forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bfloat16.cpp
224 lines (189 loc) · 7.23 KB
/
bfloat16.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "openvino/core/type/bfloat16.hpp"
#include <gtest/gtest.h>
#include <climits>
#include <random>
#include "common_test_utils/float_util.hpp"
#include "openvino/runtime/aligned_buffer.hpp"
#include "openvino/util/log.hpp"
using namespace std;
using namespace ov;
template <typename T>
std::string to_hex(T value) {
std::stringstream ss;
ss << "0x" << std::hex << std::setw(sizeof(T) * 2) << std::setfill('0') << value;
return ss.str();
}
//***********************
// NOTE
//***********************
// This test uses exact comparisons of floating point values. It is testing for bit-exact
// creation and truncation/rounding of bfloat16 values.
TEST(bfloat16, conversions) {
bfloat16 bf;
const char* source_string;
std::string bf_string;
// 1.f, the ground-truth value
source_string = "0 01111111 000 0000";
bf = ov::test::utils::bits_to_bfloat16(source_string);
EXPECT_EQ(bf, bfloat16(1.0));
bf_string = ov::test::utils::bfloat16_to_bits(bf);
EXPECT_STREQ(source_string, bf_string.c_str());
// 1.03125f, the exact upper bound
source_string = "0 01111111 000 0100";
bf = ov::test::utils::bits_to_bfloat16(source_string);
EXPECT_EQ(bf, bfloat16(1.03125));
bf_string = ov::test::utils::bfloat16_to_bits(bf);
EXPECT_STREQ(source_string, bf_string.c_str());
}
TEST(bfloat16, round_to_nearest) {
const char* fstring;
std::string expected;
float fvalue;
uint16_t bf_round;
fstring = "0 01111111 000 0100 1000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest(fvalue);
EXPECT_EQ(bf_round, 0x3F85);
fstring = "0 01111111 000 0100 0000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest(fvalue);
EXPECT_EQ(bf_round, 0x3F84);
fstring = "0 01111111 111 1111 1000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest(fvalue);
EXPECT_EQ(bf_round, 0x4000);
// 1.9921875f, the next representable number which should not round up
fstring = "0 01111111 111 1111 0000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest(fvalue);
EXPECT_EQ(bf_round, 0x3FFF);
}
TEST(bfloat16, round_to_nearest_even) {
const char* fstring;
float fvalue;
uint16_t bf_round;
fstring = "0 01111111 000 0100 1000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest_even(fvalue);
EXPECT_EQ(bf_round, 0x3F84);
fstring = "0 01111111 000 0101 1000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest_even(fvalue);
EXPECT_EQ(bf_round, 0x3F86);
fstring = "0 01111111 000 0101 0000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest_even(fvalue);
EXPECT_EQ(bf_round, 0x3F85);
fstring = "0 01111111 111 1111 1000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest_even(fvalue);
EXPECT_EQ(bf_round, 0x4000);
fstring = "0 01111111 111 1111 0000 0000 0000 0000";
fvalue = ov::test::utils::bits_to_float(fstring);
bf_round = bfloat16::round_to_nearest_even(fvalue);
EXPECT_EQ(bf_round, 0x3FFF);
}
TEST(bfloat16, to_float) {
bfloat16 bf;
const char* source_string;
// 1.f, the ground-truth value
source_string = "0 01111111 000 0000";
bf = ov::test::utils::bits_to_bfloat16(source_string);
float f = static_cast<float>(bf);
EXPECT_EQ(f, 1.0f);
// 1.03125f, the exact upper bound
source_string = "0 01111111 000 0100";
bf = ov::test::utils::bits_to_bfloat16(source_string);
f = static_cast<float>(bf);
EXPECT_EQ(f, 1.03125f);
}
TEST(bfloat16, numeric_limits) {
bfloat16 infinity = numeric_limits<bfloat16>::infinity();
bfloat16 neg_infinity = -numeric_limits<bfloat16>::infinity();
bfloat16 quiet_nan = numeric_limits<bfloat16>::quiet_NaN();
bfloat16 signaling_nan = numeric_limits<bfloat16>::signaling_NaN();
// Would be nice if we could have bfloat16 overloads for these, but it would require adding
// overloads into ::std. So we just cast to float here. We can't rely on an implicit cast
// because it fails with some versions of AppleClang.
EXPECT_TRUE(isinf(static_cast<float>(infinity)));
EXPECT_TRUE(isinf(static_cast<float>(neg_infinity)));
EXPECT_TRUE(isnan(static_cast<float>(quiet_nan)));
EXPECT_TRUE(isnan(static_cast<float>(signaling_nan)));
}
TEST(benchmark, bfloat16) {
size_t buffer_size = 128 * 3 * 224 * 224;
ov::AlignedBuffer data(buffer_size * sizeof(float), 4096);
float* f = static_cast<float*>(data.get_ptr());
// vector<float> data(buffer_size);
std::mt19937 rng(2112);
std::uniform_real_distribution<float> distribution(-300, 300);
for (size_t i = 0; i < buffer_size; ++i) {
f[i] = distribution(rng);
}
OPENVINO_INFO << "buffer size " << buffer_size << " floats or " << data.size() << " bytes";
{
ov::AlignedBuffer bf_data(buffer_size * sizeof(bfloat16), 4096);
bfloat16* p = static_cast<bfloat16*>(bf_data.get_ptr());
for (size_t i = 0; i < buffer_size; ++i) {
p[i] = bfloat16(f[i]);
}
}
{
ov::AlignedBuffer bf_data(buffer_size * sizeof(bfloat16), 4096);
bfloat16* p = static_cast<bfloat16*>(bf_data.get_ptr());
for (size_t i = 0; i < buffer_size; ++i) {
p[i] = bfloat16::truncate(f[i]);
}
}
{
ov::AlignedBuffer bf_data(buffer_size * sizeof(bfloat16), 4096);
bfloat16* p = static_cast<bfloat16*>(bf_data.get_ptr());
for (size_t i = 0; i < buffer_size; ++i) {
p[i] = bfloat16::round_to_nearest(f[i]);
}
}
{
ov::AlignedBuffer bf_data(buffer_size * sizeof(bfloat16), 4096);
bfloat16* p = static_cast<bfloat16*>(bf_data.get_ptr());
for (size_t i = 0; i < buffer_size; ++i) {
p[i] = bfloat16::round_to_nearest_even(f[i]);
}
}
}
TEST(bfloat16, assigns) {
bfloat16 bf16;
bf16 = 2.0;
EXPECT_EQ(bf16, float16(2.0));
std::vector<float> f32vec{1.0, 2.0, 4.0};
std::vector<bfloat16> bf16vec;
std::copy(f32vec.begin(), f32vec.end(), std::back_inserter(bf16vec));
for (size_t i = 0; i < f32vec.size(); ++i) {
EXPECT_EQ(f32vec.at(i), bf16vec.at(i));
}
f32vec = {-1.0, -2.0, -3.0};
for (size_t i = 0; i < f32vec.size(); ++i) {
bf16vec[i] = f32vec[i];
}
for (size_t i = 0; i < f32vec.size(); ++i) {
EXPECT_EQ(f32vec.at(i), bf16vec.at(i));
}
float f32arr[] = {1.0, 2.0, 4.0};
bfloat16 bf16arr[sizeof(f32arr)];
for (size_t i = 0; i < sizeof(f32arr) / sizeof(f32arr[0]); ++i) {
bf16arr[i] = f32arr[i];
EXPECT_EQ(f32arr[i], bf16arr[i]);
}
}
TEST(bfloat16, operators) {
bfloat16 a(2.0);
bfloat16 b(3.5);
bfloat16 c(5.5);
bfloat16 d(7.0);
ASSERT_TRUE(a + b == c);
ASSERT_TRUE(a == c - b);
ASSERT_TRUE(a * b == d);
ASSERT_TRUE(a == d / b);
}