-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
经济模型的博弈设计 #32
Comments
|
不对,未达到X值之前还是Q1,对应的p-meer数量,在挖矿过程当中,初始挖矿难度Q1对应的也是这部分的数量X,超过这个X数量才是难度递增的开始。 |
之前@blocklee提出的测试挖矿我觉得可行性很大,不作任何兑换,纯粹挖着玩,相当于做一个简单的市场调查,估计大概有多少人愿意参加上面说的P-Meer挖矿,用来推测Y值。 |
这个W值是一个阶段性设定,这个可以是我们跟社区商定,也可以是我们给一个建议,难度最低是多少百分比,例如最低是5%,因为只有一个矿工那就是基金会,如果Q值大,那么W的比例就高,我们可以一个最低值和一个最高值,总之可以把难度与W值有一个对应。Q1对应的W1值是5%,Q2-W2是8% Q3-W3是12%等等来逐渐递增(具体数值我们可以进行一个讨论) 我就是把这几者的关系关联起来形成一个博弈模型啊,其实我的目的就是为了吸引矿工,同时把持币用户转化为矿工,同时是大家一起来做矿工和吸引矿工,大家的比例就越高。 另外我们在主网的货币总量,还有税收以及其他的考虑是我们经济模型第二版要做的事情。 |
但要解决问题啊!我是想在第一阶段就解决token持币用户的问题,同时吸引矿工。到了第二个阶段就是p-meer与meer映射的问题。如果单纯是玩,矿工不一定会投入真实的算力来支持你的网络。 |
建模:
|
这个阶段的提出完全是一种运营手段,就是为了宣传挖矿,吸引爱好者,让大家先熟悉环境配置,紧接其后的就是真测试了 |
我不理解你说的c 是兑换真 meer 是比例? 也不理解你说的 X、Y分别代表基金会最终的挖矿量和其他矿工的挖矿量,X = a · 10亿HLC,a 是兑换比例;这里的a是兑换比例? 实际上兑换比例是我们之前的想法,但是怎么来确定这个比例呢? 因为测试网络p-meer的总量和主网上线的货币总量不一定是一致的,这点很重要。毕竟主网上线的货币总量是未确定的。现在所有的只是记录一个占比,因为上面两个方案Y值就会影响Q值,Q越大那么W也就越大,也就是说矿工越多算力越高,那么未来在主网上的总量占比就越多。测试网络与主网是一个映射关系。 换句话说,测试网络也是一条真正的区块链网络,主网其实可以理解为硬分叉一条真正基于DAG数据结构的区块链网络。而且矿工不需要重新购买矿机。 之所以分为测试网络与主网阶段,主要是在两个不同的阶段解决不同的问题。测试网络解决持币用户与矿工群体增加的问题,主网是需要一个真正的经济模型,也是我前面逼逼叨叨说了很多的一些问题,可以认真阅读我#30 |
针对方案一 有几个问题:
|
详情请看我新的issue,我会再一次分析这个的逻辑 1.token的流通量并没有扩大,原来多少流通现在还是多少流通。至于币价是否支持挖矿这个就是方案一的X:Y的博弈结果 |
@yatingzhou @lawrencedxb @dindinw 非常受益。我在你的方案上有几个不成熟的思考, :1、我主张恒定模型,它从一开始就断掉了通货膨胀的预期,有益铸币氛围,也是很多公链在设计铸币时的基本思路。2、我主张一次性预挖法,即在测试网上一个高度值下一次性预挖10亿枚,准备按1:1等量兑换HLC现有流通量。3、关于兑换积极性与合法性的问题,我主张采取按比例投票法,在一个确定日期内,同币同权来投票,根据基金会的的持币量与管理层的持币量,加上QITMEER的未来预期,这个兑换方案应当能够通过。一旦方案通过,注销旧币,HLC TOKEN一次性全部兑换为MEER。(这一类方案详细可参考国民党1940年代的法币改革方案)。4、旧币换新币后,会出现预期的面值填权,即我们原来分析的,MEER的初始值在1元人民币左右(这正是货币的锚定价值的意义)。这个既解决了旧币利益,也能吸引矿工来参与。5、如何防止第4条不填权的情况出现,基金会可以加一个铸币分红承诺:在3年内,每年的铸币薄税中拿出二分之一的收入摊分到每一个币的份额上去,这样,可以产生一个三年的预期,这个3年中商业与生态的繁荣可以把预期的接力棒一直传下去。5、关于第3条,基金会在投票时,解决动机的合法性证明,并用股票结果保证自己的法律地位安全,也应当不是问题。 |
|
昨与雅婷交流后感觉这个方案很好。我们进一步推演各种极端情况下它的可行性。 |
|
方案一:测试网络总量恒定模型
币种:
ICO阶段:HLCerc20 token
第一个阶段:测试网络的p-meer
第二个阶段:主网的主币meer
假设测试网络总量恒定为10亿,与ICO erc20的货币发行数量一致。目的是为了erc20与p-meer能够1:1置换。那么假设基金会需要挖出X数量的p-meer与HLCerc20 token进行1:1的置换,X数量是基金会至少需要兑换的最小数;Y数量的是除了基金会之外的其他矿工挖出来的数量,意味着X+Y=10亿。
两个占比
第一个占比是:X:Y,基金会挖出的数量(兑换的ecr20)的数量:矿工挖出来的数量。
第二个占比是:第一阶段p-meer与第二阶段meer的映射关系,测试网络总量与主网meer总量的占比,我们可以设为W,目前第二阶段meer总量是一个未知数,假设未来meer总量为2100万,那么p-meer的总量是应该是W*2100。
博弈设计:在X:Y中,由于Y是矿工挖出币的数量,同时也作为X:Y的分母存在,如果Y占的比重越大,那么意味着参与测试网络中的矿工也就越多,算力也就越高,那么网络中的挖矿难度也就越高,这里挖矿难度设为Q。简而言之就是Y越大,Q也就大;Y越小,Q也就小,那么我们是不是可以将Q值的大小与W关联起来,是不是可以理解为:Y越大矿工越多,算力越高,Q值就越高,那么p-meer占meer总量的W的比例也就越高。
举例说明:在X+Y=10中,假设X为4,Y为6,意思是HLCerc20 token占40%,矿工挖出60%,这里的难度我们设为Q6,那么W的百分比也就达到15%,假设X为10,Y为0,那我们的难度设为Q1,那么W的百分比也就只有5%,假设X为2,Y为8,那么我们的难度设定为Q8,那么W的百分比就能达到25%.(这里的数据一切都是假设,只是为了表达逻辑关系)
以上的博弈设计,关键点是在于Y的数量,如果矿工多那么也意味着占meer总量的百分比也就越大,其目的是为了让持币用户转化矿工,同时也是为了激励所有的持币用户为了让其持币比重增加而不断吸引新的矿工参与。因此这也是博弈——合作模型,所有人为了这条网络的发展都要为之付出努力,如果erc20持币者对网络没有贡献,或者没有矿工参与,那么大家共同来承担后果。如果大家都有参与感,这条网络也就越欣欣向荣,大家在主网的占比也就越高。其实X=10就是我们所讲的公地悲剧。
X:Y到底是多少比例,一方面需要社区给出答案,另外一方面也需要基金会配合,因为X应该是一个至少必须兑换erc20的数量,因为X=0的情况是不会存在的。至少兑换erc20的数量对应的p-meer数量,在挖矿过程当中,初始挖矿难度Q1对应的也是这部分的数量X,超过这个X数量才是难度递增的开始。
假设测试网络总量恒定为10亿,与ICO erc20的货币发行数量一致,除了可以1:1置换之外,还有就是如果一旦开始挖矿,交易所HLC token的价格其实也就是p-meer的价格,这样自动就形成了市场的博弈,那么矿工能不能被吸引到这里,这也是一个关键因素。
但由于HLC erc20 token与p-meer不同质,因此矿工挖出来的p-meer需要与持币用户或者基金会进行一个1:1兑换才能够进行市场交易
方案二:测试网络总量不恒定模型
币种:
ICO阶段:HLCerc20 token
第一个阶段:测试网络的p-meer
第二个阶段:主网的主币meer
假设测试网络总量不恒定,那么假设基金会需要挖出10亿数量的p-meer与HLCerc20 token进行1:1的置换,Y数量的是矿工挖出来的数量,意味着10+Y=Z。Z是一个未知数,能确定的是10亿。
两个占比
第一个占比是:10:Y,基金会挖出的数量(兑换的ecr20)的数量10亿:矿工挖出来的数量。
第二个占比是:第一阶段p-meer与第二阶段meer的映射关系,测试网络总量与主网meer总量的占比,我们可以设为W,目前第二阶段meer总量是一个未知数,假设未来meer总量为2100万,那么p-meer的总量是应该是W*2100。
博弈设计:(这部分是同上的,就不多赘述了)
10+Y=Z,与上面方案不同的地方是在于,同样是Y起来决定因素,但交易所上HLC的价格还是token价格,而不是p-meer的价格,因此吸引矿工方面在价格方面还是需要在场外进行炒作,必须是HLC erctoken的价格+xxx=p-meer的价格,这个不知道是否好操作。另外一方面,这是一个总量稀释方案,持币用户是否会转化为矿工未知?还是会提前离场?
这两个方案看起来差不多,但是实际操作层面还是差别很大的。实际上通过这样的设计的目的就是为了吸引矿工,持续的为这条网络做工来维护网络安全和稳定,以及将所有的利益相关方为共同的利益而努力。另外我写的可能很文字化,有哪位小伙伴可以帮我用数学的方式来表达我的博弈公式?
The text was updated successfully, but these errors were encountered: