-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtrain.py
260 lines (203 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python
'''
MIT License
Copyright (c) 2021 Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford and Tobias Fischer
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Significant parts of our code are based on [Nanne's pytorch-netvlad repository]
(https://github.com/Nanne/pytorch-NetVlad/), as well as some parts from the [Mapillary SLS repository]
(https://github.com/mapillary/mapillary_sls)
This code trains the NetVLAD neural network used to extract Patch-NetVLAD features.
'''
from __future__ import print_function
import argparse
import configparser
import os
import random
import shutil
from os.path import join, isfile
from os import makedirs
from datetime import datetime
import tempfile
import torch
import torch.nn as nn
import torch.optim as optim
import h5py
from tensorboardX import SummaryWriter
import numpy as np
from patchnetvlad.training_tools.train_epoch import train_epoch
from patchnetvlad.training_tools.val import val
from patchnetvlad.training_tools.get_clusters import get_clusters
from patchnetvlad.training_tools.tools import save_checkpoint
from patchnetvlad.tools.datasets import input_transform
from patchnetvlad.models.models_generic import get_backend, get_model
from patchnetvlad.tools import PATCHNETVLAD_ROOT_DIR
from tqdm.auto import trange
from patchnetvlad.training_tools.msls import MSLS
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Patch-NetVLAD-train')
parser.add_argument('--config_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'configs/train.ini'),
help='File name (with extension) to an ini file that stores most of the configuration data for patch-netvlad')
parser.add_argument('--cache_path', type=str, default=tempfile.mkdtemp(),
help='Path to save cache, centroid data to.')
parser.add_argument('--save_path', type=str, default='',
help='Path to save checkpoints to')
parser.add_argument('--resume_path', type=str, default='',
help='Full path and name (with extension) to load checkpoint from, for resuming training.')
parser.add_argument('--cluster_path', type=str, default='',
help='Full path and name (with extension) to load cluster data from, for resuming training.')
parser.add_argument('--dataset_root_dir', type=str, default='/work/qvpr/data/raw/Mapillary_Street_Level_Sequences',
help='Root directory of dataset')
parser.add_argument('--identifier', type=str, default='mapillary_nopanos',
help='Description of this model, e.g. mapillary_nopanos_vgg16_netvlad')
parser.add_argument('--nEpochs', type=int, default=30, help='number of epochs to train for')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--save_every_epoch', action='store_true', help='Flag to set a separate checkpoint file for each new epoch')
parser.add_argument('--threads', type=int, default=6, help='Number of threads for each data loader to use')
parser.add_argument('--nocuda', action='store_true', help='If true, use CPU only. Else use GPU.')
opt = parser.parse_args()
print(opt)
configfile = opt.config_path
assert os.path.isfile(configfile)
config = configparser.ConfigParser()
config.read(configfile)
cuda = not opt.nocuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run with --nocuda")
device = torch.device("cuda" if cuda else "cpu")
random.seed(int(config['train']['seed']))
np.random.seed(int(config['train']['seed']))
torch.manual_seed(int(config['train']['seed']))
if cuda:
# noinspection PyUnresolvedReferences
torch.cuda.manual_seed(int(config['train']['seed']))
optimizer = None
scheduler = None
print('===> Building model')
encoder_dim, encoder = get_backend()
if opt.resume_path: # if already started training earlier and continuing
if isfile(opt.resume_path):
print("=> loading checkpoint '{}'".format(opt.resume_path))
checkpoint = torch.load(opt.resume_path, map_location=lambda storage, loc: storage)
config['global_params']['num_clusters'] = str(checkpoint['state_dict']['pool.centroids'].shape[0])
model = get_model(encoder, encoder_dim, config['global_params'], append_pca_layer=False)
model.load_state_dict(checkpoint['state_dict'])
opt.start_epoch = checkpoint['epoch']
print("=> loaded checkpoint '{}'".format(opt.resume_path, ))
else:
raise FileNotFoundError("=> no checkpoint found at '{}'".format(opt.resume_path))
else: # if not, assume fresh training instance and will initially generate cluster centroids
print('===> Loading model')
config['global_params']['num_clusters'] = config['train']['num_clusters']
model = get_model(encoder, encoder_dim, config['global_params'], append_pca_layer=False)
initcache = join(opt.cache_path, 'centroids', 'vgg16_' + 'mapillary_' + config['train'][
'num_clusters'] + '_desc_cen.hdf5')
if opt.cluster_path:
if isfile(opt.cluster_path):
if opt.cluster_path != initcache:
shutil.copyfile(opt.cluster_path, initcache)
else:
raise FileNotFoundError("=> no cluster data found at '{}'".format(opt.cluster_path))
else:
print('===> Finding cluster centroids')
print('===> Loading dataset(s) for clustering')
train_dataset = MSLS(opt.dataset_root_dir, mode='test', cities='train', transform=input_transform(),
bs=int(config['train']['cachebatchsize']), threads=opt.threads,
margin=float(config['train']['margin']))
model = model.to(device)
print('===> Calculating descriptors and clusters')
get_clusters(train_dataset, model, encoder_dim, device, opt, config)
# a little hacky, but needed to easily run init_params
model = model.to(device="cpu")
with h5py.File(initcache, mode='r') as h5:
clsts = h5.get("centroids")[...]
traindescs = h5.get("descriptors")[...]
model.pool.init_params(clsts, traindescs)
del clsts, traindescs
isParallel = False
if int(config['global_params']['nGPU']) > 1 and torch.cuda.device_count() > 1:
model.encoder = nn.DataParallel(model.encoder)
model.pool = nn.DataParallel(model.pool)
isParallel = True
if config['train']['optim'] == 'ADAM':
optimizer = optim.Adam(filter(lambda par: par.requires_grad,
model.parameters()), lr=float(config['train']['lr'])) # , betas=(0,0.9))
elif config['train']['optim'] == 'SGD':
optimizer = optim.SGD(filter(lambda par: par.requires_grad,
model.parameters()), lr=float(config['train']['lr']),
momentum=float(config['train']['momentum']),
weight_decay=float(config['train']['weightDecay']))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=int(config['train']['lrstep']),
gamma=float(config['train']['lrgamma']))
else:
raise ValueError('Unknown optimizer: ' + config['train']['optim'])
criterion = nn.TripletMarginLoss(margin=float(config['train']['margin']) ** 0.5, p=2, reduction='sum').to(device)
model = model.to(device)
if opt.resume_path:
optimizer.load_state_dict(checkpoint['optimizer'])
print('===> Loading dataset(s)')
exlude_panos_training = not config['train'].getboolean('includepanos')
train_dataset = MSLS(opt.dataset_root_dir, mode='train', nNeg=int(config['train']['nNeg']), transform=input_transform(),
bs=int(config['train']['cachebatchsize']), threads=opt.threads, margin=float(config['train']['margin']),
exclude_panos=exlude_panos_training)
validation_dataset = MSLS(opt.dataset_root_dir, mode='val', transform=input_transform(),
bs=int(config['train']['cachebatchsize']), threads=opt.threads,
margin=float(config['train']['margin']), posDistThr=25)
print('===> Training query set:', len(train_dataset.qIdx))
print('===> Evaluating on val set, query count:', len(validation_dataset.qIdx))
print('===> Training model')
writer = SummaryWriter(
log_dir=join(opt.save_path, datetime.now().strftime('%b%d_%H-%M-%S') + '_' + opt.identifier))
# write checkpoints in logdir
logdir = writer.file_writer.get_logdir()
opt.save_file_path = join(logdir, 'checkpoints')
makedirs(opt.save_file_path)
not_improved = 0
best_score = 0
if opt.resume_path:
not_improved = checkpoint['not_improved']
best_score = checkpoint['best_score']
for epoch in trange(opt.start_epoch + 1, opt.nEpochs + 1, desc='Epoch number'.rjust(15), position=0):
train_epoch(train_dataset, model, optimizer, criterion, encoder_dim, device, epoch, opt, config, writer)
if scheduler is not None:
scheduler.step(epoch)
if (epoch % int(config['train']['evalevery'])) == 0:
recalls = val(validation_dataset, model, encoder_dim, device, opt, config, writer, epoch,
write_tboard=True, pbar_position=1)
is_best = recalls[5] > best_score
if is_best:
not_improved = 0
best_score = recalls[5]
else:
not_improved += 1
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'recalls': recalls,
'best_score': best_score,
'not_improved': not_improved,
'optimizer': optimizer.state_dict(),
'parallel': isParallel,
}, opt, is_best)
if int(config['train']['patience']) > 0 and not_improved > (int(config['train']['patience']) / int(config['train']['evalevery'])):
print('Performance did not improve for', config['train']['patience'], 'epochs. Stopping.')
break
print("=> Best Recall@5: {:.4f}".format(best_score), flush=True)
writer.close()
torch.cuda.empty_cache() # garbage clean GPU memory, a bug can occur when Pytorch doesn't automatically clear the
# memory after runs
print('Done')