-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpreprocess.py
54 lines (45 loc) · 1.65 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding:utf-8 -*-
# Created Time: Thu 05 Jul 2018 10:02:44 PM CST
# Author: Taihong Xiao <[email protected]>
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import os,time
from PIL import Image
import codecs
def get_int(b):
return int(codecs.encode(b, 'hex'), 16)
def read_label_file(path):
with open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2049
length = get_int(data[4:8])
parsed = np.frombuffer(data, dtype=np.uint8, offset=8)
return torch.from_numpy(parsed).view(length).long()
def read_image_file(path):
with open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2051
length = get_int(data[4:8])
num_rows = get_int(data[8:12])
num_cols = get_int(data[12:16])
images = []
parsed = np.frombuffer(data, dtype=np.uint8, offset=16)
return torch.from_numpy(parsed).view(length, num_rows, num_cols)
root = './datasets/mnist'
raw_folder = 'raw'
training_file = 'training.pt'
test_file = 'test.pt'
training_set = (
read_image_file(os.path.join(root, raw_folder, 'train-images-idx3-ubyte.gz')),
read_label_file(os.path.join(root, raw_folder, 'train-labels-idx1-ubyte.gz'))
)
test_set = (
read_image_file(os.path.join(root, raw_folder, 't10k-images-idx3-ubyte.gz')),
read_label_file(os.path.join(root, raw_folder, 't10k-labels-idx1-ubyte.gz'))
)
with open(os.path.join(root, processed_folder, training_file), 'wb') as f:
torch.save(training_set, f)
with open(os.path.join(root, processed_folder, test_file), 'wb') as f:
torch.save(test_set, f)