diff --git a/ext/QuantumCliffordHeckeExt/QuantumCliffordHeckeExt.jl b/ext/QuantumCliffordHeckeExt/QuantumCliffordHeckeExt.jl index 89d7bae0c..aa04eafee 100644 --- a/ext/QuantumCliffordHeckeExt/QuantumCliffordHeckeExt.jl +++ b/ext/QuantumCliffordHeckeExt/QuantumCliffordHeckeExt.jl @@ -5,7 +5,7 @@ using DocStringExtensions import QuantumClifford, LinearAlgebra import Hecke: Group, GroupElem, AdditiveGroup, AdditiveGroupElem, GroupAlgebra, GroupAlgebraElem, FqFieldElem, representation_matrix, dim, base_ring, - multiplication_table, coefficients, abelian_group, group_algebra, rand + multiplication_table, coefficients, abelian_group, group_algebra, rand, gens import Nemo import Nemo: characteristic, matrix_repr, GF, ZZ, lift diff --git a/ext/QuantumCliffordHeckeExt/lifted_product.jl b/ext/QuantumCliffordHeckeExt/lifted_product.jl index 66bd35ed6..3934b3da4 100644 --- a/ext/QuantumCliffordHeckeExt/lifted_product.jl +++ b/ext/QuantumCliffordHeckeExt/lifted_product.jl @@ -331,3 +331,34 @@ function haah_cubic_codes(a_shifts::Array{Int}, b_shifts::Array{Int}, l::Int) b = sum(GA[n%dim(GA)+1] for n in b_shifts) two_block_group_algebra_codes(a, b) end + +""" +Haah’s cubic code is defined as \$\\text{LP}(1 + x + y + z, 1 + xy + xz + yz)\$ +where \$\\text{LP}\$ is the lifted product code, and `x`, `y`, `z` are elements +of the ring \$R = \\mathbb{F}_2[x, y, z] / (x^L - 1, y^L - 1, z^L - 1)\$. Here +\$\\mathbb{F}_2\$ is the finite field of order `2` and `L` is the lattice size. +The ring \$R\$ is the group algebra \$\\mathbb{F}_qG\$ of a finite group `G`, where +\$G = (C_L)^3\$ and \$C_L\$ is the cyclic group of order `L`. This method of Haah's +cubic code construction is outlined in Appendix B of [panteleev2022asymptotically](@cite). + +Here is an example of a [[1024, 30, 13 ≤ d ≤ 32]] Haah's cubic code from Appendix B, +code D of [panteleev2021degenerate](@cite) on the `8 × 8 × 8` Lattice. + +```jldoctest +julia> l = 8; + +julia> c = haah_cubic_codes(l); + +julia> code_n(c), code_k(c) +(1024, 30) +``` + +See also: [`bicycle_codes`](@ref), [`generalized_bicycle_codes`](@ref), [`two_block_group_algebra_codes`](@ref). +""" +function haah_cubic_codes(l::Int) + GA = group_algebra(GF(2), abelian_group([l,l,l])) + x, y, z = gens(GA) + c = [1 + x + y + z;;] + d = [1 + x*y + x*z + y*z;;] + LPCode(c,d) +end