-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-without interrupt.cpp
200 lines (176 loc) · 5.25 KB
/
main-without interrupt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
* Attiny85_ECG_PPG.cpp
*
* Created: 2/16/2016 8:38:54 PM
* Author : Pranav
*/
#define F_CPU 8000000UL
#define NOT_A_PORT 0
#define PB 2
#define HIGH 0x1
#define LOW 0x0
#define OUTPUT 0x1
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay_basic.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
volatile uint8_t pinNo=1; //adc pin
uint8_t txPin =3; //Tx pin
uint16_t bit_delay=0;
int _tx_delay = 0;
uint8_t _transmitBitMask = 1<<txPin;
uint8_t port = PB;
volatile uint8_t *_transmitPortRegister;
//----------------------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------------------
inline void tunedDelay(uint16_t delay) {
_delay_loop_2(delay);
}
//----------------------------------------------------------------------------------------------------------------------------------
inline void pinMode(uint8_t pin, uint8_t mode){
//pin can be 0-3 only;
//mode 0=input 1 =output
if(mode){//input
DDRB=DDRB|(1<<(pin));
}
else{//output
DDRB=DDRB&(~(1<<(pin)));
}
}
//----------------------------------------------------------------------------------------------------------------------------------
inline void digitalWrite(uint8_t pin,uint8_t value){
if(value){//LOW
PORTB=PORTB|(1<<(pin));
}
else{//HIGH
PORTB=PORTB&(~(1<<(pin)));
}
}
//----------------------------------------------------------------------------------------------------------------------------------
uint16_t subtract_cap(uint16_t num, uint16_t sub) {
if (num > sub)
return num - sub;
else
return 1;
}
//----------------------------------------------------------------------------------------------------------------------------------
void uart_init(long speed){
_tx_delay = 0;
//_transmitPortRegister = (volatile uint8_t *)port_to_output_PGM[port];
_transmitPortRegister = &PORTB;
// Precalculate the various delays, in number of 4-cycle delays
bit_delay = (F_CPU / speed) / 4;
// 12 (gcc 4.8.2) or 13 (gcc 4.3.2) cycles from start bit to first bit,
// 15 (gcc 4.8.2) or 16 (gcc 4.3.2) cycles between bits,
// 12 (gcc 4.8.2) or 14 (gcc 4.3.2) cycles from last bit to stop bit
// These are all close enough to just use 15 cycles, since the inter-bit
// timings are the most critical (deviations stack 8 times)
_tx_delay = subtract_cap(bit_delay, 15 / 4);
tunedDelay(_tx_delay); // if we were low this establishes the end
digitalWrite(txPin, HIGH);
pinMode(txPin, OUTPUT);
}
//----------------------------------------------------------------------------------------------------------------------------------
bool uart_putchar(uint8_t b)
{ uint8_t oldSREG = SREG;
cli();
if (_tx_delay == 0) {
return 0;
}
// By declaring these as local variables, the compiler will put them
// in registers _before_ disabling interrupts and entering the
// critical timing sections below, which makes it a lot easier to
// verify the cycle timings
volatile uint8_t *reg = _transmitPortRegister;
uint8_t reg_mask = _transmitBitMask;
uint8_t inv_mask = ~_transmitBitMask;
uint16_t delay = _tx_delay;
// turn off interrupts for a clean txmit
// Write the start bit
*reg &= inv_mask;//basically writing a 0 to the pin
tunedDelay(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i)
{
if (b & 1) // choose bit
*reg |= reg_mask; // send 1
else
*reg &= inv_mask; // send 0
tunedDelay(delay);
b >>= 1;
}
// restore pin to natural state
*reg |= reg_mask;
SREG = oldSREG; // turn interrupts back on
tunedDelay(_tx_delay);
return 1;
}
//----------------------------------------------------------------------------------------------------------------------------------
void ADC_init(){
// ADMUX |= (1 << REFS0); // Set ADC reference to AVCC
ADMUX |= (1 << ADLAR); // Left adjust ADC result to allow easy 8 bit reading
ADMUX= (ADMUX&0xf0)|(pinNo&0x0f);
// Set ADC prescaler to 64 what gives 125 kHz ADC clock @ 8 MHz
//sample rate will roughly be F_CPU/64/25 ~~4kHz
//by default in free running mode
ADCSRA =
1 << ADEN | // activate the ADC
0 << ADSC | // start conversion
1 << ADATE | // auto trigger
0 << ADIF | // conversion complete
1 << ADIE | // AD interrupt enabled
1 << ADPS2 | // prescaler
1 << ADPS1 | // prescaler
0 << ADPS0; // prescaler
}
//----------------------------------------------------------------------------------------------------------------------------------
//ISR(ADC_vect){
void ADCin(){
uint8_t low,high;
low =ADCL;
high=ADCH;
if(pinNo%2==1){
uart_putchar(high);
uart_putchar(low);
uart_putchar(',');
pinNo=2;
}
else{
uart_putchar(high);
uart_putchar(low);
uart_putchar('\n');
pinNo=1;
}
ADMUX= (ADMUX&0xf0)|(pinNo&0x0f); //selecting the required pin
ADCSRA |= (1 << ADSC);//restart conversion
ADCSRA&=(~(1<<ADIF));
}
int main (void)
{
ADC_init();
uart_init(115200);
ADCSRA |= (1 << ADSC);//restart conversion
//uint8_t status=1;
//which pin is to be used
//pinMode(2,OUTPUT);
while(1)
{
if ((ADCSRA & (1<<ADIF))!=0){
ADCin();
}
else{
uart_putchar('\n');
}
_delay_ms(1000);
}
}
/*
if ((ADCSRA & (1<<ADIF))!=0){
ADCin();
uart_putchar('a');
}
else{
uart_putchar('d');
}
*/