-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunner.py
147 lines (130 loc) · 4.27 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import gym
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.utils import data
from torchvision import datasets, transforms
import gym_env
from agents import cnn, dqn
from agents.usrl.trainer import USRLNet
gym_env.dummy() # Calls __init__
def main():
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument(
"--batch-size",
type=int,
default=32,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for testing (default: 1000)",
)
parser.add_argument(
"--epochs",
type=int,
default=3,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr",
type=float,
default=0.001,
metavar="LR",
help="learning rate (default: 0.001)",
)
parser.add_argument(
"--gamma",
type=float,
default=0.7,
metavar="M",
help="Learning rate step gamma (default: 0.7)",
)
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument(
"--dry-run",
action="store_true",
default=False,
help="quickly check a single pass",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--save-model",
action="store_true",
default=False,
help="For Saving the current Model",
)
parser.add_argument(
"--arch", type=str, default="usrl", help="Can be either of CNN, DQN, USRL"
)
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {"batch_size": args.batch_size}
test_kwargs = {"batch_size": args.test_batch_size}
if use_cuda:
cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.3474, 0.3190, 0.3274), (0.0780, 0.0736, 0.0751)),
transforms.RandomHorizontalFlip(p=0.5)
]
)
dataset = datasets.ImageFolder("datasets/train", transform=transform)
# dataset = datasets.ImageFolder("datasets/realtime", transform=transform)
num_images = len(dataset)
train_split = int(0.9 * num_images)
val_split = num_images - train_split
dataset1, dataset2 = data.random_split(dataset, (train_split, val_split))
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
if args.arch.lower() == "dqn":
env = gym.make(
"ProjectAgni-v0", train_loader=train_loader, test_loader=test_loader
)
_ = env.reset()
model = dqn.QNet().to(device)
elif args.arch.lower() == "cnn":
env = None
model = cnn.CNN().to(device)
elif args.arch.lower() == "usrl":
env = gym.make(
"ProjectAgni-v0", train_loader=train_loader, test_loader=test_loader
)
_ = env.reset()
model = USRLNet().to(device)
else:
raise NotImplementedError
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
model.train_model(args, model, device, train_loader, optimizer, epoch, env=env)
model.test_model(model, device, test_loader, env)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), f"project_agni_{args.arch}.pt")
if __name__ == "__main__":
main()