We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Thanks for your excellent work!But I got problem in weight loading
The pretrained model and config form#6 This is my config yaml
overall: seed: 0 device: 'cuda' test: false test_dir: '' gt_dir: '' output_dir: './temp' resume: 0 data: data_root_dir: '/opt/data/private/wzh/result/isecret/' dataset: 'eyeq' size: 512 crop_size: -1 dist: gpu: '0' dist_backend: 'nccl' init_method: 'tcp://localhost:10098' num_shards: 1 shard_id: 0 num_worker: 0 batch_size: 2 experiment: name: 'debug' experiment_root_dir: '/opt/data/private/wzh/result/isecret/' train: default: false epochs: 200 len: 0 save_freq: 10 sample_freq: 500 no_val: false metric: 'psnr' optim: 'adam_belief' beta1: 0.5 beta2: 0.999 weight_decay: 0.0001 lr: 0.0001 scheduler: 'cosine' nce_layers: '1,5,9,12,16,18,20' nce_T: 0.07 n_patches: 256 lambda_gan: 1.0 lambda_icc: 0.0 lambda_idt: 0.0 lambda_simsiam: 0.0 lambda_ssim: 0.0 lambda_idt_ssim: 0.0 lambda_psnr: 0.0 lambda_rec: 1.0 lambda_is: 0.0 model: model_name: 'i-secret' model_path: '/opt/data/private/wzh/result/isecret/eyeq/512/isecret1/isecret.pt' image_size: 512 image_mean: 0.5 image_std: 0.5 n_blocks: 9 n_downs: 2 n_filters: 64 input_nc: 3 output_nc: 3 use_dropout: False generator: resnet padding: reflect norm: in
This is the error message Traceback (most recent call last): File "main.py", line 29, in <module> launch_job(args, test_func) File "/opt/data/private/wzh/workspace/isecret/isecret/utils/launch.py", line 87, in launch_job func(args) File "/opt/data/private/wzh/workspace/isecret/test.py", line 43, in test_func model = TestModel(args) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 24, in __init__ MyModel.__init__(self, args) File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 37, in __init__ self.build_model() File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 48, in build_model self.load('last') File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 350, in load model.load_state_dict(state['weights']) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for ResGenerator: Missing key(s) in state_dict: "model.1.weight", "model.1.bias", "model.5.weight", "model.5.bias", "model.9.weight", "model.9.bias", "model.12.conv_block.1.weight", "model.12.conv_block.1.bias", "model.12.conv_block.5.weight", "model.12.conv_block.5.bias", "model.13.conv_block.1.weight", "model.13.conv_block.1.bias", "model.13.conv_block.5.weight", "model.13.conv_block.5.bias", "model.14.conv_block.1.weight", "model.14.conv_block.1.bias", "model.14.conv_block.5.weight", "model.14.conv_block.5.bias", "model.15.conv_block.1.weight", "model.15.conv_block.1.bias", "model.15.conv_block.5.weight", "model.15.conv_block.5.bias", "model.16.conv_block.1.weight", "model.16.conv_block.1.bias", "model.16.conv_block.5.weight", "model.16.conv_block.5.bias", "model.17.conv_block.1.weight", "model.17.conv_block.1.bias", "model.17.conv_block.5.weight", "model.17.conv_block.5.bias", "model.18.conv_block.1.weight", "model.18.conv_block.1.bias", "model.18.conv_block.5.weight", "model.18.conv_block.5.bias", "model.19.conv_block.1.weight", "model.19.conv_block.1.bias", "model.19.conv_block.5.weight", "model.19.conv_block.5.bias", "model.20.conv_block.1.weight", "model.20.conv_block.1.bias", "model.20.conv_block.5.weight", "model.20.conv_block.5.bias", "model.21.weight", "model.21.bias", "model.24.weight", "model.24.bias", "model.28.weight", "model.28.bias". Unexpected key(s) in state_dict: "head.1.weight", "head.1.bias", "downs.1.weight", "downs.1.bias", "downs.5.weight", "downs.5.bias", "neck.0.conv_block.1.weight", "neck.0.conv_block.1.bias", "neck.0.conv_block.5.weight", "neck.0.conv_block.5.bias", "neck.1.conv_block.1.weight", "neck.1.conv_block.1.bias", "neck.1.conv_block.5.weight", "neck.1.conv_block.5.bias", "neck.2.conv_block.1.weight", "neck.2.conv_block.1.bias", "neck.2.conv_block.5.weight", "neck.2.conv_block.5.bias", "neck.3.conv_block.1.weight", "neck.3.conv_block.1.bias", "neck.3.conv_block.5.weight", "neck.3.conv_block.5.bias", "neck.4.conv_block.1.weight", "neck.4.conv_block.1.bias", "neck.4.conv_block.5.weight", "neck.4.conv_block.5.bias", "neck.5.conv_block.1.weight", "neck.5.conv_block.1.bias", "neck.5.conv_block.5.weight", "neck.5.conv_block.5.bias", "neck.6.conv_block.1.weight", "neck.6.conv_block.1.bias", "neck.6.conv_block.5.weight", "neck.6.conv_block.5.bias", "neck.7.conv_block.1.weight", "neck.7.conv_block.1.bias", "neck.7.conv_block.5.weight", "neck.7.conv_block.5.bias", "neck.8.conv_block.1.weight", "neck.8.conv_block.1.bias", "neck.8.conv_block.5.weight", "neck.8.conv_block.5.bias", "ups.0.weight", "ups.0.bias", "ups.3.weight", "ups.3.bias", "ups.7.weight", "ups.7.bias", "importance_ups.0.weight", "importance_ups.0.bias", "importance_ups.3.weight", "importance_ups.3.bias", "importance_ups.7.weight", "importance_ups.7.bias".
Traceback (most recent call last): File "main.py", line 29, in <module> launch_job(args, test_func) File "/opt/data/private/wzh/workspace/isecret/isecret/utils/launch.py", line 87, in launch_job func(args) File "/opt/data/private/wzh/workspace/isecret/test.py", line 43, in test_func model = TestModel(args) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 24, in __init__ MyModel.__init__(self, args) File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 37, in __init__ self.build_model() File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 48, in build_model self.load('last') File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 350, in load model.load_state_dict(state['weights']) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for ResGenerator: Missing key(s) in state_dict: "model.1.weight", "model.1.bias", "model.5.weight", "model.5.bias", "model.9.weight", "model.9.bias", "model.12.conv_block.1.weight", "model.12.conv_block.1.bias", "model.12.conv_block.5.weight", "model.12.conv_block.5.bias", "model.13.conv_block.1.weight", "model.13.conv_block.1.bias", "model.13.conv_block.5.weight", "model.13.conv_block.5.bias", "model.14.conv_block.1.weight", "model.14.conv_block.1.bias", "model.14.conv_block.5.weight", "model.14.conv_block.5.bias", "model.15.conv_block.1.weight", "model.15.conv_block.1.bias", "model.15.conv_block.5.weight", "model.15.conv_block.5.bias", "model.16.conv_block.1.weight", "model.16.conv_block.1.bias", "model.16.conv_block.5.weight", "model.16.conv_block.5.bias", "model.17.conv_block.1.weight", "model.17.conv_block.1.bias", "model.17.conv_block.5.weight", "model.17.conv_block.5.bias", "model.18.conv_block.1.weight", "model.18.conv_block.1.bias", "model.18.conv_block.5.weight", "model.18.conv_block.5.bias", "model.19.conv_block.1.weight", "model.19.conv_block.1.bias", "model.19.conv_block.5.weight", "model.19.conv_block.5.bias", "model.20.conv_block.1.weight", "model.20.conv_block.1.bias", "model.20.conv_block.5.weight", "model.20.conv_block.5.bias", "model.21.weight", "model.21.bias", "model.24.weight", "model.24.bias", "model.28.weight", "model.28.bias". Unexpected key(s) in state_dict: "head.1.weight", "head.1.bias", "downs.1.weight", "downs.1.bias", "downs.5.weight", "downs.5.bias", "neck.0.conv_block.1.weight", "neck.0.conv_block.1.bias", "neck.0.conv_block.5.weight", "neck.0.conv_block.5.bias", "neck.1.conv_block.1.weight", "neck.1.conv_block.1.bias", "neck.1.conv_block.5.weight", "neck.1.conv_block.5.bias", "neck.2.conv_block.1.weight", "neck.2.conv_block.1.bias", "neck.2.conv_block.5.weight", "neck.2.conv_block.5.bias", "neck.3.conv_block.1.weight", "neck.3.conv_block.1.bias", "neck.3.conv_block.5.weight", "neck.3.conv_block.5.bias", "neck.4.conv_block.1.weight", "neck.4.conv_block.1.bias", "neck.4.conv_block.5.weight", "neck.4.conv_block.5.bias", "neck.5.conv_block.1.weight", "neck.5.conv_block.1.bias", "neck.5.conv_block.5.weight", "neck.5.conv_block.5.bias", "neck.6.conv_block.1.weight", "neck.6.conv_block.1.bias", "neck.6.conv_block.5.weight", "neck.6.conv_block.5.bias", "neck.7.conv_block.1.weight", "neck.7.conv_block.1.bias", "neck.7.conv_block.5.weight", "neck.7.conv_block.5.bias", "neck.8.conv_block.1.weight", "neck.8.conv_block.1.bias", "neck.8.conv_block.5.weight", "neck.8.conv_block.5.bias", "ups.0.weight", "ups.0.bias", "ups.3.weight", "ups.3.bias", "ups.7.weight", "ups.7.bias", "importance_ups.0.weight", "importance_ups.0.bias", "importance_ups.3.weight", "importance_ups.3.bias", "importance_ups.7.weight", "importance_ups.7.bias".
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Thanks for your excellent work!But I got problem in weight loading
The pretrained model and config form#6
This is my config yaml
This is the error message
Traceback (most recent call last): File "main.py", line 29, in <module> launch_job(args, test_func) File "/opt/data/private/wzh/workspace/isecret/isecret/utils/launch.py", line 87, in launch_job func(args) File "/opt/data/private/wzh/workspace/isecret/test.py", line 43, in test_func model = TestModel(args) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 24, in __init__ MyModel.__init__(self, args) File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 37, in __init__ self.build_model() File "/opt/data/private/wzh/workspace/isecret/isecret/model/test_model.py", line 48, in build_model self.load('last') File "/opt/data/private/wzh/workspace/isecret/isecret/model/common.py", line 350, in load model.load_state_dict(state['weights']) File "/root/anaconda3/envs/isecret/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for ResGenerator: Missing key(s) in state_dict: "model.1.weight", "model.1.bias", "model.5.weight", "model.5.bias", "model.9.weight", "model.9.bias", "model.12.conv_block.1.weight", "model.12.conv_block.1.bias", "model.12.conv_block.5.weight", "model.12.conv_block.5.bias", "model.13.conv_block.1.weight", "model.13.conv_block.1.bias", "model.13.conv_block.5.weight", "model.13.conv_block.5.bias", "model.14.conv_block.1.weight", "model.14.conv_block.1.bias", "model.14.conv_block.5.weight", "model.14.conv_block.5.bias", "model.15.conv_block.1.weight", "model.15.conv_block.1.bias", "model.15.conv_block.5.weight", "model.15.conv_block.5.bias", "model.16.conv_block.1.weight", "model.16.conv_block.1.bias", "model.16.conv_block.5.weight", "model.16.conv_block.5.bias", "model.17.conv_block.1.weight", "model.17.conv_block.1.bias", "model.17.conv_block.5.weight", "model.17.conv_block.5.bias", "model.18.conv_block.1.weight", "model.18.conv_block.1.bias", "model.18.conv_block.5.weight", "model.18.conv_block.5.bias", "model.19.conv_block.1.weight", "model.19.conv_block.1.bias", "model.19.conv_block.5.weight", "model.19.conv_block.5.bias", "model.20.conv_block.1.weight", "model.20.conv_block.1.bias", "model.20.conv_block.5.weight", "model.20.conv_block.5.bias", "model.21.weight", "model.21.bias", "model.24.weight", "model.24.bias", "model.28.weight", "model.28.bias". Unexpected key(s) in state_dict: "head.1.weight", "head.1.bias", "downs.1.weight", "downs.1.bias", "downs.5.weight", "downs.5.bias", "neck.0.conv_block.1.weight", "neck.0.conv_block.1.bias", "neck.0.conv_block.5.weight", "neck.0.conv_block.5.bias", "neck.1.conv_block.1.weight", "neck.1.conv_block.1.bias", "neck.1.conv_block.5.weight", "neck.1.conv_block.5.bias", "neck.2.conv_block.1.weight", "neck.2.conv_block.1.bias", "neck.2.conv_block.5.weight", "neck.2.conv_block.5.bias", "neck.3.conv_block.1.weight", "neck.3.conv_block.1.bias", "neck.3.conv_block.5.weight", "neck.3.conv_block.5.bias", "neck.4.conv_block.1.weight", "neck.4.conv_block.1.bias", "neck.4.conv_block.5.weight", "neck.4.conv_block.5.bias", "neck.5.conv_block.1.weight", "neck.5.conv_block.1.bias", "neck.5.conv_block.5.weight", "neck.5.conv_block.5.bias", "neck.6.conv_block.1.weight", "neck.6.conv_block.1.bias", "neck.6.conv_block.5.weight", "neck.6.conv_block.5.bias", "neck.7.conv_block.1.weight", "neck.7.conv_block.1.bias", "neck.7.conv_block.5.weight", "neck.7.conv_block.5.bias", "neck.8.conv_block.1.weight", "neck.8.conv_block.1.bias", "neck.8.conv_block.5.weight", "neck.8.conv_block.5.bias", "ups.0.weight", "ups.0.bias", "ups.3.weight", "ups.3.bias", "ups.7.weight", "ups.7.bias", "importance_ups.0.weight", "importance_ups.0.bias", "importance_ups.3.weight", "importance_ups.3.bias", "importance_ups.7.weight", "importance_ups.7.bias".
The text was updated successfully, but these errors were encountered: