-
Notifications
You must be signed in to change notification settings - Fork 342
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
SwinMM/Initialize the SwinMM project (#296)
- Loading branch information
1 parent
d02865b
commit 0cd69f2
Showing
50 changed files
with
3,477 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# Installation | ||
|
||
We provide installation instructions here. | ||
|
||
## Setup | ||
|
||
### Using Docker | ||
|
||
The simplest way to use SwinMM is to use our docker image [`swinmm`](https://drive.google.com/file/d/1EGSoqN-HphyMV_gKUq-g7_BSwTTg35oA/view?usp=sharing), which has contained all the needed dependencies. Download the `swinmm.tar` into the `SwinMM` directory and try the following scripts: | ||
|
||
```bash | ||
cd SwinMM | ||
docker import - swinmm < swinmm.tar | ||
docker run --runtime=nvidia --gpus=all -m="800g" --shm-size="32g" -itd -v ./:/volume swinmm /bin/bash | ||
docker exec -it swinmm /bin/bash | ||
conda activate SwinMM | ||
``` | ||
|
||
To use docker, make sure you have installed `docker` and `nvidia-docker`. | ||
|
||
### Manual | ||
|
||
For fast dataset loading, we required the users to install the Redis database, for example, on Ubuntu: `sudo apt-get install redis` | ||
|
||
We also recommend the users install the PyTorch-based version from the official website. | ||
|
||
Two packages are recommended to install manually according to their complicated dependencies: [bagua==0.9.2](https://github.com/BaguaSys/bagua), [monai==0.9.0](https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies) | ||
|
||
The others can be installed through `pip install -r requirements.txt` | ||
|
||
## Datasets | ||
|
||
Our pre-training dataset includes 5833 volumes from 8 public datasets: | ||
|
||
- [AbdomenCT-1K](https://github.com/JunMa11/AbdomenCT-1K) | ||
- [BTCV](https://www.synapse.org/#!Synapse:syn3193805/wiki/217789) | ||
- [MSD](http://medicaldecathlon.com/) | ||
- [TCIACovid19](https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+COVID-19/) | ||
- [WORD](https://github.com/HiLab-git/WORD) | ||
- [TCIA-Colon](https://wiki.cancerimagingarchive.net/display/Public/CT+COLONOGRAPHY/) | ||
- [LiDC](https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI/) | ||
- [HNSCC](https://wiki.cancerimagingarchive.net/display/Public/HNSCC) | ||
|
||
We choose two popular datasets to test the downstream segmentation performance: | ||
|
||
- [WORD](https://github.com/HiLab-git/WORD) (The Whole abdominal Organ Dataset) | ||
- [ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/#challenge/584e75606a3c77492fe91bba) (Automated Cardiac Diagnosis Challenge) | ||
|
||
The json files can be downloaded from [pretrain_jsons](https://drive.google.com/file/d/1gJThxBvnJnc2_N1nFX7xywjFWFw7DSEY/view?usp=sharing) and [word_jsons](https://drive.google.com/file/d/1Td4T_k2QlEcTETz9TERGsVdOyebD5ULv/view?usp=sharing); | ||
|
||
The dataset is organized as below: | ||
|
||
```text | ||
SwinMM | ||
├── WORD | ||
│ └── dataset | ||
│ └── dataset12_WORD | ||
│ ├── imagesTr | ||
│ ├── imagesTs | ||
│ ├── imagesVal | ||
│ ├── labelsTr | ||
│ ├── labelsTs | ||
│ ├── labelsVal | ||
│ └── dataset12_WORD.json | ||
└── Pretrain | ||
├── dataset | ||
│ ├── dataset00_BTCV | ||
│ ├── dataset02_Heart | ||
│ ├── dataset03_Liver | ||
│ ├── dataset04_Hippocampus | ||
│ ├── dataset06_Lung | ||
│ ├── dataset07_Pancreas | ||
│ ├── dataset08_HepaticVessel | ||
│ ├── dataset09_Spleen | ||
│ ├── dataset10_Colon | ||
│ ├── dataset11_TCIAcovid19 | ||
│ ├── dataset12_WORD | ||
│ ├── dataset13_AbdomenCT-1K | ||
│ ├── dataset_HNSCC | ||
│ ├── dataset_TCIAcolon | ||
│ └── dataset_LIDC | ||
└── jsons | ||
├── dataset00_BTCV.json | ||
├── dataset01_BrainTumour.json | ||
├── dataset02_Heart.json | ||
├── dataset03_Liver.json | ||
├── dataset04_Hippocampus.json | ||
├── dataset05_Prostate.json | ||
├── dataset06_Lung.json | ||
├── dataset07_Pancreas.json | ||
├── dataset08_HepaticVessel.json | ||
├── dataset09_Spleen.json | ||
├── dataset10_Colon.json | ||
├── dataset11_TCIAcovid19.json | ||
├── dataset12_WORD.json | ||
├── dataset13_AbdomenCT-1K.json | ||
├── dataset_HNSCC.json | ||
├── dataset_TCIAcolon.json | ||
└── dataset_LIDC.json | ||
``` |
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# Copyright 2020 - 2022 MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
from torch.nn import functional as F | ||
|
||
|
||
class ContrastLoss(torch.nn.Module): | ||
def __init__(self, args, batch_size, temperature=0.5): | ||
super().__init__() | ||
device = torch.device(f"cuda:{args.local_rank}") | ||
self.batch_size = batch_size | ||
self.register_buffer("temp", torch.tensor(temperature).to(torch.device(f"cuda:{args.local_rank}"))) | ||
self.register_buffer("neg_mask", (~torch.eye(batch_size * 2, batch_size * 2, dtype=bool).to(device)).float()) | ||
|
||
def forward(self, x_i, x_j): | ||
z_i = F.normalize(x_i, dim=1) | ||
z_j = F.normalize(x_j, dim=1) | ||
z = torch.cat([z_i, z_j], dim=0) | ||
sim = F.cosine_similarity(z.unsqueeze(1), z.unsqueeze(0), dim=2) | ||
sim_ij = torch.diag(sim, self.batch_size) | ||
sim_ji = torch.diag(sim, -self.batch_size) | ||
pos = torch.cat([sim_ij, sim_ji], dim=0) | ||
nom = torch.exp(pos / self.temp) | ||
denom = self.neg_mask * torch.exp(sim / self.temp) | ||
return torch.sum(-torch.log(nom / torch.sum(denom, dim=1))) / (2 * self.batch_size) | ||
|
||
|
||
class MutualLoss(torch.nn.Module): | ||
def __init__(self, args): | ||
super().__init__() | ||
self.alpha = 1.0 | ||
self.mask_ratio = args.mask_ratio | ||
self.recon_loss_2 = torch.nn.MSELoss().cuda() | ||
|
||
def __call__(self, rec1, rec2, mask): | ||
mask = mask.to(dtype=rec1.dtype) | ||
rec1, rec2 = [val * mask for val in [rec1, rec2]] | ||
|
||
recon_loss = self.recon_loss_2(rec1, rec2) / self.mask_ratio | ||
return self.alpha * recon_loss | ||
|
||
|
||
class Loss(torch.nn.Module): | ||
def __init__(self, batch_size, args): | ||
super().__init__() | ||
self.rot_loss = torch.nn.CrossEntropyLoss().cuda() | ||
self.recon_loss = torch.nn.L1Loss().cuda() | ||
self.recon_loss_2 = torch.nn.MSELoss().cuda() | ||
self.contrast_loss = ContrastLoss(args, batch_size).cuda() | ||
self.alpha1 = 1.0 | ||
self.alpha2 = 1.0 | ||
self.alpha3 = 1.0 | ||
self.norm_pix_loss = args.norm_pix_loss | ||
self.mask_ratio = args.mask_ratio | ||
|
||
def __call__( | ||
self, | ||
output_rot, | ||
target_rot, | ||
output_contrastive, | ||
target_contrastive, | ||
output_recons, | ||
target_recons, | ||
mask, | ||
only_mae=False, | ||
): | ||
B, C, H, W, D = output_recons.shape | ||
target_recons = target_recons.reshape(B, C, -1) | ||
|
||
if self.norm_pix_loss: | ||
mean = target_recons.mean(dim=-1, keepdim=True) | ||
var = target_recons.var(dim=-1, keepdim=True) | ||
target_recons = (target_recons - mean) / (var + 1.0e-6) ** 0.5 | ||
target_recons = target_recons.reshape(B, C, H, W, D) | ||
# masked voxels. | ||
mask = mask.to(dtype=target_recons.dtype)[None, ...] | ||
target_recons, output_recons = [val * mask for val in [target_recons, output_recons]] | ||
recon_loss = self.recon_loss_2(output_recons, target_recons) / self.mask_ratio | ||
recon_loss = self.alpha3 * recon_loss | ||
if only_mae: | ||
return recon_loss | ||
contrast_loss = self.alpha2 * self.contrast_loss(output_contrastive, target_contrastive) | ||
rot_loss = self.alpha1 * self.rot_loss(output_rot, target_rot) | ||
total_loss = rot_loss + contrast_loss + recon_loss | ||
|
||
return total_loss, (rot_loss, contrast_loss, recon_loss) |
Oops, something went wrong.