This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
To get started right away, run the following command, making sure to use the correct path for the model you have:
./llama-embedding -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>/dev/null
llama-embedding.exe -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>$null
The above command will output space-separated float values.
description | formula | |
---|---|---|
none | ||
max absolute int16 | ||
taxicab | ||
euclidean (default) | ||
p-norm |
description | ||
---|---|---|
'' | same as before | (default) |
'array' | single embeddings | |
multiple embeddings | ||
'json' | openai style | |
'json+' | add cosine similarity matrix |
"\n" | (default) |
"<#embSep#>" | for exemple |
"<#sep#>" | other exemple |
./llama-embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
llama-embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null