This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
determinant-definitions-properties.xml
1239 lines (1160 loc) · 56.1 KB
/
determinant-definitions-properties.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="determinants-definitions-properties">
<title>Determinants: Definition</title>
<objectives>
<ol>
<li>Learn the definition of the determinant.</li>
<li>Learn some ways to eyeball a matrix with zero determinant, and how to compute determinants of upper- and lower-triangular matrices.</li>
<li>Learn the basic properties of the determinant, and how to apply them.</li>
<li><em>Recipe:</em> compute the determinant using row and column operations.</li>
<li><em>Theorems:</em> existence theorem, invertibility property, multiplicativity property, transpose property.</li>
<li><em>Vocabulary words:</em> <term>diagonal</term>, <term>upper-triangular</term>, <term>lower-triangular</term>, <term>transpose</term>.</li>
<li><em>Essential vocabulary word:</em> <term>determinant</term>.</li>
</ol>
</objectives>
<introduction>
<p>
In this section, we define the determinant, and we present one way to compute it. Then we discuss some of the many wonderful properties the determinant enjoys.
</p>
</introduction>
<subsection>
<title>The Definition of the Determinant</title>
<p>
The determinant of a square matrix <m>A</m> is a real number <m>\det(A)</m>. It is defined via its behavior with respect to row operations; this means we can use row reduction to compute it. We will give a recursive formula for the determinant in <xref ref="determinants-cofactors"/>. We will also show in this <xref ref="det-defn-magic-props"/> that the determinant is related to invertibility, and in <xref ref="determinants-volumes"/> that it is related to volumes.
</p>
<essential xml:id="det-defn-the-defn">
<idx><h>Determinant</h><h>defining properties of</h></idx>
<idx><h>Matrix</h><h>determinant of</h><see>Determinant</see></idx>
<idx><h>Determinant</h><h>identity matrix</h></idx>
<idx><h>Identity matrix</h><h>determinant of</h></idx>
<idx><h>Row operations</h><h>and determinants</h></idx>
<idx><h>Determinant</h><h>and row operations</h></idx>
<notation><usage>\det(A)</usage><description>The determinant of a matrix</description></notation>
<statement>
<p>
The <term>determinant</term> is a function
<me>\det\colon \bigl\{\text{square matrices}\bigr\}\To\R</me>
satisfying the following properties:
<ol>
<li>
Doing a row replacement on <m>A</m> does not change <m>\det(A)</m>.
</li>
<li>
Scaling a row of <m>A</m> by a scalar <m>c</m> multiplies the determinant by <m>c</m>.
</li>
<li>
Swapping two rows of a matrix multiplies the determinant by <m>-1</m>.
</li>
<li>
The determinant of the identity matrix <m>I_n</m> is equal to <m>1</m>.
</li>
</ol>
</p>
</statement>
</essential>
<p>
In other words, to every square matrix <m>A</m> we assign a number <m>\det(A)</m> in a way that satisfies the above properties.
</p>
<p>
In each of the first three cases, doing a row operation on a matrix scales the determinant by a <em>nonzero</em> number. (Multiplying a row by zero is not a row operation.) Therefore, doing row operations on a square matrix <m>A</m> does not change whether or not the determinant is zero.
</p>
<p>
The main motivation behind using these particular defining properties is geometric:
see <xref ref="determinants-volumes"/>. Another motivation for this definition is that it tells us how to compute the determinant: we row reduce and keep track of the changes.
</p>
<specialcase>
<p>
Let us compute <m>\det\smallmat2114.</m>
First we row reduce, then we compute the determinant in the opposite order:
<md>
<mrow>
\amp\mat{2 1; 1 4} \amp\strut\det\amp=7
</mrow>
<mrow>
\;\xrightarrow{\hbox to 1.7cm{\hss\tiny$R_1\longleftrightarrow R_2$\hss}}\;\amp
\mat{1 4; 2 1} \amp \strut\det \amp= -7
</mrow>
<mrow>
\;\xrightarrow{\hbox to 1.7cm{\hss\tiny$R_2 = R_2 - 2R_1$\hss}}\;\amp
\mat{1 4; 0 -7} \amp \strut\det \amp= -7
</mrow>
<mrow>
\;\xrightarrow{\hbox to 1.7cm{\hss\tiny$R_2 = R_2 \div -7$\hss}}\;\amp
\mat{1 4; 0 1} \amp \strut\det \amp= 1
</mrow>
<mrow>
\;\xrightarrow{\hbox to 1.7cm{\hss\tiny$R_1 = R_1 - 4R_2$\hss}}\;\amp
\mat{1 0; 0 1} \amp \strut\det \amp= 1
</mrow>
</md>
The reduced row echelon form of the matrix is the identity matrix <m>I_2</m>, so its determinant is <m>1</m>. The second-last step in the row reduction was a row replacement, so the second-final matrix also has determinant <m>1</m>. The previous step in the row reduction was a row scaling by <m>-1/7</m>; since (the determinant of the second matrix times <m>-1/7</m>) is <m>1</m>, the determinant of the second matrix must be <m>-7</m>. The first step in the row reduction was a row swap, so the determinant of the first matrix is negative the determinant of the second. Thus, the determinant of the original matrix is <m>7</m>.
</p>
<p>
Note that our answer agrees with this <xref ref="matrix-inv-def-det" text="title">definition</xref> of the determinant.
</p>
</specialcase>
<example>
<statement>
<p>Compute <m>\det\mat{1 0; 0 3}.</m></p>
</statement>
<solution>
<p>
Let <m>A=\mat{1 0; 0 3}</m>. Since <m>A</m> is obtained from <m>I_2</m> by multiplying the second row by the constant <m>3</m>, we have
<me>\det(A)=3\det(I_2)=3\cdot 1=3.</me>
</p>
<p>
Note that our answer agrees with this <xref ref="matrix-inv-def-det" text="title">definition</xref> of the determinant.
</p>
</solution>
</example>
<example>
<statement>
<p>
Compute <m>\det\mat{1 0 0;0 0 1;5 1 0}.</m>
</p>
</statement>
<solution>
<p>
First we row reduce, then we compute the determinant in the opposite order:
<md>
<mrow>
\amp\mat{1 0 0;0 0 1;5 1 0} \amp\strut\det\amp=-1
</mrow>
<mrow>
\;\xrightarrow{\hbox to 1.7cm{\hss\tiny$R_2\longleftrightarrow R_3$\hss}}\;\amp
\mat{1 0 0;5 1 0; 0 0 1} \amp \strut\det \amp= 1
</mrow>
<mrow>
\;\xrightarrow{\hbox to 1.7cm{\hss\tiny$R_2 = R_2 - 5R_1$\hss}}\;\amp
\mat{1 0 0; 0 1 0; 0 0 1} \amp \strut\det \amp= 1
</mrow>
</md>
The reduced row echelon form is <m>I_3</m>, which has determinant <m>1</m>.
Working backwards from <m>I_3</m> and using the four <xref ref="det-defn-the-defn">defining properties</xref>, we see that the second matrix also has determinant <m>1</m> (it differs from <m>I_3</m> by a row replacement), and the first matrix has determinant <m>-1</m> (it differs from the second by a row swap).
</p>
</solution>
</example>
<p>
Here is the general method for computing determinants using row reduction.
</p>
<bluebox xml:id="det-defn-ref-compute" type-name="Recipe">
<title>Recipe: Computing determinants by row reducing</title>
<idx><h>Determinant</h><h>computation of</h><h>row reduction</h></idx>
<idx><h>Row reduction</h><h>computing determinants</h></idx>
<p>
Let <m>A</m> be a square matrix. Suppose that you do some number of row operations on <m>A</m> to obtain a matrix <m>B</m> in row echelon form. Then
<me>
\det(A) = (-1)^r\cdot
\frac{\text{(product of the diagonal entries of $B$)}}
{\text{(product of scaling factors used)}},
</me>
where <m>r</m> is the number of row swaps performed.
</p>
</bluebox>
<p>
In other words, the determinant of <m>A</m> is the product of diagonal entries of the row echelon form <m>B</m>, times a factor of <m>\pm1</m> coming from the number of row swaps you made, divided by the product of the scaling factors used in the row reduction.
</p>
<remark>
<p>
This is an efficient way of computing the determinant of a large matrix, either by hand or by computer. The computational complexity of row reduction is <m>O(n^3)</m>; by contrast, the cofactor expansion algorithm we will learn in <xref ref="determinants-cofactors"/> has complexity <m>O(n!)\approx O(n^n\sqrt n)</m>, which is much larger. (Cofactor expansion has other uses.)
</p>
</remark>
<example>
<statement>
<p>Compute <m>\det\mat{0 -7 -4; 2 4 6; 3 7 -1}.</m></p>
</statement>
<solution>
<p>
We row reduce the matrix, keeping track of the number of row swaps and of the scaling factors used.
<latex-code>
\begin{minipage}{10cm} % needed for pdf version
\def\rowop#1#2#3{%
\hbox to 4.2cm{\hss$\xrightarrow{#1}$\;}%
\hbox to 3cm{#2\hss}%
\hbox to 3cm{\hskip3mm\begin{minipage}{3.3cm}#3\end{minipage}\hss}%
}
\leavevmode\rlap{\hbox{$\mat{0 -7 -4; 2 4 6; 3 7 -1}$}}%
\rowop{R_1\longleftrightarrow R_2}{$\mat{2 4 6; 0 -7 -4; 3 7 -1}$}{$r=1$}\\
\rowop{R_1 = R_1 \div 2}{$\mat{1 2 3; 0 -7 -4; 3 7 -1}$}{scaling factors${}=\frac 12$}\\
\rowop{R_3 = R_3 - 3R_1}{$\mat{1 2 3; 0 -7 -4; 0 1 -10}$}{}\\
\rowop{R_2\longleftrightarrow R_3}{$\mat{1 2 3; 0 1 -10; 0 -7 -4}$}{$r=2$}\\
\rowop{R_3 = R_3 + 7R_2}{$\mat{1 2 3; 0 1 -10; 0 0 -74}$}{}
\end{minipage}
</latex-code>
We made two row swaps and scaled once by a factor of <m>1/2</m>, so the <xref ref="det-defn-ref-compute"/> says that
<me>\det\mat{0 -7 -4; 2 4 6; 3 7 -1} = (-1)^2\cdot\frac{1\cdot 1\cdot(-74)}{1/2} = -148.</me>
</p>
</solution>
</example>
<example>
<statement>
<p>Compute <m>\det\mat{1 2 3;2 -1 1;3 0 1}.</m></p>
</statement>
<solution>
<p>
We row reduce the matrix, keeping track of the number of row swaps and of the scaling factors used.
<latex-code>
\begin{minipage}{10cm} % needed for pdf version
\def\rowop#1#2#3#4{%
\hbox to 4.5cm{\hss$\xrightarrow[#2]{#1}$\;}%
\hbox to 2.7cm{#3\hss}%
\hbox to 3cm{\hskip3mm\begin{minipage}{10cm}#4\end{minipage}\hss}%
}
\leavevmode\rlap{\hbox{$\mat{1 2 3; 2 -1 1; 3 0 1}$}}%
\rowop{R_2=R_2-2R_1}{R_3=R_3-3R_1}{$\mat{1 2 3; 0 -5 -5; 0 -6 -8}$}{}\\
\rowop{R_2=R_2\div-5}{}{$\mat{1 2 3; 0 1 1; 0 -6 -8}$}{scaling factors${}=-\frac 15$}\\
\rowop{R_3=R_3+6R_2}{}{$\mat{1 2 3; 0 1 1; 0 0 -2}$}{}
\end{minipage}
</latex-code>
We did not make any row swaps, and we scaled once by a factor of <m>-1/5</m>, so the <xref ref="det-defn-ref-compute"/> says that
<me>\det\mat{1 2 3; 2 -1 1; 3 0 1} = \frac{1\cdot 1\cdot(-2)}{-1/5} = 10.</me>
</p>
</solution>
</example>
<specialcase xml:id="det-defn-22-again">
<title>The determinant of a <m>2\times 2</m> matrix</title>
<idx><h>Determinant</h><h>of a <m>2\times 2</m> matrix</h></idx>
<p>
Let us use the <xref ref="det-defn-ref-compute"/> to compute the determinant of a general <m>2\times 2</m> matrix <m>A = \smallmat abcd</m>.
<ul>
<li>
If <m>a = 0</m>, then
<me>
\det\mat{a b; c d} = \det\mat{0 b; c d} = -\det\mat{c d; 0 b} = -bc.
</me>
</li>
<li>
If <m>a\neq 0</m>, then
<me>
\begin{split}
\det\mat{a b; c d} \amp= a\cdot\det\mat{1 b/a; c d}
= a\cdot\det\mat{1 b/a; 0 d-c\cdot b/a} \\
\amp= a\cdot 1\cdot(d-bc/a) = ad-bc.
\end{split}
</me>
</li>
</ul>
In either case, we recover the <xref ref="matrix-inv-def-det">formula</xref>:
<me>\det\mat{a b; c d} = ad-bc.</me>
</p>
</specialcase>
<p>
If a matrix is already in row echelon form, then you can simply read off the determinant as the product of the diagonal entries. It turns out this is true for a slightly larger class of matrices called <em>triangular</em>.
</p>
<definition>
<idx><h>Matrix</h><h>diagonal entries of</h></idx>
<idx><h>Matrix</h><h>upper-triangular</h></idx>
<idx><h>Matrix</h><h>lower-triangular</h></idx>
<idx><h>Diagonal</h><h>see Matrix</h></idx>
<idx><h>Upper-triangular</h><h>see Matrix</h></idx>
<idx><h>Lower-triangular</h><h>see Matrix</h></idx>
<statement>
<p>
<ul>
<li>
The <term>diagonal</term> entries of a matrix <m>A</m> are the entries <m>a_{11},a_{22},\ldots</m>:
<latex-code>
<![CDATA[
\tikzstyle{circle entry} = [draw,rounded corners,thick,blue!50,inner sep=2pt]
\begin{tikzpicture}
\matrix[math matrix, nodes={minimum width=1em, minimum height=1em}] (mat1)
{
\node[circle entry]{a_{11}}; \& a_{12} \& a_{13} \& a_{14} \\
a_{21} \& \node[circle entry]{a_{22}}; \& a_{23} \& a_{24} \\
a_{31} \& a_{32} \& \node[circle entry]{a_{33}}; \& a_{34} \\
};
\matrix[math matrix, nodes={minimum width=1em, minimum height=1em}, xshift=4.75cm] (mat2)
{
\node[circle entry]{a_{11}}; \& a_{12} \& a_{13} \\
a_{21} \& \node[circle entry]{a_{22}}; \& a_{23} \\
a_{31} \& a_{32} \& \node[circle entry]{a_{33}}; \\
a_{41} \& a_{42} \& a_{43} \\
};
\node[circle entry] at (4.75/2, 1.6) {diagonal entries};
\end{tikzpicture}
]]>
</latex-code>
</li>
<li>
A square matrix is called <term>upper-triangular</term> if its nonzero entries all lie above the diagonal, and it is called <term>lower-triangular</term> if its nonzero entries all lie below the diagonal. It is called <term>diagonal</term> if all of its nonzero entries lie on the diagonal, i.e., if it is both upper-triangular and lower-triangular.
<latex-code>
<![CDATA[
\pgfdeclarelayer{background}
\pgfsetlayers{background,main}
\begin{tikzpicture}
\node[math matrix, nodes={minimum width=1em,minimum height=1em}] (ut) {
\star \& \star \& \star \& \star \\
0 \& \star \& \star \& \star \\
0 \& 0 \& \star \& \star \\
0 \& 0 \& 0 \& \star \\
};
\node[above] at (ut.north) {upper-triangular};
\begin{pgfonlayer}{background}
\fill[fill=seq-green!20!white, rounded corners=1.4mm]
($(ut-1-1.west)+(-1mm,0)$)
-- (ut-1-1.north west)
-- (ut-1-4.north east)
-- (ut-4-4.south east)
-- ($(ut-4-4.south)+(0,-1mm)$)
-- cycle;
\end{pgfonlayer}
\end{tikzpicture}
\qquad\qquad
\begin{tikzpicture}
\node[math matrix, nodes={minimum width=1em,minimum height=1em}] (lt) {
\star \& 0 \& 0 \& 0 \\
\star \& \star \& 0 \& 0 \\
\star \& \star \& \star \& 0 \\
\star \& \star \& \star \& \star \\
};
\node[above] at (lt.north) {lower-triangular};
\begin{pgfonlayer}{background}
\fill[fill=seq-green!20!white, rounded corners=1.4mm]
($(lt-1-1.north)+(0,1mm)$)
-- (lt-1-1.north west)
-- (lt-4-1.south west)
-- (lt-4-4.south east)
-- ($(lt-4-4.east)+(1mm,0)$)
-- cycle;
\end{pgfonlayer}
\end{tikzpicture}
\qquad\qquad
\begin{tikzpicture}
\node[math matrix, nodes={minimum width=1em,minimum height=1em}] (diag) {
\star \& 0 \& 0 \& 0 \\
0 \& \star \& 0 \& 0 \\
0 \& 0 \& \star \& 0 \\
0 \& 0 \& 0 \& \star \\
};
\node[above] at (diag.north) {diagonal};
\begin{pgfonlayer}{background}
\fill[fill=seq-green!20!white, rounded corners=2mm]
($(diag-1-1.west)+(-1mm,0)$)
-- ($(diag-1-1.north)+(0,1mm)$)
-- ($(diag-4-4.east)+(1mm,0)$)
-- ($(diag-4-4.south)+(0,-1mm)$) -- cycle;
\end{pgfonlayer}
\end{tikzpicture}
]]>
</latex-code>
</li>
</ul>
</p>
</statement>
</definition>
<proposition xml:id="defn-det-special-case">
<idx><h>Matrix</h><h>upper-triangular</h><h>determinant of</h></idx>
<idx><h>Matrix</h><h>lower-triangular</h><h>determinant of</h></idx>
<statement>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix.
<ol>
<li>
If <m>A</m> has a zero row or column, then <m>\det(A) = 0.</m>
</li>
<li>
If <m>A</m> is upper-triangular or lower-triangular, then <m>\det(A)</m> is the product of its diagonal entries.
</li>
</ol>
</p>
</statement>
<proof visible="true">
<p>
<ol>
<li>
<p>
Suppose that <m>A</m> has a zero row. Let <m>B</m> be the matrix obtained by negating the zero row. Then <m>\det(A) = -\det(B)</m> by the second <xref ref="det-defn-the-defn">defining property</xref>. But <m>A = B</m>, so <m>\det(A) = \det(B)</m>:
<me>
\mat{1 2 3; 0 0 0; 7 8 9}
\;\xrightarrow{R_2 = -R_2}\;
\mat{1 2 3; 0 0 0; 7 8 9}.
</me>
Putting these together yields <m>\det(A) = -\det(A)</m>, so <m>\det(A)=0</m>.
</p>
<p>
Now suppose that <m>A</m> has a zero column. Then <m>A</m> is not invertible by the <xref ref="imt-1"/>, so its reduced row echelon form has a zero row. Since row operations do not change whether the determinant is zero, we conclude <m>\det(A)=0</m>.
</p>
</li>
<li>
<p>
First suppose that <m>A</m> is upper-triangular, and that one of the diagonal entries is zero, say <m>a_{ii}=0</m>. We can perform row operations to clear the entries above the nonzero diagonal entries:
<me>
\mat{a_{11} \star, \star, \star;
0 a_{22} \star, \star; 0 0 0 \star; 0 0 0 a_{44}}
\;\xrightarrow{\phantom{MMM}}\;
\mat{a_{11} 0, \star, 0;
0 a_{22} \star, 0; 0 0 0 0; 0 0 0 a_{44}}
</me>
In the resulting matrix, the <m>i</m>th row is zero, so <m>\det(A) = 0</m> by the first part.
</p>
<p>
Still assuming that <m>A</m> is upper-triangular, now suppose that all of the diagonal entries of <m>A</m> are nonzero. Then <m>A</m> can be transformed to the identity matrix by scaling the diagonal entries and then doing row replacements:
<me>
\begin{split} \amp\mat{a \star, \star; 0 b \star; 0 0 c}
\;\xrightarrow{%
\begin{minipage}{1.8cm}%
\tiny\centering scale by\\$a\inv,b\inv,c\inv$%
\end{minipage}}\;
\mat{1 \star, \star; 0 1 \star; 0 0 1}
\;\xrightarrow{%
\begin{minipage}{1.6cm}%
\tiny\centering row\\replacements%
\end{minipage}}\;
\mat{1 0 0; 0 1 0; 0 0 1} \\
\amp
\hbox to 2.1cm{\hss$\det=abc$\hss} \;\xleftarrow{\hbox to 1.8cm{\hss}}\;
\hbox to 2.1cm{\hss$\det=1$\hss} \;\xleftarrow{\hbox to 1.6cm{\hss}}\;
\hbox to 1.8cm{\hss$\det=1$}
\end{split}
</me>
Since <m>\det(I_n) = 1</m> and we scaled by the reciprocals of the diagonal entries, this implies <m>\det(A)</m> is the product of the diagonal entries.
</p>
<p>
The same argument works for lower triangular matrices, except that the the row replacements go down instead of up.
</p>
</li>
</ol>
</p>
</proof>
</proposition>
<example>
<statement>
<p>
Compute the determinants of these matrices:
<me>
\mat{1 2 3; 0 4 5; 0 0 6} \qquad
\mat{-20 0 0; \pi, 0 0; 100 3 -7} \qquad
\mat{17 -3 4; 0 0 0; 11/2 1 e}.
</me>
</p>
</statement>
<solution>
<p>
The first matrix is upper-triangular, the second is lower-triangular, and the third has a zero row:
<md>
<mrow>
\det\mat{1 2 3; 0 4 5; 0 0 6} \amp= 1 \cdot 4 \cdot 6 = 24
</mrow>
<mrow>
\det\mat{-20 0 0; \pi, 0 0; 100 3 -7} \amp= -20 \cdot 0 \cdot -7 = 0
</mrow>
<mrow>
\det\mat{17 -3 4; 0 0 0; 11/2 1 e} \amp= 0.
</mrow>
</md>
</p>
</solution>
</example>
<p>
A matrix can always be transformed into row echelon form by a series of row operations, and a matrix in row echelon form is upper-triangular. Therefore, we have completely justified the <xref ref="det-defn-ref-compute"/> for computing the determinant.
</p>
<p>
The determinant is characterized by its <xref ref="det-defn-the-defn">defining properties</xref>, since we can compute the determinant of any matrix using row reduction, as in the above <xref ref="det-defn-ref-compute"/>. However, we have not yet proved the existence of a function satisfying the defining properties! Row reducing will compute the determinant <em>if it exists</em>, but we cannot use row reduction to prove existence, because we do not yet know that you compute the same number by row reducing in two different ways.
</p>
<theorem xml:id="det-defn-unique">
<title>Existence of the determinant</title>
<idx><h>Determinant</h><h>existence and uniqueness of</h></idx>
<statement>
<p>
There exists one and only one function from the set of square matrices to the real numbers, that satisfies the four <xref ref="det-defn-the-defn">defining properties</xref>.
</p>
</statement>
</theorem>
<p>
We will prove the existence theorem in <xref ref="determinants-cofactors"/>, by exhibiting a recursive formula for the determinant.
Again, the real content of the existence theorem is:
</p>
<bluebox>
<p>
No matter which row operations you do, you will always compute the same value for the determinant.
</p>
</bluebox>
</subsection>
<subsection xml:id="det-defn-magic-props">
<title>Magical Properties of the Determinant</title>
<p>
In this subsection, we will discuss a number of the amazing properties enjoyed by the determinant: the <xref ref="det-defn-invert-prop">invertibility property</xref>, the <xref ref="det-defn-mult-prop">multiplicativity property</xref>, and the <xref ref="det-defn-trans-prop">transpose property</xref>.
</p>
<proposition hide-type="true" xml:id="det-defn-invert-prop">
<title>Invertibility Property</title>
<idx><h>Determinant</h><h>invertibility property</h></idx>
<idx><h>Invertible matrix</h><h>determinant of</h></idx>
<statement>
<p>A square matrix is invertible if and only if <m>\det(A)\neq 0</m>.</p>
</statement>
<proof>
<p>
If <m>A</m> is invertible, then it has a pivot in every row and column by the <xref ref="imt-1"/>, so its reduced row echelon form is the identity matrix. Since row operations do not change whether the determinant is zero, and since <m>\det(I_n) = 1</m>, this implies <m>\det(A)\neq 0.</m> Conversely, if <m>A</m> is not invertible, then it is row equivalent to a matrix with a zero row. Again, row operations do not change whether the determinant is nonzero, so in this case <m>\det(A) = 0.</m>
</p>
</proof>
</proposition>
<p>
By the invertibility property, a matrix that does not satisfy any of the properties of the <xref ref="imt-1"/> has zero determinant.
</p>
<corollary xml:id="det-defn-dep-det0">
<idx><h>Linear independence</h><h>and determinants</h></idx>
<statement>
<p>
Let <m>A</m> be a square matrix. If the rows or columns of <m>A</m> are linearly dependent, then <m>\det(A)=0</m>.
</p>
</statement>
<proof>
<p>
If the columns of <m>A</m> are linearly dependent, then <m>A</m> is not invertible by condition 4 of the <xref ref="imt-1"/>. Suppose now that the rows of <m>A</m> are linearly dependent. If <m>r_1,r_2,\ldots,r_n</m> are the rows of <m>A</m>, then one of the rows is in the span of the others, so we have an equation like
<me>r_2 = 3r_1 - r_3 + 2r_4.</me>
If we perform the following row operations on <m>A</m>:
<me>
R_2 = R_2 - 3R_1;\quad
R_2 = R_2 + R_3;\quad
R_2 = R_2 - 2R_4
</me>
then the second row of the resulting matrix is zero. Hence <m>A</m> is not invertible in this case either.
</p>
<p>
Alternatively, if the rows of <m>A</m> are linearly dependent, then one can combine condition 4 of the <xref ref="imt-1"/> and the <xref ref="det-defn-trans-prop">transpose property</xref> below to conclude that <m>\det(A)=0</m>.
</p>
</proof>
</corollary>
<p>
In particular, if two rows/columns of <m>A</m> are multiples of each other, then <m>\det(A)=0.</m> We also recover the fact that a matrix with a row or column of zeros has determinant zero.
</p>
<example>
<p>
The following matrices all have zero determinant:
<me>
\mat{0 2 -1; 0 5 10; 0 -7 3},\quad
\mat{5 -15 11; 3 -9 2; 2 -6 16},\quad
\mat{3 1 2 4; 0 0 0 0; 4 2 5 12; -1 3 4 8},\quad
\mat{\pi, e 11; 3\pi, 3e 33; 12 -7 2}.
</me>
</p>
</example>
<p>
The proofs of the <xref ref="det-defn-mult-prop">multiplicativity property</xref> and the <xref ref="det-defn-trans-prop">transpose property</xref> below, as well as the <xref ref="det-cofact-expansion">cofactor expansion theorem</xref> and the <xref ref="det-is-volume">determinants and volumes theorem</xref>, use the following strategy: define another function <m>d\colon\{\text{$n\times n$ matrices}\} \to \R</m>, and prove that <m>d</m> satisfies the same four defining properties as the determinant. By the <xref ref="det-defn-unique">existence theorem</xref>, <em>the function <m>d</m> is equal to the determinant</em>. This is an advantage of defining a function via its properties: in order to prove it is equal to another function, one only has to check the defining properties.
</p>
<proposition hide-type="true" xml:id="det-defn-mult-prop">
<title>Multiplicativity Property</title>
<idx><h>Determinant</h><h>multiplicativity property</h></idx>
<idx><h>Matrix multiplication</h><h>determinant of</h></idx>
<statement>
<p>
If <m>A</m> and <m>B</m> are <m>n\times n</m> matrices, then
<me>\det(AB) = \det(A)\det(B).</me>
</p>
</statement>
<proof>
<p>
In this proof, we need to use the notion of an <term>elementary matrix</term>. This is a matrix obtained by doing one row operation to the identity matrix. There are three kinds of elementary matrices: those arising from row replacement, row scaling, and row swaps:
<me>
\begin{split}
\mat{1 0 0; 0 1 0; 0 0 1} \xrightarrow{\parbox{2cm}{\tiny\centering$R_2 = R_2 - 2R_1$}}\amp
\mat{1 0 0; -2 1 0; 0 0 1} \\
\mat{1 0 0; 0 1 0; 0 0 1} \xrightarrow{\parbox{2cm}{\tiny\centering$R_1 = 3R_1$}}\amp
\mat{3 0 0; 0 1 0; 0 0 1} \\
\mat{1 0 0; 0 1 0; 0 0 1} \xrightarrow{\parbox{2cm}{\tiny\centering$R_1 \longleftrightarrow R_2$}}\amp
\mat{0 1 0; 1 0 0; 0 0 1}
\end{split}
</me>
The important property of elementary matrices is the following claim.
</p>
<p>
<em>Claim:</em> If <m>E</m> is the elementary matrix for a row operation, then <m>EA</m> is the matrix obtained by performing the same row operation on <m>A</m>.
</p>
<p>
In other words, left-multiplication by an elementary matrix applies a row operation. For example,
<me>
\begin{split}
\mat{1 0 0; -2 1 0; 0 0 1}
\mat{a_{11} a_{12} a_{13}; a_{21} a_{22} a_{23}; a_{31} a_{32} a_{33}}
\amp= \mat[l]{a_{11} a_{12} a_{13};
a_{21}-2a_{11} a_{22}-2a_{12} a_{23}-2a_{13};
a_{31} a_{32} a_{33}} \\
\mat{3 0 0; 0 1 0; 0 0 1}
\mat{a_{11} a_{12} a_{13}; a_{21} a_{22} a_{23}; a_{31} a_{32} a_{33}}
\amp= \mat[r]{3a_{11} 3a_{12} 3a_{13};
a_{21} a_{22} a_{23};
a_{31} a_{32} a_{33}} \\
\mat{0 1 0; 1 0 0; 0 0 1}
\mat{a_{11} a_{12} a_{13}; a_{21} a_{22} a_{23}; a_{31} a_{32} a_{33}}
\amp= \mat{a_{21} a_{22} a_{23}; a_{11} a_{12} a_{13}; a_{31} a_{32} a_{33}}.
\end{split}
</me>
The proof of the Claim is by direct calculation; we leave it to the reader to generalize the above equalities to <m>n\times n</m> matrices.
</p>
<p>
As a consequence of the Claim and the four <xref ref="det-defn-the-defn">defining properties</xref>, we have the following observation. Let <m>C</m> be any square matrix.
<ol>
<li>
If <m>E</m> is the elementary matrix for a row replacement, then <m>\det(EC) = \det(C).</m> In other words, <em>left-multiplication by <m>E</m> does not change the determinant.</em>
</li>
<li>
If <m>E</m> is the elementary matrix for a row scale by a factor of <m>c</m>, then <m>\det(EC) = c\det(C).</m> In other words, <em>left-multiplication by <m>E</m> scales the determinant by a factor of <m>c</m>.</em>
</li>
<li>
If <m>E</m> is the elementary matrix for a row swap, then <m>\det(EC) = -\det(C).</m> In other words, <em>left-multiplication by <m>E</m> negates the determinant.</em>
</li>
</ol>
</p>
<p>
Now we turn to the proof of the multiplicativity property. Suppose to begin that <m>B</m> is not invertible. Then <m>AB</m> is also not invertible: otherwise, <m>(AB)\inv AB = I_n</m> implies <m>B\inv = (AB)\inv A.</m> By the <xref ref="det-defn-invert-prop">invertibility property</xref>, both sides of the equation <m>\det(AB) = \det(A)\det(B)</m> are zero.
</p>
<p>
Now assume that <m>B</m> is invertible, so <m>\det(B)\neq 0</m>. Define a function
<me>
d\colon\bigl\{\text{$n\times n$ matrices}\bigr\} \To \R \sptxt{by}
d(C) = \frac{\det(CB)}{\det(B)}.
</me>
We claim that <m>d</m> satisfies the four defining properties of the determinant.
<ol>
<li>
Let <m>C'</m> be the matrix obtained by doing a row replacement on <m>C</m>, and let <m>E</m> be the elementary matrix for this row replacement, so <m>C' = EC</m>. Since left-multiplication by <m>E</m> does not change the determinant, we have <m>\det(ECB) = \det(CB)</m>, so
<me>
d(C') = \frac{\det(C'B)}{\det(B)}
= \frac{\det(ECB)}{\det(B)}
= \frac{\det(CB)}{\det(B)}
= d(C).
</me>
</li>
<li>
Let <m>C'</m> be the matrix obtained by scaling a row of <m>C</m> by a factor of <m>c</m>, and let <m>E</m> be the elementary matrix for this row replacement, so <m>C' = EC</m>. Since left-multiplication by <m>E</m> scales the determinant by a factor of <m>c</m>, we have <m>\det(ECB) = c\det(CB)</m>, so
<me>
d(C') = \frac{\det(C'B)}{\det(B)}
= \frac{\det(ECB)}{\det(B)}
= \frac{c\det(CB)}{\det(B)}
= c\cdot d(C).
</me>
</li>
<li>
Let <m>C'</m> be the matrix obtained by swapping two rows of <m>C</m>, and let <m>E</m> be the elementary matrix for this row replacement, so <m>C' = EC</m>. Since left-multiplication by <m>E</m> negates the determinant, we have <m>\det(ECB) = -\det(CB)</m>, so
<me>
d(C') = \frac{\det(C'B)}{\det(B)}
= \frac{\det(ECB)}{\det(B)}
= \frac{-\det(CB)}{\det(B)}
= -d(C).
</me>
</li>
<li>
We have
<me>d(I_n) = \frac{\det(I_nB)}{\det(B)} = \frac{\det(B)}{\det(B)} = 1.</me>
</li>
</ol>
</p>
<p>
Since <m>d</m> satisfies the four defining properties of the determinant, <em>it is equal to the determinant</em> by the <xref ref="det-defn-unique">existence theorem</xref>. In other words, for all matrices <m>A</m>, we have
<me>\det(A) = d(A) = \frac{\det(AB)}{\det(B)}.</me>
Multiplying through by <m>\det(B)</m> gives <m>\det(A)\det(B)=\det(AB).</m>
</p>
</proof>
</proposition>
<p>
Recall that taking a power of a square matrix <m>A</m> means taking products of <m>A</m> with itself:
<me>A^2 = AA \qquad A^3 = AAA \qquad \text{etc.}</me>
If <m>A</m> is invertible, then we define
<me>A^{-2} = A\inv A\inv \qquad A^{-3} = A\inv A\inv A\inv \qquad \text{etc.}</me>
For completeness, we set <m>A^0 = I_n</m> if <m>A\neq 0</m>.
</p>
<corollary xml:id="det-defn-power-prop">
<idx><h>Determinant</h><h>and powers of matrices</h></idx>
<statement>
<p>
If <m>A</m> is a square matrix, then
<me>\det(A^n) = \det(A)^n</me>
for all <m>n\geq 1</m>. If <m>A</m> is invertible, then the equation holds for all <m>n\leq 0</m> as well; in particular,
<me>\det(A\inv) = \frac 1{\det(A)}.</me>
</p>
</statement>
<proof>
<p>
Using the <xref ref="det-defn-mult-prop">multiplicativity property</xref>, we compute
<me>\det(A^2) = \det(AA) = \det(A)\det(A) = \det(A)^2</me>
and
<me>\det(A^3) = \det(AAA) = \det(A)\det(AA) = \det(A)\det(A)\det(A) = \det(A)^3;</me>
the pattern is clear.
</p>
<p>
We have
<me>1 = \det(I_n) = \det(A A\inv) = \det(A)\det(A\inv)</me>
by the <xref ref="det-defn-mult-prop">multiplicativity property</xref> and the fourth <xref ref="det-defn-the-defn">defining property</xref>, which shows that <m>\det(A\inv) = \det(A)\inv</m>. Thus
<me>\det(A^{-2}) = \det(A\inv A\inv) = \det(A\inv)\det(A\inv) = \det(A\inv)^2 = \det(A)^{-2},</me>
and so on.
</p>
</proof>
</corollary>
<example>
<statement>
<p>
Compute <m>\det(A^{100}),</m> where
<me>A = \mat{4 1; 2 1}.</me>
</p>
</statement>
<solution>
<p>
We have <m>\det(A) = 4 - 2 = 2</m>, so
<me>\det(A^{100}) = \det(A)^{100} = 2^{100}.</me>
Nowhere did we have to compute the <m>100</m>th power of <m>A</m>! (We will learn an efficient way to do that in <xref ref="diagonalization"/>.)
</p>
</solution>
</example>
<p>
Here is another application of the <xref ref="det-defn-mult-prop">multiplicativity property</xref>.
</p>
<corollary>
<statement>
<p>
Let <m>A_1,A_2,\ldots,A_k</m> be <m>n\times n</m> matrices. Then the product <m>A_1A_2\cdots A_k</m> is invertible if and only if each <m>A_i</m> is invertible.
</p>
</statement>
<proof visible="true">
<p>
The determinant of the product is the product of the determinants by the <xref ref="det-defn-mult-prop">multiplicativity property</xref>:
<me>\det(A_1A_2\cdots A_k) = \det(A_1)\det(A_2)\cdots\det(A_k).</me>
By the <xref ref="det-defn-invert-prop">invertibility property</xref>, this is nonzero if and only if <m>A_1A_2\cdots A_k</m> is invertible. On the other hand, <m>\det(A_1)\det(A_2)\cdots\det(A_k)</m> is nonzero if and only if each <m>\det(A_i)\neq0</m>, which means each <m>A_i</m> is invertible.
</p>
</proof>
</corollary>
<example>
<statement>
<p>
For any number <m>n</m> we define
<me>A_n = \mat{1 n; 1 2}.</me>
Show that the product
<me>A_1 A_2 A_3 A_4 A_5</me>
is not invertible.
</p>
</statement>
<solution>
<p>
When <m>n = 2</m>, the matrix <m>A_2</m> is not invertible, because its rows are identical:
<me>A_2 = \mat{1 2; 1 2}.</me>
Hence any product involving <m>A_2</m> is not invertible.
</p>
</solution>
</example>
<p>
In order to state the transpose property, we need to define the transpose of a matrix.
</p>
<definition>
<idx><h>Matrix</h><h>transpose of</h></idx>
<idx><h>Transpose</h><see>Matrix</see></idx>
<notation><usage>A^T</usage><description>Transpose of a matrix</description></notation>
<statement>
<p>
The <term>transpose</term> of an <m>m\times n</m> matrix <m>A</m> is the <m>n\times m</m> matrix <m>A^T</m> whose rows are the columns of <m>A</m>. In other words, the <m>ij</m> entry of <m>A^T</m> is <m>a_{ji}</m>.
<latex-code>
<![CDATA[
\begin{tikzpicture}[
every matrix/.append style={nodes={
minimum width=1.5em, minimum height=1.5em},
row sep=.3em, column sep=.3em}
]
\matrix[math matrix, label={[yshift=1mm]above:$A$}] (aij)
{
a_{11} \& a_{12} \& a_{13} \& a_{14} \\
a_{21} \& a_{22} \& a_{23} \& a_{24} \\
a_{31} \& a_{32} \& a_{33} \& a_{34} \\
};
\matrix[math matrix, right=2.4cm of aij,
label={[yshift=1mm]above:$A^T$}] (aijT)
{
a_{11} \& a_{21} \& a_{31} \\
a_{12} \& a_{22} \& a_{32} \\
a_{13} \& a_{23} \& a_{33} \\
a_{14} \& a_{24} \& a_{34} \\
};
\draw[->, thick, shorten=6mm] (aij.east) -- (aijT.west);
\draw[green!50!black, opacity=.5, shorten >=-8mm]
(aij-1-1.north west) -- (aij-3-3.south east)
coordinate[pos=1.3, below left=3mm] (left)
coordinate[pos=1.3, above right=3mm] (right)
node[pos=1.2, below right, opaque] {\small flip};
\draw[<->, green!50!black] (left) to[bend left] (right);
\draw[green!50!black, opacity=.5, shorten >=-8mm]
(aijT-1-1.north west) -- (aijT-3-3.south east);
\end{tikzpicture}
]]>
</latex-code>
</p>
</statement>
</definition>
<p>
Like inversion, transposition reverses the order of matrix multiplication.
</p>
<fact xml:id="det-defn-prod-trans">
<idx><h>Matrix</h><h>transpose of</h><h>and products</h></idx>
<statement>
<p>
Let <m>A</m> be an <m>m\times n</m> matrix, and let <m>B</m> be an <m>n\times p</m> matrix. Then
<me>(AB)^T = B^TA^T.</me>
</p>
</statement>
<proof>
<p>
First suppose that <m>A</m> is a row vector an <m>B</m> is a column vector, i.e., <m>m = p = 1</m>. Then
<me>
\begin{split}
AB \amp= \mat{a_1 a_2 \cdots, a_n}\vec{b_1 b_2 \vdots, b_n}
= a_1b_1 + a_2b_2 + \cdots + a_nb_n \\
\amp= \mat{b_1 b_2 \cdots, b_n}\vec{a_1 a_2 \vdots, a_n}
= B^TA^T.
\end{split}
</me>
</p>
<p>
Now we use the row-column rule for matrix multiplication. Let <m>r_1,r_2,\ldots,r_m</m> be the rows of <m>A</m>, and let <m>c_1,c_2,\ldots,c_p</m> be the columns of <m>B</m>, so
<me>
AB =
\mat[c]{ \matrow{r_1}; \matrow{r_2}; \vdots ; \matrow{r_m}}
\mat{| | ,, |; c_1 c_2 \cdots, c_p; | | ,, |}
= \mat{ r_1c_1 r_1c_2 \cdots, r_1c_p;
r_2c_1 r_2c_2 \cdots, r_2c_p;
\vdots, \vdots, , \vdots;
r_mc_1 r_mc_2 \cdots, r_mc_p}.
</me>
By the case we handled above, we have <m>r_ic_j = c_j^Tr_i^T</m>. Then
<me>
\begin{split}
(AB)^T
\amp= \mat{ r_1c_1 r_2c_1 \cdots, r_mc_1;
r_1c_2 r_2c_2 \cdots, r_mc_2;
\vdots, \vdots, , \vdots;
r_1c_p r_2c_p \cdots, r_mc_p} \\
\amp= \mat{ c_1^Tr_1^T c_1^Tr_2^T \cdots, c_1^Tr_m^T;
c_2^Tr_1^T c_2^Tr_2^T \cdots, c_2^Tr_m^T;
\vdots, \vdots, , \vdots;
c_p^Tr_1^T c_p^Tr_2^T \cdots, c_p^Tr_m^T} \\
\amp= \mat[c]{ \matrow{c_1^T}; \matrow{c_2^T}; \vdots ; \matrow{c_p^T}}
\mat{| | ,, |; r_1^T r_2^T \cdots, r_m^T; | | ,, |}
= B^TA^T.
\end{split}
</me>
<em></em> <!-- fix QED sign -->
</p>
</proof>
</fact>
<proposition hide-type="true" xml:id="det-defn-trans-prop">
<title>Transpose Property</title>
<idx><h>Determinant</h><h>transpose property</h></idx>
<idx><h>Matrix</h><h>transpose of</h><h>determinant of</h></idx>
<statement>
<p>
For any square matrix <m>A</m>, we have
<me>\det(A) = \det(A^T).</me>
</p>
</statement>
<proof>
<p>
We follow the same strategy as in the proof of the <xref ref="det-defn-mult-prop">multiplicativity property</xref>: namely, we define
<me>d(A) = \det(A^T), </me>
and we show that <m>d</m> satisfies the four defining properties of the determinant. Again we use elementary matrices, also introduced in the proof of the <xref ref="det-defn-mult-prop">multiplicativity property</xref>.
<ol>
<li>
Let <m>C'</m> be the matrix obtained by doing a row replacement on <m>C</m>, and let <m>E</m> be the elementary matrix for this row replacement, so <m>C' = EC</m>. The elementary matrix for a row replacement is either upper-triangular or lower-triangular, with ones on the diagonal:
<me>
R_1 = R_1 + 3R_3:\;
\mat{1 0 3; 0 1 0 ; 0 0 1}
\qquad
R_3 = R_3 + 3R_1:\;
\mat{1 0 0; 0 1 0 ; 3 0 1}.
</me>
It follows that <m>E^T</m> is also either upper-triangular or lower-triangular, with ones on the diagonal, so <m>\det(E^T) = 1</m> by this <xref ref="defn-det-special-case"/>. By the <xref ref="det-defn-prod-trans"/> and the <xref ref="det-defn-mult-prop">multiplicativity property</xref>,
<me>
\begin{split}
d(C') \amp= \det((C')^T) = \det((EC)^T) = \det(C^TE^T) \\
\amp= \det(C^T)\det(E^T) = \det(C^T) = d(C).
\end{split}
</me>
</li>
<li>
Let <m>C'</m> be the matrix obtained by scaling a row of <m>C</m> by a factor of <m>c</m>, and let <m>E</m> be the elementary matrix for this row replacement, so <m>C' = EC</m>. Then <m>E</m> is a diagonal matrix:
<me>
R_2 = cR_2:\;\mat{1 0 0; 0 c 0; 0 0 1}.
</me>
Thus <m>\det(E^T) = c</m>. By the <xref ref="det-defn-prod-trans"/> and the <xref ref="det-defn-mult-prop">multiplicativity property</xref>,
<me>
\begin{split}
d(C') \amp= \det((C')^T) = \det((EC)^T) = \det(C^TE^T) \\
\amp= \det(C^T)\det(E^T) = c\det(C^T) = c\cdot d(C).
\end{split}
</me>
</li>
<li>
Let <m>C'</m> be the matrix obtained by swapping two rows of <m>C</m>, and let <m>E</m> be the elementary matrix for this row replacement, so <m>C' = EC</m>. The <m>E</m> is equal to its own transpose:
<me>
R_1\longleftrightarrow R_2:\;
\mat{0 1 0; 1 0 0; 0 0 1} = \mat{0 1 0; 1 0 0; 0 0 1}^T.
</me>
Since <m>E</m> (hence <m>E^T</m>) is obtained by performing one row swap on the identity matrix, we have <m>\det(E^T) = -1</m>. By the <xref ref="det-defn-prod-trans"/> and the <xref ref="det-defn-mult-prop">multiplicativity property</xref>,
<me>
\begin{split}
d(C') \amp= \det((C')^T) = \det((EC)^T) = \det(C^TE^T) \\
\amp= \det(C^T)\det(E^T) = -\det(C^T) = - d(C).
\end{split}
</me>
</li>
<li>
Since <m>I_n^T = I_n,</m> we have
<me>d(I_n) = \det(I_n^T) = det(I_n) = 1.</me>
</li>
</ol>
</p>
<p>
Since <m>d</m> satisfies the four defining properties of the determinant, <em>it is equal to the determinant</em> by the <xref ref="det-defn-unique">existence theorem</xref>. In other words, for all matrices <m>A</m>, we have
<me>\det(A) = d(A) = \det(A^T).</me>
</p>
</proof>
</proposition>
<p>
The <xref ref="det-defn-trans-prop">transpose property</xref> is very useful.
For concreteness, we note that <m>\det(A)=\det(A^T)</m> means, for instance, that
<me>\det\mat{1 2 3; 4 5 6; 7 8 9} = \det\mat{1 4 7; 2 5 8; 3 6 9}.</me>
This implies that the determinant has the curious feature that it also behaves well with respect to <em>column</em> operations. Indeed, a column operation on <m>A</m> is the same as a row operation on <m>A^T</m>, and <m>\det(A) = \det(A^T)</m>.
</p>
<corollary xml:id="defn-det-col-ops">
<idx><h>Determinant</h><h>and column operations</h></idx>
<statement>
<p>
The determinant satisfies the following properties with respect to column operations:
<ol>
<li>
Doing a column replacement on <m>A</m> does not change <m>\det(A)</m>.
</li>
<li>
Scaling a column of <m>A</m> by a scalar <m>c</m> multiplies the determinant by <m>c</m>.
</li>
<li>
Swapping two columns of a matrix multiplies the determinant by <m>-1</m>.
</li>
</ol>