-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv.cu
1195 lines (1107 loc) · 48.4 KB
/
conv.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/extension.h>
#include <cooperative_groups.h>
#include <algorithm>
#include <iostream>
namespace cg = cooperative_groups;
#define G_00 0.001028380123898387f
#define G_01 0.0075987582094967365f
#define G_02 0.036000773310661316f
#define G_03 0.10936068743467331f
#define G_04 0.21300552785396576f
#define G_05 0.26601171493530273f
#define G_06 0.21300552785396576f
#define G_07 0.10936068743467331f
#define G_08 0.036000773310661316f
#define G_09 0.0075987582094967365f
#define G_10 0.001028380123898387f
#define G_000 0.0000010576f
#define G_001 0.0000078144f
#define G_002 0.0000370225f
#define G_003 0.0001124644f
#define G_004 0.0002190506f
#define G_005 0.0002735612f
#define G_006 0.0002190506f
#define G_007 0.0001124644f
#define G_008 0.0000370225f
#define G_009 0.0000078144f
#define G_010 0.0000010576f
#define G_011 0.0000078144f
#define G_012 0.0000577411f
#define G_013 0.0002735612f
#define G_014 0.0008310054f
#define G_015 0.0016185775f
#define G_016 0.0020213588f
#define G_017 0.0016185775f
#define G_018 0.0008310054f
#define G_019 0.0002735612f
#define G_020 0.0000577411f
#define G_021 0.0000078144f
#define G_022 0.0000370225f
#define G_023 0.0002735612f
#define G_024 0.0012960557f
#define G_025 0.0039370693f
#define G_026 0.0076683639f
#define G_027 0.0095766271f
#define G_028 0.0076683639f
#define G_029 0.0039370693f
#define G_030 0.0012960557f
#define G_031 0.0002735612f
#define G_032 0.0000370225f
#define G_033 0.0001124644f
#define G_034 0.0008310054f
#define G_035 0.0039370693f
#define G_036 0.0119597595f
#define G_037 0.0232944302f
#define G_038 0.0290912241f
#define G_039 0.0232944302f
#define G_040 0.0119597595f
#define G_041 0.0039370693f
#define G_042 0.0008310054f
#define G_043 0.0001124644f
#define G_044 0.0002190506f
#define G_045 0.0016185775f
#define G_046 0.0076683639f
#define G_047 0.0232944302f
#define G_048 0.0453713536f
#define G_049 0.0566619672f
#define G_050 0.0453713536f
#define G_051 0.0232944302f
#define G_052 0.0076683639f
#define G_053 0.0016185775f
#define G_054 0.0002190506f
#define G_055 0.0002735612f
#define G_056 0.0020213588f
#define G_057 0.0095766271f
#define G_058 0.0290912241f
#define G_059 0.0566619672f
#define G_060 0.0707622319f
#define G_061 0.0566619672f
#define G_062 0.0290912241f
#define G_063 0.0095766271f
#define G_064 0.0020213588f
#define G_065 0.0002735612f
#define G_066 0.0002190506f
#define G_067 0.0016185775f
#define G_068 0.0076683639f
#define G_069 0.0232944302f
#define G_070 0.0453713536f
#define G_071 0.0566619672f
#define G_072 0.0453713536f
#define G_073 0.0232944302f
#define G_074 0.0076683639f
#define G_075 0.0016185775f
#define G_076 0.0002190506f
#define G_077 0.0001124644f
#define G_078 0.0008310054f
#define G_079 0.0039370693f
#define G_080 0.0119597595f
#define G_081 0.0232944302f
#define G_082 0.0290912241f
#define G_083 0.0232944302f
#define G_084 0.0119597595f
#define G_085 0.0039370693f
#define G_086 0.0008310054f
#define G_087 0.0001124644f
#define G_088 0.0000370225f
#define G_089 0.0002735612f
#define G_090 0.0012960557f
#define G_091 0.0039370693f
#define G_092 0.0076683639f
#define G_093 0.0095766271f
#define G_094 0.0076683639f
#define G_095 0.0039370693f
#define G_096 0.0012960557f
#define G_097 0.0002735612f
#define G_098 0.0000370225f
#define G_099 0.0000078144f
#define G_100 0.0000577411f
#define G_101 0.0002735612f
#define G_102 0.0008310054f
#define G_103 0.0016185775f
#define G_104 0.0020213588f
#define G_105 0.0016185775f
#define G_106 0.0008310054f
#define G_107 0.0002735612f
#define G_108 0.0000577411f
#define G_109 0.0000078144f
#define G_110 0.0000010576f
#define G_111 0.0000078144f
#define G_112 0.0000370225f
#define G_113 0.0001124644f
#define G_114 0.0002190506f
#define G_115 0.0002735612f
#define G_116 0.0002190506f
#define G_117 0.0001124644f
#define G_118 0.0000370225f
#define G_119 0.0000078144f
#define G_120 0.0000010576f
#define BX 32
#define BY 32
#define BLOCK_DIM 16
template <int C>
__device__ float get_pix_value(const float* img, const int c, const int y, const int x, const int H, const int W) {
if (x >= W || y >= H || x < 0 || y < 0) {
return 0.0f;
} else {
return img[c * H * W + y * W + x];
}
}
/*
* Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws. Users and possessors of this source code
* are hereby granted a nonexclusive, royalty-free license to use this code
* in individual and commercial software.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.numIterations1 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*
* Any use of this source code in individual and commercial software must
* include, in the user documentation and internal comments to the code,
* the above Disclaimer and U.S. Government End Users Notice.
*/
template<int C>
__global__ void transposeCUDA(float *odata, float *idata, int width, int height)
{
__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];
const int num_pix = width * height;
for (int c = 0; c < C; ++c) {
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
if((xIndex < width) && (yIndex < height))
{
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[num_pix * c + index_in];
}
__syncthreads();
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
if((xIndex < height) && (yIndex < width))
{
unsigned int index_out = yIndex * height + xIndex;
odata[num_pix * c + index_out] = block[threadIdx.x][threadIdx.y];
}
__syncthreads();
}
}
template <int C>
__global__ void separableConvCUDA(
const float* __restrict__ input,
float* __restrict__ output,
const int H,
const int W)
{
auto block = cg::this_thread_block();
const int pix_y = block.group_index().y * block.dim_threads().y + block.thread_index().y;
const int pix_x = block.group_index().x * block.dim_threads().x + block.thread_index().x;
const int pix_id = pix_y * W + pix_x;
const int num_pix = H * W;
__shared__ float pixels[BY][BX + 10];
const int start_y = block.group_index().y * block.dim_threads().y;
const int start_x = block.group_index().x * block.dim_threads().x;
const int cnt = BY * (BX + 10);
const int num_blocks = (cnt + BX * BY - 1) / (BX * BY);
for (int i = 0; i < C; ++i) {
for (int b = 0; b < num_blocks; ++b) {
int tid = b * (BX * BY) + block.thread_rank();
if (tid < cnt) {
int local_y = tid / (BX + 10);
int local_x = tid % (BX + 10);
int y = start_y + local_y;
int x = start_x + local_x;
pixels[local_y][local_x] = get_pix_value<C>(input, i, y, x - 5, H, W);
}
}
block.sync();
if (pix_x < W && pix_y < H) {
int local_y = block.thread_index().y;
int local_x = block.thread_index().x + 5;
float val = 0.0f;
val += G_00 * pixels[local_y][local_x - 5];
val += G_01 * pixels[local_y][local_x - 4];
val += G_02 * pixels[local_y][local_x - 3];
val += G_03 * pixels[local_y][local_x - 2];
val += G_04 * pixels[local_y][local_x - 1];
val += G_05 * pixels[local_y][local_x ];
val += G_06 * pixels[local_y][local_x + 1];
val += G_07 * pixels[local_y][local_x + 2];
val += G_08 * pixels[local_y][local_x + 3];
val += G_09 * pixels[local_y][local_x + 4];
val += G_10 * pixels[local_y][local_x + 5];
output[i * num_pix + pix_id] = val;
}
block.sync();
}
}
template <int C>
__global__ void convCUDA(
const float* __restrict__ input,
float* __restrict__ output,
const int H,
const int W)
{
auto block = cg::this_thread_block();
const int pix_y = block.group_index().y * block.dim_threads().y + block.thread_index().y;
const int pix_x = block.group_index().x * block.dim_threads().x + block.thread_index().x;
const int pix_id = pix_y * W + pix_x;
const int num_pix = H * W;
__shared__ float pixels[BY + 10][BX + 10];
const int start_y = block.group_index().y * block.dim_threads().y;
const int start_x = block.group_index().x * block.dim_threads().x;
const int cnt = (BY + 10) * (BX + 10);
const int num_blocks = (cnt + BX * BY - 1) / (BX * BY);
for (int i = 0; i < C; ++i) {
for (int b = 0; b < num_blocks; ++b) {
int tid = b * (BX * BY) + block.thread_rank();
if (tid < cnt) {
int local_y = tid / (BX + 10);
int local_x = tid % (BX + 10);
int y = start_y + local_y;
int x = start_x + local_x;
pixels[local_y][local_x] = get_pix_value<C>(input, i, y - 5, x - 5, H, W);
}
}
block.sync();
if (pix_x < W && pix_y < H) {
int local_y = block.thread_index().y + 5;
int local_x = block.thread_index().x + 5;
float val = 0.0f;
{
val += G_000 * pixels[local_y - 5][local_x - 5];
val += G_001 * pixels[local_y - 5][local_x - 4];
val += G_002 * pixels[local_y - 5][local_x - 3];
val += G_003 * pixels[local_y - 5][local_x - 2];
val += G_004 * pixels[local_y - 5][local_x - 1];
val += G_005 * pixels[local_y - 5][local_x ];
val += G_006 * pixels[local_y - 5][local_x + 1];
val += G_007 * pixels[local_y - 5][local_x + 2];
val += G_008 * pixels[local_y - 5][local_x + 3];
val += G_009 * pixels[local_y - 5][local_x + 4];
val += G_010 * pixels[local_y - 5][local_x + 5];
val += G_011 * pixels[local_y - 4][local_x - 5];
val += G_012 * pixels[local_y - 4][local_x - 4];
val += G_013 * pixels[local_y - 4][local_x - 3];
val += G_014 * pixels[local_y - 4][local_x - 2];
val += G_015 * pixels[local_y - 4][local_x - 1];
val += G_016 * pixels[local_y - 4][local_x ];
val += G_017 * pixels[local_y - 4][local_x + 1];
val += G_018 * pixels[local_y - 4][local_x + 2];
val += G_019 * pixels[local_y - 4][local_x + 3];
val += G_020 * pixels[local_y - 4][local_x + 4];
val += G_021 * pixels[local_y - 4][local_x + 5];
val += G_022 * pixels[local_y - 3][local_x - 5];
val += G_023 * pixels[local_y - 3][local_x - 4];
val += G_024 * pixels[local_y - 3][local_x - 3];
val += G_025 * pixels[local_y - 3][local_x - 2];
val += G_026 * pixels[local_y - 3][local_x - 1];
val += G_027 * pixels[local_y - 3][local_x ];
val += G_028 * pixels[local_y - 3][local_x + 1];
val += G_029 * pixels[local_y - 3][local_x + 2];
val += G_030 * pixels[local_y - 3][local_x + 3];
val += G_031 * pixels[local_y - 3][local_x + 4];
val += G_032 * pixels[local_y - 3][local_x + 5];
val += G_033 * pixels[local_y - 2][local_x - 5];
val += G_034 * pixels[local_y - 2][local_x - 4];
val += G_035 * pixels[local_y - 2][local_x - 3];
val += G_036 * pixels[local_y - 2][local_x - 2];
val += G_037 * pixels[local_y - 2][local_x - 1];
val += G_038 * pixels[local_y - 2][local_x ];
val += G_039 * pixels[local_y - 2][local_x + 1];
val += G_040 * pixels[local_y - 2][local_x + 2];
val += G_041 * pixels[local_y - 2][local_x + 3];
val += G_042 * pixels[local_y - 2][local_x + 4];
val += G_043 * pixels[local_y - 2][local_x + 5];
val += G_044 * pixels[local_y - 1][local_x - 5];
val += G_045 * pixels[local_y - 1][local_x - 4];
val += G_046 * pixels[local_y - 1][local_x - 3];
val += G_047 * pixels[local_y - 1][local_x - 2];
val += G_048 * pixels[local_y - 1][local_x - 1];
val += G_049 * pixels[local_y - 1][local_x ];
val += G_050 * pixels[local_y - 1][local_x + 1];
val += G_051 * pixels[local_y - 1][local_x + 2];
val += G_052 * pixels[local_y - 1][local_x + 3];
val += G_053 * pixels[local_y - 1][local_x + 4];
val += G_054 * pixels[local_y - 1][local_x + 5];
val += G_055 * pixels[local_y ][local_x - 5];
val += G_056 * pixels[local_y ][local_x - 4];
val += G_057 * pixels[local_y ][local_x - 3];
val += G_058 * pixels[local_y ][local_x - 2];
val += G_059 * pixels[local_y ][local_x - 1];
val += G_060 * pixels[local_y ][local_x ];
val += G_061 * pixels[local_y ][local_x + 1];
val += G_062 * pixels[local_y ][local_x + 2];
val += G_063 * pixels[local_y ][local_x + 3];
val += G_064 * pixels[local_y ][local_x + 4];
val += G_065 * pixels[local_y ][local_x + 5];
val += G_066 * pixels[local_y + 1][local_x - 5];
val += G_067 * pixels[local_y + 1][local_x - 4];
val += G_068 * pixels[local_y + 1][local_x - 3];
val += G_069 * pixels[local_y + 1][local_x - 2];
val += G_070 * pixels[local_y + 1][local_x - 1];
val += G_071 * pixels[local_y + 1][local_x ];
val += G_072 * pixels[local_y + 1][local_x + 1];
val += G_073 * pixels[local_y + 1][local_x + 2];
val += G_074 * pixels[local_y + 1][local_x + 3];
val += G_075 * pixels[local_y + 1][local_x + 4];
val += G_076 * pixels[local_y + 1][local_x + 5];
val += G_077 * pixels[local_y + 2][local_x - 5];
val += G_078 * pixels[local_y + 2][local_x - 4];
val += G_079 * pixels[local_y + 2][local_x - 3];
val += G_080 * pixels[local_y + 2][local_x - 2];
val += G_081 * pixels[local_y + 2][local_x - 1];
val += G_082 * pixels[local_y + 2][local_x ];
val += G_083 * pixels[local_y + 2][local_x + 1];
val += G_084 * pixels[local_y + 2][local_x + 2];
val += G_085 * pixels[local_y + 2][local_x + 3];
val += G_086 * pixels[local_y + 2][local_x + 4];
val += G_087 * pixels[local_y + 2][local_x + 5];
val += G_088 * pixels[local_y + 3][local_x - 5];
val += G_089 * pixels[local_y + 3][local_x - 4];
val += G_090 * pixels[local_y + 3][local_x - 3];
val += G_091 * pixels[local_y + 3][local_x - 2];
val += G_092 * pixels[local_y + 3][local_x - 1];
val += G_093 * pixels[local_y + 3][local_x ];
val += G_094 * pixels[local_y + 3][local_x + 1];
val += G_095 * pixels[local_y + 3][local_x + 2];
val += G_096 * pixels[local_y + 3][local_x + 3];
val += G_097 * pixels[local_y + 3][local_x + 4];
val += G_098 * pixels[local_y + 3][local_x + 5];
val += G_099 * pixels[local_y + 4][local_x - 5];
val += G_100 * pixels[local_y + 4][local_x - 4];
val += G_101 * pixels[local_y + 4][local_x - 3];
val += G_102 * pixels[local_y + 4][local_x - 2];
val += G_103 * pixels[local_y + 4][local_x - 1];
val += G_104 * pixels[local_y + 4][local_x ];
val += G_105 * pixels[local_y + 4][local_x + 1];
val += G_106 * pixels[local_y + 4][local_x + 2];
val += G_107 * pixels[local_y + 4][local_x + 3];
val += G_108 * pixels[local_y + 4][local_x + 4];
val += G_109 * pixels[local_y + 4][local_x + 5];
val += G_110 * pixels[local_y + 5][local_x - 5];
val += G_111 * pixels[local_y + 5][local_x - 4];
val += G_112 * pixels[local_y + 5][local_x - 3];
val += G_113 * pixels[local_y + 5][local_x - 2];
val += G_114 * pixels[local_y + 5][local_x - 1];
val += G_115 * pixels[local_y + 5][local_x ];
val += G_116 * pixels[local_y + 5][local_x + 1];
val += G_117 * pixels[local_y + 5][local_x + 2];
val += G_118 * pixels[local_y + 5][local_x + 3];
val += G_119 * pixels[local_y + 5][local_x + 4];
val += G_120 * pixels[local_y + 5][local_x + 5];
}
output[i * num_pix + pix_id] = val;
}
block.sync();
}
}
torch::Tensor conv2DForward(torch::Tensor &input) {
int H = input.size(1);
int W = input.size(2);
dim3 grid((W + BX - 1) / BX, (H + BY - 1) / BY, 1);
dim3 block(BX, BY, 1);
torch::Tensor aux = torch::zeros({3, H, W}, input.options());
convCUDA<3><<<grid, block>>>(
input.contiguous().data<float>(),
aux.contiguous().data<float>(),
H, W
);
return aux;
separableConvCUDA<3><<<grid, block>>>(
input.contiguous().data<float>(),
aux.contiguous().data<float>(),
H, W
);
// torch::Tensor aux_T = torch::full({3, W, H}, 0, input.options());
// grid = dim3((W + BLOCK_DIM - 1) / BLOCK_DIM, (H + BLOCK_DIM - 1) / BLOCK_DIM, 1);
// block = dim3(BLOCK_DIM, BLOCK_DIM, 1);
// transposeCUDA<3><<<grid, block>>>(
// aux_T.contiguous().data<float>(),
// aux.contiguous().data<float>(),
// W,
// H);
aux = aux.transpose(1,2);
std::swap(H, W);
torch::Tensor output_T = torch::full({3, H, W}, 0, input.options());
grid = dim3((W + BX - 1) / BX, (H + BY - 1) / BY, 1);
block = dim3(BX, BY, 1);
separableConvCUDA<3><<<grid, block>>>(
aux.contiguous().data<float>(),
output_T.contiguous().data<float>(),
H, W
);
// torch::Tensor output = torch::full({3, W, H}, 0, input.options());
// grid = dim3((W + BLOCK_DIM - 1) / BLOCK_DIM, (H + BLOCK_DIM - 1) / BLOCK_DIM, 1);
// block = dim3(BLOCK_DIM, BLOCK_DIM, 1);
// transposeCUDA<3><<<grid, block>>>(
// output.contiguous().data<float>(),
// output_T.contiguous().data<float>(),
// W,
// H);
// std::swap(H, W);
return output_T.transpose(1,2);
}
__global__ void ssimrestCUDA(int N, float C1, float C2, float* mu1, float* mu2, float* mim, float* mom, float* mu2_sq, float* sigma2_sq, float* ssim_map)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if(idx >= N)
return;
float mu1_sq = mu1[idx] * mu1[idx];
float mu1_mu2 = mu1[idx] * mu2[idx];
float sigma1_sq = mim[idx] - mu1_sq;
float sigma12 = mom[idx] - mu1_mu2;
ssim_map[idx] = ((2.0f * mu1_mu2 + C1) * (2.0f * sigma12 + C2)) / ((mu1_sq + mu2_sq[idx] + C1) * (sigma1_sq + sigma2_sq[idx] + C2));
}
__global__ void ssimrest_backCUDA(
int N, float C1, float C2, float* mu1_, float* mu2_, float* mim_, float* mom_, float* mu2_sq_, float* sigma2_sq_,
float* dL,
float* dL_dmu1,
float* dL_dmim,
float* dL_dmom)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if(idx >= N)
return;
float mu1 = mu1_[idx];
float mu2 = mu2_[idx];
float mu2_sq = mu2_sq_[idx];
float mim = mim_[idx];
float mom = mom_[idx];
float sigma2_sq = sigma2_sq_[idx];
float A = (mu1*mu1 + C1 + mu2_sq);
float B = (- mu1*mu1 + C2 + mim + sigma2_sq);
float C = (C1 + 2*mu1*mu2);
float D = (C2 + 2*mom - 2*mu1*mu2);
float L = dL[idx];
dL_dmu1[idx] = L * ((2*mu2*D)/(A*B) - (2*mu2*C)/(A*B) + (2*mu1*C*D)/(A*B*B) - (2*mu1*C*D)/(A*A*B));
dL_dmim[idx] = L * (-(C*D)/(A*B*B));
dL_dmom[idx] = L * ((2*C)/(A*B));
}
__global__ void lol(float* hnk)
{
hnk[0] = 42;
}
torch::Tensor ssimrest(
float C1,
float C2,
torch::Tensor& mu1,
torch::Tensor& mu2,
torch::Tensor& mim,
torch::Tensor& mom,
torch::Tensor& mu2_sq,
torch::Tensor& sigma2_sq
)
{
int N = mu1.size(0) * mu1.size(1) * mu1.size(2);
torch::Tensor target = torch::zeros_like(mu1).contiguous();
ssimrestCUDA<<<(N + 255)/256, 256>>>(
N,
C1,
C2,
mu1.contiguous().data<float>(),
mu2.contiguous().data<float>(),
mim.contiguous().data<float>(),
mom.contiguous().data<float>(),
mu2_sq.contiguous().data<float>(),
sigma2_sq.contiguous().data<float>(),
target.contiguous().data<float>());
return target;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> ssimrest_back(
float C1,
float C2,
torch::Tensor& mu1,
torch::Tensor& mu2,
torch::Tensor& mim,
torch::Tensor& mom,
torch::Tensor& mu2_sq,
torch::Tensor& sigma2_sq,
torch::Tensor& dL
)
{
int N = mu1.size(0) * mu1.size(1) * mu1.size(2);
torch::Tensor dL_dmu1 = torch::zeros_like(mu1).contiguous();
torch::Tensor dL_dmim = torch::zeros_like(mu1).contiguous();
torch::Tensor dL_dmom = torch::zeros_like(mu1).contiguous();
ssimrest_backCUDA<<<(N + 255)/256, 256>>>(
N,
C1,
C2,
mu1.contiguous().data<float>(),
mu2.contiguous().data<float>(),
mim.contiguous().data<float>(),
mom.contiguous().data<float>(),
mu2_sq.contiguous().data<float>(),
sigma2_sq.contiguous().data<float>(),
dL.contiguous().data<float>(),
dL_dmu1.contiguous().data<float>(),
dL_dmim.contiguous().data<float>(),
dL_dmom.contiguous().data<float>());
return std::make_tuple(dL_dmu1, dL_dmim, dL_dmom);
}
template <int C>
__device__ void load_into_shared(float pixels[BY + 10][BX + 10], float *input1, float *input2, int H, int W, int i, int subtract = 0) {
auto block = cg::this_thread_block();
const int start_y = block.group_index().y * (BY - subtract) - subtract / 2;
const int start_x = block.group_index().x * (BX - subtract) - subtract / 2;
const int cnt = (BY + 10) * (BX + 10);
const int num_blocks = (cnt + BX * BY - 1) / (BX * BY);
for (int b = 0; b < num_blocks; ++b) {
int tid = b * (BX * BY) + block.thread_rank();
if (tid < cnt) {
int local_y = tid / (BX + 10);
int local_x = tid % (BX + 10);
int y = start_y + local_y;
int x = start_x + local_x;
if (input2 == nullptr) {
float one = get_pix_value<C>(input1, i, y - 5, x - 5, H, W);
pixels[local_y][local_x] = one;
} else {
float one = get_pix_value<C>(input1, i, y - 5, x - 5, H, W);
float two = get_pix_value<C>(input2, i, y - 5, x - 5, H, W);
pixels[local_y][local_x] = one * two;
}
}
}
}
__device__ void write_to_shared(float pixels[BY + 10][BX + 10], float val) {
auto block = cg::this_thread_block();
// flush with 0s
const int cnt = (BY + 10) * (BX + 10);
const int num_blocks = (cnt + BX * BY - 1) / (BX * BY);
for (int b = 0; b < num_blocks; ++b) {
int tid = b * (BX * BY) + block.thread_rank();
if (tid < cnt) {
int local_y = tid / (BX + 10);
int local_x = tid % (BX + 10);
pixels[local_y][local_x] = 0.0f;
}
}
block.sync();
// write the values in the central BXxBY zone
pixels[block.thread_index().y + 5][block.thread_index().x + 5] = val;
}
__device__ void multiply_shared_mem(float pix1[BY + 10][BX + 10], float pix2[BY + 10][BX + 10]) {
auto block = cg::this_thread_block();
const int cnt = (BY + 10) * (BX + 10);
const int num_blocks = (cnt + BX * BY - 1) / (BX * BY);
for (int b = 0; b < num_blocks; ++b) {
int tid = b * (BX * BY) + block.thread_rank();
if (tid < cnt) {
int local_y = tid / (BX + 10);
int local_x = tid % (BX + 10);
float one = pix1[local_y][local_x];
float two = pix2[local_y][local_x];
pix1[local_y][local_x] = one * two;
}
}
}
__device__ inline float do_sq(float val) {
return val * val;
}
__device__ float do_conv(float pixels[BY + 10][BX + 10], int H, int W, bool sq = false) {
auto block = cg::this_thread_block();
int local_y = block.thread_index().y + 5;
int local_x = block.thread_index().x + 5;
float val = 0.0f;
if (sq) {
val += G_000 * do_sq(pixels[local_y - 5][local_x - 5]);
val += G_001 * do_sq(pixels[local_y - 5][local_x - 4]);
val += G_002 * do_sq(pixels[local_y - 5][local_x - 3]);
val += G_003 * do_sq(pixels[local_y - 5][local_x - 2]);
val += G_004 * do_sq(pixels[local_y - 5][local_x - 1]);
val += G_005 * do_sq(pixels[local_y - 5][local_x ]);
val += G_006 * do_sq(pixels[local_y - 5][local_x + 1]);
val += G_007 * do_sq(pixels[local_y - 5][local_x + 2]);
val += G_008 * do_sq(pixels[local_y - 5][local_x + 3]);
val += G_009 * do_sq(pixels[local_y - 5][local_x + 4]);
val += G_010 * do_sq(pixels[local_y - 5][local_x + 5]);
val += G_011 * do_sq(pixels[local_y - 4][local_x - 5]);
val += G_012 * do_sq(pixels[local_y - 4][local_x - 4]);
val += G_013 * do_sq(pixels[local_y - 4][local_x - 3]);
val += G_014 * do_sq(pixels[local_y - 4][local_x - 2]);
val += G_015 * do_sq(pixels[local_y - 4][local_x - 1]);
val += G_016 * do_sq(pixels[local_y - 4][local_x ]);
val += G_017 * do_sq(pixels[local_y - 4][local_x + 1]);
val += G_018 * do_sq(pixels[local_y - 4][local_x + 2]);
val += G_019 * do_sq(pixels[local_y - 4][local_x + 3]);
val += G_020 * do_sq(pixels[local_y - 4][local_x + 4]);
val += G_021 * do_sq(pixels[local_y - 4][local_x + 5]);
val += G_022 * do_sq(pixels[local_y - 3][local_x - 5]);
val += G_023 * do_sq(pixels[local_y - 3][local_x - 4]);
val += G_024 * do_sq(pixels[local_y - 3][local_x - 3]);
val += G_025 * do_sq(pixels[local_y - 3][local_x - 2]);
val += G_026 * do_sq(pixels[local_y - 3][local_x - 1]);
val += G_027 * do_sq(pixels[local_y - 3][local_x ]);
val += G_028 * do_sq(pixels[local_y - 3][local_x + 1]);
val += G_029 * do_sq(pixels[local_y - 3][local_x + 2]);
val += G_030 * do_sq(pixels[local_y - 3][local_x + 3]);
val += G_031 * do_sq(pixels[local_y - 3][local_x + 4]);
val += G_032 * do_sq(pixels[local_y - 3][local_x + 5]);
val += G_033 * do_sq(pixels[local_y - 2][local_x - 5]);
val += G_034 * do_sq(pixels[local_y - 2][local_x - 4]);
val += G_035 * do_sq(pixels[local_y - 2][local_x - 3]);
val += G_036 * do_sq(pixels[local_y - 2][local_x - 2]);
val += G_037 * do_sq(pixels[local_y - 2][local_x - 1]);
val += G_038 * do_sq(pixels[local_y - 2][local_x ]);
val += G_039 * do_sq(pixels[local_y - 2][local_x + 1]);
val += G_040 * do_sq(pixels[local_y - 2][local_x + 2]);
val += G_041 * do_sq(pixels[local_y - 2][local_x + 3]);
val += G_042 * do_sq(pixels[local_y - 2][local_x + 4]);
val += G_043 * do_sq(pixels[local_y - 2][local_x + 5]);
val += G_044 * do_sq(pixels[local_y - 1][local_x - 5]);
val += G_045 * do_sq(pixels[local_y - 1][local_x - 4]);
val += G_046 * do_sq(pixels[local_y - 1][local_x - 3]);
val += G_047 * do_sq(pixels[local_y - 1][local_x - 2]);
val += G_048 * do_sq(pixels[local_y - 1][local_x - 1]);
val += G_049 * do_sq(pixels[local_y - 1][local_x ]);
val += G_050 * do_sq(pixels[local_y - 1][local_x + 1]);
val += G_051 * do_sq(pixels[local_y - 1][local_x + 2]);
val += G_052 * do_sq(pixels[local_y - 1][local_x + 3]);
val += G_053 * do_sq(pixels[local_y - 1][local_x + 4]);
val += G_054 * do_sq(pixels[local_y - 1][local_x + 5]);
val += G_055 * do_sq(pixels[local_y ][local_x - 5]);
val += G_056 * do_sq(pixels[local_y ][local_x - 4]);
val += G_057 * do_sq(pixels[local_y ][local_x - 3]);
val += G_058 * do_sq(pixels[local_y ][local_x - 2]);
val += G_059 * do_sq(pixels[local_y ][local_x - 1]);
val += G_060 * do_sq(pixels[local_y ][local_x ]);
val += G_061 * do_sq(pixels[local_y ][local_x + 1]);
val += G_062 * do_sq(pixels[local_y ][local_x + 2]);
val += G_063 * do_sq(pixels[local_y ][local_x + 3]);
val += G_064 * do_sq(pixels[local_y ][local_x + 4]);
val += G_065 * do_sq(pixels[local_y ][local_x + 5]);
val += G_066 * do_sq(pixels[local_y + 1][local_x - 5]);
val += G_067 * do_sq(pixels[local_y + 1][local_x - 4]);
val += G_068 * do_sq(pixels[local_y + 1][local_x - 3]);
val += G_069 * do_sq(pixels[local_y + 1][local_x - 2]);
val += G_070 * do_sq(pixels[local_y + 1][local_x - 1]);
val += G_071 * do_sq(pixels[local_y + 1][local_x ]);
val += G_072 * do_sq(pixels[local_y + 1][local_x + 1]);
val += G_073 * do_sq(pixels[local_y + 1][local_x + 2]);
val += G_074 * do_sq(pixels[local_y + 1][local_x + 3]);
val += G_075 * do_sq(pixels[local_y + 1][local_x + 4]);
val += G_076 * do_sq(pixels[local_y + 1][local_x + 5]);
val += G_077 * do_sq(pixels[local_y + 2][local_x - 5]);
val += G_078 * do_sq(pixels[local_y + 2][local_x - 4]);
val += G_079 * do_sq(pixels[local_y + 2][local_x - 3]);
val += G_080 * do_sq(pixels[local_y + 2][local_x - 2]);
val += G_081 * do_sq(pixels[local_y + 2][local_x - 1]);
val += G_082 * do_sq(pixels[local_y + 2][local_x ]);
val += G_083 * do_sq(pixels[local_y + 2][local_x + 1]);
val += G_084 * do_sq(pixels[local_y + 2][local_x + 2]);
val += G_085 * do_sq(pixels[local_y + 2][local_x + 3]);
val += G_086 * do_sq(pixels[local_y + 2][local_x + 4]);
val += G_087 * do_sq(pixels[local_y + 2][local_x + 5]);
val += G_088 * do_sq(pixels[local_y + 3][local_x - 5]);
val += G_089 * do_sq(pixels[local_y + 3][local_x - 4]);
val += G_090 * do_sq(pixels[local_y + 3][local_x - 3]);
val += G_091 * do_sq(pixels[local_y + 3][local_x - 2]);
val += G_092 * do_sq(pixels[local_y + 3][local_x - 1]);
val += G_093 * do_sq(pixels[local_y + 3][local_x ]);
val += G_094 * do_sq(pixels[local_y + 3][local_x + 1]);
val += G_095 * do_sq(pixels[local_y + 3][local_x + 2]);
val += G_096 * do_sq(pixels[local_y + 3][local_x + 3]);
val += G_097 * do_sq(pixels[local_y + 3][local_x + 4]);
val += G_098 * do_sq(pixels[local_y + 3][local_x + 5]);
val += G_099 * do_sq(pixels[local_y + 4][local_x - 5]);
val += G_100 * do_sq(pixels[local_y + 4][local_x - 4]);
val += G_101 * do_sq(pixels[local_y + 4][local_x - 3]);
val += G_102 * do_sq(pixels[local_y + 4][local_x - 2]);
val += G_103 * do_sq(pixels[local_y + 4][local_x - 1]);
val += G_104 * do_sq(pixels[local_y + 4][local_x ]);
val += G_105 * do_sq(pixels[local_y + 4][local_x + 1]);
val += G_106 * do_sq(pixels[local_y + 4][local_x + 2]);
val += G_107 * do_sq(pixels[local_y + 4][local_x + 3]);
val += G_108 * do_sq(pixels[local_y + 4][local_x + 4]);
val += G_109 * do_sq(pixels[local_y + 4][local_x + 5]);
val += G_110 * do_sq(pixels[local_y + 5][local_x - 5]);
val += G_111 * do_sq(pixels[local_y + 5][local_x - 4]);
val += G_112 * do_sq(pixels[local_y + 5][local_x - 3]);
val += G_113 * do_sq(pixels[local_y + 5][local_x - 2]);
val += G_114 * do_sq(pixels[local_y + 5][local_x - 1]);
val += G_115 * do_sq(pixels[local_y + 5][local_x ]);
val += G_116 * do_sq(pixels[local_y + 5][local_x + 1]);
val += G_117 * do_sq(pixels[local_y + 5][local_x + 2]);
val += G_118 * do_sq(pixels[local_y + 5][local_x + 3]);
val += G_119 * do_sq(pixels[local_y + 5][local_x + 4]);
val += G_120 * do_sq(pixels[local_y + 5][local_x + 5]);
} else {
val += G_000 * pixels[local_y - 5][local_x - 5];
val += G_001 * pixels[local_y - 5][local_x - 4];
val += G_002 * pixels[local_y - 5][local_x - 3];
val += G_003 * pixels[local_y - 5][local_x - 2];
val += G_004 * pixels[local_y - 5][local_x - 1];
val += G_005 * pixels[local_y - 5][local_x ];
val += G_006 * pixels[local_y - 5][local_x + 1];
val += G_007 * pixels[local_y - 5][local_x + 2];
val += G_008 * pixels[local_y - 5][local_x + 3];
val += G_009 * pixels[local_y - 5][local_x + 4];
val += G_010 * pixels[local_y - 5][local_x + 5];
val += G_011 * pixels[local_y - 4][local_x - 5];
val += G_012 * pixels[local_y - 4][local_x - 4];
val += G_013 * pixels[local_y - 4][local_x - 3];
val += G_014 * pixels[local_y - 4][local_x - 2];
val += G_015 * pixels[local_y - 4][local_x - 1];
val += G_016 * pixels[local_y - 4][local_x ];
val += G_017 * pixels[local_y - 4][local_x + 1];
val += G_018 * pixels[local_y - 4][local_x + 2];
val += G_019 * pixels[local_y - 4][local_x + 3];
val += G_020 * pixels[local_y - 4][local_x + 4];
val += G_021 * pixels[local_y - 4][local_x + 5];
val += G_022 * pixels[local_y - 3][local_x - 5];
val += G_023 * pixels[local_y - 3][local_x - 4];
val += G_024 * pixels[local_y - 3][local_x - 3];
val += G_025 * pixels[local_y - 3][local_x - 2];
val += G_026 * pixels[local_y - 3][local_x - 1];
val += G_027 * pixels[local_y - 3][local_x ];
val += G_028 * pixels[local_y - 3][local_x + 1];
val += G_029 * pixels[local_y - 3][local_x + 2];
val += G_030 * pixels[local_y - 3][local_x + 3];
val += G_031 * pixels[local_y - 3][local_x + 4];
val += G_032 * pixels[local_y - 3][local_x + 5];
val += G_033 * pixels[local_y - 2][local_x - 5];
val += G_034 * pixels[local_y - 2][local_x - 4];
val += G_035 * pixels[local_y - 2][local_x - 3];
val += G_036 * pixels[local_y - 2][local_x - 2];
val += G_037 * pixels[local_y - 2][local_x - 1];
val += G_038 * pixels[local_y - 2][local_x ];
val += G_039 * pixels[local_y - 2][local_x + 1];
val += G_040 * pixels[local_y - 2][local_x + 2];
val += G_041 * pixels[local_y - 2][local_x + 3];
val += G_042 * pixels[local_y - 2][local_x + 4];
val += G_043 * pixels[local_y - 2][local_x + 5];
val += G_044 * pixels[local_y - 1][local_x - 5];
val += G_045 * pixels[local_y - 1][local_x - 4];
val += G_046 * pixels[local_y - 1][local_x - 3];
val += G_047 * pixels[local_y - 1][local_x - 2];
val += G_048 * pixels[local_y - 1][local_x - 1];
val += G_049 * pixels[local_y - 1][local_x ];
val += G_050 * pixels[local_y - 1][local_x + 1];
val += G_051 * pixels[local_y - 1][local_x + 2];
val += G_052 * pixels[local_y - 1][local_x + 3];
val += G_053 * pixels[local_y - 1][local_x + 4];
val += G_054 * pixels[local_y - 1][local_x + 5];
val += G_055 * pixels[local_y ][local_x - 5];
val += G_056 * pixels[local_y ][local_x - 4];
val += G_057 * pixels[local_y ][local_x - 3];
val += G_058 * pixels[local_y ][local_x - 2];
val += G_059 * pixels[local_y ][local_x - 1];
val += G_060 * pixels[local_y ][local_x ];
val += G_061 * pixels[local_y ][local_x + 1];
val += G_062 * pixels[local_y ][local_x + 2];
val += G_063 * pixels[local_y ][local_x + 3];
val += G_064 * pixels[local_y ][local_x + 4];
val += G_065 * pixels[local_y ][local_x + 5];
val += G_066 * pixels[local_y + 1][local_x - 5];
val += G_067 * pixels[local_y + 1][local_x - 4];
val += G_068 * pixels[local_y + 1][local_x - 3];
val += G_069 * pixels[local_y + 1][local_x - 2];
val += G_070 * pixels[local_y + 1][local_x - 1];
val += G_071 * pixels[local_y + 1][local_x ];
val += G_072 * pixels[local_y + 1][local_x + 1];
val += G_073 * pixels[local_y + 1][local_x + 2];
val += G_074 * pixels[local_y + 1][local_x + 3];
val += G_075 * pixels[local_y + 1][local_x + 4];
val += G_076 * pixels[local_y + 1][local_x + 5];
val += G_077 * pixels[local_y + 2][local_x - 5];
val += G_078 * pixels[local_y + 2][local_x - 4];
val += G_079 * pixels[local_y + 2][local_x - 3];
val += G_080 * pixels[local_y + 2][local_x - 2];
val += G_081 * pixels[local_y + 2][local_x - 1];
val += G_082 * pixels[local_y + 2][local_x ];
val += G_083 * pixels[local_y + 2][local_x + 1];
val += G_084 * pixels[local_y + 2][local_x + 2];
val += G_085 * pixels[local_y + 2][local_x + 3];
val += G_086 * pixels[local_y + 2][local_x + 4];
val += G_087 * pixels[local_y + 2][local_x + 5];
val += G_088 * pixels[local_y + 3][local_x - 5];
val += G_089 * pixels[local_y + 3][local_x - 4];
val += G_090 * pixels[local_y + 3][local_x - 3];
val += G_091 * pixels[local_y + 3][local_x - 2];
val += G_092 * pixels[local_y + 3][local_x - 1];
val += G_093 * pixels[local_y + 3][local_x ];
val += G_094 * pixels[local_y + 3][local_x + 1];
val += G_095 * pixels[local_y + 3][local_x + 2];
val += G_096 * pixels[local_y + 3][local_x + 3];
val += G_097 * pixels[local_y + 3][local_x + 4];
val += G_098 * pixels[local_y + 3][local_x + 5];
val += G_099 * pixels[local_y + 4][local_x - 5];
val += G_100 * pixels[local_y + 4][local_x - 4];
val += G_101 * pixels[local_y + 4][local_x - 3];
val += G_102 * pixels[local_y + 4][local_x - 2];
val += G_103 * pixels[local_y + 4][local_x - 1];
val += G_104 * pixels[local_y + 4][local_x ];
val += G_105 * pixels[local_y + 4][local_x + 1];
val += G_106 * pixels[local_y + 4][local_x + 2];
val += G_107 * pixels[local_y + 4][local_x + 3];
val += G_108 * pixels[local_y + 4][local_x + 4];
val += G_109 * pixels[local_y + 4][local_x + 5];
val += G_110 * pixels[local_y + 5][local_x - 5];
val += G_111 * pixels[local_y + 5][local_x - 4];
val += G_112 * pixels[local_y + 5][local_x - 3];
val += G_113 * pixels[local_y + 5][local_x - 2];
val += G_114 * pixels[local_y + 5][local_x - 1];
val += G_115 * pixels[local_y + 5][local_x ];
val += G_116 * pixels[local_y + 5][local_x + 1];
val += G_117 * pixels[local_y + 5][local_x + 2];
val += G_118 * pixels[local_y + 5][local_x + 3];
val += G_119 * pixels[local_y + 5][local_x + 4];
val += G_120 * pixels[local_y + 5][local_x + 5];
}
return val;
}
template <int CH>
__global__ void fusedssimCUDA(
int H,
int W,
float C1,
float C2,
float* img1,
float* img2,
float* ssim_map
)
{
auto block = cg::this_thread_block();
const int pix_y = block.group_index().y * BY + block.thread_index().y;
const int pix_x = block.group_index().x * BX + block.thread_index().x;
const int pix_id = pix_y * W + pix_x;
const int num_pix = H * W;
// stats for ssim
float mu1 = 0.0f;
float mu2 = 0.0f;
float sigma1_sq = 0.0f;
float sigma2_sq = 0.0f;
float sigma12 = 0.0f;
// shared memory that will be used to load pixels temporarily
__shared__ float buf1[BY + 10][BX + 10];
__shared__ float buf2[BY + 10][BX + 10];
// mu1 <- Conv(img1)
// sigma1_sq = Conv(img1 * img1) - mu1_sq
for (int i = 0; i < CH; ++i) {
// load into shared
load_into_shared<CH>(buf1, img1, nullptr, H, W, i);
block.sync();
// conv
mu1 = do_conv(buf1, H, W);
sigma1_sq = do_conv(buf1, H, W, true) - mu1 * mu1;
block.sync();
// mu2 <- Conv(img2)
// sigma2_sq = Conv(img2 * img2) - mu2_sq
// load into shared
load_into_shared<CH>(buf2, img2, nullptr, H, W, i);
block.sync();
// conv
mu2 = do_conv(buf2, H, W);
sigma2_sq = do_conv(buf2, H, W, true) - mu2 * mu2;
block.sync();
// sigma12 = Conv(img1 * img2) - mu1_mu2
// load into shared
multiply_shared_mem(buf1, buf2);
block.sync();
// conv
sigma12 = do_conv(buf1, H, W) - mu1 * mu2;
block.sync();
float mu1_sq = mu1 * mu1;
float mu2_sq = mu2 * mu2;
float mu1_mu2 = mu1 * mu2;
float C = (2.0f * mu1_mu2 + C1);
float D = (2.0f * sigma12 + C2);
float A = (mu1_sq + mu2_sq + C1);
float B = (sigma1_sq + sigma2_sq + C2);
float m = (C * D) / (A * B);
if (pix_x < W && pix_y < H) {
ssim_map[i * num_pix + pix_id] = m;