Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The pretrianed model you provieded in last issue can't be load #7

Open
heartra1n opened this issue Sep 11, 2024 · 0 comments
Open

The pretrianed model you provieded in last issue can't be load #7

heartra1n opened this issue Sep 11, 2024 · 0 comments

Comments

@heartra1n
Copy link

heartra1n commented Sep 11, 2024

Thanks for your excellent work!But I got problem in weight loading

The pretrained model and config form#6
This is my config yaml

overall:
  seed: 0
  device: 'cuda'
  test: false
  test_dir: ''
  gt_dir: ''
  output_dir: './temp'
  resume: 0

data:
  data_root_dir: '/opt/data/private/wzh/result/isecret/'
  dataset: 'eyeq'
  size: 512
  crop_size: -1

dist:
  gpu: '0'
  dist_backend: 'nccl'
  init_method: 'tcp://localhost:10098'
  num_shards: 1
  shard_id: 0
  num_worker: 0
  batch_size: 2

experiment:
  name: 'debug'
  experiment_root_dir: '/opt/data/private/wzh/result/isecret/'

train:
  default: false
  epochs: 200
  len: 0
  save_freq: 10
  sample_freq: 500
  no_val: false
  metric: 'psnr'
  optim: 'adam_belief'
  beta1: 0.5
  beta2: 0.999
  weight_decay: 0.0001
  lr: 0.0001
  scheduler: 'cosine'
  nce_layers: '1,5,9,12,16,18,20'
  nce_T: 0.07
  n_patches: 256
  lambda_gan: 1.0
  lambda_icc: 0.0
  lambda_idt: 0.0
  lambda_simsiam: 0.0
  lambda_ssim: 0.0
  lambda_idt_ssim: 0.0
  lambda_psnr: 0.0
  lambda_rec: 1.0
  lambda_is: 0.0

model:
  model_name: 'i-secret'
  model_path: '/opt/data/private/wzh/result/isecret/eyeq/512/isecret1/isecret.pt'
  image_size: 512
  image_mean: 0.5
  image_std: 0.5
  n_blocks: 9
  n_downs: 2
  n_filters: 64
  input_nc: 3
  output_nc: 3
  use_dropout: False
  generator: resnet
  padding: reflect
  norm: in

This is the error message
Traceback (most recent call last): File "main.py", line 29, in <module> launch_job(args, test_func) File "/opt/data/private/wzh/workspace/isecret/isecret/utils/launch.py", line 87, in launch_job func(args) File "/opt/data/private/wzh/workspace/isecret/test.py", line 43, in test_func model = TestModel(args) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 24, in __init__ MyModel.__init__(self, args) File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 37, in __init__ self.build_model() File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 48, in build_model self.load('last') File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 350, in load model.load_state_dict(state['weights']) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for ResGenerator: Missing key(s) in state_dict: "model.1.weight", "model.1.bias", "model.5.weight", "model.5.bias", "model.9.weight", "model.9.bias", "model.12.conv_block.1.weight", "model.12.conv_block.1.bias", "model.12.conv_block.5.weight", "model.12.conv_block.5.bias", "model.13.conv_block.1.weight", "model.13.conv_block.1.bias", "model.13.conv_block.5.weight", "model.13.conv_block.5.bias", "model.14.conv_block.1.weight", "model.14.conv_block.1.bias", "model.14.conv_block.5.weight", "model.14.conv_block.5.bias", "model.15.conv_block.1.weight", "model.15.conv_block.1.bias", "model.15.conv_block.5.weight", "model.15.conv_block.5.bias", "model.16.conv_block.1.weight", "model.16.conv_block.1.bias", "model.16.conv_block.5.weight", "model.16.conv_block.5.bias", "model.17.conv_block.1.weight", "model.17.conv_block.1.bias", "model.17.conv_block.5.weight", "model.17.conv_block.5.bias", "model.18.conv_block.1.weight", "model.18.conv_block.1.bias", "model.18.conv_block.5.weight", "model.18.conv_block.5.bias", "model.19.conv_block.1.weight", "model.19.conv_block.1.bias", "model.19.conv_block.5.weight", "model.19.conv_block.5.bias", "model.20.conv_block.1.weight", "model.20.conv_block.1.bias", "model.20.conv_block.5.weight", "model.20.conv_block.5.bias", "model.21.weight", "model.21.bias", "model.24.weight", "model.24.bias", "model.28.weight", "model.28.bias". Unexpected key(s) in state_dict: "head.1.weight", "head.1.bias", "downs.1.weight", "downs.1.bias", "downs.5.weight", "downs.5.bias", "neck.0.conv_block.1.weight", "neck.0.conv_block.1.bias", "neck.0.conv_block.5.weight", "neck.0.conv_block.5.bias", "neck.1.conv_block.1.weight", "neck.1.conv_block.1.bias", "neck.1.conv_block.5.weight", "neck.1.conv_block.5.bias", "neck.2.conv_block.1.weight", "neck.2.conv_block.1.bias", "neck.2.conv_block.5.weight", "neck.2.conv_block.5.bias", "neck.3.conv_block.1.weight", "neck.3.conv_block.1.bias", "neck.3.conv_block.5.weight", "neck.3.conv_block.5.bias", "neck.4.conv_block.1.weight", "neck.4.conv_block.1.bias", "neck.4.conv_block.5.weight", "neck.4.conv_block.5.bias", "neck.5.conv_block.1.weight", "neck.5.conv_block.1.bias", "neck.5.conv_block.5.weight", "neck.5.conv_block.5.bias", "neck.6.conv_block.1.weight", "neck.6.conv_block.1.bias", "neck.6.conv_block.5.weight", "neck.6.conv_block.5.bias", "neck.7.conv_block.1.weight", "neck.7.conv_block.1.bias", "neck.7.conv_block.5.weight", "neck.7.conv_block.5.bias", "neck.8.conv_block.1.weight", "neck.8.conv_block.1.bias", "neck.8.conv_block.5.weight", "neck.8.conv_block.5.bias", "ups.0.weight", "ups.0.bias", "ups.3.weight", "ups.3.bias", "ups.7.weight", "ups.7.bias", "importance_ups.0.weight", "importance_ups.0.bias", "importance_ups.3.weight", "importance_ups.3.bias", "importance_ups.7.weight", "importance_ups.7.bias".

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant