3
3
from . import sv_abc as sv
4
4
5
5
6
- class OusvIFT (sv .SvABC ):
6
+ class OusvSchobelZhu1998 (sv .SvABC ):
7
7
"""
8
8
The implementation of Schobel & Zhu (1998)'s inverse FT pricing formula for European
9
9
options the Ornstein-Uhlenbeck driven stochastic volatility process.
@@ -12,10 +12,10 @@ class OusvIFT(sv.SvABC):
12
12
13
13
Examples:
14
14
>>> import pyfeng as pf
15
- >>> model = pf.OusvIFT (0.2, mr=4, vov=0.1, rho=-0.7, intr=0.09531)
15
+ >>> model = pf.OusvSchobelZhu1998 (0.2, mr=4, vov=0.1, rho=-0.7, intr=0.09531)
16
16
>>> model.price(100, 100, texp=np.array([1, 5, 10]))
17
17
array([13.21493, 40.79773, 62.76312])
18
- >>> model = pf.OusvIFT (0.25, mr=8, vov=0.3, rho=-0.6, intr=0.09531)
18
+ >>> model = pf.OusvSchobelZhu1998 (0.25, mr=8, vov=0.3, rho=-0.6, intr=0.09531)
19
19
>>> model.price(np.array([90, 100, 110]), 100, texp=1)
20
20
array([21.41873, 15.16798, 10.17448])
21
21
"""
@@ -103,7 +103,7 @@ def price(self, strike, spot, texp, cp=1):
103
103
return df * fwd * price
104
104
105
105
106
- class OusvCondMC (sv .SvABC , sv .CondMcBsmABC ):
106
+ class OusvMcCond (sv .SvABC , sv .CondMcBsmABC ):
107
107
"""
108
108
OUSV model with conditional Monte-Carlo simulation
109
109
The SDE of SV is: d sigma_t = mr (theta - sigma_t) dt + vov dB_T
0 commit comments