-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_example.py
799 lines (758 loc) · 40.9 KB
/
main_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
import json
import os
import platform
from copy import deepcopy
from time import perf_counter
import seaborn as sn
from matplotlib import pyplot as plt
from datasets import *
from mlp import Dense, ReluLayer, LeakyReluLayer, SwishLayer, Dropout
from mlp import Euclidean, Octile, Manhattan, Chebyshev
from mlp import GradientDescent, GradientDescentMomentum, AdaGrad, AdaDelta, RMSprop, Adam, AdaMax
from mlp import Linear, Sigmoid, Relu, Tanh, SoftMax, HardLim
from mlp import MLPClassifier, CPClassifier
from mlp import MSE, SSE, MAE, SAE, SMCE
from mlp import xavier_uniform, xavier_uniform_normalized, he_normal, he_uniform
from mlp import zeros, ones, std_normal, xavier_normal, xavier_normal_normalized, full
def show_confusion_matrix(n_classes, y_true, y_predicted, title):
cm = np.zeros((n_classes, n_classes), int)
for y_t, y_p in zip(y_true, y_predicted):
truth = y_t
predicted = y_p
cm[truth, predicted] += 1
plt.figure(figsize=(8, 9))
sn.heatmap(cm, cmap='Blues', annot=True, fmt='g')
plt.xlabel("Predicted")
plt.ylabel("Truth")
plt.title(title)
plt.show()
def plot_loss_accuracy_curves(epochs,
train_loss_curve,
train_accuracy_curve,
test_loss_curve,
test_accuracy_curve,
label_x='Epoch',
label_y_loss='Loss',
label_y_accuracy='Accuracy'):
if len(train_loss_curve) > 0 and len(train_accuracy_curve) > 0:
time_plot = np.arange(1, epochs + 1)
fig = plt.figure(figsize=(6, 6))
ax1 = fig.add_subplot(211)
ax1.plot(time_plot, train_loss_curve, "-r", label="Train loss")
if len(test_loss_curve) > 1:
ax1.plot(time_plot, test_loss_curve, "-m", label="Test loss")
ax1.set_xlabel(label_x)
ax1.set_ylabel(label_y_loss)
ax1.grid()
ax1.set_xlim(1 - 0.01, epochs + 0.01)
ax1.legend(loc="best")
ax2 = fig.add_subplot(212)
ax2.plot(time_plot, train_accuracy_curve, "-b", label="Train accuracy")
if len(test_accuracy_curve) > 1:
ax2.plot(time_plot, test_accuracy_curve, "-c", label="Test accuracy")
ax2.set_xlabel(label_x)
ax2.set_ylabel(label_y_accuracy)
ax2.grid()
ax2.set_xlim(1 - 0.01, epochs + 0.01)
ax2.set_ylim(-0.01, 1.01)
ax2.legend(loc="best")
plt.show()
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
def try_while_false(type, function, *params, error_message=None):
while True:
try:
r = type(function(*params))
except BaseException:
if error_message is not None and len(error_message) > 0:
print(error_message, end='')
else:
traceback.print_exc()
else:
break
return r
def enter_number(message, a, b, type):
param = try_while_false(type, input, message, error_message="Try again.\n")
while not (a <= param <= b):
print("Value must be in [", a, ', ', b, ']', sep='')
param = try_while_false(type, input, message, error_message="Try again.\n")
return param
def enter_distance_function():
print("Distance functions:\n1. Euclidean\n2. Octile\n3. Manhattan\n4. Chebyshev")
return [Euclidean(), Octile(), Manhattan(), Chebyshev()][enter_number('#>', 1, 4, int) - 1]
def enter_initializer(message):
print("Initializers:\n1. Zeros\n2. Ones\n3. Std normal\n4. Xavier normal\n5. Xavier normal normalized\n" +
"6. Xavier uniform\n7. Xavier uniform normalized\n8. He normal\n9. He uniform\n10. User value\n" + message)
x = [
zeros, ones, std_normal, xavier_normal, xavier_normal_normalized,
xavier_uniform, xavier_uniform_normalized, he_normal, he_uniform, 'full'
][enter_number('#>', 1, 10, int) - 1]
if x == 'full':
fill_value = enter_number("Value:", -np.inf, np.inf, float)
return lambda shape: full(shape=shape, fill_value=fill_value)
return x
def enter_optimizer():
print("Optimizers:\n1. Gradient Descent\n2. Gradient Descent with momentum\n3. AdaGrad\n" +
"4. AdaDelta\n5. RMSprop\n6. Adam\n7. AdaMax")
return [
GradientDescent, GradientDescentMomentum, AdaGrad, AdaDelta, RMSprop, Adam, AdaMax
][enter_number('#>', 1, 7, int) - 1]
def enter_loss_function(smce):
print("Loss functions:\n1. MSE\n2. SSE\n3. MAE\n4. SAE" + "\n5. SoftMaxCrossEntropy" * int(smce))
return [MSE(), SSE(), MAE(), SAE(), SMCE()][enter_number('#>', 1, 4 + int(smce), int) - 1]
def enter_activation_function():
print("Activation functions:\n1. Linear\n2. Sigmoid\n3. ReLU\n4. Tanh\n5. SoftMax\n6. HardLim")
return [Linear(), Sigmoid(), Relu(), Tanh(), SoftMax(), HardLim()][enter_number('#>', 1, 6, int) - 1]
def enter_bool(message):
while True:
t = input(message + " [y/n]:").lower()
if t == 'y' or t == 'n':
return t == 'y'
print("Try again...")
class Experiments:
@staticmethod
def prepare_x_for_experiment_1(xs, pixel_removal_percentage):
"""
xs: shape(60000, 784)
"""
xsc = deepcopy(xs)
min_ = np.minimum(np.min(xs), 0.)
for x in xsc:
non_zero_pixels = (x != min_)
size = int(pixel_removal_percentage * x[non_zero_pixels].shape[0])
x[np.random.choice(np.where(non_zero_pixels)[0], size=size, replace=False)] = min_
return xsc
@staticmethod
def prepare_x_for_experiment_2(xs, pixel_percentage, noise_factor):
"""
xs: shape(60000, 784)
"""
xsc = deepcopy(xs)
min_ = np.minimum(np.min(xs), 0.)
for x in xsc:
zero_pixels = (x == min_)
size = int(pixel_percentage * x[zero_pixels].shape[0])
choice = np.random.choice(np.where(zero_pixels)[0], size=size, replace=False)
x[choice] = (np.random.rand(choice.shape[0]) * noise_factor).reshape(-1, 1)
return xsc
@staticmethod
def prepare_x_for_experiment_3(xs, pixel_addition_percentage, pixel_removal_percentage, noise_factor):
"""
xs: shape(60000, 784)
"""
xsc = deepcopy(xs)
min_ = np.minimum(np.min(xs), 0.)
for x in xsc:
non_zero_pixels = (x != min_)
size = int(pixel_removal_percentage * x[non_zero_pixels].shape[0])
x[np.random.choice(np.where(non_zero_pixels)[0], size=size, replace=False)] = min_
zero_pixels = non_zero_pixels ^ True
size = int(pixel_addition_percentage * x[zero_pixels].shape[0])
choice = np.random.choice(np.where(zero_pixels)[0], size=size, replace=False)
x[choice] = (np.random.rand(choice.shape[0]) * noise_factor).reshape(-1, 1)
return xsc
@staticmethod
def prepare_x_for_experiment_4(xs, row=None, col=None):
"""
xs: shape(60000, 28, 28)
"""
xsc = deepcopy(xs)
background_color = np.round((np.sum(xsc[:, [0, 1, -2, -1], [0, 1, -2, -1]])) / (2. * xsc.shape[0]))
x_color = np.maximum(np.max(xsc), 1.) - background_color
if row is not None and 0 <= row < xsc.shape[1]:
xsc[:, row, :] = x_color
if col is not None and 0 <= col < xsc.shape[2]:
xsc[:, :, col] = x_color
return xsc.reshape((xsc.shape[0], np.product(xsc.shape[1:])))
@staticmethod
def prepare_x_for_experiment_5(xs, row=None, col=None):
"""
xs: shape(60000, 28, 28)
"""
xsc = deepcopy(xs)
background_color = np.round((np.sum(xsc[:, [0, 1, -2, -1], [0, 1, -2, -1]])) / (2. * xsc.shape[0]))
if row is not None and 0 <= row < xsc.shape[1]:
xsc[:, row, :] = background_color
if col is not None and 0 <= col < xsc.shape[2]:
xsc[:, :, col] = background_color
return xsc.reshape((xsc.shape[0], np.product(xsc.shape[1:])))
@staticmethod
def prepare_x_for_experiment_8(xs, bold=1., italic=0.5, underline=1.):
"""
xs: shape(60000, 784)
"""
xsc = deepcopy(xs)
min_ = np.minimum(np.min(xsc), 0)
max_ = np.maximum(np.max(xsc), 1)
size = int(np.sqrt(xsc.shape[1]))
if 0. < bold <= 1.:
for x in xsc:
temp = x[x > 0.]
x[x > 0] = np.minimum(temp + bold * max_, max_)
if 0. < italic <= 1.:
for i, x in enumerate(xsc):
tx = x.reshape(size, size)
ks = tx.shape[0]
k_min = np.inf
for tx_elem in tx:
idx = np.where(tx_elem != 0)[0]
if idx.shape[0] > 0 and k_min > idx[0]:
k_min = idx[0]
tx = np.hstack((tx[:, k_min:], np.zeros((tx.shape[0], k_min))))
for j in range(tx.shape[0]):
tx[j] = Experiments.shift(tx[j], int((ks - j - 1) * italic), fill_value=min_)
xsc[i] = tx.reshape(x.shape)
if 0. < underline <= 1.:
row_start = size * (size - 2)
row_stop = size * (size - 1)
xsc[:, row_start:row_stop] = underline
return xsc
@staticmethod
def shift(arr, num, fill_value=np.nan):
result = np.empty_like(arr)
if num > 0:
result[:num] = fill_value
result[num:] = arr[:-num]
elif num < 0:
result[num:] = fill_value
result[:num] = arr[-num:]
else:
result[:] = arr
return result
def main():
def reset():
nonlocal train_x, train_y, test_x, test_y, n_classes
nonlocal train_samples, test_samples, train_accuracy, train_loss
nonlocal test_accuracy, test_loss, train_accuracy_goal
nonlocal test_accuracy_goal
train_x, train_y, test_x, test_y, n_classes = [], [], [], [], 0
train_samples = 0
test_samples = 0
train_accuracy = 0.
train_loss = np.inf
test_accuracy = 0.
test_loss = np.inf
train_accuracy_goal = 1.
test_accuracy_goal = 1.
def show_confusion_matrix_ex(n_classes, y_predicted, y_true, s):
train_y_typename = train_y.dtype.type.__name__
if 'float' in train_y_typename or 'float' in train_y_typename:
show_confusion_matrix(n_classes, y_true, y_predicted, s)
else:
show_confusion_matrix(n_classes, neural_network.to_class_index(y_true),
neural_network.to_class_index(y_predicted), s)
def do_command(x, y, sample, sample_type: str):
n_samples = x.shape[0]
print(f"{sample_type.capitalize()} sample {sample + 1}\nX:", x[sample].tolist(), "\nY:", y[sample])
try:
plt.imshow(x[sample])
plt.show(block=False)
visualization = True
except TypeError:
print("This data cannot be visualized on a graph")
plt.close('all')
visualization = False
if command == 'predict' and 0 <= sample < n_samples:
if train_accuracy > 0. and train_loss < np.inf:
x_sample = np.array([x[sample]])
print("Predicted Y:", neural_network.predict_classes(x_sample)[0])
while visualization and enter_bool("Experiment?"):
print("1. Pixel Removal", "2. Adding noise", "3. Pixel Removal & Adding noise",
"4. Black row/col", "5. White row/col", "6. Image modification", sep='\n')
v = enter_number("#>", 1, 6, int)
xt = neural_network.prepared_data.prepare_x(x_sample)
if v == 1:
pixel_percent = enter_number("Pixel removal percentage (0-1):", 0, 1, float)
r = Experiments.prepare_x_for_experiment_1(xt, pixel_percent)
elif v == 2:
pixel_percent = enter_number("Pixel percentage (0-1):", 0, 1, float)
noise_factor = enter_number("Noise factor (0-1):", 0, 1, float)
r = Experiments.prepare_x_for_experiment_2(xt, pixel_percent, noise_factor)
elif v == 3:
pap = enter_number("Pixel addition percentage (0-1):", 0, 1, float)
prp = enter_number("Pixel removal percentage (0-1):", 0, 1, float)
nf = enter_number("Noise factor (0-1):", 0, 1, float)
r = Experiments.prepare_x_for_experiment_3(xt, pap, prp, nf)
elif v == 4:
xtm = xt.reshape((xt.shape[0], *x_sample.shape[1:]))
row = enter_number(f"Row (0/1-{x_sample.shape[1]}):", 0, x_sample.shape[1], int) - 1
col = enter_number(f"Col (0/1-{x_sample.shape[2]}):", 0, x_sample.shape[2], int) - 1
r = Experiments.prepare_x_for_experiment_4(xtm, row, col).reshape(xt.shape)
elif v == 5:
xtm = xt.reshape((xt.shape[0], *x_sample.shape[1:]))
row = enter_number(f"Row (0/1-{x_sample.shape[1]}):", 0, x_sample.shape[1], int) - 1
col = enter_number(f"Col (0/1-{x_sample.shape[2]}):", 0, x_sample.shape[2], int) - 1
r = Experiments.prepare_x_for_experiment_5(xtm, row, col).reshape(xt.shape)
elif v == 6:
bold = enter_number(f"Bold (0-1):", 0., 1., float)
italic = enter_number(f"Italic (0-1):", 0., 1., float)
underline = enter_number(f"Underline (0-1):", 0., 1., float)
r = Experiments.prepare_x_for_experiment_8(xt, bold, italic, underline)
else:
return None
print("Predicted Y':", neural_network.predict_classes(r, _input_is_prepared=True)[0])
plt.figure()
plt.imshow(r[0].reshape(x_sample.shape[1:]))
plt.show(block=False)
else:
print("Train accuracy <= 0 or train loss == infinity")
def is_renderable(x):
try:
plt.imshow(x)
visualization = True
except TypeError:
visualization = False
plt.close('all')
return visualization
def do_experiment(x, y, n_classes_exp):
if train_accuracy > 0. and train_loss < np.inf and x.shape[0] > 0 and is_renderable(x[0]):
print("1. Pixel Removal", "2. Adding noise", "3. Pixel Removal & Adding noise",
"4. Black row/col", "5. White row/col", "6. Image modification", sep='\n')
v = enter_number("#>", 1, 6, int)
xt = neural_network.prepared_data.prepare_x(x)
if v == 1:
pixel_percent = enter_number("Pixel removal percentage (0-1):", 0, 1, float)
r = Experiments.prepare_x_for_experiment_1(xt, pixel_percent)
elif v == 2:
pixel_percent = enter_number("Pixel percentage (0-1):", 0, 1, float)
noise_factor = enter_number("Noise factor (0-1):", 0, 1, float)
r = Experiments.prepare_x_for_experiment_2(xt, pixel_percent, noise_factor)
elif v == 3:
pap = enter_number("Pixel addition percentage (0-1):", 0, 1, float)
prp = enter_number("Pixel removal percentage (0-1):", 0, 1, float)
nf = enter_number("Noise factor (0-1):", 0, 1, float)
r = Experiments.prepare_x_for_experiment_3(xt, pap, prp, nf)
elif v == 4:
xtm = xt.reshape((xt.shape[0], *x.shape[1:]))
row = enter_number(f"Row (0/1-{x.shape[1]}):", 0, x.shape[1], int) - 1
col = enter_number(f"Col (0/1-{x.shape[2]}):", 0, x.shape[2], int) - 1
r = Experiments.prepare_x_for_experiment_4(xtm, row, col).reshape(xt.shape)
elif v == 5:
xtm = xt.reshape((xt.shape[0], *x.shape[1:]))
row = enter_number(f"Row (0/1-{x.shape[1]}):", 0, x.shape[1], int) - 1
col = enter_number(f"Col (0/1-{x.shape[2]}):", 0, x.shape[2], int) - 1
r = Experiments.prepare_x_for_experiment_5(xtm, row, col).reshape(xt.shape)
elif v == 6:
bold = enter_number(f"Bold (0-1):", 0., 1., float)
italic = enter_number(f"Italic (0-1):", 0., 1., float)
underline = enter_number(f"Underline (0-1):", 0., 1., float)
r = Experiments.prepare_x_for_experiment_8(xt, bold, italic, underline)
else:
return None
losses_exp, correct_answers_exp = neural_network.evaluate(r, y, _input_is_prepared=True)
print("EXPERIMENT RESULTS")
print("Loss:", losses_exp.mean())
print("Accuracy (%):", correct_answers_exp * 100 / x.shape[0])
show_confusion_matrix_ex(n_classes_exp, y,
neural_network.predict_classes(r, _input_is_prepared=True),
'Experiment. Confusion matrix')
else:
print("Train accuracy <= 0 or train loss == infinity")
plt.rcParams['image.cmap'] = 'Greys'
train_x, train_y, test_x, test_y, n_classes = [], [], [], [], 0
clear_command = 'cls' if 'windows' in platform.system().lower() else 'clear'
chosen_dataset = ''
features = 0
train_samples = 0
test_samples = 0
neural_network = None
train_accuracy = 0.
train_loss = np.inf
test_accuracy = 0.
test_loss = np.inf
train_accuracy_goal = 1.
test_accuracy_goal = 1.
parameters = 0
cur_is_renderable = False
output_classes_filename = 'output_classes.txt'
best_choice = frozenset({'train_accuracy'})
while True:
os.system(clear_command)
if n_classes == 0:
print("Menu")
print("1. Load data from CSV-file/files")
print("2. Load MNIST")
print("3. Load EMNIST Digits")
print("4. Load EMNIST Letters")
print("5. Load EMNIST Balanced")
print("6. Load Wine")
print("7. Load Iris")
print("0. Exit")
menu_item = input("#>")
if menu_item == '0':
exit(0)
if menu_item == '1':
filename = input("Filename (train data):")
train_x, train_y, n_classes = load_csv(filename)
best_choice = frozenset({'train_accuracy'})
if n_classes > 0:
test_x, test_y, _ = load_csv(input("Filename (test data) or empty string:"))
best_choice = frozenset({'test_accuracy'})
chosen_dataset = filename
elif menu_item == '2':
train_x, train_y, test_x, test_y, n_classes = load_mnist()
best_choice = frozenset({'test_accuracy'})
chosen_dataset = 'MNIST'
elif menu_item == '3':
train_x, train_y, test_x, test_y, n_classes = load_emnist_digits()
best_choice = frozenset({'test_accuracy'})
chosen_dataset = 'EMNIST Digits'
elif menu_item == '4':
train_x, train_y, test_x, test_y, n_classes = load_emnist_letters()
best_choice = frozenset({'test_accuracy'})
chosen_dataset = 'EMNIST Letters'
elif menu_item == '5':
train_x, train_y, test_x, test_y, n_classes = load_emnist_balanced()
best_choice = frozenset({'test_accuracy'})
chosen_dataset = 'EMNIST Balanced'
elif menu_item == '6':
train_x, train_y, n_classes = load_wine()
best_choice = frozenset({'train_accuracy'})
chosen_dataset = 'Wine'
elif menu_item == '7':
train_x, train_y, n_classes = load_iris()
best_choice = frozenset({'train_accuracy'})
chosen_dataset = 'Iris'
train_samples = min(len(train_x), len(train_y))
if train_samples > 0:
test_samples = min(len(test_x), len(test_y))
features = 1 if train_x.ndim == 1 else np.product(train_x.shape[1:])
b_settings_file = enter_bool("Get settings from file?")
if b_settings_file:
filename = input("Filename:")
try:
with open(filename, "r") as fp:
dictionary = json.load(fp)
if len(dictionary) > 0:
if dictionary['classifier'] == 'mlp_classifier':
neural_network = MLPClassifier(n_inputs=0, optimizer=None, loss_function=None)
elif dictionary['classifier'] == 'cp_classifier':
neural_network = CPClassifier(n_inputs=0, kohonen_neurons=0, grossberg_neurons=0,
loss_function=None, distance_function=None,
kohonen_kernel_initializer=None,
grossberg_kernel_initializer=None)
else:
input("Invalid classifier name")
reset()
continue
neural_network.set_parameters(dictionary)
if (features != neural_network.n_inputs
or isinstance(neural_network, MLPClassifier)
and n_classes != neural_network.output_units):
input("Invalid classifier for data")
reset()
continue
b_eval = enter_bool('Calculate the error and accuracy of the selected neural network?')
if b_eval:
losses, correct_answers = neural_network.evaluate(train_x, train_y)
train_loss = losses.mean()
train_accuracy = correct_answers * 100 / train_samples
if test_samples > 0:
losses, correct_answers = neural_network.evaluate(test_x, test_y)
test_loss = losses.mean()
test_accuracy = correct_answers * 100 / test_samples
cur_is_renderable = is_renderable(train_x[0])
parameters = neural_network.count_parameters()
continue
except OSError as error:
print(error)
reset()
input("Go to menu>>")
continue
except ValueError as error:
print(f"Invalid data in file. {error}")
reset()
input("Go to menu>>")
continue
except BaseException:
traceback.print_exc()
reset()
input("Go to menu>>")
continue
print("Neural networks:\n1. MLPClassifier\n2. CPClassifier")
neural_network_type = enter_number("#>", 1, 2, int)
loss = enter_loss_function(neural_network_type == 1)
print(neural_network_type.__repr__())
if neural_network_type == 1:
optimizer = enter_optimizer()
neural_network = MLPClassifier(n_inputs=features, optimizer=optimizer, loss_function=loss)
n_layers = enter_number("Enter number of hidden layers (1 - 20):", 1, 20, int)
for i_layer in range(1, n_layers + 1):
print(i_layer, "layer")
print("Type of layer:\n1. Dense\n2. Relu\n3. LeakyRelu\n4. Swish\n5. Dropout")
layer_type = enter_number("#>", 1, 2, int)
if layer_type == 1:
if i_layer != n_layers:
units = enter_number("Enter units (1 - 10000):", 1, 10000, int)
else:
units = n_classes
print("Units:", n_classes)
activation = enter_activation_function()
kernel_initializer = enter_initializer("Enter kernel initializer")
bias_initializer = enter_initializer("Enter bias initializer")
neural_network.add(
Dense(output_units=units, activation=activation, kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer))
elif layer_type == 2:
neural_network.add(ReluLayer(output_units=neural_network.layers[-1].units))
elif layer_type == 3:
negative_slope = enter_number('Negative slope', 0, 1, float)
neural_network.add(LeakyReluLayer(negative_slope=negative_slope,
output_units=neural_network.layers[-1].units))
elif layer_type == 4:
neural_network.add(SwishLayer(output_units=neural_network.layers[-1].units))
elif layer_type == 5:
dropout = enter_number('Enter dropout coefficient:', 0, 0.99, float)
neural_network.add(Dropout(dropout))
elif neural_network_type == 2:
kohonen_neurons = enter_number('Kohonen neurons (1-1000000):', 1, 1000000, int)
distance_function = enter_distance_function()
kohonen_kernel_initializer = enter_initializer("Enter kohonen kernel initializer")
grossberg_kernel_initializer = enter_initializer("Enter grossberg kernel initializer")
neural_network = CPClassifier(n_inputs=features,
kohonen_neurons=kohonen_neurons,
grossberg_neurons=n_classes,
loss_function=loss,
distance_function=distance_function,
kohonen_kernel_initializer=kohonen_kernel_initializer,
grossberg_kernel_initializer=grossberg_kernel_initializer)
cur_is_renderable = is_renderable(train_x[0])
parameters = neural_network.count_parameters()
print("Neural network is ready")
elif train_samples > 0 and n_classes > 0:
print(neural_network)
print("Dataset:", chosen_dataset, '[enter "close/export" to close/export this dataset]')
print("Train samples:", train_samples, '[enter "train show/predict n" to show/predict n train sample]')
if test_samples > 0:
print("Test samples:", test_samples, '[enter "test show/predict n" to show/predict n test sample]')
print("Features:", features)
print("Classes:", n_classes)
print("Trainable params:", parameters)
print("Current train accuracy:", train_accuracy)
print("Current train loss:", train_loss)
if test_samples > 0:
print("Current test accuracy:", test_accuracy)
print("Current test loss:", test_loss)
print("1. Train & Test")
print("2. Only train")
print("3. Calc accuracy and loss of train data")
print("4. Calc accuracy and loss of test data")
print("5. Output train and test")
else:
print("1. Train")
print("2. Calc accuracy and loss of train data")
print("3. Output train")
if cur_is_renderable:
print("X. Experiments")
menu_item = input("#>").lower()
menu_item_split = menu_item.split()
if len(menu_item_split) == 3:
sample_type, command, sample = menu_item_split
try:
sample = int(sample) - 1
except TypeError:
input("Number of sample must be an integer")
continue
if sample < 0:
input("Number of sample must be >= 1")
continue
if sample_type == 'train' and 0 <= sample < train_samples:
do_command(train_x, train_y, sample, 'train')
elif sample_type == 'test' and 0 <= sample < test_samples:
do_command(test_x, test_y, sample, 'test')
elif menu_item == 'close':
if enter_bool("Are you sure?"):
input('Dataset closed')
reset()
continue
elif menu_item == 'export':
if enter_bool("Are you sure?"):
output_filename = input("Filename (train data, .csv):")
if len(output_filename) > 0:
n_export_samples = enter_number(f"Number of train samples to export (1-{train_samples}):",
1, train_samples, int)
try:
with open(output_filename, 'w') as fp:
for row_x, row_y in zip(train_x[:n_export_samples].reshape(n_export_samples, np.product(
train_x.shape[1:])), train_y[:n_export_samples]):
fp.write(','.join(str(x) for x in row_x))
fp.write(',' + str(row_y) + '\n')
print("Train data were exported to", output_filename)
except BaseException:
traceback.print_exc()
else:
print("Filename is empty")
if test_samples > 0:
output_filename = input("Filename (test data, .csv):")
if len(output_filename) > 0:
n_export_samples = enter_number(
f"Number of test samples to export (1-{test_samples}):",
1, test_samples, int)
try:
with open(output_filename, 'w') as fp:
for row_x, row_y in zip(
test_x[:n_export_samples].reshape(n_export_samples, np.product(
test_x.shape[1:])), test_y[:n_export_samples]):
fp.write(','.join(str(x) for x in row_x))
fp.write(',' + str(row_y) + '\n')
print("Test data were exported to", output_filename)
except BaseException:
traceback.print_exc()
else:
print("Filename is empty")
continue
elif menu_item == '1' or menu_item == '2' and test_samples > 0:
has_test = (menu_item == '1' and test_samples > 0)
if has_test:
test_folds = enter_number(f'Enter test folds (1 - {test_samples}):', 1, test_samples, int)
else:
test_folds = 0
epochs = enter_number('Enter max epochs (1 - 100000):', 1, 100000, int)
verbose = enter_number(f'Enter verbose (0 - {epochs}):', 0, epochs, int)
if isinstance(neural_network, MLPClassifier):
batch_size = enter_number(f'Enter batch size (1 - {train_samples}):', 1, train_samples, int)
lr = enter_number(f'Enter learning rate (0.000001 - 1000):', 0.000001, 1000., float)
else:
klr = enter_number(f'Enter kohonen learning rate (0.000001 - 10):', 0.000001, 10., float)
glr = enter_number(f'Enter grossberg learning rate (0.000001 - 10):', 0.000001, 10., float)
optimize = enter_bool("Use optimization?")
shuffle = enter_bool("Shuffle?")
print("Train accuracy goal is", train_accuracy_goal)
if has_test:
print("Test accuracy goal is", test_accuracy_goal)
if enter_bool("Edit?"):
train_accuracy_goal = enter_number("Enter train accuracy goal (0 - 1 or 2 [ignore]):", 0., 2.,
float)
if has_test:
test_accuracy_goal = enter_number("Enter test accuracy goal (0 - 1 or 2 [ignore]):", 0., 2.,
float)
print("Choice:", *best_choice)
if enter_bool("Edit?"):
choices = ['train_accuracy', 'test_accuracy'] if has_test else ['train_accuracy']
best_choice = frozenset(t for t in choices if enter_bool(f"Choose {t}?"))
print("Best choice:", *best_choice)
time_start = perf_counter()
try:
if isinstance(neural_network, MLPClassifier):
result = neural_network.fit(train_x, train_y, epochs, lr,
test_x=test_x, test_y=test_y, test_folds=test_folds,
verbose=verbose, batch_size=batch_size, shuffle=shuffle,
train_accuracy_goal=train_accuracy_goal,
test_accuracy_goal=test_accuracy_goal,
best_choice=best_choice)
else:
result = neural_network.fit(train_x, train_y, epochs,
kononen_learning_rate=klr,
grossberg_learning_rate=glr,
test_x=test_x, test_y=test_y, test_folds=test_folds,
verbose=verbose, shuffle=shuffle,
train_accuracy_goal=train_accuracy_goal,
test_accuracy_goal=test_accuracy_goal,
best_choice=best_choice,
optimize=optimize)
except BaseException:
traceback.print_exc()
input("Go to menu>>")
continue
time_stop = perf_counter()
print("Time:", time_stop - time_start, "seconds")
epochs_passed, train_loss_curve, train_accuracy_curve, test_loss_curve, test_accuracy_curve = result
if epochs_passed >= 2:
plot_loss_accuracy_curves(epochs_passed,
train_loss_curve, train_accuracy_curve,
test_loss_curve, test_accuracy_curve)
save_params_to_file = enter_bool("Do you want to save the parameters of the neural network to file?")
if save_params_to_file:
output_filename = input("Filename:")
try:
with open(output_filename, "w") as fp:
json.dump(neural_network.get_parameters(), fp, cls=NpEncoder)
print("Neural network parameters were saved to", output_filename)
except OSError as error:
print(error)
except BaseException:
traceback.print_exc()
losses, correct_answers = neural_network.evaluate(train_x, train_y)
print("TRAIN RESULTS")
train_loss = losses.mean()
print("Loss:", train_loss)
train_accuracy = correct_answers * 100 / train_samples
print("Accuracy (%):", train_accuracy)
show_confusion_matrix_ex(n_classes, train_y,
neural_network.predict_classes(train_x),
'Train. Confusion matrix')
if has_test:
losses, correct_answers = neural_network.evaluate(test_x, test_y)
print("TEST RESULTS")
test_loss = losses.mean()
print("Loss:", test_loss)
test_accuracy = correct_answers * 100 / test_samples
print("Accuracy (%):", test_accuracy)
show_confusion_matrix_ex(n_classes, test_y,
neural_network.predict_classes(test_x),
'Test. Confusion matrix')
elif menu_item == '3' and test_samples > 0 or menu_item == '2' and not test_samples > 0:
losses, correct_answers = neural_network.evaluate(train_x, train_y)
print("TRAIN RESULTS")
train_loss = losses.mean()
print("Loss:", train_loss)
train_accuracy = correct_answers * 100 / train_samples
print("Accuracy (%):", train_accuracy)
show_confusion_matrix_ex(n_classes, train_y,
neural_network.predict_classes(train_x),
'Train. Confusion matrix')
elif menu_item == '4' and test_samples > 0:
if train_accuracy > 0. and train_loss < np.inf:
losses, correct_answers = neural_network.evaluate(test_x, test_y)
print("TEST RESULTS")
test_loss = losses.mean()
print("Loss:", test_loss)
test_accuracy = correct_answers * 100 / test_samples
print("Accuracy (%):", test_accuracy)
show_confusion_matrix_ex(n_classes, test_y,
neural_network.predict_classes(test_x),
'Test. Confusion matrix')
else:
print("Train accuracy <= 0 or train loss == infinity")
elif menu_item == '5' and test_samples > 0 or menu_item == '3' and not test_samples > 0:
if train_accuracy > 0. and train_loss < np.inf:
with open(output_classes_filename, "w") as fp:
fp.write("Train data\nTrue Y:\n")
fp.write(str(train_y.tolist()) + "\n")
fp.write("Predicted Y:\n")
fp.write(str(neural_network.predict_classes(train_x)) + "\n")
if test_samples > 0:
fp.write("Test data\nTrue Y:\n")
fp.write(str(test_y.tolist()) + "\n")
fp.write("Predicted Y:\n")
fp.write(str(neural_network.predict_classes(test_x)) + "\n")
print("The classification data was saved to", output_classes_filename)
else:
print("Train accuracy <= 0 or train loss == infinity")
elif menu_item == 'x' and cur_is_renderable:
if train_accuracy > 0. and train_loss < np.inf:
if test_samples > 0:
print("1. Experiments on train data\n2. Experiments on test data\n3. Experiments on all data")
b_samples = enter_number("#>", 1, 3, int)
if b_samples in [1, 3]:
do_experiment(train_x, train_y, n_classes)
if b_samples in [2, 3]:
do_experiment(test_x, test_y, n_classes)
else:
do_experiment(train_x, train_y, n_classes)
else:
print("Train accuracy <= 0 or train loss == infinity")
else:
reset()
print("Try again...")
input("Go to menu>>")
if __name__ == "__main__":
main()