This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
b-coordinates.xml
321 lines (291 loc) · 17 KB
/
b-coordinates.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<restrict-version versions="1554 default">
<section xml:id="bases-as-coord-systems">
<title>Bases as Coordinate Systems</title>
<objectives>
<ol>
<li>Learn to view a basis as a coordinate system on a subspace.</li>
<li><em>Recipes:</em> compute the <m>\cB</m>-coordinates of a vector, compute the usual coordinates of a vector from its <m>\cB</m>-coordinates.</li>
<li><em>Picture:</em> the <m>\cB</m>-coordinates of a vector using its location on a nonstandard coordinate grid.</li>
<li><em>Vocabulary word:</em> <term><m>\cB</m>-coordinates</term>.</li>
</ol>
</objectives>
<p>
In this section, we interpret a basis of a subspace <m>V</m> as a <em>coordinate system</em> on <m>V</m>, and we learn how to write a vector in <m>V</m> in that coordinate system.
</p>
<fact xml:id="dimension-unique-coeff">
<idx><h>Basis</h><h>uniqueness with respect to</h></idx>
<idx><h>Basis</h><h>coordinates with respect to</h><see><m>\cB</m>-coordinates</see></idx>
<statement>
<p>
If <m>\cB = \{v_1,v_2,\ldots,v_m\}</m> is a basis for a subspace <m>V</m>, then any vector <m>x</m> in <m>V</m> can be written as a linear combination
<me>x = c_1v_1 + c_2v_2 + \cdots + c_mv_m</me>
in exactly one way.
</p>
</statement>
<proof>
<p>
Recall that to say <m>\cB</m> is a <em>basis</em> for <m>V</m> means that <m>\cB</m> spans <m>V</m> and <m>\cB</m> is linearly independent. Since <m>\cB</m> spans <m>V</m>, we can write any <m>x</m> in <m>V</m> as a linear combination of <m>v_1,v_2,\ldots,v_m</m>. For uniqueness, suppose that we had two such expressions:
<md>
<mrow>x &= c_1v_1 + c_2v_2 + \cdots + c_mv_m</mrow>
<mrow>x &= c_1'v_1 + c_2'v_2 + \cdots + c_m'v_m.</mrow>
</md>
Subtracting the first equation from the second yields
<me>0 = x-x = (c_1-c_1')v_1 + (c_2-c_2')v_2 + \cdots + (c_m-c_m')v_m.</me>
Since <m>\cB</m> is linearly independent, the only solution to the above equation is the trivial solution: all the coefficients must be zero. It follows that <m>c_i-c_i'</m> for all <m>i</m>, which proves that <m>c_1=c_1',\,c_2=c_2',\ldots,\,c_m=c_m'</m>.
</p>
</proof>
</fact>
<specialcase>
<p>
Consider the standard basis of <m>\R^3</m> from this <xref ref="dimension-eg-Rn"/>:
<me>e_1=\vec{1 0 0},\quad e_2=\vec{0 1 0}, \quad e_3=\vec{0 0 1}.</me>
According to the above <xref ref="dimension-unique-coeff"/>, every vector in <m>\R^3</m> can be written as a linear combination of <m>e_1,e_2,e_3</m>, with unique coefficients. For example,
<me>v = \vec{\color{seq1}3 \color{seq2}5 \color{seq3}{-2}}
= \textcolor{seq1}{3}\vec{1 0 0} + \textcolor{seq2}{5}\vec{0 1 0}
\textcolor{seq3}{{}- 2}\vec{0 0 1}
= \textcolor{seq1}{3}e_1 + \textcolor{seq2}{5}e_2
\textcolor{seq3}{{}- 2}e_3.</me>
In this case, <em>the coordinates of <m>v</m> are exactly the coefficients of <m>e_1,e_2,e_3</m>.</em>
</p>
</specialcase>
<p>
What exactly are coordinates, anyway? One way to think of coordinates is that they give directions for how to get to a certain point from the origin. In the above example, the linear combination <m>3e_1+5e_2-2e_3</m> can be thought of as the following list of instructions: start at the origin, travel <m>3</m> units north, then travel <m>5</m> units east, then <m>2</m> units down.
</p>
<definition xml:id="dimension-defn-Bcoords">
<idx><h><m>\cB</m>-coordinates</h><h>definition of</h></idx>
<statement>
<p>
Let <m>\cB=\{v_1,v_2,\ldots,v_m\}</m> be a basis of a subspace <m>V</m>, and let
<me>x = c_1v_1 + c_2v_2 + \cdots + c_mv_m</me>
be a vector in <m>V</m>. The coefficients <m>c_1,c_2,\ldots,c_m</m> are the <term>coordinates of <m>x</m> with respect to <m>\cB</m></term>. The <term><m>\cB</m>-coordinate vector of <m>x</m></term> is the vector
<me>[x]_\cB = \vec{c_1 c_2 \vdots, c_m} \quad\text{in }\R^m.</me>
</p>
</statement>
</definition>
<p>
<idx><h><m>\cB</m>-coordinates</h><h>informally</h></idx>
If we change the basis, then we can still give instructions for how to get to the point <m>(3,5,-2)</m>, but the instructions will be different. Say for example we take the basis
<me>v_1=e_1+e_2 = \vec{1,1,0}, \quad v_2=e_2 = \vec{0 1 0},\quad v_3 =e_3 = \vec{0 0 1}.</me>
We can write <m>(3,5,-2)</m> in this basis as <m>3v_1+2v_2-2v_3</m>. In other words: start at the origin, travel northeast <m>3</m> times as far as <m>v_1</m>, then <m>2</m> units east, then <m>2</m> units down.
In this situation, we can say that <q><m>3</m> is the <m>v_1</m>-coordinate of <m>(3,5,-2)</m>, <m>2</m> is the <m>v_2</m>-coordinate of <m>(3,5,-2)</m>, and <m>-2</m> is the <m>v_3</m>-coordinate of <m>(3,5,-2)</m>.</q>
</p>
<bluebox>
<idx><h><m>\cB</m>-coordinates</h><h>labeling points</h></idx>
<p>
The above <xref ref="dimension-defn-Bcoords"/> gives a way of using <m>\R^m</m> to <em>label</em> the points of a subspace of dimension <m>m</m>: a point is simply labeled by its <m>\cB</m>-coordinate vector. For instance, if we choose a basis for a plane, we can label the points of that plane with the points of <m>\R^2</m>.
</p>
</bluebox>
<example>
<title>A nonstandard coordinate system on <m>\R^2</m></title>
<statement>
<p>
Define
<me>v_1 = \vec{1 1},\; v_2 = \vec{1 -1},\quad \cB = \{v_1,\,v_2\}.</me>
<ol>
<li>Verify that <m>\cB</m> is a basis for <m>\R^2</m>.</li>
<li>If <m>[w]_\cB = {1\choose 2}</m>, then what is <m>w</m>?</li>
<li>Find the <m>\cB</m>-coordinates of <m>v = {5\choose 3}.</m>
</li>
</ol>
</p>
</statement>
<solution>
<p>
<ol>
<li>
By the <xref ref="basis-theorem"/>, any two linearly independent vectors form a basis for <m>\R^2</m>. Clearly <m>v_1,v_2</m> are not multiples of each other, so they are linearly independent.
</li>
<li>
To say <m>[w]_\cB={1\choose 2}</m> means that <m>1</m> is the <m>v_1</m>-coordinate of <m>w</m>, and that <m>2</m> is the <m>v_2</m>-coordinate:
<me>w = v_1 + 2v_2 = \vec{1 1} + 2\vec{1 -1} = \vec{3 -1}.</me>
</li>
<li>
We have to solve the vector equation <m>v=c_1v_1 + c_2v_2</m> in the unknowns <m>c_1,c_2</m>. We form an augmented matrix and row reduce:
<me>\amat{1 1 5; 1 -1 3}
\quad\xrightarrow{\text{RREF}}\quad
\amat{1 0 4; 0 1 1}.</me>
We have <m>c_1=4</m> and <m>c_2=1</m>, so <m>v = 4v_1+v_2</m> and
<m>[v]_\cB = {4\choose1}.</m>
</li>
</ol>
In the following picture, we indicate the coordinate system defined by <m>\cB</m> by drawing lines parallel to the <q><m>v_1</m>-axis</q> and <q><m>v_2</m>-axis</q>. Using this grid it is easy to see that the <m>\cB</m>-coordinates of <m>v</m> are <m>{5\choose 1}</m>, and that the <m>\cB</m>-coordinates of <m>w</m> are <m>{1\choose 2}</m>.
<latex-code>
\begin{tikzpicture}[scale=.7, thin border nodes]
\draw (-6, -6) rectangle (6, 6);
\clip (-6, -6) rectangle (6, 6);
\draw[scale={sqrt(2)}, rotate=45, help lines] (-7, -7) grid (7, 7);
\draw[vector, seq-blue] (0, 0) to["$v_1$" above left] (1, 1);
\draw[vector, seq-green] (0, 0) to["$v_2$" below left] (1, -1);
\point[seq-red, "$w$" {above,text=seq-red}] at (3, -1);
\point[seq-orange, "$v$" {above,text=seq-orange}] at (5, 3);
\point at (0, 0);
\end{tikzpicture}
</latex-code>
This picture could be the grid of streets in <url href="https://www.google.com/maps/place/Palo+Alto,+CA/@37.4387098,-122.1548738,15.75z/data=!4m5!3m4!1s0x808fb07b9dba1c39:0xe1ff55235f576cf!8m2!3d37.4418834!4d-122.1430195?hl=en">Palo Alto, California</url>. Residents of Palo Alto refer to northwest as <q>north</q> and to northeast as <q>east</q>. There is a reason for this: the old road to San Francisco is called El Camino Real, and that road runs from the southeast to the northwest in Palo Alto. So when a Palo Alto resident says <q>go south two blocks and east one block</q>, they are giving directions from the origin to the Whole Foods at <m>w</m>.
</p>
<figure>
<caption>A picture of the basis <m>\cB = \{v_1,v_2\}</m> of <m>\R^2</m>. The grid indicates the coordinate system defined by the basis <m>\cB</m>; one set of lines measures the <m>v_1</m>-coordinate, and the other set measures the <m>v_2</m>-coordinate. Use the sliders to find the <m>\cB</m>-coordinates of <m>w</m>.</caption>
<mathbox source="demos/spans.html?v1=1,1&v2=1,-1&target=3,-1&range=6&&tlabel=w" height="500px"/>
</figure>
</solution>
</example>
<specialcase>
<idx><h><m>\cB</m>-coordinates</h><h>nonstandard grid</h></idx>
<p>
Let
<me>v_1 = \vec[r]{2 -1 1} \quad v_2 = \vec[r]{1 0 -1}.</me>
These form a basis <m>\cB</m> for a plane <m>V = \Span\{v_1,v_2\}</m> in <m>\R^3</m>. We indicate the coordinate system defined by <m>\cB</m> by drawing lines parallel to the <q><m>v_1</m>-axis</q> and <q><m>v_2</m>-axis</q>:
<latex-code>
\begin{tikzpicture}[myxyz, z={(0cm,1.2cm)}, thin border nodes]
\useasboundingbox[resetxy] (-3,-3) rectangle (3,2.3);
\def\v{(2,-1,1)}
\def\w{(1,0,-1)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\begin{scope}[x=(X), y=(Y), transformxy]
\fill[seq4!10, nearly opaque] (-1,-1) rectangle (1,1);
\draw[step=.5cm, seq4!80, thin] (-1,-1) grid (1,1);
\end{scope}
\begin{scope}[x=($.5*(X)$), y=($.5*(Y)$), every label/.append style={fill=none}]
\point[minimum size=1.5mm, seq1, "$u_1$" {seq1, xshift=-2mm}] at (1,1);
\point[minimum size=1.5mm, seq2, "$u_2$" {seq2, right}] at (-1,.5);
\point[minimum size=1.5mm, seq3, "$u_3$" seq3] at (1.5,-.5);
\point[minimum size=1.5mm, seq5, "$u_4$" {seq5, right}] at (0,1.5);
\end{scope}
\draw[vector] (0,0,0) to["$v_1$"'] ($.5*(X)$);
\draw[vector] (0,0,0) to["$v_2$"] ($.5*(Y)$);
\node[x=(X),y=(Y),seq-violet] at (0,-1.2) {$V$};
\point at (0,0,0);
\end{tikzpicture}
</latex-code>
We can see from the picture that the <m>v_1</m>-coordinate of <m>\color{seq-red}u_1</m> is equal to <m>1</m>, as is the <m>v_2</m>-coordinate, so
<m>[\textcolor{seq1}{u_1}]_\cB = {1\choose 1}.</m>
Similarly, we have
<me>
[\textcolor{seq2}{u_2}]_\cB
= \vec[r]{-1 \frac 12}\qquad
[\textcolor{seq3}{u_3}]_\cB
= \vec[r]{\frac 32 -\frac 12}\qquad
[\textcolor{seq5}{u_4}]_\cB
= \vec{0 \frac 32}.
</me>
</p>
<figure xml:id="dimension-coordinates">
<caption>Left: the <m>\cB</m>-coordinates of a vector <m>x</m>. Right: the vector <m>x</m>. The violet grid on the right is a picture of the coordinate system defined by the basis <m>\cB</m>; one set of lines measures the <m>v_1</m>-coordinate, and the other set measures the <m>v_2</m>-coordinate. Drag the heads of the vectors <m>x</m> and <m>[x]_\cB</m> to understand the correspondence between <m>x</m> and its <m>\cB</m>-coordinate vector.
</caption>
<mathbox source="demos/Axequalsb.html?captions=basis&mat=2,1:-1,0:1,-1&range2=5" height="500px"/>
</figure>
</specialcase>
<example>
<title>A coordinate system on a plane</title>
<statement>
<p>
Define
<me>v_1 = \vec{1 0 1},\; v_2 = \vec{1 1 1},\quad
\cB = \{v_1,\,v_2\}, \quad V = \Span\{v_1,\,v_2\}.</me>
<ol>
<li>Verify that <m>\cB</m> is a basis for <m>V</m>.</li>
<li>If <m>[w]_\cB = {5\choose 2}</m>, then what is <m>w</m>?</li>
<li>Find the <m>\cB</m>-coordinates of
<m>v = \vec{5 3 5}.</m>
</li>
</ol>
</p>
</statement>
<solution>
<p>
<ol>
<li>
We need to verify that <m>\cB</m> spans <m>V</m>, and that it is linearly independent. By definition, <m>V</m> is the span of <m>\cB</m>; since <m>v_1</m> and <m>v_2</m> are not multiples of each other, they are linearly independent. This shows in particular that <m>V</m> is a <em>plane</em>.
</li>
<li>
To say <m>[w]_\cB={5\choose 2}</m> means that <m>5</m> is the <m>v_1</m>-coordinate of <m>w</m>, and that <m>2</m> is the <m>v_2</m>-coordinate:
<me>w = 5v_1 + 2v_2 = 5\vec{1 0 1} + 2\vec{1 1 1} = \vec{7 2 7}.</me>
</li>
<li>
We have to solve the vector equation <m>v=c_1v_1 + c_2v_2</m> in the unknowns <m>c_1,c_2</m>. We form an augmented matrix and row reduce:
<me>\amat{1 1 5; 0 1 3; 1 1 5}
\quad\xrightarrow{\text{RREF}}\quad
\amat{1 0 2; 0 1 3; 0 0 0}.</me>
We have <m>c_1=2</m> and <m>c_2=3</m>, so <m>v = 2v_1+3v_2</m> and
<m>[v]_\cB = {2\choose 3}.</m>
</li>
</ol>
</p>
<figure xml:id="dimension-coordinates-1">
<caption>A picture of the plane <m>V</m> and the basis <m>\cB = \{v_1,v_2\}</m>. The violet grid is a picture of the coordinate system defined by the basis <m>\cB</m>; one set of lines measures the <m>v_1</m>-coordinate, and the other set measures the <m>v_2</m>-coordinate. Use the sliders to find the <m>\cB</m>-coordinates of <m>v</m>.</caption>
<mathbox source="demos/spans.html?v1=1,0,1&v2=1,1,1&target=5,3,5&range=6&camera=-3,0,2&tlabel=v" height="500px"/>
</figure>
</solution>
</example>
<example>
<title>A coordinate system on another plane</title>
<statement>
<p>Define
<me>v_1 = \vec{2 3 2},\; v_2 = \vec[r]{-1 1 1},\; v_3 = \vec{2 8 6},\quad
V = \Span\{v_1,\,v_2,\,v_3\}.
</me>
<ol>
<li>Find a basis <m>\cB</m> for <m>V</m>.</li>
<li>Find the <m>\cB</m>-coordinates of <m>x = \vec{4 11 8}</m>.</li>
</ol>
</p>
</statement>
<solution>
<p>
<ol>
<li>
We write <m>V</m> as the column space of a matrix <m>A</m>, then row reduce to find the pivot columns, as in this <xref ref="dimension-eg-basis-span"/>.
<me>A = \mat{2 -1 2; 3 1 8; 2 1 6} \quad\xrightarrow{\text{RREF}}\quad
\mat{1 0 2; 0 1 2; 0 0 0}.
</me>
The first two columns are pivot columns, so we can take <m>\cB=\{v_1,v_2\}</m> as our basis for <m>V</m>.
</li>
<li>
We have to solve the vector equation <m>x = c_1v_1 + c_2v_2</m>. We form an augmented matrix and row reduce:
<me>\amat{2 -1 4; 3 1 11; 2 1 8}
\quad\xrightarrow{\text{RREF}}\quad
\amat{1 0 3; 0 1 2; 0 0 0}.</me>
We have <m>c_1 = 3</m> and <m>c_2 = 2</m>, so
<m>x=3v_1 + 2v_2</m>, and thus <m>[x]_\cB = {3\choose 2}.</m>
</li>
</ol>
</p>
<figure xml:id="dimension-coordinates-2">
<caption>A picture of the plane <m>V</m> and the basis <m>\cB = \{v_1,v_2\}</m>. The violet grid is a picture of the coordinate system defined by the basis <m>\cB</m>; one set of lines measures the <m>v_1</m>-coordinate, and the other set measures the <m>v_2</m>-coordinate. Use the sliders to find the <m>\cB</m>-coordinates of <m>x</m>.</caption>
<mathbox source="demos/spans.html?v1=2,3,2&v2=-1,1,1&target=4,11,8&tlabel=x&range=12&camera=.5,-3,2&tlabel=x" height="500px"/>
</figure>
</solution>
</example>
<bluebox>
<title>Recipes: <m>\cB</m>-coordinates</title>
<idx><h><m>\cB</m>-coordinates</h><h>computing</h><h>row reduction</h></idx>
<p>
If <m>\cB = \{v_1,v_2,\ldots,v_m\}</m> is a basis for a subspace <m>V</m> and <m>x</m> is in <m>V</m>, then
<me>[x]_\cB = \vec{c_1 c_2 \vdots, c_m} \sptxt{means}
x = c_1v_1 + c_2v_2 + \cdots + c_mv_m.
</me>
Finding the <m>\cB</m>-coordinates of <m>x</m> means solving the vector equation
<me>x = c_1v_1 + c_2v_2 + \cdots + c_mv_m</me>
in the unknowns <m>c_1,c_2,\ldots,c_m</m>. This generally means row reducing the augmented matrix
<me>\amat[c]{| | ,, | |; v_1 v_2 \cdots, v_m x; | | ,, | |}.</me>
</p>
</bluebox>
<remark>
<p>
Let <m>\cB = \{v_1,v_2,\ldots,v_m\}</m> be a basis of a subspace <m>V</m>.
Finding the <m>\cB</m>-coordinates of a vector <m>x</m> means solving the vector equation
<me>x = c_1v_1 + c_2v_2 + \cdots + c_mv_m.</me>
If <m>x</m> is <em>not</em> in <m>V</m>, then this equation has no solution, as <m>x</m> is not in <m>V = \Span\{v_1,v_2,\ldots,v_m\}</m>. In other words, the above equation is <em>inconsistent</em> when <m>x</m> is not in <m>V</m>.
</p>
</remark>
</section>
</restrict-version>