-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Philip Meier <[email protected]>
- Loading branch information
Showing
2 changed files
with
221 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
import json | ||
import sys | ||
from pathlib import Path | ||
from typing import Annotated, Optional | ||
|
||
import rich | ||
import typer | ||
from rich.console import Console | ||
from rich.panel import Panel | ||
from rich.progress import BarColumn, Progress, TextColumn, TimeRemainingColumn | ||
|
||
from ragna.core._utils import default_user | ||
from ragna.deploy._api import database, orm | ||
|
||
from .config import ConfigOption | ||
|
||
app = typer.Typer( | ||
name="corpus", | ||
help="(Experimental) Interact with a corpus of documents.", | ||
invoke_without_command=True, | ||
no_args_is_help=True, | ||
) | ||
|
||
|
||
@app.callback() | ||
def experimental_warning() -> None: | ||
lines = [ | ||
( | ||
"[bold]ragna corpus[/bold] and all subcommands are in an experimental " | ||
"state and subject to change in the future." | ||
), | ||
( | ||
"If you have feedback or want to suggest a feature, " | ||
"please open an issue at " | ||
"https://github.com/Quansight/ragna/issues/new/choose." | ||
), | ||
] | ||
rich.print( | ||
Panel("\n".join(lines), title=":rotating_light: Warning :rotating_light:") | ||
) | ||
|
||
|
||
@app.command(help="Ingest documents into a given corpus.") | ||
def ingest( | ||
documents: list[Path], | ||
metadata_fields: Annotated[ | ||
Optional[Path], | ||
typer.Option( | ||
help="JSON file that contains mappings from document name " | ||
"to metadata fields associated with a document.", | ||
), | ||
] = None, | ||
corpus_name: Annotated[ | ||
str, | ||
typer.Option(help="Name of the corpus to ingest the documents into."), | ||
] = "default", | ||
config: ConfigOption = "./ragna.toml", # type: ignore[assignment] | ||
user: Annotated[ | ||
Optional[str], | ||
typer.Option(help="User to link the documents to in the ragna database."), | ||
] = None, | ||
report_failures: Annotated[ | ||
bool, | ||
typer.Option(help="Output to STDERR the documents that failed to be ingested."), | ||
] = False, | ||
ignore_log: Annotated[ | ||
bool, typer.Option(help="Ignore the log file and re-ingest all documents.") | ||
] = False, | ||
) -> None: | ||
try: | ||
document_factory = getattr(config.document, "from_path") | ||
except AttributeError: | ||
raise typer.BadParameter( | ||
f"{config.document.__name__} does not support creating documents from a" | ||
f"path. Please implement a `from_path` method." | ||
) | ||
|
||
try: | ||
make_session = database.get_sessionmaker(config.api.database_url) | ||
except Exception: | ||
raise typer.BadParameter( | ||
f"Could not connect to the database: {config.api.database_url}" | ||
) | ||
|
||
if metadata_fields: | ||
try: | ||
with open(metadata_fields) as file: | ||
metadata = json.load(file) | ||
except Exception: | ||
raise typer.BadParameter( | ||
f"Could not read the metadata fields file: {metadata_fields}" | ||
) | ||
else: | ||
metadata = {} | ||
|
||
if user is None: | ||
user = default_user() | ||
with make_session() as session: # type: ignore[attr-defined] | ||
user_id = database._get_user_id(session, user) | ||
|
||
# Log (JSONL) for recording which files previously added to vector database. | ||
# Each entry has keys for 'user', 'corpus_name', 'source_storage' and 'document'. | ||
ingestion_log: dict[str, set[str]] = {} | ||
if not ignore_log: | ||
ingestion_log_file = Path.cwd() / ".ragna_ingestion_log.jsonl" | ||
if ingestion_log_file.exists(): | ||
with open(ingestion_log_file) as stream: | ||
for line in stream: | ||
entry = json.loads(line) | ||
if entry["corpus_name"] == corpus_name and entry["user"] == user: | ||
ingestion_log.setdefault(entry["source_storage"], set()).add( | ||
entry["document"] | ||
) | ||
|
||
with Progress( | ||
TextColumn("[progress.description]{task.description}"), | ||
BarColumn(), | ||
"[progress.percentage]{task.percentage:>3.1f}%", | ||
TimeRemainingColumn(), | ||
) as progress: | ||
overall_task = progress.add_task( | ||
"[cyan]Adding document embeddings to source storages...", | ||
total=len(config.source_storages), | ||
) | ||
|
||
for source_storage in config.source_storages: | ||
BATCH_SIZE = 10 | ||
number_of_batches = len(documents) // BATCH_SIZE | ||
source_storage_task = progress.add_task( | ||
f"[green]Adding document embeddings to {source_storage.display_name()}...", | ||
total=number_of_batches, | ||
) | ||
|
||
for batch_number in range(0, len(documents), BATCH_SIZE): | ||
documents_not_ingested = [] | ||
document_instances = [] | ||
orm_documents = [] | ||
|
||
if source_storage.display_name() in ingestion_log: | ||
batch_doc_set = set( | ||
[ | ||
str(doc) | ||
for doc in documents[ | ||
batch_number : batch_number + BATCH_SIZE | ||
] | ||
] | ||
) | ||
if batch_doc_set.issubset( | ||
ingestion_log[source_storage.display_name()] | ||
): | ||
progress.advance(source_storage_task) | ||
continue | ||
|
||
for document in documents[batch_number : batch_number + BATCH_SIZE]: | ||
try: | ||
doc_instance = document_factory( | ||
document, | ||
metadata=( | ||
metadata[str(document)] | ||
if str(document) in metadata | ||
else None | ||
), | ||
) | ||
document_instances.append(doc_instance) | ||
orm_documents.append( | ||
orm.Document( | ||
id=doc_instance.id, | ||
user_id=user_id, | ||
name=doc_instance.name, | ||
metadata_=doc_instance.metadata, | ||
) | ||
) | ||
except Exception: | ||
documents_not_ingested.append(document) | ||
|
||
if not orm_documents: | ||
continue | ||
|
||
try: | ||
session = make_session() | ||
session.add_all(orm_documents) | ||
source_storage().store(corpus_name, document_instances) | ||
session.commit() | ||
except Exception: | ||
documents_not_ingested.extend( | ||
documents[batch_number : batch_number + BATCH_SIZE] | ||
) | ||
session.rollback() | ||
finally: | ||
session.close() | ||
|
||
if not ignore_log: | ||
with open(ingestion_log_file, "a") as stream: | ||
for document in documents[ | ||
batch_number : batch_number + BATCH_SIZE | ||
]: | ||
stream.write( | ||
json.dumps( | ||
{ | ||
"user": user, | ||
"corpus_name": corpus_name, | ||
"source_storage": source_storage.display_name(), | ||
"document": str(document), | ||
} | ||
) | ||
+ "\n" | ||
) | ||
|
||
if report_failures: | ||
Console(file=sys.stderr).print( | ||
f"{source_storage.__name__} failed to embed:\n{documents_not_ingested}", | ||
) | ||
|
||
progress.advance(source_storage_task) | ||
|
||
progress.update(source_storage_task, completed=number_of_batches) | ||
progress.advance(overall_task) | ||
|
||
progress.update(overall_task, completed=len(config.source_storages)) |