (56%) 5986 (58%)
🔴 Radeon PRO W7800 45.20 32 576 1872 (50%) 4426 (59%) 4145 (55%)
🔴 Radeon RX 7600 21.75 8 288 1250 (66%) 2561 (68%) 2512 (67%)
🔴 Radeon RX 6900 XT 23.04 16 512 1968 (59%) 4227 (64%) 4207 (63%)
🔴 Radeon RX 6800 XT 20.74 16 512 2008 (60%) 4241 (64%) 4224 (64%)
🔴 Radeon PRO W6800 17.83 32 512 1620 (48%) 3361 (51%) 3180 (48%)
🔴 Radeon RX 6700 XT 13.21 12 384 1408 (56%) 2883 (58%) 2908 (58%)
🔴 Radeon RX 6800M 11.78 12 384 1439 (57%) 3190 (64%) 3213 (64%)
🔴 Radeon RX 6700M 10.60 10 320 1194 (57%) 2388 (57%) 2429 (58%)
🔴 Radeon RX 5700 XT 9.75 8 448 1368 (47%) 3253 (56%) 3049 (52%)
🔴 Radeon RX 5600 XT 6.73 6 288 1136 (60%) 2214 (59%) 2148 (57%)
🔴 Radeon RX Vega 64 13.35 8 484 1875 (59%) 2878 (46%) 3227 (51%)
🔴 Radeon RX 580 4GB 6.50 4 256 946 (57%) 1848 (56%) 1577 (47%)
🔴 Radeon R9 390X 5.91 8 384 1733 (69%) 2217 (44%) 1722 (35%)
🔴 Radeon HD 7850 1.84 2 154 112 (11%) 120 ( 6%) 635 (32%)
🔵 Arc A770 LE 19.66 16 560 2741 (75%) 4591 (63%) 4626 (64%)
🔵 Arc A750 LE 17.20 8 512 2625 (78%) 4184 (63%) 4238 (64%)
🟢 GeForce RTX 4090 82.58 24 1008 5624 (85%) 11091 (85%) 11496 (88%)
🟢 RTX 6000 Ada 91.10 48 960 4997 (80%) 10249 (82%) 10293 (83%)
🟢 GeForce RTX 4080 55.45 16 717 3914 (84%) 7626 (82%) 7933 (85%)
🟢 GeForce RTX 4070 29.15 12 504 2646 (80%) 4548 (69%) 5016 (77%)
🟢 GeForce RTX 3090 Ti 40.00 24 1008 5717 (87%) 10956 (84%) 10400 (79%)
🟢 GeForce RTX 3090 39.05 24 936 5418 (89%) 10732 (88%) 10215 (84%)
🟢 GeForce RTX 3080 Ti 37.17 12 912 5202 (87%) 9832 (87%) 9347 (79%)
🟢 RTX A6000 40.00 48 768 4421 (88%) 8814 (88%) 8533 (86%)
🟢 GeForce RTX 3080 29.77 10 760 4230 (85%) 8118 (82%) 7714 (78%)
🟢 GeForce RTX 3070 20.31 8 448 2578 (88%) 5096 (88%) 5060 (87%)
🟢 GeForce RTX 3060 Ti 16.49 8 448 2644 (90%) 5129 (88%) 4718 (81%)
🟢 RTX A4000 19.17 16 448 2500 (85%) 4945 (85%) 4664 (80%)
🟢 RTX A5000M 16.59 16 448 2228 (76%) 4461 (77%) 3662 (63%)
🟢 GeForce RTX 3060 13.17 12 360 2108 (90%) 4070 (87%) 3566 (76%)
🟢 GeForce RTX 3060M 10.94 6 336 2019 (92%) 4012 (92%) 3572 (82%)
🟢 GeForce RTX 3050M Ti 7.60 4 192 1181 (94%) 2341 (94%) 2253 (90%)
🟢 GeForce RTX 3050M 7.13 4 192 1180 (94%) 2339 (94%) 2016 (81%)
🟢 Titan RTX 16.31 24 672 3471 (79%) 7456 (85%) 7554 (87%)
🟢 Quadro RTX 6000 16.31 24 672 3307 (75%) 6836 (78%) 6879 (79%)
🟢 Quadro RTX 8000 Pass. 14.93 48 624 2591 (64%) 5408 (67%) 5607 (69%)
🟢 GeForce RTX 2080 Ti 13.45 11 616 3194 (79%) 6700 (84%) 6853 (86%)
🟢 GeForce RTX 2080 Sup. 11.34 8 496 2434 (75%) 5284 (82%) 5087 (79%)
🟢 Quadro RTX 5000 11.15 16 448 2341 (80%) 4766 (82%) 4773 (82%)
🟢 GeForce RTX 2060 Sup. 7.18 8 448 2503 (85%) 5035 (87%) 4463 (77%)
🟢 Quadro RTX 4000 7.12 8 416 2284 (84%) 4584 (85%) 4062 (75%)
🟢 GeForce RTX 2060 KO 6.74 6 336 1643 (75%) 3376 (77%) 3266 (75%)
🟢 GeForce RTX 2060 6.74 6 336 1681 (77%) 3604 (83%) 3571 (82%)
🟢 GeForce GTX 1660 Sup. 5.03 6 336 1696 (77%) 3551 (81%) 3040 (70%)
🟢 Tesla T4 8.14 15 300 1356 (69%) 2869 (74%) 2887 (74%)
🟢 GeForce GTX 1660 Ti 5.48 6 288 1467 (78%) 3041 (81%) 3019 (81%)
🟢 GeForce GTX 1660 5.07 6 192 1016 (81%) 1924 (77%) 1992 (80%)
🟢 GeForce GTX 1650M 896C 2.72 4 192 963 (77%) 1836 (74%) 1858 (75%)
🟢 GeForce GTX 1650M 1024C 3.20 4 128 706 (84%) 1214 (73%) 1400 (84%)
🟢 T500 3.04 4 80 339 (65%) 578 (56%) 665 (64%)
🟢 Titan Xp 12.15 12 548 2919 (82%) 5495 (77%) 5375 (76%)
🟢 GeForce GTX 1080 Ti 12.06 11 484 2631 (83%) 4837 (77%) 4877 (78%)
🟢 GeForce GTX 1080 9.78 8 320 1623 (78%) 3100 (75%) 3182 (77%)
🟢 GeForce GTX 1060M 4.44 6 192 983 (78%) 1882 (75%) 1803 (72%)
🟢 GeForce GTX 1050M Ti 2.49 4 112 631 (86%) 1224 (84%) 1115 (77%)
🟢 Quadro P1000 1.89 4 82 426 (79%) 839 (79%) 778 (73%)
🟢 GeForce GTX 970 4.17 4 224 980 (67%) 1721 (59%) 1623 (56%)
🟢 Quadro M4000 2.57 8 192 899 (72%) 1519 (61%) 1050 (42%)
🟢 Tesla M60 (1 GPU) 4.82 8 160 853 (82%) 1571 (76%) 1557 (75%)
🟢 GeForce GTX 960M 1.51 4 80 442 (84%) 872 (84%) 627 (60%)
🟢 GeForce GTX 770 3.33 2 224 800 (55%) 1215 (42%) 876 (30%)
🟢 GeForce GTX 680 4GB 3.33 4 192 783 (62%) 1274 (51%) 814 (33%)
🟢 Quadro K2000 0.73 2 64 312 (75%) 444 (53%) 171 (21%)
🟢 GeForce GT 630 (OEM) 0.46 2 29 151 (81%) 185 (50%) 78 (21%)
🟢 Quadro NVS 290 0.03 0.256 6 1 ( 2%) 1 ( 1%) 1 ( 1%)
🟤 Arise 1020 1.50 2 19 6 ( 5%) 6 ( 2%) 6 ( 2%)
⚪ M2 Max GPU 38C 32GB 9.73 22 400 2405 (92%) 4641 (89%) 2444 (47%)
⚪ M1 Max GPU 24C 32GB 6.14 22 400 2369 (91%) 4496 (87%) 2777 (53%)
⚪ M1 Pro GPU 16C 16GB 4.10 11 200 1204 (92%) 2329 (90%) 1855 (71%)
🔴 Radeon 780M (Z1 Extreme) 8.29 8 102 443 (66%) 860 (65%) 820 (62%)
🔴 Radeon Vega 8 (4750G) 2.15 27 57 263 (71%) 511 (70%) 501 (68%)
🔴 Radeon Vega 8 (3500U) 1.23 7 38 157 (63%) 282 (57%) 288 (58%)
🔵 Iris Xe Graphics (i7-1265U) 1.92 13 77 342 (68%) 621 (62%) 574 (58%)
🔵 UHD Graphics Xe 32EUs 0.74 25 51 128 (38%) 245 (37%) 216 (32%)
🔵 UHD Graphics 630 0.46 7 51 151 (45%) 301 (45%) 187 (28%)
🔵 UHD Graphics P630 0.46 51 42 177 (65%) 288 (53%) 137 (25%)
🔵 HD Graphics 5500 0.35 3 26 75 (45%) 192 (58%) 108 (32%)
🔵 HD Graphics 4600 0.38 2 26 105 (63%) 115 (35%) 34 (10%)
🟡 Mali-G610 MP4 (Orange Pi 5 Plus) 0.06 16 34 43 (19%) 59 (13%) 19 ( 4%)
🟡 Mali-G72 MP18 (Samsung S9+) 0.24 4 29 14 ( 7%) 17 ( 5%) 12 ( 3%)
🔴 2x EPYC 9654 29.49 1536 922 1381 (23%) 1814 (15%) 1801 (15%)
🔵 2x Xeon CPU Max 9480 13.62 256 614 2037 (51%) 1520 (19%) 1464 (18%)
🔵 2x Xeon Platinum 8480+ 14.34 512 614 2162 (54%) 1845 (23%) 1884 (24%)
🔵 2x Xeon Platinum 8380 11.78 2048 410 1410 (53%) 1159 (22%) 1298 (24%)
🔵 2x Xeon Platinum 8358 10.65 256 410 1285 (48%) 1007 (19%) 1120 (21%)
🔵 2x Xeon Platinum 8256 1.95 1536 282 396 (22%) 158 ( 4%) 175 ( 5%)
🔵 2x Xeon Platinum 8153 4.10 384 256 691 (41%) 290 ( 9%) 328 (10%)
🔵 2x Xeon Gold 6128 2.61 192 256 254 (15%) 185 ( 6%) 193 ( 6%)
🔵 Xeon Phi 7210 5.32 192 102 415 (62%) 193 (15%) 223 (17%)
🔵 4x Xeon E5-4620 v4 2.69 512 273 460 (26%) 275 ( 8%) 239 ( 7%)
🔵 2x Xeon E5-2630 v4 1.41 64 137 264 (30%) 146 ( 8%) 129 ( 7%)
🔵 2x Xeon E5-2623 v4 0.67 64 137 125 (14%) 66 ( 4%) 59 ( 3%)
🔵 2x Xeon E5-2680 v3 1.92 64 137 209 (23%) 305 (17%) 281 (16%)
🔵 Core i7-1265U 1.23 32 77 128 (26%) 62 ( 6%) 58 ( 6%)
🔵 Core i9-11900KB 0.84 32 51 109 (33%) 195 (29%) 208 (31%)
🔵 Core i9-10980XE 3.23 128 94 286 (47%) 251 (21%) 223 (18%)
🔵 Core i5-9600 0.60 16 43 146 (52%) 127 (23%) 147 (27%)
🔵 Core i7-8700K 0.71 16 51 152 (45%) 134 (20%) 116 (17%)
🔵 Xeon E-2176G 0.71 64 42 201 (74%) 136 (25%) 148 (27%)
🔵 Core i7-7700HQ 0.36 12 38 81 (32%) 82 (16%) 108 (22%)
🔵 Core i7-4770 0.44 16 26 104 (62%) 69 (21%) 59 (18%)
🔵 Core i7-4720HQ 0.33 16 26 58 (35%) 13 ( 4%) 47 (14%)

Multi-GPU Benchmarks

Multi-GPU benchmarks are done at the largest possible grid resolution with a cubic domain, and either 2x1x1, 2x2x1 or 2x2x2 of these cubic domains together. The percentages in brackets are single-GPU roofline model efficiency, and the multiplicator numbers in brackets are scaling factors relative to benchmarked single-GPU performance.

Colors: 🔴 AMD, 🔵 Intel, 🟢 Nvidia, ⚪ Apple, 🟡 ARM, 🟤 Glenfly

Device FP32
[TFlops/s]
Mem
[GB]
BW
[GB/s]
FP32/FP32
[MLUPs/s]
FP32/FP16S
[MLUPs/s]
FP32/FP16C
[MLUPs/s]
🔴 1x Instinct MI250 (1 GCD) 45.26 64 1638 5638 (53%) 9030 (42%) 8506 (40%)
🔴 1x Instinct MI250 (2 GCD) 90.52 128 3277 9460 (1.7x) 14313 (1.6x) 17338 (2.0x)
🔴 2x Instinct MI250 (4 GCD) 181.04 256 6554 16925 (3.0x) 29163 (3.2x) 29627 (3.5x)
🔴 4x Instinct MI250 (8 GCD) 362.08 512 13107 27350 (4.9x) 52258 (5.8x) 53521 (6.3x)
🔴   1x Instinct MI210 45.26 64 1638 6347 (59%) 8486 (40%) 9105 (43%)
🔴   2x Instinct MI210 90.52 128 3277 7245 (1.1x) 12050 (1.4x) 13539 (1.5x)
🔴   4x Instinct MI210 181.04 256 6554 8816 (1.4x) 17232 (2.0x) 16892 (1.9x)
🔴   8x Instinct MI210 362.08 512 13107 13546 (2.1x) 27996 (3.3x) 27820 (3.1x)
🔴 16x Instinct MI210 724.16 1024 26214 18094 (2.9x) 37360 (4.4x) 37922 (4.2x)
🔴 24x Instinct MI210 1086.24 1536 39322 22056 (3.5x) 45033 (5.3x) 44631 (4.9x)
🔴 32x Instinct MI210 1448.32 2048 52429 23881 (3.8x) 50952 (6.0x) 48848 (5.4x)
🔴 1x Radeon VII 13.83 16 1024 4898 (73%) 7778 (58%) 5256 (40%)
🔴 2x Radeon VII 27.66 32 2048 8113 (1.7x) 15591 (2.0x) 10352 (2.0x)
🔴 4x Radeon VII 55.32 64 4096 12911 (2.6x) 24273 (3.1x) 17080 (3.2x)
🔴 8x Radeon VII 110.64 128 8192 21946 (4.5x) 30826 (4.0x) 24572 (4.7x)
🔵 1x DC GPU Max 1100 22.22 48 1229 3487 (43%) 6209 (39%) 3252 (20%)
🔵 2x DC GPU Max 1100 44.44 96 2458 6301 (1.8x) 11815 (1.9x) 5970 (1.8x)
🔵 4x DC GPU Max 1100 88.88 192 4915 12162 (3.5x) 22777 (3.7x) 11759 (3.6x)
🟢 1x A100 PCIe 80GB 19.49 80 1935 9657 (76%) 17896 (71%) 10817 (43%)
🟢 2x A100 PCIe 80GB 38.98 160 3870 15742 (1.6x) 27165 (1.5x) 17510 (1.6x)
🟢 4x A100 PCIe 80GB 77.96 320 7740 25957 (2.7x) 52056 (2.9x) 33283 (3.1x)
🟢 1x A100 SXM4 40GB 19.49 40 1555 8543 (84%) 15917 (79%) 8748 (43%)
🟢 2x A100 SXM4 40GB 38.98 80 3110 14311 (1.7x) 23707 (1.5x) 15512 (1.8x)
🟢 4x A100 SXM4 40GB 77.96 160 6220 23411 (2.7x) 42400 (2.7x) 29017 (3.3x)
🟢 8x A100 SXM4 40GB 155.92 320 12440 37619 (4.4x) 72965 (4.6x) 63009 (7.2x)
🟢 1x A100 SXM4 40GB 19.49 40 1555 8522 (84%) 16013 (79%) 11251 (56%)
🟢 2x A100 SXM4 40GB 38.98 80 3110 13629 (1.6x) 24620 (1.5x) 18850 (1.7x)
🟢 4x A100 SXM4 40GB 77.96 160 6220 17978 (2.1x) 30604 (1.9x) 30627 (2.7x)
🟢 1x Tesla V100 SXM2 32GB 15.67 32 900 4471 (76%) 8947 (77%) 7217 (62%)
🟢 2x Tesla V100 SXM2 32GB 31.34 64 1800 7953 (1.8x) 15469 (1.7x) 12932 (1.8x)
🟢 4x Tesla V100 SXM2 32GB 62.68 128 3600 13135 (2.9x) 26527 (3.0x) 22686 (3.1x)
🟢 1x Tesla K40m 4.29 12 288 1131 (60%) 1868 (50%) 912 (24%)
🟢 2x Tesla K40m 8.58 24 577 1971 (1.7x) 3300 (1.8x) 1801 (2.0x)
🟢 3x K40m + 1x Titan Xp 17.16 48 1154 3117 (2.8x) 5174 (2.8x) 3127 (3.4x)
🟢 1x RTX A6000 40.00 48 768 4421 (88%) 8814 (88%) 8533 (86%)
🟢 2x RTX A6000 80.00 96 1536 8041 (1.8x) 15026 (1.7x) 14795 (1.7x)
🟢 4x RTX A6000 160.00 192 3072 14314 (3.2x) 27915 (3.2x) 27227 (3.2x)
🟢 8x RTX A6000 320.00 384 6144 19311 (4.4x) 40063 (4.5x) 39004 (4.6x)
🟢 1x Quadro RTX 8000 Pa. 14.93 48 624 2591 (64%) 5408 (67%) 5607 (69%)
🟢 2x Quadro RTX 8000 Pa. 29.86 96 1248 4767 (1.8x) 9607 (1.8x) 10214 (1.8x)
🟢 1x GeForce RTX 2080 Ti 13.45 11 616 3194 (79%) 6700 (84%) 6853 (86%)
🟢 2x GeForce RTX 2080 Ti 26.90 22 1232 5085 (1.6x) 10770 (1.6x) 10922 (1.6x)
🟢 4x GeForce RTX 2080 Ti 53.80 44 2464 9117 (2.9x) 18415 (2.7x) 18598 (2.7x)
🟢 7x 2080 Ti + 1x A100 40GB 107.60 88 4928 16146 (5.1x) 33732 (5.0x) 33857 (4.9x)

FAQs

General

  • How to learn using FluidX3D?
    Follow the FluidX3D Documentation!

  • What physical model does FluidX3D use?
    FluidX3D implements the lattice Boltzmann method, a type of direct numerical simulation (DNS), the most accurate type of fluid simulation, but also the most computationally challenging. Optional extension models include volume force (Guo forcing), free surface (volume-of-fluid and PLIC), a temperature model and Smagorinsky-Lilly subgrid turbulence model.

  • FluidX3D only uses FP32 or even FP32/FP16, in contrast to FP64. Are simulation results physically accurate?
    Yes, in all but extreme edge cases. The code has been specially optimized to minimize arithmetic round-off errors and make the most out of lower precision. With these optimizations, accuracy in most cases is indistinguishable from FP64 double-precision, even with FP32/FP16 mixed-precision. Details can be found in this paper.

  • Why is the domain size limited to 2³² grid points?
    The 32-bit unsigned integer grid index will overflow above this number. Using 64-bit index calculation would slow the simulation down by ~20%, as 64-bit uint is calculated on special function units and not the regular GPU cores. 2³² grid points with FP32/FP16 mixed-precision is equivalent to 225GB memory and single GPUs currently are only at 128GB, so it should be fine for a while to come. For higher resolutions above the single-domain limit, use multiple domains (typically 1 per GPU, but multiple domains on the same GPU also work).

  • Compared to the benchmark numbers stated here, efficiency seems much lower but performance is slightly better for most devices. How can this be?
    In that paper, the One-Step-Pull swap algorithm is implemented, using only misaligned reads and coalesced writes. On almost all GPUs, the performance penalty for misaligned writes is much larger than for misaligned reads, and sometimes there is almost no penalty for misaligned reads at all. Because of this, One-Step-Pull runs at peak bandwidth and thus peak efficiency.
    Here, a different swap algorithm termed Esoteric-Pull is used, a type of in-place streaming. This makes the LBM require much less memory (93 vs. 169 (FP32/FP32) or 55 vs. 93 (FP32/FP16) Bytes/cell for D3Q19), and also less memory bandwidth (153 vs. 171 (FP32/FP32) or 77 vs. 95 (FP32/FP16) Bytes/cell per time step for D3Q19) due to so-called implicit bounce-back boundaries. However memory access now is half coalesced and half misaligned for both reads and writes, so memory access efficiency is lower. For overall performance, these two effects approximately cancel out. The benefit of Esoteric-Pull - being able to simulate domains twice as large with the same amount of memory - clearly outweights the cost of slightly lower memory access efficiency, especially since performance is not reduced overall.

  • Why don't you use CUDA? Wouldn't that be more efficient?
    No, that is a wrong myth. OpenCL is exactly as efficient as CUDA on Nvidia GPUs if optimized properly. Here I did roofline model and analyzed OpenCL performance on various hardware. OpenCL efficiency on modern Nvidia GPUs can be 100% with the right memory access pattern, so CUDA can't possibly be any more efficient. Without any performance advantage, there is no reason to use proprietary CUDA over OpenCL, since OpenCL is compatible with a lot more hardware.

  • Why no multi-relaxation-time (MRT) collision operator?
    The idea of MRT is to linearly transform the DDFs into "moment space" by matrix multiplication and relax these moments individually, promising better stability and accuracy. In practice, in the vast majority of cases, it has zero or even negative effects on stability and accuracy, and simple SRT is much superior. Apart from the kinematic shear viscosity and conserved terms, the remaining moments are non-physical quantities and their tuning is a blackbox. Although MRT can be implemented in an efficient manner with only a single matrix-vector multiplication in registers, leading to identical performance compared to SRT by remaining bandwidth-bound, storing the matrices vastly elongates and over-complicates the code for no real benefit.

Hardware

  • Can FluidX3D run on multiple GPUs at the same time?
    Yes. The simulation grid is then split in domains, one for each GPU (domain decomposition method). The GPUs essentially pool their memory, enabling much larger grid resolution and higher performance. Rendering is parallelized across multiple GPUs as well; each GPU renders its own domain with a 3D offset, then rendered frames from all GPUs are overlayed with their z-buffers. Communication between domains is done over PCIe, so no SLI/Crossfire/NVLink/InfinityFabric is required. All GPUs must however be installed in the same node (PC/laptop/server). Even unholy combinations of Nvidia/AMD/Intel GPUs will work, although it is recommended to only use GPUs with similar memory capacity and bandwidth together. Using a fast gaming GPU and slow integrated GPU together would only decrease performance due to communication overhead.

  • I'm on a budget and have only a cheap computer. Can I run FluidX3D on my toaster PC/laptop?
    Absolutely. Today even the most inexpensive hardware, like integrated GPUs or entry-level gaming GPUs, support OpenCL. You might be a bit more limited on memory capacity and grid resolution, but you should be good to go. I've tested FluidX3D on very old and inexpensive hardware and even on my Samsung S9+ smartphone, and it runs just fine, although admittedly a bit slower.

  • I don't have an expensive workstation GPU, but only a gaming GPU. Will performance suffer?
    No. Efficiency on gaming GPUs is exactly as good as on their "professional"/workstation counterparts. Performance often is even better as gaming GPUs have higher boost clocks.

  • Do I need a GPU with ECC memory?
    No. Gaming GPUs work just fine. Some Nvidia GPUs automatically reduce memory clocks for compute applications to almost entirely eliminate memory errors.

  • My GPU does not support CUDA. Can I still use FluidX3D?
    Yes. FluidX3D uses OpenCL 1.2 and not CUDA, so it runs on any GPU from any vendor since around 2012.

  • I don't have a dedicated graphics card at all. Can I still run FluidX3D on my PC/laptop?
    Yes. FluidX3D also runs on all integrated GPUs since around 2012, and also on CPUs.

  • I need more memory than my GPU can offer. Can I run FluidX3D on my CPU as well?
    Yes. You only need to install the Intel OpenCL CPU Runtime.

  • In the benchmarks you list some very expensive hardware. How do you get access to that?
    As a PhD candidate in computational physics, I used FluidX3D for my research, so I had access to BZHPC, SuperMUC-NG and JSC JURECA-DC supercomputers.

Graphics

  • I don't have an RTX/DXR GPU that supports raytracing. Can I still use raytracing graphics in FluidX3D?
    Yes, and at full performance. FluidX3D does not use a bounding volume hierarchy (BVH) to accelerate raytracing, but fast ray-grid traversal instead, implemented directly in OpenCL C. This is much faster than BVH for moving isosurfaces in the LBM grid (~N vs. ~N²+log(N) runtime; LBM itself is ~N³), and it does not require any dedicated raytracing hardware. Raytracing in FluidX3D runs on any GPU that supports OpenCL 1.2.

  • I have a datacenter/mining GPU without any video output or graphics hardware. Can FluidX3D still render simulation results?
    Yes. FluidX3D does all rendering (rasterization and raytracing) in OpenCL C, so no display output and no graphics features like OpenGL/Vulkan/DirectX are required. Rendering is just another form of compute after all. Rendered frames are passed to the CPU over PCIe and then the CPU can either draw them on screen through dedicated/integrated graphics or write them to the hard drive.

  • I'm running FluidX3D on a remote (super-)computer and only have an SSH terminal. Can I still use graphics somehow?
    Yes, either directly as interactive ASCII graphics in the terminal or by storing rendered frames on the hard drive and then copying them over via `scp -r [email protected]:"~/path/to/images/folder" .`.

Licensing

  • I want to learn about programming/software/physics/engineering. Can I use FluidX3D for free?
    Yes. Anyone can use FluidX3D for free for public research, education or personal use. Use by scientists, students and hobbyists is free of charge and well encouraged.

  • I am a scientist/teacher with a paid position at a public institution. Can I use FluidX3D for my research/teaching?
    Yes, you can use FluidX3D free of charge. This is considered research/education, not commercial use. To give credit, the references listed below should be cited. If you publish data/results generated by altered source versions, the altered source code must be published as well.

  • I work at a company in CFD/consulting/R&D or related fields. Can I use FluidX3D commercially?
    No. Commercial use is not allowed with the current license.

  • Is FluidX3D open-source?
    No. "Open-source" as a technical term is defined as freely available without any restriction on use, but I am not comfortable with that. I have written FluidX3D in my spare time and no one should milk it for profits while I remain uncompensated, especially considering what other CFD software sells for. The technical term for the type of license I choose is "source-available no-cost non-commercial". The source code is freely available, and you are free to use, to alter and to redistribute it, as long as you do not sell it or make a profit from derived products/services, and as long as you do not use it for any military purposes (see the license for details).

  • Will FluidX3D at some point be available with a commercial license?
    Maybe I will add the option for a second, commercial license later on. If you are interested in commercial use, let me know. For non-commercial use in science and education, FluidX3D is and will always be free.

External Code/Libraries/Images used in FluidX3D

References

Contact