This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
rank-thm.xml
333 lines (276 loc) · 13.6 KB
/
rank-thm.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="rank-thm" number="9">
<title>The Rank Theorem</title>
<objectives>
<ol>
<li>Learn to understand and use the rank theorem.</li>
<li><em>Picture:</em> the rank theorem.</li>
<li><em>Theorem:</em> rank theorem.</li>
<li><em>Vocabulary words:</em> <term>rank</term>, <term>nullity</term>.</li>
</ol>
</objectives>
<p>
In this section we present the rank theorem, which is the culmination of all of the work we have done so far.
</p>
<p>
The reader may have observed a relationship between the column space and the null space of a matrix. In this <xref ref="subspaces-col-nul-1"/>, the column space and the null space of a <m>3\times 2</m> matrix are both lines, in <m>\R^2</m> and <m>\R^3</m>, respectively:
<latex-code>
\begin{tikzpicture}[myxyz, scale=.8]
\begin{scope}[resetxy]
\draw[grid lines] (-3,-3) grid (3,3);
\draw[seq4] (-3,3) -- (3,-3);
\point at (0,0);
\node[seq4,fill=white, inner sep=1pt] at (-.7,2) {$\Nul(A)$};
\end{scope}
\begin{scope}[xshift=9cm]
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\def\v{(1, 1, 1)}
\node[coordinate] (X) at \v {};
\draw[seq4] (0,0,0) -- ($-6*(X)$);
\draw (0,0,-3) -- (0,0,0);
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-3, -3) rectangle (3, 3);
\draw[grid lines] (-3, -3) grid (3, 3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\draw[seq4] (0,0,0) -- node[right, pos=.7] {$\Col(A)$} ($6*(X)$);
\draw[->] (0,0,0) -- (0,0,3);
\point at (0,0,0);
\end{scope}
\node[fill=white, resetxy] at (5, 2) {$A = \mat{1 1; 1 1; 1 1}$};
\end{tikzpicture}
</latex-code>
In this <xref ref="solnsets-eg-plane2"/>, the null space of the <m>2\times 3</m> matrix <m>\bigl(\begin{smallmatrix}1&-1&2\\-2&2&-4\end{smallmatrix}\bigr)</m> is a plane in <m>\R^3</m>, and the column space the line in <m>\R^2</m> spanned by <m>{1\choose-2}</m>:
<latex-code>
<![CDATA[
\begin{tikzpicture}[myxyz, scale=.8]
\begin{scope}[xshift=9cm, resetxy]
\draw[grid lines] (-3,-3) grid (3,3);
\draw[seq4] (-1.5,3) -- (1.5,-3);
\point at (0,0);
\node[seq4,fill=white, inner sep=1pt] at (-.7,2) {$\Col(A)$};
\end{scope}
\begin{scope}
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\def\v{(1, 1, 0)}
\def\w{(-2, 0, 1)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\draw (0,0,-3) -- (0,0,0);
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-5, 0) -- (-5, -5) -- (5, -5) -- (5, 0) -- cycle;
\fill[seq4!30, nearly opaque] (-3,-2) rectangle (3,2);
\draw[step=1cm, seq4, very thin] (-3,-2) grid (3,2);
\end{scope}
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-3, -3) rectangle (3, 3);
\draw[grid lines] (-3, -3) grid (3, 3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-5, 0) -- (-5, 5) -- (5, 5) -- (5, 0) -- cycle;
\fill[seq4!30, nearly opaque] (-3,-2) rectangle (3,2);
\draw[step=1cm, seq4, very thin] (-3,-2) grid (3,2);
\end{scope}
\draw[->] (0,0,0) -- (0,0,3);
\node[seq4, anchor=south east] at (-3,-2.5,.5) {$\Nul(A)$};
\point at (0,0,0);
\end{scope}
\node[fill=white, resetxy] at (5, -2) {$A = \mat{1 -1 2; -2 2 -4}$};
\end{tikzpicture}
]]>
</latex-code>
In this <xref ref="solnsets-line-plane"/>, the null space of a <m>3\times 3</m> matrix is a line in <m>\R^3</m>, and the column space is a plane in <m>\R^3</m>:
<latex-code>
<![CDATA[
\begin{tikzpicture}[myxyz, scale=.8]
\begin{scope}[xshift=9cm]
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\draw (0,0,-3) -- (0,0,0);
\def\v{(1, 0, 1)}
\def\w{(-1/2, 1, 1/2)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-5/2, 5) -- (-5, 5) -- (-5, -5) -- (5/2, -5) -- cycle;
\fill[seq4!30, nearly opaque] (-2,-2) rectangle (2,2);
\draw[step=1cm, seq4, very thin] (-2,-2) grid (2,2);
\end{scope}
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-3, -3) rectangle (3, 3);
\draw[grid lines] (-3, -3) grid (3, 3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-5/2, 5) -- (5, 5) -- (5, -5) -- (5/2, -5) -- cycle;
\fill[seq4!30, nearly opaque] (-2,-2) rectangle (2,2);
\draw[step=1cm, seq4, very thin] (-2,-2) grid (2,2);
\end{scope}
\draw[->] (0,0,0) -- (0,0,3);
\node[seq4, anchor=south east] at (-3,-2.5,0) {$\Col(A)$};
\point at (0,0,0);
\end{scope}
\begin{scope}
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\def\v{(1, -1, 1)}
\node[coordinate] (X) at \v {};
\draw[seq4] (0,0,0) -- ($-3*(X)$);
\draw (0,0,-3) -- (0,0,0);
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-3, -3) rectangle (3, 3);
\draw[grid lines] (-3, -3) grid (3, 3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\draw[seq4] (0,0,0) -- node[above] {$\Nul(A)$} ($3*(X)$);
\draw[->] (0,0,0) -- (0,0,3);
\point at (0,0,0);
\end{scope}
\node[fill=white, resetxy] at (3, -2) {$A = \mat{1 0 -1; 0 1 1; 1 1 0}$};
\end{tikzpicture}
]]>
</latex-code>
In all examples, the dimension of the column space plus the dimension of the null space is equal to the number of <em>columns</em> of the matrix. This is the content of the rank theorem.
</p>
<definition>
<idx><h>Matrix</h><h>rank of</h><see>Rank</see></idx>
<idx><h>Column space</h><h>and rank</h><see>Rank</see></idx>
<idx><h>Rank</h></idx>
<idx><h>Matrix</h><h>nullity of</h><see>Nullity</see></idx>
<idx><h>Nullity</h></idx>
<idx><h>Dimension</h><h>of a column space</h></idx>
<idx><h>Dimension</h><h>of a null space</h></idx>
<notation><usage>\rank(A)</usage><description>The rank of a matrix</description></notation>
<notation><usage>\nullity(A)</usage><description>The nullity of a matrix</description></notation>
<statement>
<p>
The <term>rank</term> of a matrix <m>A</m>, written <m>\rank(A)</m>, is the dimension of the column space <m>\Col(A)</m>.
</p>
<p>
The <term>nullity</term> of a matrix <m>A</m>, written <m>\nullity(A)</m>, is the dimension of the null space <m>\Nul(A)</m>.
</p>
</statement>
</definition>
<p>
The rank of a matrix <m>A</m> gives us important information about the solutions to <m>Ax=b</m>. Recall from this <xref ref="matrixeq-spans-consistency"/> that <m>Ax=b</m> is consistent exactly when <m>b</m> is in the span of the columns of <m>A</m>, in other words when <m>b</m> is in the column space of <m>A</m>. Thus, <m>\rank(A)</m> is the dimension of the set of <m>b</m> with the property that <m>Ax=b</m> is consistent.
</p>
<p>
We know that the rank of <m>A</m> is equal to the number of <xref ref="defn-pivot-pos" text="title">pivot columns</xref> (see this <xref ref="dimension-basis-colspace"/>), and the nullity of <m>A</m> is equal to the number of free variables (see this <xref ref="dimension-basis-nulspace"/>), which is the number of columns without pivots. To summarize:
<md>
<mrow>\rank(A) = \dim\Col(A) &= \text{the number of columns with pivots}</mrow>
<mrow>\nullity(A) = \dim\Nul(A) &= \text{the number of free variables}</mrow>
<mrow>&= \text{the number of columns without pivots}</mrow>
</md>
Clearly
<me>
\text{\#(columns with pivots)} + \text{\#(columns without pivots)}
= \text{\#(columns)},
</me>
so we have proved the following theorem.
</p>
<theorem type-name="Rank Theorem" xml:id="rank-theorem">
<idx><h>Rank</h><h>rank theorem</h></idx>
<idx><h>Nullity</h><h>rank theorem</h></idx>
<statement>
<p>
If <m>A</m> is a matrix with <m>n</m> columns, then
<me>\rank(A) + \nullity(A) = n.</me>
</p>
</statement>
</theorem>
<p>
In other words, for any consistent system of linear equations,
<me>\text{(dim of column span)} + \text{(dim of solution set)} =
\text{(number of variables)}.</me>
</p>
<p>
The rank theorem theorem is really the culmination of this chapter, as it gives a strong relationship between the null space of a matrix (the solution set of <m>Ax=0</m>) with the column space (the set of vectors <m>b</m> making <m>Ax=b</m> consistent), our two primary objects of interest. The more freedom we have in choosing <m>x</m> the less freedom we have in choosing <m>b</m> and vice versa.
</p>
<example>
<title>Rank and nullity</title>
<p>
Here is a concrete example of the rank theorem and the interplay between the degrees of freedom we have in choosing <m>x</m> and <m>b</m> in a matrix equation <m>Ax=b</m>.</p><p>Consider the matrices <me>A = \mat{1 0 0; 0 1 0; 0 0 0} \quad \text{and} \quad B = \mat{0 0 0; 0 0 0; 0 0 1}.</me> If we multiply a vector <m>(x,y,z)</m> in <m>\R^3</m> by <m>A</m> and <m>B</m> we obtain the vectors <m>Ax = (x,y,0)</m> and <m>Bx = (0,0,z)</m>. So we can think of multiplication by <m>A</m> as giving the latitude and longitude of a point in <m>\R^3</m> and we can think of multiplication by <m>B</m> as giving the height of a point in <m>\R^3</m>. The rank of <m>A</m> is 2 and the nullity is 1. Similarly, the rank of <m>B</m> is 1 and the nullity is 2.
</p>
<p>These facts have natural interpretations. For the matrix <m>A</m>: the set of all latitudes and longitudes in <m>\R^3</m> is a plane, and the set of points with the same latitude and longitude in <m>\R^3</m> is a line; and for the matrix <m>B</m>: the set of all heights in <m>\R^3</m> is a line, and the set of points at a given height in <m>\R^3</m> is a plane. As the rank theorem tells us, we <q>trade off</q> having more choices for <m>x</m> for having more choices for <m>b</m>, and vice versa.
</p>
</example>
<p>
The rank theorem is a prime example of how we use the theory of linear algebra to say something qualitative about a system of equations without ever solving it. This is, in essence, the power of the subject.
</p>
<example>
<title>The rank is 2 and the nullity is 2</title>
<p>
Consider the following matrix and its reduced row echelon form:
<latex-code>
<![CDATA[
\begin{tikzpicture}
\tikzset{
my matrix/.style={
matrix, math matrix,
column sep={2.2em,between origins},
every node/.append style={anchor=base east}},
}
\node (symb) {$A=\;\;\null$};
\path (symb.east) node[my matrix, right] (A) {
1 \& 2 \& 0 \& -1 \\
-2 \& -3 \& 4 \& 5 \\
2 \& 4 \& 0 \& -2 \\
} (A.east) ++(2cm,0) node {$\xrightarrow{\text{RREF}}$}
++(2cm, 0) node[my matrix, right] (B) {
1 \& 0 \& \llap{$-$}8 \& \llap{$-$}7 \\
0 \& 1 \& 4 \& 3 \\
0 \& 0 \& 0 \& 0 \\
};
\node[fit=(A-1-1) (A-3-1), draw=seq-blue, rounded corners] (box1) {};
\node[fit=(A-1-2) (A-3-2), draw=seq-blue, rounded corners] (box2) {};
\path ($(box1.south)!.5!(box2.south)$) ++(0,-1cm)
node[seq-blue, font=\small,anchor=base] (orig) {basis of $\Col(A)$};
\draw[->,seq-blue, shorten >=1pt] (orig.north) to[out=90,in=-90] (box1.south);
\draw[->,seq-blue, shorten >=1pt] (orig.north) to[out=90,in=-90] (box2.south);
\node[fit=(B-1-3) (B-3-3), draw=seq-green, rounded corners] (box3) {};
\node[fit=(B-1-4) (B-3-4), draw=seq-green, rounded corners] (box4) {};
\path ($(box3.south)!.5!(box4.south)$) ++(0,-1cm)
node[seq-green, font=\small,anchor=base] (free) {free variables};
\draw[->,seq-green, shorten >=1pt] (free.north) to[out=90,in=-90] (box3.south);
\draw[->,seq-green, shorten >=1pt] (free.north) to[out=90,in=-90] (box4.south);
\end{tikzpicture}
]]>
</latex-code>
A basis for <m>\Col(A)</m> is given by the pivot columns:
<me>\left\{\vec{1 -2 2},\;\vec{2 -3 4}\right\},</me>
so <m>\rank(A) = \dim\Col(A) = 2</m>.
</p>
<p>
Since there are two free variables <m>x_3,x_4</m>, the null space of <m>A</m> has two vectors (see this <xref ref="dimension-basis-nulspace"/>):
<me>\left\{\vec{8 -4 1 0},\;\vec{7 -3 0 1}\right\},</me>
so <m>\nullity(A) = 2</m>.
</p>
<p>
In this case, the rank theorem says that <m>2 + 2 = 4</m>, where 4 is the number of columns.
</p>
</example>
<example hide-type="true">
<title>Interactive: Rank is 1, nullity is 2</title>
<figure>
<caption>This <m>3\times 3</m> matrix has rank 1 and nullity 2. The violet plane on the left is the null space, and the violet line on the right is the column space.</caption>
<mathbox source="demos/Axequalsb.html?captions=rankthm" height="500px"/>
</figure>
</example>
<example hide-type="true">
<title>Interactive: Rank is 2, nullity is 1</title>
<figure>
<caption>This <m>3\times 3</m> matrix has rank 2 and nullity 1. The violet line on the left is the null space, and the violet plane on the right is the column space.</caption>
<mathbox source="demos/Axequalsb.html?mat=1,-1,2:-1,2,4&captions=rankthm" height="500px"/>
</figure>
</example>
</section>