forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear_assignment_api.cc
76 lines (68 loc) · 2.86 KB
/
linear_assignment_api.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdlib>
#include <vector>
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/graph/ebert_graph.h"
#include "ortools/graph/linear_assignment.h"
namespace operations_research {
// Test assignment on a 4x4 matrix. Example taken from
// http://www.ee.oulu.fi/~mpa/matreng/eem1_2-1.htm with kCost[0][1]
// modified so the optimum solution is unique.
void AssignmentOn4x4Matrix() {
LOG(INFO) << "Assignment on 4x4 Matrix";
const int kNumSources = 4;
const int kNumTargets = 4;
const CostValue kCost[kNumSources][kNumTargets] = {{90, 76, 75, 80},
{35, 85, 55, 65},
{125, 95, 90, 105},
{45, 110, 95, 115}};
const CostValue kExpectedCost =
kCost[0][3] + kCost[1][2] + kCost[2][1] + kCost[3][0];
ForwardStarGraph graph(kNumSources + kNumTargets, kNumSources * kNumTargets);
LinearSumAssignment<ForwardStarGraph> assignment(graph, kNumSources);
for (NodeIndex source = 0; source < kNumSources; ++source) {
for (NodeIndex target = 0; target < kNumTargets; ++target) {
ArcIndex arc = graph.AddArc(source, kNumSources + target);
assignment.SetArcCost(arc, kCost[source][target]);
}
}
CHECK(assignment.ComputeAssignment());
CostValue total_cost = assignment.GetCost();
CHECK_EQ(kExpectedCost, total_cost);
}
void AnotherAssignment() {
LOG(INFO) << "Another assignment on 4x4 matrix";
std::vector<std::vector<int>> matrice(
{{8, 7, 9, 9}, {5, 2, 7, 8}, {6, 1, 4, 9}, {2, 3, 2, 6}});
const int kSize = matrice.size();
ForwardStarGraph graph(2 * kSize, kSize * kSize);
LinearSumAssignment<ForwardStarGraph> assignment(graph, kSize);
for (int i = 0; i < kSize; ++i) {
CHECK_EQ(kSize, matrice[i].size());
for (int j = 0; j < kSize; ++j) {
int arcIndex = graph.AddArc(i, j + kSize);
assignment.SetArcCost(arcIndex, matrice[i][j]);
}
}
assignment.ComputeAssignment();
LOG(INFO) << "Cost : " << assignment.GetCost();
}
} // namespace operations_research
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
operations_research::AssignmentOn4x4Matrix();
operations_research::AnotherAssignment();
return EXIT_SUCCESS;
}