Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sezione 3, Lecture 26 #6

Open
lorenzostani opened this issue Mar 12, 2020 · 0 comments
Open

Sezione 3, Lecture 26 #6

lorenzostani opened this issue Mar 12, 2020 · 0 comments

Comments

@lorenzostani
Copy link

ciao,
seguendo il corso, una volta attivato a questo punto,
from sklearn.preprocessing import PolynomialFeatures polyfeats = PolynomialFeatures(degree = 2) X_train_poly = polyfeats.fit_transform(X_train) X_test_poly = polyfeats.transform(X_test)

mi dà tale errore
`ValueError Traceback (most recent call last)
in
1 from sklearn.preprocessing import PolynomialFeatures
2 polyfeats = PolynomialFeatures(degree = 2)
----> 3 X_train_poly = polyfeats.fit_transform(X_train)
4 X_test_poly = polyfeats.transform(X_test)

~\Anaconda3\lib\site-packages\sklearn\base.py in fit_transform(self, X, y, **fit_params)
551 if y is None:
552 # fit method of arity 1 (unsupervised transformation)
--> 553 return self.fit(X, **fit_params).transform(X)
554 else:
555 # fit method of arity 2 (supervised transformation)

~\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py in fit(self, X, y)
1463 self : instance
1464 """
-> 1465 n_samples, n_features = check_array(X, accept_sparse=True).shape
1466 combinations = self._combinations(n_features, self.degree,
1467 self.interaction_only,

~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
519 "Reshape your data either using array.reshape(-1, 1) if "
520 "your data has a single feature or array.reshape(1, -1) "
--> 521 "if it contains a single sample.".format(array))
522
523 # in the future np.flexible dtypes will be handled like object dtypes

ValueError: Expected 2D array, got 1D array instead:
array=[34.41 7.73 16.96 4.97 17.93 18.72 13.09 21.02 26.45 10.26 4.59 5.25
8.05 12.79 7.7 7.22 7.79 16.35 4.38 24.91 14.65 5.5 13.34 21.78
15.1 21.14 11.66 9.43 16.23 14.52 9.8 11.64 18.66 5.08 9.5 5.99
4.45 16.22 23.98 11.25 5.7 11.5 3.16 6.21 9.5 14.13 5.98 3.01
8.16 11.69 7.26 6.62 27.8 6.43 14.1 5.9 10.58 12.14 6.53 9.54
18.05 10.24 11.72 24.08 24.16 7.67 15.17 4.03 20.08 21.46 14.67 16.65
9.25 13.27 22.6 10.45 6.36 13.44 19.01 7.9 10.11 3.53 12.04 11.1
19.52 14.37 8.1 16.21 5.29 6.36 10.29 16.9 5.1 5.49 9.45 27.26
7.85 20.34 34.37 21.24 17.16 2.47 15.03 18.35 7.01 9.55 14.44 4.56
6.59 9.51 17.92 7.54 9.68 23.79 11.98 7.12 10.53 16.94 9.69 17.28
21.32 6.27 16.14 9.74 23.6 21.32 16.03 12.33 8.05 5.98 5.57 9.47
22.88 5.39 29.55 2.88 8.05 6.9 8.1 16.3 13.51 7.6 18.34 10.16
3.7 14.1 29.97 1.98 3.53 14.19 9.1 18.33 10.36 8.26 7.14 36.98
14.33 3.92 1.73 7.51 5.64 13.11 13. 21.45 12.12 6.58 7.18 15.55
23.34 18.46 4.73 9.59 10.19 15.94 9.67 22.98 9.52 7.83 17.11 11.28
9.97 7.39 13.65 3.13 15.17 2.94 4.5 14.81 3.76 12.93 10.27 13.98
17.21 10.42 2.98 10.4 16.59 4.82 16.74 5.29 7.53 7.79 13.27 13.44
12.86 14.79 11.41 14.98 6.86 4.84 13. 13.45 23.09 20.31 20.32 15.7
25.41 9.93 6.73 21.08 12.6 6.68 19.88 7.44 16.44 4.98 7.43 3.26
12.03 3.57 5.89 6.93 12.01 6.92 3.73 3.11 10.59 12.87 6.65 18.13
11.32 8.79 8.93 30.81 5.49 34.77 19.92 18.06 4.85 6.36 28.32 26.42
6.75 7.56 17.6 12.26 18.71 6.48 5.91 6.12 3.81 9.62 14.27 18.06
22.11 17.15 16.42 30.63 8.2 6.72 7.44 13.61 11.48 3.56 3.95 24.39
6.87 5.12 23.24 17.27 5.81 16.47 30.62 16.29 6.58 17.44 10.13 20.85
8.43 15.02 18.85 15.39 3.33 12.8 5.68 2.96 3.32 13.28 12.5 3.11
13.04 27.71 17.19 13.15 18.68 19.31 7.6 23.29 30.59 13.99 29.53 8.23
29.68 6.29 6.19 8.51 18.13 19.69 8.01 8.61 5.19 13.22 15.76 27.38
10.45 5.52 5.68 16.51 9.81 10.56 23.97 9.64 13.35 4.32 5.03 9.28
19.37 5.5 14.36 6.72 8.44 4.7 11.22 4.16 23.98 17.1 12.67 2.97
3.59 11.74 2.87 10.3 18.8 14.69].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.`

riusciresti a spiegarmi, grazie mille

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant